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Abstract

This note is devoted to the explicit construction of a functional de-
fined on all pairs of L1 functions with small total variation, which is
equivalent to the L1 distance and non increasing along the trajectories
of a given system of conservation laws. The present definition of this
functional does not need any construction of approximate solutions.

2000 Mathematics Subject Classification: 35L65.

Key words and phrases: Hyperbolic Systems of Conservation Laws

1 Introduction

Let the smooth map f : Ω 7→ Rn define the strictly hyperbolic system of
conservation laws

∂tu+ ∂xf(u) = 0 (1.1)

where t > 0, x ∈ R and u ∈ Ω, with Ω ⊆ Rn being an open set.
Most functional theoretic methods fail to tackle these equations, es-

sentially due to the appearance of shock waves. Since 1965, the Glimm
functional [14] has been a major tool in any existence proof for (1.1) and
related equations. More recently, an analogous role in the proofs of contin-
uous dependence has been played by the stability functional Φ introduced
in [8, 21, 22], see also [4]. The functional Φ has been widely used to prove the
L1–Lipschitz dependence of solutions to (1.1) (and related problems) from
initial data having small total variation, see for example [1, 2, 11, 12, 16,
17]. Special cases comprising data with large total variation are considered
in [9, 15, 18, 19, 20]. Nevertheless, the use of Φ is hindered by the necessity
of introducing specific approximate solutions, namely the ones based either
on Glimm scheme [14] or on the wave front tracking algorithm [4, 13]. The
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present paper makes the use of the stability functional Φ independent from
any kind of approximate solutions.

Namely, we extend the stability functional to all L1 functions with suf-
ficiently small total variation. Moreover, we define it in terms of general
piecewise constant functions, making it completely independent from the
construction of any sort of approximate solutions. Furthermore, using the
present definition, we prove its lower semicontinuity.

Taking advantage of the machinery presented below, we also extend the
classical Glimm functionals [4, 14] to general L1 functions with small total
variation and prove their lower semicontinuity, recovering some of the results
in [3], but with a shorter proof.

As a byproduct, the present functional allows to simplify several parts
of the cited papers, where the presentation of the stability functional needs
to be preceded by the introduction of all the machinery related to Glimm’s
scheme or wave front tracking approximations, see for instance [10].

A further expression of the stability functional in terms of the wave
measures introduced in [4, § 10.1] is easily available and does not rely on
piecewise constant approximations at all. However, with such expression,
the proof of the lower semicontinuity is far less direct. Furthermore, any
application of this functional is based on approximating the functional eval-
uating it on piecewise constant functions and on the lower semicontinuity
to pass to the limit. The construction below allows this approach.

The next section introduces the basic notation. Section 3 is devoted to
the Glimm functional. The main result is presented in Section 4. The final
Appendix contains a technical proof added for the sake of completeness, but
not necessary for Theorem 4.1.

2 Notation

Our general reference for the basic definitions related to systems of conser-
vation laws is [4]. We assume throughout that 0 ∈ Ω and that the flux f
satisfies

(F) f ∈ C4(Ω;Rn) is strictly hyperbolic and each characteristic field is
either genuinely nonlinear or linearly degenerate.

Let λ1(u), . . . , λn(u) be the n real distinct eigenvalues of Df(u), indexed so
that λj(u) < λj+1(u) for all j and u. The j-th right eigenvector is denoted
rj(u).

Let σ 7→ Rj(σ)(u), respectively σ 7→ Sj(σ)(u), be the rarefaction curve,
respectively the shock curve, exiting u. If the j-th field is linearly degenerate,
then the parameter σ above is the arc-length. In the genuinely nonlinear
case, see [4, Definition 5.2], we choose σ so that

∂λj

∂σ

(
Rj(σ)(u)

)
= kj and

∂λj

∂σ

(
Sj(σ)(u)

)
= kj ,
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where k1, . . . , kn can be arbitrary positive fixed numbers. In [4] the choice
kj = 1 for all j = 1, . . . , n was used, while in [2] another choice was made to
cope with diagonal dominant sources. Introduce the j-Lax curve

σ 7→ ψj(σ)(u) =

{
Rj(σ)(u) if σ ≥ 0
Sj(σ)(u) if σ < 0

and for σ ≡ (σ1, . . . , σn), define the map

Ψ(σ)(u−) = ψn(σn) ◦ . . . ◦ ψ1(σ1)(u−) .

By [4, § 5.3], given any two states u−, u+ ∈ Ω sufficiently close to 0, there
exists a map E such that

(σ1, . . . , σn) = E(u−, u+) if and only if u+ = Ψ(σ)(u−) . (2.1)

Similarly, let the map S and the vector q be defined by

u+ = S(q)(u−) = Sn(qn) ◦ . . . ◦ S1(q1)(u−) (2.2)

as the gluing of the Rankine - Hugoniot curves.
Let u be piecewise constant with finitely many jumps and assume that

TV(u) is sufficiently small. Call I(u) the finite set of points where u has
a jump. Let σx,i be the strength of the i-th wave in the solution of the
Riemann problem for (1.1) with data u(x−) and u(x+), i.e. (σx,1, . . . , σx,n) =
E

(
u(x−), u(x+)

)
. Obviously if x 6∈ I(u) then σx,i = 0, for all i = 1, . . . , n.

