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The small world effect on the coalescing time
of random walks

by Daniela Bertacchi1 and Davide Borrello1,2

daniela.bertacchi@unimib.it d.borrello@campus.unimib.it

Abstract

A small world is obtained from the d-dimensional torus of size 2L adding randomly
chosen connections between sites, in a way such that each site has exactly one random
neighbour in addition to its deterministic neighbours. We study the asymptotic be-
haviour of the meeting time TL of two random walks moving on this small world and
compare it with the result on the torus. On the torus, in order to have convergence,
we have to rescale TL by a factor C1L

2 if d = 1, by C2L
2 log L if d = 2 and CdL

d if
d ≥ 3. We prove that on the small world the rescaling factor is C ′dL

d and identify the
constant C ′d, proving that the walks always meet faster on the small world than on
the torus if d ≤ 2, while if d ≥ 3 this depends on the probability of moving along the
random connection. As an application, we obtain results on the hitting time to the
origin of a single walk and on the convergence of coalescing random walk systems on
the small world.

Key words: small world, random walk, coalescing random walk.

AMS 2010 subject classification: Primary 60K37; Secondary 60J26, 60J10.

1 Introduction

Graphs provide a mathematical model in many scientific areas, from physics (magnetiza-
tion properties of metals, evolution of gases) to biology (neural networks, disease spreading)
and sociology (social networks, opinion spreading). Individuals (atoms, molecules, neu-
rons, animals) are identified with vertices and an edge drawn between two vertices identifies
a relation as proximity or existence of some sort of contact. When a part or the totality of
the edges are subject to some randomness, it is natural to deal with random graphs (see
[6] for a survey). One can construct a random graph starting from a deterministic graph
either by adding random connections, or by removing some connections randomly, as in
percolation. A particular class of random graphs of the first type are small world graphs,
constructed starting from a d-dimensional (discrete) torus, whose edges are called short
range connections, with some random connections, called long range connections.

Bollobas and Chung [5] first noted that adding a random matching in a cycle (i.e.
d = 1), the average distance between sites is considerably smaller than on the deterministic
graph. Watts and Strogatz [17] introduced, as a model for biological applications, the
random graph obtained in d = 1 with each site connected to the ones at Euclidean distance
smaller than m and long range connections constructed by taking the deterministic ones
and by moving with probability p one of the end sites to a new one chosen at random.
Another possible construction was introduced by Newmann and Watts [14]: they took
the same deterministic short range connections of Watts and Strogatz, but they added
a density p of long range connections between randomly chosen sites. Average distance

1

Dipartimento di Matematica e Applicazioni
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F76801 Saint-Étienne-du-Rouvray, France.

1



between sites and clustering coefficient of small world graphs have been well investigated
([1],[2], [17]). See [11] for a historical introduction of small world graphs and main results.

Recently some authors have been focusing on processes taking place on random graphs.
Durrett and Jung [12] have studied the contact process on the small world. Their version
of the small world is a generalization of the Bollobas-Chung model: they take the d-
dimensional torus Λd(L) = Zd mod 2L with short range connections between each pair
of vertices at Euclidean distance smaller than m. The long range connections are drawn
choosing at random a partition of the (2L)d vertices in pairs and connecting each pair of the
partition (see Section 2.1 for more details about the construction). Note that all sites have
exactly one long range neighbour and the degree of the graph is constant: being this small
world graph homogeneous makes it easier to study processes on it. The main advantage of
such a costruction is that we can associate to the random graph a non-random translation
invariant graph B, called big world : see [12] where the big world was first introduced and
Section 2.2 for more details on this deterministic graph and on its relationship with the
small world.

One expects that if the distance between sites plays an important role (as for random
walks, coalescing random walk or the contact process), a process taking place on a small
world will behave differently from the same one on the torus. We consider random walks
on the small world and, under some assumptions on the starting sites, we study the
asymptotic behaviour of three sequences of random times: the time WL after which a
single random walk first hits the origin, the time TL after which two random walks first
meet and the coalescing time τL of a coalescing random walk starting from a fixed number
of particles. Recall that coalescing random walk on a graph is a Markov process in which
n particles perform independent random walks subject to the rule that when one particle
jumps onto an already occupied site, the two particles coalesce to one. The time when we
have only one particle left is called coalescing time.

It is natural to compare our results with the corresponding results on the torus: for
the simple symmetric continuous time random walk on the d-dimensional torus, Cox
[7, Theorem 4] proved (under some assumptions on the initial position) that for d = 2
WL/C2(2L)2 log(2L), with C2 = 2/π, and for d ≥ 3, WL/Cd(2L)d), with Cd equal to the
expected number of visits to the origin of a discrete time simple symmetric random walk,
converge to an exponential of mean 1. One can also get the same result for the random
walk starting from the stationary distribution (this was proved in [13, Theorem 6.1] in
discrete time) as a corollary.

Cox and Durrett (see [8, Theorem 2]) proved a result in the 2-dimensional case under
more general conditions on the starting point and on the transition matrix for a discrete
time random walk. The case d = 1 is slightly different: Flatto, Odlyzko and Wales [13,
Theorem 6.1] proved that for the discrete time random walk starting from the uniform
distribution WL/L2 converges to a certain law. It is possible to show that these results
also hold in continuous time.

Note that, by the symmetry of the walks on the torus, it is easy to show that the
meeting time TL of two independent random walks Xt and Yt on the torus, conditioned to
X0 = x and Y0 = y, coincides with the law of 2WL conditioned to W0 = x− y. Therefore
Theorems [7, Theorem 4], [8, Theorem 2]) and [13, Theorem 6.1] give also the asymptotic
behaviors of the meeting time of two particles.

To explain the results on the small world more clearly, let SL be one of the possible
realizations of the small world graph SL and let SL(Ω̃) be the set of all possible realizations
of SL. We introduce a transition matrix PSL depending on SL: when the random walk
moves, with probability β it takes the long range connection and with probability 1− β it
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chooses a short range one uniformly. We denote by Pµ,ν
SL the law of the two independent

continuous time random walks Xt and Yt (X̃n and Ỹn in discrete time) ruled by PSL on SL

starting from the probability distributions µ and ν on Λd(L) (see Section 2.1). Since the
walkers are on a random graph, first of all we have to fix a possible graph and then move
the process on it. We can look for results for each graph S in a set of large probability
(“quenched” point of view) or average results on all realizations S of the graph (“annealed”
point of view). We study random walks both in discrete and continuous time. In Section
2.1 we give the formal definitions.
Durrett [11, Chapter 6] studied the coalescing random walk on a one dimensional version
of BC small world. He proved, for a large class of random graphs with N vertices, that
for each sequence {SN}N in a set of large probability the rescaled meeting time T of two
particles starting from the stationary distribution converges to the exponential distribu-
tion: the rescaling factor is given by the number of vertices N times a constant C > 0
(depending on the local structure of the graph). In particular such a result holds for the
1 dimensional BC small world with N = 2L.
We use the Laplace transform technique to prove more accurate results under more gen-
eral initial conditions on the meeting time TL, which will be useful for getting results on
coalescing random walk. The exact estimation of the rescaling constants for any dimension
allows the comparison with the results on the d-dimensional torus for d ≥ 3, which would
not be possible otherwise.
A fundamental tool consists in constructing a random map from the deterministic big
world graph onto the small world random graph. As we explain in Section 2.2, through
this map we can associate to each site x ∈ Λd(L) a particular site +(x) in the big world.
Moreover we associate to the random walk on the small world, a random walk on the big
world, and we denote its law by PB (P̃B in discrete time).

We denote by

G̃ev
B (+(x)) :=

∞∑

n=0

P̃+(x)
B (X̃2n = 0); Gev

B (+(x)) :=
∫ ∞

0
P+(x)
B (X2t = 0)dt, (1.1)

Note that such constants, which are not necessarily equal, depend both on the geometry
of the graph and on the transition probability of the random walk on it: in particular it
depends on the probability β to take a shortcut in the small world graph.
The following result, stated in continuous time, holds also in discrete case with the corre-
sponding constant and involves the meeting time of two particles starting from 0 and xL.
We give the limit law of TL/(2L)d as L goes to infinity both for starting points xL ∈ Λd(L)
such that |xL| goes to infinity and for xL = x which does not depend on L.

Theorem 1.1 Denote by 0 the origin of the big world +(0) and by dS(0, x) the length of
the shortest path connecting x to 0 in the small world S.

1. Let xL ∈ Λ(L) for all L such that xL = x for all L sufficiently large. Then if x 6= 0,
uniformly in t ≥ 0

PxL,0

(
TL

(2L)d
> t

)
L→∞→

(
1− Gev

B (+(x))
Gev
B (0)

)
exp

(
− t

Gev
B (0)

)
. (1.2)

If x = 0 then uniformly in t ≥ 0

P0,0

(
TL

(2L)d
> t

)
L→∞→ 1

Gev
B (0)

exp
(
− t

Gev
B (0)

)
. (1.3)
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2. If αL ≥ (log log L)2, then uniformly in t ≥ 0 and xL such that |xL| ≥ αL,

PxL,0

(
TL

(2L)d
> t

)
→ exp

(
− t

Gev
B (0)

)
. (1.4)

3. Let xL ∈ Λ(L) for all L such that xL = x 6= 0 for all L sufficiently large. For all
ε > 0

P
(

S ∈ SL(Ω̃) :
∣∣∣∣PxL,0

S

(
TL

(2L)d
> t

)

−
(

1− GB(+(x))
Gev
B (0)

)
exp

(
− t

Gev
B (0)

)∣∣∣∣ < ε,∀t ≥ 0
)

L→∞→ 1. (1.5)

If x = 0 then

P
(

S ∈ SL(Ω̃) :
∣∣∣∣P0,0

S

(
TL

(2L)d
> t

)

− 1
Gev
B (0)

exp
(
− t

Gev
B (0)

)∣∣∣∣ < ε,∀t ≥ 0
)

L→∞→ 1. (1.6)

4. Choose αL ≥ (log log L)2. For all ε > 0

P

(
S ∈ SL(Ω̃) : sup

{xL:dS(0,xL)≥αL}

∣∣∣∣PxL,0
S

(
TL

(2L)d
> t

)

− exp
(
− t

Gev
B (0)

)∣∣∣∣ < ε,∀t ≥ 0
)

L→∞→ 1. (1.7)

Using similar techniques we get results about the return time of a single particle to the
origin (see Section 4.1, Theorems 4.2). As a corollary one can get the law of the meeting
time of two random walks and the law of the hitting time to the origin of a single walker
starting from the uniform distribution.
Since we do not work with a reversible Markov chain on a translation invariant graph we
cannot easily get results on meeting time of two random walks from the hitting time of a
single one: the key in the proofs is that in most sites the local structure can be mapped
through a bijection into the big world.

