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Coupling Conditions for the 3 × 3 Euler System

Rinaldo M. Colombo1 Francesca Marcellini2

November 3, 2009

Abstract

This paper is devoted to the extension to the full 3 × 3 Euler sys-
tem of the basic analytical properties of the equations governing a fluid
flowing in a duct with varying section. First, we consider the Cauchy
problem for a pipeline consisting of 2 ducts joined at a junction. Then,
this result is extended to more complex pipes. A key assumption in
these theorems is the boundedness of the total variation of the pipe’s
section. We provide explicit examples to show that this bound is nec-
essary.

Keywords: Conservation Laws at Junctions, Coupling Conditions at
Junctions.

2000 MSC: 35L65, 76N10

1 Introduction

We consider Euler equations for the evolution of a fluid flowing in a pipe
with varying section a = a(x), see [17, Section 8.1] or [12, 15]:











∂t(aρ) + ∂x(aq) = 0
∂t(aq) + ∂x

[

aP (ρ, q, E)
]

= p (ρ, e) ∂xa
∂t(aE) + ∂x

[

aF (ρ, q, E)
]

= 0
(1.1)

where, as usual, ρ is the fluid density, q is the linear momentum density and
E is the total energy density. Moreover

E(ρ, q, E) =
1

2

q2

ρ
+ρe, P (ρ, q, E) =

q2

ρ
+p, F (ρ, q, E) =

q

ρ
(E+p) , (1.2)

with e being the internal energy density, P the flow of the linear momentum
density and F the flow of the energy density. The above equations express
the conservation laws for the mass, momentum, and total energy of the fluid
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through the pipe. Below, we will often refer to the standard case of the ideal
gas, characterized by the relations

p = (γ − 1)ρe, S = ln e− (γ − 1) ln ρ , (1.3)

for a suitable γ > 1. Note however, that this particular equation of state
is necessary only in case (p) of Proposition 3.1 and has been used in the
examples in Section 4. In the rest of this work, the usual hypothesis [16,
formula (18.8)], that is p > 0, ∂τp(τ, S) < 0 and ∂2

ττp(τ, S) > 0, are suffi-
cient.

The case of a sharp discontinuous change in the pipe’s section due to
a junction sited at, say, x = 0, corresponds to a(x) = a− for x < 0 and
a(x) = a+ for x > 0. Then, the motion of the fluid can be described by











∂tρ+ ∂xq = 0
∂tq + ∂xP (ρ, q, E) = 0
∂tE + ∂xF (ρ, q, E) = 0,

(1.4)

for x 6= 0, together with a coupling condition at the junction of the form:

Ψ
(

a−, (ρ, q, E)(t, 0−); a+, (ρ, q, E)(t, 0+)
)

= 0. (1.5)

Above, we require the existence of the traces at x = 0 of (ρ, q, E). Various
choices of the function Ψ are present in the literature, see for instance [1, 5,
8, 9] in the case of the p-system and [10] for the full 3×3 system (1.4). Here,
we consider the case of a general coupling condition which comprises all the
cases found in the literature. Within this setting, we prove the well posedness
of the Cauchy problem for (1.4)–(1.5). Once this result is obtained, the
extension to pipes with several junctions and to pipes with a W1,1 section
is achieved by the standard methods considered in the literature. For the
analytical techniques to cope with networks having more complex geometry,
we refer to [11].

The above statements are global in time and local in the space of the
thermodynamic variables (ρ, q, E). Indeed, for any fixed (subsonic) state
(ρ̄, q̄, Ē), there exists a bound on the total variation TV(a) of the pipe’s
section, such that all sections below this bound give rise to Cauchy problems
for (1.4)–(1.5) that are well posed in L1. We show the necessity of this
bound in the conditions found in the current literature. Indeed, we provide
explicit examples showing that a wave can be arbitrarily amplified through
consecutive interactions with the pipe walls, see Figure 1.

The paper is organized as follows. The next section is divided into three
parts, the former one deals with a single junction and two pipes, then we
consider n junctions and n + 1 pipes, the latter part presents the case of a
W1,1 section. Section 3 is devoted to different specific choices of coupling
conditions (1.5). In Section 4, an explicit example shows the necessity of the
bound on the total variation of the pipe’s section. All proofs are gathered
in Section 5.
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2 Basic Well Posedness Results

Throughout, we let u = (ρ, q, E). We denote by R
+ the real half-line [0,+∞[,

while R̊
+ = ]0,+∞[. Following various results in the literature, such as [1,

2, 5, 8, 9, 10, 13], we limit the analysis in this paper to the subsonic region
given by λ1(u) < 0 < λ3(u) and λ2(u) 6= 0, where λi is the i−th eigenvalue
of (1.4), see (5.1). Without any loss of generality, we further restrict to

A0 =
{

u ∈ R̊
+ × R

+ × R̊
+:λ1(u) < 0 < λ2(u)

}

. (2.6)

Note that we fix a priori the sign of the fluid speed v, since λ2(u) = q/ρ =
v > 0.

2.1 A Junction and two Pipes

We now give the definition of weak Ψ−solution to the Cauchy Problem
for (1.4) equipped with the condition (1.5), extending [5, Definition 2.1]
and [9, Definition 2.2] to the 3 × 3 case (1.4) and comprising the particular
case covered in [10, Definition 2.4].

Definition 2.1 Let Ψ: (R̊+ ×A0)
2 → R

3, uo ∈ BV(R;A0) and two positive
sections a−, a+ be given. A Ψ-solution to (1.4) with initial datum uo is a
map

u ∈ C0
(

R
+;L1

loc
(R+;A0)

)

u(t) ∈ BV(R;A0) for a.e. t ∈ R
+ (2.7)

such that

1. for x 6= 0, u is a weak entropy solution to (1.4);

2. for a.e. x ∈ R, u(0, x) = uo(x);

3. for a.e. t ∈ R
+, the coupling condition (1.5) at the junction is met.