As in [4, § 7.7], A(u) denotes the set of approaching waves in u:

A(u) =





(
(x, i), (y, j)

) ∈ (I(u)× {1, . . . , n})2 :
x < y and either i > j or i = j, the i-th field
is genuinely non linear, min

{
σx,i, σy,j

}
< 0





while the linear and the interaction potential, following [14] see also [4,
formula (7.99)], are

V(u) =
∑

x∈I(u)

n∑

i=1

∣∣σx,i

∣∣ and Q(u) =
∑

((x,i),(y,j))∈A(u)

∣∣σx,iσy,j

∣∣ .

Moreover, let
Υ(u) = V(u) + C0 ·Q(u) (2.3)

where C0 > 0 is the constant appearing in the functional of the wave–front
tracking algorithm, see [4, Proposition 7.1]. Recall that C0 depends only on
the flow f and the upper bound of the total variation of initial data.
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Remark 2.1 The maps defined on ΩN with values in R+ by

(u1, . . . , uN ) 7→ V
(∑N

α=1 uα χ[xα,xα+1[

)

(u1, . . . , uN ) 7→ Q
(∑N

α=1 uα χ[xα,xα+1[

)

for fixed x1 < . . . < xN+1, are Lipschitz continuous. Moreover, the Lipschitz
constant of the maps

uᾱ 7→ V




N∑

α=1

uα χ[xα,xα+1[


 uᾱ 7→ Q




N∑

α=1

uα χ[xα,xα+1[




is bounded uniformly in N , ᾱ and uα for α 6= ᾱ.

Finally we define

D∗δ =
{
v ∈ L1 (R,Ω) : v is piecewise constant and Υ(u) < δ

}
(2.4)

and
Dδ = cl

{D∗δ
}

where the closure is in the strong L1–topology. Observe that Dδ contains
all L1 functions with sufficiently small total variation.

For later use, for u ∈ Dδ and η > 0, introduce the set

Bη(u) =
{
v ∈ L1(R; Ω): v ∈ D∗δ and ‖v − u‖L1 < η .

}
. (2.5)

Note that, by the definition of Dδ, Bη(u) is not empty and if η1 < η2, then
Bη1(u) ⊆ Bη2(u). Recall the following fundamental result, proved in [7]:

Theorem 2.2 Let f satisfy (F). Then, there exists a positive δo such that
the equation (1.1) generates for all δ ∈ ]0, δo[ a Standard Riemann Semigroup
(SRS) S: [0,+∞[×Dδ 7→ Dδ, with Lipschitz constant L.

We refer to [4, Chapters 7 and 8] for the proof of the above result as well
as for the definition and further properties of the SRS.

3 The Glimm Functionals

Extend the Glimm functionals to all u ∈ Dδ as follows:

Q̄(u) = lim
η→0+

inf
v∈Bη(u)

Q(v) and Ῡ(u) = lim
η→0+

inf
v∈Bη(u)

Υ(v) . (3.1)

The maps η → infv∈Bη(v) Q(v) and η → infv∈Bη(v) Υ(v) are non increasing.
Thus the limits above exist and

Q̄(u) = sup
η>0

inf
v∈Bη(u)

Q(v) and Ῡ(u) = sup
η>0

inf
v∈Bη(u)

Υ(v) .
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We prove in Proposition 3.4 below that Q̄, respectively Ῡ, coincides with Q,
respectively Υ, when evaluated on piecewise constant functions. Moreover,
Q̄ also coincides with the functional defined in [6, formula (1.15)], see also [4,
formula (10.10)]. Preliminarily, we exploit the formulation (3.1) to prove the
lower semicontinuity of Q and Υ more directly than in [4, Theorem 10.1,
p.203–208], see also [3].

Proposition 3.1 The functionals Q̄ and Ῡ are lower semicontinuous with
respect to the L1 norm.

Proof. We prove the lower semicontinuity of Ῡ, the case of Q̄ is analogous.
Fix u in Dδ. Let uν be a sequence in Dδ converging to u in L1. Define

εν = ‖uν − u‖L1 + 1/ν. Fix vν ∈ Bεν (uν) so that

Υ(vν) ≤ inf
v∈Bεν (u)

Υ(v) + εν ≤ Ῡ(uν) + εν .

Since
‖vν − u‖L1 ≤ ‖vν − uν‖L1 + ‖uν − u‖L1 < 2εν ,

we deduce that vν ∈ B2εν (u) and

inf
v∈B2εν (u)

Υ(v) ≤ Υ(vν) ≤ Ῡ(uν) + εν ;

Ῡ(u) = lim
ν→+∞ inf

v∈B2εν (u)
Υ(v) ≤ lim inf

ν→+∞ Ῡ(uν)

completing the proof. ¤

The next proposition contains in essence the reason why the Glimm
functionals Q and Υ decrease. Compute them on a piecewise constant
function u and “remove” one (or more) of the values attained by u, then
the values of both Q and Υ decrease.