Theorem 1.1 states that in order to have convergence of the rescaled meeting time in
the small world, we need to rescale with (2L)d. Comparing with the results on the torus,
if d ≤ 2 the small world effect is clear (convergence has a faster rate); if d ≥ 3 the small
world effect is not so evident, since the convergence has the same rate and we need to know
more about the rescaling constant. As we can expect, the effect of shortcuts is larger for
lower dimension and less evident when d is large.
The table gives a comparison between the meeting time of two simple symmetric continuous
time random walks on the torus Λ(L) and on the BC small world when the initial distance
converges to infinity: Gev

Zd(0), if d ≥ 3, is the constant corresponding to (1.1) on Zd, which
is a half of the expected number of returns to the origin of a discrete time random walk
on Zd.

As already observed, if d = 1 then TL/(C(Λ(L))R(Λ(L))) and TL/C(SL)R(SL)) con-
verge to different laws: a comparison is possible since the rescaling factors are different.
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Rescaling Factor R Constant C
Starting points d

Uniform distribution 1

(log+ |xL|)/ log L → δ or

|xL| ≥ αL, αL

√
log L
L →∞ 2

|xL| ≥ (log log L)2 ≥ 3

R(Λ(L)) R(SL)

L2 L

L2 log L L2

Ld Ld

C(Λ(L)) C(SL)

1/12 Gev
B (0)

1/π Gev
B (0)

Gev
Zd(0) Gev

B (0)

Comparison Table

If d ≥ 3 the limit laws and the rescaling factors are identical in both cases, thus we need to
compare the constants Gev

Zd(0) and Gev
B (0). The relative order depends on the probability

β to move across a long range connection.
If β is small then Gev

Zd(0) < Gev
B (0), the small world effect still persists and the two particles

meet faster; this is not the case if β is close to 1, where the opposite inequality holds (see

Appendix A). Moreover the proof of Proposition A.1 states that Gev
B (0)

β→0→ Gev
Zd(0) and

Gev
B (0)

β→1→ ∞. Therefore the function Gev
B (0) is not monotone in β.

In [11, Chapter 6], the author sketches a proof that the number of particles of a
normalized n-coalescing random walk (that is with n particles at time 0) starting from the
stationary distribution on one dimensional BC nearest neighbors small world converges to
the Kingman’s coalescent. Briefly, the Kingman’s coalescent is a Markov process starting
from N individuals without spatial structure: each couple has an exponential clock with
mean 1 after which the two particles coalesce (see [7], [9] and [16]).
We use Theorem 1.1 to get new information about the number of particles (|ξt(A)|)t≥0

of the coalescing random walk (ξt(A))t≥0 starting from A = {x1, . . . , xn}, xi ∈ Λd(L)
for 1 ≤ i ≤ n in continuous time, extending the previous result to d-dimensional BC
small world with general transition probabilities and more general initial distance between
particles. The result is

Theorem 1.2 Let hL ≥ (log log L)2 such that limL→∞MhL/(2L)d = 0, then for each
A = {x1, . . . , xn} ⊂ Λd(L) with |xi − xj | ≥ hL for i 6= j, T > 0 there exists a sequence of

sets {HL}L of small world graphs such that P(HL) L→∞→ 1 and for each sequence {SL}L,
SL ∈ HL, uniformly in 0 ≤ t ≤ T

∣∣∣PA
SL

(
|ξsLt(A)| < k

)
− Pn

(
Dt < k

)∣∣∣ L→∞→ 0, k = 2, . . . , n. (1.8)

where sL = (2L)dGev
B (0), M is a constant depending on the number of short range connec-

tions per site and Dt is the number of particles in a Kingman’s coalescent at time t ≥ 0.

We worked on graphs with a single long range connection per site. One can show the
same results for random graphs with fixed K > 1 (not depending on L) random long
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range connections in the same way starting either from the d-dimensional torus or from
a translation invariant finite graph. The exponential limit will have a different parameter
which we guess would be the return time on a different big world structure.

We proceed as follows: in Section 2.1 we give the definitions needed in the sequel and we
construct the random graph. In order to get results on the meeting time of two particles,
we largely use the Laplace transform technique and we treat the law of the walkers in
different ways for small or large time. For small time, the random graph structure is
similar to the big world. In Section 2.2 we introduce the map from the big world graph
onto the small world: Proposition 2.7 states that they do not differ when L is large in
a ball with radius smaller than (log log L)2. When time is large the law of the random
walk is close to the stationary distribution. In Section 2.4 we remind some well known
estimations for the speed of convergence to equilibrium of a random walk, involving the
isoperimetric constant. A useful estimation of the isoperimetric constant for a set with
large probability of small world graph is given by Theorem 2.10, Section 2.3.
In Section 3 we use the comparison with the big world for small time and the convergence
to equilibrium for large time to prove the main lemmas involving the Laplace transform
of the meeting time of two particles. We detail the proofs in continuous time case.
The main result on the meeting time of two particles is proved in Section 4.1. Here we
also give a similar result for the hitting time of a single random walk. In Section 5 we
introduce the coalescing random walk and we prove the convergence theorem to Kingman’s
coalescent. Finally in Appendix A we prove a proposition which allows to compare our
results with the ones of the meeting time on the d-dimensional torus for d ≥ 3.

2 Preliminaries

2.1 BC small world

The vertices of the random graph are the ones of the d-dimensional torus, which we denote
by

Λ(L) = Λ(L, d) = (Z mod 2L)d,

when there is no ambiguity, we will omit the dependence on d.
The set of edges EL of the graph is partly deterministic (short range connections) and

partly random (long range connections). Note that we consider nonoriented edges, that
is, if (x, y) ∈ EL then also (y, x) ∈ EL (thus we identify edges with subsets of order two).

We will consider two kinds of short range connections, one between neighbours (i.e. ver-
tices x, y such that ‖x−y‖1 = 1), and the other between vertices x, y such that ‖x−y‖∞ ≤
m: the corresponding neighbourhoods are

N (x) = {y ∈ Λ(L) : ‖x− y‖1 = 1}, x ∈ Λ(L),

N∞
m (x) = {y ∈ Λ(L) : ‖x− y‖∞ ≤ m}, x ∈ Λ(L).

For all x, y ∈ Λ(L) we denote by d(x, y) the graph distance between x and y. Let Ω̃ be the
set of all partitions of the set of Λ(L) into (2L)d/2 subsets of cardinality two. Let P be
the uniform probability on P(Ω̃): the random choice of ω̃ ∈ Ω̃ represents the choice of the
set of long range connections (some of which may coincide with short range ones). Note
that both Ω̃ and P depend on L.
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Definition 2.1 Let GL be the family of all graphs with set of vertices Λ(L). The small
world SL is a random variable SL(ω̃) : Ω̃ → GL such that SL(ω̃) =

(
Λ(L), EL(ω̃)

)
, where

EL(ω̃) = ω̃ ∪ {{x, y} : x ∈ Λ(L), y ∈ N (x)}.
The set of edges of the small world SL(Ω̃)m is defined as

EL
m(ω̃) = ω̃ ∪ {{x, y} : x ∈ Λ(L), y ∈ N∞

m (x)}.
We denote by SL(Ω̃) = {SL(ω̃) : ω̃ ∈ Ω̃} and by SL

m(Ω̃) = {SL
m(ω̃) : ω̃ ∈ Ω̃}.

For any fixed ω̃, given two short range neighbours x and y, we write x ∼ y; if they are
long range neighbours we write x _ y (it may happen that x ∼ y and x _ y at the same
time).

Note that P clearly defines a probability measure on GL: with a slight abuse of notation
we denote this measure with P as well. Given ω̃, we will also call “small world” the graph
SL(ω̃). For the sake of simplicity we will focus here on the case SL, but our proofs can be
adapted to SL

m. Moreover, when there is no ambiguity, we will write S and Sm instead of
SL and SL

m.

Remark 2.2 We note that the small world could be defined imposing that we consider
as probability space Θ ⊂ Ω̃, the family of partitions where no couple is a short range
connection (thus the random graph has fixed degree), instead of Ω̃.

Given a small world, we consider a random walk on it. We assume that the discrete
time random walk is assigned through a family of adapted (i.e. transition from x to y
may occur only if they are connected by an edge), symmetric transition matrices {PS =
(pS(x, y))x,y∈Λ(L)}S∈SL(eΩ)

, with the property that pS(0, y) = pS(x, x + y) whenever y and
x+y are short range neighbours of 0 and x respectively (which implies that the probability
from a site towards its long range neighbour is fixed as well), with the assumption that
the transition probabilities towards a short range neighbour which is also a long range
neighbour is the sum of the two corresponding probabilities.

The transition matrix PS we will consider is given by

pS(x, y) =





1− 2dp− β if x = y,
p if x ∼ y, and x 6_ y
β if x _ y, and x 6∼ y
p + β if x ∼ y, and x _ y
0 otherwise,

(2.1)

where p ∈ (0, 1/2d) and β ∈ (0, 1− 2dp] (on Sm substitute |N∞
m (0)| for 2d). Nevertheless

our results hold also for transition matrices with a different distribution among short range
neighbours (we only need symmetry and translation invariance).

Definition 2.3 Given a probability measure µ on Λ(L), a small world S = S(ω̃) and a
transition matrix PS, we denote by P̃µ

S the law of the discrete time random walk on S with
initial probability µ and transitions ruled by PS. If µ = δx0 we write P̃x0

S .

Definition 2.4 Given a probability measure µ on Λ(L), and a family of transition matri-
ces {PS}S∈SL(eΩ)

, we denote by P̃µ the product of P and P̃µ
S, that is

P̃µ(A, C(x0, . . . , xn)) =
∑

S∈A

P(S)µ(x0)pS(x0, x1) · · · pS(xn−1, xn),

where A ⊂ GL and C(x0, . . . , xn) is the cylinder with base (x0, . . . , xn).
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We construct the continuous time version Xt of the random walk X̃t by continuization.
In other words we define Xt : d= X̃Nt where Nt has Poisson distribution with mean t
independent of Xt: the law of Xt on S starting from a probability measure µ on Λ(L) is
given by

Pµ
S(Xt = y) =

∞∑

k=0

e−ttk

k!
P̃µ

S(X̃k = y). (2.2)

From now on the family of transition matrices {PS}S∈SL(eΩ)
is considered fixed.

