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Preface

The aim of this work is to use one-factor stochastic term structure models
to evaluate stochastic interest bonds, that are bonds bundled together some
interest rate derivative, and to compare them with the theoretical value that
the issuer indicates in the prospectus for the public o¤ering.
Stochastic interest bonds are a sub-set of the big family of structured bonds,

the latter being bonds that present speci�c algorithms driving coupons com-
putation and payment at maturity, mainly due to the presence of one or more
derivative components embedded in their �nancial structure.
Structured bonds are mainly issued by banks. Over the last two decades the

o¤ering of structured bonds to retail investors has consistently increased, with
a contextual rise in the variety of the payo¤ structures.
Chapter 1, after a brief exposure of the evolution of term structure mod-

els and their classi�cation, is devoted to analyze several one-factor a¢ ne term
structure models: the Vasicek model, the Ho-Lee model and the Hull-White
model.
Chapter 2 shows how to use the above models to price some typical interest

rate derivatives (namely caps and �oors) that are often embedded in the struc-
ture of stochastic interest bonds like those that will be considered in Chapter
5, which in fact, will include either a cap or a �oor or both these two types of
interest rate derivatives.
Chapter 3 is devoted to analyze some key concepts about credit risk in order

to take into account the impact of this risk factor on the bond value. To this aim,
we will illustrate some key results regarding credit derivatives, and, speci�cally,
credit default swaps whose market quotes allow to infer reliable estimates of
the cumulative and intertemporal default probabilities of an issuer at various
maturities by using the so-called bootstrapping technique. Once these default
probabilities are estimated they can be used to derive a general pricing formula
for defaultable bonds which will be used to perform the fair evaluation of the
ten stochastic interest bonds analyzed in Chapter 5.
Chapter 4 is devoted to study in detail the �nancial engineering of a speci�c

kind of stochastic interest bonds, namely the so-called collared �oaters, which
are �oating-rate coupon bonds whose coupons are subject to both an upper
and a lower bound, hence embedding two interest rate derivatives, either a long
cap and a short cap or a long �oor and a short cap depending on the speci�c
unbundling choice we make.
In particular, the unbundling of a generic collared �oater into its various

elementary components is examined, as it will be useful to the pricing of many
bonds included in the set of securities analyzed in Chapter 5.
Chapter 5 is focused on the pricing of ten stochastic interest bonds recently

issued by four of the major Italian banks: six of them are pure collared �oaters,
two of them are mixed �xed-�oating coupon bonds, whose �oating coupons have
the typical structure of collared �oaters, one bond is a �oating-rate coupon bond
embedding a �oor, and one bond is a �oating-rate coupon bond embedding a
�oor for the �rst half of its life and a cap for the second half of its life.
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After the illustration of their unbundling, these bonds are priced by means
of two alternative pricing methodologies.
The �rst methodology is based on the unbundling of their �nancial structure

which reveals how these bonds can be seen as the composition of one or more
pure bond components and of one or more interest rate derivatives, namely caps
and/or �oors, whose closed formulas - in the framework of the one-factor a¢ ne
term structure models of Chapter 1 developed under the risk neutral probability
measure - have been presented in Chapter 2.
The second methodology relies instead on Monte Carlo simulations, per-

formed again under the risk neutral probability measure; in this case the fair
value of a bond is determined by discounting back at the evaluation date the
�nal value of the security over each simulated trajectory and, then, by averaging
these discounted values.
The two pricing methodologies are implemented both in the framework of

the Vasicek model and in that of the Hull and White model.
Their results turn out to be consistent and, compared with the theoretical

value indicated in the �nal terms of the prospectus published by the issuers, are
a useful instrument to explore the reliability and the accuracy of the informative
set included in this document that investors use to take their �nancial decisions.
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Chapter 1

Term structure models

1.1 Introduction

The term structure models, or yield curve models, describe the time evolution
of the yield curve, that is the curve that, for each maturity T , evaluated at date
t, expresses the yield to maturity (spot rate), r(t; T ):
The spot rate is the rate de�ned at time t for a �nancial operation that

starts at time t and terminates at time T , with t � T .
From a practical point of view, most of the term structures of the interest

rates are computed from the Treasury bond prices, these kind of bonds, in
general and in normal market conditions, for the developed countries, being
considered risk-less.
Government bonds, like Treasury securities, are �nancial instruments that

provide �xed and certain cash �ows, coupons and principal, on a sequence of
pre-speci�ed dates.
The return rate corresponding to various maturities of these bonds can be de-

duced by a speci�c method called �bootstrapping�from the market price of the
most frequently traded coupon-bearing-bonds, sometimes called �benchmark�
issues.
This set of yields to maturity associated with di¤erent maturities de�nes the

term structure of interest rates. The shape of the term structure changes over
time. Most of times it is upward sloping, meaning that the return on long term
bonds is greater than the return on short term bonds. The term structure can
also be downward sloping; it can depend on macroeconomic state variables.
Unlike Treasury bonds, all structured bonds, like stochastic interest bonds,

have payo¤s that are neither �xed nor certain.
In the case of structured bonds, these payo¤s depend on the future levels of

interest rates that are all unknown variables at the time of the evaluation date.
As a consequence, the pricing of these bonds requires speci�c assumptions

on the future evolution of the interest rates, which usually rely on a speci�c
model for the dynamics of interest rates.

9



10 CHAPTER 1. TERM STRUCTURE MODELS

1.2 An historical perspective

The �rst research oriented to the term structure modelling has recognized the
importance of the stochastic nature of interest rates and has modelled the spot
rate evolution as a random walk.

On 1977 Vasicek introduced a general no arbitrage model for the pricing of
zero coupon bonds and he proposed a speci�c model in which the instantaneous
spot rate is described by a mean-reverting Ornstein-Uhlenbeck process.
On 1985 Cox, Ingersoll and Ross have shown how to use the yield curve

theory in a realistic economic world and they proposed a model only for positive
interest rates, based on a square root process.
In particular, their model (CIR model), as Vasicek model, is a mean reverting

model for the instantaneous spot rate but here the variance is not constant. Here
the variance of the short rate changes over time proportional to the level of the
short rate.
Both of the above mentioned models found out a speci�c time evolution

for the interest rate and they used economic fundamentals to describe that
systematic variation of the term structure.
These kinds of models are known in literature as �Equilibrium Models�be-

cause they specify the market price of risk and they can be supported by an
economic equilibrium model.
In this category there are also the models developed by Brennan and Schwartz

(1979), Fong and Vasicek (1991) and Longsta¤ and Schwartz (1992). All these
models are known as multifactor equilibrium models because they assume that
the evolution of the term structure of the interest rates depends on the dynamic
of more than one factor and that the yield to maturity depends on all these
factors too.
Equilibrium models can be calibrated by using historical data on interest

rates and bond prices and, then, they can be used to evaluate the price of both
plain vanilla and structured bonds and bond options.
Often there is a mispricing between the price obtained from this family of

models and the market price of a �nancial product. This problem generated
the requirement of term structure models to allow a bond pricing more coherent
with the term structure observed on the market.
At this point some authors developed the �no arbitrage models�, i.e. models

that use a no arbitrage condition to precisely de�ne the relationship between
the drift and the di¤usion coe¢ cients of the spot rate.
The �rst contribution in this direction comes from Ho and Lee (1986) and,

later, from the models developed respectively by Hull and White (1990) and by
the Black, Derman and Toy(1990).
In this �no arbitrage�category there is also the Heath, Jarrow and Morton

model (1992).
It is a term structure model that depends on the evolution of the entire

forward rate curve, starting from the current interest rate curve observed on
the market.
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The implementation of these kinds of models for the interest rate derivatives
has encountered several di¢ culties. One of them is that the instantaneous for-
ward rate term structure is not directly observable and then the Heath-Jarrow-
Morton Models are di¢ cult to apply.
To solve these problems some authors1 developed new term structure models

known as �market models�that study the observable interest rates applying over
�nite maturities, such as the LIBOR (London Interbank O¤ered Rate) or the
swap rates, directly within the Heath-Jarrow-Morton framework.
In this work we will analyze in detail the equilibrium model developed by

Vasicek and two no arbitrage models, namely those developed by Ho and Lee
and by Hull and White.

Equilibrium and no arbitrage models have similar features2 .
The main distinction between the two categories comes from the di¤erent input
that are used to calibrate the model parameters.
Equilibrium models explicitly specify the market price of risk; the model para-
meters, assumed constant over time, are estimated statistically from historical
data.
No arbitrage models are calibrated to match the observed price on the market
and the model price.
We have to point out that some equilibrium models (for example the Vasicek

model) and some no arbitrage models (for example the Ho-Lee model and the
Hull-White model) belong to a more general class of term structure models
known as A¢ ne Term Structure Models.
A¢ ne term structure models, introduced in 1996 by Du¢ e and Kan3 , are

models in which the yield to maturity of a zero-coupon bond is a linear function
of the underlying variables.
Du¢ e and Kan described and analyzed a simple multifactor term structure

model of the interest rates where the factors are the returns X1; X2; :::; Xn of n
zero-coupon bonds with di¤erent maturity, T1; T2; :::; Tn.
The models is called �A¢ ne� because, for each maturity T , there exists

an a¢ ne function YT : Rn ! R such that, for each date t, the return on a
zero-coupon bond with maturity T is equal to YT (Xt).

1.3 Term structure of interest rates

The base for all the term structure models for the interest rates is the concept
of the zero coupon bond.

1See Brace, Gatarek and Musiela (1997), Jamshidian (1997), Miltersen, Sandmnann and
Sondermann (1997), and others.

2As Black pointed out, this classi�cation may be a misuse of the term, because equilibrium
models like the CIR model do not admit arbitrage in the economic environment speci�ed in
the model. Moreover, arbitrage models, such as the Hull and White one, are constructed by
making time-varying the coe¢ cients of some equilibrium models

3See Du¢ e, D. e Kan, R., (1996), �A Yield-Factor Model of Interest Rates�, Mathematical
Finance, n. 4.
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A zero coupon bond or pure discount bond is a bond that entitles its holders
to a single certain cash �ow of FV (principal value or face value or notional
amount) in a certain future date.
Let P (t; T ) be the price at time t of a zero coupon bond maturing at time T

with face value FV = 1$ and let r(t; T ) be the spot rate over the period [t; T ],
then, the relationship between the bond price and its spot rate is:

P (t; T ) = e�r(t;T )(T�t) (1.1)

or, in terms of the spot rate:

r (t; T ) = � lnP (t; T )
T � t (1.2)

meaning that the price of a zero coupon bond is the discounted value of its
future cash �ow.
In particular, the spot rate of instantaneous maturity, i.e. the short rate rt,

is simply the limit of r(t; T ) when T collapses to t:

rt = lim
T!t

r (t; T ) (1.3)

The continuously compounded forward rate at time t for the future period be-
tween time T; T � t, and time T + � , � > 0, is de�ned by the following equation
for the forward price of the zero coupon bond expiring at time T+� and denoted
by P (t; T; T + �)

P (t; T; T + �) � P (t; T + �)

P (t; T )
= e�(F (t;T;T+�))�� (1.4)

Therefore, the explicit formula for the forward rate is:

F (t; T; T + �) = � lnP (t; T + �)� lnP (t; T )
�

(1.5)

The limit of F (t; T; T + �) for � ! 0 is the instantaneous forward rate that we
denote with F (t; T ). In other terms we have:

F (t; T ) = lim
�!0

F (t; T; T + �) (1.6)

and, given equation 1.5, we have:

F (t; T ) = �@ lnP (t; T )
@T

(1.7)

or, in integral form:
P (t; T ) = e�

R T
t
F (t;s)ds (1.8)

From equations 1.2 and 1.8 we can easily deduce the following equation for
the yield to maturity of a zero coupon bond:

r (t; T ) =

R T
t
F (t; s) ds

T � t (1.9)



1.4. RISK NEUTRAL VALUATION AND NO-ARBITRAGE CONDITION13

This equation shows how the yield to maturity of a zero coupon bond can be
interpreted as an average of the instantaneous forward rates on the time interval
corresponding to the time to maturity of the bond.

1.4 Risk neutral valuation and no-arbitrage con-
dition

Derivative securities and structured bonds are �nancial products whose payo¤
at one or more future dates corresponds to the state of nature that has occurred
at that date(s), which usually depends on the price of the underlying �nancial
instruments or on the evolution of these prices over a given preceding time
interval.
In particular the pricing of interest rate derivatives and of stochastic interest

bonds depends on the dynamics of the term structure of the interest rates and
it is governed by the no-arbitrage condition.
The no-arbitrage condition says that a strategy that has a positive future

payo¤ in at least one state of nature and no negative future payo¤s in all the
other possible states of nature must have a current value higher than zero.
This condition implies that a contingent claim whose payo¤can be replicated

by a portfolio of securities should have, under the risk-neutral measure, a price
equal to the value of the replicating portfolio. If this equivalence is not satis�ed,
it will be possible to set up an arbitrage strategy based on the di¤erence between
the two prices.
This evaluation principle based on the construction of a replication portfolio

led to the Black and Scholes formula (1973) for the European option pricing on
stocks and it is also the foundation of the pricing frameworks for interest rate
derivatives.
The risk neutral pricing methodology requires to compute the expected value

of the discounted future payo¤s of a given �nancial instrument, using a speci�c
probability measure, P, known as Equivalent Martingale Measure or Risk Neu-
tral Measure.
Intuitively, this means that, under the risk neutral measure, the rate of

return on a �nancial security is equivalent to the istantaneous short rate, rt.
The price at time t of a zero coupon bond with face value equal to one, i.e.

FV = 1; and maturity T is equal to the expected value, under the risk neutral
probability measure P; of its discounted payo¤, i.e.:

P (t; T ) = EP
h
e�
R T
t
rsds � 1

���Fti (1.10)

where rs is the instantaneous short rate at time s; s 2 [t; T ].
From equations 1.1 and 1.10 we have the following equality:

e�r(t;T )(T�t) = EP
h
e�
R T
t
rsds � 1

���Fti
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and then:

r (t; T ) = �
ln
n
EP
h
e�
R T
t
rsds � 1

���Ftio
T � t (1.11)

Equation 1.11 allows to model the whole term structure of interest rates by
using rt and its risk neutral process.
Under the probability measure P, the term e�

R T
t
rsds appearing in equa-

tion 1.10 is the discount factor that characterizes the saving account or money
market account. Moreover, under P the price of any zero-coupon bond is a mar-
tingale, meaning that its conditional expected value at some time t, given all
the observations up to some earlier time s, is equal to the value of that bond
observed at the earlier time s.

1.5 Equilibrium models

Equilibrium models start from precise assumptions about the dynamics of the
state variables that describe the economic conditions and model the behavior
of the term structure of interest rates into such economic context.
An important aspect of these models is that they explicitly specify the mar-

ket price of risk, � (t; rt).
Equilibrium models can be both one factor and multifactor models.
One factor models are based on the assumption that it is su¢ cient to model

only the behavior of one state variable to deduce the whole yield curve.
Multifactor models � as those of Brennan and Schwartz (1979), Fong and

Vasicek (1991), and Longsta¤ and Schwartz (1992) � assume that the evolution
of the term structure of the interest rates is governed by the dynamics of more
than one factor.
In this work we will focus on one factor models, mainly because the empir-

ical evidence proves that almost the 90% of the variability of the yield curve
movements is determined by the movements of �rst explanatory variable, which
is assumed to be the current level of the yield curve. As a consequence, each
point on the yield curve can be used as proxy of this level.
Most of one factor models use as proxy the instantaneous short rate, rt, and

for this reason they are also known as Short Rate Models.
The main assumption behind Short Rate Models is that, under the real-world

probability measure Q, the dynamics of the instantaneous short rate follow a
Markov di¤usive process as:

drt = � (t; rt) dt+ � (t; rt) dWt (1.12)

where:

� the drift coe¢ cient, � (t; rt) ; and the di¤usion coe¢ cient, � (t; rt) ; are
function of two variables, the instantaneous short rate rt and the time t;

� Wt is a standard Brownian motion under the real-world probability mea-
sure Q.
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Equation 1.12 shows how the short rate variation can be decomposed in a
drift component, � (t; rt) ; on the time interval (t; t+dt); and in a random shock
component given by the product of the standard Brownian motion increment
dWt and an instantaneous volatility (so-called di¤usion coe¢ cient) equal to
� (t; rt) :
The assumption of only one risk factor is not so restrictive as it could appear.

In fact, a one factor model implies that all interest rates will move in the same
direction of any small time interval but not that they will move all of the same
amount, and hence, the shape of the yield curve can change over time.
In these models the price at time t of a zero coupon bond that pays 1 at

time T , i.e. P (t; T ) ; is a function of the instantaneous interest rate and of the
time to maturity of the bond. In other words we have:

P (t; T ) := P (rt; t; T ) (1.13)

It is clear that by using equation 1.13 and applying the Itô�s formula, we are
able to derive the stochastic di¤erential equation that describes the dynamics
of the zero coupon bond price starting from the stochastic di¤erential equation
that governs the dynamics of the instantaneous short rate (i.e. equation 1.12).
In particular, in order to obtain the stochastic di¤erential equation that

describes the dynamics of the zero coupon bond price, we de�ne the following
partial derivatives:

@P (rt; t; T )

@rt
= Prt (rt; t; T )

@P (rt; t; T )

@t
= Pt (rt; t; T )

@2P (rt; t; T )

@r2t
= Prtrt (rt; t; T )

then , by applying Itô�s Lemma:

dP (rt; t; T ) =

�
� (t; rt)Prt (rt; t; T ) + Pt (rt; t; T ) +

1

2
�2 (t; rt)Prtrt (rt; t; T )

�
dt(1.14)

+� (t; rt)Prt (rt; t; T ) dWt

De�ning the quantities P (rt; t; T )� (t; rt) and P (rt; t; T )� (t; rt) as follows:

P (rt; t; T )� (t; rt) = � (t; rt)Prt (rt; t; T ) + Pt (rt; t; T ) +
1

2
�2 (t; rt)Prtrt (rt; t; T )

P (rt; t; T )� (t; rt) = � (t; rt)Prt (rt; t; T )

equation 1.14 can be written as:

dP (rt; t; T ) = P (rt; t; T )� (t; rt) + P (rt; t; T )� (t; rt) dWt (1.15)

From equation 1.15 and using a no-arbitrage argument it can be shown that
there exists a stochastic process for the market price of risk, � (t; rt) ; such that:

� (t; rt)� rt
� (t; rt)

= � (t; rt) (1.16)
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for any maturity T .
Equation 1.16 shows that the stochastic process � (t; rt) depends on the time

t and on the short rate rt, but it doesn�t depend on the maturity date T . This
stochastic process is di¤erent across di¤erent models because it depends on the
hypothesis about the investors�preferences and on the productivity.
Once the market price of risk is determined, we can �nd the risk neutral

probability measure P linked with the real-world probability measure Q by the
following conditions:

� Q and P are two equivalent probability measures4 ;

� the quantity:

dP
dQ

= e(
R t
0
�(s;rs)dW (s)� 1

2

R t
0
�2(s;rs)ds) (1.17)

is the Radon-Nikodym derivative of the probability measure P with respect
to the probability measure Q:

Given the relationship between P and Q expressed in equation 1.17 , the
Girsanov theorem allows to state that, if Wt is a standard Brownian motion
under Q, then the process:

fWt =Wt �
Z t

0

� (s; rs) ds

is a standard Brownian motion under P.
At this point we can say that, under the risk neutral probability measure

P, the process for rt evolves according to the following stochastic di¤erential
equation:

drt = b� (t; rt) dt+ � (t; rt) dfWt (1.18)

where:

b� (t; rt) = � (t; rt)� � (t; rt)� (t; rt) (1.19)

As a consequence, under the risk neutral probability measure P, the process
P (rt; t; T ) is described by the following stochastic di¤erential equation:

dP (rt; t; T ) = P (rt; t; T ) rtdt+ P (rt; t; T )� (t; rt) dfWt (1.20)

Equation 1.20 shows how, under the risk neutral probability measure, the
expected return of any zero coupon bond is equal to the risk free rate rt.
Using equation 1.18 and applying some stochastic calculus results, namely

the Feynman-Kac formula, we can determine the zero coupon bond price as

4Two probability measures , P and Q, are said to be equivalent if:

� are de�ned on the same measurable space (
;F);
� Q (A) = 0, P (A) = 0; 8A 2 F
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the expected value, under the risk neutral probability measure P; of the future
payo¤ of the bond discounted back from time T to time t, as shown in equation
1.10, i.e.:

P (t; T ) = EP
h
e�
R T
t
rsds � 1

���Fti (1.10)

1.5.1 The Vasicek model

The Vasicek model (1977) was the �rst term structure model with a mean
reverting dynamic for the short rate.
In fact, in this model, under the real-world probability measure Q; the short

rate is described by the following Ornstein-Uhlenbeck5 process:

drt = a (b� rt) dt+ �dWt (1.21)

where:

� a (b� rt) is the drift of the stochastic process of the short rate and it is
mean reverting, a measures the speed of mean reversion and b is the long-
run mean to which the short rate is reverting; both these parameters are
positive and constant

� Wt is a standard Brownian motion under the probability measure Q;

� � is the instantaneous volatility of the short rate and it is a positive
constant.

The mean reverting property characterizes most of the one factor models
based on the instantaneous spot rate dynamic.
Economically the mean reverting property means that, when the interest

rates are too high or too low, with respect to their long run level, they will
move towards this level.
Equation 1.21 implies that the instantaneous short rate has a conditional

Normal probability distribution with mean and variance respectively equal to:

E (rt) = b+ (r � b) e�at

V ar (rt) =
�2

2a

�
1� e�2at

�
In this model the market price of risk is assumed constant � i.e. � (t; rt) = �

� and then, applying equation 1.18, we can �nd the stochastic process for the
short rate under the risk neutral probability measure P:

drt = a (b
0 � rt) dt+ �dfWt (1.22)

5 In general, an Ornstein-Uhlenbeck, Xt, can be expressed by the following stochastic dif-
ferential equation:

dXt = �qXtdt+ �dWt

where:
- q and � are positive parameters
- dWt = "dt e " � N(0; 1) is white noise.
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where:

b0 = b� � � �
a

(1.23)

Equations 1.22 and 1.23 show that the instantaneous short rate process under P
is similar to the process under Q, as the only di¤erence consists in the translation
of the long run level of the short rate.
Given the pricing formula expressed by equation 1.10 and the evolution of

the short rate pointed out by equation 1.22, the price at time t of a zero coupon
bond with face value equal to 1 and maturity equal to T is, for a > 0 :

P (t; T ) = A (t; T ) e�B(t;T )rt (1.24)

where6 :

A (t; T ) = e
[B(t;T )�T+t]

�
a2b0��2

2

�
a2

��2B(t;T )2

4a (1.25)

and:

B (t; T ) =
1� e�a(T�t)

a
(1.26)

Substituting the RHS of equation 1.24 into equation 1.2 we have:

r (t; T ) = �
ln
�
A (t; T ) e�B(t;T )rt

�
T � t (1.27)

and then:

r (t; T ) = �
�
lnA (t; T ) + ln e�B(t;T )rt

�
T � t

= � ln [A (t; T )]
T � t +

B (t; T ) rt
T � t (1.28)

Once we have calibrated the parameters a, b0 and �, we can determine the
entire term structure as a function of rt and we can use the Vasicek model to
compute the price of interest rate derivatives as well as to evaluate both plain
vanilla and structured bonds, including the stochastic interest bonds that will
be analyzed in Chapter 5.
Given equation 1.28, the yield to maturity r (t; T ) is a linear function of the

instantaneous short rate rt with intercept equal to � ln[A(t;T )]
T�t and slope equal to

B(t;T )
T�t : For this reason the Vasicek model belongs to the family of A¢ ne term
structure models.

6 If a = 0; the formulas 1.25 and 1.26 become:

A (t; T ) = e
�2(T�t)3

6

and:
B (t; T ) = T � t
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The Vasicek model is consistent with term structure that can be either up-
ward sloping, downward sloping or humped.
The model can generate negative interest rates, due to the fact that the

conditional distribution of the short rate is Gaussian.
This is not necessarily a problem for real interest rates, but it is a problem

when modelling nominal rates and pricing interest rate derivatives. However, it
can be �xed (at least in �rst approximation) by imposing some suitable condi-
tions.

1.5.2 The volatility of the short rate in the Vasicek model

For convenience, we rewrite equation 1.22 as follows:

drs = a (b
0 � rs) ds+ �d ~Ws, where a; � > 0 and t < s (1.29)

In order to compute the solution for equation 1.29, given its initial condition:

rt = r; t < s

we de�ne the following Itô�s process:

Ys = (b
0 � rs)eas (1.30)

To obtain the stochastic di¤erential equation for Ys, we compute the following
partial derivatives:

@Ys
@rs

= �eas

@Ys
@s

= a (b0 � rs) eas

@2Ys
@r2s

= 0

and then we apply the Itô�s lemma:

dYs =

�
a (b0 � rs)

@Ys
@rs

+
@Ys
@s

+
�2

2

@2Ys
@r2s

�
ds+ �

@Ys
@rs

d ~Ws

= [�a (b0 � rs) eas + a (b0 � rs) eas] ds� �easd ~Ws

= ��easd ~Ws

or in integral form:

Ys = (b
0 � rs)eas = (b0 � rt)eat � �

Z s

t

eaud ~Wu

from which we �nd out the following expression for the instantaneous short rate:

rs = b
0 � (b0 � r)ea(t�s) + �

Z s

t

ea(u�s)d ~Wu (1.31)
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The term ea(u�s) inside the integrating function in the third term of the RHS
of equation 1.31 is a deterministic function and then we can exploit one of the
properties of the Itô�s integral7 and say that, given a �xed s, rs has a conditional
variance8 equal to:

V ar(rsj rt) = V ar

�
�

Z s

t

ea(u�s)d ~Wu

�
= �2

Z s

t

e2a(u�s)du

= �2
�
e2a(s�s)

2a
� e

2a(t�s)

2a

�
=

�2

2a
(1� e�2a(s�t)) (1.32)

1.5.3 Valuation of european options on zero-coupon bonds
in the Vasicek model

Let us consider an european put option, with strike price K and maturity T ,
written on a zero-coupon bond with face value equal to 1 and maturity s > T .
The price of this option at time t < T < s is:

pzcbt = K � P (t; T ) �N (�d2)� P (t; s) �N (�d1) (1.33)

where:

d1 =
ln
�

P (t;s)
K�P (t;T )

�
+

�2p
2

�p

d2 =
ln
�

P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d1 � �p

and where9 :

�p = �

�
1� e�a(s�T )

a

�r
1� e�2a(T�t)

2a
(1.34)

In order to prove the validity of equation 1.33, we have to prove that the put
option value at time t is equal to the conditional expected value of its payo¤
at maturity, under the risk neutral probability measure P, discounted at the

7Given a stochastic integral: It =
R t
0 f(u; !)dWu(!), if f(�; !) = f(�) - i.e. if f is a

deterministic function - the following relations are true:

E(It) = 0 ; E
�
(It)

2
�
= E

"�Z T

0
f(t; !)dWt(!)