Let u =
∑

α∈I uα χ[xα,xα+1[ be a piecewise constant function, with uα ∈
Ω, x1 < x2 < . . . < xN+1 and I be a finite set of integers. Then, we say that
u1, u2, . . . , uN is the ordered sequence of the values attained by u and, with
a slight abuse of notation, we denote it by (uα:α ∈ I).
Proposition 3.2 Let u and ǔ be piecewise constant functions attaining val-
ues in Ω. Assume that the ordered sequence of the values attained by u
is (uα:α ∈ I), while the ordered sequence of the values attained by ǔ is
(uα:α ∈ J), with J ⊆ I. Then,

Q(ǔ) ≤ Q(u) and Υ(ǔ) ≤ Υ(u) .

Proof. Consider the case ]I = ]J + 1, see also [4, Step 1, Lemma 10.2].
Then, the above inequalities follow from the usual Glimm interaction esti-
mates [14], see Figure 1.

The general case follows recursively. ¤
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Figure 1: Proof of Proposition 3.2: uᾱ is attained by u and not by ǔ.

The next lemma is a particular case of [4, Theorem 10.1]. However, the
present construction allows to consider only the case of piecewise constant
functions, allowing a much simpler proof.

Lemma 3.3 The functionals Q and Υ, defined on D∗δ , are lower semicon-
tinuous with respect to the L1 norm.

Proof. We consider only Υ, the case of Q being similar.
Let uν be a sequence in D∗δ converging in L1 to u =

∑
α uαχ[xα,xα+1[ ∈ D∗δ

as ν → +∞. By possibly passing to a subsequence, we may assume that
Υ(uν) converges to lim infν→+∞Υ(uν) and that uν converges a.e. to u.
Therefore, for all α = 1, . . . , N , we can select points yα ∈ ]xα, xα+1[ so that
limν→+∞ uν(yα) = u(yα) = uα. Define

ǔν =
∑
α

uν(yα)χ[xα,xα+1[ .

By Proposition 3.2, Υ(ǔν) ≤ Υ(uν). The convergence uν(yα) → uα for all
α and Remark 2.1 allow to complete the proof. ¤

Proposition 3.4 Let u ∈ D∗δ . Then Q̄(u) = Q(u) and Ῡ(u) = Υ(u).

Proof. We consider only Υ, the case of Q being similar.
Since u ∈ D∗δ , we have that u ∈ Bη(u) for all η > 0 and Ῡ(u) ≤ Υ(u).
To prove the other inequality, recall that by the definition (3.1) of Ῡ,

there exists a sequence vν of piecewise constant functions in D∗δ such that
vν → u in L1 and Υ(vν) → Ῡ(u) as ν → +∞. By Lemma 3.3,

Υ(u) ≤ lim inf
ν→+∞ Υ(vν) ≤ Ῡ(u)

completing the proof. ¤
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Therefore, in the sequel we write Q for Q̄ and Υ for Ῡ.

For the sake of completeness, our next step consists in showing that
the functionals Q and Υ coincide with the analogous quantities in [4, Sec-
tion 7.7], see also [3, 5]. To this aim, we temporarily denote by VB and QB

the functionals defined therein, moreover we set ΥB = VB + C0 ·QB.

Proposition 3.5 QB = Q and ΥB = Υ.

Proof. We consider only Υ, the case of Q being similar.
Note first that if u is piecewise constant, then clearly ΥB(u) = Υ(u).

By the definition (3.1) of Υ, there exists a sequence vν of functions in D∗δ
converging to u in L1 and such that Υ(vν) → Υ(u) as ν → +∞. By the
lower semicontinuity of ΥB, see [4, Theorem 10.1], we obtain

ΥB(u) ≤ lim inf
ν→+∞ ΥB(vν) = lim inf

ν→+∞ Υ(vν) = lim
ν→+∞Υ(vν) = Υ(u) .

Analogously, following [4, Step 3, Theorem 10.1], we may take a sequence
vν of functions in D∗δ such that vν → u in L1, VB(vν) → VB(u) and
QB(vν) → QB(u) as ν → +∞. Hence, also ΥB(vν) → ΥB(u). Therefore,
along this particular sequence, we may repeat the estimates as above:

Υ(u) ≤ lim inf
ν→+∞ Υ(vν) = lim inf

ν→+∞ ΥB(vν) = lim
ν→+∞ΥB(vν) = ΥB(u)

where we applied also Proposition 3.1. ¤

4 The Stability Functional

If δ ∈ ]0, δo[, choose v, ṽ piecewise constant in D∗δ . Now, as a first step, we
slightly modify the construction of the stability functional, see [8, 21, 22]
and also [4, Section 8.1]. Namely, we construct a similar functional defined
on all piecewise constant functions and without any reference to both ε–
approximate front tracking solutions and non physical waves.