2.2 The mapping into the big world

The small worlds SL and SL
m (which are random graphs) can be mapped into a non-random

graph, the big worlds BL and BL
m respectively, as in [12]. We recall here its construction.

The sites are all vectors ±(z1, . . . , zn), with n ≥ 1 components, zj ∈ Zd and zj 6= 0 for
j < n. The edges in BL are drawn between +(z1, . . . , zn) and +(z1, . . . , zn + y) if and only
if y ∈ N (0); for BL

m we consider y ∈ N∞
m (0) (these edges correspond to the short range

connections). The same is done for vectors with a minus sign.
Moreover +(z1, . . . , zn) has a long range neighbour, namely

+(z1, . . . , zn, 0) if zn 6= 0,
+(z1, . . . , zn−1) if zn = 0,
−(0) if zn = 0, n = 1.

Analogously one defines the long range neighbour of −(z1, . . . , zn). Note that the big world
is a vertex transitive graph (i.e. the automorphism group acts transitively). We denote
by |x| the graph distance on the big world from x to +(0) and we also write 0 instead of
+(0). To each small world we associate a map onto it, from the big world.

Definition 2.5 Given a small world S and x ∈ Λ(L), let LRS(x) be the long range
neighbour of x. The map φ : Ω̃ → Λ(L)BL

is recursively defined as follows:

φ(ω̃)(+(z)) = z mod (2L),
φ(ω̃)(−(z)) = LRS(eω)(0) + z mod (2L),
φ(ω̃)(±(z1, . . . , zn)) = LRS(eω) (φ(ω̃)(±(z1, . . . , zn−1)) + zn mod (2L).

Note that the transition matrix P = (p(x, y))x,y∈BL , defined by

p(x, y) =





1− 2dp− β if x = y,
p if x and y are short range neighbours
β if x and y are long range neighbours
p + β if x and y are short and long range neighbours
0 otherwise,

naturally induces the transition matrix in (2.1) on the small world S. Analogously one
can proceed on BL

m if the neighbouhood relation used in Zd is the one given by N∞
m .

We will compare the random walk on the small world with the associated random walk
on the big world, whose law we denote by PB (resp. P̃B in discrete time).
The random walk (BL, P ) is symmetric and translation invariant; moreover the discrete
version is aperiodic if β ∈ (0, 1− 2dp), with period 2 if β = 1− 2dp and one can prove, by
using Cauchy-Schwarz’s inequality, the symmetry and the translational invariance of the
walk, that for all x ∈ BL and n ∈ N,

P̃x
B(X̃2n = 0) ≤ P̃0

B(X̃2n = 0); P̃x
B(X̃2n+1 = 0) ≤ P̃0

B(X̃2n = 0). (2.3)
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Using (2.2) we get on the continuous time version that for each t ≥ 0

Px
B(X2t = 0) ≤ P0

B(X2t = 0). (2.4)

We denote by G̃B(x) :=
∑∞

n=0 P̃x
B(X̃n = 0) the expected number of visits to 0 of the

discrete time random walk on the big world (starting from x and associated to {PS}S)
and let Gev

B (x) and G̃B(x) as in (1.1). We can prove, starting from (2.2), that

G̃B(x) =
∫ ∞

0
Px
B(Xt = 0)dt =: GB(x);

1
2
GB(x) =

∫ ∞

0
Px
B(Xt = Yt)dt.

Clearly G̃B(x) ≤ GB(x) and they coincide if the random walk has period 2 (in which
case they are nonzero only if |x| is even). Note that if m = 1 the big world is the Cayley
graph of Zd ∗ Z2 and the random walk on it is transient and GB(x) is finite. If m ≥ 2 the
big world is the Cayley graph of Z̃d ∗Z2, where Z̃d has the m-neighbourhood relation, and
one has the same result (this can be proven via the flow criterion, see [18]).
Moreover, by (2.4), Gev

B (x) ≤ Gev
B (0), and a similar remark holds in discrete time.

We are interested in the event where locally the small world does not differ from the
big world.

Definition 2.6 If x ∈ Λ(L) and t > 0, we denote by I(x, t) the event in Ω̃

I(x, t) := {φ|BB(x,t) is injective},

where BB(x, t) is the ball of radius t centered at x in the big world.

Clearly P(I(x, t)) does not depend on x.

Proposition 2.7 If t ≤ (log log L)2 then

P(I(x, t)) ≥ 1− CM3t

Ld

L→∞→ 1,

where C and M are positive constants depending on the neighbourhood structure we con-
sider.

Proof. Denote by Kt the number of long range connections in BB(0, t), and by Jt the total
number of sites in BB(0, t). Clearly Kt ≤ Jt and |{x ∈ Λ(L) : d(0, x) ≤ t}| ≤ Jt. Since
each site has M neighbours (M = (2m+1)d in BL

m and M = 2d+1 in BL), then Jt ≤ CM t.
Enumerate the long range connections in BB(0, t) from 1 to Kt and construct the mapping
φ. Note that I(0, t) contains the set A of ω̃ such that the long range connections in the
image of BB(0, t) in the small world S are all sites at distance at least 2t on Λ(L). Thus
P(I(0, t)) ≥ P(A) and

P(A) ≥ (2L)d − J2t

(2L)d

(2L)d − 2J2t

(2L)d
· · · (2L)d − (Kt − 1)J2t

(2L)d

=
Kt−1∏

i=1

(
1− iJ2t

(2L)d

)
= exp

(
Kt−1∑

i=1

log
(

1− iJ2t

(2L)d

))
.

Pick ε > 0 and note that log(1− x) ≥ −(1 + ε)x if x ∈ (0, x̄ε). Choosing t ≤ (log log L)2

we get
iJ2t

(2L)d
≤ KtJ2t

(2L)d

L→∞→ 0,

9



thus for L sufficiently large we have

P(A) ≥ exp
(
−(1 + ε)

J2tK
2
t

(2L)d

)
≥ exp

(
−CM3t

Ld

)
L→∞→ 1.

¤

By dS(x, y) we denote the (random) graph distance between x and y. Depending on
ω̃, x and y, it may happen that dS(x, y) = d(x, y) or dS(x, y) < d(x, y). The following
proposition provides probability estimates of these events.

Proposition 2.8 a. If d(0, x) ≤ t, then

P
(
dS(0, x) = d(0, x)

) ≥ 1− CM3t

Ld
. (2.5)

b. If d(0, x) > t, then

P
(
dS(0, x) > t

) ≥ 1− CM3t

Ld
. (2.6)

Proof.

a. It suffices to note that the event (dS(0, x) = d(0, x)) contains the event A of the previous
proposition.

b. We note that the event (dS(0, x) > t) contains Cx which is the event that all the 2Kt

long range connections in BB(0, t/2) and BB(x, t/2) are mapped by φ into vertices of
Λ(L) at distance at least t from each other and from the balls of radius t centered at 0
and at x in Λ(L). We work as in the previous proposition to estimate

P(Cx) ≥ (2L)d − 2Jt

(2L)d

(2L)d − 3Jt

(2L)d
· · · (2L)d − (2Kt/2 − 1)Jt

(2L)d
.

and we proceed in a similar way to get the thesis.

¤

2.3 Isoperimetric constant

Estimates of the distance between the random walk and the equilibrium measure involve
the isoperimetric constant. Thus we will get bounds for the edge isoperimetric constant

ι = min
|V |≤n/2

e(V, V {)
|V | , (2.7)

where n is the total number of vertices in the graph and e(V, V {) is the total number of
edges between V and V {.

The following result is essentially Theorem 6.3.2 of [11]: there it was stated that there
is a lower bound for ι on the complement of a set whose probability is o(1). We slightly
modify the proof in order to get a “bad set” of probability which is o(n−l) for l positive
integer.
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Proposition 2.9 Consider a random regular graph of n vertices and degree r. Then for
all l ∈ N there exists αl > 0 independent of n and r (one may choose αl = 1/10l) such
that P(ι ≤ αl) = o(n−l) ( P being the probability associated to the choice of the graph).

Proof. Let P (u, s) be the probability that there exists a subset of vertices U such that
|U | = u and e(U,U{) = s. Note that

P(ι ≤ αl) ≤
∑

u≤n/2

s≤αlu

P (u, s) ≤ Cαln
2 sup

1/αl≤u≤n/2

1≤s≤αlu

P (u, s).

By equations (6.3.2), (6.3.3), (6.3.4) and (6.3.5) in [11] we have the upper bound

P (u, s) ≤ C
√

neu

(
e2ru

s

)s (u

n

)γru
(

1− ru + s

rn

)(rn−ru−s)/2

,

where γ = 1
2

(
1− s

ru

)− 1
r . Let

Gs(u) = eu

(
e2ru

s

)s (u

n

)γru
(

1− ru + s

rn

)(rn−ru−s)/2

,

it suffices to prove that there exists αl > 0 such that for all 1 ≤ s ≤ αlu

sup
1/αl≤u≤n/2

Gs(u) = o(n−l−5/2).

First we write Gs(u) as a function of α = s/ru (note that 2/rn ≤ α ≤ αl/r):

Gs(u) = eu

(
e2

α

)αur (u

n

)ru( 1−α
2
− 1

r ) (
1− u

n
(1 + α)

) rn−ru
2

(1+α)
.

In [11] it is shown that Gs is convex, so it is enough to estimate it in n/2 and 1/αl. It is
easy to show that for some C ∈ (0, 1)

Gs(n/2) ≤ Cn,

while
Gs(1/αl) ≤ Cn

1− r
αl

(1/2−1/r)
.

Choosing αl < 1/(7 + 2l) (for instance αl = 1/10l) we get the thesis. ¤

Now we use this result to prove the analog for the BC small world. The ideas are taken
from Theorem 6.3.4 of [11].

Proposition 2.10 Consider the small world SL and its (random) edge isoperimetric con-
stant ι. Then for all l ∈ N if αl = 1/10l then P(ι ≤ αl) = o(L−dl).

Proof. First, we partition the set Λ(L) in n = b(2L)d/3c subsets of cardinality three
(let {Ij}n

j=1 be their collection) plus eventually one subset of cardinality one or two. We
associate to SL the random regular graph of degree three and n vertices: join j with k
whenever there exist x ∈ Ij and y ∈ Ik such that x is the long range neighbour of y.

