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Abstract

We extend the classical LWR traffic model allowing different maximal
speeds to different vehicles. Then, we add a uniform bound on the
traffic speed. The result, presented in this paper, is a new macro-
scopic model displaying 2 phases, based on a non-smooth 2× 2 system
of conservation laws. This model is compared with other models of
the same type in the current literature, as well as with a kinetic one.
Moreover, we establish a rigorous connection between a microscopic
Follow-The-Leader model based on ordinary differential equations and
this macroscopic continuum model.
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1 Introduction

Several observations of traffic flow result in underlining two different be-
haviors, sometimes called phases, see [10, 14, 16, 26]. At low density and
high speed, the flow appears to be reasonably described by a function of the
(mean) traffic density. On the contrary, at high density and low speed, flow
is not a single valued function of the density. This paper presents a model
providing an explanation to this phenomenon, its two key features being:

1. At a given density, different drivers may choose different velocities;

2. There exists a uniform bound on the speed.

By “bound”, here we do not necessarily mean an official speed limit. On
the contrary, we assume that different drivers may have different speeds at
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Figure 1: Experimental fundamental diagrams. Left, [28, Figure 1] and,
right, [26, Figure 1], (see also [23]).

the same traffic density. Nevertheless, there exists a speed Vmax that no
driver exceeds. As a result from this postulate, we obtain a fundamental
diagram very similar to those usually observed, see Figure 1 and Figure 2,
left. Besides, the evolution prescribed by the model so obtained is reasonable
and coherent with that of other traffic models in the literature. In particular,
we verify that the minimal requirements stated in [4, 13] are satisfied.

Recall the classical Lighthill-Whitham [32] and Richards [34] (LWR)
model

∂tρ+ ∂x (ρ V ) = 0 (1.1)

for the traffic density ρ. Assume that the speed V is not the same for all
drivers. More precisely, different drivers differ in their maximal speed w,
so that V = wψ(ρ), with w ∈ [w̌, ŵ] , w̌ > 0, being transported along the
road at the mean traffic speed V . We identify the different behaviors of the
different drivers by means of their maximal speed, see also [7, 8]. One is
thus lead to study the equations

{

∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = wψ(ρ) . (1.2)

Here, the role of the second equation is to let the maximal velocity w be
propagated with the traffic speed. Indeed, w is a specific feature of every
single driver, in other words is a Lagrangian marker. Therefore this model
falls into the class of models introduced in [4], and later on extended in [30],
see also [6, formula (1.2)].

Introducing a uniform bound Vmax on the speed, we obtain the model

{

∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = min
{

Vmax, w ψ(ρ)
}

. (1.3)

We choose to reformulate the above quasilinear system in conservation form,
similarly to [27, formula (1)], [5, formula (2.2)], [30, formula (1)], see also [36],
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as follows:
{

∂tρ+ ∂x
(

ρ v(ρ, η)
)

= 0
∂tη + ∂x

(

η v(ρ, η)
)

= 0
with v(ρ, η) = min

{

Vmax,
η

ρ
ψ(ρ)

}

(1.4)

see the Remark 5.3 for further comments on this choice. This model consists
of a 2× 2 system of conservation laws with a C0,1 but not C1 flow. Note in
fact that η/ρ = w ∈ [w̌, ŵ]. A 2× 2 system of conservation laws with a flow
having a similar C0,1 regularity is presented in [21] and studied in [1].

From the traffic point of view, we remark that, under mild reasonable
assumptions on the function ψ, the flow in (1.4) may vanish if and only
if ρ = 0, i.e the road is empty, or ρ = R, i.e. the road is fully congested.
It is also worth noting the agreement between experimental fundamental
diagrams often found in the literature and the one related to (1.4), see
Figure 2, left.

From the analytical point of view, we can extend the present treatment to
the more general case of a maximal speed Vmax that depends on ρ, i.e. Vmax =
Vmax(ρ). However, we prefer to highlight the main features of the model (1.4)
in its simplest analytical framework.

As we already said, the model studied here, inspired from [10], falls into
the class of “Aw-Rascle” models. So we could use the approach and the
theoretical results of [3], which should apply here with minor modifications.

However, our approach is different: here, contrarily to the above ref-
erence, we establish directly a connection between the Follow-The-Leader
model in Section 4 and the macroscopic system (1.4), without viewing both
systems as issued from a same fully discrete system (Godunov scheme) with
different limits, and without passing in Lagrangian coordinates. For related
works, including vacuum, see also [2, 17, 18].

