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testo in bianco

If you have an apple and I have an apple,

and we exchange apples,

we both still only have one apple.

But if you have an idea and I have an idea,

and we exchange ideas,

we each now have two ideas.

(George Bernard Shaw)
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Introduction

The starting point for this thesis is a concrete problem: to measure, using

statistical models, aspects of subjective perceptions and assessments and to

understand their dependencies. The objective of the research is to study the

statistical properties of some estimators of the parameters of regression mod-

els with variables affected by measurement errors. These models are widely

used in surveys based on questionnaires developed to detect subjective assess-

ments and perceptions with Likert-type scales. It is a highly debated topic,

as many of the relevant aspects in this field are not directly observable and

therefore the variables used to estimate them are affected by measurement

errors. The models with measurement errors were very thorough in litera-

ture. Already addressed in the middle of last century by Fuller (1987), this

theme has been widely echoed by many researcher that investigated different

aspects of this problem, with respect to their specific applications.

In literature we can identify several areas of research, based on the dif-

ferent approaches that the authors have with this topic; in this work we will

developed two of the most used. Obviously, according to the approach cho-

sen, different models were proposed to estimate the relationships between

variables affected by measurement error. After exposing the main features

of these models, the thesis focuses on providing an original contribution to

comparative analysis of the two presented approaches.

We started from a preliminary critical reading of the methodological lit-

erature on three specific multivariate models used in the context outlined

above: the Measurement Error Model (MEM), the Item Response Model

(IRM) and the Structural Equation Model (SEM).

In the first Chapter, we will present a review of major works concerning

iv



INTRODUCTION v

the general theme of MEMs, inspired by one of the basic texts (Fuller, 1987),

then integrating with more recent theoretical contributions (Carroll et al.,

2006). We will present only some basic regression models, mainly linear with

a little hint at the nonlinear case, and two methods of estimation (Regression-

calibration and SIMEX).

In the second Chapter, we will deepen two more modern approaches to

the problem of measurement error in social sciences, the IRM and the SEM.

After a brief overview of the literature, we will present some famous mod-

els for each approach, to focus, in the last sections of the chapter, on two

different estimation procedures. The first procedure, named One-step, con-

siders simultaneously all the parameters involved in the complete model for

the hypothesized latent and observed variables (using the SEM). The second

procedure, named Two-step, starts obtaining, by the observed variables, the

measures associated to latent variables (using the IRM). In a second phase,

we derive parameter estimates of the regression model assumed for the la-

tent variables, using in its specification the measures of the first step and

considering that they are affected by measurement errors (using the MEM).

The properties of the Two-step procedure have not yet been adequately

detailed in the literature and we did not find significant contributions in this

regard. The simulation study will indicate a possible analysis strategy, that

could provide some useful prescriptive about it. One of the most innovative

aspects of the proposed procedure concerns the method of the measurement

error inclusion in the second step. Some authors, after obtaining the measures

in the first step, estimate the regression model without taking into account

that the model variables are affected by measurement error.

The simulation study want to evaluate the impact of this measurement

error in the case of standard regression and it assesses whether the Two-step

procedure is preferable compared to the One-step procedure. For comparison,

we will consider the loss of efficiency and accuracy of the Two-step procedure,

but also evaluating that it allows better control in both phases: measures

construction and regression interpretation.

Another original aspect of the thesis concerns the reliability index used

to estimate the variance of measurement error: the Rasch Person Reliability
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Index. This index is still not widely used in literature, but it can conceptually

be an element of connection between the first and second stage of Two-step

procedure, as it is calculated together with the measures in the first step and

it determines the magnitude of measurement error in the second one.

In the final Chapter, we will present the simulation study, where we com-

pare the results obtained through an articulated process of analysis. This

original comparison, conducted with reference to the usual properties of esti-

mators (bias, standard error and mean square error) is of particular interest

especially from the practical point of view. In fact, we know that, compared

to the One-step, the Two-step procedure allows greater flexibility of analysis

and possibility of verification of hypothesized relations, especially for more

complex models consisting of several latent variables and observed variables,

but it is less precise and it is, in some extend, biased. The simulation study

want to investigate this bias and loss of precision.



Chapter 1

Measurement Error in

Regression Models

1.1 Introduction

In this chapter, we will present the theory of regression models for variables

affected by measurement errors. This may arise for a number of reasons, for

example it could be due to bad measurement tools or just because the true

variable can not be measured directly. When we have discrete variables, the

measurement error is indicated as misclassification. In the first Section, we

will make a general presentation of the topic, introducing some useful

definitions to understand the models presented later. In Section 1.3, we will

present the measurement error linear regression model (the univariate case

and, briefly, the extension to multivariate case), while the response variable

error model is shown in Section 1.4. Finally, we present two different

estimation methods, the Regression-Calibration (Section 1.5) and the

Simulation-Extrapolation (Section 1.6).

1
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1.2 A General Overview of Measurement

Error Models (MEMs)

We will consider fitting models that relate q (q ≥ 1) response variables

Y = (Y1, . . . , Yq), to m (m ≥ 0) error-free predictors Z = (Z1, . . . , Zm) and

p (p ≥ 1) true predictors X = (X1, . . . , Xp). We can not observe directly

the true predictors (called latent variables), but instead we have the

observed variables W = (W1, . . . ,Wp). For this reason, often we are not

able to estimate parameters of interest given only the information contained

in the sample of (Y, W, Z) values. In fact we want to fit statistical models

to data formulated in terms of well-defined but unobservable X, using

information on measurements W that are only correlated with X.

First of all we have to distinguish between two types of error:

• the classical additive error

W = X+U E(U|X) = 0, (1.1)

where the observed variable W is equal to the true one plus a

measurement error and so its variability is greater than that of X;

• the Berkson error

X = W+U E(U|W) = 0, (1.2)

where the true variable X varies around W and so its variability is

greater than that of the observed variable.

When we start an analysis with measurement error models, it is important

to understand which of these two types of error represents better the real

situation, because “for a given measurement error variance, if you want to

convince yourself that you have lots of statistical power despite measurement

error, just pretend that the measurement error is Berkson and not classical”

(Carroll et al, 2006). If one assumes, for example, that the measurement error

is the classical type instead of Berkson type, then the variance of X is, from



CHAPTER 1. MEASUREMENT ERROR IN REGRESSION MODELS 3

(1.2), the variance of W minus the variance of the classical measurement

error U, while if you assume a Berkson error model the variance X is much

greater: var[X]=var[W]+var[U]. In practical analysis, the choice is quite

simple: we have a Berkson error when for all individuals in a group we have

the same value of the error-prone covariate, but the true value is particular to

each individual, for example miners working in the same sector for the same

period are assigned the same exposure to dust, even if the true exposure is

obviously different for each of them. We choose the classical error model if

an error-prone variable is necessarily measured uniquely to a subject, and

that measurement can be replicated, a typical example is the blood pressure

measurement.

Focusing the attention on the true variable X, in literature we find two

different approaches: classical functional models, where X is regarded as a

sequence of unknown fixed constants or parameters, and classical structural

models, where X is considered as random variables. In this work we will use

the distinction, used by Carroll et al. (2006), between:

• the functional modeling, if we make only minimal assumptions about

the distribution of X (that could be either fixed or random);

• the structural modeling, where we place parametric models on the

distribution of the random X.

If we focus on the specification of the model, we can make a similar

distinction between:

1. Error models, where we model the conditional distribution of W given

(Z,X);

2. Regression calibration model, where we model the conditional

distribution of X given (Z,W).

In the first group, that includes the classical measurement error model (1.1),

we will suppose that the relationship between W and the unobserved X also

depends on the other predictors Z:

W = γ′xX+ γ′zZ+U, E(U|X,Z) = 0.
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In the second group, we want to model the distribution of the unobserved

explanatory variables as a function of the observed ones:

X = δ′wW+ δ′zZ+U, E(U|W,Z) = 0.

If we assume δw = 0 and δz = 1, we can see that this category includes the

Berkson error model (1.2).

Analyzing the conditional density used in these models, it is possible to

find an interesting relationship between error models and regression

calibration models. It permits to find a model for the distribution of X

given W, starting with a model for the distribution of W given X. If we

have a Structural Model, and so we know the marginal distribution of X,

then we can convert an error model in a regression calibration model using

the Bayes theorem:

fX|W(x|w) = fW|X(w|x)fX(x)
∫

fW|X(w|x)fX(x)dx
,

where fX is the density function of X, fW|X is the density function of W

given X and fX|W is the density function of X given W.

Another important distinction is between differential and

nondifferential measurement error. We have nondifferential measurement

error if W, conditionally to the information contained in X and Z, doesn’t

bring additional information to Y. A nondifferential measure contains no

more information for the prediction of Y than those already contained in Z

and X. If fY|ZXW = fY|ZX, we call W a surrogate for X, and in this case,

even if X is not observable, it is possible to estimate the model parameters

of response given the true covariate.

With differential measurement error, generally we can not do that

because Y is not conditionally independent of W given the true covariates.

In this case, for example, we need a validation subsample. in which both

the measured value and the true value are recorded. We find this particular

data structure when, for example, W is not only a mismeasured version of

X, but it is a separate variable acting as a proxy of X. Often the surrogate
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status of W depend on the other variables in the model. For example, let

X ∼ N(µx, σ
2
x), we assume that ǫ1, ǫ2, U1, U2 are normal random variables

with zero mean, mutually independent and all independent from X. If

Z = X + ǫ1 + U1,

Y = bx + bzZ + bxX + ǫ2,

W = X + ǫ1 + U2,

then

E[Y |X] = E[Y |X,W ],

but

E[Y |Z,X,W ] 6= E[Y |Z,X],

because the measurement error (W −X) is correlated with the covariate Z.

We can better understand the importance of nondifferential measurement

error observing the relationship betweenY andW in simple linear regression:

E[Y|W] = E{E[Y|X,W]|W} (1.3a)

= E[E(Y|X)|W] (1.3b)

= E[b0 + bxX|W] (1.3c)

= b0 + bxE[X|W]. (1.3d)

Looking at the previous equations, we can interpret the regression in the

observed data as a linear regression of Y on E(X|W), but this is true if

and only if we have nondifferential measurement error, otherwise the passage

(1.3b) is not verified.