Below, extending the 2×2 case of the p-system, see [1, 4, 5, 8, 9], we consider
some properties of the coupling condition (1.5), which we rewrite here as

Ψ(a−, u−; a+, u+) = 0 . (2.8)

(Ψ0) Regularity: Ψ ∈ C1

(

(R̊+ ×A0)
2; R3

)

.

(Ψ1) No-junction case: for all a > 0 and all u−, u+ ∈ A0, then

Ψ(a, u−; a, u+) = 0 ⇐⇒ u− = u+ .

(Ψ2) Consistency: for all positive a−, a0, a+ and all u−, u0, u+ ∈ A0,

Ψ(a−, u−; a0, u0) = 0
Ψ(a0, u0; a+, u+) = 0

=⇒ Ψ(a−, u−; a+, u+) = 0 .
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Moreover, by an immediate extension of [9, Lemma 2.1], (Ψ0) ensures that
(2.8) implicitly defines a map

u+ = T (a−, a+;u−) (2.9)

in a neighborhood of any pair of subsonic states u−, u+ and sections a−, a+

that satisfy Ψ(a−, u−; a+, u+) = 0.
The technique in [6] allows to prove the following well posedness result.

Theorem 2.2 Assume that Ψ satisfies conditions (Ψ0)-(Ψ2). For every
ā > 0 and ū ∈ A0 such that

det
[

Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)
]

6= 0 (2.10)

there exist positive δ, L such that for all a−, a+ with
∣

∣a+ − ā
∣

∣+
∣

∣a− − ā
∣

∣ < δ
there exists a semigroup S: R+ ×D → D with the following properties:

1. D ⊇
{

u ∈ ū+ L1(R;A0): TV(u) < δ
}

.

2. For all u ∈ D, S0u = u and for all t, s ≥ 0, StSsu = Ss+tu.

3. For all u, u′ ∈ D and for all t, t′ ≥ 0,

∥

∥Stu− St′u
′
∥

∥

L1
≤ L ·

(

∥

∥u− u′
∥

∥

L1
+
∣

∣t− t′
∣

∣

)

4. If u ∈ D is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at the
junction at x = 0.

5. For all uo ∈ D, the orbit t→ Stuo is a Ψ-solution to (1.4) with initial
datum uo.

The proof is postponed to Section 5. Above ri(u), with i = 1, 2, 3, are
the right eigenvectors of Df(u), see (5.1). Moreover, by solution to the
Riemann Problems at the points of jump we mean the usual Lax solution,
see [3, Chapter 5], whereas for the definition of solution to the Riemann
Problems at the junction we refer to [8, Definition 2.1].

2.2 n Junctions and n + 1 Pipes

The same procedure used in [9, Paragraph 2.2] allows now to construct the
semigroup generated by (1.4) in the case of a pipe with piecewise constant
section

a = a0 χ]−∞,x1] +

n−1
∑

j=1

aj χ[xj ,xj+1[ + an χ[xn,+∞[
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with n ∈ N. In each segment
]

xj , xj+1

[

, the fluid is modeled by (1.4). At
each junction xj , we require condition (1.5), namely

Ψ(aj−1, u
−
j ; aj , u

+
j ) = 0

for all j = 1, . . . , n, where
u±j = lim

x→xj±
uj(x) . (2.11)

We omit the formal definition of Ψ-solution to (1.4)–(1.5) in the present
case, since it is an obvious iteration of Definition 2.1. The natural extension
of Theorem 2.2 to the case of (1.4)–(2.11) is the following result.

Theorem 2.3 Assume that Ψ satisfies conditions (Ψ0)-(Ψ2). For any ā >
0 and any ū ∈ A0, there exist positive M,∆, δ, L,M such that for any pipe’s
profile satisfying

a ∈ PC
(

R; ]ā− ∆, ā+ ∆[
)

with TV(a) < M (2.12)

there exists a piecewise constant stationary solution

û = û0χ]−∞,x1[ +
n−1
∑

j=1

ûjχ]xj ,xj+1[ + ûnχ]xn,+∞[

to (1.4)–(2.11) satisfying

ûj ∈ A0 with
∣

∣ûj − ū
∣

∣ < δ for j = 0, . . . n

Ψ
(

aj−1, ûj−1; aj , ûj

)

= 0 for j = 1, . . . , n

TV(û) ≤ MTV(a) (2.13)

and a semigroup Sa: R+ ×Da → Da such that

1. Da ⊇
{

u ∈ û+ L1(R;A0): TV(u− û) < δ
}

.

2. Sa
0 is the identity and for all t, s ≥ 0, Sa

t S
a
s = Sa

s+t.

3. For all u, u′ ∈ Da and for all t, t′ ≥ 0,

∥

∥Sa
t u− Sa

t′u
′
∥

∥

L1
≤ L ·

(

∥

∥(u) − u′
∥

∥

L1
+
∣

∣t− t′
∣

∣

)

.

4. If u ∈ Da is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at each
junction xj.

5. For all u ∈ Da, the orbit t→ Sa
t u is a weak Ψ-solution to (1.4)–(2.11).

We omit the proof, since it is based on the natural extension to the present
3×3 case of [9, Theorem 2.4]. Remark that, as in that case, δ and L depend
on a only through ā and TV(a). In particular, all the construction above is
independent from the number of points of jump in a.
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2.3 A Pipe with a W1,1 Section

In this paragraph, the pipe’s section a is assumed to satisfy










a ∈ W1,1
(

R; ]ā− ∆, ā+ ∆[
)

for suitable ∆ > 0, ā > ∆
TV(a) < M for a suitable M > 0
a′(x) = 0 for a.e. x ∈ R \ [−X,X] for a suitable X > 0 .