The present paper is arranged in the following way: in the next section we
study the Riemann Problem for (1.4) and present the qualitative properties
of this model from the point of view of traffic. In Section 3 we compare
the present model with others in the current literature and in Section 4
we establish the connection with a microscopic Follow-The-Leader model
based on ordinary differential equations. We also show rigorously that the
macroscopic model (1.4) can be viewed as the limit of the microscopic model
as the number of vehicles increases to infinity. All proofs are gathered in
the last section.

2 Notation and Main Results

We assume throughout the following hypotheses:

a. R, w̌, ŵ, Vmax are positive constants, with w̌ < ŵ.
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b. ψ ∈ C2
(

[0, R]; [0, 1]
)

is such that

ψ(0) = 1, ψ(R) = 0,

ψ′(ρ) ≤ 0,
d2

dρ2

(

ρψ(ρ)
)

≤ 0 for all ρ ∈ [0, R] .

c. w̌ > Vmax.

Here, R is the maximal possible density, typically R = 1 if ρ is normalized
as in Section 4; w̌, respectively ŵ, is the minimum, respectively maximum,
of the maximal speeds of each vehicle; Vmax is the overall uniform upper
bound on the traffic speed. At b., the first three assumptions on Ψ are
the classical conditions usually assumed on speed laws, while the fourth one
is technically necessary in the proof of Theorem 2.1. The latter condition
means that all drivers do feel the presence of the speed limit.

Moreover, we introduce the notation

F =
{

(ρ,w) ∈ [0, R] × [w̌, ŵ]: v(ρ, ρw) = Vmax

}

(2.1)

C =
{

(ρ,w) ∈ [0, R] × [w̌, ŵ]: v(ρ, ρw) = wψ(ρ)
}

(2.2)

to denote the Free and the Congested phases. Note that F and C are closed
sets and F ∩ C 6= ∅. Note also that F is 1–dimensional in the (ρ, ρv) plane

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

ŵ

w̌

0

η

ρR

F
C

Figure 2: The phases F and C in the coordinates, from left to right, (ρ, ρv),
(ρ,w) and (ρ, η).

of the fundamental diagram, while it is 2–dimensional in the (ρ,w) and
(ρ, η) coordinates, see Figure 2. See also Figure 3 to have a vision in three
dimensions.

Let ρ∗ be the maximum of the points of maximum of the flow, i.e. ρ∗ =

max
{

ρ ∈ [0, R]: ρψ(ρ) = maxr∈[0,R] r ψ(r)
}

. Then, the condition

ŵψ (ρ∗) ≥ Vmax (2.3)

is a further reasonable assumption. Indeed, it means that the maximum flow
is attained in the free phase, coherently with the capacity drop phenomenon,
see for instance [22]. However, (2.3) is not necessary in the following results.

Our next goal is to study the Riemann Problem for (1.4).
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Figure 3: The phases F and C in the coordinates (ρ, ρv, w). Note that F
is contained in a plane. This figure shows an example of Riemann Problem
when ul = (ρl, ρlvl, wl) ∈ F and ur = (ρr, ρrvr, wr) ∈ C.

Theorem 2.1 Under the assumptions a., b. and c., for all states (ρl, ηl),
(ρr, ηr) ∈ F ∪ C, the Riemann problem consisting of (1.4) with initial data

ρ(0, x) =

{

ρl if x < 0
ρr if x > 0

η(0, x) =

{

ηl if x < 0
ηr if x > 0

(2.4)

admits a unique self similar weak solution (ρ, η) = (ρ, η)(t, x) constructed as
follows:

(1) If (ρl, ηl), (ρr, ηr) ∈ F , then

(ρ, η)(t, x) =

{

(ρl, ηl) if x < Vmaxt
(ρr, ηr) if x > Vmaxt .

(2.5)

(2) If (ρl, ηl), (ρr, ηr) ∈ C, then (ρ, η) consists of a 1–Lax wave (shock or
rarefaction) between (ρl, ηl) and (ρm, ηm), followed by a 2–contact dis-
continuity between (ρm, ηm) and (ρr, ηr). The middle state (ρm, ηm) is
in C and is uniquely characterized by the two conditions ηm/ρm = ηl/ρl

and v(ρm, ηm) = v(ρr, ηr).

(3) If (ρl, ηl) ∈ C and (ρr, ηr) ∈ F , then the solution (ρ, η) consists of a
rarefaction wave separating (ρr, ηr) from a state (ρm, ηm) and by a linear
wave separating (ρm, ηm) from (ρl, ηl). The middle state (ρm, ηm) is in
F∩C and is uniquely characterized by the two conditions ηm/ρm = ηr/ρr

and v(ρm, ηm) = V .
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(4) If (ρl, ηl) ∈ F and (ρr, ηr) ∈ C, then (ρ, η) consists of a shock be-
tween (ρl, ηl) and (ρm, ηm), followed by a contact discontinuity between
(ρm, ηm) and (ρr, ηr). The middle state (ρm, ηm) is in C and is uniquely
characterized by the two conditions ηm/ρm = ηl/ρl and v(ρm, ηm) =
v(ρr, ηr).