1.3 The Linear Regression Model (LRM)

1.3.1 A Single Explanatory Variable

In this section we will briefly present the effects of measurement error in a

normal simple linear regression model. We begin from the classical linear
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regression model with one independent variable:

Y = b0 + bxX + ǫ, (1.4)

where ǫ ∼ N(0, σ2
ǫ ).

The naive ordinary least squares estimator, that is the usual method for

error-free data, is

b̂x =

[

n
∑

i=1

(xi − x̄)2

]−1 n
∑

i=1

(xi − x̄)(yi − ȳ),

and it is the best linear unbiased estimator (BLUE) for bx (Faliva, 1987).

For the following analysis, we consider the classical additive measurement

model (1.1) with







X

ǫ

U






∼ NI













µx

0

0






,







σ2
x 0 0

0 σ2
ǫ 0

0 0 σ2
u












.

If we assume that Y is defined by (1.4), than the vector (Y,X) follows a

normal distribution with mean

E

[

Y

X

]

=

[

µy

µx

]

=

[

b0 + bxµx

µx

]

(1.5)

and covariance matrix

[

σ2
y σxy

σxy σ2
x

]

=

[

b2xσ
2
x + σ2

ǫ bxσ
2
x

bxσ
2
x σ2

x

]

.

Moreover, when we include W , that is defined by (1.1) and it is jointly

normally distributed with (Y,X), we obtain a multivariate normal model for



CHAPTER 1. MEASUREMENT ERROR IN REGRESSION MODELS 7

(Y,X,W ):







Y

X

W






∼ N













b0 + bxµx

µx

µw






,







b2xσ
2
x + σ2

ǫ bxσ
2
x bxσxw + σǫw

bxσ
2
x σ2

x σxw

bxσxw + σǫw σxw σ2
w












.

As we are in the context of measurement error models, the only available

data are the observed values of (Y,W ), so the relevant sampling model is the

marginal distribution of (Y,W ):

(

Y

W

)

∼ N

[(

b0 + bxµx

µw

)

,

(

b2xσ
2
x + σ2

ǫ bxσ
2
x

bxσ
2
x σ2

x + σ2
u

)]

,

where µw = µx.

With this error structure, the regression coefficient becomes

b̂x∗ =

[

n
∑

i=1

(wi − w̄)2

]−1 n
∑

i=1

(wi − w̄)(yi − ȳ) =
σwy

σ2
w

, (1.6)

from which, by the properties of the bivariate normal distribution, we obtain

that the measurement error attenuates the regression coefficient

E{b̂x∗} = bx
σ2

x

σ2
x + σ2

u

= bx
σ2

x

σ2
w

= bxλ.

It’s a well-known achievement by which we can demonstrate that the least

squares regression coefficient for the bivariate model with independent

measurement error in W is biased toward zero and we call

λ =
σ2

x

σ2
x + σ2

u

< 1, (1.7)

as reliability ratio.

Often we can assume to know σ2
ǫ , for example because we made a large

number of independent repeated measurements, and we define the sample

estimators of (σ2
y , σwy, σ

2
w) as (σ̂

2
y , σ̂wy, σ̂

2
w).
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The population squared correlation between X and Y is

R2
xy =

σ2
xy

σ2
xσ

2
y

= bx
σ2

x

σ2
y

, (1.8)

and the population squared correlation between W and Y is

R2
wy =

σ2
wy

σ2
wσ

2
y

= λR2
xy . (1.9)

Comparing (1.8) and (1.9), we can see that the introduction of

independent measurement error induces a reduction of the squared

correlation proportional to the reliability ratio λ.

1.3.2 Bias Correction

If we know the reliability ratio (1.7), it is possible to construct an unbiased

estimator of structural regression coefficient bx, that relates Y to the true

value of X in the model (1.4):

b̂x∗∗ =
b̂x∗∗
λ

, (1.10)

with E[b̂x∗∗] = bx. Knowing λ, an estimator of the squared correlation

between X e Y is

R̂2
xy =

R̂2
wy

λ
,

where

R̂2
wy =

σ̂2
wy

σ̂2
wσ̂

2
y

.

In practice, it is very difficult to known the reliability ratio and so we

have to estimate it with

λ̂ =
σ̂2

w − σ̂2
u

σ̂2
w

.

The problem is that when we reduce the bias, the variance increases:

the method-of-moments estimator (1.10) has variance V ar[b̂x∗∗] = σ2
∗/λ

2,

where σ2
∗ is the variance of (1.6), that is greater than the variance of the
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biased estimator b̂x∗, because λ < 1. Analyzing the residual variance of the

regression of Y on W

var[Y |W ] = σ2
ǫ + b2xσ

2
u

σ2
x

σ2
x + σ2

u

= σ2
ǫ + λb2xσ

2
u,

we can better understand that the measurement error causes an increase of

variability in the data. If we substitute (X = W − U) into the regression

model, we obtain a new model

Y = b0 + bxW + (ǫ− bxU),

with covariate W and error (ǫ − bxU) that has variance (σ
2
ǫ + b2xσ

2
u) > σ2

ǫ .

The bias is due to the fact that the error and the covariate have a common

component U , so they are not uncorrelated.

To better understand the bias versus variance tradeoff we can use an

index that considered simultaneously the variance and the bias, as the means

squared error (MSE), that is the sum of variance plus the squared of bias:

MSE(b̂x∗) = σ2
∗ + (1− λ)2b2x

MSE(b̂x∗∗) =
σ2
∗

λ2
.

From the above equations, we can deduce that

MSE(b̂x∗∗) < MSE(b̂x∗) iff σ2
∗ <

λ2(1− λ)b2x
1 + λ

.

Because σ2
∗ decreases with increasing sample size, we can say that, in large

samples, it is opportune to correct for attenuation due to measurement error.

1.3.3 The Simple LRM with Different Error Structure

Now we consider the impact of different measurement error structures on the

simple regression model (1.4). We start from the Berkson error (X = W+U),
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where we have
E(X|W ) = W

E(Y |W ) = b0 + bxW ,

σxw = σ2
w

σ2
x = σ2

w + σ2
u.

In this case the naive estimator that regress Y on W is unbiased for b0 and

bx, but we have an increase in the residual variance and a corresponding

decrease in the model coefficient of determination (R2).

When we have a model with differential error, W is not unbiased for X

and we can express the error structure as:

W = γxX + U, (1.11)

where U has mean zero, variance σ2
u and it is independent of X. If (X, ǫ, U)

are jointly normally distributed, then the regression of Y onW is linear with

intercept

b0∗ = b0 + bxµx − bx∗(γxµx)

and slope

bx∗ =
bxγxσ

2
x + ρǫu

σǫσu

γ2
xσ

2
x + σ2

u

, (1.12)

where σxw = γxσ
2
x, σw = γ2

xσ
2
x+σ

2
u and ρǫu is the correlation between ǫ and U .

Unlike what we said as comment to (1.10), from (1.12) we see that there are

two different situations where it is possible that |bx∗| > |bx|: if W is biased

(γx 6= 1) and if ρǫu 6= 0. In both cases, the measurement error could lead to

an opposite effect to the attenuation, so the naive model slope could be less

or greater than bx, depending on the amount of bias and on the correlations

between errors in linear regression models (ǫ) and measurement errors (U).

To correct the bias we will need most additional information or data. When

(1.11) is verified, the residual variance of the linear regression of Y on X is

var(Y |W ) = σ2
ǫ +

b2xσ
2
xσ

2
u − ρ2

ǫuσ
2
ǫσ

2
u − 2bxγxσ

2
xρǫuσǫσu

γ2
1σ

2
x + σ2

u

.
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In Table 1.1, we summarize the primary effects of measurement error

in a simple regression model where (Y,X,W ) are multivariate normal and

the underlying regression model is Y = b0 + bxX + ǫ, where X and ǫ are

independent and ǫ has mean zero and variance σ2
ǫ . We present, for each of

the four different error models (no error (W = X), an unbiased classical-error

measurement (W = X + U), an unbiased Berkson measurement (X = W +

U) and a general differential measurement error), the error model squared

correlations, intercepts, slopes and residual variances of the linear model

relating Y to W .

1.3.4 The Multiple LRM with Measurement Error

We can extend our reasoning to the case with more than one predict variable,

among which we will distinguish between explanatory variables measured

without error, Z = (Z1, . . . , Zm), and those that cannot be measure exactly,

X = (X1, . . . , Xp).

The linear model is

Y = b0 + b′xX+ b′zZ+ ǫ,

W = X+U,

where X = (X1, . . . , Xp) is a matrix (n × p), with n the number of the

observation and p the number of the error-prone covariates, Z is a matrix

containing the m covariates measured without error.

We have to observe immediately that the naive ordinary linear regression

does not consistently estimate (b′x,b
′
z), but

[

bx∗

bz∗

]

=

[

Σxx + Σuu Σxz

Σzx Σzz

]−1{[

Σxy

Σzy

]

+

[

Σuǫ

0

]}

=

[

Σxx + Σuu Σxz

Σzx Σzz

]−1{[

Σxx Σxz

Σzx Σzz

][

bx

bz

]

+

[

Σuǫ

0

]}

.

(1.13)

It is important to remark that when the model includes both error-prone

and error-free covariates, the attenuation due to the effect of a classical
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measurement error may affect not only the naive estimator of bx but also

the naive estimator of bz.

To correct the bias, whenW is unbiased forX and Σuu e Σuǫ are known or

can be estimated, we can use (1.13) to construct a simple method-of-moments

estimator:
[

Sww − Σuu Swz

Szw Szz

]−1 [

Swy − Σuǫ

Szy

]

where Sab indicates the sample covariance between A and b. If W is biased

forX (soW = γ0+γxX+U), the method-of moments estimator is still useful

but we have to employ the error-calibrated variable W∗ = γ̂−1
x (W− γ̂0).

The Nonlinear Regression

With nonlinear measurement error models, we can find qualitative effects

similar to those described in the previous paragraph for linear models,

obviously more pronounced is the nature of nonlinearity of the model, less

relevant are the previous results. An exception is the unbiased Berkson

error that, in this context, produces biases, even if, for a comparable ρxw,

they are less severe than that due to classical measurement error. Starting

from this consideration, it will give us, in the following Section, the cue to

talk about the regression Calibration technique, that estimates an unbiased

Berkson predictor by a preliminary calibration analysis to conduct an usual

naive analysis with Ê[X|W ] replacing X.