�2#
= E

�Z T

0
f(t; !)2dt

�
= V ar(It).

See. Øksendal, B., (2003), �Stochastic Di¤erential Equations�, Springer, pages. 26-29.
8 I.e. conditional variance to the information set at time t and then to the initial condition

rt = r.
9See. Appendx A.1 of this Chapter
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risk free rate. Because the price of the zero-coupon bond at time T - i.e. the
underlying value at maturity - is P (T; s), the price at time t of such option is:

pzcbt = P (t; T ) � EPt [max(K � P (T; s); 0)] (1.35)

where the value P (t; T ) in the RHS of equation 1.35 is the price at time t of a
zero-coupon bond with FV = 1 and maturity equal to T .
By exploiting the property of the maximum and minimum functions accord-

ing to which:
min(f(x); d(x)) � �max(�f(x);�d(x))
equation 1.35 becomes:

pzcbt = P (t; T ) � EPt [�min(P (T; s)�K; 0)]
= �P (t; T ) � EPt [min(P (T; s)�K; 0)] (1.36)

Let g(P (T; s)) be the probability density function of P (T; s). We have that:

pzcbt = �P (t; T ) �
Z K

�1
(P (T; s)�K)g(P (T; s))dP (T; s) (1.37)

Being P (T; s) a lognormal random variable10 , the variable lnP (T; s) is condi-
tionally distributed as a normal random variable with standard deviation equal
to �p, whose value is expressed in equation 1.34. Given the lognormal distribu-
tion properties11 , the conditional expected value of lnP (T; s) is:

EPt (lnP (T; s)) = lnE
P
t (P (T; s))�

�2p
2

(1.38)

10Being P (T; s) = A(T; s)e�B(T;s)rT (see 1.24) and having the instantaneous short rate rt
a conditional normal probability distribution (see. § 1.5.1), we can conclude that P (T; s) has
a lognormal distribution.
11Let X be a lognormal random variable with density function:

f(x) =

8<: 1
�
p
2�

1
x
e
� 1
2

�
ln x�


�

�2
for x > 0

0 oherwise

whose expected value is E(X) = e
+
�2

2 and whose variance is V ar(X). Then, the ran-
dom variable Y = lnX has a normal probability distribution with expected value E(Y ) =

E(lnX) = lnE(X)� V ar(Y )
2

and variance V ar(Y ). In fact we have:

E(X) = e
+
�2

2

hence:

lnE(X) = 
 +
�2

2
expliciting by 
:


 = lnE(X)� �2

2

where 
 = E(Y ) and �2 = V ar(Y ).
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By the martingale property of the zero coupon bond price, the conditional
expected value of the spot price P (T; s), evaluated at time t, with t < T < s,
corresponds to the forward price P (t; T; s), and therefore equation 1.38 becomes:

EPt (lnP (T; s)) = lnP (t; T; s)�
�2p
2

(1.39)

Using the de�nition of the forward price from which12 :

P (t; T; s) =
P (t; s)

P (t; T )

the expected value of lnP (t; T; s); shown in equation 1.39, can be expressed as:

EPt (lnP (T; s)) = ln
P (t; s)

P (t; T )
�
�2p
2

(1.40)

We now de�ne a new random variable Q, obtained by standardizing the normal
random variable lnP (T; s):

Q =
lnP (T; s)� EPt (lnP (T; s))

�p
(1.41)

Then, Q has a standard normal distribution whose probability density function
h(Q) is:

h(Q) =
1p
2�
e�

Q2

2 (1.42)

Solving equation 1.41 for P (T; s) we have:

P (T; s) = eQ�p+E
P
t (lnP (T;s)) (1.43)

Using equations 1.41 and 1.43 to transform the integral in P (T; s) appearing in
the RHS of equation 1.37 into an integral in Q, we obtain:

pzcbt = �P (t; T )
Z lnK�EPt (lnP (T;s))

�p

�1

�
eQ�p+E

P
t (lnP (T;s)) �K

�
h(Q)dQ

= �P (t; T )

0@Z lnK�EPt (lnP (T;s))
�p

�1
eQ�p+E

P
t (lnP (T;s))h(Q)dQ+

�K
Z lnK�EPt (lnP (T;s))

�p

�1
h(Q)dQ

1A (1.44)

12See. equation 1.4, with T + � = s.
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Substituting the value of h(Q) given in equation 1.42, the �rst term in the RHS
of equation 1.44 becomes:

eQ�p+E
P
t (lnP (T;s))h(Q) =

1p
2�
eQ�p+E

P
t (lnP (T;s))�

Q2

2

=
1p
2�
e
�Q2+2Q�p+2EPt (lnP (T;s))

2

=
1p
2�
e
�(Q��p)2+2EPt (lnP (T;s))+�

2
p

2

= eE
P
t (lnP (T;s))+

�2p
2 � 1p

2�
e
�(Q��p)2

2 (1.45)

From equation 1.42, we see that the quantity 1p
2�
e
�(Q��p)2

2 is the probability
density function of the random variable (Q��p), whose conditional distribution
is a normal with parameters (��p; 1). Therefore, equation 1.45 can be written
as:

eQ�p+E
P
t (lnP (T;s))h(Q) = eE

P
t (lnP (T;s))+

�2p
2 h(Q� �p)

and, hence, equation 1.44 becomes:

pzcbt = �P (t; T )

8<:eEP
t (lnP (T;s))+

�2p
2

Z lnK�EPt (lnP (T;s))
�p

�1
h(Q� �p)dQ+

�K
Z lnK�EPt (lnP (T;s))

�p

�1
h(Q)dQ

9=;
= �P (t; T )

�
eE

P
t (lnP (T;s))+

�2p
2 N

�
lnK � EPt (lnP (T; s))

�p
� �p

�
+

�KN
�
lnK � EPt (lnP (T; s))

�p

��
(1.46)

where N(x) is a standard normal random variable.
Substituting the value of EPt (lnP (T; s)) given from 1.40, equation 1.46 becomes:

pzcbt = �P (t; T )
 
eln

P (t;s)
P (t;T )

�
�2p
2 +

�2p
2 N

 
lnK�ln P (t;s)

P (t;T )
+
�2p
2

�p
� �p

!
+

�KN
 
lnK�ln P (t;s)

P (t;T )
+
�2p
2

�p

!!

= �P (t; T )
 
P (t;s)
P (t;T )N

 
ln(K�P (t;T )

P (t;s) )+
�2p
2

�p
� �p

!
+

�KN
 
ln(K�P (t;T )

P (t;s) )+
�2p
2

�p

!!
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and �nally:

pzcbt = �P (t; s)�N

0B@ ln
�
K�P (t;T )
P (t;s)

�
� �2p

2

�p

1CA+K�P (t; T )�N
0B@ ln

�
K�P (t;T )
P (t;s)

�
+

�2p
2

�p

1CA
(1.47)

Denoting by d1 and d2 the quantities:

d1 =
ln
�

P (t;s)
K�P (t;T )

�
+

�2p
2

�p

d2 =
ln
�

P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d1 � �p

equation 1.47 becomes13 :

pzcbt = K � P (t; T ) �N (�d2)� P (t; s) �N (�d1) (1.93)

We can see that equation 1.93 is similar to the traditional Black-Scholes formula.
In fact, under the Black-Scholes formula, the price at time t, under the risk
neutral probability measure P, of a put option written on a stock is:

pBSt = K � e�r(t;T )(T�t) �N (�d2)� St �N (�d1) (1.51)

where:

d1 =
ln StK + (rt +

�2

2 )(T � t)
�
p
T � t

d2 =
ln StK + (rt � �2

2 )(T � t)
�
p
T � t

= d1 � �
p
T � t

and St is the price of the underlying asset at time t.
In both cases the price of the underlying asset has a lognormal distribution

and �2p has the same role of �
2(T � t), that represents the conditional variance

of the logarithm of the stock price at maturity. The price P (t; T ) corresponds

13Notice that, if the underlying zero coupon bond has face value di¤erent from one, the
formula 1.93 to compute pzcbt changes as follows:

pzcbt = K � P (t; T ) �N (�d�2)� FV � P (t; s) �N (�d�1) (1.48)

where:

d�1 =
ln
�
FV �P (t;s)
K�P (t;T )

�
+

�2p
2

�p
(1.49)

d�2 =
ln
�
FV �P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d�1 � �p (1.50)
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to the discount factor e�r(t;T )(T�t), in which r(t; T ) is the risk neutral interest
rate14 .
Using a procedure similar to that one used to determine the price of a put

option, we can �nd out the formula for the evaluation of an european call option
with strike price K and maturity T , written on a zero-coupon bond with face
value equal to one and maturity s > T , starting from the equality:

P (t; T )�EPt [max(P (T; s)�K; 0)] = P (t; T )�
Z +1

K

(P (T; s)�K)g(P (T; s))dP (T; s)

and obtaining the call price czcbt expressed as15 :

czcbt = P (t; s) �N (d1)�K � P (t; T ) �N (d2) (1.53)

1.6 No arbitrage models

Equilibrium models may be derived from some equilibrium framework which
would preclude the existence of arbitrage in the speci�ed economy.
These models usually calibrated with historical data. This approach is not

practical for pricing interest rate derivatives because, it will not guarantee that
the model term structure matches the current term structure obtained from
market prices.
For this reason, signi�cant researches have been done to make one factor models
matching the current yield curve before they are used to price interest rate
derivatives.
One way to match the current term structure is to allow to the coe¢ cient

in a factor model to vary deterministically over time.
This type of models, known as no arbitrage models, takes the market price of
bonds as given and prices interest rate derivatives accordingly.
We proceed to analyze two important models of this category, the Ho-Lee

model (1986) and the Hull-White model (1991).

14Recall that, in a risk neutral world, the expected return of any �nancial asset is equal to
the risk-free rate.
15As for the put case, notice that, if the underlying zero-coupon bond has a face value

di¤erent from one, the formula 1.94 to compute czcbt changes as follows:

czcbt = FV � P (t; s) �N (d�1)�K � P (t; T ) �N (d�2) (1.52)

where:

d�1 =
ln
�
FV �P (t;s)
K�P (t;T )

�
+

�2p
2

�p
(1.49)

d�2 =
ln
�
FV �P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d�1 � �p (1.50)
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1.6.1 The Ho and Lee model

In 1986 Ho and Lee published a one factor term structure model for the
interest rates where the explanatory factor is, as in the Vasicek model, the
instantaneous short rate. Starting from the assumption that the short rate
follows a random walk, this model speci�es the stochastic process for rt under
the risk neutral probability measure P as follows:

drt = � (t) dt+ �dfWt (1.54)

where:

� � (t) is the drift of the short rate process and it is a deterministic function
of time;

� fWt is a standard Brownian motion under the risk neutral probability mea-
sure P;

� � is the instantaneous standard deviation of the short rate and it is con-
stant.

In this model � (t) is the expected direction of the short rate rt movement
and it doesn�t depend on the level of rt. Equation 1.54 shows that at any
time t the expected variation of the interest rates in the immediately following
in�nitesimal time interval is always the same, no matter if interest rates are
high or low.
Computing analytically the variable � (t) we �nd the following equality:

� (t) = Ft (0; t) + �
2t (1.55)

where Ft (0; t) is the partial derivative with respect to t of the instantaneous
forward rate F (0; t) observed at time zero for the maturity t:
In a �rst approximation � (t) is equal to Ft (0; t) ; meaning that the expected
variation of the short rate is approximately equal to the slope of the instanta-
neous forward rate curve.
Given the pricing formula 1.10 and the short rate dynamic expressed in

equation 1.54, the price at time t of a zero-coupon bond with face value equal
to 1 and maturity T is:

P (t; T ) = A (t; T ) e�rt(T�t) (1.56)

where:

ln [A (t; T )] = ln

�
P (0; T )

P (0; t)

�
� (T � t) @ ln [P (0; t)]

@t
� 1
2
�2t (T � t)2 (1.57)

In equations 1.56 and 1.57 , the current time is zero and the times t and T are
general future times with T � t > 0.
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Substituting equation 1.57 into equation 1.56 we can �nd the explicit formula
for the price of a bond in the Ho-Lee model, i.e.:

P (t; T ) = P (t; T ) =
P (0; T )

P (0; t)
� e�[(T�t)

@ ln[P (0;t)]
@t + 1

2�
2t(T�t)2+rt(T�t)] (1.58)

Given equation 1.58 the zero-coupon bond price, at a given future time t, is
a function of the short rate that will be observed at time t, of the istantaneous
forward rate F (0; t)16 and of the market prices, at time zero, of the zero-coupon
bonds with maturity t and T:
We point out that, substituting the RHS of equation 1.56 into equation 1.2

we have:

r (t; T ) = �
ln
�
A (t; T ) e�B(t;T )rt

�
T � t (1.59)

and then:

r (t; T ) = �
�
lnA (t; T ) + ln e�B(t;T )rt

�
T � t (1.60)

= � ln [A (t; T )]
T � t +

B (t; T ) rt
T � t

Given equation 1.60 the yield to maturity r (t; T ) is a linear function of
the instantaneous short rate rt with intercept equal to: � ln[A(t;T )]

T�t and slope

equal to: B(t;T )
T�t . For this reason the Ho-Lee model belongs to the A¢ ne term

structure Models.
Through a �discretization�of equation 1.57, we can compute a discrete time

pricing formula for a zero-coupon bond.
Let �t be a very short time interval, for example one day, and let R(t) be the
continuously compounded interest rate relative to this time interval.
Then, from equation 1.56 we can derive the following expression17 :

P (t; T ) = bA (t; T ) e�R(t)(T�t) (1.61)

where:

ln
h bA (t; T )i = ln �P (0; T )

P (0; t)

�
� (T � t)

�t

ln [P (0; t+�t)]

P (0; t)
�1
2
�2t (T � t) [T � t� (�t)]

(1.62)
Equation 1.61 is more used than equation 1.56 because equations 1.61 and

1.62 require only to know the zero-coupon bond prices at time zero.

Moreover, it is obvious that, since the quantity �t is negligible, the term
1
2�

2t (T � t) [T � t� (�t)] in the RHS of the 1.62 can be approximated to the
quantity: 12�

2t (T � t)2, and then, equations 1.61 and 1.62 become respectively:

P (t; T ) = bA0 (t; T ) e�R(t)(T�t) (1.63)
16See equation 1.7 of section 1.3.
17See. Hull, J., (2008), �Options, Futures, and Other Derivatives�, Prentice Hall, pages.

654-655
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and:

ln
h bA0 (t; T )i = ln �P (0; T )

P (0; t)

�
� (T � t)

�t
ln
[P (0; t+�t)]

P (0; t)
� 1
2
�2t (T � t)2 (1.64)

A drawback of the Ho-Lee model is that it is not a mean-reverting model,
since, as shown by equation 1.54, independently of the interest rates level, the
mean direction of the istantaneous short rate in the immediately following in-
�nitesimal time interval is always the same.
Another inconvenience of this model is that it allows to represent a reduced

set of volatility structures.
In particular:

1. the volatility at time t of a zero-coupon bond with maturity T is a linear
function of T ;

2. the instantaneous standard deviation at time t of the spot rate of return
of a zero-coupon bond with maturity T is constant;

3. the instantaneous standard deviation of the instantaneous forward rate
with maturity T is constant.

The Ho and Lee model can generate negative interest rates, due to the fact
that the conditional distribution of the short rate is Gaussian.
This is not necessarily a problem for real interest rates, but it is a problem

when modelling nominal rates and pricing interest rate derivatives. However, it
can be �xed (at least in �rst approximation) by imposing some suitable condi-
tions.

1.6.2 The volatility of the short rate in the Ho and Lee
model

We rewrite the stochastic process of rt; under the risk neutral probability
measure P, for the Ho and Lee model as:

drs = � (s) ds+ �d ~Ws (1.65)

with the initial condition:

rt = r; t < s

The solution of equation 1.65 is:

rs = rt +

Z s

t

� (s) ds+ �

Z s

t

d ~Wu (1.66)
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The �rst two terms of equation 1.66 are deterministic functions and, there-
fore, the conditional variance of the short rate is equal to:

V ar (rs) = V ar

�
�

Z s

t

d ~Wu

�
(1.67)

= �2V ar

�Z s

t

d ~Wu

�
= �2 (s� t)

1.6.3 Valuation of european options on zero-coupon bonds
in the Ho-Lee model

The evaluation of european options on zero coupon bonds in the Ho and Lee
model18 is based on a formula quite similar to that derived in Black model 19 .
Let us consider an european put option, with strike price K and maturity T ,

written on a zero-coupon bond with face value equal to 1 and maturity s > T .
The price at time t of this put option is denoted with pzcbt and it is equal

to20 :

pzcbt = K � P (t; T ) �N (�d2)� P (t; s)N (�d1) (1.68)

where:

� P (t; T ) is the price at time t of a zero coupon bond with maturity T , and
it is an input required by the model;

� P (t; s) is the price at time t of a zero coupon bond with maturity s > T ,
and it is an input required by the model;

� N(x) is the value in x of the standard normal distribution function;

and the quantities d1 and d2 are respectively given by:

d1 =
1

�p
ln

�
P (t; s)

K � P (t; T )

�
+
�p
2

(1.69)

18See. Jamshidian, F., 1989, �An Exact Bond Option Pricing Formula�, Journal of Finance
n. 44.
19See Appendix B.1. of this Chapter
20 If the underlying zero coupon bond has a face value di¤erent from one, the 1.68, the 1.69

and the 1.70 changes as follows:

pzcbt = K � P (t; T ) �N (�d2)� FV � P (t; s)N (�d1)

d1 =
1

�p
ln

�
FV � P (t; s)
K � P (t; T )

�
+
�p

2

d2 =
1

�p
ln

�
FV � P (t; s)
K � P (t; T )

�
� �p

2
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and:

d2 =
1

�p
ln

�
P (t; s)

K � P (t; T )

�
� �p
2

(1.70)

where:
�p = �(s� T )

p
T � t (1.71)

Analogously, the price at time t of an european call option with strike K
and maturity T written on a zero coupon bond with face value equal to 1 and
maturity s; s > T , is denoted with czcbt and it is equal to21 :

czcbt = P (t; s) �N (d1)�K � P (t; T ) �N (d2) (1.72)

where:

� P (t; T ) is the price at time t of a zero coupon bond with maturity T , and
it is an input required by the model;

� P (t; s) is the price at time t of a zero coupon bond with maturity s > T ,
and it is an input required by the model;

� N(x) is the value in x of the standard normal distribution function;

and the quantities d1 and d2 are given by the same equations seen for the
european put option, i.e. equations 1.69 and 1.70.

1.6.4 The Hull and White model

In 1990 Hull and White published an extension of the Vasicek model in which
the short rate process is mean reverting as in the Vasicek model and it is con-
sistent with the initial term structure of interest rates.
In this model, under the risk neutral probability measure, P; the instanta-

neous short rate dynamics are governed by the following stochastic di¤erential
equation:

drt = [� (t)� art] dt+ �dfWt (1.73)

or:

drt = a

�
� (t)

a
� rt

�
dt+ �dfWt (1.74)

where:
21 If the underlying zero coupon bond has a face value di¤erent from one, the 1.72, the 1.69

and the 1.70 changes as follows:

czcbt = P (t; s) �N (d1)�K � P (t; T ) �N (d2)

d1 =
1

�p
ln

�
FV � P (t; s)
P (t; T ) �K

�
+
�p

2

d2 =
1

�p
ln

�
FV � P (t; s)
P (t; T ) �K

�
� �p

2
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� a
h
�(t)
a � rt

i
is the drift of the stochastic process of the short rate and it

is mean reverting; a is the constant speed of mean reversion and �(t)
a is

a function representing the long run level of the istantaneous short rate.
This means that at the generic time t the instantaneous short rate goes
to � (t) =a with speed equal to a;

� fWt is a standard Brownian motion under the risk neutral probability mea-
sure P;

� � is the instantaneous standard deviation of the short rate and it is con-
stant.

We have to observe that, as in the Vasicek model, also in the Hull and White
model the short rate drift is mean reverting but in this speci�cation the long
run level of the instantaneous short rate is a deterministic function of the time.

Analytically computing the variable � (t), under no-arbitrage condition the
following equation holds:

� (t) = Ft (0; t) + aF (0; t) +
�2

2a

�
1� e�2at

�
(1.75)

where Ft (0; t) is the partial derivative with respect to t of the instantaneous
forward rate F (0; t) observed at time zero for the maturity t:
The �rst two terms in the RHS of equation 1.75 show that, since � (t) is a

function of the initial term structure of istantaneous forward rates, the speci�ca-
tion of the Hull and White is consistent with the initial term structure observed
in the market.
Moreover, the last term in equation 1.75 is negligible, so that the drift of the
process rt at time t is approximately equal to: Ft (0; t) + aF (0; t) :
At this point we have that, in average, the short rate follows approximately

the slope of the initial instantaneous forward rate curve and, if it is faraway
from that level, it will move towards it with a speed equal to a.
Also we can observe that the speci�cation in equation 1.73 include the Ho

and Lee model as a particular case when the parameter a = 0:
The stochastic integral corresponding to the stochastic di¤erential equation

1.73 can be expressed as22 :
rt = xt + �t (1.76)

where xt is a Gaussian stochastic process described by the following stochastic
di¤erential equation:

dxt = �axtdt+ �dfWt (1.77)

and �t is the following deterministic function:

�t = F (0; t) +
�2

2a2
�
1� e�at

�2
(1.78)

22See. Brigo, Mercurio, 2006,�Interest Rate Models - Theory and Practice�, Springer, pages.
72-74
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By substituting the RHS of equation 1.7, i.e.:

F (0; t) = �@ lnP (0; t)
@t

(1.7)

equation 1.78 can be also written as:

�t = �
@ lnP (0; t)

@t
+
�2

2a2
�
1� e�at

�2
(1.79)

The decomposition exhibited in equation 1.76 has two advantages:

� there exist simple discretization formulas to simulate the stochastic process
of xt;

� it allows to get rid of the �rst derivative of the forward curve appearing
in the RHS of equation 1.75.

Given equations 1.10 and 1.73 (or 1.74), the price at time t of a zero-coupon
bond with face value 1and maturity T is:

P (t; T ) = A (t; T ) e�B(t;T )rt (1.80)

where:

B (t; T ) =
1� e�a(T�t)

a
(1.81)

and

ln [A (t; T )] = ln

�
P (0; T )

P (0; t)

�
�B (t; T ) @ ln [P (0; t)]

@t
�
�2 �B (t; T )2 �

�
1� e�2at

�
4a

(1.82)
Equations 1.73, 1.75 and 1.80 de�ne the price at time t of a zero coupon

bond with maturity T as function of rt and of the zero-coupon bond prices with
respectively maturity t and T .
Substituting the 1.81 and the 1.82 into the 1.80 we �nd the explicit formula

for the bond pricing with the Hull and White model, i.e.:

P (t; T ) =
P (0; T )

P (0; t)
� e
�
�
1�e�a(T�t)

a

�
@ ln[P (0;t)]

@t � (1.83)

�e
�
�2

 
1�e�a(T�t)

a

!2
(1�e�2at)

4a �
�
1�e�a(T�t)

a

�
rt

Given equation 1.83 the zero-coupon bond price, at a given future time t,is
a function of the short rate that will be observed at time t, of the istantaneous
forward rate F (0; t)23 and of the market prices, at time zero, of the zero-coupon
bonds with maturity t and T:

23See equation 1.7 of section 1.3.
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Substituting the RHS of equation 1.80 into equation 1.2 we have:

r (t; T ) = �
ln
�
A (t; T ) e�B(t;T )rt

�
T � t (1.84)

and then:

r (t; T ) = �
�
lnA (t; T ) + ln e�B(t;T )rt

�
T � t (1.85)

= � ln [A (t; T )]
T � t +

B (t; T ) rt
T � t

Given equation 1.85, the yield to maturity r (t; T ) is a linear function of the
instantaneous short rate rt with intercept equal to: � ln[A(t;T )]

T�t and slope equal

to:B(t;T )T�t . For this reason the Hull and White model belongs to the family of
A¢ ne term structure Models.
The volatility structure in the Hull and White model depends both on a

and �. This model allows to represent a large set of volatility structures. In
particular:

1. the volatility at time t of a zero-coupon bond with maturity T is:

�

a

h
1� e�a(T�t)

i
2. the instantaneous standard deviation at time t of the interest rate in a
zero-coupon bond with maturity T is:

�

a (T � t)

h
1� e�a(T�t)

i
(1.86)

3. the instantaneous standard deviation of the instantaneous forward rate
with maturity T is:

� � e�a(T�t) (1.87)

Both in equation 1.86 and in equation 1.87, the parameter a determines the
rate at which the standard deviation decreases if the maturity goes up. The
greater is a and the faster is the decline.
As the Ho and Lee model, also the Hull-White model can be �discretized�to

�nd a zero-coupon bond pricing formula in discrete time equivalent to equation
1.80.
Let �t be a very short time interval, for example one day, and let R(t) be the
continuously compounded interest rate relative to this time interval. Then, from
equation 1.80 it is possible to derive the following expression 24 :

P (t; T ) = bA (t; T ) e� bB(t;T )R(t) (1.88)

24See. Hull, J., 2008, �Options, Futures, and Other Derivatives�, Prentice Hall, pages.
656-657
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where: bB (t; T ) = B (t; T )

B (t; t+�t)
�t (1.89)

and

ln
h bA (t; T )i = ln

�
P (0; T )

P (0; t)

�
� B (t; T )

B (t; t+�t)
ln
[P (0; t+�t)]

P (0; t)
+ (1.90)

��
2

4a

�
1� e�2at

�
B (t; T ) [B (t; T )�B (t; t+�t)]

Equation 1.88 is more used than equation 1.80 because equations 1.88, 1.89
and 1.90 require only to know the zero-coupon bond prices at time zero.
The Hull and White model can generate negative interest rates, due to the

fact that the conditional distribution of the short rate is Gaussian.
This is not necessarily a problem for real interest rates, but it is a problem

when modelling nominal rates and pricing interest rate derivatives. However, it
can be �xed (at least in �rst approximation) by imposing some suitable condi-
tions.