(If d2

dρ2

(

ρψ(ρ)
)

vanishes, then the words “shock” and “rarefaction” above

have to be understood as “contact discontinuities”).
We now pass from the solution to single Riemann problems to the prop-

erties of the Riemann Solver, i.e. of the map R: (F ∪ C)2 → BV(R;C ∪ F )

such that R
(

(ρl, ηl), (ρr, ηr)
)

is the solution to (1.4)–(2.4) computed at

time, say, t = 1.
To this aim, recall the following definition, see [10]:

Definition 2.2 A Riemann Solver R is consistent if the following two con-
ditions hold for all (ρl, ηl), (ρm, ηm), (ρr, ηr) ∈ F ∪ C, and x̄ ∈ R:

(C1) If R
(

(ρl, ηl), (ρm, ηm)
)

(x̄) = (ρm, ηm) and R
(

(ρm, ηm), (ρr, ηr)
)

(x̄)

= (ρm, ηm), then

R
(

(ρl, ηl), (ρr, ηr)
)

=







R
(

(ρl, ηl), (ρm, ηm)
)

,if x < x̄ ,

R
(

(ρm, ηm), (ρr, ηr)
)

,if x ≥ x̄ ,

(C2) If R
(

(ρl, ηl), (ρr, ηr)
)

(x̄) = (ρm, ηm), then

R
(

(ρl, ηl), (ρm, ηm)
)

=







R
(

(ρl, ηl), (ρr, ηr)
)

, if x ≤ x̄ ,

(ρm, ηm) , if x > x̄ ,

R
(

(ρm, ηm), (ρr, ηr)
)

=







(ρm, ηm) , if x < x̄ ,

R
(

(ρl, ηl), (ρr, ηr)
)

, if x ≥ x̄ .

Essentially, (C1) states that whenever two solutions to two Riemann prob-
lems can be placed side by side, then their juxtaposition is again a solution
to a Riemann problem. Condition (C2) is the vice-versa.

The next result characterizes the Riemann Solver defined above.

Proposition 2.3 Let the assumptions a., b. and c. hold. The Riemann
Solver R defined in Theorem 2.1 enjoys the following three conditions

1. It is consistent in the sense of Definition 2.2.
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(ρm,ηm)

(ρl,ηl)

Figure 4: The conditions (C1) and (C2).

2. If (ρl, ηl), (ρr, ηr) ∈ F , then R
(

(ρl, ηl), (ρr, ηr)
)

is the standard solution

to the linear system

{

∂tρ+ ∂x (ρ Vmax) = 0
∂tη + ∂x (ηVmax) = 0,

(2.6)

3. If (ρl, ηl) ∈ F ∪ C and (ρr, ηr) ∈ C, then R
(

(ρl, ηl), (ρr, ηr)
)

is the

standard Lax solution to






∂tρ+ ∂x
(

η ψ(ρ)
)

= 0

∂tη + ∂x

(

η2

ρ
ψ(ρ)

)

= 0 .
(2.7)

Moreover, the conditions (C1), 2. and 3. uniquely characterize the Rie-
mann Solver R.

The above properties are of use, for instance, in using model (1.4) on traffic
networks, according to the techniques described in [15].

The next result presents the relevant qualitative properties of the Rie-
mann Solver defined in Theorem 2.1 from the point of view of traffic.

Proposition 2.4 Let the assumptions a., b. and c. hold. Then, the Rie-
mann Solver R enjoys the following properties:

1. If the initial datum attains values in F , C, or F ∪C then, respectively,
the solution attains values in F , C, or F ∪ C.

2. Traffic density and speed are uniformly bounded.

3. Traffic speed vanishes if and only if traffic density is maximal.

4. No wave in the solution to (1.4)–(2.4) may travel faster than traffic
speed, i.e. information is carried by vehicles.
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3 Comparison with Other Macroscopic Models

This section is devoted to compare the present model (1.4) with a sample
of models from the literature. In particular, we consider differences in the
number of free parameters and functions, in the fundamental diagram and
in the qualitative structures of the solutions. Recall that the evolution
described by model (1.4) and the corresponding invariant domain depends on
the function ψ and on the parameters Vmax, R, w̌ and ŵ. The fundamental
diagram of (1.4) is in Figure 2, left.

3.1 The LWR Model

In the LWR model (1.1), a suitable speed law has to be selected, analogous
to the choice of ψ in (1.4). Besides, in (1.4) we also have to set Vmax, R and
the two geometric positive parameters w̌ and ŵ.