1.4 The Response Variable Error Model

It is possible that the response variable is affected by measurement error:

S = Y + V,

where Y is the true response, V is the measurement error and S is the

observed response. Some authors (for example Abreyava and Hausman,

2004) think that classical response measurement error can be ignored in

regression analysis because it is included into residual error. Thanks to



CHAPTER 1. MEASUREMENT ERROR IN REGRESSION MODELS 14

some simulated results, some authors support that “in linear or nonlinear

regressions that have homoscedastic errors about the true line, the only

effects of adding unbiased, homoscedastic response measurement error is to

increase the variability of the fitted lines and surfaces, and to decrease

power for detecting effects. All tests, confidence intervals, etc, are perfectly

valid: they are simply less powerful” (Carroll et al., 2006) . We can suppose

that Y , without response error, has mean my(Z,bz), and variance σ
2
y , while

the observed response S has mean my(Z,bz) and variance σ2
s = σ2

y + σ2
v ;

thus the observed data have the same mean of Y , but a greater variance

than the true one.

When we have a nonlinear models (like in this case), we must remember

that the inference is often based on linear approximation of the model by

Taylor expansion of the parameter bz about its true value bz0
, for example

yi = my(zi,bz) + ǫi ≈ my(zi,bz0
) + f ′(zi,bz0

)(bz − bz0
) + ǫi.

The error in the Taylor approximation decreases to zero as bz approaches

to bz0
. We can observe that when the response variance increase then the

approximation becomes less accurate, also the increase of σu determines an

increasing skewness of b̂z.

1.4.1 Biased Responses

It is possible that the observed response S is biased for the true response

Y , in this case we obtain biased estimates for the regression parameters.

For example, we consider a model where Y given Z follows a normal linear

model with mean b0 + b′zZ and variance σ2
ǫ , if the distribution of S given

(Y,Z) follows a normal linear model with mean γ0+ γyY and variance σ2
v , so

S is biased and the observed data follow a normal linear model with mean

γ0 + b0γy + γyb
′
zZ and variance σ2

v + γ2
yσ

2
ǫ . If we don’t consider the response

measurement error, the naive regression estimator does not estimate bz, but

instead γybz. An obvious solution would be to use
S−γ0

γy
, but often we don’t

know γ0 and γy, so we have to adopt different strategy to solve the problem

(for example see Buonaccorsi, 1996). When it is possible, an useful method
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consists in the use of validation data.

Validation Data

If we have some validation data on a simple random subsample of the primary

data, we can follow the following procedure at 5 steps to obtain information

about (γ0, γy).

1. We use the validation subsample to calculate b̂z1
, that is an estimation

of bz, and (γ0, γy).

2. In the second step we want to obtain an estimated unbiased response

(S − γ̂0)/γ̂y that we use in another iteration of the analysis to get a

second estimate b̂z2
.

3. Now we can use bootstrap techniques to estimate the joint covariance

matrix of these estimates (Σ).

4. In this step we calculate the best weighted combination of b̂z1
and b̂z2

b̂z = (J′Σ−1J)−1J′Σ−1(b̂′z1
, b̂′z2

),

where J = (I,J), J is the identity matrix (r × r) and r is the number

of elements in bz.

5. At last, we can use (J′Σ̂−1J)−1 as estimated covariance matrix for the

estimates b̂z.

Often it is quite difficult and expensive to construct a validation dataset,

so other methods have been implemented; for example it is possible to obtain

information by replicated measurement of S or using external data in which

Y is observed.

1.4.2 The Logistic Regression Model for Discrete Data

As we have mentioned at the beginning, with discrete data the response error

corresponds to misclassification: there is an error when Y = a and S = b,

with a and b different modes of the categorical response variable.
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We consider a logistic regression model with response probability

Pr(Y = 1|Z) = H(b0 + b′zZ), (1.14)

where H(·) is the logistic distribution function, and we suppose that the

misclassification error is independent of Z and the probabilities of correct

classification are:

Pr(S = 1|Y = 1,Z) = π1

Pr(S = 0|Y = 0,Z) = π0 .

Because of misclassification errors, the observed data don’t follow the logistic

model (1.14), but the more complex form

Pr(S = 1|Z) = (1− π0) + (π1 + π0 − 1)H(b0 + b′zZ) , (1.15)

so the response misclassification is considerably biased for the true

probability response. This problem has been studied from many authors:

Paulino et al. (2003) studied the binomial regression with misclassification,

Prescott and Garthwaite (2002) focused on validation substudies, Neuhaus

(2002) developed the theme of analysis of clustered and longitudinal binary

data subject, and Ramalho (2002) has addressed the problem of

choice-based samples.

In practical analysis, the difficulty of estimation of the underlying risk

function significantly affecting the ability of data of the data to identify the

classification probabilities. Copas (1988) states that “accurate estimation of

the misclassification parameters is very difficult if not impossible unless n is

extremely large”, it is possible, at least, to conduct a sensitivity analysis for

plausible values of the misclassification probabilities.

To estimate (π0, π1, b0,b
′
z), if we assume that the misclassification

probabilities are independent of Z, we can using maximum likelihood or

Bayesian methods. We indicate the probability model (1.15) as

Ψ(S,Z, π0, π1, b0,b
′
z) and we maximize, for example with EM-algorithm, the



CHAPTER 1. MEASUREMENT ERROR IN REGRESSION MODELS 17

loglikelihood function

n
∑

i=1

{silog[Ψ(S,Z, π0, π1, b0,b
′
z)] + (1− si)log[1−Ψ(S,Z, π0, π1, b0,b

′
z)]}.

(1.16)

Even if it is not a easy estimation, sometimes we have the possibility to know

the value of true Y for a subsample of the data, so we can directly estimate

the classification probabilities maximizing the loglikelihood function above

in (b0,b
′
z).

When we can have validation data, we can apply pseudolikelihood

methods that consist in estimating π1 (π0) as the fraction of the subject, in

the validation study, who are correctly classified among those whose true

value is Y = 1 (Y = 0), assuming that these are known, and then maximize

the likelihood (1.16). In order to apply these estimation methods it is

important that the selection into the validation study does not depend on Z

or on the observed value S, otherwise these procedures can cause biased

estimations.

1.5 The Regression Calibration Method

Regression calibration is well known approximate model to correct biases in

measurement error regression models and it is widely used in epidemiological

field; we assume the existence of a calibration substudy, where accurate and

crude measurement methods are related by a second regression analysis. As

we have seen in the previous paragraphs, if we have a classical error model,

where only one variable is measured with error, the regression coefficient

estimate bx using traditional regression analysis is biased toward the null

value; where there are two or more error-in variables, biases may point in

either direction, and there are important cases in which bias points away from

the null. Moreover, estimates for variables that are not measured with error

will also be biased (Rosner et al., 1990). Regression calibration for linear

models will correct such biases if the assumptions are met. The key of this

method is the substitution of X with the expected value of the true variable
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conditional on observed data measured (Z,W). Regression calibration is quite

simple and, if the approximation is sufficiently accurate, it is applicable to

any regression model. The algorithm consists of three phases:

1. First we have to estimate the regression of X on (Z,W), mX(Z,W, γ)

that depend on parameters γ, estimated by γ̂;

2. then we can run standard analysis to obtain parameter estimates,

substituting the unobserved X by its estimate;

3. finally we must adjust the resulting standard errors to account for the

estimation of γ.

To better understand this procedure, we imagine a model where

E[Y|Z,W] = mY[Z,X,B],

for some unknown parameter B. If we substitute, in this expected value, X

with its estimated value, we have a modified model for observed data:

E[Y|Z,W] ≈ mY[Z,mX(Z,W, γ),B].

The replacement of X with its regression on (Z,W) is not always an

easy passage of the algorithm, except in same simple cases, for example if we

have validation data, we can regress X on the other covariates (Z,W) in the

validation subsample. In other cases we can have an unbiased instrument T

for a subset of the original sample, so the regression of T on (Z,W) is the

same as the regression of X on (Z,W).

In practical applications, in addition to the difficulty of estimating the

regression of X on (Z,W), this method has two drawbacks: it doesn’t exist

a simple approximation that can always be accurate and it shows some

difficulties with high non linear models.

Here we briefly present some considerations of this method following the

scheme proposed by Fraser and Stram (2001). With the regression calibration
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we often have a loss of statistical power as compared with the case where we

know X. One reason for this phenomenon is due to the reduced variability

of the predictor variable in the new regression model, and usually this leads

to a reduced power to detect a nonzero slope in the regression analysis:

E[X|W,Z] = XRC , that is the predictor that we use instead of the unknown

X, is less variable than X, as we can see from

Var[X] = Var{E[X|W,Z]}+ E{Var[X|W,Z]}.

We can identify another cause of the reduction of statistical power in the

greater variability of Y given W than in Y given X. However, as we will see

in the following Sections, for binary Y, this second issue can be neglected,

since the variance of Y is uniquely determined by its mean value.

When we have an univariate linear calibration equation, we can verify

that

Var{E[X|W]} = R2Var[X], (1.17)

where R is the correlation coefficient between X and W. From 1.17, we can

deduce that, when we use regression calibration method, we need 1
R2 more

units to detect a nonzero regression between Y and W compared to the case

where X is available. In summary, when we apply a regression calibration

model, the statistical power may be adversely affected by different factors:

• small sample size;

• multicollinearity between the covariates;

• poor validity, as measured by the correlation between X and W (this

depends in part on the residual error in the calibration equations);

• imprecision in the estimate of E[X|W,Z] due to imprecision of the

calibration equation coefficients.

For the asymptotic formulae of the standard errors, we refer to studies of

Carroll and Stefanski (1990).
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1.6 The Simulation Extrapolation Method

The simulation and extrapolation method (SIMEX), initially proposed by

Cook and Stefanski (1994) and subsequently developed by several authors,

has become a useful tool for correcting estimates in the presence of additive

measurement error, and more generally to all cases in which the

measurement error generating process can be simulated through Monte

Carlo techniques. In 2006, Küchenhoff et al. (2006) applied the same basic

idea of simulation and extrapolation to the case of misclassification and he

proposed the model MCSIMEX. It is a functional method since there are

no assumptions made about the distribution of the unobserved true

covariate. Intuitively, the idea of this method is to generate new

observations with a greater measurement error as the original sample, to

determine a trend of the bias due to measurement error versus the variance

of the added measurement error, and to extrapolate this trend back to the

case of no measurement error. We will use the following function

G(σ2
u) := σ2

u → b∗(σ2
u),

where b∗ is the limit to which the naive estimator converges as the sample

size n → ∞. In fact, it is quite simple to see that G(0) = b is the true

parameter, and G(σ2
u) = b̂x∗ is the ordinary least square estimator (1.6), also

called naive estimator. We recall that b̂x∗ consistently estimates bxλ and it

is biased for bx if σ
2
u > 0.