1.6.5 The volatility of the short rate in the Hull andWhite
model

For convenience, we rewrite equation 1.74 as follows:

drs = a

�
� (s)

a
� rs

�
ds+ �d ~Ws with a; � > 0 (1.91)

In order to compute the solution of equation 1.91, given its initial condition:

rt = r; t < s

we de�ne the following Itô�s process:

Ys =
�
�(s)
a � rs

�
eas (1.92)

To obtain the stochastic di¤erential equation of Ys, we compute the following
partial derivatives:

@Ys
@rs

= �eas

@Ys
@s

= a

�
� (s)

a
� rs

�
eas

@2Ys
@r2s

= 0



1.6. NO ARBITRAGE MODELS 35

and then we apply the Itô�s lemma:

dYs =

�
a

�
� (s)

a
� rs

�
@Ys
@rs

+
@Ys
@s

+
�2

2

@2Ys
@r2s

�
ds+ �

@Ys
@rs

d ~Ws

=

�
�a
�
� (s)

a
� rs

�
eas + a

�
� (s)

a
� rs

�
eas
�
ds� �easd ~Ws

= ��easd ~Ws

or, in integral form:

Ys =
�
�(s)
a � rs

�
eas = a

�
�(s)
a � r

�
eat � �

Z s

t

eaud ~Wu (1.93)

multiplying both terms of the previous equation by e�as we obtain:�
�(s)
a � rs

�
ease�as = a

�
�(s)
a � r

�
eate�as � �e�as

Z s

t

eaud ~Wu

simplifying and solving for rs we have:

rs =
� (s)

a
�
�
� (s)

a
� r
�
ea(t�s) + �

Z s

t

ea(u�s)d ~Wu (1.94)

The term ea(u�s) inside the integrating function in the third term of the RHS
of equation 1.94 is a deterministic function and then we can exploit one of the
properties of the Itô�s integral25 and say that, given a �xed s, rs is conditionally
normal distributed with conditional expected value and conditional variance26 ,
respectively equal to:

E(rs) =
� (s)

a
�
�
� (s)

a
� r
�
e�a(s�t) (1.95)

V ar(rs) = V ar

�
�

Z s

t

ea(u�s)d ~Wu

�
(1.96)

= �2
Z s

t

e2a(u�s)du

= �2
�
e2a(s�s)

2a
� e

2a(t�s)

2a

�
=

�2

2a
(1� e�2a(s�t))

25Given a stochastic integral It =
R t
0 f(u; !)dWu(!), if f(�; !) = f(�) - i.e. if f is a deter-

ministic function - the following relations are true:

E(It) = 0 ; E
�
(It)

2
�
= E

"�Z T

0
f(t; !)dWt(!)

�2#
= E

�Z T

0
f(t; !)2dt

�
= V ar(It).

See. Øksendal, B., (2003), �Stochastic Di¤erential Equations�, Springer, pages. 26-29.
26 I.e. expected value and variance conditional to the information set at time t and then to

the initial condition rt = r.
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1.6.6 Valuation of european options on zero-coupon bonds
in the Hull-White model

The price at time t, of an european put option with strike K and maturity
T written on a zero coupon bond with face value equal to 1 and maturity s,
with s > T , is denoted by pzcbt , under the risk neutral probability measure P, it
is equal to27 :

pzcbt = K � P (t; T ) �N (�d2)� P (t; s) �N (�d1) (1.97)

where:

d1 =
1

�p
ln

�
P (t; s)

K � P (t; T )

�
+
�p
2

(1.98)

d2 =
1

�p
ln

�
P (t; s)

K � P (t; T )

�
� �p
2

(1.99)

and:

� P (t; T ) is the price at time t of a zero coupon bond with maturity T , and
it is an input required by the model;

� P (t; s) is the price at time t of a zero coupon bond with maturity s > T ,
and it is an input required by the model;

� N(x) is the value in x of the standard normal distribution function;

� �p is equal to28 :

�p =
�

a

�
1� e�a(s�T )

�r (1� e�2a(T�t))
2a

(1.100)

In order to prove the validity of equation 1.97, we prove that the put option
value at time t is equal to the conditional expected value of its payo¤at maturity,
under the risk neutral probability measure P, discounted at the risk free rate.
The price at time t of the put option written on a zero coupon bond with
maturity s, is:

pzcbt = P (t; T ) � EPt [max(K � P (T; s); 0)] (1.101)

where the value P (T; s) in the RHS of equation 1.101 is the price at time t of a
zero-coupon bond with FV = 1 and maturity equal to T .

27 If he underlying zero coupon bond has face value di¤erent from one, the 1.97, the 1.98
and the 1.99 changes as follows:

pzcbt = K � P (t; T ) �N (�d2)� FV � P (t; s)N (�d1)

d1 =
1

�p
ln

�
FV � P (t; s)
K � P (t; T )

�
+
�p

2

d2 =
1

�p
ln

�
FV � P (t; s)
K � P (t; T )

�
� �p

2

28See. Appendix A.3 of this Chapter
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By exploiting the property of maximum an minimum functions according to
which:
min(f(x); g (x)) � �max(�f(x);�g (x))
equation 1.101 becomes:

pzcbt = P (t; T ) � EPt [�min(P (T; s)�K; 0)]
= �P (t; T ) � EPt [min(P (T; s)�K; 0)] (1.102)

Let g (P (T; s)) be the probability density function of P (t; T ): We have that:

pzcbt = �P (t; T ) �
Z K

�1
(P (T; s)�K)g(P (T; s))dP (T; s) (1.103)

Being P (T; s) a lognormal random variable29 , the variable lnP (T; s) is condi-
tionally distributed as a normal random variable with standard deviation equal
to �p, whose value is expressed in equation 1.100. Given the lognormal distrib-
ution properties30 , the conditional expected value of lnP (T; s) is:

EPt (lnP (T; s)) = lnE
P
t (P (T; s))�

�2p
2

(1.104)

By the martingale property of the zero coupon bond price, the conditional ex-
pected value of the spot price P (T; s), evaluated at time t, with t < T < s,
corresponds to the forward price P (t; T; s), and therefore equation 1.104 be-
comes:

EPt (lnP (T; s)) = lnP (t; T; s)�
�2p
2

(1.105)

29Being P (T; s) = A(T; s)e�B(T;s)rT (see 1.24) and having the instantaneous short rate rt
a conditional normal probability distribution (see. § 1.5.1), we can conclude that P (T; s) has
a lognormal distribution.
30Let X be a lognormal random variable with density function:

f(x) =

8<: 1
�
p
2�

1
x
e
� 1
2

�
ln x�


�

�2
for x > 0

0 oherwise

whose expected value is E(X) = e
+
�2

2 and whose variance is V ar(X). Then, the ran-
dom variable Y = lnX has a normal probability distribution with expected value E(Y ) =

E(lnX) = lnE(X)� V ar(Y )
2

and variance V ar(Y ). In fact we have:

E(X) = e
+
�2

2

hence:

lnE(X) = 
 +
�2

2

expliciting by 
:


 = lnE(X)� �2

2

where 
 = E(Y ) and �2 = V ar(Y ).
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Using the de�nition of the forward price from which31 :

P (t; T; s) =
P (t; s)

P (t; T )

the expected value of lnP (t; T; s); shown in equation 1.105, can be expressed
as:

EPt (lnP (T; s)) = ln
P (t; s)

P (t; T )
�
�2p
2

(1.106)

We now de�ne a new random variable Q, obtained by standardizing the normal
random variable lnP (T; s):

Q =
lnP (T; s)� EPt (lnP (T; s))

�p
(1.107)

Then, Q has a standard normal distribution whose probability density function
h(Q) is:

h(Q) =
1p
2�
e�

Q2

2 (1.108)

Solving equation 1.107 for P (T; s) we have:

P (T; s) = eQ�p+E
P
t (lnP (T;s)) (1.109)

Using equation 1.107 and 1.109 to transform the integral in P (T; s) appearing
in the RHS of equation 1.103 into an integral in Q, we obtain:

pzcbt = �P (t; T )
Z lnK�EPt (lnP (T;s))

�p

�1

�
eQ�p+E

P
t (lnP (T;s)) �K

�
h(Q)dQ

= �P (t; T )

0@Z lnK�EPt (lnP (T;s))
�p

�1
eQ�p+E

P
t (lnP (T;s))h(Q)dQ+

�K
Z lnK�EPt (lnP (T;s))

�p

�1
h(Q)dQ

1A (1.110)

Substituting the value of h(Q) given from 1.108, the �rst function in the RHS
term of 1.110 becomes:

eQ�p+E
P
t (lnP (T;s))h(Q) =

1p
2�
eQ�p+E

P
t (lnP (T;s))�

Q2

2

=
1p
2�
e
�Q2+2Q�p+2EPt (lnP (T;s))

2

=
1p
2�
e
�(Q��p)2+2EPt (lnP (T;s))+�

2
p

2

= eE
P
t (lnP (T;s))+

�2p
2

1p
2�
e
�(Q��p)2

2 (1.111)

31See. equation 1.4, with T + � = s.
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From equation 1.108, we see that the quantity 1p
2�
e
�(Q��p)2

2 is the probability
density function of the random variable (Q��p), whose conditional distribution
is a normal with parameters (��p; 1). Therefore, equation 1.111 can be written
as:

eQ�p+E
P
t (lnP (T;s))h(Q) = eE

P
t (lnP (T;s))+

�2p
2 h(Q� �p)

and, hence, equation 1.110 becomes:

pzcbt = �P (t; T )

8<:eEP
t (lnP (T;s))+

�2p
2

Z lnK�EPt (lnP (T;s))
�p

�1
h(Q� �p)dQ+

�K
Z lnK�EPt (lnP (T;s))

�p

�1
h(Q)dQ

9=;
= �P (t; T )

�
eE

P
t (lnP (T;s))+

�2p
2 N

�
lnK � EPt (lnP (T; s))

�p
� �p

�
+

�KN
�
lnK � EPt (lnP (T; s))

�p

��
(1.112)

where N(x) is a standard normal random variable.
Substituting the value EPt (lnP (T; s)) given from 1.106, equation 1.112 becomes:

pzcbt = �P (t; T )
 
eln

P (t;s)
P (t;T )

�
�2p
2 +

�2p
2 N

 
lnK�ln P (t;s)

P (t;T )
+
�2p
2

�p
� �p

!
+

�KN
 
lnK�ln P (t;s)

P (t;T )
+
�2p
2

�p

!!

= �P (t; T )
 
P (t;s)
P (t;T )N

 
ln(K�P (t;T )

P (t;s) )+
�2p
2

�p
� �p

!
+

�KN
 
ln(K�P (t;T )

P (t;s) )+
�2p
2

�p

!!
and �nally:

pzcbt = �P (t; s)�N

0B@ ln
�
K�P (t;T )
P (t;s)

�
� �2p

2

�p

1CA+K�P (t; T )�N
0B@ ln

�
K�P (t;T )
P (t;s)

�
+

�2p
2

�p

1CA
(1.113)

Denoting by d1 and d2 the quantities:

d1 =
ln
�

P (t;s)
K�P (t;T )

�
+

�p
2

�p

d2 =
ln
�

P (t;s)
K�P (t;T )

�
� �p

2

�p
= d1 � �p
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equation 1.113 becomes32 :

pzcbt = K � P (t; T ) �N (�d2)� P (t; s) �N (�d1) (1.117)

We can see that equation 1.117 is similar to the traditional Black-Scholes for-
mula. In fact, under the Black-Scholes formula, the price at time t, under the
risk neutral probability measure P, of a put option written on a stock is:

pBSt = K � e�r(t;T )(T�t) �N (�d2)� St �N (�d1) (1.118)

where :

d1 =
ln StK + (rt +

�2

2 )(T � t)
�
p
T � t

d2 =
ln StK + (rt � �2

2 )(T � t)
�
p
T � t

= d1 � �
p
T � t

and St is the price of the underlying asset at time t.
In both cases the price of the underlying asset has a lognormal distribution

and �2p has the same role of �
2(T � t), that represents the conditional variance

of the logarithm of the stock prices at maturity. The price P (t; T ) corresponds
to the discount factor e�r(t;T )(T�t), in which r(t; T ) is the risk neutral interest
rate33 .
Using a procedure similar to that one used to determine the price of a put

option, we can �nd out the formula for the evaluation of an european call option
with strike price K and maturity T , written on a zero-coupon bond with face
value equal to one and maturity s > T , starting from the equality:

P (t; T )�EPt [max(P (T; s)�K; 0)] = P (t; T )�
Z +1

K

(P (T; s)�K)g(P (T; s))dP (T; s)

and obtaining the call price czcbt expressed as34 :

czcbt = P (t; s) �N (d1)�K � P (t; T ) �N (d2) (1.120)

32Notice that, if the underlying zero coupon bond has face value di¤erent from one, the
formula 1.93 to compute pzcbt changes as follows:

pzcbt = K � P (t; T ) �N (�d�2)� FV � P (t; s) �N (�d�1) (1.114)

where:

d�1 =
ln
�
FV �P (t;s)
K�P (t;T )

�
+

�2p
2

�p
(1.115)

d�2 =
ln
�
FV �P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d�1 � �p (1.116)

33Recall that, in a risk neutral world, the expected return of any �nancial asset is equal to
the risk free rate.
34As for the put case, notice that, if the underlying zero-coupon bond has a face value

di¤erent from one, the formula 1.94 to compute czcbt changes as follows:

czcbt = FV � P (t; s) �N (d�1)�K � P (t; T ) �N (d�2) (1.119)
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1.6.7 Appendix A.1
The volatility of the price of a zero coupon bond
underlying an european option in the Vasicek model

As shown in section 1.5.2, in the Vasicek model the conditional probability
distribution of the short rate is normal. Given the relationship between the
instantaneous short rate and the zero coupon bond price expressed in equa-
tion 1.24, P (t; T ) has a lognormal conditional distribution and consequently
the conditional probability distribution of the logarithm of P (t; T ) is a normal
distribution.
Given equation 1.24 the logarithm of the price of a zero coupon bond with

maturity s, evaluated at time T , is equal to:

lnP (T; s) = lnA (T; s) e�B(T;s)rT

= lnA (T; s) + ln e�B(T;s)rT

= lnA (T; s)�B (T; s) rT

from which we have that the variance of lnP (T; s) is given by:

V ar (lnP (T; s)) = V ar(lnA (T; s)�B (T; s) rT ) (1.121)

Since the quantity lnA (T; s) is not random, equation 1.121 can be rewritten as
follows:

V ar (lnP (T; s)) = V ar(�B (T; s) rT )

Using some well-known properties of the variance we obtain:

V ar (lnP (T; s)) = B2 (T; s)V ar(rT ) (1.122)

Substituting the expressions for B2 (T; s) and V ar(rT ) which can be obtained
respectively from equation 1.26 and equation 1.32, equation 1.122 becomes:

V ar (lnP (T; s)) =

�
1� e�a(s�T )

a

�2
�2

2a

�
1� e�2a(T�t)

�
Therefore the volatility of the logarithm of the underlying asset price at maturity
- which is essential to compute the option price in the Vasicek model - is:

�p = �

�
1� e�a(s�T )

a

�r
1� e�2a(T�t)

2a
(1.34)

where:

d�1 =
ln
�
FV �P (t;s)
K�P (t;T )

�
+

�2p
2

�p
(1.49)

d�2 =
ln
�
FV �P (t;s)
K�P (t;T )

�
� �2p

2

�p
= d�1 � �p (1.50)
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1.6.8 Appendix A.2
The volatility of the price of a zero coupon bond
underlying an european option in the Ho and Lee
model

As shown in section 1.6.2, in the Ho and lee model the conditional distribution
of the short rate is normal, and therefore, given equation 1.80 the random
variable P (t; T ) has a lognormal probability distribution, while the conditional
distribution of the logarithm of P (t; T ) is a normal.
Applying equation 1.80 the logarithm of the price at time t of a zero coupon

bond with maturity s is equal to:

lnP (t; s) = ln
h
A (t; s) e�B(t;s)rt

i
= lnA (t; s) + ln e�B(t;s)rt

= lnA (t; s)�B (t; s) rt

from which we have that the variance of lnP (t; s) is given by:

V ar (lnP (t; s)) = V ar(lnA (t; s)�B (t; s) rt) (1.123)

Since the quantity lnA (t; s) is constant, equation 1.123 can be rewritten as
follows:

V ar (lnP (t; s)) = V ar(�B (t; s) rt) (1.124)

Using some well-known properties of the variance we obtain:

V ar (lnP (t; s)) = B2 (t; s)V ar(rt) (1.125)

Substituting the expressions for B2 (t; s) and V ar(rt) which can be obtained
respectively from equation 1.56 and equation 1.67, equation 1.125 becomes:

V ar (lnP (t; s)) = (s� t)2 �2t (1.126)

Since the price at future time T of a zero coupon bond with maturity s is equal
to P (T; s) from equation 1.126 follow that the variance of the logarithm of
P (T; s) is equal to:

V ar (lnP (T; s)) = (s� T )2 �2 (T � t) (1.127)

and then the standard deviation of lnP (T; s) - which is essential to compute
the option price in the Ho and Lee model - is:

�p = (s� T )�
p
T � t (1.71)
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1.6.9 Appendix A.3
The volatility of the price of a zero coupon bond un-
derlying an european option in the Hull and White
model

As shown for the Ho and Lee model, also for the Hull and White model it is
possible to derive the volatility of the price of a zero coupon bond underlying
an european option.
Substituting the expressions for B2 (t; s) and V ar(rt) which can be obtained
respectively from equation 1.80 and equation 1.96, equation 1.125 becomes:

V ar (lnP (t; s)) =

�
1� e�a(s�t)

a

�2
�2

2a

�
1� e�2at

�
(1.128)

Since the price at time T of a zero coupon bond with maturity s; s > T; is equal
to P (T; s) from equation 1.128 it follows that the variance of the logarithm of
P (T; s) is equal to:

V ar (lnP (T; s)) =

�
1� e�a(s�T )

a

�2
�2

2a

�
1� e�2a(T�t)

�
(1.129)

and therefore the standard deviation of lnP (T; s) - which is essential to compute
the option price in the Hull and White model - is:

�p =
�

a

�
1� e�a(s�T )

�r1� e�2a(T�t)
2a

(1.100)
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Chapter 2

Cap and �oor pricing using
a¢ ne term structure
models

In this Chapter we will analyze the payo¤ structure and the pricing formulas
for caps and �oors.
Caps and �oors are the most widespread interest rate derivatives and they

are used both for hedging purposes and for the �nancial engineering of stochastic
interest bonds with various degrees of complexity, as those ones which will be
analyzed later in this work.
As we will see in Chapter 5, the products examined have a derivative compo-

nent that is composed either by a cap or a �oor or both. It follows that, in order
to compute the fair value of these bonds, we need to know how the derivative
component is structured and how to price it under the term structure models
illustrated in Chapter 1.
Caps and Floors are options, or more precisely, portfolio of options, that

have as underlying asset the value of a monetary market interest rate.
In particular, when these derivatives are embedded in a stochastic interest

bond, their evaluation requires to model the term structure of interest rates in
order to determine the price of the bond whose coupon payments are linked to
an interest rate which is also the underlying rate of the cap and/or the �oor
included in the bond structure and, consequently, a¤ecting its value.
Therefore, it is obvious that the term structure models examined play a

fundamental role for the pricing of this class of interest rate derivatives.
In the next sections we will present the key concepts about caps and �oors

and their pricing formulas under the three one-factor models of Chapter 11 . For

1 In Appendix B.1. at the end of this Chapter we will also presente the Black formulas to
price eupoean call and put options written on the forward interest rate. The utility of these
formulas is mainly due to the fact that they are used to �nd the market value of caps and
�oors by solving for the forward rate implied volatility.

45
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the sake of simplicity we will assume to be in a risk-less world (i.e. without any
credit risk due to the credit worthiness of the issuer of the stochastic interest
bonds embedding caps and/or �oors). However, when credit risk becomes a
material risk factor, it must be taken into account also in the evaluation of
these interest rate derivatives, by properly arranging equation 3.23 derived in
Chapter 4.

2.1 Interest rate caps

Interest rate caps belong to the family of interest rate options.
They are instruments that are mainly traded over the counter, i.e. outside

the regulated market, whose �nality is to o¤er to their underwriter a protection
against an excessive increase of a �oating interest rate at which they are exposed.
The most frequent case in which an underwriter of a cap can be exposed to
this risk is the case in which he is also the issuer or the seller of a bond that
pays periodically a coupon indexed at that �oating rate (so-called �oating rate
note, FRN). Therefore, who buys a cap wants to ensure himself against the risk
that the interest rate on the FRN whose coupons are index to the same rate
underlying the cap could rise over a pre-speci�ed level said the cap rate2 .
The cap is a portfolio of call options (caplets) written on a reference �oating

rate and the maturity of each option usually corresponds to the date in which
the coupon of a given indexed bond is update to the current market value of
the market rate. It follows that the cap price will be equal to the sum of the
prices of each caplet in the portfolio.
The time period between two consecutive dates (reset dates) of update is called
tenor.

Example 1 Let us consider a cap with the following characteristics:

� Reference �oating rate: Lti% = 3�month Libor, i = 1; 2; :::; n;

� Maturity: Tcap = 5 years

� Cap rate: Kcap% = 4%

� Face value: FV = 10; 000 Euro

� Reset dates: t1; t2; :::; t�; :::; tn

� Tenor: � = 0:25 years.

Let us assume that at a particular reset date, t�, the 3-month Libor will be
equal to 4:5%. Since the value of the reference �oating rate is higher than the
strike price, the option is in-the-money and the cap payment �ow at time t�+ �
will be:

FV ���max (Lt�%�Kcap%; 0%) = 10; 000�0:25�max (4:50%� 4%; 0%) = 12:5 Euro
2The cap rate is the strike price of all the caplets in a cap.
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Suppose now that at a particular reset date, t�, the 3-month Libor will be
equal to 3:85%. Since the value of the reference �oating rate is lower than the
strike price, the option is in-the-money and the cap payment �ow at time t�+ �
will be:

FV ���max (Lt�%�Kcap%; 0%) = 10; 000�0:25�max (3:85%� 4%; 0%) = 0 Euro

Therefore, if at time t� the value of the reference �oating rate (in this case
the 3-month Libor) will be higher than the cap rate (4%), the call option written
on the cap reference rate will be in-the money and it will be exercised with a
pro�t. In the opposite case, if at time t� the value of the reference �oating rate
will be lower than the cap rate (4%), the call option written on the cap reference
rate will be out-of-the money and it will not be exercised.
The same mechanism holds at any reset date.

2.1.1 Caps as portfolios of interest rate calls

Let us consider a cap with the following characteristics:

� maturity Tcap;

� cap rate: Kcap%;

� face value: FV ;

� reset dates: t1; t2; :; ti::; tn;

� maturity: Tcap = tn+1;

� Li%: the reference �oating rate at time ti (1 � i � n) for the period
�i = ti+1 � ti

The cap payment at time ti+1 (i = 1; 2; :::; n) is equal to:

FV � �i �max (Li%�Kcap%; 0) (2.1)

Equation 2.1 represents the payo¤ of an european call option with maturity ti+1
and whose underlying asset is Li%, i.e. the value of the interest rate observed
at time ti. Such option is called caplet and the cap is a portfolio of n caplets.
Each caplet has a �nal payo¤ as in equation 2.1 .
The value of the interest rate underlying the cap is observed at times t1; t2; :::; tn
and the payments will occur one period later the observation dates, i.e. at times
t2; t3; :::; tn+1.

2.1.2 Cap as portfolios of zero coupon bond puts

Using a specular view with respect to that of the previous section, the cap
can be also seen as a portfolio of european put options, in which each option
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has a maturity equal to the date in which its payo¤ is computed and has a zero
coupon bond as underlying asset.
In fact, the payo¤ shown in equation 2.1 and paid by the cap at time ti+1

(1 � i � n) is equal to the following payo¤ paid at time ti (1 � i � n):
FV ��i

1+Li%��i �max (Li%�Kcap%; 0)

= max
�
(Li%�Kcap%)
(1+Li%��i) � FV � �i; 0

�
= max

�
Li%FV ��i+FV

1+Li%��i � Kcap%�FV ��i+FV
1+Li%��i ; 0

�
= max

�
FV � 1+Li%��i1+Li%��i � FV �

1+Kcap%��i
1+Li%��i ; 0

�
Hence we have:

FV � �i
1 + Li% � �i

�max (Li%�Kcap%; 0) = max

�
FV � (FV � (1 +Kcap% � �i))

1 + Li% � �i
; 0

�
(2.2)

where the term (FV �(1+Kcap%��i))
1+Li%��i in the RHS of equation 2.2 represents the value

at time ti of a zero coupon bond that pays FV � (1 +Kcap% � �i) at time ti+1:
Therefore in the RHS of the 2.2 we can easily recognize the payo¤of an european
put option with maturity ti, strike price FV and whose underlying asset is a
zero coupon bond with repayment value equal to FV � (1 +Kcap% � �i) at time
ti+1, i.e. a period after the put option maturity.
In other words, an interest rate cap can be seen as a portfolio of european put
options written on zero coupon bonds.