Define implicitly the function q(x) ≡ (
q1(x), . . . qn(x)

)
by

ṽ(x) = S
(
q(x)

) (
v(x)

)

with S as in (2.2). We now consider the functional

Φ (v, ṽ) =
n∑

i=1

∫ +∞

−∞

∣∣qi(x)
∣∣Wi(x) dx (4.1)

where the weights Wi are defined by

Wi(x) = 1 + κ1Ai(x) + κ1κ2

(
Q(v) + Q(ṽ)

)
, (4.2)
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the constants κ1 and κ2 being defined in [4, Chapter 8]. Denote by σx,i,
respectively σ̃x,i, the size of the i–wave in the solution of the Riemann Prob-
lem with data v(x−) and v(x+), respectively ṽ(x−) and ṽ(x+). If the i–th
characteristic field is linearly degenerate, then Ai is defined as

Ai(x) =
∑{∣∣σy,j

∣∣ +
∣∣σ̃y,j

∣∣: (y, j) such that y ≤ x and i < j ≤ n
}

+
∑{∣∣σy,j

∣∣ +
∣∣σ̃y,j

∣∣: (y, j) such that y > x and 1 ≤ j < i
}
.

In the genuinely nonlinear case, let

Ai(x) =
∑{∣∣σy,j

∣∣ +
∣∣σ̃y,j

∣∣: (y, j) such that y ≤ x and i < j ≤ n
}

+
∑{∣∣σy,j

∣∣ +
∣∣σ̃y,j

∣∣: (y, j) such that y > x and 1 ≤ j < i
}

+





∑{∣∣σy,i

∣∣: y ≤ x
}

+
∑{∣∣σ̃y,i

∣∣: y > x
}

if qi(x) < 0 ,
∑{∣∣σy,i

∣∣: y > x
}

+
∑{∣∣σ̃y,i

∣∣: y ≤ x
}

if qi(x) ≥ 0 .

We stress that Φ is different from the functional Φ introduced in [21, 22] and
defined in [4, formula (8.6)]. Indeed, here all jumps in v or in ṽ are consid-
ered. There, on the contrary, exploiting the structure of ε-approximate front
tracking solutions, see [4, Definition 7.1], in the definition of Φ the jumps
due to non physical waves are neglected when defining the weights Ai and
are considered as belonging to a fictitious n+1-th family in the definition [4,
formula (7.54)] of Q. To stress this dependence, in the sequel we denote by
Φε the stability functional as presented in [4, Chapter 8].

We now move towards the extension of Φ to Dδ. Define

Ξη(u, ũ) = inf
{
Φ (v, ṽ): v ∈ Bη(u) and ṽ ∈ Bη(ũ)

}

The map η → Ξη(u, ũ) is non increasing. Thus, we may finally define

Ξ(u, ũ) = lim
η→0+

Ξη(u, ũ) = sup
η>0

Ξη(u, ũ) . (4.3)

We are now ready to state the main result of this paper.

Theorem 4.1 The functional Ξ:Dδ×Dδ 7→ [0,+∞[ defined in (4.3) enjoys
the following properties:

(i) Ξ is equivalent to the L1 distance, i.e. there exists a C > 0 such that
for all u, ũ ∈ Dδ

1
C
· ‖u− ũ‖L1 ≤ Ξ(u, ũ) ≤ C · ‖u− ũ‖L1 .
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(ii) Ξ is non increasing along the semigroup trajectories of Theorem 2.2,
i.e. for all u, ũ ∈ Dδ and for all t ≥ 0

Ξ(Stu, Stũ) ≤ Ξ(u, ũ) .

(iii) Ξ is lower semicontinuous with respect to the L1 norm.

Here and in what follows, we denote by C positive constants dependent only
on f and δ0. We split the proof of the above theorem in several steps.

Lemma 4.2 For all u, ũ ∈ D∗δ , one has Ξ(u, ũ) ≤ Φ (u, ũ).

We remark that actually Ξ coincides with Φ on all piecewise constant
functions. However, the other inequality is rather technical and not neces-
sary for the proof of Theorem 4.1. Therefore, we postpone it to the Ap-
pendix.
Proof of Lemma 4.2. By the definition (2.5) we have u ∈ Bη(u) and ũ ∈
Bη(ũ) for all η > 0, hence Ξη(u, ũ) ≤ Φ (u, ũ) for all positive η. The lemma
is proved passing to the limit η → 0+. ¤

Proposition 4.3 The functional Ξ:Dδ 7→ R is lower semicontinuous with
respect to the L1 norm.