1.6.1 SIMEX in Simple Linear Regression

To describe the basic idea of SIMEX for a simple linear regression model, we

start from

Y = b0 + bxX + ǫ,

with additive measurement error W = X +U ; U ∼ D(0, σ2
u), where D is any

unknown distribution, is independent of (Y,X).

We want to show that the effect of measurement error on the estimation
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Figure 1.1. A generic SIMEX plot showing the effect on a statistic of adding
measurement error with variance ξσ2

u to the data when estimating a generic
parameter ξ (Carroll et al., 2006)

of a generic parameter, Θ, can be defined experimentally via simulation. We

suppose to have, in addition to the original data used to calculate b̂x∗, M −1
other datasets created with increasing measurement error variance, so the

m-th dataset has (1 + ξm)σ
2
u, where 0 = ξ1 < ξ2 < · · · < ξM are known.

In Figure 1.1, we can see a graphical representation of the Simulation

Extrapolation procedure. In the abscissa we have ξ, in the ordinate we find

the estimated parameter Θ̂. When ξ = 0 we have the naive estimate, while

the SIMEX estimate is an extrapolation of the estimates Θ̂ to the case where

ξ = −1. Obviously we can not really add measurement errors with negative
variance to data, but the purpose of this method is just adding pseudo error

with positive variance that we allow the estimation of the form of the bias as

a function of ξ. In this way, we can extrapolate the case, purely hypothetical,

of adding pseudo-errors with negative variance.

We indicate with b̂x,m the least squares slope estimate, obtained by the

m-th dataset; it consistently estimates

bx
σ2

x

σ2
x + (1 + ξm)σ2

u

.
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To solve this system, where the dependent variable is b̂x,m and the

independent variable is ξm, we set the analysis as a nonlinear regression

model with data {(ξm, b̂x,m),m = 1, . . . ,M}. Asymptotically the mean

function of this regression is

E(b̂x,m|ξ) = G(ξ) = bx
σ2

u

σ2
x + (1 + ξ)σ2

u

, ξ ≥ 0.

Now we can obtain the parameter of interest from G(ξ), because if we

extrapolate back this function to the case of no measurement error, that

corresponds to (1 + ξm)σ
2
u = 0, ξm = −1, we obtain G(−1) = bx.

We can summarize the SIMEX algorithm in five steps (Hardin et al.,

2003):

• The Preliminary fitting step, where we fit the model to estimate b̂x,m

and the measurement error variance σ̂u.

• In the Simulation step, we add to the original data, M − 1 datasets

generated with successively larger measurement error variances ξmσu;

for themth dataset, the total measurement error variance is σu+ξmσu =

(1 + ξm)σu.

• During the Estimation step, we obtain estimates from each of the mth

generated contaminated data sets, using an algorithm that would have

been used if there were no measurement error datasets.

• We repeat simulation and estimation step D times (D should be very

large) and we calculate the average estimated parameter for each of

the M level of error disturbance used. Then we plot these mean

values against the ξm values and we use a regression method to fit an

extrapolant function to the averaged, error-contaminated estimates.

• In the Extrapolation step, finally we extrapolate to the ideal case of no

measurement error (ξ = −1).

In literature have been proposed many extrapolant functions, we

remember three of the most used:
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• Linear extrapolant

x∗ = b0 + b1ξ,

it is the simplest one and it is useful when the error is small and the

extrapolant function is close to linear. x∗ is the mean of simulations

runs.

• Rational linear extrapolant

x∗ = b0 +
b1

b2 + ξ
,

it reproduces the usual method-of-moments estimators for the case of

multiple linear regression with non-IID errors. It can produce instable

estimation, especially if the measurement error effects on a parameter

are negligible ad a nearly constant extrapolant is required (for example,

when we estimate the coefficient of error-free covariate uncorrelated

with W ).

• Quadratic extrapolant

x∗ = b0 + b1ξ + b2ξ
2,

it is a conservative corrections for attenuations and it is usually

numerically stable.

It is quite simple to generalize all that we have said above to the

multivariate case (1.13), where W = X+U with U ∼ N(0,Σu).



Chapter 2

Latent Models for Social

Measurement

2.1 Introduction

Almost no statistical problem is characterized by one variable, the

phenomena of interest are often the result of multiple concurrent elements

that are difficult to control conjointly. When we want to analyze

simultaneously these multiple characters, we refer to multivariate statistical

methods, that are not only easy generalization of univariate statistical

procedures because of the complexity increases exponentially with

increasing the size of the problem.

In social studies, we often have to analyze multidimensional aspects,

such as the job satisfaction, that are not directly observable or measurable

through traditional survey instruments, and we want to define a scientific

measurement for them, taking into account all the existing links between

the different aspects involved (Allen, 1979; Bartholomew, 1996; Skrondal

and Rabe-Hesketh, 2004). These concepts are defined as constructs or

latent factor: i.e latent variables that are not directly observable but that

can be inferred (through a mathematical model) from other variables that

are observed (directly measured).

In this chapter, we will present two different approaches to the

24
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categorical data analysis (Section 2.2): the Item Response Theory and the

Underlying Variable Approach. In Section 2.4, we will deepen the Item

Response Models, presenting the basic Rasch Model for dichotomous data

and some polytomous item response models (the Graded Response Model,

the Partial Credit Model and the Rating Scale Model). Finally, we will do

some reflection on the reliability of measures obtained with these models

(Section 2.4.4). The Underlying Variable Approach will be treated in

Section 2.3, where we will introduce the Structural Equation Model. After

having briefly presented some essential features of them, we will focus on

two particular models, the Muthén SEM (Section 2.3.3) and the Reticular

Action Model (Section 2.3.5).

2.2 Categorical Data Analysis and Measurement

The scientific measurement in economic and social sciences would match the

same standards of scientific measurement in the physical sciences and the goal

of researchers is to determine the most reproducible and additive measures

that are objective abstractions of equal units. Objectivity requires that the

measure is assigned to construct independently from the observer; for the

reproducibility, instead, the resulting comparison between objects should be

invariant, other conditions being equal.

Over the years many authors have studied this issue thoroughly

proposing very different solutions, especially related to their specific scopes.

To summarize, we can identify two main approaches to analyzing

multivariate latent aspects taking into account the categorical nature of the

observed variables (Cagnone et al., 2010):

• Underlying Variable Approach (UVA);

• Item Response Theory (IRT).
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2.2.1 Underlying Variable Approach

The Underlying Variable Approach, or UVA, (Jöreskog, 1973 and 1979;

Muthén, 1984) assumes that the observed categorical outcomes are

incomplete observations of unobserved continuous variables: underlying

each of the categorically observed variables Yj’s (that has cj categories)

there is a continuous variable Y ∗j which is actually measuring the

underlying latent factors θ, not directly observable. We assume the

traditional linear factor analysis model for the “partially observed”

variables Y ∗j :

Y ∗j = Λθ + ǫ.

For categorical observed variables we assume

yj =



































cj − 1, if τj,cj−1 < y∗j

cj − 2, if τj,cj−2 < y∗j ≤ τj,cj−1

...

1 if τj,1 < y∗j ≤ τj,2

0 if y∗j ≤ τj,1

.

with the threshold values −∞ < τj,1 < τj,2 < . . . < τj,cj−1 <∞.

In literature several methods for fitting this model have been proposed,

in Section 2.3.3 we will present the Muthén model (1984), implemented in

the Mplus software. It is a three step approach model, in the first step

we estimate thresholds based on univariate distributions, then we estimate

polychoric correlations, and in the last step we use them as input into a usual

factor analysis routine.

2.2.2 Item Response Theory Approach

With the Item Response Theory, or IRT, approach, the observed variables

are treated as they are (Rasch, 1960 and 1961; Andrich, 1978; Baker, 1985;

Baker and Kim, 2004). The unit of analysis is the entire response pattern of

a subject, so we have no loss of information. For a given response vector y,
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we can write its distribution as

p(y) =

∫

p(y, θ)df =

∫

p(y|θ)p(θ)df.

We assume local conditional independence for the elements yj in y given θ,

so that

p(y|θ) =
p
∏

j=1

p(yj|θ).

Often, we assume that the underlying factors θ are distributed as N(0, I).

In this context, we consider the binary case where each yj is equal to 0

or 1; in the following paragraphs we will extend it to the ordinal case. A

natural distribution to choose for p(yj|η) is the logistic function,

p(yj|θ) = πj(θ) =
exp[αj(θi − δj)]

1 + exp[αj(θi − δj)]
,

where δj is the difficulty of item j, and the vector of discrimination

parameters, αj, represent the slopes relating each of the m factors to the

j-th item. We could use other link functions besides the logistic, for

example the normal ogive.

In literature, is even open the debate on which of the two approaches,

IRT or UVA, is better. There are some studies (for example Jöreskog and

Moustaki, 2001 and Huber et al., 2004) showing that IRT approach has

better properties (for example in term of estimates accuracy and model fit),

probably because it is a full information approach, while UVA is based on

limited information estimation methods. However, the IRT approach is

computationally heavy, the likelihood is not available in closed form and it

is approximated by numerical integration requiring several quadrature

points. With UVA the computer time does not increase with sample size

and it is feasible for many variables and many factors, using bivariate

moments. A rule of thumb could be to choose UVA when we want to

identify clusters of variable measuring the same factors; at the contrary if

we have a set of items measuring only one factor and we use them to
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specifically score and rank individuals, the IRT approach is more

appropriate.

Our work arises from these various considerations on the two previously

proposed approaches. As mentioned earlier, in the real applications analyst

are often forced to choose which of them to use: we want to compare, on

an equal databases, the results obtained by applying both UVA and IRT,

their fitting and other proprieties of the obtained estimates. The idea of

how to make this comparison, it was suggested by a work of Gibbons et al.

(2007) where they indirectly showed, proposing their bifactorial model, how

to implement an IRT model with a Structural Equation Model (that is an

Underlying Variable Model). The details of this implementation are showed

in their article and some of them will be included in the third chapter.