The fundamental diagram of (1.4) seems to better agree with experi-
mental data than that of (1.1), shown in Figure 5, left. Indeed, compare

ρ v

0 R
ρ

ρ v

0 R
ρ

ρ v

0 R
ρ

F
C

Figure 5: Fundamental diagrams, from left to right, of the (LWR)
model (1.1), of the (AR) model (3.1) and of the 2-phase model (3.2).

Figure 2, left with the measurements in Figure 1.
As long as the data are in F , the solutions to (1.4) are essentially the same

as those of (1.1). In the congested phase, the solutions to (1.4) obviously
present a richer structure, for they generically contain 2 waves instead of 1.
In particular, the (LWR) model (1.1) may not describe the ”homogeneous-
in-speed” solutions, i.e. a type of synchronized flow, see [26, Section 2.2]
and [23, 37], which is described by the 2-waves in (1.4).

Finally, note that if in (1.4) the two geometric parameters w̌ and ŵ coin-
cide, then we recover the LWR (1.1) model with V (ρ) = min{Vmax, ŵ ψ(ρ)}.

3.2 The Aw-Rascle Model

Consider now the Aw–Rascle (AR) model

{

∂tρ+ ∂x
[

ρ v(ρ, y)
]

= 0
∂ty + ∂x

[

y v(ρ, y)
]

= 0
v(ρ, y) =

y

ρ
− p(ρ) (3.1)

8



introduced in [4] and successively refined in several papers, see for instan-
ce [3, 6, 16, 18, 19, 20, 24, 33, 35] and the references therein.

Note that w in (1.4) plays a role analogous to that of v + p (ρ) in (3.1).
In the (AR) model, R and the “pressure” function need to be selected,

similarly to R and ψ in (1.4). No other parameter appears in (3.1), but
the definition of an invariant domain requires two parameters, with a role
similar to that of w̌ and ŵ. Indeed, an invariant domain for (3.1) is

{

(ρ, y): ρ ∈ [0, R] and y ∈
[

ρ
(

v− + p(ρ)
)

, ρ
(

v− + p(ρ)
)

]

}

see Figure 5, center, and depends on the speeds v− and v+. More recent
versions of (3.1) contain also a suitable relaxation source term in the right
hand side of the second equation; in this case one more arbitrary function
needs to be selected. The original (AR) model does not distinguish between
a free and a congested phase. However, it was extended to describe two
different phases in [16]. Further comments on (3.1) are found in [29].

Concerning the analytical properties of the solutions, the Riemann solver
for the (AR) model suffers lack of continuous dependence at vacuum, see [4,
Section 4]. However, existence of solutions attaining also the vacuum state
was proved in [18], while the 2-phase construction in [16] also displays con-
tinuous dependence.

A qualitative difference between the (AR) model and the present one is
property 3. in Proposition 2.4. Indeed, solutions to (3.1) may well have zero
speed while being at a density strictly lower than the maximal one.

3.3 The Hyperbolic 2-Phase Model

Recall the model presented in [10], with a notation similar to the present
one:

Free flow: (ρ, q) ∈ F, Congested flow: (ρ, q) ∈ C,

∂tρ+ ∂x
[

ρ · vF (ρ)
]

= 0,

{

∂tρ+ ∂x
[

ρ · vC(ρ, q)
]

= 0
∂tq + ∂x

[

(q − q∗) · vC(ρ, q)
]

= 0

vF (ρ) =
(

1 − ρ
R

)

· V vC(ρ, q) =
(

1 − ρ
R

)

· q
ρ

(3.2)

the phases being defined as

F = {(ρ, q) ∈ [0, R] × R
+: vf (ρ) ≥ Vf , q = ρ · V },

C =

{

(ρ, q) ∈ [0, R] × R
+: vc(ρ.q) ≤ Vc,

q−q∗
ρ

∈
[

Q1−q∗
R

, Q2−q∗
R

]

}

.

In (3.2) no function can be selected, on the other hand the evolution depends
on the parameters V , R and q∗ while the invariant domains F and C depend
on Vf , Vc, Q1 and Q2. A geometric construction of the solutions to (3.2) in
the congested phase is in [31].

9



The main difference between fundamental diagrams of (3.2), see Fig-
ure 5, right, and that of (1.4) is that (3.2) requires the two phases to be
disconnected : there is a gap between the free and the congested phase.
This restriction is necessary for the well posedness of the Riemann problem
for (3.2) and can be hardly justified on the basis of experimental data. More
recently, the global well-posedness of the model (3.2) was proved in [11].

Note that in both models, as well as in that presented in [16], the free
phase is one dimensional, while the congested phase is bidimensional.