(2.14)

The same procedure used in [9, Theorem 2.8] allows to construct the semi-
group generated by (1.1) in the case of a pipe which satisfies (2.14). Indeed,
thanks to Theorem 2.3, we approximate a with a piecewise constant func-
tion an. The corresponding problems to (1.4)–(2.11) generate semigroups Sn

defined on domains characterized by uniform bounds on the total variation
and that are uniformly Lipschitz in time. Here, uniform means also inde-
pendent from the number of junctions. Therefore, we prove the pointwise
convergence of the Sn to a limit semigroup S, along the same lines in [9,
Theorem 2.8].

3 Coupling Conditions

This section is devoted to different specific choices of (2.8).

(S)-Solutions We consider first the coupling condition inherited from the
smooth case. For smooth solutions and pipes’ sections, system (1.1) is equiv-
alent to the 3 × 3 balance law



























∂tρ+ ∂xq = −q
a
∂xa

∂tq + ∂xP (ρ, q, E) = − q2

aρ
∂xa

∂tE + ∂xF (ρ, q, E) = −F
a
∂xa.

(3.1)

The stationary solutions to (1.1) are characterized as solutions to










∂x(a(x) q) = 0
∂x

(

a(x)P (ρ, q, E)
)

= p(ρ, e) ∂xa
∂x

(

a(x)F (ρ, q, E)
)

= 0
or











∂xq = − q
a
∂xa

∂xP (ρ, q, E) = − q2

aρ
∂xa

∂xF (ρ, q, E) = −F
a
∂xa .

(3.2)

As in the 2× 2 case of the p-system, the smoothness of the sections induces
a unique choice for condition (2.8), see [9, (2.3) and (2.19)], which reads

(S) Ψ =











a+q+ − a−q−

a+P (u+) − a−P (u−) +

∫ X

−X

p
(

Ra(x), Ea(x)
)

a′(x)dx

a+F (u+) − a−F (u−)











(3.3)
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where a = a(x) is a smooth monotone function satisfying a(−X) = a− and
a(X) = a+, for a suitable X > 0. Ra, Ea are the ρ and e component in the
solution to (3.2) with initial datum u− assigned at −X. Note that, by the
particular form of (3.3), the function Ψ is independent both from the choice
of X and from that of the map a, see [9, 2. in Proposition 2.7].

(P)-Solutions The particular choice of the coupling condition in [10, Sec-
tion 3] can be recovered in the present setting. Indeed, conditions (M), (E)
and (P) therein amount to the choice

(P) Ψ(a−, u−, a+, u+) =







a+q+ − a−q−

P (u+) − P (u−)
a+F (u+) − a−F (u−)






, (3.4)

where a+ and a− are the pipe’s sections. Consider fluid flowing in a hori-
zontal pipe with an elbow or kink, see [14]. Then, it is natural to assume
the conservation of the total linear momentum along directions dependent
upon the geometry of the elbow. As the angle of the elbow vanishes, one
obtains the condition above, see [10, Proposition 2.6].

(L)-Solutions We can extend the construction in [1, 2, 4] to the 3 × 3
case (1.4). Indeed, the conservation of the mass and linear momentum in [4]
with the conservation of the total energy for the third component lead to
the choice

(L) Ψ(a−, u−, a+, u+) =







a+q+ − a−q−

a+P (u+) − a−P (u−)
a+F (u+) − a−F (u−)






, (3.5)

where a+ and a− are the pipe’s sections. The above is the most immedi-
ate extension of the standard definition of Lax solution to the case of the
Riemann problem at a junction.

(p)-Solutions Following [1, 2], motivated by the what happens at the hy-
drostatic equilibrium, we consider a coupling condition with the conservation
of the pressure p(ρ) in the second component of Ψ. Thus

(p) Ψ(a−, u−, a+, u+) =







a+ q+ − a− q−

p(ρ+, e+) − p(ρ−, e−)
a+F (u+) − a−F (u−)






, (3.6)

where a+ and a− are the pipe’s sections.
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Proposition 3.1 For every ā > 0 and ū ∈ A0, each of the coupling con-
ditions Ψ in (3.3), (3.4), (3.5), (3.6) satisfies the requirements (Ψ0)-(Ψ2)
and (2.10). In the case of (3.6), we also require that the fluid is perfect,
i.e. that (1.3) holds.

The proof is postponed to Section 5. Thus, Theorem 2.2 applies, yielding
the well posedness of (1.4)–(1.5) with each of the particular choices of Ψ
in (3.3), (3.4), (3.5), (3.6).

4 Blow-Up of the Total Variation

In the previous results a key role is played by the bound on the total variation
TV(a) of the pipe’s section. This requirement is intrinsic to problem (1.4)–
(1.5) and not due to the technique adopted above. Indeed, we show below
that in each of the cases (3.3), (3.4), (3.5), (3.6), it is possible to choose an
initial datum and a section a ∈ BV(R; [a−, a+]) with a+ − a− arbitrarily
small, such that the total variation of the corresponding solution to (1.4)–
(1.5) becomes arbitrarily large.