Proof. Fix u and ũ in Dδ. Let uν , respectively ũν , be a sequence in Dδ

converging to u, respectively ũ. Define εν = ‖uν − u‖L1 +‖ũν − ũ‖L1 +1/ν.
Then, for each ν, there exist piecewise constant vν ∈ Bεν (uν), respectively
ṽν ∈ Bεν (ũν), such that

Φ (vν , ṽν) ≤ Ξεν (uν , ũν) + εν ≤ Ξ(uν , ũν) + εν . (4.4)

Moreover

‖vν − u‖L1 ≤ ‖vν − uν‖L1 + ‖uν − u‖L1 < 2εν
‖ṽν − ũ‖L1 ≤ ‖ṽν − ũν‖L1 + ‖ũν − ũ‖L1 < 2εν

so that vν ∈ B2εν (u) and ṽν ∈ B2εν (ũ). Hence, Ξ2εν (u, ũ) ≤ Φ (vν , ṽν).
Using (4.4), we obtain Ξ2εν (u, ũ) ≤ Ξ(uν , ũν) + εν . Finally, passing to the
liminf for ν → +∞, we have Ξ(u, ũ) ≤ lim infν→+∞Ξ(uν , ũν). ¤

9



In the next proposition, we compare the functional Φ defined in (4.1)
with the stability functional Φε as defined in [4, formula (8.6)]

Proposition 4.4 Let δ > 0. Then, there exists a positive C such that for
all ε > 0 sufficiently small and for all ε-approximate front tracking solutions
w(t, x), w̃(t, x) of (1.1)

∣∣∣Φ
(
w(t, ·), w̃(t, ·))− Φε(w, w̃)(t)

∣∣∣ ≤ C · ε · ∥∥w(t, ·)− w̃(t, ·)∥∥
L1 .

Proof. Setting w̃(t, x) = S
(
q(t, x)

) (
w(t, x)

)
and omitting the explicit time

dependence in the integrand, we have:

∣∣∣Φ
(
w(t, ·), w̃(t, ·))− Φε(w, w̃)(t)

∣∣∣ ≤
∫

R

n∑

i=1

∣∣qi(x)
∣∣∣∣Wi(x)−Wi(x)

∣∣ dx .

We are thus lead to estimate
∣∣Wi(x)−Wi(x)

∣∣ ≤ κ1

∣∣Ai(x)−Ai(x)
∣∣ +

+κ1κ2

∣∣Q(w)−Q(w)
∣∣ + κ1κ2

∣∣Q(w̃)−Q(w̃)
∣∣ .

The second and third summands are each bounded as in [4, formula (7.100)]
by C ε. Concerning the former one, recall that Ai and Ai differ only in
the absence of non physical waves in Ai. In other words, physical jumps
are counted in the same way in both Ai and Ai while non physical waves
appear in Ai but not in Ai. Therefore,

∣∣Ai(x)−Ai(x)
∣∣ is bounded by the

sum of the strengths of all non physical waves, i.e.
∣∣Ai(x)−Ai(x)

∣∣ ≤ C ε
by [4, formula (7.11)]. Finally, using [4, formula (8.5)]:

1
C
· ∥∥v(x)− ṽ(x)

∥∥ ≤
n∑

i=1

∣∣qi(x)
∣∣ ≤ C · ∥∥v(x)− ṽ(x)

∥∥ (4.5)

we obtain

∣∣∣Φ
(
v(t, ·), ṽ(t, ·))− Φε(v, ṽ)(t)

∣∣∣ ≤ C ε

∫

R

n∑

i=1

∣∣qi(x)
∣∣ dx ≤ C ε‖v − ṽ‖L1

completing the proof. ¤

Proof of Theorem 4.1. The estimates (4.5) show that Φ is equivalent to the
L1 distance between functions in D∗δ . Indeed, if δ is sufficiently small, then
Wi(x) ∈ [1, 2] for all i = 1, . . . , n and all x ∈ R, so that

1
C
· ‖v − ṽ‖L1 ≤ Φ (v, ṽ) ≤ 2C · ‖v − ṽ‖L1 . (4.6)
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To prove (i), fix u, ũ ∈ Dδ and choose v ∈ Bη(u), ṽ ∈ Bη(ũ). By (4.6),

1
C
· (‖u− ũ‖L1 − 2η

) ≤ Φ (v, ṽ) ≤ 2C · (‖u− ũ‖L1 + 2η
)

1
C
· (‖u− ũ‖L1 − 2η

) ≤ Ξη(u, ũ) ≤ 2C · (‖u− ũ‖L1 + 2η
)
.

The proof of (i) is completed passing to the limit η → 0+.
To prove (ii), fix u, ũ ∈ Dδ and η > 0. Correspondingly, choose vη ∈

Bη(u) and ṽη ∈ Bη(ũ) satisfying

Ξ(u, ũ) ≥ Ξη(u, ũ) ≥ Φ(vη, ṽη)− η . (4.7)

Let now ε > 0 and introduce the ε-approximate solutions vε
η and ṽε

η with
initial data vε

η(0, ·) = vη and ṽε
η(0, ·) = ṽη. Note that for ε sufficiently small

Υ
(
vε
η(t)

)
≤ Υε

(
vε
η

)
(t) + Cε ≤ Υε(vε

η)(0) + Cε

≤ Υ(vη) + Cε < δ + Cε < δ

and an analogous inequality holds for ṽε
η. Therefore vε

η(t), ṽ
ε
η(t) ∈ D∗δ . Here

we denoted with Υε the sum V +C0Q defined on ε–approximate wave front
tracking solutions (see [4, formulæ (7.53), (7.54)]). We may thus apply
Lemma 4.2, Proposition 4.4 and the main result in [4, Chapter 8], that is [4,
Theorem 8.2], to obtain

Ξ
(
vε
η(t), ṽ

ε
η(t)

)

≤ Φ
(
vε
η(t), ṽ

ε
η(t)

)

≤ Φε
(
vε
η, ṽ

ε
η

)
(t) + Cε

∥∥∥vε
η(t)− ṽε

η(t)
∥∥∥
L1

≤ Φε
(
vε
η, ṽ

ε
η

)
(0) + Cεt+ Cε

∥∥∥vε
η(t)− ṽε

η(t)
∥∥∥
L1

≤ Φ
(
vη, ṽη

)
+ Cεt+ Cε

∥∥∥vε
η(t)− ṽε

η(t)
∥∥∥
L1

+ Cε
∥∥vη − ṽη

∥∥
L1 .