The model (3.2) allows for the description of wide jams, i.e. of persistent
waves in the congested phase moving at a speed different from that of traffic.
Here, as long as d2

dρ2

(

ρψ(ρ)
)

< 0, persistent phenomena can be described
only through waves of the second family, which move at the mean traffic
speed. We refer to [29] for further discussions on (3.2) and comparisons
with other macroscopic models.

3.4 A Kinetic Model

Recall, with a notation adapted to the present case, the kinetic model in-
troduced in [8, Section 1]:

∂tr(t, x;w) + ∂x



w r(t, x;w)ψ

(

∫ ŵ

w̌

r(t, x;w′) dw′

)



 = 0 . (3.3)

The function ψ and the speed w play the same role as here. The unknown
r = r(t, x;w) is the probability density of vehicles having maximal speed w
that at time t are at point x.

In (3.3) there is one function to be specified, ψ, as in (1.4). The param-
eters are R (which is normalized to 1 in [8]), w̌ and ŵ, similarly to (1.4).
Since no limit speed is there defined, no parameter in (3.3) has the same
role as here Vmax.

Being of a kinetic nature, there is no real equivalent to a fundamental
diagram for (3.3).

From the analytical point of view, the existence of solutions to (3.3)
has not been proved, yet. The main result in [8] only states that (3.3) can
be rigorously obtained as the limit of systems of n × n conservation laws
describing n populations of vehicles, each characterized by their maximal
speed.

Let the measure r solve (3.3) and be such that for suitable functions ρ
and w

r(t, x; ·) = ρ(t, x) δw(t,x) (3.4)

where δ is the usual Dirac measure. Then, formally, (ρ,w) solves (1.4).
Indeed, for the first equation simply substitute (3.4) in (3.3) and integrate;
for the second equation substitute (3.4) in (3.3), multiply by w and integrate
over [w̌, ŵ].
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Remark that (3.4) suggests a further interpretation of the quantity ρ
in (1.4). Indeed, in the present model, at (t, x) vehicles of only one species
are present, namely those with maximal speed w(t, x).

4 Connections with a Follow-The-Leader Model

Within the framework of (1.3), a single driver starting from p̃ at time t = 0
follows the particle path p = p(t) that solves the Cauchy problem







ṗ = v
(

ρ
(

t, p(t)
)

, w
(

(t, p(t)
)

)

p(0) = p̃
v(ρ,w) = min

{

Vmax, w ψ(ρ)
}

, (4.1)

refer to [12] for the well posedness of the particle path for the LWR model
(see also [3]). Recall now that w is a specific feature of every single driver,
i.e. w

(

t, p(t)
)

= w(0, p̃) for all p̃. On the other hand, from a microscopic
point of view, if n drivers are distributed along the road, then ρ is approxi-
mated by l/(pi+1 − pi), where l is a standard length of a car.

We fix L > 0 and assume that n drivers are distributed along [−L,L].
Then, the natural microscopic counterpart to (1.4) is therefore the Follow-
The-Leader (FTL) model defined by the Cauchy problem















ṗi = v
(

l
pi+1−pi

, wi

)

i = 1, . . . , n

ṗn+1 = Vmax

pi(0) = p̃i i = 1, . . . , n+ 1

(4.2)

where p̃1 = −L and p̃n+1 = L− l. Proposition 4.1 shows that (4.2) admits
a unique global solution defined for every t ≥ 0 and such that pi+1 − pi ≥ l
for all t ≥ 0.

Proposition 4.1 Let a., b. and c. hold. Fix L > 0. For any n ∈ N,
with n ≥ 2, choose initial data p̃ni for i = 1, . . . , n satisfying p̃ni+1 − p̃ni ≥ l.
Then, the Cauchy problem (4.2) admits a unique solution pni = pni (t), for
i = 1, . . . , n + 1, defined for all t ≥ 0 and satisfying pni+1(t) − pni (t) ≥ l for
all t ≥ 0 and for i = 1, . . . , n .

The proof is postponed to Section 5.
Our next aim is to rigorously show that in the limit n → +∞ with

n l = constant > 0, the microscopic model in (4.2) yields the macroscopic
one in (1.4). Given the position pi of every single vehicle and its maximal
speed wi, for i = 1, . . . , n+ 1, the macroscopic variables ρ,w are given by

ρ(x) =
n
∑

i=1

l

pni+1 − pni
χ

[pn

i
,pn

i+1
[
(x) and w(x) =

n
∑

i=1

wni χ[pn

i
,pn

i+1
[
(x) .
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Note that necessarily pni+1 − pni ≥ l.
On the contrary, given (ρ,w) ∈ (L1∩BV)(R; [0, 1]× [w̌, ŵ]), with supp ρ,

suppw ⊆ [−L,L], we reconstruct a microscopic description defining l =
(

∫

R
ρ(x) dx

)

/n and

pnn+1 = L− l

pni = max

{

p ∈ [−L,L]:

∫ pi+1

p

ρ(x) dx = l

}

for i = 1, . . . , n

wni = w(pni +) for i = 1, . . . , n+ 1 .