Consider the case in Figure 1. A wave σ−3 hits a junction where the

x

∆a

a

x

σ−3

σ+
3

σ++
3

t

u+

u

2ll

Figure 1: A wave σ−3 hits a junction where the pipe’s section increases by
∆a. From this interaction, the wave σ+

3 arises, which hits a second junction,
where the pipe section decreases by ∆a.

pipe’s section increases by, say, ∆a > 0. The fastest wave arising from
this interaction is σ+

3 , which hits the second junction where the section
diminishes by ∆a.
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Solving the Riemann problem at the first interaction amounts to solve
the system

L3

(

L2

(

T
(

L1(u;σ
+
1 )
)

;σ+
2

)

;σ+
3

)

= T
(

L3(u;σ
−
3 )
)

, (4.1)

where u ∈ A0, see Figure 2 for the definitions of the waves’ strengths σ+
i and

σ−3 . Above, T is the map defined in (2.9), which in turn depends from the
specific condition (2.8) chosen. In the expansions below, we use the (ρ, q, e)
variables, thus setting u = (ρ, q, e) throughout this section. Differently from

σ−3

σ+
1 σ+

2

σ+
3

u

u+

Figure 2: Notation used in (4.1) and (4.4).

the case of the 2 × 2 p-system in [9], here we need to consider the second
order expansion in ∆a = a+ − a− of the map T ; that is

T (a, a+ ∆a;u) = u+H(u)
∆a

a
+G(u)

(

∆a

a

)2

+ o

(

∆a

a

)2

(4.2)

The explicit expressions of H and G in (4.2), for each of the coupling con-
ditions (3.3), (3.4), (3.5), (3.6), are in Section 5.2.

Inserting (4.2) in the first order expansions in the wave’s sizes of (4.1),
with r̃i for i = 1, 2, 3 as in (5.3), we get a linear system in σ+

1 , σ
+
2 , σ

+
3 . Now,

introduce the fluid speed v = q/ρ and the adimensional parameter

ϑ =

(

v

c

)2

=
v2

γ(γ − 1)e
,

a sort of “Mach number”. Obviously, ϑ ∈ [0, 1] for u ∈ A0. We thus obtain
an expression for σ+

3 of the form

σ+
3 =

(

1 + f1(ϑ)
∆a

a
+ f2(ϑ)

(

∆a

a

)2
)

σ−3 . (4.3)

The explicit expressions of f1 and f2 in (4.3) are in Section 5.2.
Remark that the present situation is different from that of the 2 × 2

p-system considered in [9]. Indeed, for the p-system f2(ϑ) = f2(ϑ
+) = 0,

while here it is necessary to compute the second order term in (∆a)/a.
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Concerning the second junction, similarly, we introduce the parameter
ϑ+ = (v+/c+)2 which corresponds to the state u+. Recall that u+ is defined

by u+ = L−
3

(

T
(

L3(u;σ
−
3 );σ+

3

)

)

, see Figure 2 and Section 5.2 for the

explicit expressions of ϑ+. We thus obtain the estimate

σ++
3 =

(

1 − f1(ϑ
+)

∆a

a
+ f2(ϑ

+)

(

∆a

a

)2
)

σ+
3 , (4.4)

where ϑ+ = ϑ+
(

ϑ, σ−3 , (∆a)/a
)

. Now, at the second order in (∆a)/a and

at the first order in σ−3 , (4.3) and (4.4) give

σ++
3 =

(

1 − f1(ϑ
+)

∆a

a
+ f2(ϑ

+)

(

∆a

a

)2
)

×
(

1 + f1(ϑ)
∆a

a
+ f2(ϑ)

(

∆a

a

)2
)

σ−3

=

(

1 + χ(ϑ)

(

∆a

a

)2
)

σ−3 . (4.5)

Indeed, computations show that f1 (ϑ) − f1

(

ϑ+
)

vanishes at the first order
in (∆a)/a, as in the case of the p-system. The explicit expressions of χ are
in Section 5.2.

It is now sufficient to compute the sign of χ. If it is positive, then
repeating the interaction in Figure 1 a sufficient number of times leads to
an arbitrarily high value of the refracted wave σ3 and, hence, of the total
variation of the solution u.

Below, Section 5 is devoted to the computations of χ in the different
cases (3.3), (3.4), (3.5) and (3.6). To reduce the formal complexities of the
explicit computations below, we consider the standard case of an ideal gas
characterized by (1.3) with γ = 5/3.

The results of these computations are in Figure 3. They show that in
all the conditions (1.5) considered, there exists a state u ∈ A0 such that
χ(ϑ) > 0, showing the necessity of condition (2.12). However, in case (L),
it turns out that χ is negative on an non trivial interval of values of ϑ. If
ū is chosen in this interval, the wave σ3 in the construction above is not
magnified by the consecutive interactions. The computations leading to the
diagrams in Figure 3 are deferred to Section 5.2.
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Figure 3: Plots of χ as a function of ϑ. Top, left, case (S); right, case (P);
bottom, left, case (L); right, case (p). Note that in all four cases, χ attains
strictly positive values, showing the necessity of the requirement (2.12).

11



5 Technical Details

We recall here basic properties of the Euler equations (1.1), (1.4). The
characteristic speeds and the right eigenvectors have the expressions

λ1 = q
ρ
− c λ2 = q

ρ
λ3 = q

ρ
+ c

r1 =







−ρ
ρc− q

qc− E − p






r2 =







ρ
q

E + p− ρ2c2

∂ep






r3 =







ρ
q + ρc

E + p+ qc







(5.1)

whose directions are chosen so that ∇λi · ri > 0 for i = 1, 2, 3. In the case
of an ideal gas, the sound speed c =

√

∂ρp+ ρ−2 p ∂ep becomes

c =
√

γ(γ − 1)e . (5.2)

The shock and rarefaction curves curves of the first and third family are:

S1(uo, σ) =























ρ = −σ + ρo

v = vo −
√

− (p− po)
(

1
ρ
− 1

ρo

)

e = eo − 1
2 (p+ po)

(

1
ρ
− 1

ρo

)

for

σ ≤ 0
ρ ≥ ρo

v ≤ vo

S ≥ So

S3(uo, σ) =























ρ = σ + ρo

v = vo −
√

− (p− po)
(

1
ρ
− 1

ρo

)

e = eo − 1
2 (p+ po)