2.1.3 Pricing of an interest rate cap in the Vasicek model

In section 2.1.2 we have shown how each caplet in a cap can be considered as
an european put option written on a zero coupon bond.
In particular, if we have the cap described in the previous section, the payo¤

of the put option with maturity ti, strike price FV and underlying asset a zero
coupon bond with face value equal to FV � (1 +Kcap% � �i) and maturity ti+1
is:

max

�
FV � FV � (1 +Kcap% � �i)

1 + Li% � �i
; 0

�
(2.3)

Therefore, using the Vasicek model described in Chapter 1, we can determine
the price at time t < t1 of such put option by applying equation 1.48 and
obtaining3 :

p
capletti;ti+1
t;V as = FV �P (t; ti) �N (�d2)�FV �(1 +Kcap% � �i) �P (t; ti+1) �N (�d1)

(2.4)
where:

d1 =
ln
�
FV �(1+Kcap%��i)�P (t;ti+1)

P (t;ti)�FV

�
+

�2p
2

�p

3With the notation p
capletti;ti+1
t;V as we indicate the price at time t of a put option expiring at

time ti and written on a zero coupon bond with maturity ti+1 in the context of the Vasicek
model.
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d2 = d1 � �p

�p = �

�
1� e�a(ti+1�ti)

a

�r
1� e�2a(ti�t)

2a
(2.5)

By using the above formulas, the price at time t of a cap expiring at time T
and composed by N caplets, pcapN;Tt;V as ; can be easily obtained as the sum of the
prices of all the options included in this portfolio, i.e.:

pcapN;Tt;V as (a; b0; �) =
N�1X
i=1

p
capletti;ti+1
t;V as (a; b0; �) (2.6)

where we have emphasized that the cap price (as well as the caplets prices)
depends on the parameters which characterize the Vasicek model.

2.1.3.1 Pricing of an interest rate cap in the Vasicek model: an
example

Let us use the Vasicek model to determine the price at time t = 0 of a cap
with the following characteristics:

� Maturity (in years): Tcap = 2

� Cap rate: Kcap% = 11%

� Face value: FV = 100 Euro

� Reset date (in years): t1 = 1; t2 = 1:25; t3 = 1:5; t4 = 1:75

� Tenor (in years): � = 0:25

Let also assume that the value of the parameters in equation 1.24 are re-
spectively:

a = 0:09
b0 = 0:2
� = 0:05

and that the value at time 0 of the short rate is: r0 = 10%.
On the basis of what said in section 2.1.2, this cap is a portfolio of four

european put options on zero coupon bonds with the following characteristics:

1. the �rst put option has maturity t1 = 1, strike price of 100 Euro and as un-
derlying asset a zero coupon bond with maturity t2 = 1:25 and face value
of 102:75 Euro (obtained as: FV � (1 +Kcap � �) = 100 � (1 + 11% � 0:25));
applying equation 2.4, we compute the option price at time 0 as:
p
caplet1;1:25
0;V as = 100 � P (0; 1) � N (�d2) � 102:75 � P (0; 1:25) � N (�d1) =
0:421533 Euro
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2. the second put option has maturity t2 = 1:25, strike price of 100 Euro
and as underlying asset a zero coupon bond with maturity t3 = 1:5
and face value of 102:75 Euro (obtained as: FV � (1 +Kcap � �) = 100 �
(1 + 11% � 0:25)); applying equation 2.4, we compute the option price at
time 0 as:
p
caplet1:25;1:5
0;V as = 100 � P (0; 1:25) � N (�d2) � 102:75 � P (0; 1:5) � N (�d1) =
0:468939 Euro

3. the third put option has maturity t3 = 1:5, strike price of 100 Euro
and as underlying asset a zero coupon bond with maturity t4 = 1:75
and face value of 102:75 Euro (obtained as: FV � (1 +Kcap � �) = 100 �
(1 + 11% � 0:25)); applying equation 2.4, we compute the option price at
time 0 as:
p
caplet1:5;1:75
0;V as = 100 � P (0; 1:5) � N (�d2) � 102:75 � P (0; 1:75) � N (�d1) =
0:506546 Euro

4. the fourth put option has maturity t4 = 1:75, strike price of 100 Euro and
as underlying asset a zero coupon bond with maturity t5 = 2 and face value
of 102:75 Euro (obtained as: FV � (1 +Kcap � �) = 100 � (1 + 11% � 0:25));
applying the 2.4, we compute the option price at time 0 as:
p
caplet1:75;2
0;V as = 100 � P (0; 1:75) � N (�d2) � 102:75 � P (0; 2) � N (�d1) =
0:536199 Euro:

Summing up the prices of the four put options we �nd out the cap price at
time 0, that is equal to 1:933217 Euro.

2.1.4 Pricing of an interest rate cap in the Ho and Lee
model

In section 2.1.2 we have shown how each caplet in a cap can be considered as
an european put option written on a zero coupon bond.
In particular, if we have the cap described in section 2.1.2, the payo¤ of the

put option with maturity ti, strike price FV and underlying asset a zero coupon
bond with face value equal to FV � (1 +Kcap% � �i) and maturity ti+1 is:

max

�
FV � FV � (1 +Kcap% � �i)

(1 + Li% � �i)
; 0

�
(2.2)

Therefore, using the Ho and Lee model described in Chapter 1, we can determine
the price at time t of such put option applying equation 1.68 of section 1.6.3
and obtaining4 :

p
capletti;ti+1
t;HL = FV �P (t; ti) �N (�d2)�FV �(1 +Kcap% � �i) �P (t; ti+1) �N (�d1)

(2.7)

4With the notation p
capletti;ti+1
t;HL we indicate the price at time t of a put option expiring

at time ti and written on a zero coupon bond with maturity ti+1 in the context of the Ho
and Lee model.
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where:

d1 =
1

�p
ln

�
FV � (1 +Kcap% � �i) � P (t; ti+1)

FV � P (t; ti)

�
+
�p
2

(2.8)

d2 =
1

�p
ln

�
FV � (1 +Kcap% � �i) � P (t; ti+1)

FV � P (t; ti)

�
� �p
2

(2.9)

�p = �(ti+1 � ti)
p
ti � t (2.10)

By using the above formulas, the price at time t of a cap expiring at time T
and composed by N caplets, pcapN;Tt;HL ; can be easily obtained as the sum of the
prices of all the options included in this portfolio, i.e.:

pcapN;Tt;HL (�) =

N�1X
i=1

p
capletti;ti+1
t;HL (�) (2.11)

where we have emphasized that the cap price (as well as the caplets prices)
depends on the parameter which characterizes the Ho and Lee model.

2.1.4.1 Pricing of an interest rate cap in the Ho and Lee model: an
example

Let us use the Ho and Lee model to determine the price at time t = 1 of a
cap with the following characteristics:

� Maturity (in years): Tcap = 4:5

� Cap rate: Kcap% = 4%

� Face value: 100 Euro

� Reset date (in years): t1 = 3; t2 = 3:5; t3 = 4

� Tenor (in years): � = 0:5

Let also assume that the value of the instantaneous volatility of the short
rate (i.e. the value of the parameter � in equation 1.54) is equal to 0:01, and
that the expected value of the overnight rate at time 1 is: R(1) = 3:615%.
Moreover, as shown in equation 1.64 of section 1.6.1, the implementation of the
model requires as further input the price at time 0 of the zero coupon bonds
with maturities 1, 3; 3:5, 4 and 4:5. We assume that such prices are respectively:
0:988, 0:951, 0:934, 0:915 and 0:882.
On the basis of what said in section 2.1.2, this cap is a portfolio of three

european put options with the following characteristics:

1. the �rst put has maturity t1 = 3, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 3:5 and face value of
102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5));
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2. the second put has maturity t2 = 3:5, strike price of 100 Euro and as
underlying asset a zero coupon bond with maturity t3 = 4 and face value
of 102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5));

3. the third put has maturity t3 = 4, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t4 = 4:5 and face value of
102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5)).

Applying the formula given in equation 2.7 of section 2.1.4 (suitable modi�ed
to consider that the cap evaluation date is: t = 1), we compute the price of each
put option at time 1:
- pcaplet3;3:51;HL = 0:65261 Euro

- pcaplet3:5;41;HL = 0:84667 Euro

- pcaplet4;4:51;HL = 2:18335 Euro
Summing up the prices of the three put options we �nd out the cap price at

time 1, that is equal to: 3:68263 Euro.

2.1.5 Pricing of an interest rate cap in the Hull and White
model

In section 2.1.2 we have shown how each caplet in a cap can be considered as
an european put option written on a zero coupon bond.
In particular, if we have the cap described in section 2.1.2, the payo¤ of the

put option with maturity ti, strike price FV and underlying asset a zero coupon
bond with face value equal to FV � (1 +Kcap% � �i) and maturity ti+1 is:

max

�
FV � FV � (1 +Kcap% � �i)

(1 + Li% � �i)
; 0%

�
(2.2)

Therefore, using the Hull and White model described in Chapter 1, we can
determine the price at time t of such put option applying equation 1.97 and
obtaining5 :

p
capletti;ti+1
t;HW = FV �P (t; ti) �N (�d2)�FV �(1 +Kcap% � �i) �P (t; ti+1) �N (�d1)

(2.12)
where:

d1 =
1

�p
ln

�
FV � (1 +Kcap% � �i) � P (t; ti+1)

FV � P (t; ti)

�
+
�p
2

(2.13)

d2 =
1

�p
ln

�
FV � (1 +Kcap% � �i) � P (t; ti+1)

FV � P (t; ti)

�
� �p
2

(2.14)

�p =
�

a

�
1� e�a(ti+1�ti)

�r (1� e�2a(ti�t))
2a

(2.15)

5With the notation p
capletti;ti+1
t;HW we indicate the price at time t of a put option expiring

at time ti and written on a zero coupon bond with maturity ti+1 in the context of the Hull
and White model.
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By using the above formulas, the price at time t of a cap expiring at time T
and composed by N caplets, pcapN;Tt;HW ; can be easily obtained as the sum of the
prices of all the options included in this portfolio, i.e.:

pcapN;Tt;HW (a; �) =
N�1X
i=1

p
capletti;ti+1
t;HW (a; �) (2.16)

where we have emphasized that the cap price (as well as the caplets prices)
depends on the two parameters which characterize the Hull and White model.

2.1.5.1 Pricing of an interest rate cap in the Hull and White model:
an example

Let us use the Hull and White model to determine the price at time t = 1 of
a cap with the following characteristics:

� Maturity (in years): Tcap = 4:5

� Cap rate: Kcap% = 4%

� Face value: 100 Euro

� Reset date (in years): t1 = 3; t2 = 3:5; t3 = 4

� Tenor (in years): � = 0:5

Let also assume that the mean reverting speed of the short rate (i.e. the
parameter a in equation 1.73 of section 1.6.4) is equal to 0:105, the value of
the instantaneous volatility of the short rate (i.e. the parameter � in equation
1.73) is equal to 0:01, and the expected value of the overnight rate at time 1 is:
R(1) = 3:615%.
Moreover, as shown in equation 1.90 of section 1.6.4, the implementation of
the model require as further input the price at time 0 of the zero coupon bonds
with maturities 1; 3, 3:5, 4 and 4:5. We assume that such prices are respectively:
0:988, 0:951; 0:934; 0:915 and 0:882.
On the basis of what said in section 2.1.2, this cap is a portfolio of three

european put options with the following characteristics:

1. the �rst put has maturity t1 = 3, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 3:5 and face value of
102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5));

2. the second put has maturity t2 = 3:5, strike price of 100 Euro and as
underlying asset a zero coupon bond with maturity t3 = 4 and face value
of 102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5));

3. the third put has maturity t3 = 4, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t4 = 4:5 and face value of
102 Euro (obtained as: FV � (1 +Kcap% � �) = 100 � (1 + 4% � 0:5)).
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Applying the formula given in equation 2.12 of section 2.1.5, we compute
the price of each put option at time 1:
- pcaplet3;3:51;HW = 0:50595 Euro

- pcaplet3:5;41;HW = 0:66915 Euro

- pcaplet4;4:51;HW = 1:99242 Euro

Summing up the prices of the three put options we �nd out the cap price at
time 1, that is equal to: 3:16752 Euro.

2.2 Interest rate �oors

Interest rate �oors belong to the family of interest rate options.
As the caps, they are instruments that are mainly traded over the counter,

i.e. outside the regulated market, whose �nality is to o¤er to their underwriter
a protection against an excessive decrease of a �oating interest rate at which
they are exposed.
The most frequently case in which an underwriter of a �oor can be exposed to
this risk is the case in which he is also the issuer or the buyer of a bond that
pays periodically a coupon indexed at that �oating rate (so-called �oating rate
note, FRN). Therefore, who buys a �oor wants to ensure himself against the
risk that the interest rate on the FRN whose coupons are indexed to the same
rate underlying the �oor could fall over a pre-speci�ed level said the �oor rate6 .
The �oor is a portfolio of put options (�oorlets) written on a reference �oat-

ing rate and the maturity of each option usually corresponds to the date in
which the coupon of a given indexed bond is update to the current value of the
market rate. It follows that the �oor price will be equal to the sum of the prices
of each option of the portfolio.
The time period between two consecutive dates (reset dates) of update is called
tenor.

Example 2 Let us consider a �oor with the following characteristics:

� Reference �oating rate: Lti% = 3�month Libor; i = 1; 2; :::; n;

� Maturity: Tfloor = 4 years

� Floor rate: Kfloor% = 3:5%

� Face value: FV = 10; 000 Euro

� Reset dates: t1; t2; :::; t�; :::; tn

� Tenor: � = 0:25 years.
6The �oor rate is the strike price of all the �oorlets in a �oor.
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Let us assume that a particular reset date, t�, the 3-month Libor will be equal
to 3%. Since the value of the reference �oating rate is lower than the strike price,
the option is in-the-money and the �oor payment �ow at time t� + � will be:

FV ���max(Kfloor%�Lt�%; 0%) = 10; 000�0:25�max(3:5%�3%; 0%) = 12:5Euro

Suppose now that at a particular reset date, t�, the 3-month Libor will be
equal to 3:7%. Since the value of the reference �oating rate is higher than the
strike price, the option is out-of-the-money and the �oor payment �ow at time
t� + � will be:

FV ���max(Kfloor%�Lt�%; 0%) = 10; 000�0:25�max(3:5%�3:7%; 0%) = 0 Euro

Therefore, if at time t� the value of the reference �oating rate (in this case
the 3-month Libor) will be lower then the �oor rate (3:5%), the put option writ-
ten on the �oor reference rate will be in-the money and it will be exercised with
a pro�t. In the opposite case, if at time t�, the value of the reference �oating
rate will be higher than the �oor rate (3:5%), the put option written on the �oor
reference rate will be out-of-the money and it will not be exercised.
This mechanism works in each �oor reset date.

2.2.1 Floors as portfolios of interest rate puts

Let us consider a �oor with the following characteristics:

� Maturity Tfloor;

� Floor rate: Kfloor%;

� Face value: FV ;

� Reset dates: t1; t2; :::; ti; :::tn;

� Maturity: Tfloor = tn;

� Li% : the reference �oating rate at time ti (1 � i � n) for the period
�i = ti+1 � ti.

The �oor payment at time ti+1 (i = 1; 2; :::; n) is equal to:

FV � �i �max (Kfloor%� Li%; 0%) (2.17)

Equation 2.17 represents the payo¤of an european put option with maturity ti+1
and whose underlying asset is Li%, i.e. the value of the interest rate observed
at time ti. Such option is called �oorlet and the �oor is a portfolio of n �oorlets.
Each �oorlet has a �nal payo¤ as in equation 2.17.
The value of the interest rate underlying the �oor is observed at times t1; t2; :::; tn
and the payments will occur a period later the observation dates, i.e. at times
t2; t3; :::; tn+1.
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2.2.2 Floors as portfolios of zero coupon bond calls

Using a specular view with respect to that of the previous section, the �oor
can be also seen as a portfolio of european call options, in which each option
has maturity equal to the date in which its payo¤ is computed and has a zero
coupon bond as underlying asset.
In fact, the payo¤ shown in equation 2.17 and paid by the �oor at time ti+1

(1 � i � n) is equal to the following payo¤ paid at time ti (1 � i � n):
FV ��i

1+Li%��i �max (Kfloor%� Li%; 0)
= max

�
(Kfloor%�Li%)
(1+Li%��i) � FV � �i; 0

�
= max

�
Kfloor%�FV ��i+FV

1+Li%��i � Li%�FV ��i+FV
1+Li%��i ; 0

�
= max

�
FV � 1+Kfloor%��i

1+Li%��i � FV � 1+Li%��i1+Li%��i ; 0
�

Hence we have:

FV � �i
1 + Li% � �i

�max (Kfloor%� Li%; 0) = max
�
FV � (1 +Kfloor% � �i)

1 + Li% � �i
� FV; 0

�
(2.18)

where the term (FV �(1+Kfloor%��i))
1+Li%��i in the RHS of equation 2.18 represents the

value at time ti of a zero coupon bond that pays FV � (1 +Kfloor% � �i) at time
ti+1:
Therefore in the RHS of equation 2.18 we can easily recognize the payo¤ of an
european call option with maturity ti, strike price FV and whose underlying
asset is a zero coupon bond with repayment value equal to FV �(1 +Kfloor% � �i)
at time ti+1, i.e. a period after the call option maturity.
In other words, an interest rate �oor can be seen as a portfolio of european call
options written on zero coupon bonds.

2.2.3 Pricing of an interest rate �oor in the Vasicek model

In section 2.2.2 we have shown how each �oorlet in a �oor can be considered
as an european call option written on a zero coupon bond.
In particular, if we have the �oor described in the previous section, the payo¤

of the call option with maturity ti, strike price FV and underlying asset a zero
coupon bond with face value equal to FV � (1 +Kfloor% � �i) and maturity ti+1
is:

max

�
FV � (1 +Kfloor% � �i)

1 + Li% � �i
� FV; 0

�
(2.19)

Therefore, using the Vasicek model described in Chapter 1, we can determine the
price at time t < t1 of such call option applying equation 1.52 and obtaining7 :

c
floorletti;ti+1
t;V as = FV � (1 +Kfloor � �i) �P (t; ti+1) �N (d1)�FV �P (t; ti) �N (d2)

(2.20)

7With the notation c
floorletti;ti+1
t;V as we indicate the price at time t of a call option expiring

at time ti and written on a zero coupon bond with maturity ti+1 in the context of the Vasicek
model.
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where:

d1 =
ln
�
FV �(1+Kcap%��i)�P (t;ti+1)

P (t;ti)�FV

�
+

�2p
2

�p

d2 = d1 � �p

�p = �

�
1� e�a(ti+1�ti)

a

�r
1� e�2a(ti�t)

2a
(2.5)

By using the above formulas, the price at time t of a �oor expiring at time
T and composed by N �oorlets, cfloorN;Tt;V as ; can be easily obtained as the sum of
the prices of all the options included in this portfolio, i.e.:

cfloorN;Tt;V as (a; b0; �) =
N�1X
i=1

c
floorletti;ti+1
t;V as (a; b0; �) (2.21)

where we have emphasized that the �oor price (as well as the �oorlets prices)
depends on the parameters which characterize the Vasicek model.

2.2.3.1 Pricing of an interest rate �oor in the Vasicek model: an
example

Let us use the Vasicek model to determine the price at time t = 0 of a �oor
with the following characteristics:

� Maturity (in years): Tfloor = 2

� Floor rate: Kfloor = 9%

� Face value: 100 Euro

� Reset date (in years): t1 = 1; t2 = 1:25; t3 = 1:5; t4 = 1:75

� Tenor (in years): � = 0:25

Let also assume that the mean reverting speed of the short rate (i.e. the
parameter a in equation 1.24 of section 1.5.1) is equal to 0:09, the value of the
the long-run mean (i.e. the parameter b0 in equation 1.24) is equal to 0:2, the
value of the instantaneous volatility of the short rate (i.e. the parameter � in
equation 1.24) is equal to 0:05, and the value at time 0 of the short rate is:
r0 = 10%.
On the basis of what said in section 2.2.2 this �oor is a portfolio of four

european call options on zero coupon bonds with the following characteristics:

1. the �rst call option has maturity t1 = 1, strike price of 100 Euro and
as underlying asset a zero coupon bond with maturity t2 = 1:25 and
face value of 102:25 Euro (obtained as: FV � (1 +Kfloor% � �) = 100 �
(1 + 9% � 0:25)); applying equation 2.20, we compute the option price at
time 0 as:
c
floorlet1;1:25
0;V as = 102:25 �P (0; 1:25) �N (d1)�100 �P (0; 1) �N (d2) = 0:242898
Euro
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2. the second call option has maturity t2 = 1:25, strike price of 100 Euro
and as underlying asset a zero coupon bond with maturity t3 = 1:5 and
face value of 102:25 Euro (obtained as: FV � (1 +Kfloor% � �) = 100 �
(1 + 9% � 0:25)); applying equation 2.20, we compute the option price at
time 0 as:
c
floorlet1:25;1:5
0;V as = 102:25 � P (0; 1:5) � N (d1) � 100 � P (0; 1:25) � N (d2) =
0:266564 Euro

3. the third call option has maturity t3 = 1:5, strike price of 100 Euro
and as underlying asset a zero coupon bond with maturity t4 = 1:75
and face value of 102:25 Euro (obtained as: FV � (1 +Kfloor% � �) =
100 � (1 + 9% � 0:25)); applying equation 2.20, we compute the option price
at time 0 as:
c
floorlet1:5;1:75
0;V as = 102:25 � P (0; 1:75) � N (d1) � 100 � P (0; 1:5) � N (d2) =
0:284879 Euro

4. the fourth call option has maturity t4 = 1:75, strike price of 100 Euro and
as underlying asset a zero coupon bond with maturity t5 = 2 and face value
of 102:25 Euro (obtained as: FV �(1 +Kfloor% � �) = 100�(1 + 9% � 0:25));
applying equation 2.20, we compute the option price at time 0 as:
c
floorlet1:75;2
0;V as = 102:25 �P (0; 2) �N (d1)�100 �P (0; 1:75) �N (d2) = 0:299235
Euro

Summing up the prices of the four call options we �nd out the �oor price at
time 0, that is equal to: 1:093576 Euro.

2.2.4 Pricing of an interest rate �oor in the Ho and Lee
model

In section 2.2.2 we have shown how each �oorlet in a �oor can be considered
as an european call option written on a zero coupon bond.
In particular, if we have the �oor described in section 2.2.2, the payo¤ of the

call option with maturity ti, strike price FV and underlying asset a zero coupon
bond with face value equal to FV � (1 +Kfloor% � �i) and maturity ti+1 is:

max

�
FV � (1 +Kfloor% � �i)

1 + Li% � �i
� FV; 0

�
(2.18)

Therefore, using the Ho and Lee model described in Chapter 1, we can determine
the price at time t of such call option applying equation 1.72 of section 1.6.3
and obtaining8 :

c
floorletti;ti+1
t;HL = FV �(1 +Kfloor% � �i) �P (0; ti+1) �N (d1)�FV �P (0; ti) �N (d2)

(2.22)

8With the notation c
floorletti;ti+1
t;HL we indicate the price at time t of a put option expiring

at time ti and written on a zero coupon bond with maturity ti+1 in the context of the Ho
and Lee model.
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where:

d1 =
1

�p
ln

�
FV � (1 +Kfloor% � �i) � P (0; ti+1)

P (0; ti) � FV

�
+
�p
2

(2.8)

d2 =
1

�p
ln

�
FV � (1 +Kfloor% � �i) � P (0; ti+1)

P (0; ti) � FV

�
� �p
2

(2.9)

�p = �(ti+1 � ti)
p
ti � t (2.10)

By using the above formulas, the price at time t of a �oor expiring at time
T and composed by N �oorlets, cfloorN;Tt;HL ; can be easily obtained as the sum of
the prices of all the options included in this portfolio, i.e.:

cfloorN;Tt;HL (�) =

N�1X
i=1

c
floorletti;ti+1
t;HL (�) (2.23)

where we have emphasized that the �oor price (as well as the �oorlets prices)
depends on the parameters which characterize the Ho and Lee model.

2.2.4.1 Pricing of an interest rate �oor in the Ho and Lee model: an
example

Let us use the Ho and Lee model to determine the price at time t = 1 of a
�oor with the following characteristics:

� Maturity (in years): Tfloor = 4:5

� Cap rate: Kfloor% = 3%

� Face value: 100 Euro

� Reset date (in year): t1 = 3; t2 = 3:5; t3 = 4

� Tenor (in year): � = 0:5

Let also assume that the value of the instantaneous volatility of the short
rate (i.e. the value of the parameter � in equation 1.54) is equal to 0:02, and
that the expected value of the overnight rate at time 1 is: R(1) = 3:615%.
Moreover, as shown in equation 1.64 of section 1.6.1, the implementation of the
model requires as further input the price at time 0 of the zero coupon bonds
with maturities 1, 3, 3:5, 4 and 4:5. We assume that such prices are respectively:
0:988, 0:951, 0:934, 0:915 and 0:882.
On the basis of what we said in section 2.1.2, this �oor is a portfolio of three

european call options with the following characteristics:

1. the �rst call has maturity t1 = 3, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 3:5 and face value of
101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0:5));
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2. the second call has maturity t1 = 3:5, strike price of 100 Euro and as
underlying asset a zero coupon bond with maturity t2 = 4 and face value
of 101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0:5));

3. the third call has maturity t1 = 4, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 4:5 and face value of
101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0; 5)).

Applying the formula given in equation 2.22 of section 2.2.4 (suitable modi-
�ed to consider that the �oor evaluation date is: t = 1), we compute the price
of each call option at time 1:
- cfloorlet3;3:51;HL = 0:15284 Euro

- cfloorlet3:5;41;HL = 0:14412 Euro

- cfloorlet4;4:51;HL = 0:02385 Euro
Summing up the prices of the three put options we �nd out the cap price at

time 1, that is equal to: 0:3208 Euro.