Note that
∫

R
ρ(x) dx = nl > 0. Now we are able to rigorously show that, as

the number of vehicles increases to infinity, the microscopic model in (4.2)
yields the macroscopic one in (1.4).

Proposition 4.2 Let a., b. and c. hold. Fix T > 0. Choose (ρ̃, w̃) ∈
(L1 ∩ BV)(R; [0, 1] × [w̌, ŵ]) with supp ρ̃, supp w̃ ⊆ [−L,L]. Construct the

initial data for the microscopic model setting l =
(

∫

R
ρ̃(x) dx

)

/n and

p̃nn+1 = L− l

p̃ni = max

{

p ∈ [−L,L]:

∫ p̃i+1

p

ρ̃(x) dx = l

}

for i = 1, . . . , n

w̃ni = w̃(pni +) for i = 1, . . . , n+ 1 .

Let pni (t), for i = 1, . . . , n, be the corresponding solution to (4.2). Define

ρn(t, x) =
n
∑

i=1

l

pni+1(t) − pni (t)
χ

[pn

i
(t),pn

i+1
(t)[

(x) (4.3)

wn(t, x) =
n
∑

i=1

w̃ni χ[pn

i
(t),pn

i+1
(t)[

(x) . (4.4)

If there exists a pair (ρ,w) ∈ L∞
(

[0, T ];L1(R; [0, 1] × [w̌, ŵ]
)

such that

lim
n→+∞

(ρn, wn)(t, x) = (ρ,w)(t, x) p.a.e.

then, the pair (ρ, ρw) is a weak solution to (1.4) with initial datum (ρ̃, ρ̃w̃).

The proof is postponed to Section 5.

5 Technical Details

We first prove an elementary consequence of our assumption b.
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Lemma 5.1 Let ψ satisfy b. Then,

∃ ρ̄ ∈ [0, R[ such that

{

ψ is constant on [0, ρ̄],
ψ is strictly decreasing on [ρ̄, R].

Proof. Call q(ρ) = ρψ(ρ). If ψ is strictly monotone, then ρ̄ = 0 and the
proof is completed. Otherwise, assume that ψ(ρ1) = ψ(ρ2) = c for suitable
ρ1, ρ2 ∈ ]0, R] and ρ1 6= ρ2. Then, by b., for all ρ ∈ [ρ1, ρ2] we have ψ(ρ) = c
and q(ρ) = cρ. If ψ(0) = c, then the proof is completed. Otherwise, note
that q′(0) = ψ(0) > c contradicts the convexity of q. �

Corollary 5.2 Let ψ satisfy b. and c. Then,

ρ̄ < min
{

ρ ∈ [0, R]:∃w ∈ [w̌, ŵ] such that (ρ,w) ∈ C
}

.

The proof is immediate and, hence, omitted.
In the sequel, for the basic definitions concerning the standard theory of

conservation laws we refer to [9].

Proof of Theorem 2.1. We consider different cases, depending on the phase
of the data (2.4).

1. (ρl, ηl), (ρr, ηr) ∈ F .
In this case, (1.4) reduces to the degenerate linear system (2.6) so that

the problem (1.4)–(2.4) is solved by (2.5). Remark, for later use, that the
characteristic speed is λF = Vmax.

2. (ρl, ηl), (ρr, ηr) ∈ C.
Now, v(ρ, η) = η ψ(ρ)/ρ. We show that C is invariant with respect to

the 2 × 2 system of conservation laws (2.7). To this aim, we compute the
eigenvalues, right eigenvectors and the Lax curves in C:

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η) λ2(ρ, η) = v(ρ, η)

r1(ρ, η) =

[

−ρ
−η

]

r2(ρ, η) =





1

η
(

1
ρ
− ψ′(ρ)

ψ(ρ)

)





∇λ1 · r1 = −
d2

dρ2

[

ρψ(ρ)
]

∇λ2 · r2 = 0

L1(ρ; ρo, ηo) = ηo
ρ

ρo
L2(ρ; ρo, ηo) =

ρ v(ρo, ηo)

ψ(ρ)
, ρo < R.

When ρo = R, the 2–Lax curve through (ρo, ηo) is the segment ρ = R,
η ∈ [Rw̌,Rŵ].