2.3 Structural Equation Models (SEMs)

In Section 2.2, have seen that exists a different approach for a categorical

data analysis, different from IRT: the Underlying Variable Approach

(UVA). One of the most used family of models that belongs to this

framework is the Structural Equation Model (SEM). In literature, there are

other similar methods to those described in this chapter: Covariance

Structural Analysis, Covariance Structural Model or Causal Modeling, that

differ from SEM for the analytical approach and/or for the correlation

structure used in the estimation process.

The origins of these methods can be found in the early years of the last

century with the development of exploratory factor analysis, usually credited

to Spearman (1904), and the basics of path analysis developed by Wright

(1934). These measurement (factor analysis) and structural (path analysis)

approaches were integrated in the early 1970s by Jöreskog (1973), Keesling

(1972), and Wiley (1973), into a framework that Bentler and Yuan (1999)

called the JKW model. In the 90’s, SEM methods expanded in many area,

such as genetics, sports medicine, development psychology, public health and

education.

The widespread use of these models made difficult to identify a single
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pattern common to all of them, it is possible, however, to define some

common features:

1. SEM requires that the researcher specify a priori model, not only for

confirmatory analysis, but also for exploratory ones. He has to decide

which variables are assumed to affect the others and the directionality

of these effects; these hypotheses will be evaluated in the analysis.

2. With SEM, we make an explicit distinction between observed and latent

variables.

3. Historically, the basic statistic is the covariance, that represents the

strength of the association between two variables; actually, SEM is a

very flexible analytical approach that can incorporate also between-

group and within-group mean comparisons, as in a standard ANOVA.

4. We can apply SEM methods to experimental or nonexperimental data,

or to a mix of them.

5. The SEM family includes many standard procedures. For example,

ANOVA is a special case of multiple regression, both these procedures

are members, with exploratory factor analysis, of general linear model

(GLM), and GLM are special instances of SEM.

6. SEM is a large-sample method. The sample size is affected by

different factors, for example the model complexity, the required

result stability, the type of estimation algorithm. Referring to the

literature (MacCallum, 2000), we can say that for descriptives

purposes, sample size less than 100 will be considered small, between

100 and 200 medium and more than 200 large.

7. Usually, in the SEM literature we find unstandardized estimation, not

only because the most widely estimation methods used assume the

analysis of unstandardized variables, but also because there are

situations where important information will be lost when variable are

standardized: for example the analysis of SEM across multiple
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samples that differ in their variabilities or longitudinal measurement

of variables that show increasing (or decreasing) variability over time.

2.3.1 The SEM Approach

Even though they are sometimes very different, for the SEM approach we

can identify the following six basic steps:

1. Specification of the model. The researcher must specify his hypotheses

(about the relations among the latent and the observed variables) in the

form of a structural equation model. It is possible to describe the model

as a series of equation or with a drawn diagram (we will present the

notation and the graphic representations in the following paragraphs).

2. Model identification conditions, that is if it is theoretically possible to

derive a unique estimate of every model parameter. In this step we

want to avoid multicollinearity and singular matrices.

3. Collection, preparation and screening of the data.

4. Model estimation. In this step we evaluate the model fit to determine

how well the model explains the data, we interpret the parameter

estimates for specific effects, and we consider some equivalents models

that explain the data just as well as our preferred model but with a

different configuration of hypothesized relations.

5. If necessary, we respecify the model and we execute again the step 2, 3

and 4 till we obtain satisfactory results.

6. Finally, we accurately and completely describe the analysis in written

reports.

Although many authors cover their analysis with these 6 steps, in reality

there are still two very important steps:

7. Replication of the results, estimating the models across independent

samples.
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8. Apply the results.

As it happens often in recent literature, there is no uniformity of notation

with respect to the SEM; the most widely used symbology is probably the

one used in the LISREL context, with Greek letters and matrix algebra.

2.3.2 Equations Notation and Graphic Representations

In this Section, we want to briefly review some specification issues to establish

a common terminology for the discussion that follows. We refer to the classic

LISREL notation (Bollen, 1989), even if it could be some little modification

to uniform the notation with IRMs and other models proposed in this work.

A full structural equation model can be split in two submodels:

• the Structural Model is the set of latent variables in the model, together

with the direct effects connecting them;

• the Measurement Model is that part (possibly all) of a SEM model

which deals with the latent variables and their indicators.

Formally we have:

The Structural Model

θ = Bθ + ζ (2.1)

The Measurement Model

y = Λyθ + ǫ (2.2)

x = Λxθ + δ (2.3)

Equation (2.1) is called the latent variable (or structural) model and

expresses the hypothesized relationships among the constructs. θ is a vector

(m × 1) that contains the latent constructs, endogenous or exogenous (in
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standard LISREL notation endogenous and exogenous have different

symbols, but for our analysis it has no relevance to separate them). B is

the coefficient matrix for the effects of constructs on each other. A

structural coefficient is the measure of the amount of change in the effect

variable expected given a one unit change in the causal variable and no

change in any other variable. ζ is the vector (m× 1) of disturbances, and it

represents errors in structural equations. When we specify that latent

variables have simultaneous effects on each other (so that the B matrix has

nonzero elements both above and below the diagonal) and/or if errors in

equations are allowed to be correlated, the SEM is called nonrecursive. We

have to pay attention with these models, because there can be some

problem of model identification, stability of reciprocal effects, and

interpretation of measures of variation accounted for in endogenous

constructs (Schaubroeck, 1990; Teel et al., 1986). If B is subdiagonal and

the ζ are uncorrelated, the model is said to be recursive.

Equations (2.2) and (2.3) represent the measurement model which links

the constructs to observable indicators. The vectors y, (p×1), and x, (q×1),
contains the measures of the p endogenous constructs, and the q exogenous

indicators, respectively. Indicators are observed variables, sometimes called

manifest variables or reference variables, such as items in a survey instrument.

Four or more is recommended and three is acceptable and common practice.

Λy and Λx are the coefficient matrices for the relations of y and x with θ

(they are also called loadings). The vectors ǫ and δ are the disturbances

and they represent the errors in variables or measurement errors. Whereas

regression models implicitly assume zero measurement error (and so, as we

have seen in the first chapter, to the extent such error exists, regression

coefficients are attenuated), error terms are explicitly modeled in SEM and

as a result SEM estimators are unbiased by error terms, whereas regression

coefficients estimators are not. Generally (but not always) the measurement

model possesses simple structure such that each observed variable is related

to a single latent variable. Models with simple structure and no correlated

measurement errors represent unidimensional construct measurement, which

is frequently considered to be a highly desirable characteristic of measurement
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Figure 2.1. Structural Equation Model path diagram

(Hattie, 1985; Anderson and Gerbing, 1988).

As we have said before, a SEM is often represented with a path

diagram. The Figure (2.1) shows a structural equation model for two latent

factors, θ1 is measured by three indicators (Y1, Y2, Y3) and θ2 by two

indicators (Y4 and Y5); furthermore θ2 has a dependent relationship with θ1.

A SEM diagram commonly has certain standard elements: latent variables

are circles, indicators are rectangles, error and residual terms are not

included in a geometrical form, single-headed arrows are causal relations

(note causality goes from a latent to its indicators). Coefficient values may

be placed on the arrows from latent variables to indicators (the loadings

λ11, . . . , λ25), or from one latent to another (the structural coefficient b12).

Each latent variable has an error term (ζ1, ζ2), sometimes called a

disturbance term or residual error, not to be confused with the indicator

error (ǫ1, ǫ2, . . . , ǫ5) associated with the observed variables.
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The extended formulation for the model in Figure (2.1) is:

θ1 = ζ1

θ2 = β12θ1 + ζ2

Y1 = λ11θ1 + ǫ1

Y2 = λ12θ1 + ǫ2

Y3 = λ13θ1 + ǫ3

Y4 = λ24θ2 + ǫ4

Y5 = λ25θ2 + ǫ5.

2.3.3 The Muthén SEM

Bengt Muthén is an important and famous statistician that, since the 70’s,

explored the research theme of SEM. He implemented a specific software

(Mplus ; Muthén and Muthén, 2007) that provides researchers with a

flexible tool to analyze, between the different models available, also the

SEM. In this paragraph, we consider the specification and estimation of

SEMs with latent variables having multiple indicators, not all of which are

continuous. We consider a linear structure for continuous latent variables;

while, in the measurement part, we could have dichotomous and ordered

polytomous observed variables and/or continuous indicators. The model

that we present, and that we have used in the simulation study presented in

chapter 3, are drawn from several works of Muthén (1979, 1981, 1983,

1984). The author, obviously, refers to the Jöreskog-Sörbom (1973)

methodology (“LISREL”) for structural equation models to handle properly

categorical indicators in addition to continuous ones. He makes a

distinction between models with observed independent variables and

models without them, but we consider only the second ones because, as we

have already said in the previous paragraphs, they are more closely to

IRMs that we have implemented in simulation study.

We consider the vector θ, (m×1), of continuous latent variable constructs,
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and we observe the vector y, (p × 1), which consist of both dependent and

independent variables (in a structural equation modeling sense), that could

be ordered categorical or continuous; we indicate with y∗, the (p× 1) vector

of continuous latent response variables associated at the observed variables.

For an ordered polytomous yj with cj categories (cj ≥ 2), we have

yj =



































cj − 1, if τj,cj−1 < y∗j

cj − 2, if τj,cj−2 < y∗j ≤ τj,cj−1

...

1 if τj,1 < y∗j ≤ τj,2

0 if y∗j ≤ τj,1

.

If yj is continuous, the latent response variable is directly observed

yj = y∗j .

Now we can present the linear measurement structure, that follows the

structure of the measurement model presented in (2.2)

y∗ = ν + Λθ + ǫ

and the linear structural equation system, that follows the structure of the

structural model presented in (2.1)

θ = α+Bθ + ζ,

where B has zero diagonal elements and (I − B) is non-singular. Muthén

assumes a multivariate normal distribution for Y ∗. Due to the normality

specification, it suffices to consider first and second-order moments for the

latent response variables.

E[Y ∗] = ν + Λ(I−B)−1α+ Λ(I−B)−1ΓX (2.4)

Var[Y ∗] = Λ(I−B)−1Ψ(I−B)′−1 + Ξ, (2.5)
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where Ξ is the covariance matrix of ǫ.