Given A ⊂ Λ(L) define JA as the family of indices j such that Ij ∩ A 6= ∅. Note that
A ⊂ ⋃

j∈JA
Ij , |JA| ≥ |A|/3 and that if there is an edge between JA and J{

A in the random
regular graph then there is a long range connection between A and A{.

11



Suppose that |JA| ≤ n/2, then by Proposition 2.9, outside a set of probability o(n−l) =
o(L−dl) we have

e(A,A{)
|A| ≥ e(JA, J{

A)
|A| ≥ 3αl|JA|

|JA| .

In the case that |JA| > n/2 we exchange JA with J{
A and we are done. ¤

2.4 Convergence to equilibrium

Note by symmetry that the reversible distribution of the walk on SL is the uniform prob-
ability.

We recall that given a discrete time random walk on a finite set, with transition matrix
P and reversible measure the uniform measure π, a result of Sinclair and Jerrum [15] gives
an estimate of the speed of convergence to equilibrium. Indeed in this case P has all real
eigenvalues, namely 1 = λ0 > λ1 ≥ · · · ≥ λn−1. Let λ = max{|λi| : i = 1, . . . , n− 1}. It is
well known that λ < 1. Then for all t ∈ N0 := {n ∈ Z : n ≥ 0}

max
x,y

∣∣∣p(t)(x, y)− π(y)
∣∣∣ ≤ λt ≤ exp(−t(1− λ)),

where p(t)(x, y) is a t-step probability of the walk.
We are interested in estimates for λ. If λ = λ1 then the following (which is known as

Cheeger’s inequality (see [11, Theorem 6.2.1]), is useful

1
2
ι2

(
min

x,y:p(x,y)>0
p(x, y)

)2

≤ 1− λ1 ≤ 2ι. (2.8)

A sufficient condition for λ = λ1 is that all the eigenvalues are positive, which for instance
holds when we consider a lazy random walk, that is one which stays put with probability
1/2.

It is thus clear that for any small world S such that ι(S) > α, a random walk X̃t on S
with symmetric transition matrix PS such that λ = λ1,

max
x,y

∣∣∣P̃x
S(X̃t = y)− π(y)

∣∣∣ ≤ exp(−cα2t), (2.9)

where c depends only on min
x,y:pS(x,y)>0

pS(x, y). Moreover by Proposition 2.9 with αl = k/l

max
x,y

∣∣∣P̃x(X̃t = y)− π(y)
∣∣∣ ≤

∑

S

P(S)max
x,y

∣∣∣P̃x
S(X̃t = y)− π(y)

∣∣∣

≤ exp(−c(k/l)2t)P(ι > k/l) + 2P(ι ≤ k/l)

≤ exp(−c(k/l)2t) + o(L−dl). (2.10)

It is easy starting from (2.2) to prove that (2.9) and (2.10) still hold in continuous time
with a different constant in the exponential. Namely, one has to replace cα2

l with

γ := 1− e−cα2
l . (2.11)

in order to get

max
x,y

|Px
S(Xt = y)− π(y)| ≤ e−γt (2.12)

max
x,y

|Px(Xt = y)− π(y)| ≤ e−γt + o(L−dl). (2.13)
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Remark 2.11 We are able to prove that (2.9) and (2.10) hold for any random walk (not
just for the lazy one) with different constants. The key consists in coupling X̃ with a
random walk Ỹ = {Ỹt}t≥0 with transition matrix Q such that q(x, x) = (1 + p(x, x))/2,
q(x, y) = p(x, y)/2: the process Ỹ moves with X̃ when a Bernoulli random variable with
parameter 1/2 equals 1, otherwise it stay put.

3 Laplace transform estimates

Let TL = inf{s > 0 : Xs = Ys} (resp. T̃L) be the first time, after time 0, that two
independent continuous (resp. discrete) time random walks Xt and Yt on the random
graph S meet. Clearly the law of TL (with respect to either PS or P) depends on the
starting sites of the walkers. Without loss of generality, we assume that Y0 = 0 and
X0 = x (if we need to stress the dependence on L, we write X0 = xL).
We introduce the following (annealed) Laplace transforms in continuous time,

GL(x, λ) :=
∫ ∞

0
e−λtPx,0(Xt = Yt)dt =

∫ ∞

0
e−λtPx(X2t = 0)dt,

FL(x, λ) :=
∫ ∞

0
e−λtPx,0(TL ∈ dt),

where Px,0 denotes the product law of the two walkers. The corresponding quenched
transforms are, given S ∈ SL(Ω̃),

GL
S(x, λ) :=

∫ ∞

0
e−λtPx,0

S (Xt = Yt)dt, FL
S (x, λ) :=

∫ ∞

0
e−λtPx,0

S (TL ∈ dt).

We are interested in the asymptotic behaviour, as L → ∞, of TL/(2L)d, thus we study
the previous Laplace transforms with parameter λ/(2L)d.
The discrete time version of such Laplace transforms are defined in a similar way, but the
integrals are replaced by sums. With a slight abuse of notation we omit the superscript ∼
on the discrete time random walk when not necessary and we use Xt, Yt, TL, Pµ

S , GL
S(x, λ)

and FL
S (x, λ) both in discrete and continuos time version of the process: since the proofs

are similar, we detail the latter one and we only point out the differences.

3.1 Estimates for G

We first note that the evaluation of the limit of the annealed transforms can be done
considering only small worlds with large isoperimetric constants.
Given α > 0, we define

QL
α := (S ∈ SL(Ω̃) : ι(S) > α) (3.1)

Let K := {K ⊂ R : inf K > 0}.

Lemma 3.1 There exists α > 0 such that P(QL
α) L→∞→ 1. Moreover if

gL :=
∑

S∈(QL
α)c

P(S)
∫ ∞

0
e
− λt

(2L)d Px
S(X2t = 0)dt,

fL :=
∑

S∈(QL
α)c

P(S)
∫ ∞

0
e
− λt

(2L)d Px,0
S (TL ∈ dt),

then gL
L→∞→ 0 and fL

L→∞→ 0 (for each K ∈ K, uniformly for λ ∈ K).
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Proof. We choose α = 1/20: by Proposition 2.10 we have P(ι ≤ α) = o(L−2d). Moreover

0 ≤ fL ≤ gL ≤ P((QL
α)c)

∫ ∞

0
e
− λt

(2L)d dt = P((QL
α)c)

(2L)d

λ

L→∞→ 0.

¤

The limit of the sum defining G, from log log L (blog log Lc in discrete time) to infinity
does not depend on the sequence of small worlds, provided that they are chosen with large
isoperimetric constant. From now on, if not otherwise stated, we write tL = log log L and
QL = (S ∈ SL : ι(S) > 1/20).

Lemma 3.2 If for all L we choose S ∈ QL and xL ∈ Λ(L), then for all λ > 0

lim
L→∞

∫ ∞

tL

e
− λt

(2L)d PxL
S (X2t = 0)dt =

1
λ

.

Moreover, the convergence is uniform with respect to the choice of the sequences S ∈ QL,
xL ∈ Λ(L) (and of λ).

Proof. Note that
∫ ∞

tL

e
− λt

(2L)d PxL
S (X2t = 0)dt

=
∫ ∞

tL

e
− λt

(2L)d
1

(2L)d
dt +

∫ ∞

tL

e
− λt

(2L)d

(
PxL

S (X2t = 0)− 1
(2L)d

)
dt.

(3.2)

The limit of the first term is uniform in λ and it converges to 1/λ. Since S is chosen in
QL, by (2.12) there exists a constant γ = 1− exp(−cα2) > 0 such that the second sum on
the right hand side of (3.2) is smaller or equal to

∫ ∞

tL

e
− λt

(2L)d e−γ2tdt =
e−(λ/(2L)d+2γ)tL

λ/(2L)d + 2γ
,

which tends to 0 as L goes to infinity (uniformly with respect to all the choices of the
statement). ¤

Recall that, given a vertex x ∈ Λ(L), there is a unique vertex +(x) in the big world. If L is
sufficiently large, for a wide choice of S (i.e. S in a set with P-probability which tends to
1 as L increases to infinity), we have that GL

S(xL, λ/(2L)d) is close to 1/λ + Gev
B (+(xL)).

Theorem 3.3 Let

hL
S(λ) =

∣∣∣∣GL
S(xL, λ/(2L)d)− 1

λ
−Gev

B (+(xL))
∣∣∣∣ .

For all ε > 0 there exists L̃ such that for all λ, xL and L ≥ L̃ we have that QL∩ I(0, t2L) ⊂
(S : hL

S(λ) ≤ ε).
If dS(0, xL) > t2L then QL ⊂ (S : hL

S(λ) ≤ ε).

Proof. Note that

Gev
B (+(xL)) =

∫ ∞

0
P+(xL)
B (X2t = 0)dt, (3.3)
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thus

hL
S(λ) ≤

∣∣∣
∫ ∞

tL

e
− λt

(2L)d PxL
S (X2t = 0)dt− 1

λ

∣∣∣

+
∣∣∣∣
∫ tL

0
e
− λt

(2L)d
(
PxL

S (X2t = 0)dt− P+(xL)
B (X2t = 0)

)
dt

∣∣∣∣

+
∫ ∞

tL

P+(xL)
B (X2t = 0)dt +

∫ tL

0
(1− e

− λt

(2L)d )P+(xL)
B (X2t = 0)dt.

Since either S ∈ I(0, t2L) or dS(0, xL) > t2L, the probabilities of a meeting before time tL
on S and on the big world differ only if the number of exponential clocks Z(tL) before
time tL is at least t2L: by Chebyshev’s inequality the second term of the right hand side is
smaller than

2tLP(Z(tL) ≥ t2L) ≤ 2t2L
(t2L − tL)2

≤ ε/4

if L is large enough.
By Lemma 3.2, if S ∈ QL, the first term is smaller than ε/4 and by the Dominated
Convergence Theorem and (2.3), the last two terms are both smaller than ε/4 if L is
sufficiently large. ¤

Theorem 3.4 For all K ∈ K, ε > 0 there exists L̃ such that for all L ≥ L̃, xL ∈ Λ(L),
and λ ∈ K, ∣∣∣∣GL(xL, λ/(2L)d)− 1

λ
−Gev

B (+(xL))
∣∣∣∣ ≤ ε.

Proof. Recall that

GL(xL, λ/(2L)d) =
∑

S

P(S)GL
S(xL, λ/(2L)d).