2.2.5 Pricing of an interest rate �oor in the Hull and
White model

In section 2.2.2 we have shown how each �oorlet in a �oor can be considered
as an european call option written on a zero coupon bond.
In particular, if we have the �oor described in section 2.2.2, the payo¤ of the

call option with maturity ti, strike price FV and underlying asset a zero coupon
bond with face value equal to FV � (1 +Kfloor% � �i) and maturity ti+1 is:

max

�
(FV � (1 +Kfloor% � �i))

1 + Li � �i
� FV; 0

�
(2.18)

Therefore, using the Hull and White model described in section 1.6.4, we can
determine the price at time t of such call option applying equation 1.120 of
section 1.6.6 and obtaining9 :

c
floorletti;ti+1
t;HW = FV �(1 +Kfloor% � �i) �P (0; ti+1) �N (d1)�FV �P (0; ti) �N (d2)

(2.24)
where:

d1 =
1

�p
ln

�
FV � (1 +Kfloor% � �i) � P (0; ti+1)

P (0; ti) � FV

�
+
�p
2

(2.13)

d1 =
1

�p
ln

�
FV � (1 +Kfloor% � �i) � P (0; ti+1)

P (0; ti) � FV

�
� �p
2

(2.14)

�p =
�

a

�
1� e�a(ti+1�ti)

�r (1� e�2a(ti�t))
2a

(2.15)

9With the notation c
floorletti;ti+1
t;HW we indicate the price at time t of a put option expiring

at time ti and written on a zero coupon bond with maturity ti+1 in the context of the Hull
and Whie model.
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By using the above formulas, the price at time t of a �oor expiring at time
T and composed by N �oorlets, cfloorletN;Tt;HW ; can be easily obtained as the sum
of the prices of all the options included in this portfolio, i.e.:

cfloorN;Tt;HW (a; �) =
N�1X
i=1

c
floorti;ti+1
t;HW (a; �) (2.25)

where we have emphasized that the �oor price (as well as the �oorlets prices)
depends on the parameters which characterize the Hull and White model.

2.2.5.1 Pricing of an interest rate �oor in the Hull and White model:
an example

Let us use the Hull and White model to determine the price at time t = 1 of
a �oor with the following characteristics:

� Maturity (in years): Tfloor = 4:5

� Cap rate: Kfloor% = 3%

� Face value: 100 Euro

� Reset date (in year): t1 = 3; t2 = 3:5; t3 = 4

� Tenor (in year): � = 0:5

Let also assume that the mean reverting speed of the short rate (i.e. the
parameter a in equation 1.73 of section 1.6.4) is equal to 0:105, the value of
the instantaneous volatility of the short rate (i.e. the parameter � in equation
1.73) is equal to 0:02, and the expected value of the overnight rate at time 1 is:
R(1) = 3:615%.
Moreover, as shown in equation 1.90 of section 1.6.4, the implementation of the
model requires as further input the price at time 0 of the zero coupon bonds with
maturities 1, 3, 3:5, 4 and 4; :5. We assume that such prices are respectively:
0:988, 0:951, 0:934, 0:915 and 0:882.
On the basis of what said in section 2.1.2, this �oor is a portfolio of three

european call options with the following characteristics:

1. the �rst call has maturity t1 = 3, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 3:5 and face value of
101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0:5));

2. the second call has maturity t1 = 3:5, strike price of 100 Euro and as
underlying asset a zero coupon bond with maturity t2 = 4 and face value
of 101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0:5));

3. the third call has maturity t1 = 4, strike price of 100 Euro and as under-
lying asset a zero coupon bond with maturity t2 = 4:5 and face value of
101:5 Euro (obtained as: FV � (1 +Kfloor% � �i) = 100 � (1 + 3% � 0:5)).
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Applying the formula given in equation 2.24 of section 2.2.5, we compute
the price of each call option at time 1:
- cfloorlet3;3:51;HW = 0:06104 Euro

- cfloorlet3:5;41;HW = 0:0402 Euro

- cfloorlet4;4:51;HW = 00004 Euro
Summing up the prices of the three put options we �nd out the cap price at

time 1, that is equal to: 0:10165 Euro.

2.2.6 Appendix B.1
Black Formula

The Black model provides the price of an european option on a forward rate,
as the Libor or the Euribor. The formula is derived under the assumption that
the forward rate process is governed by a geometric Brownian motion.
The Black formula is similar to the Black-Scholes formula used for the eval-

uation of the stock option but, instead of the spot value of the underlying asset,
it considers the corresponding forward value.
By equation 1.5 of section 1.3, we have that the forward rate is de�ned as:

F (t; T; T + �) = � lnP (t; T + �)� lnP (t; T )
�

, with t < T < T + � (1.5)

The Black formula for the price at time t of an European call option having
strike K, maturity T and underlying asset the forward rate F (t; T; T + �) is:

c
BlT;T+�
t = P (t; T )

�
F (t; T; T + �) �N

�
dBl1
�
�K �N

�
dBl2
��

(2.26)

where:

dBl1 =
ln F (t;T;T+�)K + �2

2 (T � t)
�
p
T � t

dBl2 =
ln F (t;T;T+�)K � �2

2 (T � t)
�
p
T � t

= dBl1 � �
p
T � t (2.27)

In the case of a European put option with same underlying, strike and ma-
turity, the price at time t is:

p
BlT;T+�
t = P (t; T )

�
K �N

�
�dBl2

�
� F (t; T; T + �) �N

�
�dBl1

��
(2.28)

The Black formulas are useful to price interest rate derivatives like caps and
�oors.
In practice the market prices of any cap are expressed in terms of �at volatil-

ity. Considering that, as seen in section 2.1.1, any cap is simply a portfolio of
caplets, the Black formula of equation 2.26 can be used to obtain the market
price of any cap. In fact, we just have to substitute the caps volatilities quoted
by the market into this formula to obtain the market prices of all the caplets in
a given cap.



2.2. INTEREST RATE FLOORS 63

Therefore the market price at time t of a cap expiring at time T , composed
by N caplets and denoted by capN;Tt;market, is the sum of the prices of all these
caplets, i.e.:

capN;Tt;market =
N�1X
i=1

c
Blti;ti+1
t (2.29)

where c
Blti;ti+1
t is the price at time t of the generic caplet in the cap, namely

a caplet with reset date ti and maturity date ti+1.
By substituting the RHS of equation 2.26 in the RHS of equation 2.29 we

obtain:

capN;Tt;market =
N�1X
i=1

P (t; ti)
h
F (t; ti; ti+1) �N

�
d
Blti;ti+1
1

�
�K �N

�
d
Blti;ti+1
2

�i
(2.30)

In the same way, we can compute the market price of a �oor.
As in the caps case, the market prices of any �oor are expressed in terms of

�at volatility. Considering that, as seen in section 2.2.1, any �oor is simply a
portfolio of �oorlets, the Black formula of equation 2.28 can be used to obtain
the market price of any �oor. In fact, we just have to substitute the �oors
volatilities quoted by the market into this formula to obtain the market prices
of all the �oorlets in a given �oor.
Therefore the market price at time t of a �oor expiring at time T , composed

by N �oorlets and denoted by floorN;Tt;market, is the sum of the prices of all these
�oorlets, i.e.:

floorN;Tt;market =
N�1X
i=1

p
Blti;ti+1
t (2.31)

where p
Blti;ti+1
t is the price at time t of the generic �oorlet in the �oor,

namely a �oorlet with reset date ti and maturity date ti+1.
By substituting the RHS of equation 2.28 in the RHS of equation 2.31 we

obtain:

floorN;Tt;market =
N�1X
i=1

P (t; ti)
h
K �N

�
�dBlti;ti+12

�
� F (t; ti; ti+1) �N

�
�dBlti;ti+11

�i
(2.32)
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Chapter 3

Credit risk and defaultable
bonds valuation

3.1 Introduction

The pricing procedure of defaultable bonds, like those that will be analyzed
in Chapter 5, has to consider the credit risk of the bond issuer in order to take
into account its impact on the bond value.
Credit risk is the risk of loss due to a debtor�s non-payment (of a part or

of the whole amount), of a loan or other line of credit, either the principal or
coupon or both, due to the occurrence of some credit events, such as a delay
in repayments, restructuring of borrower repayments, and bankruptcy. The
likelihood of these events depends on the credit standing of a given subject.
Indeed, the worsening of the credit worthiness implies a higher probability of a
credit event. It follows that for existing bonds, this worsening reduces, ceteris
paribus, their market value, while for new bonds issues it usually raises the cost
of funding of a given o¤eror, since investors demand a higher premium (in terms
of bonds�returns) to balance o¤ the risk of a credit event which would depress
the value of the securities subscribed.
Credit risk measurement in the framework of bonds fair evaluation requires

to estimate the probability that, starting from a certain point in time, the issuer
will be insolvent to bondholders and into the inclusion of this probability in the
bond pricing along with a proxy of the amount recovered in the case of default.
Market expectations on the default probabilities of an issuer are implicitly

embedded in market prices of credit derivatives, which are derivative instru-
ments enabling participants in �nancial markets to trade in credit as an asset,
as they isolate and transfer risk.
In fact, a credit derivative can be considered like an insurance against the

credit risk of a reference entity or a reference asset or basket of assets.
More speci�cally, they are over the counter �nancial contracts designed to

replicate credit exposure by exhibiting a payo¤ pro�le that is linked to the

65
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occurrence of credit events.
Any credit derivative involves two counterparts: a subject who buys protec-

tion against the credit risk (so-called protection buyer), and another one who
sells this protection in exchange of a given premium (so-called protection buyer).
The occurrence of a speci�ed credit event will trigger the termination of

the credit derivative contract, and transfer of the default payment from the
protection seller to the protection buyer.
In this Chapter we will focus on the most widespread credit derivative, the

credit default swap (hereafter also CDS). In a credit default swap the protection
buyer typically pays a stream of periodic premiums (so-called premium leg) in
front of the obligation taken by the protection seller to pay him a given amount
(so-called protection leg) in the occurrence of a speci�ed credit event.
We will describe in detail the contractual terms of a CDS by de�ning the key

variables which characterize this kind of derivative instrument. We will illustrate
in technical terms the meaning of default probabilities and the relationship
between cumulative and intertemporal default probabilities. In this framework
we will present the evaluation formulas for the two legs of a CDS: intuitively the
value of each leg is obtained as the discounted expected payo¤ of its cash�ows
calculated under the risk neutral probability measure.
We will then introduce the concepts of survival probabilities and hazard

rates and we will show the relationship existing between these quantities and
default probabilities. Exploiting this relationship we will show how to derive the
default probabilities from the market quotes of CDS contracts referred to an in-
creasing set of maturities through the so-called �bootstrapping�technique. This
technique is based on an iterative procedure which allows to extract the term
structure of default probabilities from the term structure of the CDS market
quotes.
In the last section of this Chapter we illustrate how, by making use of the

default probabilities bootstrapped from CDS market quotes , it can be obtained
a general pricing formula for defaultable coupon bonds, which will be concretely
used for the evaluation of the stochastic interest bonds analyzed in Chapter 5.

3.2 Credit default swaps

Credit default swaps are the most common credit derivatives.
A CDS is a bilateral contract that provides protection on the par value of

a given reference asset (like a bond) or basket of assets. The protection buyer
usually pays to the protection seller a periodic �xed premium, the so-called
credit swap spread or swap rate S; that is quoted as a basis point multiplier on
the nominal value of the contract and it is usually paid quarterly until default or
maturity. In return for the premium the protection seller will make a payment
corresponding to the loss given default (hereafter also LGD) on the occurrence
of a speci�c credit event. In percentage terms the loss given default will be equal
to (1�R) where R denotes the recovery rate, that is the percentage value which
is expected to be paid at default by the issuer of the reference entity.
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As already said, the payo¤ of a CDS is composed by two legs, the premium
leg and the protection leg. The premium leg is referred to the amounts paid by
the protection buyer and it is equal to the sum of the spreads (multiplied by
the nominal value of the contract) at the CDS payment dates ti; i = 1; 2; :::; N ,
hence starting from the �rst payment date t1 which follows the subscription
date t0 and ending at the CDS maturity date tN or at the random default time
tD, whichever occurs earlier. The protection leg is represented by the amount
of the loss given default LGD paid by the protection buyer at default time tD.
The basic structure of a CDS is summarized in Figure 3.1 here below:

Figure 3.1: Credit default swap structure
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3.3 Credit default swaps pricing

In this section we will present the pricing of a CDS by de�ning the default
probabilities and by using them to compute the value of the two legs of the
contract at the subscription date t0 = 01 .
The CDS pricing procedure consists into determine that value of the spread

which makes equal the discounted cash �ows of the two legs.
Formally, we have to �nd out the spread value S� such that, under the risk

neutral probability measure P, the discounted expected values of the two legs
are the same.
Let us denote by:

� PD0;ti the cumulative default probability until time ti, that is the proba-
bility that the default occurs between time 0 and time ti;

� PDti�1;ti the intertemporal default probability between time ti�1 and time
ti.

Then, the following equality holds:

PDti�1;ti = PD0;ti � PD0;ti�1 (3.1)

which means that the intertemporal default probability is simply the di¤erence
between two consecutive cumulative default probabilities.
As described in previous section, the CDS contract is composed by two legs,

one premium and one protection leg. The premium leg is composed by the sum
of all the discounted amounts paid by the protection buyer at each payment

1For the sake of simplicity, in this Chapter we will assume that t0 = 0.
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date until the CDS maturity or until the random default time, tD; if it is before,
and the protection leg is given by the discounted value of the amount paid by
the protection seller at default, that is the loss given default.
Assuming that the nominal value of the contract is equal to 1, the expected

discounted value of the premium leg, under the risk neutral probability measure
P, is:

PREM_Leg (0; tN ) = EP
"
NX
i=1

S � e�
R ti
0 rsdsI[tD>ti]

#
(3.2)

by assuming independence between the default event and the interest rate dy-
namics and considering that S is constant, we can rewrite equation 3.2 as follows:

PREM_Leg (0; tN ) = S
NX
i=1

EP
h
e�
R ti
0 rsds

i
EP
�
I[tD>ti]

�
(3.3)

From equation 1.10 in Chapter 1, we know that the term EP
h
e�
R ti
0 rsds

i
, i =

1; 2; :::; N , appearing in the RHS of equation 3.3 is the price at time 0 of a zero
coupon bond with face value 1 and maturity ti, so that we have:
PREM_Leg (0; tN ) = S

PN
i=1 P (0; ti)EP

�
I[tD>ti]

�
by using a well-known property of the expected value of the indicator function:
PREM_Leg (0; tN ) = S

PN
i=1 P (0; ti) Pr (tD > ti)

and �nally, being Pr (tD > ti) the probability to have no default before time ti
(that is Pr (tD > ti) = 1� PD0;ti)):

PREM_Leg (0; tN ) = S
NX
i=1

P (0; ti)
�
1� PD0;ti

�
(3.4)

With regard to the expected discounted value of the protection leg we have:

PROT_Leg (0; tN ) = EP
"
NX
i=1

LGD � e�
R ti
0 rsdsI[ti�1<tD<ti]

#
(3.5)

or, in terms of recovery rate:

PROT_Leg (0; tN ) = EP
"
NX
i=1

(1�R) � e�
R ti
0 rsdsI[ti�1<tD<ti]

#
(3.6)

By assuming independence between the default event and the interest rate
dynamics and that the recovery rate is deterministic, we can rewrite equation
3.6 as follows:

PROT_Leg (0; tN ) = (1�R)
NX
i=1

EP
h
e�
R ti
0 rsds

i
EP
�
I[ti�1<tD<ti]

�
(3.7)

and, by using the same arguments seen for the premium leg:
PROT_Leg (0; tN ) = (1�R)

PN
i=1 P (0; ti) Pr (ti�1 < tD < ti) recognizing in
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Pr (ti�1 < tD < ti) the intertemporal default probability between time ti�1 and
time ti :

PROT_Leg (0; tN ) = (1�R)
NX
i=1

P (0; ti)PDti�1;ti (3.8)

Given the equations 3.4 and 3.8, the value of the CDS spread S� is deter-
mined by solving the following equality with respect to the unknown constant
S:

S
NX
i=1

P (0; ti)
�
1� PD0;ti

�
= (1�R)

NX
i=1

P (0; ti)PDti�1;ti (3.9)

and hence:

S� =
(1�R)

PN
i=1 P (0; ti)PDti�1;tiPN

i=1 P (0; ti)
�
1� PD0;ti

� (3.10)

3.4 Bootstrapping default probabilities fromCDS
spreads

In this section we describe how to perform the bootstrapping technique to infer
default probabilities of an issuer from the term structure of the CDS spreads
referred to him.
To this aim, we �rstly introduce the concept of survival probability, that is

the probability that no default occurs before a given date.
Formally, let us denote by PS0;ti the cumulative survival probability until

time ti, that is the probability that no default occurs between time 0 and time
ti. This probability is simply one�s complement of the probability of default
in the same time interval, which is given by the cumulative default probability
until time ti, i.e.:

PS0;ti = 1� PD0;ti (3.11)

From equation 3.11 we can also derive the relationship between survival
probabilities and intertemporal default probabilities.
In fact, the di¤erence between two consecutive survival probabilities is equal to:
PS0;ti�1 � PS0;ti =

�
1� PD0;ti�1

�
� (1� PD0;ti)

simplifying:
PS0;ti�1 � PS0;ti = PD0;ti � PD0;ti�1
using equation 3.1:

PS0;ti�1 � PS0;ti = PDti�1;ti (3.12)

meaning that the di¤erence between two consecutive cumulative survival prob-
abilities is equal to the intertemporal default probability.
Using the above equalities, we can rewrite equation 3.9 in terms of survival

probabilities:

S
NX
i=1

P (0; ti)PS0;ti = (1�R)
NX
i=1

P (0; ti)
�
PS0;ti�1 � PS0;ti

�
(3.13)
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Assuming that the occurrence of the default is described by a Poisson process,
we can introduce the cumulative hazard rate parameter �0;ti to express the
cumulative survival probability until time ti as:

PS0;ti = e
��0;ti (3.14)

or, equivalently, being:
�0;ti =

Pi
j=1 �tj�1;tj ;

where �tj�1;tj , j = 1; 2; :::; i, is the intertemporal hazard rate:

PS0;ti = e
�
Pi

j=1 �tj�1;tj (3.15)

By using equation 3.15, equation 3.13 can be written in term of hazard rates
as follows:

S
PN

i=1 P (0; ti) e
�
Pi

j=1 �tj�1;tj =

= (1�R)
PN

i=1 P (0; ti)
�
e�
Pi�1

j=1 �tj�1;tj � e�
Pi

j=1 �tj�1;tj

� (3.16)

where for i = 1 we have: e�
P0

j=1 �tj�1;tj = 1:
The LHS of equation 3.16 is the expected discounted value of the CDS

premium leg, i.e.:

PREM_Leg (0; tN ) = S
NX
i=1

P (0; ti) e
�
Pi

j=1 �tj�1;tj

and the RHS is the expected discounted value of the CDS protection leg, i.e.:

PROT_Leg (0; tN ) = (1�R)
NX
i=1

P (0; ti)
�
e�
Pi�1

j=1 �tj�1;tj � e�
Pi

j=1 �tj�1;tj

�
Knowing that the market quotes CDS spread values over an increasing set

of maturities, we can use equation 3.16 to apply the bootstrapping technique
described hereafter which allows to derive the implicit intertemporal hazard
rates and then the survival probabilities and the default probabilities (both
cumulative and intertemporal) for di¤erent maturities.
Let us assume that in the market are available CDS spreads S1; S2; :::; Sm

associated with the annual maturities Ty; y = 1; :::;m.
The bootstrapping technique is an iterative procedure that, starting from

the quotes of CDS spreads associated with the lowest maturity, allows to obtain
all the probabilities we are looking for by using at any step the results of the
previous one.
The �rst step provides an estimate of �0;T1 from the quote, S1y; of the one-

year by solving the following equation (which is nothing more than a particular
case of equation 3.16):

ST1 � P (0; T1) � e��0;T1 = (1�R) � P (0; T1) �
�
1� e��0;T1

�
(3.17)
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where e��0;T1 is the cumulative survival probability between time 0 and time T1
and

�
1� e��0;T1

�
is the cumulative default probability between 0 and 1. From

this results and applying equation 3.14 we can determine the cumulative (and
actually also intertemporal) survival probability time T1 (that is PS0;T1); and,
by using equation 3.11, also the cumulative (and actually also intertemporal)
default probability until time T1, (that is PD0;T1).
The second step consists into �nd out the second intertemporal hazard rate,

i.e. �T1;T2 . This can be done by using as input the two-year maturity CDS
spread ST2 and the estimate of the �rst intertemporal hazard rate resulting from
the previous step, i.e. �0;T1 , in order to solve the following equation for �T1;T2 :

ST2 �
h
P (0; T1) � e��0;T1 + P (0; T2) � e�(�0;T1+�T1;T2)

i
=

= (1�R) �
h
P (0; T1) �

�
1� e��0;T1

�
+ P (0; T2) �

�
e��0;T1 � e�(�0;T1+�T1;T2)

�i
(3.18)

We have to repeat this procedure for all maturities, using each time the
obtained results from the previous years, until the largest maturity Tm.
In general, for any maturity Ty; given the y-year CDS quote STy and all the

intertemporal hazard rates obtained for all the shortest maturities � i.e. �0;T1 ;
�T1;T2 ; :::; �Ty�2;Ty�1 � we can determine the intertemporal hazard rate �Ty�1;Ty
by solving the following equation:

STy �
P

y

i=1 P (0; Ti) � e
�
Pi
j=1 �Tj�1;Tj

=

= (1�R) �
P

y

i=1 P (0; Ti) �
�
e
�
Pi�1
j=1

�Tj�1;Tj � e
�
Pi
j=1 �Tj�1;Tj

� (3.19)

At this point we have all the values of the hazard rates and we are able to
compute all the survival and the default probabilities for a given set of maturities
and, then, we have all the elements that we need to derive the pricing formula
for a defaultable coupon bond as described in next section.

3.5 Pricing of a defaultable coupon bond

In this section we will present the impact of the credit risk on the price of a
defaultable coupon bond. As we said before, credit risk has a negative impact
on the bond value, namely the higher is the credit risk and lower is the value of
the bond.
Let us assume we want to price a coupon bond expiring at time T with the

following characteristics:

� Payment dates: t1; t2; ..., tM = T ;

� Cash �ows: X1; X2; ..., XM ; where the �rst M �1 cash �ows are coupons
paid at the corresponding payment dates and the last cash �ow XM
includes both the last coupon and the principal amount.
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We �rstly observe that the above cash �ows embed the credit risk of the
issuer.
The price at time 0 of this bond is equal to the expected discounted value of

all bond payments (both coupons and principal at maturity T ) under the risk
neutral probability measure P, i.e.:

Bond_V alue (0; T ) =
MX
i=1

EP
h
e�
R ti
0 rsdsXi

i
(3.20)

In presence of credit risk, each cash �ow Xi can be expressed as the sum of
two random variables:

Xi = Yi � I[tD>ti] +R � I[ti�1<tD<ti] (3.21a)

where:

� Yi is the payment if no default occurs until time ti;

� R is the recovery amount that will be paid by the issuer in case of default
between time ti�1 and time ti.

Substituting equation 3.21a in equation 3.20 we have that the price at time
0 of the considered bond is:
Bond_V alue (0; T ) =

PM
i=1 EP

h
e�
R ti
0 rsds

�
Yi � I[tD>ti] +R � I[ti�1<tD<ti]

�i
that is:

Bond_V alue (0; T ) =

=
PM

i=1

h
EP
�
e�
R ti
0 rsdsYi � I[tD>ti]

�
+ EP

�
e�
R ti
0 rsdsR � I[ti�1<tD<ti]

�i
(3.22)

By assuming that there is independence between the occurrence of the default
and the interest rate dynamics we can rewrite equation 3.22 as:

Bond_V alue (0; T ) =
PM

i=1

h
EP
�
e�
R ti
0 rsdsYi

�
EP
�
I[tD>ti]

�
+

+REP
�
e�
R ti
0 rsds

�
EP
�
I[ti�1<tD<ti]

�i
and therefore:

Bond_V alue (0; T ) =
MX
i=1

h
EP
�
e�
R ti
0 rsdsYi

�
� PS0;ti +R � P (0; ti) � PDti�1;ti

i
(3.23)

Given equation 3.23 we can determine the price at time 0 of any defaultable
coupon bond. To compute this price we need to determine the survival proba-
bilities and the default probabilities of the issuer at each payment date through
the bootstrapping technique described in the previous section2 .
After that we have to compute the discounted expected value of the payments

without default and then we have to substitute all these values into the pricing
formula given in equation 3.23 in order to obtain the fair value of the bond.

2Notice that this formula is so general that it holds clearly also for zero-coupon bonds
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It is important to observe that equation 3.23 is a quite general formula which
can be applied to defaultable bonds having whatever coupons structure, hence
including those bonds whose coupons are indexed to a monetary market interest
rate with the presence of an upper bound (cap) and/or a lower bound (�oor).
As a consequence the above formula can be used in the evaluation of the

stochastic interest bonds that we will analyze in Chapter 5.
More in detail, the formula in equation 3.23 will be used to determine the

fair value of the examined bonds according to the unbundling methodology, to
price the pure-bond component of those securities; a similar formula (in the
sense of a weighted risk-neutral discounted expectation) will be also used to
price the derivative components present in those bonds.
With regard to the pricing procedure based on Monte Carlo simulation, we

shall not use the above formula. On the contrary, in order to take into account
for the credit risk, at any payment date we will assume that in a certain number
of trajectories, determined proportionally to intertemporal estimated default
probabilities, the cash �ow of the bond is equal to the recovery amount R,
which will be assumed equal to the 40% of the bond face value.
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Chapter 4

The collared �oaters

4.1 Introduction

The aim of this Chapter is the study of a speci�c kind of stochastic interest
bonds called collared �oaters which have been quite frequent in the recent bond
issues made by Italian banks, and represent the majority of the speci�c bonds
that will be analyzed in Chapter 5.
Collared �oaters are structured bonds with variable coupons indexed to a

�oating market rate such as the Libor or the Euribor and bounded both up and
down by two �xed rates.
In next section we will discuss the payo¤ structure of a generic collared

�oater by providing a description of its main features, and in particular of its
coupon structure and of the derivatives embedded in it.
Then, we will proceed to the unbundling of a generic collared �oater by

showing how its payo¤ can be decomposed into the sum of elementary payo¤s,
namely either as the sum of several zero coupon bonds, a long cap and a short
cap or as the sum of a �oating-rate coupon bond, a long �oor and a short cap.