With categorical Y variables, the distribution of the observed variables is

deduced by integrating over the corresponding latent response variables Y ∗

(Muthén, 1979; Muthén and Christoffersson, 1981).

2.3.4 Estimation Procedure for the Muthén SEM

Referring to the model presented in (2.4) and (2.5), we now present the

Muthén estimation approach for SEM, which uses weighted least squares

with limited, first and second order sample information. This is a three

stages estimation approach:

• First, we estimate first order statistics by maximum-likelihood (ML);

• then, we estimate second order statistics by conditional ML for given

first stage estimates;

• in the third stage, which is common to all situations, the model

parameters will be consistently estimated, using the first and second

order statistics generated by the previous stages.

The details of the first two stages will vary depending on the type of indicators

involved and they could found in the aforementioned works of Muthén.

Fist of all, we summarize the structure of the general Muthén SEM from

(2.4) and (2.5) in two parts, and we consider the vectors σ1 and σ3 (σ2 is

used by Muthén to identify the part corresponding the observed independent

variables x in equation (2.3), that we are not considering in this context):

• Part 1: the mean/threshold regression intercept structure

σ1 = ∆∗Kττ −Kν [ν + Λ(I−B)−1α],

• Part 3: the covariance/correlation residual correlation structure

σ3 = K× vec{∆[Λ(I−B)−1Ψ(I−B)′−1Λ′ + Ξ]∆}.
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∆ is a diagonal matrix of scaling factors useful in multiple-group

analysis with categorical variables and ∆∗ contains the same element as ∆

but diagonal elements are duplicated for categorical variables with more

than one threshold (more than two categories). Similarly, Kτ and Kν

distribute elements from the vectors they pre-multiply, where Kτ has a row

of zeros for each continuous variable, and K selects lower-triangular

elements from the vector of symmetric matrix elements it pre-multiplies,

where diagonal elements are only included if the corresponding observed

variable is continuous. The vec operator creates a column vector from a

matrix by stacking its the column vectors below one another. Part 1

contains the intercept structure, i.e. the first two terms of (2.4), while Part

3 contains the residual covariance/correlation structure (2.5).

In the first and second stage we consistently estimate by ML the elements

of σ1 and σ3 as s1 and s3; in the third stage, we estimate the model parameters

minimizing the weighted least squares fitting function

F3 = (s− σ)′W−1(s− σ),

where s′ = (s′1, s
′
2) and W is a positive definite weight matrix. All the

analytical details of the estimation procedure can be found in the

aforementioned work of Muthén, in particular in Mutén (1984).

2.3.5 The Reticular Action Model (RAM)

For the simulation study, in addition to Muthén approach to SEM, we used

the Fox (2006) approach, implemented in the R package “sem”. Fox refers

to the Reticular Action Model (RAM) formulation, proposed by McArdle

(McArdle 1980; McArdle and McDonald, 1984), with the notation presented

by McDonald and Hartmann (1992).

The fundamental equation is

V = AV +U,

where
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• V contains the indicator variables (Ys), directly observed exogenous

variables (X), and the latent variables in the model (η);

• U contains directly observed exogenous variables, measurement-error

variables (ε), and structural disturbances (ζ);

• the matrix A includes structural coefficients (β) and factor loadings

(λ); typically it is a sparse matrix, containing many 0’s .

As we have already explained in paragraph 2.3.3, we will not consider

observed exogenous variables. We have m latent factors each with

ph (h = 1, . . . ,m) indicator variables (p = p1 + p2 + · · ·+ pm).


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The final component of the RAM formulation is P, the covariance matrix

of U. Assuming that all of the error variables have expectations of 0, and that

all other variables have been expressed as deviations from their expectations,

P = E(UU′):

P = Var
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,

where ξǫ
11 is the variance of ε1, ψ11 is the variance of ζ1 and ψ1m is the

covariance between ζ1 and ζm. P is a (l × l) matrix, where l = m+ p is the
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number off variables in U.

The key to estimating the model is the connection between the covariances

of the observed variables, which may be estimated directly from sample data,

and the parameters in A and P. To pick out the observed variables, we define

the (p× l) selection matrix J

J =
[

Ip 0
]

,

where Ip is the (p× p) identity matrix and 0 is a (p×m) matrix of 0.

The model implies the following covariances among the observed

variables:

C = E(JVV′J′) = J(Il −A)−1P[(Il −A)−1]′J′.

Let S denote the covariances among the observed variables computed

directly from a sample of data. To fit the model to the data, that is to

estimate the free parameters in A and P, we have to select parameter

values that make S as close as possible to the model-implied covariances C.

Under the assumptions that the errors and latent variables are

multinormally distributed, maximum-likelihood estimates of the free

parameters in A and P is equivalent to minimizing the fitting criterion

F(A,P) = trace(SC−1)− n+ ln(detC)− ln(detS).

In the R package “sem”, Fox implements a very flexible SEM, including

the ability to estimate models by two-stage least squares (2SLS), and to fit

general (including latent variable) models by full information maximum

likelihood (FIML) assuming multinormality. At the start of simulation, we

found some difficulty to use and to interpret the results obtained with this

package of R. To explore and to understand the estimation procedure

implemented in “sem”, we tried to apply simplified models to see where

wrong, so we found a small bug in the software. Following our own alert to

Fox, this problem has been solved, the package has been update and we

have been able to successfully use this package for our analysis.
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2.4 Item Response Models (IRMs)

As we have seen in the introductory paragraph, the problem is how to

obtain an objective measure of the latent construct of interest. Within the

framework of Item Response Theory (IRT), several models have been

proposed to synthesize data obtained from a questionnaire producing an

objective measure of the latent construct. The goal of an Item Response

Model (IRM) is to describe, trough a nonlinear monotonic function, the

association between a respondent’s underlying latent trait level and the

probability of a particular item response. To produce objective measures,

the available data must satisfy the following two prerequisites:

unidimensionality and local independence. Unidimensionality requires that

only one construct is measured, and then all the items included in the

questionnaire should be closely linked to it. Local independence, for which

observed items are conditionally independent of each other given an

individual score on the latent variable, is obtained when the complete

latent trait space is specified in the model. If the assumption of

unidimensionality holds, then only a single latent trait is influencing item

responses and local independence is obtained. To check whether the data fit

satisfactorily to the model, it is possible to use some diagnostic tools based

on the calculation of the residuals (Bond and Fox, 2001).

The first step for an IRM analysis is to define a questionnaire to capture

the latent construct, paying attention that each of the aspects that identify

the same construct is properly investigated by at least one item. In case of

job satisfaction, for example, the questionnaire will include items relating to

working conditions, relationships with colleagues or pay. The answer to each

question is chosen among a set of possible categories ordered on a Likert

scale; successive categories identified higher levels of latent construct, for

example from dissatisfied to very satisfied. Then we numerically coded these

response categories (0,1,2, ...) and, for each subject, we compute the raw

score by adding together his single observed scores. The raw score cannot

be treated as a measure, because of the possible responses are qualitative,

not quantitative and the number assigned to response categories to produce
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ordinal level data, could lead to treat them as if they were interval-level

scales, without being actually. Furthermore, the presence of missing data or

non-responses, heavily influence the raw score.

Originally IRMs were proposed in psychometric framework for assessing

the level of individual intelligence; for this reason, in literature, the extension

of latent construct is identified with the term “skills”. Obviously it can be

identified with other different aspects, according to context where they are

applied, for example satisfaction, happiness, fear, pain, etc. Usually, these

instruments are applied to conventional test responses, however they are

more general and they can be applied wherever discrete data are obtained

with the intention of measuring a quantitative attribute or trait.

In an IRM we find two kinds of parameters, one that describes the

qualities of the subject under investigation (ability), and the other relates

to the characteristics of each item (difficulty). Using conditional maximum

likelihood (CML) estimation, both types of parameters may be estimated

independently from each other. The incorporation of linear structures

allows for modeling the effects of covariates and enables the analysis of

repeated categorical measurements.

We now present, briefly, three general categories of IRMs for dichotomous

data: One-parameter model, Two-parameter model, Three-parameter model.

In Section 2.4.2 we will extend to the case of polytomous data; for further

details on this class of models see Andrich (1978), Lord (1980), Wright and

Masters (1982), Nering and Ostini (2010).

One-Parameter Model

In the 1-parameter logistic model, or 1-PLM, observed dichotomous item

responses are a function of the ability (latent trait) possessed by the i-th

subject (θi) and the difficulty of the j-th item (δj):

P (yij = 1) =
exp[D(θi − δj)]

1 + exp[D(θi − δj)]
=

1

1 + exp[−D(θi − δj)]
. (2.6)

Latent trait scores and item difficulty parameters are estimated

independently, but on the same score metric (logit scale). For dichotomous
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Figure 2.2. Item characteristic curves for 3 dichotomous items

data, the item difficulty parameter corresponds to the latent trait level at

which a subject has a 50% probability of success; in general, if a person has

a latent trait level greater then an item difficulty, his probability of

correctly responding to this item is greater than 50%, otherwise it is less

than 50%. The scaling factor D, if it is set to 1.7, is used to make the

logistic function essentially the same as the normal ogive model.

We can plot P (yij = 1) as a function of ability, obtaining a smooth S-

shaped curve known as Item Characteristic Curve (ICC): the probability of

correct response is near zero at the lowest levels of ability, it increases until 1

at the highest levels of ability. Figure 2.2 presents the ICCs for 3 dichotomous

items, with three different item difficulties (-1, 0, 1). Because of in the 1-

PLM only the item difficulty can vary, the s-shaped curves have the same

slope so they are parallel. The probability of a correct response to the easiest

item (δ1 = −1) for someone of average ability (θ = 0) is 0.73, whereas the

probability for the second item (δ2 = 0) is 0.50 (this is true by definition

given that θ = δ), and the probability for the hardest items (δ1 = 1) is 0.27.
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The most popular 1-PLM is the Rasch model, that we will present in the

Section 2.4.1. In the Rasch model, the log odds of a person endorsing in the

higher category is simply a function of difference between the subject latent

trait level and the item difficulty. A nice feature of the Rasch model is that

observed raw scores are sufficient for estimating latent trait scores using a

nonlinear transformation; in other IRMs, the raw score is not a sufficient

statistic.

Two-Parameter Model

The 2-parameter logistic model (2-PLM) is an extensions of the 1-PLM,

in which we estimate, besides the item difficulty parameters δj, the item

discrimination parameters αj.