Recall that as ε → 0 by [4, Theorem 8.1] vε
η(t) → Stvη and ṽε

η(t) → Stṽη.
Hence, Proposition 4.3 and (4.7) ensure that

Ξ(Stvη, Stṽη) ≤ lim inf
ε→0+

Ξ
(
vε
η(t), ṽ

ε
η(t)

)
≤ Φ

(
vη, ṽη

) ≤ Ξ(u, ũ) + η .

By the choice of vη and ṽη, we have that vη → u and ṽη → ũ in L1 as
η → 0+. Therefore, using the continuity of the SRS in L1 and applying
again Proposition 4.3, we may conclude that

Ξ(Stu, Stũ) ≤ lim inf
η→0+

Ξ(Stvη, Stṽη) ≤ Ξ(u, ũ) ,

completing the proof of (ii). The latter item (iii) follows from Proposi-
tion 4.3. ¤
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5 Appendix

Proposition 5.1 For all u, ũ in D∗δ , one has Ξ(u, ũ) = Φ(u, ũ).

Lemma 4.2 provides the first inequality. The proof of the other one
follows from the next two lemmas.

Lemma 5.2 The functional Φ, defined on all piecewise constant functions
in D∗δ , is lower semicontinuous with respect to the L1 norm.

Proof. Fix u, ũ piecewise constant in D∗δ . Choose two sequences of piecewise
constant maps uν , ũν in D∗δ converging to u, ũ in L1. We want to show that
Φ(u, ũ) ≤ lim infν→+∞Φ(uν , ũν). Call l = lim infν→+∞Φ(uν , ũν) and note
that, up to subsequences, we may assume that limν→+∞Φ(uν , ũν) = l. By
possibly selecting a further subsequence, we also have that both uν and ũν

converge a.e. to u and ũ.
Introduce the functions q = (q1, . . . , qn) and qν = (qν

1 , . . . , q
ν
n) by

ũ(x) = S
(
q(x)

) (
u(x)

)
and ũν(x) = S

(
qν(x)

) (
uν(x)

)
.

with S defined in (2.2). For the computations below, we need the following
more explicit notation: fix v̄(x) ∈ D∗δ and q̄ piecewise constant, and define
A1(v̄, q̄), . . . ,An(v̄, q̄) through

(
Ai(v̄, q̄)

)
(x) =

∑{∣∣σ̄y,j

∣∣: (y, j) such that y ≤ x and j > i
}

+
∑{∣∣σ̄y,j

∣∣: (y, j) such that y > x and j < i
}

for the linearly degenerate case, while for the genuinely nonlinear case:
(
Ai(v̄, q̄)

)
(x) =

∑{∣∣σ̄y,j

∣∣: (y, j) such that y ≤ x and j > i
}

+
∑{∣∣σ̄y,j

∣∣: (y, j) such that y > x and j < i
}

+





∑{∣∣σ̄y,i

∣∣: (y, i) such that y ≤ x
}

if q̄i(x) < 0∑{∣∣σ̄y,i

∣∣: (y, i) such that y > x
}

if q̄i(x) ≥ 0
(
Ãi(v̄, q̄)

)
(x) =

∑{∣∣σ̄y,j

∣∣: (y, j) such that y ≤ x and j > i
}

+
∑{∣∣σ̄y,j

∣∣: (y, j) such that y > x and j < i
}

+





∑{∣∣σ̄y,i

∣∣: (y, i) such that y ≤ x
}

if q̄i(x) > 0∑{∣∣σ̄y,i

∣∣: (y, i) such that y > x
}

if q̄i(x) ≤ 0

where, using E as in (2.1),

(σ̄x,1, . . . , σ̄x,n) = E
(
v̄(x−), v̄(x+)

)
.
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Remark that
(
Ai(v̄, q̄)

)
(x) and

(
Ãi(v̄, q̄)

)
(x) are Lipschitz function of the

values assumed by v̄ (for fixed shock positions). Finally introduce also
(
Bi(v̄, q̄)

)
(x) =

(
Ai(v̄, q̄)

)
(x) + κ2Q(v̄)(

B̃i(v̄, q̄)
)

(x) =
(
Ãi(v̄, q̄)

)
(x) + κ2Q(v̄)

And therefore one has:

Φ(u, ũ) =
∫

R

n∑

i=1

∣∣qi(x)
∣∣×

×
[
1 + κ1

((
Bi(u, q)

)
(x) +

(
B̃i(ũ, q)

)
(x)

)]
dx

Φ(uν , ũν) =
∫

R

n∑

i=1

∣∣qν
i (x)

∣∣×

×
[
1 + κ1

((
Bi(uν , q

ν)
)
(x) +

(
B̃i(ũν , q

ν)
)

(x)
)]

dx

Let {x1, . . . , xN+1} be the set of the jump points in u and ũ and write

u =
N∑

α=1

uα χ[xα,xα+1[, ũ =
N∑

α=1

ũα χ[xα,xα+1[ .