(

1
ρ
− 1

ρo

)

for

σ ≤ 0
ρ ≤ ρo

v ≤ vo

S ≤ So

R1(uo, σ) =



















ρ = −σ + ρo

v = vo −
∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≤ ρo

v ≥ vo

e ≤ eo

R3(uo, σ) =



















ρ = σ + ρo

v = vo +

∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≥ ρo

v ≥ vo

e ≥ eo

The 1,2,3-Lax curves have the expressions

L1(σ; ρo, qo, Eo) =

{

S1(σ; ρo, qo, Eo), σ < 0
R1(σ; ρo, qo, Eo), σ ≥ 0

L2(σ; ρo, qo, Eo) =











ρ = σ + ρo

v = vo

p(ρ, e) = p(ρo, eo)

L3(σ; ρo, qo, Eo) =

{

S3(ρ; ρl, ql, El), σ < 0
R3(σ; ρo, qo, Eo), σ ≥ 0
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Their reversed counterparts are

S−
1 (uo, σ) =























ρ = σ + ρo

v = vo +

√

− (p− po)
(

1
ρ
− 1

ρo

)

e = eo − 1
2 (p+ po)

(

1
ρ
− 1

ρo

)

for

σ ≤ 0
ρ ≤ ρo

v ≥ vo

S ≤ So

S−
3 (uo, σ) =























ρ = −σ + ρo

v = vo +

√

− (p− po)
(

1
ρ
− 1

ρo

)

e = eo − 1
2 (p+ po)

(

1
ρ
− 1

ρo

)

for

σ ≤ 0
ρ ≥ ρo

v ≥ vo

S ≥ So

R−
1 (uo, σ) =



















ρ = σ + ρo

v = vo −
∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≥ ρo

v ≤ vo

e ≥ eo

R−
3 (uo, σ) =



















ρ = −σ + ρo

v = vo +

∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≤ ρo

v ≤ vo

e ≤ eo

and

L−
1 (σ; ρo, qo, Eo) =

{

S−
1 (σ; ρo, qo, Eo), σ < 0
R−

1 (σ; ρo, qo, Eo), σ ≥ 0

L−
2 (σ; ρo, qo, Eo) =











ρ = −σ + ρo

v = vo

p(ρ, e) = p(ρo, eo)

L−
3 (σ; ρo, qo, Eo) =

{

S−
3 (σ; ρo, qo, Eo), σ < 0
R−

3 (σ; ρo, qo, Eo), σ ≥ 0 .

In the (ρ, q, e) space, for a perfect ideal gas, the tangent vectors to the
Lax curves are:

r̃1 =







−1

− q
ρ
−
√

γ(γ − 1)e

−(γ − 1) e
ρ






, r̃2 =







1
q
ρ

− e
ρ






, r̃3 =







1
q
ρ
−
√

γ(γ − 1)e

(γ − 1) e
ρ






. (5.3)

5.1 Proofs of Section 2

The following result will be of use in the proof of Proposition 2.2.
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Proposition 5.1 Let σi 7→ Li(u0, σi) be the i-th Lax curve and σi 7→
L−

i (u0, σi) be the reversed i-th Lax curve through u0, for i = 1, 2, 3. The
following equalities hold:

∂L1

∂σ1 |σ1=0
=









1
λ1(uo)

Eo + po

ρo
− qo
ρo
co









,
∂L2

∂σ2 |σ2=0
=











1
λ2(uo)

Eo + po

ρo
− ρo c

2
o

∂epo











,

∂L3

∂σ3 |σ3=0
=









1
λ3(uo)

Eo + po

ρo
+
qo
ρo
co









,

for i = 1, 2, 3
∂L−

i

∂σi |σi=0
= −∂Li

∂σi |σi=0
,

∂Li

∂ρo |σi=0

=







1
0
0






,

∂Li

∂qo |σi=0

=







0
1
0






,

∂Li

∂Eo |σi=0
=







0
0
1






,

+
∂L−

i

∂ρo |σi=0

=
∂Li

∂ρo |σi=0

,
∂L−

i

∂qo |σi=0

=
∂Li

∂qo |σi=0

,
∂L−

i

∂Eo |σi=0
=
∂Li

∂Eo |σi=0
.

The proof is immediate and, hence, omitted.

Proof of Theorem 2.2. Following [7, Proposition 4.2], the 3 × 3 sys-
tem (1.4) defined for x ∈ R can be rewritten as the following 6 × 6 system
defined for x ∈ R

+:
{

∂tU + ∂xF(U) = 0 (t, x) ∈ R
+ × R

+

b
(

U(t, 0+)
)

= 0 t ∈ R
+ (5.4)

the relations between U and u = (ρ, q, E), between F and the flow in (1.4)
being

U(t, x) =



















ρ(t,−x)
q(t,−x)
E(t,−x)
ρ(t, x)
q(t, x)
E(t, x)



















and F(U) =



















U2

P (U1, U2, U3)
F (U1, U2, U3)

U5

P (U4, U5, U6)
F (U4, U5, U6)



















with x ∈ R
+ and E,P, F defined in (1.2); whereas the boundary condition

in (5.4) is related to (1.5) by

b(U) = Ψ
(

a−, (U1, U2, U ;3 ); a+, (U4, U5, U6)
)
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for fixed sections a− and a+.
The thesis now follows from [6, Theorem 2.2]. Indeed, the assump-

tions (γ), (b) and (f) therein are here satisfied. More precisely, condi-
tion (γ) follows from the choice (2.6) of the subsonic region A0. Simple
computations show that condition (b) reduces to

det

[

Du−Ψ · ∂L1

∂σ1 |σ1=0
Du+Ψ · ∂L−

2

∂σ2 |σ2=0
Du+Ψ · ∂L−

2

∂u+ |σ2=0
· ∂L−

3

∂σ3 |σ3=0

]