P (yij = 1) =
exp[Dαj(θi − δj)]

1 + exp[Dαj(θi − δj)]
=

1

1 + exp[−Dαj(θi − δj)]
. (2.7)

The discrimination parameter, typically ranges from 0.5 to 2, is similar to

an item-total correlation: high values of αj indicate items that are better

able to discriminate between contiguous trait levels near the inflection point,

their ICCs have a steeper slope.

If we employ the normal distribution, we obtain the two-parameter

normal ogive model (Lord, 1952):

P (yij = 1) = φ[αj(θi − δj)] =

∫ αj(θi−δj)

−∞

1√
2π
e
−z2

2 dz,

where φ is the standard normal cumulative distribution function.

An important characteristic of the 2-PLM is that the difference between

the subject’s trait level and the item difficulty (θi− δj) has a greater impact
on the probability of correct answer for highly discriminating items than for

less discriminating items.

The maximum likelihood estimation procedure is based on finding the

item characteristic curve that best fits the observed proportions of correct

response. In Ferrando and Chico (2007) it is possible to fine more details on

this estimation method.
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Three-Parameter Model

Sometimes, we could be interested in adjusting the estimations for the impact

of chance on observed scores; this because, for example, in ability testing it

is possible to get an answer right by chance, raising the lower asymptote

of the function. To solve this problem, in a 3-parameter logistic model, or

3-PLM, we add a pseudo-guessing parameter (c), and the probability of a

correct response of the i-th subject to the j-th dichotomous item is

P (yij = 1) = c+ (1− c)× exp[Dαj(θi − δj)]

1 + exp[Dαj(θi − δj)]
.

When θi = δj, the response probability is
1+c
2
. The parameter estimation is

similar to 2-PLM, to deepen this argument see Baker (1985) and Baker and

Kim (2004).

2.4.1 The Rasch Model (RM)

This model is named after Georg Rasch, a famous Danish mathematician

and statistician early last century lived. The RM has been conceived for

dichotomous data, even if many extensions have been studied for polytomous

data (some of that will be presented in Section 2.4.2).

When Rasch implemented its model, he was concerned principally with

the measurement of individuals, rather than with distributions among

populations. He want to obtain a measurement congruent with the physical

measurement characteristics (for example invariant comparison), without

making any assumptions about the distribution of trait levels in a

population. He summarized the principle of invariant comparison as follows

(Rasch, 1961):

The comparison between two stimuli should be independent of

which particular individuals were instrumental for the

comparison; and it should also be independent of which other

stimuli within the considered class were or might also have been

compared. Symmetrically, a comparison between two individuals

should be independent of which particular stimuli within the
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class considered were instrumental for the comparison; and it

should also be independent of which other individuals were also

compared, on the same or some other occasion.

The RM meets this principle as it has been implemented in order to obtain

a separation between item and person parameters, so when we estimate item

parameters, we can ignore person parameters, and viceversa. To achieve this,

it is necessary to use a conditional maximum likelihood estimation, in which

the response space is partitioned according to person total scores. As we have

already said, in these models the item (person) raw score is the sufficient

statistic for the item (person) parameter: the person total score contains

all information available within the specified context about the individual,

and the item total score contains all information with respect to item, with

regard to the relevant latent trait.

In the RM, the probability of a correct response is modeled as a logistic

function of the difference between the person and item parameter:

P (yij = 1) =
exp(θi − δj)

1 + exp(θi − δj)
; (2.8)

the higher is a person’s ability relative to the difficulty of an item, the higher

is the probability, for this person, to correctly response on that item. In the

original Rasch formulation, we don’t have the constant D as in (2.6), that

has been inserted in the 1-PLM to make comparable logistic function with

the normal ogive model.

An important step of these models is the item calibration, during which

item locations are scaled: for example, items with the smallest proportion

of correct responses are the most difficult and hence they have the highest

items locations δj. Once item locations are determined, we can the measure

person locations θi on that scale; so person and item locations are estimated

on a single scale (logit).
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2.4.2 The Polytomous Item Response Model (PIRM)

So far we have developed suitable models for dichotomous items, but in fact

most of the questionnaires provide a choice of polytomous responses (with

cj, j = 1, 2, . . . , p, possible answers). Many authors studied this problem;

we will briefly presented the essential features of three of the most popular

proposed models: the Graded Response Model (GRM), the Partial Credit

Model (PCM), and in more detail the Rating Scale Model (RSM), as this

last model is used in the simulation part of the present work.

Graded Response Model (GRM)

The graded response model, originally introduced by Samejima (1969), is

an extension of the 2-PL (2.7) for items with different numbers of response

categories. It assumes a normal cumulative distribution function for the item

response function, so the probability that the i-th subject meets maximum

class k (i.e he/she can response a categories ≤ k) is

P (yij ≤ k) =
1√
2π

∫ ∞

−αj(θi−δjk)

e
−z2

2 dz = φjk(θi).

The item parameter δjk includes the item slope parameter and the (cj − 1)

between category threshold parameters τjk, representing the latent trait

level necessary to respond above threshold with 50% probability. For GRM,

one operating characteristic curve needs to be estimated for each between

category threshold, they represent the probability of responding in a

particular category conditional on trait level.

Partial Credit Model (PCM)

The partial credit model is an extension of the RM in (2.8) to polytomous

items, thus item slopes are assumed to be equal across items. As in GRM,

items can have different numbers of categories. The person probability of

responding in category k is a function of the difference between his trait level
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and a category intersection parameter (Masters, 1982):

P (yij = k) =

exp

[

k(θi − δj)−
k
∑

l=0

τjl

]

cj−1
∑

g=0

exp

[

g(θi − δj)−
g
∑

l=0

τjl

]
, k = 0, 1, . . . , cj. (2.9)

The intersection parameters, τjl, represent the trait level at which a

response the l-th category becomes more likely than a response in the

previous one.

2.4.3 The Rating Scale Model (RSM)

The Rating Scale Model (RSM) was derived by Andrich (1978) from the

idea of Rasch (1961), focusing on the use of Likert scales in psychometrics.

The PCM has an identical mathematical structure, but was derived from a

different starting point at a later time. The two main features of this model

are that items have the same number of categories (contrary to PCM) and

the difference between any given threshold location and the mean of the

threshold locations is equal or uniform across items.

The RSM is a probabilistic measurement model in which the raw scores

are sufficient statistics for the parameters of the models (a key features of

the Rasch models); moreover it permits, by empirical tests, to verify the

hypothesis that the response categories represent increasing levels of latent

construct, so that they are correctly ordered. In 2005, Andrich has

significantly developed the problem of disordered threshold locations,

proposing different solutions depending on the specific context.

In this model, the location parameter δj represents the average difficulty

for a particular item relative to the category intersections; each item is

assumed to provide the same amount of information and have the same

slope. Encoding the c response categories ordered as 0, 1, 2, . . . , c − 1, (all

the items have the same number of categories), the RSM probability for the
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Figure 2.3. Category Probability Curves for an item with 5 ordered categories

i-th subject to answer at the j-th item the k-categories is similar to (2.9)

P (yij = k) =

exp

[

k(θi − δj)−
k
∑

l=0

τl

]

c−1
∑

g=0

exp

[

g(θi − δj)−
g
∑

l=0

τl

] , k = 0, . . . , c,

where θi identifies the level of latent aspect possessed by the subject i, δj is

the level of difficulty of the j-th item, while the threshold parameter τl (with

τ0 ≡ 0 and
∑c

l=0 τl = 0) quantifies the difficulty of choosing the l-th answer

rather than the previous one.

The probability of a given category as a function of person location is

referred to as a Category Probability Curve (CPC); an example for an item

with five categories, scored from 1 to 5, is shown in Figure 2.3.

The individual latent aspect θi, the item difficulty δj and thresholds τl

are measured on a logit scale (log odds unit), and so we can then sort them

on the basis of measurements from both subjects (from the most satisfied

to least satisfied) and applications (from easiest to hardest). Furthermore,

since both parameters are expressed in the same unit, it is possible to make
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cross-comparisons between subjects and questions.

The item score is the count of the number of threshold locations on the

latent trait surpassed by the individual. We do not make this measurement

counts in a literal sense; rather, threshold locations on a latent continuum

are usually inferred from a matrix of response data through an estimation

process such as Conditional Maximum likelihood estimation.

Extended Rasch Models

For the simulation study, we have adopted a slightly different formulation

of the RSM, belonging to the family of Extended Rasch Models (ERM),

proposed by Mair and Hatzinger (2007a) and implemented in the R package

“eRm”. ERMs are a very general framework which includes several models,

but the formalization, for the case under study, is almost equal to that shown

in (2.4.3):

P (yij = k) =
exp[k(θi + δj) + ωk]

c−1
∑

l=0

exp[l(θi + δj) + ωl]

, (2.10)

where ωk are the category parameters (ωk =
∑k

l=0 τl).

In this model, the authors use a conditional maximum likelihood (CML)

approach, which permits to estimate the item parameters δj without

estimating the person parameters θi by conditioning the likelihood on the

sufficient person raw score. Thanks to a design matrix approach which

allows to the user to impose repeated measurement designs as well as group

contrasts, the item parameter may differ over time with respect to certain

subgroups.

The likelihood expressions

In literature have been proposed several estimation methods for IRM, the

most used are conditional maximum likelihood (CML) and marginal

maximum likelihood (MML) estimation, that requires to specify a density

function, f(θ), for the person parameters; CML and MML are

asymptotically equivalent and provide consistent estimators (Pfanzagl,
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1994; Hatzinger, 2008).

For the ERM, the authors use CML approach for the desirable

properties of the estimators and because it stays close to the concept of

specific objectivity (Rasch 1960; Fisher Jr. 1992). CML estimation assumes

that the person’s raw score ri =
∑p

j=1 yij is a sufficient statistic. Thus,

considering the conditional likelihood with respect to

r = (r1, r2, . . . , rn) (2.11)

the person parameters θ disappear from the likelihood equation, thus, leading

to consistently estimated item parameters δ̂. To ensure identifiability, we

have to impose some restrictions, for example in the RM one item parameter

has to be fixed to 0 and it is considered as baseline difficulty. In addition,

in the RSM the category parameter τ0 is constrained to 0. The conditional

log-likelihood equation for the RSM is

logLc =

p
∑

j=1

cj
∑

k=1

yijkθj −
rmax
∑

r=1

nr log γr,

where rmax is the maximal raw score, nr is the number of subjects with the

same raw score, the γ-terms are the elementary symmetric functions and

yijk is 1 if yij = k, 0 otherwise. An elaborated derivation of these terms for

the ordinary RM can be found in Fischer (1974) and an overview of various

computation algorithms is given in Liou (1994). For all steps, the first and

second order derivatives and the solution algorithm, see Mair and Hatzinger

(2007a and 2007b).