4.2 General features and risk pro�le

The coupon structure of a collared �oater can be written as follows1 :

cpn ratet = min [max(Et�1%; k1%); k2%] (4.1)

where:

� cpn ratet is the coupon rate associated with the generic time t;

� k1% is minimum �xed coupon rate;

1 It is worth noticing that k1% and k2% can vary over the bond life, as in some the stochastic
interest bonds analized in Chapter 5.
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� k2% is maximum �xed coupon rate;

� Et�1% is the value at time t� 1 of the �oating market rate.

From equation 4.1 we can deduce the following relationship:

k1% > k2% > 0 (4.2)

The presence of a minimum and a maximum �xed coupon rate guarantees
the bond-holder against the risk of an excessive fall in the underlying �oating
rate and the issuer against the risk of an excessive rise in the same rate.

4.3 Unbundling of a generic collared �oater

The unbundling of a structured bond consists into its decomposition in ele-
mentary parts: one or more bond-like components and one or more derivative
components.
To this aim we consider a collared �oater with the following general features:

� issue date: t = 0

� maturity date: TCF

� face value or repayment value: FV

� frequency of coupon payments (tenor): �

� coupon payment dates: t1; :::; tn = TCF (with 0 < t1 < ::: < tn)

� coupon structure as described in the previous section.

As shown hereafter, the collared �oater can be decomposed as follows:

1. a bond component that is the sum of a zero-coupon bond with face value
FV and maturity date TCF that replicates the repayment of the capital
invested in the collared �oater at maturity;

2. a derivative component that replicates the variable coupons paid by the
bond from the date t1 until the maturity TCF according to the coupon
rate expressed in equation 4.1.

By analyzing the RHS of equation 4.1, we can better understand the coupon
structure of the collared �oater.
The �rst step of the unbundling procedure is to �nd:

max (Et�1%; k1%)

that is the maximum between the bisector of the �rst and third quadrant and
a straight line parallel to the abscissa axis, with intercept equal to k1% (see
Figure 4.1).
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Figure 4.1: max(Et�1%; k1%)

The second step is the research of the minimum between the above maximum
and the function k2%, that is a straight line parallel to the abscissa axis (see
Figure 4.2).

Figure 4.2: max(Et�1%; k1%) and k2%



78 CHAPTER 4. THE COLLARED FLOATERS

The coupon rate for the generic payment date t; denoted by cpn ratet; is the
red line in Figure 4.3.
The red line represents the payo¤ of a bull spread composed as follows:

1. a long call on the interest rate Et�1% with strike price equal to Klong% =
k1% and maturity T; purchased by paying a premium whose value at
maturity is equal to Clong%;

2. a short call on the interest rate Et�1% with strike price equal toKshort% =
k2% and maturity T; sold by receiving a premium whose value at maturity
is equal to Cshort%;

3. a positive component H% de�ned as follows:

H% = k1%+ Clong%� Cshort%

Figure 4.3: min [max (Et�1%; k1%) ; k2%]

The combination of buying and selling the two call options is shown in Figure
4.4, where:

� the green line represents the long call payo¤, i.e.:

�Clong%+max(Et�1%� k1%; 0)

� the blue line represents the short call payo¤, i.e.:

Cshort%�max(Et�1%� k2%; 0)
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Figure 4.4: Payo¤ of a bull spread obtained as combination of two call options

� the yellow line represents the bull spread payo¤ as sum of the two above
payo¤s:

�Clong%+max(Et�1%� k1%; 0)+
+Cshort%�max(Et�1%� k2%; 0) (4.3)

As a bull spread holder hopes that the underlying price will go up, the holder
of a collared �oater hopes that the market rate Et�1% will go up to obtain the
maximum coupon rate.

From an analytical point of view, by adding H% = k1%+Clong%�Cshort%
to the bull spread payo¤ expressed in equation 4.3 we obtain the coupon rate
of the collared �oater at the payment date t (see Figure 4.5):

cpn ratet = �Clong%+max(Et�1%� k1%; 0) +
+Cshort%�max(Et�1%� k2%; 0) + k1%+ Clong%� Cshort%

= k1%+max(Et�1%� k1%; 0)�max(Et�1%� k2%; 0) (4.4)
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Figure 4.5: Coupon rate cpn ratet as a vertical upward traslated bull spread by H%

In the RHS of equation 4.4 we recognize the sum of a �xed coupon rate k1%,
a long caplet written on the �oating interest rate behind the collared �oater and
whose cap rate is equal to k1%, and a short caplet written on the same �oating
interest rate and whose cap rate is equal to k2%.
From a graphical point of view, adding H% = k1%+ Clong% � Cshort% to

the bull spread payo¤ we have an upward translation of the yellow line (see
Figure 4.4) and we obtain the coupon rate of the collared �oater as appearing
in the red line of Figure 4.3 (see Figure 4.5).
From Figures 4.4 and 4.5 we can see that:

� if Et�1% < k1%:

- the short call payo¤ is equal to Cshort%;

- the long call payo¤ is equal to �Clong%;

and then:

cpn ratet = Cshort%� Clong%+H% =
= Cshort%� Clong%+ k1%+ Clong%� Cshort% =
= k1%

� if k1% 6 Et�1% 6 k2%:

- the short call payo¤ is equal to Cshort%;

- the long call payo¤ is equal to �Clong%+ (Et�1%� k1%);
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and then:
cpn ratet = Cshort%� Clong%+ (Et�1%� k1%) +H% =

= Cshort%� Clong%+ (Et�1%� k1%)+
+ k1%+ Clong%� Cshort% =
= Et�1%

� if Et�1% > k2%:
- the short call payo¤ is equal to Cshort%� (Et�1%� k2%);
- the long call payo¤ is equal to �Clong%+ (Et�1%� k1%);
and then:
cpn ratet = Cshort%� (Et�1%� k2%)� Clong%+ (Et�1%� k1%) +H% =

= Cshort%� (Et�1%� k2%)� Clong%+ (Et�1%� k1%)+
+ k1%+ Clong%� Cshort% =
= � (Et�1%� k2%) + (Et�1%� k1%) + k1% =
= k2%

In the light of the above analysis it is clear that the payo¤ of the generic
collared �oater is equal to the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value FV and maturity date tn = TCF .
This component replicates the repayment of the capital invested in the
collared �oater at maturity;

b) n zero-coupon bonds with face value equal to k1%�FV ��, and maturity
dates t1; :::; tn = TCF . These n zero coupon bonds replicate the �xed part
of each coupon;

2. a derivative component that, in accordance with equation 4.4, is structured
as follows:

a) a long cap with face value FV that:
- has maturity equal to tn = TCF ;
- is composed by n caplets with maturities respectively equal to t1; :::; tn =
TCF ;
- has a tenor equal to �;
- has a cap rate equal to k1%;
- has as underlying the �oating interest rate Et�1% at which are indexed
the coupons;

b) a short cap with face value FV that:
- has maturity equal to tn = TCF ;
- is composed by n caplets with maturities respectively equal to t1; :::; tn =
TCF ;
- has a tenor equal to �;
- has a cap rate equal to k2%;
- has as underlying the �oating interest rate Et�1% at which are indexed
the coupons.
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With reference to the two caps listed at points sub 2.a) and sub 2.b) we
point out that, on the basis of the results presented in Chapter 2:

� the long cap is equal to a long portfolio of n European put options with
maturities t0; :::; tn�1; strike equal to FV and underlying assets n zero-
coupon bonds with maturities t1; :::; tn = TCF , each of them with face
value equal to FV � (1 + k1% � �);

� the short cap is equal to a short portfolio of n European put options with
maturities t0; :::; tn�1; strike equal to FV and underlying assets n zero-
coupon bonds with maturities t1; :::; tn = TCF , each of them with face
value equal to FV � (1 + k2% � �) :

We also need to precise that other unbundlings of collared �oater can be
done, which are equivalent to that one presented here above.
In particular, starting from the formula in equation 4.1:

cpn ratet = min [max(Et�1%; k1%); k2%] (4.1)

the coupon rate can be also expressed as follows:

cpn ratet = Et�1%+max (k1%� Et�1%; 0)�max (Et�1%� k2%; 0) (4.5)

that is as the sum of a pure �oater bond, a long �oor with �oor rate equal to
k1% and a short cap with cap rate equal k2%.
After a little algebra, this alternative unbundling can be led back to that

one presented in equation 4.4:

cpn ratet = Et�1%+max (k1%� Et�1%; 0)�max (Et�1%� k2%; 0)
= max (k1%;Et�1%)�max (Et�1%� k2%; 0)
= k1%+max (0; Et�1%� k1%)�max (Et�1%� k2%; 0) (4.4)

As �nal remarks, we underline that in some cases the coupon structure
represented in equation 4.1 applies only to a sub-set of the coupons paid by the
stochastic interest bond. Moreover it is possible that the bond pays a �oating
rate increased by a given spread, say spr. The presence of the spread modi�es
equation 4.1 as follows:

cpn ratet = min [max(Et�1%+ spr; k1%); k2%] (4.6)

and, as a consequence equation 4.4 becomes:

cpn ratet = k1%+max (0; Et�1%� k�1%)�max (Et�1%� k�2%; 0) (4.7)

where: k�1 = k1 � spr and k�2 = k2 � spr.



Chapter 5

Pricing of some stochastic
interest bonds

5.1 Introduction

In this Chapter we will use the equilibrium model developed by Vasicek and
the no-arbitrage model developed by Hull and White (see Chapter 1) to price
some stochastic interest bonds issued by four of the major Italian banks in
the �rst semester of 2010. We will consider 10 recently issued bonds whose
characteristics are summarized in Table 1 hereafter.

Table 1. Stochastic Interest Bonds

BOND
IDENTIFICATION

NUMBER
ISSUER ISIN ISSUE DATE MATURITY COUPON

RATE FLOOR CAP

BNL_1 BNL IT0004589484 31/03/2010 31/03/2015 eur3m+0.10% 2% 3.75%

BNL_2 BNL IT0004596414 30/04/2010 30/04/2015 2%(2years);
eur3m+0.10% 2.1% 4%

BNL_3 BNL IT0004606411 31/05/2010 31/05/2015 2%(2years);
eur3m+0.10% 2.1% 4%

POPOLARE_1 POPOLARE IT0004605009 31/05/2010 31/05/2015 eur6m 2.8% 3.65%

POPOLARE_2 POPOLARE IT0004593874 30/04/2010 30/04/2015 eur6m+0.40% 3% 4%

UNICREDIT_1 UNICREDIT IT0004607302 31/05/2010 31/05/2016 eur3m 2.1% first 3 years 4% last 3 years

UNICREDIT_2 UNICREDIT IT0004587496 31/03/2010 31/03/2016 eur3m 2% 4.1%

UNICREDIT_3 UNICREDIT IT0004591456 15/04/2010 15/04/2016 eur3m
2%(years1,2)

2.5%(years3,4)
2.83%(years5,6)

3.5%(years1,2)
4%(years3,4)

4.5%(years5,6)
UNICREDIT_4 UNICREDIT IT0004566193 29/01/2010 29/01/2016 eur3m 2.3% 4.9%

INTESA_1 INTESA IT0004594658 19/04/2010 19/04/2016 eur6m 2.7% ­
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As indicated by Table 1 bonds BNL_1, Popolare_1, Popolare_2, Uni-
credit_2, Unicredit_3 and Unicredit_4 are pure collared �oaters; in particular
the bond Unicredit_3 is a collared �oater where the strikes k1% and k2% vary
over time. Bonds BNL_2 and BNL_3 are mixed �xed-�oating rate bonds,
where the coupon structure of the �oating coupon is again collared �oater-like.
The bond Unicredit_1 is a six-year stochastic interest security whose coupon
structure embeds a long �oor for the �rst three years and a short cap for the
remaining three years, and the bond Intesa_1 is a stochastic interest security
embedding a �oor with the same maturity of the bond.
In order to compute the fair value of these bonds we will use two alternative

methodologies.
The �rst one will rely on the results obtained from the unbundling of the

bond performed consistently with the results of Chapters 2 and 4 and it will use
them to evaluate the stochastic interest bonds as the sum of the prices of each
elementary component bundled in their structure.
The second pricing technique will skip any consideration on the speci�c

components of the �nancial structure of the bonds and it will rely on Monte
Carlo simulations.
In both methodologies we will take into account the credit risk of the issuer

and its impact on the bond value.
In particular, we will exploit the results of Chapter 3, and when using the

unbundling technique we will apply the general pricing formula for defaultable
coupon bonds of equation 3.23 assuming a recovery rate R = 40%. Similarly,
when using the Monte Carlo simulations methodology, at each coupon payment
date we will cut o¤ a number of trajectories linearly proportional to the in-
tertemporal default probability estimated (from the CDS spreads quoted on the
market for any issuer) for the time interval going from the previous coupon
payment date to the considered coupon payment date. Indeed, for these tra-
jectories we will assume the occurrence of the default and the payment of an
amount equal to the recovery rate R = 40% multiplied by the face value of the
bond.
The two pricing methodologies provide consistent results, hence representing

two valid alternatives to evaluate stochastic interest bonds.
The fair values of the bonds obtained via the two above mentioned method-

ologies (and for each of the two a¢ ne term structure models considered) will
be also compared with their theoretical values provided by the issuer inside the
�nal terms of the prospectus, when available, in order to explore the reliability
and the accuracy of the informative set included in the documents that investors
use to take their �nancial decisions.
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5.2 Concrete examples

5.2.1 Description and unbundling of the bond BNL_1

The main characteristics of the bond BNL_1 are summarized in Table 2
hereafter:

Table 2. Characteristics of the bond BNL_1

Denomination of the
financial instrument

BNL protected yield 2010/2015. Five years bonds
with quarterly floating coupon indexed to the 3
months Euribor, with minimum rate (floor) 2% and
maximum rate (cap) 3.75%

ISIN IT0004589484
Total amount and currency 75,000,000.00 Euro
Face value 1000.00 Euro
Issue date 31/03/2010
Maturity date 31/03/2015
Repayment date 31/03/2015
Issue price 100% of face value

Return Quarterly floating coupon from 30/06/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula Ci = min[max(3mEuribor+0.10%;2%);3.75%]
i = 1,...,20

Coupon payment dates 31/03, 30/06, 30/09, 31/12 from 30/06/2010 to
31/03/2015

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater, namely:

1. issue date: 31=03=2010;

2. maturity date: 31=03=2015;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;

5. coupon payment dates:
30=06=2010 30=09=2011 31=12=2012 31=03=2014
30=09=2010 31=12=2011 31=03=2013 30=06=2014
31=12=2010 31=03=2012 30=06=2013 30=09=2014
31=03=2011 30=06=2012 30=09=2013 31=12=2014
30=06=2011 30=09=2012 31=12=2013 31=03=2015

6. each coupon is indexed to the 3-month Euribor plus a spread of 10 basis
points according to the following formula:

cpn rateti = min
�
max

�
2%; 3mEuriborti�1 + 0:10%

�
; 3:75%

�
(5.1)
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where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 1; :::; 20;
- 3mEuriborti�1 is the three months Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.7, the coupon rate of equation 5.1 can be equivalently
expressed as:

cpn rateti = 2%+max
�
3mEuriborti�1 � 1:9%; 0

�
+

�max
�
3mEuriborti�1 � 3:65%; 0

� (5.2)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
31=03=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 20 zero-coupon bonds with face value 5 Euro (i.e.: 1000 � (2% � 0:25))
and with maturities equal to the coupon payment dates;

2. a derivative component that, in accordance with equation 5.2, is structured
as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 31=03=2015;
- is composed by 20 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 1:9%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 31=03=2015;
- is composed by 20 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 3:65%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 20 European put options with maturities:
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31=03=2010 30=06=2011 30=09=2012 31=12=2013
30=06=2010 30=09=2011 31=12=2012 31=03=2014
30=09=2010 31=12=2011 31=03=2013 30=06=2014
31=12=2010 31=03=2012 30=06=2013 30=09=2014
31=03=2011 30=06=2012 30=09=2013 31=12=2014

whose underlying securities are 20 zero-coupon bonds with maturities:

30=06=2010 30=09=2011 31=12=2012 31=03=2014
30=09=2010 31=12=2011 31=03=2013 30=06=2014
31=12=2010 31=03=2012 30=06=2013 30=09=2014
31=03=2011 30=06=2012 30=09=2013 31=12=2014
30=06=2011 30=09=2012 31=12=2013 31=03=2015

and face value of 1004:75 (i.e.: 1000 � (1 + 1:9% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 20 European put options with maturities:

31=03=2010 30=06=2011 30=09=2012 31=12=2013
30=06=2010 30=09=2011 31=12=2012 31=03=2014
30=09=2010 31=12=2011 31=03=2013 30=06=2014
31=12=2010 31=03=2012 30=06=2013 30=09=2014
31=03=2011 30=06=2012 30=09=2013 31=12=2014

whose underlying securities are 20 zero-coupon bonds with maturities:

30=06=2010 30=09=2011 31=12=2012 31=03=2014
30=09=2010 31=12=2011 31=03=2013 30=06=2014
31=12=2010 31=03=2012 30=06=2013 30=09=2014
31=03=2011 30=06=2012 30=09=2013 31=12=2014
30=06=2011 30=09=2012 31=12=2013 31=03=2015

and with face value 1009:125 (i.e.: 1000 � (1 + 3:65% � 0:25)).
Each of these put options has strike price equal to: K = 1000.
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5.2.2 Description and unbundling of the bond BNL_2

The main characteristics of the bond BNL_2 are summarized in Table 3
hereafter:

Table 3. Characteristics of the bond BNL_2

Denomination of the
financial instrument

BNL mixed rate with cap and floor 2010/2015.
Five years bonds with quarterly fixed coupon at
2% for the first two years and quarterly floating
coupon indexed to the 3 months Euribor, with
minimum rate (floor) 2.10% and maximum rate
(cap) 4%

ISIN IT0004596414
Total amount and currency 150,000,000.00 Euro
Face value 1000.00 Euro
Issue date 30/04/2010
Maturity date 30/04/2015
Repayment date 30/04/2015
Issue price 100% of face value

Return Quarterly floating coupon from 30/07/2010 to
maturity

Coupon type Fixed plus floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula
Ci =2%           i = 1,...,8
Ci = min[max(3mEuribor+0.10%;2.10%);4%]
i = 9,...,20

Coupon payment dates 30/01, 30/04, 30/07, 30/10 from 30/07/2010 to
30/04/2015

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this bond which combines a �xed coupon
rate with a collared �oater structure, namely:

1. issue date: 30=04=2010;

2. maturity date: 30=04=2015;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;

5. coupon payment dates:
30=07=2010 30=10=2011 30=01=2012 30=04=2014
30=10=2010 30=01=2011 30=04=2013 30=07=2014
30=01=2010 30=04=2012 30=10=2013 30=10=2014
30=04=2011 30=07=2012 30=07=2013 30=01=2014
30=07=2011 30=10=2012 30=01=2013 30=04=2015

6. 8 �xed coupons at a coupon rate of 2% for the �rst two years;
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7. 12 �oating coupons for the last three years, each one of them indexed to
the 3 months Euribor plus a spread of 10 bps according to the following
formula:

cpn rateti = min
�
max

�
2:1%;

�
3mEuriborti�1 + 0:10%

��
; 4%

�
(5.3)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 9; :::; 20;
- 3mEuriborti�1 is the three months Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.7, the coupon rate of equation 5.3 can be equivalently
expressed as:

cpn rateti = 2:1% +max
�
3mEuriborti�1 � 2%; 0

�
+

�max
�
3mEuriborti�1 � 3:9%; 0

� (5.4)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
30=04=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 8 zero coupon bonds with face value equal to 5 Euro (i.e.: 1000 �
(2% � 0:25)) and with maturities:

30=07=2010 30=07=2011
30=10=2010 30=10=2011
30=01=2010 30=01=2011
30=04=2011 30=04=2012

c) 12 zero-coupon bonds with face value 5:25 Euro (i.e.: 1000�(2:1% � 0:25))
and with maturities:

30=07=2012 30=01=2013
30=10=2012 30=04=2014
30=01=2012 30=07=2014
30=04=2013 30=10=2014
30=07=2013 30=01=2014
30=10=2013 30=04=2015

2. a derivative component that, in accordance with equation 5.4, is structured
as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 30=04=2015;
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- is composed by 12 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 30=04=2015;
- is composed by 12 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 3:9%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 12 European put options with maturities:

30=04=2012 30=10=2013
30=07=2012 30=01=2013
30=10=2012 30=04=2014
30=01=2012 30=07=2014
30=04=2013 30=10=2014
30=07=2013 30=01=2014

whose underlying securities are 12 zero-coupon bonds with maturities:

30=07=2012 30=01=2013
30=10=2012 30=04=2014
30=01=2012 30=07=2014
30=04=2013 30=10=2014
30=07=2013 30=01=2014
30=10=2013 30=04=2015

and face value of 1005 (i.e.: 1000 � (1 + 2% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 12 European put options with maturities:

30=04=2012 30=10=2013
30=07=2012 30=01=2013
30=10=2012 30=04=2014
30=01=2012 30=07=2014
30=04=2013 30=10=2014
30=07=2013 30=01=2014
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whose underlying securities are 12 zero-coupon bonds with maturities:

30=07=2012 30=01=2013
30=10=2012 30=04=2014
30=01=2012 30=07=2014
30=04=2013 30=10=2014
30=07=2013 30=01=2014
30=10=2013 30=04=2015

and with face value 1009:75 (i.e.: 1000 � (1 + 3:9% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.3 Description and unbundling of the bond BNL_3

The main characteristics of the bond BNL_3 are summarized in Table 4
hereafter:

Table 4. Characteristics of the bond BNL_3

Denomination of the
financial instrument

BNL mixed rate with cap and floor 2010/2015.
Five years bonds with quarterly fixed coupon at
2% for the first two years and quarterly floating
coupon indexed to the 3 months Euribor, with
minimum rate (floor) 2.10% and maximum rate
(cap) 4%

ISIN IT0004606411
Total amount and currency 150,000,000.00 Euro
Face value 1000.00 Euro
Issue date 31/05/2010
Maturity date 31/05/2015
Repayment date 31/05/2015
Issue price 100% of face value

Return Quarterly floating coupon from 31/08/2010 to
maturity

Coupon type Fixed plus floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula
Ci =2%           i = 1,...,8
Ci = min[max(3mEuribor+0.10%;2.10%);4%]
i = 9,...,20

Coupon payment dates 28/02, 31/05, 31/08, 30/11 from 31/08/2010 to
31/05/2015

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this bond which combines a �xed coupon
rate with a collared �oater structure, namely:

1. issue date: 31=05=2010;

2. maturity date: 31=05=2015;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;
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5. coupon payment dates:
31=08=2010 30=11=2011 28=02=2013 31=05=2014
30=11=2010 28=02=2012 31=05=2013 31=08=2014
28=02=2011 31=05=2012 31=08=2013 30=11=2014
31=05=2011 31=08=2012 30=11=2013 28=02=2015
31=08=2011 30=11=2012 28=02=2014 31=05=2015

6. 8 �xed coupons at a coupon rate of 2% for the �rst two years;

7. 12 �oating coupons for the last three years, each one of them indexed to
the 3 months Euribor plus a spread of 10 bps according to the following
formula:

cpn rateti = min
�
max

�
2:1%;

�
3mEuriborti�1 + 0:10%

��
; 4%

�
(5.5)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 9; :::; 20;
- 3mEuriborti�1 is the three months Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.7, the coupon rate of equation 5.5 can be equivalently
expressed as:

cpn rateti = 2:1% +max
�
3mEuriborti�1 � 2%; 0

�
+

�max
�
3mEuriborti�1 � 3:9%; 0

� (5.6)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
31=05=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 8 zero coupon bonds with face value equal to 5 Euro (i.e.: 1000 �
(2% � 0:25)) and with maturities:

31=08=2010 31=08=2011
30=11=2010 30=11=2011
28=02=2011 28=02=2012
31=05=2011 31=05=2012

c)12 zero-coupon bonds with face value 5:25 Euro (i.e.: 1000�(2:1% � 0:25))
and with maturities equal:

31=08=2012 28=02=2014
30=11=2012 31=05=2014
28=02=2013 31=08=2014
31=05=2013 30=11=2014
31=08=2013 28=02=2015
30=11=2013 31=05=2015
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2. a derivative component that, in accordance with equation 5.6, is structured
as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 31=05=2015;
- is composed by 12 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2%;
- has as underlying the 3month Euribor (3mEuribor) at which are indexed
the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 31=05=2015;
- is composed by 12 caplets with maturities equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 3:9%;
- has as underlying the 3month Euribor (3mEuribor) at which are indexed
the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 12 European put options with maturities:

31=05=2012 30=11=2013
31=08=2012 28=02=2014
30=11=2012 31=05=2014
28=02=2013 31=08=2014
31=05=2013 30=11=2014
31=08=2013 28=02=2015

whose underlying securities are 12 zero-coupon bonds with maturities:

31=08=2012 28=02=2014
30=11=2012 31=05=2014
28=02=2013 31=08=2014
31=05=2013 30=11=2014
31=08=2013 28=02=2015
30=11=2013 31=05=2015

and face value of 1005 (i.e.: 1000 � (1 + 2% � 0:25)).

Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 12 European put options with maturities:
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31=05=2012 30=11=2013
31=08=2012 28=02=2014
30=11=2012 31=05=2014
28=02=2013 31=08=2014
31=05=2013 30=11=2014
31=08=2013 28=02=2015

whose underlying securities are 12 zero-coupon bonds with maturities
equal to:

31=08=2012 28=02=2014
30=11=2012 31=05=2014
28=02=2013 31=08=2014
31=05=2013 30=11=2014
31=08=2013 28=02=2015
30=11=2013 31=05=2015

and with face value 1009:75 (i.e.: 1000 � (1 + 3:9% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.4 Description and unbundling of the bond Popolare_1

The main characteristics of the bond Popolare_1 are summarized in Table 5
hereafter:

Table 5. Characteristics of the bond Popolare_1

Denomination of the financial
instrument

Banco Popolare S.C. serie 159. Five years
bonds with six­monthly floating coupon indexed
to the 6 months Euribor, with minimum rate
(floor) 2.80% and maximum rate (cap) 3.65%

ISIN IT0004605009
Total amount and currency 250,000,000.00 Euro
Face value 1000.00 Euro
Issue date 31/05/2010
Maturity date 31/05/2015
Repayment date 31/05/2015
Issue price 100% of face value

Return Six­monthly floating coupon from 30/11/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 6 months Euribor

Coupon formula Ci = min[max(6mEuribor;2.80%);3.65%]
i = 1,...,10

Coupon payment dates 31/05, 30/11 from 30/11/2010 to 31/05/2015

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater, namely:

1. issue date: 31=05=2010;
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2. maturity date: 31=05=2015;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): semiannual;

5. coupon payment dates:
30=11=2010 31=05=2013
31=05=2011 30=11=2013
30=11=2011 31=05=2014
31=05=2012 30=11=2014
30=11=2012 31=05=2015

6. each coupon is indexed to the 6-month Euribor according to the following
formula:

cpn rateti = min
�
max

�
2:8%; 6mEuriborti�1

�
; 3:65%

�
(5.7)

where:
- cpn rateti is the annual percentage value of the coupon payable every
six months at the date ti;
- i = 1; :::; 10;
- 6mEuriborti�1 is the six-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.7 can be equivalently
expressed as:

cpn rateti = 2:8% +max
�
6mEuriborti�1 � 2:8%; 0

�
+

�max
�
6mEuriborti�1 � 3:65%; 0

� (5.8)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
31=05=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 10 zero-coupon bonds with face value 14 Euro (i.e.: 1000 � (2:8% � 0:5))
and with maturities equal to the coupon payment dates;

2. a derivative component that, in accordance with equation 5.8, is structured
as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 31=05=2015;
- is composed by 10 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:5 years;
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- has a cap rate equal to 2:8%;
- has as underlying the 6 � month Euribor (6mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 31=05=2015;
- is composed by 10 caplets with maturities equal to the coupon payment
dates;
- has a tenor equal to 0:5 years;
- has a cap rate equal to 3:65%;
- has as underlying the 6month Euribor rate (6mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 10 European put options with maturities:

31=05=2010 30=11=2012
30=11=2010 31=05=2013
31=05=2011 30=11=2013
30=11=2011 31=05=2014
31=05=2012 30=11=2014

whose underlying securities are 10 zero-coupon bonds with maturities:

30=11=2010 31=05=2013
31=05=2011 30=11=2013
30=11=2011 31=05=2014
31=05=2012 30=11=2014
30=11=2012 31=05=2015

and face value of 1014 (i.e.: 1000 � (1 + 2:8% � 0:5)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 10 European put options with maturities:

31=05=2010 30=11=2012
30=11=2010 31=05=2013
31=05=2011 30=11=2013
30=11=2011 31=05=2014
31=05=2012 30=11=2014

whose underlying securities are 10 zero-coupon bonds with maturities:

30=11=2010 31=05=2013
31=05=2011 30=11=2013
30=11=2011 31=05=2014
31=05=2012 30=11=2014
30=11=2012 31=05=2015
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and with face value 1018:25 (i.e.: 1000 � (1 + 3:65% � 0:5)).
Each of these put options has strike price equal to: K = 1000.

5.2.5 Description and unbundling of the bond Popolare_2

The main characteristics of the bond Popolare_2 are summarized in Table 6
hereafter:

Table 6. Characteristics of the bond Popolare_2

Denomination of the financial
instrument

Banco Popolare S.C. serie 156. Five years
bonds with six­monthly floating coupon indexed
to the 6 months Euribor, with minimum rate
(floor) 3% and maximum rate (cap) 4%

ISIN IT0004593874
Total amount and currency 350,000,000.00 Euro
Face value 1000.00 Euro
Issue date 30/04/2010
Maturity date 30/04/2015
Repayment date 30/04/2015
Issue price 100% of face value

Return Six­monthly floating coupon from 30/10/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 6 months Euribor

Coupon formula Ci = min[max(6mEuribor+0.40%;3%);4%]
i = 1,...,10

Coupon payment dates 30/04, 30/10 from 30/10/2010 to 30/04/2015

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater, namely:

1. issue date: 30=04=2010;

2. maturity date: 30=04=2015;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): semiannual;

5. coupon payment dates:
30=10=2010 30=04=2013
30=04=2011 30=10=2013
30=10=2011 30=04=2014
30=04=2012 30=10=2014
30=10=2012 30=04=2015
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6. each coupon is indexed to the 6-month Euribor according to the following
formula:

cpn rateti = min
�
max

�
3%; 6mEuriborti�1 + 0:40%

�
; 4%

�
(5.9a)

where:
- cpn rateti is the annual percentage value of the coupon payable every
six months at the date ti;
- i = 1; :::; 10;
- 6mEuriborti�1 is the six-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.7, the coupon rate of equation 5.9a can be equivalently
expressed as:

cpn rateti = 3%+max
�
6mEuriborti�1 � 2:6%; 0

�
+

�max
�
6mEuriborti�1 � 3:6%; 0

� (5.10)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
30=04=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 10 zero-coupon bonds with face value 15 Euro (i.e.: 1000 � (3% � 0:5))
and with maturities equal to the coupon payment dates;

2. a derivative component that, in accordance with equation 5.10, is struc-
tured as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 30=04=2015;
- is composed by 10 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:5 years;
- has a cap rate equal to 2:6%;
- has as underlying the 6 � month Euribor (6mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 30=04=2015;
- is composed by 10 caplets with respectively maturity equal to the coupon
payment dates;
- has a tenor equal to 0:5 years;
- has a cap rate equal to 3:6%;
- has as underlying the 6 � month Euribor (6mEuribor) at which are
indexed the coupons.
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In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 10 European put options with maturities:

30=04=2010 30=10=2012
30=10=2010 30=04=2013
30=04=2011 30=10=2013
30=10=2011 30=04=2014
30=04=2012 30=10=2014

whose underlying securities are 10 zero-coupon bonds with maturities:

30=10=2010 30=04=2013
30=04=2011 30=10=2013
30=10=2011 30=04=2014
30=04=2012 30=10=2014
30=10=2012 30=04=2015

and face value of 1013 (i.e.: 1000 � (1 + 2:6% � 0:5)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 10 European put options with maturities:

30=04=2010 30=10=2012
30=10=2010 30=04=2013
30=04=2011 30=10=2013
30=10=2011 30=04=2014
30=04=2012 30=10=2014

whose underlying securities are 10 zero-coupon bonds with maturities:

30=10=2010 30=04=2013
30=04=2011 30=10=2013
30=10=2011 30=04=2014
30=04=2012 30=10=2014
30=10=2012 30=04=2015

and with face value 1018 (i.e.: 1000 � (1 + 3:6% � 0:5)).
Each of these put options has strike price equal to: K = 1000.
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5.2.6 Description and unbundling of the bond Unicredit_1

The main characteristics of the bond Unicredit_1 are summarized in Table 7
hereafter:

Table 7. Characteristics of the bond Unicredit_1

Denomination of the financial
instrument

Unicredit S.p.A 2010­2016 serie 12/10. Six
years bonds with quarterly floating coupon
indexed to the 3 months Euribor, with minimum
rate (floor) 2.1% for the first three years and
maximum rate (cap) 4% for the last three years.

ISIN IT0004607302
Total amount and currency 1,030,000,000.00 Euro
Face value 1000.00 Euro
Issue date 31/05/2010
Maturity date 31/05/2016
Repayment date 31/05/2016
Issue price 100% of face value

Return Quarterly floating coupon from 31/08/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula Ci = max(3mEuribor;2.1%)    i = 1,...,12
Ci = min(3mEuribor;4%)       i = 13,...,24

Coupon payment dates 28/02, 31/05, 31/08, 30/11 from 31/08/2010 to
31/05/2016

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this bond whose coupon structure embeds
a long �oor for the �rst three years and a short cap for the remaining three
years, namely:

1. issue date: 31=05=2010;

2. maturity date: 31=05=2016;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;

5. coupon payment dates:
31=08=2010 31=08=2012 31=08=2014
30=11=2010 30=11=2012 30=11=2014
28=02=2011 28=02=2013 28=02=2015
31=05=2011 31=05=2013 31=05=2015
31=08=2011 31=08=2013 31=08=2015
30=11=2011 30=11=2013 30=11=2015
28=02=2012 28=02=2014 28=02=2016
31=05=2012 31=05=2014 31=05=2016
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6. each coupon in the �rst three years is indexed to the 3-month Euribor
subject to a 2:1% �oor according to the following formula:

cpn rateti = 3mEuriborti�1 +max
�
2:1%� 3mEuriborti�1 ; 0

�
(5.11)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 1; :::; 12;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).

7. each coupon in the last three years is indexed to the 3-month Euribor
subject to a 4% cap according to the following formula:

cpn rateti = 3mEuriborti�1 �max
�
3mEuriborti�1 � 4%; 0

�
(5.12)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 13; :::; 24;
- 3mEuriborti�1 is the three months Euribor observed at time ti�1 (where
ti�1 = ti � �).

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a �oating-rate quarterly coupon bond which is indexed to the 3�month
Euribor (3mEuribor) and which at the maturity date 31=05=2015 repays
a face value of 1000 Euro;

2. a derivative component that is structured as follows:

a) a long �oor with face value of 1000 Euro that:
- has maturity 31=05=2013;
- is composed by 12 �oorlets, with the following maturities:
31=08=2010 28=02=2012
30=11=2010 31=05=2012
28=02=2011 31=08=2012
31=05=2011 30=11=2012
31=08=2011 28=02=2013
30=11=2011 31=05=2013
- has a tenor equal to 0:25 years;
- has a �oor rate equal to 2:1%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 31=05=2016;



102 CHAPTER 5. PRICING OF SOME STOCHASTIC INTEREST BONDS

- is composed by 12 caplets with the following maturities;
31=08=2013 28=02=2015
30=11=2013 31=05=2015
28=02=2014 31=08=2015
31=05=2014 30=11=2015
31=08=2014 28=02=2016
30=11=2014 31=05=2016
- has a tenor equal to 0:25 years;
- has a cap rate equal to 4%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps and �oors, we can say that:

� the long �oor of the previous point sub 2.a) is equivalent to a long portfolio
of 12 European call options with maturities:

31=05=2010 30=11=2011
31=08=2010 28=02=2012
30=11=2010 31=05=2012
28=02=2011 31=08=2012
31=05=2011 30=11=2012
31=08=2011 28=02=2013

whose underlying securities are 12 zero-coupon bonds with maturities:

31=08=2010 28=02=2012
30=11=2010 31=05=2012
28=02=2011 31=08=2012
31=05=2011 30=11=2012
31=08=2011 28=02=2013
30=11=2011 31=05=2013

and face value of 1005:25 (i.e.: 1000 � (1 + 2:1% � 0:25)).
Each of these call options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 12 European put options with maturities:

31=05=2013 30=11=2014
31=08=2013 28=02=2015
30=11=2013 31=05=2015
28=02=2014 31=08=2015
31=05=2014 30=11=2015
31=08=2014 28=02=2016

whose underlying securities are 12 zero-coupon bonds with maturities:
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31=08=2013 28=02=2015
30=11=2013 31=05=2015
28=02=2014 31=08=2015
31=05=2014 30=11=2015
31=08=2014 28=02=2016
30=11=2014 31=05=2016

and with face value 1010:25 (i.e.: 1000 � (1 + 4:1% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.7 Description and unbundling of the bond Unicredit_2

The main characteristics of the bond Unicredit_2 are summarized in Table 8
hereafter:

Table 8. Characteristics of the bond Unicredit_2

Denomination of the financial
instrument

Unicredit S.p.A 2010­2016 serie 06/10. Six years
bonds with quarterly floating coupon indexed to the
3 months Euribor, with minimum rate (floor) 2% and
maximum rate (cap) 4.1%

ISIN IT0004587496
Total amount and currency 1,050,000,000.00 Euro
Face value 1000.00 Euro
Issue date 31/03/2010
Maturity date 31/03/2016
Repayment date 31/03/2016
Issue price 100% of face value

Return Quarterly floating coupon from 30/06/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula Ci = min[max(3mEuribor;2%);4.1%]                    i =
1,...,24

Coupon payment dates 31/03, 30/06, 30/09, 31/12 from 30/06/2010 to
31/03/2016

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater, namely:

1. issue date: 31=03=2010;

2. maturity date: 31=03=2016;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;
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5. coupon payment dates:
30=06=2010 30=06=2012 30=06=2014
30=09=2010 30=09=2012 30=09=2014
31=12=2010 31=12=2012 31=12=2014
31=03=2011 31=03=2013 31=03=2015
30=06=2011 30=06=2013 30=06=2015
30=09=2011 30=09=2013 30=09=2015
31=12=2011 31=12=2013 31=12=2015
31=03=2012 31=03=2014 31=03=2016

6. each coupon is indexed to the 3-month Euribor according to the following
formula:

cpn rateti = min
�
max

�
2%; 3mEuriborti�1

�
; 4:1%

�
(5.13)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 1; :::; 24;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.13 can be equivalently
expressed as:

cpn rateti = 2%+max
�
3mEuriborti�1 � 2%; 0

�
+

�max
�
3mEuriborti�1 � 4:1%; 0

� (5.14)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
31=03=2016. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 24 zero-coupon bonds with face value 5 Euro (i.e.: 1000 � (2% � 0:25))
and with maturities equal to the coupon payment dates;

2. a derivative component that, in accordance with equation 5.14, is struc-
tured as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 31=03=2016;
- is composed by 24 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;
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b) a short cap with value of 1000 Euro that:
- has maturity 31=03=2016;
- is composed by 24 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 4:1%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 24 European put options with maturities:

31=03=2010 31=03=2012 31=03=2014
30=06=2010 30=06=2012 30=06=2014
30=09=2010 30=09=2012 30=09=2014
31=12=2010 31=12=2012 31=12=2014
31=03=2011 31=03=2013 31=03=2015
30=06=2011 30=06=2013 30=06=2015
30=09=2011 30=09=2013 30=09=2015
31=12=2011 31=12=2013 31=12=2015

whose underlying securities are 24 zero-coupon bonds with maturities:

30=06=2010 30=06=2012 30=06=2014
30=09=2010 30=09=2012 30=09=2014
31=12=2010 31=12=2012 31=12=2014
31=03=2011 31=03=2013 31=03=2015
30=06=2011 30=06=2013 30=06=2015
30=09=2011 30=09=2013 30=09=2015
31=12=2011 31=12=2013 31=12=2015
31=03=2012 31=03=2014 31=03=2016

and face value of 1005 (i.e.: 1000 � (1 + 2% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 24 European put options with maturities:

31=03=2010 31=03=2012 31=03=2014
30=06=2010 30=06=2012 30=06=2014
30=09=2010 30=09=2012 30=09=2014
31=12=2010 31=12=2012 31=12=2014
31=03=2011 31=03=2013 31=03=2015
30=06=2011 30=06=2013 30=06=2015
30=09=2011 30=09=2013 30=09=2015
31=12=2011 31=12=2013 31=12=2015
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whose underlying securities are 24 zero-coupon bonds with maturities:

30=06=2010 30=06=2012 30=06=2014
30=09=2010 30=09=2012 30=09=2014
31=12=2010 31=12=2012 31=12=2014
31=03=2011 31=03=2013 31=03=2015
30=06=2011 30=06=2013 30=06=2015
30=09=2011 30=09=2013 30=09=2015
31=12=2011 31=12=2013 31=12=2015
31=03=2012 31=03=2014 31=03=2016

and with face value 1010:25 (i.e.: 1000 � (1 + 4:1% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.8 Description and unbundling of the bond Unicredit_3

The main characteristics of the bond Unicredit_3 are summarized in Table 9
hereafter:

Table 9. Characteristics of the bond Unicredit_3

Denomination of the financial
instrument

Unicredit S.p.A 2010­2016 serie 07/10. Six
years bonds with quarterly floating coupon
indexed to the 3 months Euribor, with minimum
rate (floor) 2% and maximum rate (cap) 3.5%
for the first and the second year, minimum rate
(floor) 2.5% and maximum rate (cap) 4% for the
third and the fourth year, minimum rate (floor)
2.83% and maximum rate (cap) 4.5% for the
fifth and the sixth year.

ISIN IT0004591456
Total amount and currency 175,000,000.00 Euro
Face value 1000.00 Euro
Issue date 15/04/2010
Maturity date 15/04/2016
Repayment date 15/04/2016
Issue price 100% of face value

Return Quarterly floating coupon from 15/07/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula

Ci = min[max(3mEuribor;2%);3.5%]
i = 1,...,8
Ci = min[max(3mEuribor;2.5%);4%]
i = 9,...,16
Ci = min[max(3mEuribor;2.83%);4.5%]
i = 17,...,24

Coupon payment dates 15/01, 15/04, 15/07, 15/10 from 15/07/2010 to
15/04/2016

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater where the cap rate
and the �oor rate are varying over time, namely:

1. issue date: 15=04=2010;

2. maturity date: 15=04=2016;

3. face value: 1000 Euro;
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4. frequency of payment (i.e. tenor): quarterly;

5. coupon payment dates:
15=07=2010 15=07=2012 15=07=2014
15=10=2010 15=10=2012 15=10=2014
15=01=2011 15=01=2013 15=01=2015
15=04=2011 15=04=2013 15=04=2015
15=07=2011 15=07=2013 15=07=2015
15=10=2011 15=10=2013 15=10=2015
15=01=2012 15=01=2014 15=01=2016
15=04=2012 15=04=2014 15=04=2016

6. each coupon of the �rst two years is indexed to the 3-month Euribor
according to the following formula:

cpn rateti = min
�
max

�
2%; 3mEuriborti�1

�
; 3:5%

�
(5.15)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 1; :::; 8;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.15 can be equivalently
expressed as:

cpn rateti = 2%+max
�
3mEuriborti�1 � 2%; 0

�
+

�max
�
3mEuriborti�1 � 3:5%; 0

� (5.16)

7. each coupon of the third and the fourth year is indexed to the 3 months
Euribor according to the following formula:

cpn rateti = min
�
max

�
2:5%; 3mEuriborti�1

�
; 4%

�
(5.17)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 9; :::; 16;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.17 can be equivalently
expressed as:

cpn rateti = 2:5% +max
�
3mEuriborti�1 � 2:5%; 0

�
+

�max
�
3mEuriborti�1 � 4%; 0

� (5.18)

8. each coupon of the last two years is indexed to the 3-month Euribor ac-
cording to the following formula:

cpn rateti = min
�
max

�
2:83%; 3mEuriborti�1

�
; 4:5%

�
(5.19)
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where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 17; :::; 24;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.19 can be equivalently
expressed as:

cpn rateti = 2:83% +max
�
3mEuriborti�1 � 2:83%; 0

�
+

�max
�
3mEuriborti�1 � 4:5%; 0

� (5.20)

From what stated above, it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
31=03=2015. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 8 zero-coupon bonds with face value 5 Euro (i.e.: 1000 � (2% � 0:25))
and with maturities:

15=07=2010 15=07=2011
15=10=2010 15=10=2011
15=01=2011 15=01=2012
15=04=2011 15=04=2012

c) 8 zero-coupon bonds with face value 6:25 Euro (i.e.: 1000�(2:5% � 0:25))
and with maturities:

15=07=2012 15=07=2013
15=10=2012 15=10=2013
15=01=2013 15=01=2014
15=04=2013 15=04=2014

d) 8 zero-coupon bonds with face value 7:075 Euro (i.e.: 1000�(2:83% � 0:25))
and with maturities:

15=07=2014 15=07=2015
15=10=2014 15=10=2015
15=01=2015 15=01=2016
15=04=2015 15=04=2016

2. a derivative component that is structured as follows:

a) i) a long cap with face value of 1000 Euro that:
- has maturity 15=04=2012;
- is composed by 8 caplets each with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
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- has a cap rate equal to 2%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

ii) a short cap with value of 1000 Euro that:
- has maturity 15=04=2012;
- is composed by 8 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 3:5%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

b) i) a long cap with face value of 1000 Euro that:
- has maturity 15=04=2014;
- is composed by 8 caplets each with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2:5%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

ii) a short cap with value of 1000 Euro that:
- has maturity 15=04=2014;
- is composed by 8 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 4%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.

c) i) a long cap with face value of 1000 Euro that:
- has maturity 15=04=2016;
- is composed by 8 caplets each with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2:83%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

ii) a short cap with value of 1000 Euro that:
- has maturity 15=04=2016;
- is composed by 8 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 4:5%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.
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In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) i) is equivalent to a long
portfolio of 8 European put options with maturities:

15=04=2010 15=04=2011
15=07=2010 15=07=2011
15=10=2010 15=10=2011
15=01=2011 15=01=2012

whose underlying securities are 20 zero-coupon bonds with maturities:

15=07=2010 15=07=2011
15=10=2010 15=10=2011
15=01=2011 15=01=2012
15=04=2011 15=04=2012

and face value of 1005 (i.e.: 1000 � (1 + 2% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.a) ii) is equivalent to a short
portfolio of 8 European put options with maturities:

15=04=2010 15=04=2011
15=07=2010 15=07=2011
15=10=2010 15=10=2011
15=01=2011 15=01=2012

whose underlying securities are 8 zero-coupon bonds with maturities:

15=07=2010 15=07=2011
15=10=2010 15=10=2011
15=01=2011 15=01=2012
15=04=2011 15=04=2012

and with face value 1008:75 (i.e.: 1000 � (1 + 3:5% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

� the long cap of the previous point sub 2.b) i) is equivalent to a long
portfolio of 8 European put options with maturities:

15=04=2012 15=04=2013
15=07=2012 15=07=2013
15=10=2012 15=10=2013
15=01=2013 15=01=2014

whose underlying securities are 8 zero-coupon bonds with maturities:

15=07=2012 15=07=2013
15=10=2012 15=10=2013
15=01=2013 15=01=2014
15=04=2013 15=04=2014
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and face value of 1006:25 (i.e.: 1000 � (1 + 2:5% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) ii) is equivalent to a short
portfolio of 8 European put options with maturities:

15=04=2012 15=04=2013
15=07=2012 15=07=2013
15=10=2012 15=10=2013
15=01=2013 15=01=2014

whose underlying securities are 8 zero-coupon bonds with maturities:

15=07=2012 15=07=2013
15=10=2012 15=10=2013
15=01=2013 15=01=2014
15=04=2013 15=04=2014

and with face value 1010 (i.e.: 1000 � (1 + 4% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

� the long cap of the previous point sub 2.c) i) is equivalent to a long
portfolio of 8 European put options with maturities:

15=04=2014 15=04=2015
15=07=2014 15=07=2015
15=10=2014 15=10=2015
15=01=2015 15=01=2016

whose underlying securities are 8 zero-coupon bonds with maturities:

15=07=2014 15=07=2015
15=10=2014 15=10=2015
15=01=2015 15=01=2016
15=04=2015 15=04=2016

and face value of 1007:075 (i.e.: 1000 � (1 + 2:83% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.c) ii) is equivalent to a short
portfolio of 8 European put options with maturities:

15=04=2014 15=04=2015
15=07=2014 15=07=2015
15=10=2014 15=10=2015
15=01=2015 15=01=2016

whose underlying securities are 8 zero-coupon bonds with maturities:

15=07=2014 15=07=2015
15=10=2014 15=10=2015
15=01=2015 15=01=2016
15=04=2015 15=04=2016
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and with face value 1011:25 (i.e.: 1000 � (1 + 4:5% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.9 Description and unbundling of the bond Unicredit_4

The main characteristics of the bond Unicredit_4 are summarized in Table
10 hereafter:

Table 10. Characteristics of the bond Unicredit_4

Denomination of the
financial instrument

Unicredit S.p.A 2010­2016. Six years bonds
with quarterly floating coupon indexed to the 3
months Euribor, with minimum rate (floor)
2.3% and maximum rate (cap) 4.9%

ISIN IT0004566193
Total amount and currency 150,000,000.00 Euro
Face value 1000.00 Euro
Issue date 29/01/2010
Maturity date 29/01/2016
Repayment date 29/01/2016
Issue price 100% of face value

Return
Quarterly floating coupon from 29/04/2010 to
maturity

Coupon type Floating coupon with cap and floor
Coupon frequency Quarterly
Underlying 3 months Euribor

Coupon formula Ci = min[max(3mEuribor;2.3%);4.9%]
i = 1,...,24

Coupon payment dates 29/01, 29/04, 29/07, 29/10 from 29/04/2010 to
29/01/2016

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this collared �oater, namely:

1. issue date: 29=01=2010;

2. maturity date: 29=01=2016;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): quarterly;

5. coupon payment dates:
29=04=2010 29=04=2012 29=04=2014
29=07=2010 29=07=2012 29=07=2014
29=10=2010 29=10=2012 29=10=2014
29=01=2011 29=01=2013 29=01=2015
29=04=2011 29=04=2013 29=04=2015
29=07=2011 29=07=2013 29=07=2015
29=10=2011 29=10=2013 29=10=2015
29=01=2012 29=01=2014 29=01=2016
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6. each coupon is indexed to the 3-month Euribor according to the following
formula:

cpn rateti = min
�
max

�
2:3%; 3mEuriborti�1

�
; 4:9%

�
(5.21)

where:
- cpn rateti is the annual percentage value of the coupon payable quarterly
at the date ti;
- i = 1; :::; 24;
- 3mEuriborti�1 is the three-month Euribor observed at time ti�1 (where
ti�1 = ti � �).
Given equation 4.4, the coupon rate of equation 5.21 can be equivalently
expressed as:

cpn rateti = 2:3% +max
�
3mEuriborti�1 � 2:3%; 0

�
+

�max
�
3mEuriborti�1 � 4:9%; 0

� (5.22)

From what stated above it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a bond component composed as follows:

a) a zero-coupon bond with face value 1000 Euro and maturity date
29=01=2016. This component replicates the repayment of the capital in-
vested in the bond at maturity;

b) 24 zero-coupon bonds with face value 5:75 Euro (i.e.: 1000�(2:3% � 0:25))
and with maturities equal to the coupon payment dates;

2. a derivative component that, in accordance with equation 5.22, is struc-
tured as follows:

a) a long cap with face value of 1000 Euro that:
- has maturity 29=01=2016;
- is composed by 24 caplets each with maturity equal to the coupon pay-
ment dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 2:3%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons;

b) a short cap with value of 1000 Euro that:
- has maturity 29=01=2016;
- is composed by 24 caplets with maturity equal to the coupon payment
dates;
- has a tenor equal to 0:25 years;
- has a cap rate equal to 4:9%;
- has as underlying the 3 � month Euribor (3mEuribor) at which are
indexed the coupons.
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In particular, by exploiting the formulas derived in Chapter 2 to price interest
rate caps, we can say that:

� the long cap of the previous point sub 2.a) is equivalent to a long portfolio
of 24 European put options with maturities:

29=01=2010 29=01=2012 29=01=2014
29=04=2010 29=04=2012 29=04=2014
29=07=2010 29=07=2012 29=07=2014
29=10=2010 29=10=2012 29=10=2014
29=01=2011 29=01=2013 29=01=2015
29=04=2011 29=04=2013 29=04=2015
29=07=2011 29=07=2013 29=07=2015
29=10=2011 29=10=2013 29=10=2015

whose underlying securities are 24 zero-coupon bonds with maturities:

29=04=2010 29=04=2012 29=04=2014
29=07=2010 29=07=2012 29=07=2014
29=10=2010 29=10=2012 29=10=2014
29=01=2011 29=01=2013 29=01=2015
29=04=2011 29=04=2013 29=04=2015
29=07=2011 29=07=2013 29=07=2015
29=10=2011 29=10=2013 29=10=2015
29=01=2012 29=01=2014 29=01=2016

and face value of 1005:75 (i.e.: 1000 � (1 + 2:3% � 0:25)).
Each of these put options has strike price equal to: K = 1000;

� the short cap of the previous point sub 2.b) is equivalent to a short
portfolio of 24 European put options with maturities:

29=01=2010 29=01=2012 29=01=2014
29=04=2010 29=04=2012 29=04=2014
29=07=2010 29=07=2012 29=07=2014
29=10=2010 29=10=2012 29=10=2014
29=01=2011 29=01=2013 29=01=2015
29=04=2011 29=04=2013 29=04=2015
29=07=2011 29=07=2013 29=07=2015
29=10=2011 29=10=2013 29=10=2015

whose underlying securities are 24 zero-coupon bonds with maturities:

29=04=2010 29=04=2012 29=04=2014
29=07=2010 29=07=2012 29=07=2014
29=10=2010 29=10=2012 29=10=2014
29=01=2011 29=01=2013 29=01=2015
29=04=2011 29=04=2013 29=04=2015
29=07=2011 29=07=2013 29=07=2015
29=10=2011 29=10=2013 29=10=2015
29=01=2012 29=01=2014 29=01=2016
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and with face value 1012:25 (i.e.: 1000 � (1 + 4:9% � 0:25)).
Each of these put options has strike price equal to: K = 1000.