By Theorem 3.3 there exists L̃ such that for all L ≥ L̃,
∣∣∣∣∣∣

∑

S∈QL∩I(0,t2L)

P(S)GL
S(xL, λ/(2L)d)− 1

λ
−Gev

B (+(xL))

∣∣∣∣∣∣
≤ ε/3.

Thus, since P((QL)c) and P(I(0, t2L)c) are both small if L is large, we may choose L̃ such
that for all λ ∈ K

∑

S∈(QL)c∪(I(0,t2L))c

P(S)
(

1
λ

+ Gev
B (+(xL))

)
≤ ε/3.

Now we only need to prove that
∑

S∈(QL)c∪I(0,t2L)c

P(S)GL
S(xL, λ/(2L)d) ≤ ε/3.
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By Lemma 3.1 we know that
∑

S∈(QL)c P(S)GL
S(xL, λ/(2L)d) ≤ ε/6 for all L ≥ L̃ and

λ > 0. Finally, by Proposition 2.7 and Lemma 3.2, for some C > 0 and L sufficiently large
∑

S∈QL∩I(0,t2L)c

P(S)GL
S(xL, λ/(2L)d)

=
∑

S∈QL∩I(0,t2L)c

P(S)
(∫ tL

0
e
− λt

(2L)d PxL
S (X2t = 0) +

∫ ∞

tL

e
− λt

(2L)d PxL
S (X2t = 0)

)

≤
(

tL +
1
λ

+ C

)
P(I(0, t2L)c) ≤ ε/6.

¤

3.2 From G to F

We note that if xL 6= 0 then GL
S(xL, λ/(2L)d) may be written as

∑
z

∫ ∞

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z). (3.4)

while GL
S

(
0, λ

(2L)d

)
is equal to

1 +
∑

z

∫ ∞

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

0
e
− λs

(2L)d P0,0
S (TL ∈ ds,Xs = z).

Define H1, H2 and H3 (which depend on S, xL and L) by

H1 :=
∑

z

∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ tL

0
e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

H2 :=
∑

z

∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

H3 :=
∑

z

∫ ∞

tL

e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z).

By Lemma 3.1, for all L sufficiently large and if the limit exists,

lim
L→∞

GL

(
xL,

λ

(2L)d

)
= lim

L→∞

∑

S∈QL

P(S)(H1 + H2 + H3). (3.5)

Clearly if xL = 0 for all L sufficiently large we only need to add 1 to the previous limit.
The same equality holds in discrete time, replacing the integral with the sum.
We now study each of the three summands separately, in order to obtain the limit of FL

as a function of the limit of GL.

Lemma 3.5 If S ∈ I(0, t2L) and xL ∈ Λ(L), for each ε > 0 there exists L̃ such that for
each L > L̃ then

∣∣∣∣H1 −
∫ tL

0
e
− λq

(2L)d P0
B(X2q = 0)dq

∫ tL

0
e
− λs

(2L)d PxL,0
S (TL ∈ ds)

∣∣∣∣ < ε. (3.6)
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This inequality also holds whenever dS(0, xL) > t2L. Moreover, uniformly with respect to
the choice of the sequence {xL}L and of λ,

∑

S∈(I(0,t2L))c

P(S)
∑

z

∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z) L→∞→ 0.

(3.7)

Proof. Since in H1, z is the site where the two random walks Xt and Yt meet at a
time s ∈ [0, tL]. Since S ∈ I(0, t2L) or dS(0, xL) > t2L,

∫ tL
0 Pz

S(X2q = z)dq differs from∫ tL
0 P0

B(X2q = 0)dq only if the number of the exponential clocks Z(2tL) before time 2tL is
larger than t2L; by Chebyshev’s inequality

∫ tL

0

∣∣Pz
S(X2q = z)− P0

B(X2q = 0)
∣∣ dq ≤ 4t2L

(t2L − 2tL)2
. (3.8)

which proves (3.6) since
∑

z

∫ tL
0 e

− λs

(2L)d PxL,0
S (TL = s,Xs = z)ds ≤ 1.

Note that for some C > 0
∑

S∈I(0,t2L)c

P(S)
∑

z

∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL = s, Xs = z)

≤ CtL P(I(0, t2L)c) FL(xL, λ/(2L)d),

(3.9)

which, by Proposition 2.7 and since FL(x, λ) ≤ 1 for all λ and x, goes to 0, uniformly in
xL and λ, as L goes to infinity. This proves (3.7). ¤

Lemma 3.6 For all K ∈ K, ε > 0 there exists L̃ such that for all L ≥ L̃, xL and λ ∈ K,
∣∣∣∣∣∣

∑

S∈QL

P(S)H2 −
∫ tL

0
e
− λq

(2L)d P0
B(X2q = 0)dq

∑

S∈QL

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds)

∣∣∣∣∣∣
≤ ε.

(3.10)

Proof. Note that
∑

S∈QL P(S)H2 can be written as

∑
z

∑

S∈QL∩I(z,t2L)

P(S)
∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

+
∑

z

∑

S∈QL∩I(z,t2L)c

P(S)
∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

= H2,1 + H2,2.

We prove that H2,2 → 0, indeed since exp(−λq/(2L)d)Pz
S(X2q = z) ≤ 1 then

H2,2 ≤ tL
∑

z

∑

S∈QL∩I(z,t2L)c

P(S)
{∫ log L

tL

e
− λs

(2L)d PxL,0
S (Xs = Ys = z)ds

+
∫ ∞

log L
e
− λs

(2L)d PxL,0
S (Xs = Ys = z)ds

}
=: H2,2,1 + H2,2,2.
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Note that H2,2,1 is smaller or equal to

tL
∑

S∈QL

P(S)
∫ log L

tL

e
− λs

(2L)d P0
S(X2s = xL)ds.

We write P0
S(X2s = xL) ≤ ∣∣P0

S(X2s = xL)− 1/(2L)d
∣∣+1/(2L)d, which by (2.12) is smaller

or equal to e−γs + 1/(2L)d. It is thus only a matter of computation to show that H2,2,1

goes to zero (uniformly in xL and λ) as L goes to infinity.
Now we consider H2,2,2. Note that PxL,0

S (Xs = Ys = z) = Pz
S(Xs = 0)Pz

S(Ys = xL). Write

Pz
S(Xs = 0) = Pz

S(Xs = 0)− 1
(2L)d

+
1

(2L)d

and do the same for Pz
S(Ys = xL). Using (2.12) and Proposition 2.7, we have that H2,2,2

is smaller or equal to

tL
∑

z

∑

S∈QL∩I(z,t2L)c

P(S)
∫ ∞

log L
e
− λs

(2L)d

(
e−γs +

1
(2L)d

)2

ds

≤ CtLLd M t2L

Ld

∫ ∞

log L
e
− λs

(2L)d

(
e−2γs +

1
(2L)2d

+
2e−γs

(2L)d

)
ds

which goes to 0 (uniformly in xL and λ ∈ K for each K ∈ K) as L →∞.
We now consider H2,1. We split

∑
z

∑

S∈QL∩I(z,t2L)

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

=
∑

S∈QL

∑
z

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z)

−
∑

z

∑

S∈QL∩I(z,t2L)c

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds,Xs = z).

the second summand converges to 0 by the same arguments we used to prove that H2,2

converges to 0; we replace the first one in H2,1 and we get
∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∑

S∈QL

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds).

If S ∈ I(z, t2L), by (3.8) then
∫ tL
0 |Pz

S(X2q = z) − P0
B(X2q = 0)|dq ≤ C/t2L. Thus for some

constant C > 0
∣∣∣
∫ tL

0
e
− λq

(2L)d Pz
S(X2q = z)dq

∑

S∈QL

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds)

−
∫ tL

0
e
− λq

(2L)d P0
B(X2q = 0)dq

∑

S∈QL

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds)

∣∣∣

≤
∫ tL

0
e
− λq

(2L)d

∣∣∣Pz
S(X2q = z)dq − P0

B(X2q = 0)
∣∣∣dq

∑

S∈QL

P(S)
∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds)

≤ C

t2L
FL(xL, λ/(2L)d)

which can be taken as small as we want if L is large. ¤
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Lemma 3.7 Let

aL
λ (S) := H2 −

∫ tL

0
e
− λq

(2L)d P0
B(X2q = 0)dq

∫ ∞

tL

e
− λs

(2L)d PxL,0
S (TL ∈ ds). (3.11)

Then aL
λ > 0 and aL

λ → 0 in probability (for each K ∈ K, uniformly in xL and λ ∈ K),
that is for all K ∈ K, ε > 0 and δ > 0 there exists L̃ such that for all L ≥ L̃ and xL

P(AL
ε (K)) := P(S : aL

λ (S) ≤ ε,∀λ ∈ K) ≥ 1− δ.

Proof. We first note that for all z and S, Pz
S(X2q = z) ≥ P0

B(X2q = 0), hence aL
λ (S) ≥ 0.

Suppose by contradiction that there exist K, ε > 0 and δ > 0 such that P(AL
ε (K)) ≤ 1−δ

infinitely often. Then infinitely often
∑

S

P(S)aL
λ (S) > δε.

By Lemmas 3.6 and 3.1, there exists L̃ such that
∑

S P(S)aL
λ (S) < δε for each L ≥ L̃, xL,

λ ∈ K, whence the contradiction. ¤

Lemma 3.8 For all K ∈ K and ε > 0 there exists L̃ such that for all L ≥ L̃, S ∈ QL, xL

and λ ∈ K, ∣∣∣∣H3 − 1
λ

FL
S (xL, λ/(2L)d)

∣∣∣∣ ≤ ε. (3.12)

Proof. Note that

H3 =
∑

z

∫ ∞

tL

(
Pz

S(X2q = z)− 1
(2L)d

)
e
− λq

(2L)d dq

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL = s,Xs = z)ds

+
∫ ∞

tL

e
− λq

(2L)d
1

(2L)d
FL

S (xL, λ/(2L)d)dq,

whose modulus of the first member does not exceed
∫ ∞

tL

e
− λq

(2L)d
−γq

∫ ∞

0
e
− λs

(2L)d PxL,0
S (TL = s)ds ≤ C exp(−γtL)

by (2.12). The claim follows since for L sufficiently large
∣∣∣∣

1
(2L)d

∫ ∞

tL

e
− λq

(2L)d dq − 1
λ

∣∣∣∣ < ε/2.

¤

Theorem 3.9 Let

bL
λ (S) :=

∣∣∣FL
S

(
xL,

λ

(2L)d

)
− Gev

B (+(xL)) + 1
λ − 1l{0}(+(xL))

Gev
B (0) + 1

λ

∣∣∣.