For all α, select yα ∈ ]xα, xα+1[ so that as ν → +∞, the sequence uν(yα)
converges to u(yα) = uα and ũν(yα) to ũ(yα) = ũα. Introduce the piecewise
constant function ǔν =

∑
α uν(yα)χ[xα,xα+1[. Let ˇ̃uν be defined analogously.

Because of the Lipschitz dependence (for fixed jump positions) of Ai(v̄),
Ãi(v̄) and Q(v̄) on the states attained by v̄ we obtain the pointwise limits

lim
ν→+∞Bi(ǔν , q) = Bi(u, q) and lim

ν→+∞ B̃i(ˇ̃uν , q) = B̃i(ũ, q) . (5.1)

Claim: there exists a uniformly bounded sequence of positive maps ων with

lim
ν→+∞ων(x) = 0 a.e. in x

such that, with the notation above, the following inequality holds:
(
Bi(ǔν , q)

)
(x) ≤ (

Bi(uν , q)
)
(x) + ων(x)

and a similar inequality holds for B̃i.
Proof of the claim. Consider only Bi since the case with B̃i is similar.
Fix x̄ ∈ R and prove the above inequality passing from ǔν to uν recursively
applying 3 elementary operations:
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u

xxh xa xb

x

uc

m

b

m

p

p

xbxaxh xxh xa xb

xxh xa xb

t

t

PSfrag replacements

t
wᾱ−1

wᾱ

ξᾱ
ξᾱ+1

x̄
wᾱ+1

x
w
w′

Figure 2: Exemplification of point 2.

1. w′ is obtained from w only shifting the position of the points of jump
but without letting any point of jump cross x̄. More formally, if w =∑

αwαχ[ξα,ξα+1[ with ξα < ξα+1, w′ =
∑

αwαχ[ξ′α,ξ′α+1[ with ξ′α < ξ′α+1

and moreover x̄ ∈ ]ξα, ξα+1[ ∩
]
ξ′α, ξ′α+1

[
, then

(
Bi(w′, q)

)
(x̄) =

(
Bi(w, q)

)
(x̄) .

Indeed, if all the jumps stay unchanged and no shocks crosses x̄, then nothing
changes in the definition of Ai and Q.
2. w′ is obtained from w removing a value attained by w on an interval not
containing x̄, see Figure 2. More formally, if

w =
∑
α

wαχ[ξα,ξα+1[ with ξα < ξα+1

and x̄ 6∈ [ξᾱ, ξᾱ+1[, then

w′ =
∑

α6=ᾱ

wα χ[ξα,ξα+1[ + wᾱ−1 χ[ξᾱ,ξᾱ+1[

or
w′ =

∑

α 6=ᾱ

wα χ[ξα,ξα+1[ + wᾱ+1 χ[ξᾱ,ξᾱ+1[ .

In this case
(
Ai(w′, q)

)
(x̄) + κ2Q(w′) ≤ (

Ai(w, q)
)
(x̄) + κ2Q(w) .

Indeed, consider for example the case in Figure 2. The two jumps at the
points ξᾱ and ξᾱ+1 in w are substituted by a single jump in w′ at the point
ξᾱ+1. The points ξᾱ and ξᾱ+1 are both to the right of x̄, therefore the
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waves in w′ at the point ξᾱ+1 which appear in
(
Ai(w′, q)

)
(x̄) are of the

same families of the waves in w at the points ξᾱ and ξᾱ+1 which appear in(
Ai(w, q)

)
(x̄). Since all the other waves in Ai are left unchanged we have

(
Ai(w′, q)

)
(x̄)− (

Ai(w, q)
)
(x̄) ≤

n∑

j=1

∣∣∣σ′ξᾱ+1,j − σξᾱ,j − σξᾱ+1,j

∣∣∣

where

σ′ξᾱ+1,j = Ej

(
w′ (ξᾱ+1−) , w′ (ξᾱ+1+)

)
= Ej (wᾱ−1, wᾱ+1)

σξᾱ+1,j = Ej

(
w (ξᾱ+1−) , w (ξᾱ+1+)

)
= Ej (wᾱ, wᾱ+1)

σξᾱ+1,j = Ej

(
w (ξᾱ−) , w (ξᾱ+)

)
= Ej (wᾱ−1, wᾱ) .