= det
[

Du−Ψ · r1(ū) −Du+Ψ · r2(ū) −Du+Ψ · r3(ū)
]

= det
[

Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)
]

,

which is non zero for assumption if ū ∈ A0 and ā > 0. Condition (f) needs
more care. Indeed, system (5.4) is not hyperbolic, for it is obtained gluing
two copies of the Euler equations (1.4). Nevertheless, the two systems are
coupled only through the boundary condition, hence the whole wave front
tracking procedure in the proof of [6, Theorem 2.2] applies, see also [7,
Proposition 4.5]. �

Proof of Proposition 3.1. It is immediate to check that each of the
coupling conditions (3.3), (3.4), (3.5), (3.6) satisfies the requirements (Ψ0)
and (Ψ1).

To prove that (Ψ2) is satisfied, we use an ad hoc argument for condi-
tion (S). In all the other cases, note that the function Ψ admits the rep-
resentation Ψ(a−, u−; a+, u+) = ψ(a−, u−) − ψ(a+, u+). Therefore, (Ψ2)
trivially holds.

We prove below (2.10) in each case separately. Note however that for
any of the considered choices of Ψ,

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā = −Du−Ψ(a−, u−, a+, u+)|u=ū, a=ā (5.5)

so that (2.10) reduces to

det
[

Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)
]

= −detDu+Ψ · det
[

r1(ū) r2(ū) r3(ū)
]

.

Thus, it is sufficient to prove that detDu+Ψ(a−, u−, a+, u+)|u=ū, a=ā 6= 0.

(S)-solutions To prove that the coupling condition (3.3) satisfies (Ψ2),
simply use the additivity of the integral and the uniqueness of the solution
to the Cauchy problem for the ordinary differential equation (3.2).

Next, we have

Du

(

∫ X

−X

p
(

Ra(x), Ea(x)
)

a′(x) dx

)

|u=ū, a=ā

= 0 ,
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since a′(x) = 0 for all x, because a− = a+ = ā. Thus, Ψ in (3.3) satisfies

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= ā3 det













0 1 0

− q̄2

ρ̄2 + ∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

q̄
ρ̄

(

2 − ∂ep̄
ρ̄

)

∂ep̄
ρ̄

− q̄
ρ̄

(

∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

− Ē+p̄
ρ̄

)

Ē+p̄
ρ̄

− ∂ep̄
ρ̄

q̄2

ρ̄2 − q̄
ρ̄

(

∂ep̄
ρ̄

+ 1
)













= −ā3 λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(P)-solutions Concerning condition (3.4), we have

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= det













0 ā 0

− q̄2

ρ̄2 + ∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

q̄
ρ̄

(

2 − ∂ep̄
ρ̄

)

∂ep̄
ρ̄

−ā q̄
ρ̄

(

∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

− Ē+p̄
ρ̄

)

ā Ē+p̄
ρ̄

− ā∂ep̄
ρ̄

q̄2

ρ̄2 −ā q̄
ρ̄

(

∂ep̄
ρ̄

+ 1
)













= −ā2λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(L)-solution For condition (3.5) the computations very similar to the
above case:

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā = −ā3λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(p)-solution Finally, concerning condition (3.6),

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= det













0 ā 0

∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

− q̄
ρ̄2∂ep̄

∂ep̄
ρ̄

−ā q̄
ρ̄

(

∂ρp̄+ ∂ep̄
ρ̄

(

q̄2

ρ̄2 − Ē
ρ̄

)

− Ē+p̄
ρ̄

)

ā Ē+p̄
ρ̄

− ā∂ep̄
ρ̄

q̄2

ρ̄2 −ā q̄
ρ̄

(

∂ep̄
ρ̄

+ 1
)













= ā2λ2(ū)
(

c2 + λ2
2(ū)

∂ep̄
ρ̄

)

,

which is non zero if ū ∈ A0 and if the fluid is perfect, i.e. (1.3) holds. �
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5.2 Computation of χ in (4.5)

The Case of Condition (S) Let Ψ be defined in (3.3) and set

Σ(a−, a+, u) =

∫ X

−X

p
(

Ra(x), Ea(x)
)

a′(x)dx

where the functions Ra, Ea have the same meaning as in (3.3). A pertur-
bative method allows to compute the solution to (3.2) with a second order
accuracy in (∆a)/a. Then, long elementary computations allow to get ex-
plicitly the terms H and G in (4.2) of the second order expansion of T :

H(ρ, q, e) =















− ϑ3 − 4ϑ2 + 5ϑ− 2

ϑ3 − 3ϑ2 + 3ϑ− 1
ρ

−q

− 2
(

−ϑ3 + 2ϑ2 − ϑ
)

3
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) e















G(ρ, q, e) =















− 4
(

ϑ3 − 2ϑ2
)

3
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) ρ

q

−70ϑ4 − 257ϑ3 + 342ϑ2 − 207ϑ+ 36

18
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) e















.

Moreover, the coefficients f1, f2 in (4.3) read

f1(ϑ) = − −3ϑ+ (ϑ− 3)
√
ϑ− 3

6
√
ϑ (ϑ− 1) − 6 (ϑ− 1)

f2(ϑ) =

√
ϑ
(

126ϑ4 − 505ϑ3 + 758ϑ2 − 489ϑ+ 270
)

72
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
)

+
42ϑ4 − 183ϑ3 + 278ϑ2 + 33ϑ+ 54

72
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
) .