Then bL
λ → 0 in probability, for each K ∈ K uniformly in xL ∈ Λ(L) and λ ∈ K, namely

for all ε > 0 (S : bL
λ (S) ≤ ε,∀λ ∈ K) ⊃ QL ∩ I(0, t2L)∩AL

ε/2(K) for all L sufficiently large.
Moreover for all ε > 0, (S : bL

λ (S) ≤ ε, ∀λ ∈ K) ⊃ QL ∩ (S : dS(0, xL) > t2L)∩AL
ε/2(K) for

all L sufficiently large.
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Proof. Note that by Dominated Convergence Theorem and a change of variables, for each
ε > 0 and L > L̃ large enough

∣∣∣∣
∫ tL

0
e
− λq

(2L)d P0
B(X2q = 0)dq −Gev

B (0)
∣∣∣∣ < ε. (3.13)

Consider

GL
S(xL, λ/(2L)d)− 1l{0}(+(xL))−

(
Gev
B (0) +

1
λ

)
FL

S (xL, λ/(2L)d).

Writing GL
S(xL, λ/(2L)d) = 1l{0}(+(xL)) + H1 + H2 + H3, using Lemmas 3.5, 3.7, 3.8 and

(3.13) follows that the previous difference is smaller than ε when L is sufficiently large and
S ∈ QL ∩ I(0, t2L) ∩AL

ε/2(K) or S ∈ QL ∩ (S : dS(0, xL) > t2L) ∩AL
ε/2(K). By Theorem 3.3

we have the conclusion. ¤

Theorem 3.10 For each ε > 0, K ∈ K there exists L̃ such that for each L > L̃, λ ∈ K
and for each sequence {xL}L such that xL ∈ Λ(L),

∣∣∣FL

(
xL,

λ

(2L)d

)
− Gev

B (+(xL)) + 1
λ − 1{0}(+(xL))

Gev
B (0) + 1

λ

∣∣∣ ≤ ε.

Proof. To keep notation simple we deal only with the case +(xL) 6= 0 (the case +(xL) = 0
is completely analogous). Let

QL
ε,λ =

{
S : bL

λ ≤ ε
}

, (3.14)

(bL
λ was defined in Theorem 3.9). By Theorem 3.9 there exists L̃ such that for all L ≥ L̃

we have P(QL
ε,λ) > 1− ε.

Then since both FL
S (xL, λ/(2L)d) and (Gev

B (+(xL))+ 1/λ)/(Gev
B (0)+ 1/λ) are in [0, 1], for

all L ≥ L̃

∑

S

P(S)

∣∣∣∣∣F
L
S

(
xL,

λ

(2L)d

)
− Gev

B (+(xL)) + 1
λ

Gev
B (0) + 1

λ

∣∣∣∣∣ ≤ 2P((QL
ε,λ)c) + ε ≤ 3ε.

¤

Remark 3.11 Clearly if

Gev
B (+(xL)) + 1

λ − 1{0}(+(xL))

Gev
B (0) + 1

λ

has a limit f(λ) then we have that FL
(
xL, λ

(2L)d

)
has limit f(λ). Regarding FL

S we can
have existence of the limit provided that the sequence of small worlds S is chosen wisely.
Indeed let Kn = [1/n,+∞). For all n we know that there exists Ln such that P(S :
bL
λ (S) ≤ 1/n,∀λ ∈ Kn) for all L ≥ Ln. Thus if for all L ∈ [Ln, Ln + 1) we choose

S ∈ (S : bL
λ (S) ≤ 1/n,∀λ ∈ Kn) we get that also FL

S

(
xL, λ

(2L)d

)
has limit f(λ) for all

λ > 0 (uniformly with respect to xL if (Gev
B (+(xL)) + 1

λ − 1{0}(+(xL)))/(Gev
B (0) + 1

λ)
converges uniformly with respect to xL).

Remark 3.12 In discrete time one can show the same results with 2tL instead of t2L and
constant G̃B(+(xL)). Since at each time each random walk moves once, they cannot meet
in a time smaller than a half of the initial distance, and the proofs are similar but easier.
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4 Hitting time of random walks

4.1 The limit in law of TL/(2L)d

It is clear that, if Gev
B (+(xL)) has a limit as L goes to infinity, then Theorems 3.9 and 3.10

provide the results for the limit of FL
S (xL, λ/(2L)d) and FL(xL, λ/(2L)d). The limit of

Gev
B (+(xL)) exists for instance in two particular cases: xL = x for all L sufficiently large,

or |xL| → ∞. In the first case clearly limL→∞Gev
B (+(xL)) = Gev

B (+(x)).
In the second case, Gev

B (+(xL)) converges to 0 by the Dominated Convergence Theorem.
Similar remarks hold in discrete time case.
We are now ready to prove Theorem 1.1.
Proof. We prove the claim in continuous time. The proof in discrete time works in a
similar way.

1. By Theorem 3.10 we know that for all λ > 0

FL

(
xL,

λ

(2L)d

)
L→∞→ λGev

B (+(x)) + 1− λ1{0}(+(x))
λGev

B (0) + 1
. (4.1)

Since for each L, FL is a monotone function of λ and so is the right hand side of
(4.1), which is also continuous in λ, it follows that (4.1) holds uniformly in λ ≥ 0.

Thus, if x 6= 0, TL/(2L)d converges in law (with respect to Px,0) to

Gev
B (+(x))
Gev
B (0)

δ0 +
(

1− Gev
B (+(x))
Gev
B (0)

)
exp

(
1

Gev
B (0)

)
,

while if x = 0 then it converges to
(

1
Gev
B (0)

)
δ0 +

1
Gev
B (0)

exp
(

1
Gev
B (0)

)
.

Then (1.2) and (1.3) hold, and by monotonicity they hold uniformly in t ≥ 0.

2. It follows as in the previous step using the fact that Gev
B (+(xL)) → 0 uniformly in

{xL}L such that |xL| ≥ αL. Indeed Gev
B (+(xL)) =

∫∞
0 P0

B(X2t = +(xL))dt goes to
0 by the Dominated Convergence Theorem since P0

B(X2t = +(xL)) ≤ P0
B(X2t = 0)

and
∫∞
0 P0

B(X2t = 0)dt ≤ GB(0) < ∞.

3. As said in Remark 3.11, choosing for all L ∈ [Ln, Ln+1) the corresponding set of
small worlds S ∈ HL = (bL

λ (S) ≤ 1/n,∀λ ∈ [1/n,∞)), we have that for all λ > 0

FL
S

(
xL,

λ

(2L)d

)
L→∞→ λGev

B (+(x)) + 1
λGev

B (0) + 1
. (4.2)

This, by an argument as in step 1, proves that

PxL,0
S

( TL

(2L)d
> t

)
L→∞→

(
1− Gev

B (+(x))
Gev
B (0)

)
exp

(
− t

Gev
B (0)

)
,

uniformly in t ≥ 0. Thus if L ∈ [Ln, Ln+1), the event in (1.5) contains HL and
P(HL) n→∞→ 1 implies the assertion.
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4. Choosing S as in previous step, uniformly with respect to {xL} such that either
|xL| ≥ αL or dS(0, xL) ≥ αL we get

PxL,0
S

( TL

(2L)d
> t

)
L→∞→ exp

(
− t

Gev
B (0)

)
,

uniformly in t ≥ 0. This proves the claim.

¤

Remark 4.1 Theorem 1.1.4 holds if we fix 0 ∈ Λ(L) and we consider the supremum over
all possible xL ∈ Λ(L) such that dS(xL, 0) ≥ αL. We can repeat the same proof to show that
the result still holds if we take the supremum over all possible pairs (xL, yL) ∈ Λ(L)×Λ(L)
such that dS(xL, yL) ≥ αL. Namely, let αL > t2L and t ≥ 0, then for all ε > 0

P
(
S ∈ SL(Ω̃) : sup

(xL,yL)∈Λ(L)2:dS(xL,yL)≥αL

∣∣∣PxL,yL
S

(
TL

(2L)d
> t

)

− exp
(
− t

Gev
B (0)

) ∣∣∣ > ε
)

L→∞→ 0, (4.3)

We observe that the same technique we employed to determine the asymptotic be-
haviour of the first encounter time of two random walkers, one starting at xL and the
other at 0, may be used to obtain similar results for the first time that a single random
walker starting at xL hits 0.

Theorem 4.2 Let WL be the first time that a random walk starting at xL hits 0 either in
discrete or in continuous time. Then Theorem 1.1 still holds with constant GB(x) instead
of Gev

B (x).

Proof. (Discrete time) The proof is analogous to the one of Theorem 1.1 but easier, since
we consider the return time of one single walk. Notice that the constant is the expected
number of visits to 0 of the discrete time random walk on the big world starting at 0.
(Continuous time) A standard approach (for instance use Slutsky theorems) allows to get
the result starting from the one in discrete time. ¤

Remark 4.3 As a corollary of Theorems 1.1 and 4.2 one can get a similar convergence
result for random walkers starting from the stationary distribution π. The key is that the
initial distance between the random walk and the origin (resp. between two random walks)
is larger than t2L with probability which converges to 1 as L goes to infinity, so that we
are under hypothesis of Theorem 1.1 either 2), in the annealed case, or 4) in the quenched
one.

5 Coalescing random walk on small world

The goal of this section is to prove a convergence result for coalescing random walk of n
particles on BC small world. From now on we work on the continuous time process.
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Let I(n) = {{x1, . . . , xn} : xi ∈ Λ(L), xi 6= xj}. Given A ∈ I(n), let {(XS
t (xi))t≥0}xi∈A

be a family of independent random walks on small world S ∈ SL such that XS
0 (xi) = xi.

We define for each (xi, xj) ∈ Λ(L)× Λ(L) and S ∈ SL

τS(i, j) := inf{s > 0 : XS
s (xi) = XS

s (xj)} (5.1)

and for each A ∈ I(n)

τS(A) := inf
{xi,xj}⊆A

{τS(i, j)}. (5.2)

Let {ξS
t (A)}t≥0 be the coalescing random walk starting from A ∈ I(n) on S ∈ SL, that is

the process of n independent random walks subjected to the rule that when two particles
reach the same site they coalesce to one particle. Let |ξS

t (A)| be the number of particles of
ξS
t (A) at time t. When not necessary we omit the dependence on S and we simply write
{ξt(A)}t≥0, Xt(xi), τ(i, j) and τ(A).
The Kingman’s coalescent is a Markov process (Dt)t≥0 on {0, 1, . . . , n} with transition
mechanism

n → n− 1 at rate
(

n

2

)
.