5.2.10 Description and unbundling of the bond Intesa_1

The main characteristics of the bond Intesa_1 are summarized in Table 11
hereafter:

Table 11. Characteristics of the bond Intesa_1

Denomination of the
financial instrument

INTESA. Six years bonds with annual
floating coupon indexed to the 6 months
Euribor, with minimum rate (floor) 2.7%

ISIN IT0004594658
Total amount and currency 250,000,000.00 Euro
Face value 1000.00 Euro
Issue date 19/04/2010
Maturity date 19/04/2016
Repayment date 19/04/2016
Issue price 100% of face value

Return Annual floating coupon from 19/04/2011 to
maturity

Coupon type Floating coupon with floor
Coupon frequency Annual
Underlying 6 months Euribor

Coupon formula Ci = max(6mEuribor;2.7%)
i = 1,...,6

Coupon payment dates
19/04/2011, 19/04/2012, 19/04/2013,
19/04/2014, 19/04/2015, 19/04/2016

From the above table it is possible to identify the key information required
for the unbundling and the pricing of this bond, whose coupon structure embeds
a long �oor, namely:

1. issue date: 19=04=2010;

2. maturity date: 19=04=2016;

3. face value: 1000 Euro;

4. frequency of payment (i.e. tenor): annual;

5. coupon payment dates:
19=04=2011 19=04=2014
19=04=2012 19=04=2015
19=04=2013 19=04=2016

6. each coupon is indexed to the 6 months Euribor by the following formula:

cpn rateti = 6mEuriborti�1 +max
�
2:7%� 6mEuriborti�1 ; 0

�
(5.23)

where:
- cpn rateti is the percentage value of the annual coupon payable at the
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date ti;
- i = 1; :::; 6;
- 6mEuriborti�1 is the six-month Euribor observed at time ti�1 (where
ti�1 = ti � �).

From what stated above it follows that the payo¤ of this bond is equal to
the sum of two payo¤s respectively associated with:

1. a �oating-rate annual coupon bond which is indexed to the 6 � month
Euribor (6mEuribor) and which at the maturity date 19=04=2016 repays
a face value of 1000 Euro;

2. a derivative component that, in accordance with equation 5.23, embeds a
long �oor with notional value of 1000 Euro that:
- has maturity 19=04=2016;
- is composed by 6 �oorlets, each with maturity equal to the coupon
payment dates;
- has a tenor equal to 1 year;
- has a �oor rate equal to 2:7%;
- has as underlying the 6 � month Euribor (6mEuribor) at which are
indexed the coupons.

In particular, by exploiting the formulas derived in Chapter 2 to price
interest rate �oors, we can say that this long �oor is equivalent to a long
portfolio of 6 European call options with maturities:
19=04=2011 19=04=2014
19=04=2012 19=04=2015
19=04=2013 19=04=2016
whose underlying securities are 6 zero-coupon bonds with maturities:
19=04=2010 19=04=2013
19=04=2011 19=04=2014
19=04=2012 19=04=2015
and face value of 1027 (i.e.: 1000 � (1 + 2:7%)).
Each of these call options has strike price equal to: K = 1000.

5.3 Calibration of the Vasicek model

The �rst step to price interest rate derivatives in the framework of the Vasicek
model is the calibration of the parameters, that is �nding those values of a, b0

and � which allow for the best �t of the observed market data.
In section 1.5.1 we have seen that:

� a represents the speed of adjustment of the short rate to its long run mean;

� b0 represents the long-run mean of the short rate;

� � represents the volatility of the short rate.
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We have also shown that the analytical expression for the price at time t of
a zero coupon bond maturing at time T in the Vasicek model depends on the
three parameters listed above.
The calibration procedure consists into retrieving the market quotes for a

set of zero coupon bonds representing the interest rate term structure we want
to model and into �nding the parameters for the Vasicek model which provide
the best matching between market prices and model prices.
In order to price the ten stochastic interest bonds listed in Table 1 of this

Chapter, we have to calibrate the Vasicek model on the Euribor zero curve,
since the coupon payments are indexed to the Euribor.
Our calibration procedure uses, therefore, as input, the market quotes of

the zero coupon bonds implied in the so-called �Euro vs Euribor zero curve�
available on Bloomberg.
Hence, taking these quotes as input, the calibration of the Vasicek model in

continuous time was performed according to the following steps:

1. the prices of the zero coupon bonds were evaluated at the issue date by
using the Vasicek model (namely, equations 1.24, 1.25 and 1.26 of section
1.5.1;

2. it was computed the sum, � (a; �; b0) ; of the squares of the di¤erences
between the market prices of the zero coupon bonds and their theoretical
values determined at the previous step, i.e.:

� (a; b0; �) =

NzcbX
i=1

�
P zcb it;market � P zcb it;V as (a; b

0; �)
�2

(5.24)

where:

� Nzcb is the number of zero coupon bonds used for the calibration;
� P zcb it;market is the market price of the i

th zero coupon bond at the
calibration date t;

� P zcb it;V as (a; b
0; �) is the price of the same zero coupon bond evaluated

at the same date t according to the Vasicek model;

3. the quantity � (a; b0; �) was minimized with respect to the values of the
parameters a, b0 and � in order to �nd their optimal values denoted by
a�, b0� and ��.

The above minimization procedure was performed numerically through suit-
able optimization algorithms.
Clearly, the results of the calibration varied depending on the calibration

date, and, hence, of the issue date of each of the ten bonds.
For example, in the case of the bond Unicredit_2, the calibration results

were:
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a� 0:378782
b0� 0:044136
�� 0:011036
and in Figure 5.1 we compared the zero curve quoted on the market and the
zero curve obtained in the Vasicek model by using these parameters.
As we can see from the Figure, the Vasicek model - despite to the fact that

it is a one-factor Gaussian model with constant parameters and without a no-
arbitrage condition - exhibits a good �tting of the Euribor zero curve observed
on the market.

Figure 5.1: Comparison between market zero curve and Vasicek zero curve

5.4 Pricing with the Vasicek model

This section describes the two alternative methodologies we used to price the
ten stochastic interest bonds in the Vasicek model.
The �rst methodology takes advantage of the closed formulas for caps and

�oors prices illustrated in Chapter 2 to evaluate the derivative components of
these bonds. More in detail we used the parameters estimated through the
calibration procedure described in the previous section to price the interest rate
derivatives embedded in the �nancial structure of the examined bonds according
to the formulas 2.6 and 2.21 of Chapter 2, suitably modi�ed in order to take
into account the credit risk to which bond-holders are exposed.
The theoretical values of the pure bond components of the ten bonds were

obtained by applying the general formula for the evaluation of a defaultable
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coupon bond derived in Chapter 3 (see equation 3.23 of section 3.5 of that
Chapter1). It is worth pointing out that the generic term P (0; ti) appearing in
the RHS of the mentioned formula has been determined by using the formula
for the zero coupon bond price in the Vasicek model (see equations 1.24, 1.26
and 1.25 in section 1.5.1 of Chapter 1).
The second pricing methodology required to simulate the trajectories of the

short rate rt consistently with equation 1.22 in section 1.5.1 for a period equal
to the length of the bonds.
For any given trajectory of rt the associated Euribor trajectory was calcu-

lated and, then, compared at intervals corresponding to the coupon payment
dates with the strikes of the caps and/or �oors embedded in the bond analyzed2 .
The sum of the face value of the bond at the maturity date and of all its

coupons (discounted back to the evaluation date along the simulated values of
rt over a given simulated trajectory) returned the total value of the bond over
that trajectory.
By iterating this procedure 50000 times and taking the mean of the dis-

counted values associated with all the simulated trajectories we obtained the
theoretical bond values according to the second pricing technique.
Also in this methodology the credit risk of the issuer was taken into account,

since at any payment date we assumed that in a certain number of trajectories,
determined proportionally to intertemporal estimated default probabilities, a
bond cash �ow equal to the recovery rate R = 40% multiplied by the nominal
value of the payment scheduled for that date.
Table 12 hereafter reports the results of the two pricing techniques in the

framework of the Vasicek model, showing that they provide consistent results.
The small di¤erence between the prices obtained with the two methods is due
to the statistical error associated with the Monte Carlo approach and to the
discretization of the Vasicek stochastic di¤erential equation we adopted in the
simulation.

1Notice that this formula is so general that it holds clearly also for zero-coupon bonds
2Notice that, since the Vasicek model belongs to the family of Gaussian short rate models,

the simulation needs a further correction to avoid the possibility to get negative rates.
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Table 12. Stochastic Interest Bonds Pricing with the Vasicek Model

VALUE OF THE
BOND

COMPONENT

VALUE OF THE
LONG CAP(S)

VALUE OF THE
SHORT CAP(S)

VALUE OF THE
LONG FLOOR(S)

THEORETICAL
VALUE

BNL_1 94,85% 3,94% ­0,75% 98,04% 98,17%
BNL_2 95,12% 3,28% ­0,54% 97,86% 97,81%
BNL_3 94,69% 3,26% ­0,53% 97,42% 97,38%

POPOLARE_1 96,07% 1,74% ­0,72% 97,09% 97,16%
POPOLARE_2 97,18% 1,43% ­0,46% 98,15% 98,08%
UNICREDIT_1 94,60% ­0,75% 1,70% 95,56% 96,01%
UNICREDIT_2 91,48% 5,18% ­0,74% 95,92% 95,71%
UNICREDIT_3 93,72% 3,39% ­0,57% 96,55% 96,63%
UNICREDIT_4 93,09% 4,21% ­0,24% 97,06% 96,89%

INTESA_1 95,42% 3,34% 98,76% 98,92%

BOND
IDENTIFICATION

NUMBER

PRICING THROUGH THE UNBUNDLING TECHNIQUE
PRICING THROUGH THE

MONTE CARLO
SIMULATION

In section 5.7 of this Chapter we will present a comparison between these re-
sults, those obtained from the Hull and White model (see section 5.6 below) and
the theoretical values of the bonds reported in the �nal terms of the prospectus
published by the issuers, when available.

5.5 Calibration of the Hull and White Model

The �rst step to price interest rate derivatives in the framework of Hull and
White model is the calibration of the parameters, that is �nding those values of
a and � which allow for the best �t of the observed market data.
In section 1.6.4 we have seen that:

� a represents the speed of adjustment of the short rate to its long run mean;

� � represents the volatility of the short rate.

We have also shown that the function � (t) (i.e. the long run mean term in
equation 1.75) can be chosen so as to reproduce exactly the actual forward rate
curve observed in the market and that the analytical expression for the price at
time t of a zero coupon bond maturing at time T in the Hull and White model
depends on the two parameters listed above and on � (t) :
The calibration procedure consists into retrieving the market quotes for a set

of caps or �oors and into �nding the parameters for the Hull and White model
which provide the best matching between the market prices and the model prices
of these interest rate derivatives.
In order to price the ten stochastic interest bonds listed in Table 1 of this

Chapter, we have to calibrate the Hull and White model on the market volatil-
ities of caps or �oors having the Euribor as underlying interest rate, since the
coupon payments are indexed to the Euribor.
In particular, we chose to use as input of the calibration procedure market

caps volatilities available on Bloomberg.
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Hence, taking these market volatilities as input, the calibration of the Hull
and White model in continuous time was performed according to the following
steps:

1. the prices of the caps were evaluated at the issue date by using the Hull
and White model (namely, equations 2.12, 2.13, 2.14, 2.15 and 2.16 of
section 2.1.5);

2. it was computed the sum, � (a; �) ; of the squares of the di¤erences between
the market prices of the caps and their theoretical values determined at
the previous step, i.e.:

� (a; �) =

NcapsX
i=1

�
capit;market � p

capi
t;HW (a; �)

�2
(5.25)

where:

� Ncaps is the number of caps used for the calibration;
� capit;market is the market price of the ith cap at the calibration date
t. This price was calculated through the Black formula of equation
2.30 in Appendix B.1 of Chapter 2;

� pcapit;HW (a; �) is the price of the same cap evaluated at the same date
t according to the Hull-White model (see equation 2.16 of section
2.1.5);

3. the quantity of the previous step � (a; �) was minimized with respect to
the values of the parameters a and � in order to identify their optimal
values denoted by a� and ��.

The above minimization procedure was performed numerically through suit-
able optimization algorithms.
Clearly, the results of the calibration varied depending on the calibration

date, and, hence, of the issue date of each of the ten bonds.
For example, in the case of the bond Unicredit_2 the calibration results

have been:
a� 0:0578
�� 0:0092
and in Figure 5.2 we compared the cap volatilities quoted on the market and the
cap volatilities obtained in the Hull and White model by using these parameters.
As we can see from the Figure, even if it does not catch the �rst part of

the term structure of cap volatilities (mainly due to the constant parameters),
however the Hull and White model exhibits overall a good �tting of the market
caps volatilities.
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Figure 5.2: Comparison between market cap volatilities and Hull and White implied
volatilities

5.6 Pricing with the Hull and White Model

This section describes the two alternative methodologies we used to price the
ten stochastic interest bonds in the Hull and White model.
The �rst methodology takes advantage of the closed formulas for caps and

�oors prices illustrated in Chapter 2 to evaluate the derivative components of
these bonds. More in detail we used the parameters estimated through the
calibration procedure described in the previous section to price the interest rate
derivatives embedded in the �nancial structure of the examined bonds according
to the formulas 2.16 and 2.25 of Chapter 2, suitably modi�ed in order to take
into account the credit risk to which bond-holders are exposed.
The theoretical values of the pure bond components of the ten bonds were

obtained by applying the general formula for the evaluation of a defaultable
coupon bond derived in Chapter 3 (see equation 3.23 of section 3.5 of that
Chapter3). It is worth pointing out that the generic term P (0; ti) appearing in
the RHS of the mentioned formula has been determined by using the formula for
the zero coupon bond price in the Vasicek model (see equation 1.83 in section
1.6.4 of Chapter 1).
The second pricing methodology required to simulate the trajectories of the

short rate rt consistently with equation 1.76 in section 1.6.4 for a period equal
to the length of the bonds. As shown in Chapter 1, the following equality holds:

rt = xt + �t (1.76)

3Notice that this formula is so general that it holds clearly also for zero-coupon bonds
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and, as a consequence, for this model the simulation procedure does not involve
to calculate the �rst derivative of the forward rate curve4 .
For any given trajectory of rt the associated Euribor trajectory was calcu-

lated and, then, compared at intervals corresponding to the coupon payment
dates with the strikes of the caps and/or �oors embedded in the bond analyzed.
The sum of the face value of the bond at the maturity date and of all its

coupons (discounted back to the evaluation date along the simulated values of
rt over a given simulated trajectory) returned the total value of the bond over
that trajectory.
By iterating this procedure 50000 times and taking the mean of the dis-

counted values associated with all the simulated trajectories we obtained the
theoretical bond values according to the second pricing technique.
Also in this methodology the credit risk of the issuer was taken into account,

since at any payment date we assumed that in a certain number of trajectories,
determined proportionally to intertemporal estimated default probabilities, a
bond cash �ow equal to the recovery rate R = 40% multiplied by the nominal
value of the payment scheduled for that date.
Table 13 hereafter reports the results of the two pricing techniques in the

framework of the Hull and White model, showing that they provide consistent
results. The small di¤erence between the prices obtained with the two methods
is due to the statistical error associated with the Monte Carlo approach and to
the discretization step we adopted in the simulation.

Table 13. Stochastic Interest Bonds Pricing with the Hull and White Model

VALUE OF THE
BOND

COMPONENT

VALUE OF THE
LONG CAP(S)

VALUE OF THE
SHORT CAP(S)

VALUE OF THE
LONG FLOOR(S)

THEORETICAL
VALUE

BNL_1 94,85% 4,18% ­1,10% 97,93% 98,06%
BNL_2 95,12% 3,53% ­0,86% 97,79% 97,73%
BNL_3 94,69% 3,51% ­0,86% 97,34% 97,30%

POPOLARE_1 96,07% 2,11% ­1,06% 97,12% 97,19%
POPOLARE_2 97,18% 1,81% ­0,77% 98,23% 98,16%
UNICREDIT_1 94,60% ­1,23% 1,80% 95,17% 95,62%
UNICREDIT_2 91,48% 5,52% ­1,24% 95,76% 95,56%
UNICREDIT_3 93,72% 3,89% ­1,05% 96,56% 96,64%
UNICREDIT_4 93,09% 4,62% ­0,59% 97,12% 96,95%

INTESA_1 95,42% 3,86% 99,27% 99,43%

BOND
IDENTIFICATION

NUMBER

PRICING THROUGH THE UNBUNDLING TECHNIQUE
PRICING THROUGH THE

MONTE CARLO
SIMULATION

4Notice that, since the Hull-White model belongs to the family of Gaussian short rate
models, the simulation needs a further correction to avoid the possibility to get negative
rates.
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In next section we will present a comparison between these results, those of
section 5.4 and the theoretical values of the bonds reported in the �nal terms
of the prospectus published by the issuers, when available.

5.7 Comparison with the prices published in the
prospectus

In this section we will compare between the theoretical value of the ten bonds
reported by issuers in the prospectuses, when available, with the theoretical
values computed using two a¢ ne term structure models (Vasicek and Hull and
White) and the two di¤erent pricing techniques described in the previous sec-
tions.
Table 14 hereafter summarizes these quantities.

Table 14. Theoretical bond values: models VS prospectus

Vasicek
(Unbundling)

Vasicek
(Monte Carlo)

Hull and White
(Unbundling)

Hull and White
(Monte Carlo)

BNL_1 98,04% 98,17% 97,93% 98,06% 99,51%
BNL_2 97,86% 97,81% 97,79% 97,73% 99,63%
BNL_3 97,42% 97,38% 97,34% 97,30% 99,55%

POPOLARE_1 97,09% 97,16% 97,12% 97,19% 98,81%
POPOLARE_2 98,15% 98,08% 98,23% 98,16% 98,83%
UNICREDIT_1 95,56% 96,01% 95,17% 95,62% 96,37%
UNICREDIT_2 95,92% 95,71% 95,76% 95,56% 96,35%
UNICREDIT_3 96,55% 96,63% 96,56% 96,64% 97,85%
UNICREDIT_4 97,06% 96,89% 97,12% 96,95% 97,82%

INTESA_1 98,76% 98,92% 99,27% 99,43% 100%*

*Issue price (no prospectus published)

BOND
IDENTIFICATION

NUMBER

PRICING FROM THE
PROSPECTUS

PRICING THROUGH AFFINE TERM STRUCTURE MODELS

As we can see from Table 14, the theoretical values obtained in sections
5.4 and 5.6 with the two di¤erent models are consistent. On the contrary,
the theoretical values resulting from the prospectuses are usually higher than
the theoretical values determined according to the two term structure models
considered in this Chapter.
In percentage terms, this di¤erence is equal on average to about 1:22% and

it provides an important signal about the reliability and the accuracy of the in-
formative set included in the document that investors use to take their �nancial
decisions
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Conclusions

The aim of this work is to use one-factor stochastic term structure models
to evaluate stochastic interest bonds, that is bonds bundled together some in-
terest rate derivative, and to compare them with the theoretical that the issuer
indicates in the prospectus for the public o¤ering.
Stochastic interest bonds are a sub-set of the big family of structured bonds,

the latter being bonds that present speci�c algorithms driving coupons com-
putation and payment at maturity, mainly due to the presence of one or more
derivative components embedded in their �nancial structure.
Structured bonds are mainly issued by banks. Over the last two decades the

o¤ering of structured bonds to retail investors has consistently increased, with
a contextual rise in the variety of the payo¤ structures.
In Chapter 1, after a brief exposure of the evolution of term structure models

and their classi�cation, we analyzed several one-factor a¢ ne term structure
models: the Vasicek model, the Ho-Lee model and the Hull-White model.
In Chapter 2 we showed how to use the above models to price some typical

interest rate derivatives (namely caps and �oors) that are often embedded in
the structure of stochastic interest bonds.
In Chapter 3 we presented some key concepts about credit risk in order to

take into account the impact of this risk factor on the bond value. To this aim,
we illustrated some key results regarding credit derivatives, and, speci�cally,
credit default swaps whose market quotes allow to infer reliable estimates of
the cumulative and intertemporal default probabilities of an issuer at various
maturities by using the so-called bootstrapping technique. Once these default
probabilities are estimated they can be used to derive a general pricing formula
for defaultable bonds which will be used to perform the fair evaluation of the
ten stochastic interest bonds analyzed in Chapter 5.
In Chapter 4 we studied in detail the �nancial engineering of a speci�c kind

of stochastic interest bonds, the so-called collared �oaters, which are �oating-
rate coupon bonds whose coupons are subject to both an upper and a lower
bound, hence embedding two interest rate derivatives, either a long cap and a
short cap or a long �oor and a short cap depending on the speci�c unbundling
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choice we make.
In particular, the unbundling of a generic collared �oater into its various

elementary components was examined.
In Chapter 5 we dealt with the pricing of ten stochastic interest bonds re-

cently issued by four of the major Italian banks: six of them were pure collared
�oaters, two of them were mixed �xed-�oating coupon bonds, whose �oating
coupons had the typical structure of collared �oaters, one bond was a �oating-
rate coupon bond embedding a �oor, and one bond was a �oating-rate coupon
bond embedding a �oor for the �rst half of its life and a cap for the second half
of its life.
After the illustration of their unbundling, these bonds were priced by means

of two alternative pricing methodologies.
The �rst methodology was based on the unbundling of their �nancial struc-

ture: this technique relies on the fact that stochastic interest bonds can be seen
as the composition of one or more pure bond components and of one or more
interest rate derivatives, namely caps and/or �oors, whose closed formulas - in
the framework of the one-factor a¢ ne term structure models of Chapter 1 de-
veloped under the risk neutral probability measure - were presented in Chapter
2.
The second methodology relies instead on Monte Carlo simulations, per-

formed again under the risk neutral probability measure; in this case the fair
value of a bond was determined by discounting back at the evaluation date the
�nal value of the security over each simulated trajectory and, then, by averaging
these discounted values.
The two pricing methodologies were implemented both in the framework of

the Vasicek model and in that of the Hull and White model.
Their results turn out to be consistent and, compared with the theoretical

value indicated in the �nal terms of the prospectus published by the issuers,
they resulted a useful instrument to explore the reliability and the accuracy of
the informative set included in this document that investors use to take their
�nancial decisions.
Indeed, as shown by Table 14 of Chapter 5, the theoretical values displayed in

the prospectus proved to be usually higher than those calculated according the
two above mentioned a¢ ne term structure models, with an average percentage
di¤erence of about 1:22%:
We hope that the adopted approach shown in detail in this work for the

pricing of stochastic interest bonds could help for the pricing of this type of
products and could support the analysis of other structures.
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