Next, χ is given by

χ =

√

ϑ
“

126 ϑ4
− 506 ϑ3 + 773 ϑ2

− 480 ϑ + 279
”

+ 42 ϑ4
− 174 ϑ3 + 311 ϑ2 + 96 ϑ + 45

36
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) − ϑ3 + 3 ϑ2

− 3 ϑ + 1
” .

The Case of Condition (P) Let Ψ be defined in (3.4). With reference
to (4.2), we show below explicitly the terms H and G in (4.2) of the second
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order expansion of T ,

H(ρ, q, e) =

















8
(

−ϑ3 + 2ϑ2 − ϑ
)

3
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) ρ

−q

−2
(

5ϑ4 − 7ϑ3 − ϑ2 + 3ϑ
)

9
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) e

















G(ρ, q, e) =















64
(

ϑ3 + 3ϑ2
)

27
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) ρ

q

−565ϑ4 − 1599ϑ3 + 927ϑ2 − 405ϑ

81
(

ϑ3 − 3ϑ2 + 3ϑ− 1
) e















.

Moreover, the coefficients f1, f2 in (4.3) read

f1(ϑ) =

√
ϑ
(

9ϑ2 + 2ϑ− 27
)

+ 3ϑ2 − 42ϑ− 9

18
√
ϑ (ϑ− 1) − 18 (ϑ− 1)

f2(ϑ) =

√
ϑ
(

154ϑ5 + 931ϑ4 − 4416ϑ3 + 6570ϑ2 + 990ϑ+ 891
)

324
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
)

+
86ϑ5 − 311ϑ4 − 752ϑ3 + 7038ϑ2 + 1026ϑ+ 81

324
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
) .

Next, χ is given by

χ =

√
ϑ
(

407ϑ5 + 1931ϑ4 − 7858ϑ3 + 14766ϑ2 + 1179ϑ+ 1863
)

324
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
)

+
−23ϑ5 + 141ϑ4 + 2002ϑ3 + 15714ϑ2 + 2565ϑ+ 81

324
(√

ϑ
(

ϑ3 − 3ϑ2 + 3ϑ− 1
)

− ϑ3 + 3ϑ2 − 3ϑ+ 1
) .

The Case of Condition (L) Let Ψ be defined in (3.5). Then,

H(ρ, q, e) =







−ρ
−q
0






and G(ρ, q, e) =















− 4ϑ

3 (ϑ− 1)
ρ

q

−35ϑ2 − 9 (4ϑ− 1)

9 (ϑ− 1)
e















.

The coefficients f1, f2 in (4.3) read

f1(ϑ) = 0

f2(ϑ) =

√
ϑ
(

63ϑ2 − 106ϑ+ 27
)

+ 21ϑ2 − 78ϑ+ 9

36
(√

ϑ (ϑ− 1) − ϑ+ 1
) ,
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so that χ is

χ =

√
ϑ
(

63ϑ2 − 106ϑ+ 27
)

+ 21ϑ2 − 78ϑ+ 9

18
(√

ϑ (ϑ− 1) − ϑ+ 1
) .

The Case of Condition (p) Let Ψ be defined in (3.6). With reference
to (4.2),

H(ρ, q, e) =

















− 2
(

4ϑ3 + 12ϑ2 + 9ϑ
)

4
(

2ϑ3 + 9ϑ2
)

+ 27 (2ϑ+ 1)
ρ

−q
2
(

4ϑ3 + 12ϑ2 + 9ϑ
)

4
(

2ϑ3 + 9ϑ2
)

+ 27 (2ϑ+ 1)
e

















G(ρ, q, e) =

















− 4
(

ϑ3 + 3ϑ2
)

4
(

2ϑ3 + 9ϑ2
)

+ 27 (2ϑ+ 1)
ρ

q
12
(

ϑ3 + 2ϑ2
)

4
(

2ϑ3 + 9ϑ2
)

+ 27 (2ϑ+ 1)
e

















,

with f1 and f2 given by

f1(ϑ) =
−2ϑ2 + 4ϑ

3

2 + 3ϑ− 9

2
(

4ϑ2 + 12ϑ+ 9
)

f2(ϑ) =
32ϑ4 + 8

√
ϑ
(

4ϑ3 + 9ϑ2 − 9ϑ
)

+ 316ϑ3 + 558ϑ2 + 216ϑ+ 81

6
(

16ϑ4 + 96ϑ3 + 216ϑ2 + 216ϑ+ 81
) ,

so that

χ =
60ϑ4 + 96

√
ϑ
(

ϑ3 + ϑ2 − 3ϑ
)

+ 700ϑ3 + 1107ϑ2 − 54ϑ+ 81

6
(

16ϑ4 + 96ϑ3 + 216ϑ2 + 216ϑ+ 81
) .
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ϑ
+ = ϑ −

√

ϑ

„

“

σ−

3 + 6
”

ϑ2 + 18 ϑ − 9 σ−

3

«

+ 2
“

3 − 2 σ−

3

”

ϑ2 + 6
“

2 σ−

3 + 3
”

ϑ

9
√

ϑ (ϑ − 1) + 9 (ϑ − 1)

∆a

a

−

√

ϑ

„

14
“

11 σ−

3 − 30
”

ϑ5 +
“

990 − 301 σ−

3

”

ϑ4 + 3
“

25 σ−

3 − 236
”

ϑ3 +
“

111 σ−

3 − 18
”

ϑ2 + 45
“

12 − σ−

3

”

ϑ − 378 σ−

3

«

108
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) + ϑ3

− 3 ϑ2 + 3 ϑ − 1
”

„

∆a

a

«2

−

4
“

217 σ−

3 − 105
”

ϑ5 + 2
“

495 − 1489 σ−

3

”

ϑ4 + 4
“

928 σ−

3 − 177
”