The law Pn(Dt = k) = qn,k(t) is given by

qn,k(t) =
n∑

j=k

(−1)j+k(2j − 1)(j + k − 2)!
(
n
j

)

k!(k − 1)!(j − k)!
(
n+j−1

j

) exp
(
−t

(
j

2

))
;

q∞,k(t) =
∞∑

j=k

(−1)j+k(2j − 1)(j + k − 2)!
k!(k − 1)!(j − k)!

exp
(
−t

(
j

2

))
.

see for instance [7], [16].
We define

AL(h, n) :=
{

A ∈ In : d(xi, xj) > h, for all i 6= j
}

(5.3)

AL
S(h, n) :=

{
A ∈ In : dS(xi, xj) > h, for all i 6= j

}
(5.4)

the set of n-uples with distance larger than h respectively on Λ(L) and on a fixed small
world S. Notice that AL

S(h, n) ⊆ AL(h, n) for all S ∈ SL. Given A ∈ AL(h, n), we
introduce

D(A) :=
{

S ∈ EL : A ∈ AL(h, n) \ AL
S(h, n)

}
. (5.5)

Remember that we focus on the nearest neighbor case, but all results can be extended to
the case with neihbourhood structure given by N∞

m .
Given a probability measure µ on Λ(L)n, we denote by Pµ

S the law of the coalescing random
walk on S with initial probability µ and transitions ruled by PS . If µ = δA with |A| = n,
we write PA

S .
We begin from n particles in A ∈ AL(h, n). We prove that by taking a particular h := hL

and L large we get that A ∈ AL
S(h, n) with large probability. We assume

i) hL ≥ t2L ii) lim
L→∞

MhL

(2L)d
= 0 (5.6)

where M = (2m + 1)d or M = 2d + 1 depending on the neighbourhood structure we work
with. Note that hypothesis (5.6) are satisfied if hL = t2L.
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Lemma 5.1 If (5.6) holds, for each n < ∞, ε > 0 there exists L̃ such that for each L > L̃
and A ∈ AL(hL, n),

P
(D(A)

)
< ε. (5.7)

Proof. Let A ∈ AL(hL, n). If S ∈ D(A), then there exists at least one pair of elements
(xi, xj) ∈ A×A, i 6= j, such that dS(xi, xj) < hL. By (5.5) and (2.6)

P
(D(A)

)
=P

(
S ∈ EL : ∃(xi, xj) ∈ A×A : dS(xi, xj) ≤ hL

) ≤ n2 CMhL

Ld
.

Since n is fixed, the claim follows by (5.6) (ii). ¤

Therefore given A ∈ AL(hL, n) with large probability A ∈ AL
S(hL, n).

By Remark 4.1, if αL ≥ t2L, there exists a sequence {H̃L}L with H̃L ⊆ SL such that

P(H̃L) L→∞→ 1 and for each sequence {SL}L with SL ∈ H̃L

sup
(xL,yL):dS(xL,yL)≥αL

∣∣∣∣PxL,yL
S

(
TL

(2L)d
> t

)
− exp

(
− t

Gev
B (0)

)∣∣∣∣
L→∞→ 0 (5.8)

Note that (5.8) still holds for the sequence {QL ∩ H̃L}L and P(QL ∩ H̃L) L→∞→ 1. Let
HL := H̃L ∩QL.

The following lemma states that, starting from 4 particles in a set of small world with
large probability, when two particles meet the others are distant.

Lemma 5.2 Assume (5.6). For each ε > 0 there exists L̃ such that for each L > L̃,
S ∈ HL and A ∈ AL

S(hL, 4),
∫ ∞

0
PA

S

(
τ(1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL

)
< ε, (5.9)

∫ ∞

0
PA

S

(
τ(1, 2) ∈ ds, dS(Xs(x3), Xs(x4)) ≤ hL

)
< ε. (5.10)

Proof. We prove (5.9); (5.10) can be proved in a similar way. We split the integral in two
parts. By Theorem 1.1.4 and by (5.6) (ii), for each ε > 0 there exists L̃ such that for each
L > L̃

∫ d
γ

log(2L)

0
PA

S

(
τ(1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL

) ≤
∫ d

γ
log(2L)

0
PA

S

(
τ(1, 2) ∈ ds

)

= 1− exp
(
− d log(2L)

γGev
B (0)(2L)d

)
+ ε/6 < ε/3. (5.11)

The second part is
∫ ∞

d
γ

log(2L)
PA

S

(
τ(1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL

)

≤
∫ ∞

d
γ

log(2L)

∑

y∈Λ(L)

PA
S

(
τ(1, 2) ∈ ds,Xs(x1) = y)

∑

z:dS(y,z)≤hL

∣∣∣Px3
S (Xs = z)− 1

(2L)d

∣∣∣

+
∫ ∞

d
γ

log(2L)

∑

y∈Λ(L)

PA
S

(
τ(1, 2) ∈ ds,Xs(x1) = y)

∑

z:dS(y,z)≤hL

1
(2L)d

:= I(1) + I(2).
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Since the number of sites z such that dS(y, z) ≤ hL is at most MhL for each y ∈ Λ(L), for
each L large enough we get

I(2) ≤
∫ ∞

d
γ

log(2L)
PA

S

(
τ(1, 2) ∈ ds

) MhL

(2L)d
= Px1,x2

S

(
TL >

d

γ
log(2L)

) MhL

(2L)d
≤ ε/3 (5.12)

by (5.6) (ii). Note that if s ≥ d
γ log(2L) then e−γs ≤ 1

(2L)d ; therefore by (2.12) then I(1)
is smaller or equal to

∫ ∞

d
γ

log(2L)

∑

y∈Λ(L)

PA
S

(
τ(1, 2) ∈ ds,Xs(x1) = y

) ∑

z:dS(y,z)≤hL

e−γs

≤
∫ ∞

d
γ

log(2L)

∑

y∈Λ(L)

PA
S

(
τ(1, 2) ∈ ds,Xs(x1) = y

) MhL

(2L)d
< ε/3 (5.13)

and the claim follows by (5.11), (5.12) and (5.13). ¤

Remark 5.3 Since S ∈ HL, Lemma 5.2 still holds if for all A ∈ AL(hL, n) we choose
S ∈ HL ∩ D(A)c. Moreover by Lemma 5.1 and (5.8) such a set has probability which
converges to 1 as L goes to infinity.

We prove that the number of particles in the rescaled coalescing random walk converges
in law to the number of particles of a Kingman’s coalescent. A similar approach has been
used for [7, Theorem 5] and in [9].
We work by induction on the number of particles n. If n = 2, the induction basis is given
by Theorem 1.1.4. The following lemma shows that the assertion is true before the first
collision of two particles.

Lemma 5.4 Assume (5.6). For each n ∈ N, T > 0, A ∈ AL(hL, n), and ε > 0 there
exists L̃ such that for each L > L̃, S ∈ HL ∩ D(A)c and 0 ≤ t ≤ T ,

∣∣∣PS

(|ξsLt(A)| = n
)− exp

(
−

(
n

2

)
t
)∣∣∣ < ε

where sL := (2L)dGev
B (0).

Proof. Note that PS(|ξsLt(A)| = n) and exp
(
− (

n
2

)
t
)

are non-increasing monotone t

functions. We define, for each pair {i, j} ⊆ {1, 2, . . . , n},

Ht(i, j) := {τ(i, j) ≤ sLt}; qt = qt(A) := P(τ(A) ≤ sLt).

For all S ∈ HL ∩ D(A)c,

PA
S

(
Ht(i, j)

)
= PA

S

(
τ = τ(i, j) ≤ sLt

)
+

∑

{k,l}6={i,j}

∫ sLt

0
PA

S

(
τ = τ(k, l) ∈ ds, τ(i, j) ≤ sLt

)

(5.14)
Each term of the sum on the right hand side is equal to

∫ sLt

0

∑
y,z

PA
S

(
τ = τ(k, l) ∈ ds,Xs(xi) = y, Xs(xj) = z, τ(i, j) ≤ sLt

)
.
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By Lemma 5.2 for all L sufficiently large
∫ sLt

0

∑
y

∑

z:dS(y,z)≤hL

PA
S

(
τ = τ(k, l) ∈ ds,Xs(xi) = y, Xs(xj) = z, τ(i, j) ≤ sLt

)

≤
∫ ∞

0
PA

S

(
τ = τ(k, l) ∈ ds, dS(Xs(xi), Xs(xj)) ≤ hL

) ≤ ε/(8n4)

for all choices of S ∈ HL ∩ D(A)c, {i, j} ⊆ {1, . . . n} and t ≥ 0.
We are left with evaluating

∫ sLt

0

∑
y

∑

z:dS(y,z)>hL

PA
S

(
τ = τ(k, l) ∈ ds,Xs(xi) = y, Xs(xj) = z

)
Py,z

S

(
TL ≤ sLt− s

)
.

By Remark 4.1, |Py,z
S (TL ≤ sLt− s)− 1 + exp(−t + s/sL)| < ε/(8n4) for all L sufficiently

large and for all choices of S ∈ HL ∩ D(A)c, y and z such that dS(y, z) ≥ hL, 0 ≤ s ≤ t.
Then evaluate the remaining part of the integral, it does not differ by more than ε/(8n4)
from

∫ sLt

0

∑
y,z

PA
S

(
τ = τ(k, l) ∈ ds,Xs(xi) = y,Xs(xj) = z

)(
1− exp(−t + s/sL)

)

=
∫ sLt

0
PA

S

(
τ = τ(k, l) ∈ ds

)(
1− exp(−t + s/sL)

)
. (5.15)

Integrating by parts and changing variables, we get
∫ sLt

0
PA

S

(
τ = τ(k, l) ∈ ds

)(
1− exp(−t + s/sL)

)

=
∫ sLt

0
PA

S

(
τ = τ(k, l) ≤ s

) 1
sL

exp
(
− t + s/sL

)
ds

=
∫ t

0
PA

S

(
τ = τ(k, l) ≤ sLu

)
exp

(
− (t− u)

)
du. (5.16)

For all L sufficiently large |PA
S

(
Ht(i, j) ≤ t)− (1− e−t)| ≤ ε/(4n2) for all S ∈ HL ∩D(A)c,

(i, j) ⊆ {1, . . . n} and t ≥ 0. Summing over all pairs of i and j on (5.14) and using (5.16)

q(t) =
∑

{i,j}
PA

S

(
τ = τ(i, j) ≤ sLt

)

=
∑

i,j

PA
S

(
Ht(i, j)

)−
∑

{i,j}

∑

{k,l}6={i,j}

∫ sLt

0
PA

S

(
τ = τ(k, l) ∈ ds, τ(i, j) ≤ sLt

)

=
(

n

2

)
(1− e−t)−

((
n

2

)
− 1

)
e−t

∫ t

0
q(s)esds + R

where the modulus of R, for all L sufficiently large for all choices of S ∈ HL ∩ D(A)c, y
and z such that dS(y, z) ≥ hL and for all 0 ≤ t ≤ T is smaller than ε/2. We know (see [9,
Lemma 2]) that if

uL(t) =
(

n

2

)
(1− e−t)−

((
n

2

)
− 1

)
e−t

∫ t

0
uL(s)esds + R
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then for L large enough uL(t) does not differ by more than ε/2 from u(t), the solution of

u(t) =
(

n

2

)
(1− e−t)−

((
n

2

)
− 1

)
e−t

∫ t

0
u(s)esds

which is

u(t) = 1− exp
(
−

(
n

2

)
t
)

and the claim follows. ¤

We are now ready to prove the final result.