Shock and rarefaction curves of the first characteristic family coincide
by [5, Lemma 2.1], see also [9, Problem 1, Chapter 5]. The second charac-
teristic field is linearly degenerate. Hence, (2.7) is a Temple system and C is
invariant, since its boundary consists of Lax curves, see [25, Theorem 3.2].
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Thus, the solution to (1.4) is as described in (2) and attains values in C.

3. (ρl, ηl) ∈ C, (ρr, ηr) ∈ F .
Let ρm satisfy ψ(ρm) = Vmaxρ

r/ηr. Note that such ρm exists in ]0, 1[
by b and c., it is unique by Corollary 5.2. Define ηm = (ρm/ρr)ηr and note
that (ρl, ηl), (ρm, ηm) are connected by a 1–rarefaction wave of (2.7) having
maximal speed of propagation λ1(ρ

m, ηm) < Vmax. Hence, a linear wave,
solution to (2.6), can be juxtaposed connecting (ρm, ηm) to (ρl, ηl) and the
solution to (1.4) is as described at (3).

4. (ρl, ηl) ∈ F , (ρr, ηr) ∈ C (see Figure 3).
Note that system (2.7) can be considered on the whole of F ∪ C. Also

this set is invariant for (2.7), by [25, Theorem 3.2]. Then, in this case, we
let (ρ, η) be the standard Lax solution to (2.7), as described at (4). �

Proof of Proposition 2.3. We consider different cases depending on the phase
of the data (2.4).

If (ρl, ηl), (ρr, ηr) ∈ F , then R
(

(ρl, ηl), (ρr, ηr)
)

coincides with the Rie-

mann solver of a linear system, which satisfies (C1). Condition (C2) is
immediate since no nontrivial middle state is available.

Similarly, if (ρl, ηl), (ρr, ηr) ∈ C, then R
(

(ρl, ηl), (ρr, ηr)
)

coincides with

the standard Riemann solver of a 2 × 2 system, which is consistent. The
consistency of R then follows by the invariance of C, by 2. in the proof of
Theorem 2.1.

By the same argument, also the case (ρl, ηl) ∈ F and (ρr, ηr) ∈ C is
proved. Indeed, in (C2), note that the only possible nontrivial middles
states are in C.

Finally, if (ρl, ηl) ∈ C and (ρr, ηr) ∈ F , then R
(

(ρl, ηl), (ρr, ηr)
)

takes

values in F ∪C and is the juxtaposition of 2 consistent Riemann problems,
hence (C1) holds. Concerning (C2), note that the the only possible non-
trivial middles states are in C, and (C2) follows by the consistency of the
standard Riemann solver for (2.7).

Thus 1. is proved. Assertions 2. and 3. are immediate consequences of
the construction of Theorem 2.1.

Assume now that R satisfies 2 and 3. Then all Riemann problems with
data (ρl, ηl), (ρr, ηr) ∈ F , (ρl, ηl) ∈ F , (ρr, ηr) ∈ C and (ρl, ηl), (ρr, ηr) ∈ C
are uniquely solved. The solution to Riemann problems with (ρl, ηl) ∈ C
and (ρr, ηr) ∈ F is then uniquely constructed through (C1). �

Proof of Proposition 2.4. Consider the different statements separately.
1. The invariance of F , C and F ∪ C is shown in the proof of Theo-

rem 2.1.
2. By the invariance of F ∪ C, it is sufficient to observe that on the

compact set F ∪ C, the density ρ, respectively the speed v, is uniformly
bounded by R, respectively Vmax.
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3. It is immediate, see for instance Figure 2, left.
4. In phase C we have

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η) ≤ v(ρ, η) and λ2(ρ, η) ≤ v(ρ, η).

In the free phase the wave speed is Vmax = v(ρ, η). The only case left is that
of a phase boundary with left state in F and right state, say (ρr, ηr), in C.
Then, the speed Λ of the phase boundary clearly satisfies Λ ≤ λ1(ρ

r, ηr) <
v(ρr, ηr). �

Proof of Proposition 4.1. Note first that the functions ρ→ v(ρ,wi) in (4.2)
are uniformly bounded and Lipschitz continuous for i = 1, . . . , n. We extend
them to functions with the same properties and defined on [0,+∞[ setting

ui(ρ) =











Vmax if ρ < 0
v (ρ,wi) if ρ ∈ [0, 1]
0 if ρ > 1.

(5.1)

We also note that, for i = 1, . . . , n, the composite applications δ → ui(l/δ),
can be extended to uniformly bounded and Lipschitz continuous functions
on [0,+∞[. Now we consider the Cauchy problem



















ṗni = ui

(

l
pn

i+1
−pn

i

)

i = 1, . . . , n

ṗnn+1 = Vmax

pni (0) = p̃i i = 1, . . . , n+ 1 .