Therefore, the increase in Ai evaluated at x̄ is bounded by the interaction
potential between the waves at ξᾱ and those at ξᾱ+1 and is compensated by
the decrease in κ2Q, as in the standard Glimm interaction estimates.
3. w′ is obtained from w changing the value assumed by w in the interval
containing x̄. More formally, if

w =
∑
α

wαχ[ξα,ξα+1[ with ξα < ξα+1

and x̄ ∈ [ξᾱ, ξᾱ+1[, then

w′ =
∑

α 6=ᾱ

wαχ[ξα,ξα+1[ + w′ᾱχ[ξᾱ,ξᾱ+1[ .

In this case
(
Bi(w′, q)

)
(x̄)+ ≤ (

Bi(w, q)
)
(x̄) + C

∣∣wᾱ − w′ᾱ
∣∣ .

Indeed, this inequality directly follows from the Lipschitz dependence of
Ai(w, q)(x̄) and of Q(w) on the values attained by w for fixed jump positions.

For x̄ ∈ [xᾱ, xᾱ+1[ we can pass from uν to to the function wν defined by

wν =
∑

α 6=ᾱ

uν(yα)χ[xα,xα+1[ + uν(x̄)χ[xᾱ,xᾱ+1[

applying the first two steps a certain number of times. And we obtain the
estimate (

Bi(wν , q)
)
(x̄) ≤ (

Bi(uν , q)
)
(x̄) .

Finally with the third step we go from wν to ǔν obtaining the estimate:
(
Bi(ǔν , q)

)
(x̄) ≤ (

Bi(wν , q)
)
(x̄) + C

∣∣uν(x̄)− uν(yᾱ)
∣∣

≤ (
Bi(uν , q)

)
(x̄) + C

∣∣uν(x̄)− uν(yᾱ)
∣∣

≤ (
Bi(uν , q)

)
(x̄) + ων(x̄) .
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with

ων(x) = C
N∑

α=1

∣∣uν(x)− uν(yα)
∣∣χ[xα,xα+1[(x) .

But a.e. x ∈ R one has

N∑

α=1

∣∣uν(x)− uν(yα)
∣∣χ[xα,xα+1[(x) →

N∑

α=1

|uα − uα|χ[xα,xα+1[(x) = 0

proving the claim.
Now we write:

Φ (u, ũ) = χ1,ν + χ2,ν + χ3,ν + χ4,ν + Φ (uν , ũν) ,

with

χ1,ν = Φ (u, ũ)

−
∫

R

n∑

i=1

∣∣qi(x)
∣∣
[
1 + κ1

((
Bi(ǔν , q)

)
(x) +

(
B̃i(ˇ̃uν , q)

)
(x)

)]
dx

χ2,ν =
∫

R

n∑

i=1

∣∣qi(x)
∣∣κ1

[ (
Bi(ǔν , q)

)
(x)− (

Bi(uν , q)
)
(x)

+
(
B̃i(ˇ̃uν , q)

)
(x)−

(
B̃i(ũν , q)

)
(x)

]
dx

χ3,ν =
∫

R

n∑

i=1

∣∣qi(x)
∣∣κ1

[ (
Bi(uν , q)

)
(x)− (

Bi(uν , q
ν)

)
(x)

+
(
B̃i(ũν , q)

)
(x)−

(
B̃i(ũν , q

ν)
)

(x)
]
dx

χ4,ν =
∫

R

n∑

i=1

(∣∣qi(x)
∣∣− ∣∣qν

i (x)
∣∣
)
·

·
[
1 + κ1

((
Bi(uν , q

ν)
)
(x) +

(
B̃i(ũν , q

ν)
)

(x)
)]

dx .

By the pointwise convergence (5.1) of the integrand, lim
ν→+∞χ1,ν = 0.

Passing to the next summand, note that the claim implies that

χ2,ν ≤ 2C
∫

R

n∑

i=1

∣∣qi(x)
∣∣κ1ων(x) dx

and the Dominated Convergence Theorem implies lim inf
ν→+∞ χ2,ν ≤ 0.

Concerning χ3,ν , observe that qν
i converges a.e. to q(x), therefore for

a.e. x ∈ R such that qi(x) 6= 0, qν
i (x) has the same sign as q(x) for ν
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sufficiently large and this implies
(
Bi(uν , q)

)
(x) =

(
Bi(uν , qν)

)
(x). Hence

the integrand in χ3,ν converges a.e. to zero and we have lim
ν→+∞χ3,ν = 0.

Finally the L1 convergence of qν
i to qi implies lim

ν→+∞χ4,ν = 0, concluding

the proof since Φ (uν , ũν) → l. ¤

Lemma 5.3 For all piecewise constant u, ũ ∈ D∗δ , Ξ(u, ũ) ≥ Φ (u, ũ).

Proof. By the definition (4.3) of Ξ, for all u, ũ ∈ D∗δ , there exist sequences
vν , ṽν of piecewise constant functions such that for ν → +∞ we have vν → u,
ṽν → u in L1 and Φ (vν , ṽν) → Ξ(u, ũ). Hence, by Lemma 5.2

Φ (u, ũ) ≤ lim inf
ν→+∞ Φ (vν , ṽν) = Ξ(u, ũ) ,

completing the proof. ¤
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