Proof of Theorem 1.2.
We fix A ∈ AL(hL, n) and we show (1.8) by induction in n. Note that if k = n the proof
is given by Lemma 5.4.
Theorem 1.1 gives the result when n = 2 for all k (that is k = 2) and Lemma 5.4 gives the
result for n and k = n.
Suppose the result holds for n− 1 for all k. We have to prove it for n and k < n.

PA
S (|ξsLt(A)| < k) =

∫ sLt

0
PA

S (τ ∈ ds, |ξsLt(A)| < k)

=
∫ sLt

0

∑

B∈I(n−1)

PA
S (τ ∈ ds, ξs(A) = B)PB

S (|ξsLt−s(B)| < k). (5.17)

Using Lemma 5.2, if B /∈ AL
S(hL, n− 1), for all L sufficiently large

∫ sLt

0

∑

B/∈AL
S (hL,n−1)

PA
S (τ ∈ ds, ξs(A) = B)PB

S (|ξsLt−s(B)| < k)

≤
∑

{i,j}

∑

{k,l}6={i,j}

∫ sLt

0
PA

S (τ(i, j) ∈ ds, dS(Xs(xk), Xs(xl) ≤ hL) < ε/3

since n is fixed, for each S ∈ HL ∩ D(A)c, t ≥ 0.
Changing variables, setting s = sLv, then (5.17) is equal to

∫ t

0

∑

B∈AL
S (hL,n−1)

PA
S (τ ∈ sLdv, ξsLv(A) = B)PB

S (|ξsL(t−v)(B)| < k) + R.

where the modulus of R is smaller than ε/3 for all L sufficiently large for all choices of
A ∈ AL(hL, n), S ∈ HL∩D(A)c, 0 ≤ t ≤ T . By induction hypothesis, for all L sufficiently
large ∣∣PB

S (|ξsL(t−s)(B)| < k)− Pn−1(Dt−s < k)
∣∣ < ε/3

for B ∈ AL
S(hL, n− 1) and for each S ∈ HL ∩D(A)c and 0 ≤ s ≤ t. Thus the last term of

the previous integral differs at most by ε from
∫ t

0
PA

S

(
τ

sL
∈ dv

)
Pn−1(Dt−v < k) = −

∫ t

0
PA

S

( τ

sL
≤ v

) d

dv
Pn−1(Dt−v < k)dv

27



after an integration by parts. Note that v → Pn−1(Dt−v = k) is a continuous function;
therefore by definition of Kingman’s coalescent and because the right hand side Pn(Dt < k)
is finite, we get (see [7])

PA
S (|ξsLt(A)| < k) =

k−1∑

i=1

∫ t

0

(
n

2

)
exp

(
−

(
n

2

)
v
)
Pn−1(Dt−v = k)dv + R

=
k−1∑

i=1

Pn(Dt = k) + R = Pn(Dt < k) + R

where the modulus of R, for all L sufficiently large, for all choices of S ∈ HL ∩D(A)c and
0 ≤ t ≤ T is smaller than ε. ¤

Remark 5.5 In Theorem 1.2 we fix A ∈ AL(hL, n) and the result holds in a sequence
of small world graphs depending on A. One can prove that the same result holds for the
sequence (HL)L uniformly in AL

S(hL, n) and S ∈ HL.

Remark 5.6 By summing over all realizations of the small world graph, one can get the
annealed result as a corollary of Theorem 1.2.
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Appendix

A Comparison with the d-dimensional torus

As observed in the introduction, the rescaling factor is (2L)d both on the d-dimensional
torus and on the small world if d ≥ 3. In order to understand if two particles meet faster,
in continuous time we need to compare Gev

Zd(0) with Gev
B (0). Proposition A.1 gives some

information in this direction.

Proposition A.1 Suppose d ≥ 3.
i) There exists β1 > 0 such that Gev

Zd(0) < Gev
B (0) for each β ∈ [β1, 1].

ii) There exists β2 > 0 such that Gev
Zd(0) > Gev

B (0) for each β ∈ (0, β2].

29



Proof. Since Gev
B (0) = GB(0)/2 and Gev

Zd(0) = GZd(0)/2, we prove that GZd(0) is smaller
(resp. larger) than GB(0) for β large (resp. small) enough.
i) Since P0

B(X2n = 0) ≥ β2n we get

GB(0) ≥
∞∑

n=0

β2n =
1

1− β2
.

and the claim follows by taking β close to 1 since GZd(0) < ∞ if d ≥ 3.
ii) Given an irreducibile Markov chain (Y, Q), let

Ĝ(z) =
∞∑

n=0

P0(Yn = 0)zn; F̂ (z) =
∞∑

n=0

P0(Yn = 0, Ys 6= 0 for all s < n)zn.

By [18, Proposition 9.10], there exists r > 0 and a function Φ(·) such that

Ĝ(z) = Φ(zĜ(z)), z ∈ [0, r). (A.1)

Moreover there exists Φ′ and Φ
′′

and Φ(·) is strictly increasing and strictly convex.
Let P be the transition matrix on the big world defined in Section 2.2 in nearest neighbor
case. We denote by ΦZd∗Z2

, ΦZd and ΦZ2 the functions which satisfy (A.1) respectively for
the Markov chain (X, P ) on the big world, for the simple random walk on Zd and for the
simple random walk on Z2.
The function ΦZ2(t) can be computed explicitly,

ΦZ2(t) =
1
2
(1 +

√
1 + 4t2).

By [18, Theorem 9.19]

ΦZd∗Z2
(t) =

1
2
(1 +

√
1 + 4β2t2) + ΦZd((1− β)t)− 1.

By choosing t = ĜZd∗Z2
(1) we get ΦZd∗Z2

(t) = t by (A.1). We denote by Ĝβ = ĜZd∗Z2
(1) =

GB(0), then

Ĝβ = −1
2

+
1
2

√
1 + 4β2Ĝ2

β + ΦZd((1− β)Ĝβ).

Let Ĝ = ĜZd(1) = GZd(0). By (A.1), Ĝ is a fixed point of ΦZd , then lim
β→0

Ĝβ = Ĝ. Notice

that as β → 0 √
1 + 4β2Ĝ2

β = 1 + 2β2Ĝ2
β + o(β3Ĝ3

β).

and by Taylor series of ΦZd centered at Ĝ with Lagrange form of the remainder:

ΦZd((1− β)Ĝβ) = ΦZd(Ĝ) + Φ′Zd(Ĝ)
[
(1− β)Ĝβ − Ĝ

]
+

1
2
Φ
′′
Zd(y)(y − Ĝ)2,

where y is between Ĝ and (1− β)Ĝβ. Two useful formulas for Φ′ and Φ
′′

can be found in
[18, p.99]:

Φ′(t) = 1/(z + Ĝ(z)/Ĝ′(z)), Φ
′′
(t) = (Ĝ(z)/(Ĝ(z) + zĜ′(z)))3F̂

′′
(z),

where z is such that t = zĜ(z). If t = Ĝ then

Φ′Zd(Ĝ) =
Ĝ′

Ĝ′ + Ĝ
,
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where Ĝ′ = d
dz ĜZd(z)|z=1− . By convexity Φ

′′
> 0. Moreover

Φ
′′
Zd(Ĝ) =

( Ĝ

Ĝ + Ĝ′

)3
F̂
′′
(1).

Therefore

Ĝβ = β2Ĝ2
β + Ĝ +

Ĝ′

Ĝ′ + Ĝ

[
Ĝβ − Ĝ− βĜβ

]
+

1
2
Φ
′′
Zd(y)(y − Ĝ)2 + o(β3Ĝ3

β)

Since (y − Ĝ)2 ≤ (Ĝβ − Ĝ− βĜβ)2 we get

(Ĝβ−Ĝ)
Ĝ

Ĝ′ + Ĝ
≤ β2Ĝ2

β−βĜβ
Ĝ′

Ĝ′ + Ĝ
+Cβ

[
(Ĝβ−Ĝ)2+β2Ĝ2

β−2βĜβ(Ĝβ−Ĝ)+o(β3Ĝ3
β)

]

where Cβ = 1
2Φ

′′
Zd(y)(y − Ĝ)2. Thus

(Ĝβ − Ĝ)
[ Ĝ

Ĝ′ + Ĝ
+ Φ

′′
Zd(y)βĜβ

]
≤ −βĜβ

Ĝ′

Ĝ′ + Ĝ
+ Cβ(Ĝβ − Ĝ)2 + β2Ĝ2

β(1 + Cβ + o(βĜβ)

(Ĝβ − Ĝ)
[ Ĝ

Ĝ′ + Ĝ
+ Φ

′′
Zd(y)βĜβ − Cβ(Ĝβ − Ĝ)

]
≤ −βĜβ

[ Ĝ′

Ĝ′ + Ĝ
+ βĜβ(1 + Cβ + o(βĜβ)

]

By continuity of Φ
′′
Zd we get that Φ

′′
Zd(y)

β→0→ Φ
′′
Zd(1), then the coefficient of (Ĝβ − Ĝ) on

the left hand side as β → 0 is asymptotically Ĝ/(Ĝ + Ĝ′), which is strictly positive; the
coefficient of βĜβ on the right hand side is asymptotically −Ĝ′/(Ĝ+ Ĝ′), which is strictly
negative and the claim follows. ¤
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