(5.2)

Note that p̃ni , for i = 1, . . . , n+ 1 are defined in Proposition 4.2 and satisfy
the condition p̃ni+1 − p̃ni ≥ l > 0, for every i = 1, . . . , n.

By the standard ODE theory, there exists a C1 solution pni defined as
long as pni+1 − pni > 0 for all i = 1, . . . , n. We now prove that in fact
pni+1(t) − pni (t) ≥ l for every t ≥ 0. To this aim we assume by contradiction
that there exist positive t̄ and t∗, with t̄ < t∗, such that pni+1(t̄) − pni (t̄) = l
and pni+1(t) − pni (t) < l for every t ∈

]

t̄, t∗
]

. Then,

pni (t) = pni (t̄) +

∫ t

t̄

ṗi(s) ds = pni (t̄) +

∫ t

t̄

ui

(

l

pni+1(s) − pni (s)

)

ds = pni (t̄).

This yields a contradiction, since for every t ∈
]

t̄, t∗
]

pni+1(t) − pni (t) ≥ pni+1(t̄) − pni (t̄) = l ,

completing the proof. �
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Proof of Proposition 4.2. Recall first the definition of weak solution to (1.4):
for all ϕ ∈ C∞

c
, setting v(ρ,w) = min{Vmax, w ψ(ρ)},

∫ T

0

∫

R





[

ρ
ρw

]

∂tϕ+

[

ρ v(ρ,w)
ρw v(ρ,w)

]

∂xϕ



dx dt+

∫

R

[

ρ̃
ρ̃ w̃

]

ϕ(0, x) dx = 0

and consider the two components separately.
Below, O(1) denotes a constant that uniformly bounds from above the

modulus of ϕ and all its derivatives up to the second order. Insert first (4.3)
in the above equality and obtain:

In :=

∫ T

0

∫

R

(

ρn∂tϕ+ ρn v(ρn, wn) ∂xϕ
)

dx dt+

∫

R

ρ̃ ϕ(0, x) dx

=
n
∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn

i+1
(t)

pn

i
(t)



∂tϕ+ v

(

l

pni+1(t) − pni (t)
, wni

)

∂xϕ



dt

+

∫

R

ρn(0, x)ϕ(0, x) dx+

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx

=
n
∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn

i+1
(t)

pn

i
(t)

(

∂tϕ(t, x) + ṗni (t)∂xϕ(t, x)
)

dx dt

+
n
∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x)dx+

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx.

Approximating ϕ (t, x) with ϕ
(

t, pni (t)
)

for every x in [pni (t), p
n
i+1(t)], we

obtain:

In =
n
∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn

i+1
(t)

pn

i
(t)

d

dt
ϕ
(

t, pni (t)
)

dx dt

+

n
∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn

i+1
(t)

pn

i
(t)

O(1)
(

pni+1(t) − pni (t)
)

dx dt

+
n
∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x) dx+

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx

= l
n
∑

i=1

∫ T

0

d

dt
ϕ
(

t, pni (t)
)

dt+ ∆x
n
∑

i=1

∫ T

0
O(1)

(

pni+1(t) − pni (t)
)

dx dt

+
n
∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x)dx+

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx

=
n
∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

[

ϕ(0, x) − ϕ(0, p̃ni )
]

dx

+O(1) l
(

pnn+1(T ) − pn1 (T )
)

+

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx
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= O(1) l (2L+ VmaxT ) +

∫

R

(

ρ̃− ρn(0, x)
)

ϕ(0, x) dx

and both terms in the latter quantity clearly vanish as n→ +∞.
The computations related to the other component are entirely similar,

since w is constant along any set of the form

{

(t, x) ∈ [0, T ] × R:x ∈
[

pni (t), p
n
i+1(t)

[

}

and the proof is completed. �

Remark 5.3 System (1.2) is not in conservation form. As far as smooth
solutions are concerned, it is equivalent to infinitely many 2 × 2 systems
of conservation laws. Indeed, introduce a strictly monotone function f ∈
C2
(

[w̌, ŵ]; ]0,+∞[
)

. Then, elementary computations show that, as long as
smooth solutions are concerned, system (1.2) is equivalent to

{

∂tρ+ ∂x
(

ρψ(ρ) g(η/ρ)
)

= 0
∂tη + ∂x

(

η ψ(ρ) g(η/ρ)
)

= 0
where

η = ρ f(w) and
g
(

f(w)
)

= w
(5.3)

Clearly, different choices of f yield different weak solutions to (5.3), but they
are all equivalent when written in terms of ρ and w.
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