ϑ3
− 2

“

1077 σ−

3 − 9
”

ϑ2 + 24
“

26 σ−

3 + 15
”

ϑ

108
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) + ϑ3

− 3 ϑ2 + 3 ϑ − 1
”

„

∆a

a

«2

ϑ
+ = ϑ −

√

ϑ

„

“

11 σ−

3 − 30
”

ϑ3 +
“

−19 σ−

3 − 108
”

ϑ2 + 9
“

5 σ−

3 − 6
”

ϑ + 27 σ−

3

«

+ 2
“

31 σ−

3 − 15
”

ϑ3
− 36

“

σ−

3 + 3
”

ϑ2
− 18

“

5 σ−

3 + 3
”

ϑ

27
√

ϑ (ϑ − 1) + 27 (ϑ − 1)

∆a

a

−

√

ϑ

„

2
“

233 σ−

3 − 300
”

ϑ6 +
“

1279 σ−

3 − 5310
”

ϑ5 +
“

5400 − 2543 σ−

3

”

ϑ4 + 6
“

677 σ−

3 + 1242
”

ϑ3 + 36
“

109 − 297 σ−

3

”

ϑ2 + 729
“

2 − 5 σ−

3

”

ϑ − 1215 σ−

3

«

486
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) + ϑ3

− 3 ϑ2 + 3 ϑ − 1
”

„

∆a

a

«2

−

4
“

601 σ−

3 − 150
”

ϑ6 + 2
“

3521 σ−

3 − 2655
”

ϑ5 + 8
“

225 − 3814 σ−

3

”

ϑ4 + 36
“

655 σ−

3 + 207
”

ϑ3 + 108
“

53 σ−

3 + 36
”

ϑ2 + 162
“

9 σ−

3 + 25
”

ϑ

486
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) + ϑ3

− 3 ϑ2 + 3 ϑ − 1
”

„

∆a

a

«2

ϑ
+ = ϑ −

√

ϑ

„

“

77 σ−

3 − 210
”

ϑ3 +
“

−13 σ−

3 − 36
”

ϑ2 + 27
“

σ−

3 + 2
”

ϑ − 27 σ−

3

«

2 +
“

217 σ−

3 − 105
”

ϑ3
− 4

“

147 σ−

3 + 9
”

ϑ2 + 18
“

5 σ−

3 + 3
”

ϑ

54
√

ϑ (ϑ − 1) + 54 (ϑ − 1)

„

∆a

a

«2

ϑ
+ = ϑ +

−2
“

σ−

3 + 6
”

ϑ3 +
√

ϑ
“

10 σ−

3 ϑ2 + 27 σ−

3 ϑ + 27 σ−

3

”

+ 3
“

σ−

3 − 18
”

ϑ2
− 9

“

σ−

3 + 6
”

ϑ

3 (4 ϑ2 + 12 ϑ + 9)

∆a

a

−

−48
“

σ−

3 + 5
”

ϑ5 +
√

ϑ
“

144 σ−

3 ϑ4 + 780 σ−

3 ϑ3 + 2214 σ−

3 ϑ2 + 1944 σ−

3 ϑ + 1215 σ−

3

”

48 (2 ϑ4 + 12 ϑ3 + 27 ϑ2 + 27 ϑ + 12)

„

∆a

a

«2

−

−4
“

91 σ−

3 + 342
”

ϑ4
− 54

“

11 σ−

3 + 56
”

ϑ3
− 216

“

2 σ−

3 + 15
”

ϑ2
− 81

“

5 σ−

3 + 18
”

ϑ

48 (2 ϑ4 + 12 ϑ3 + 27 ϑ2 + 27 ϑ + 12)

„

∆a

a

«2

Above are the values of ϑ+ in the cases (S), (P), (L) and (p).



References

[1] M. K. Banda, M. Herty, and A. Klar. Coupling conditions for gas networks
governed by the isothermal Euler equations. Netw. Heterog. Media, 1(2):295–
314 (electronic), 2006.

[2] M. K. Banda, M. Herty, and A. Klar. Gas flow in pipeline networks. Netw.
Heterog. Media, 1(1):41–56 (electronic), 2006.

[3] A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press,
Oxford, 2000. The one-dimensional Cauchy problem.

[4] R. M. Colombo and M. Garavello. On the p-system at a junction. In Control
methods in PDE-dynamical systems, volume 426 of Contemp. Math., pages
193–217. Amer. Math. Soc., Providence, RI, 2007.

[5] R. M. Colombo and M. Garavello. On the 1D modeling of fluid flowing through
a junction. Preprint, 2009.

[6] R. M. Colombo and G. Guerra. On general balance laws with boundary.
Preprint, http://arxiv.org/abs/0810.5246, 2008.

[7] R. M. Colombo, G. Guerra, M. Herty, and V. Sachers. Modeling and optimal
control of networks of pipes and canals. SIAM J. Math. Anal., 48(3):2032–
2050, 2009.

[8] R. M. Colombo, M. Herty, and V. Sachers. On 2 × 2 conservation laws at a
junction. SIAM J. Math. Anal., 40(2):605–622, 2008.

[9] R. M. Colombo and F. Marcellini. Smooth and discontinuous junctions in the
p-system. J. Math. Anal. Appl., pages 440–456, 2010.

[10] R. M. Colombo and C. Mauri. Euler system at a junction. Journal of Hyper-
bolic Differential Equations, 5(3):547–568, 2007.

[11] M. Garavello and B. Piccoli. Traffic flow on networks, volume 1 of AIMS
Series on Applied Mathematics. American Institute of Mathematical Sciences
(AIMS), Springfield, MO, 2006. Conservation laws models.

[12] P. Goatin and P. G. LeFloch. The Riemann problem for a class of resonant hy-
perbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire,
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