2.4.4 The Analysis of Reliability

When we use an IRM, it is important to evaluate the appropriateness of the

found factor structure with an evaluation of the reliability of the obtained

measures (Tarkkonen and Vehkalahti, 2005). There is an important difference

between validity and reliability. To better express it, we refer to the definition

of these concepts given by Vogt in his Dictionary of Statistics & Methodology
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(1993).

• Reliability : Freedom from measurement error. In practice, this boils

down to the consistency or stability of a measure or test from one use

to the next.

• Validity : A term to describe a measurement instrument or test that

accurately measures what it is supposed to measure; the extent to which

a measure is free of systematic error. Validity requires reliability, but

the reverse is not true.

Gulliksen (1945) and Loevinger (1954) studied the attenuation paradox, for

which the validity is reduced by increasing the reliability, but it is important

to have measures with a high reliability and we can do it increasing the inter-

item correlation (IIC). The problem is that when we increase too much the

IIC, all items are so higly correlated that effectively they reduce to one item,

so we reduce the validity (Kuhn, 1970).

We define the reliability of a measure as the proportion of its variance

(the observed variance of the Rasch measures) attributable to the variance

of the real underlying factor that we are measuring:

Reliability =
True variance

Observed variance

If measures and errors are uncorrelated, then

Observed variance = True variance + Error variance

Cronbach’s alpha, thanks to its computational simplicity and easiness

of understanding, is probably the most famous and popular reliability index

(Cronbach, 1951). It has a general formula (DeVellis, 1991) from which

derive many of the other indices (for example the Kuder-Richardson, KR,

coefficients):

α =
p

p− 1

(

1−
∑p

j=1 σ
2
j

σ2
t

)

,
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where p is the number of items. σ2
t is the variance of ri, the observed raw

scores for the current sample of persons (2.11), σ2
j is the variance of the j-th

item for the current sample of persons, r̄j is the means of the answers at the

j-th item for the current sample of persons:

σ2
j =

1

n

n
∑

i=1

(yij − r̄j)
2 σ2

t =
1

n

n
∑

i=1

(ri − r̄)2

r̄j =
1

n

n
∑

i=1

yij r̄ =
1

n

n
∑

i=1

ri

Cronbach’s alpha describes the internal consistency of groupings of items;

an high value of the index indicates that the responders express a coherent

position on each item belonging to the same dimension. In literature, we find

that a barely acceptable level of internal consistency and appropriateness of

test is α ≥ 0.7 (Nunnally and Bernstein, 1994).

Checking the internal consistency of each test subset, we can deepen the

study of the structure factors and define the construct validity of the scale.

Novick and Lewis (1967) showed that Cronbach’s alpha is a lower bound to

the true reliability, so we can consider Cronbach’s alpha as a conservative

estimate of the reliability.

Often in Rasch Measurement the person separation index is used

instead of reliability indices. Rasch Person Reliability index (RPRI)

indicates the replicability of person ordering that we could expect if at this

sample of persons were given another parallel set of items measuring the

same construct. This index is a ratio of the latent construct variance (SA2)

and the measure variance (SD2):

RPRI =
SA2

SD2
= 1− MSME

SD2
, (2.12)

where the Mean Square Measurement Error (MSME) is

MSME =
1

n

n
∑

j=1

S2
j , (2.13)
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and SA2 = SD2 − MSME. The error variance of all measures obtained

with IRMs proposed in the previous paragraphs is estimated from the sum

of the modeled variance of observations. This model error variance requires

the data to conform stochastically to the proposed model. RMs provide a

direct estimate (SEn) of the model error variance for each estimate of a

subject’s ability and an item’s difficulty (Wright and Masters, 1982; Wright,

1999), that gives a quantification of the precision of every person measure

and item difficulty. The level of measurement error is not uniform across

the range of a test, but is generally larger for more extreme scores. Person

reliability requires not only ability estimates well targeted by a suitable pool

of items, but also a large enough spread of ability across the sample so that

the measures demonstrate a hierarchy of ability (person separation) on this

construct. Unfortunately, the correlation-based reliability index (category at

which RPRI belongs to) are nonlinear, so the improvement form 0.7 to 0.8

is not twice the improvement from 0.9 to 0.95.

Conventionally, only a Reliability index is reported. The relationship

between raw-score-based reliability index (Cronbach alpha) and measure-

based reliability index (RPRI) is complex (Linacre, 1997; Schumacker and

Smith, 2007); in general, Cronbach alpha overestimates reliability, RPRI

underestimates it. The big differences between Score and Measure reliability

occur when there are:

• extreme scores, that increase score reliability, but decrease measure

reliability;

• missing data, that always decreases measure reliability. If the missing

data are imputed at their expected values (in order to make

conventional reliability formulas computable), they increase score

reliability.



Chapter 3

The Estimation Procedures: A

Simulation Study

3.1 Introduction

When we analyze socio-economic phenomena, we often have observed

realizations of the latent aspects, which are linked by different relations of

dependence that we are very interested in finding out. As we have said in

chapter 2, the study of all the presented models originates from this

concrete problem: to measure subjective perceptions and to understand

their dependencies. The objective of the researches is, therefore, to estimate

the parameters of a regression model for latent variables, that are measured

indirectly with sets of Likert-type items (ordinal scale). In the second

chapter, we have seen the two different approaches for the analysis of

categorical observed data: the Underlying Variable Approach (Section

2.2.1) and the Item Response Models (Section 2.2.2). Each of these

approaches is linked to a different estimation procedure: we will present the

One-step Procedure for UVA, and the Two-step approach for IRMs in

Section 3.2. The purpose of the simulation study is to compare, on the

same data, the results obtained using these different estimation procedures.

In Section 3.3, we will present the simulation design, entering some details

about the data generation. Finally in Section 3.4, we will report the results

54
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of the simulation study and we will make some conclusion considerations.

3.2 The Estimation Procedures

The starting point is the analysis of a complex phenomena (at least two

latent factors, but often we have many more) using a series of data collected

from a questionnaire with Likert-type items. Many authors are interested in

studying the relations between latent constructs, between the most famous

we remember Goldberger and Duncan (1973), Skrondal and Rabe-Hesketh

(2004), Bollen and Curran (2006), and in a multilevel optical Hox (2002).

For example, we can think of a study addressing the workers of social

cooperatives (Carpita, 2009): the data are collected trough a questionnaire

designed to investigate, through numerous questions, different constructs,

including job satisfaction, motivation, job complexity (perceived activities),

procedural fairness (existence of transparent of rules that governs the

relationship between worker and cooperative), organizational fairness

(perception of the worker in relation to their working conditions and its

participation in organizational life) and distributive equity (distributing

resources, balance between what the worker gives the organization and

what that it receives). Besides getting a good measure of these constructs,

the researcher is obviously interested in understanding the relationships

between them.

Obtain ”good” measures (see Section 2 and 2.4.4) and to assess the

dependence relationships between the constructs they represent, are the

two main research interests for the analysis of latent variable models with

psychological traits. These two objectives (measures and dependence links)

may be combined into a single estimation procedure or developed

sequentially one at a time.

• If we combine the two interests in a single model, we have a

One-step procedure . This procedure requires the researcher to

specify a complete model of both measurement aspects (single link

between the latent variable and its indicators) and structural aspects
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(links between different latent variables). The model parameters are

estimated simultaneously.

• We have a Two-step procedure when we estimate the measures and

their dependence in two different phases. In the first step, we estimate,

separately, the measures (one for each construct); in the second step

we will assess, through a regression model, the relationships between

these measures (and between the latent variables that they represent).

The One-step procedure should be more efficient, since it provides

simultaneous estimation of latent variables and their dependance

relationships. It, however, does not allow a thorough analysis of obtained

measures in IRT perspective, the strength of Two-step procedure.

The properties of the Two-step procedure have not yet been adequately

detailed in the literature and we did not find significant contributions in this

regard. One of the goal of this research is to define a Two-step method that

present low levels of bias and loss of efficiency, as close as possible to that of

One-step methods. Crucial element is to find a correct model that considers

that the measures obtained by the first step are affected by measurement

errors.

We have implemented an articulated simulation study (Section 3.3) to

evaluate the impact of this measurement error in the case of standard

regression and it assesses whether the Two-step procedure is preferable

compared to the One-step procedure. For comparison, we will consider the

loss of efficiency and accuracy of the Two-step procedure, but also

evaluating that it allows better control in both phases: measures

construction and regression model.

Moreover, in the Two-step method we use a reliability index to estimate

the variance of measurement error, not yet widespread in the literature: the

Rasch Person Reliability Index (2.12). This index can conceptually be an

element of connection between the first and second stage of Two-step

procedure, as it is calculated together with the measures in the first step

and it determines the magnitude of measurement error in the second one.
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3.2.1 The One-step Procedure

This procedure is combined with the UVA approach, showed in Section 2.2.

The starting point are the latent variables underlying the observed responses

and the relationships between these constructs. For this reason, the One-

step procedure involves the simultaneous estimation of all model parameters

through the implementation of a structural equation model. We will refer to

the Muthén SEMs, implemented in Mplus (Muthén and Muthén, 2007).

We have seen that two main components of models are distinguished in

SEM: the Structural Model, showing potential causal dependencies between

endogenous and exogenous variables, and the measurement model showing

the relations between latent variables and their indicators. In the simple

case of two latent factors with three and two categorical indicators,

respectively, we have:

The Structural Model

θ1 = ζ1 (3.1)

θ2 = bθ1 + ζ2,

The Measurement Model

Y ∗1 = λ11θ1 + ǫ1

Y ∗2 = λ12θ1 + ǫ2

Y ∗3 = λ13θ1 + ǫ3

Y ∗4 = λ24θ2 + ǫ4

Y ∗5 = λ25θ2 + ǫ5,

where ǫj ∼ N(0, 1) and λij are the loadings relating the indicators to their
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constructs. For each ordinal indicator item, we have

yj =



































cj − 1, if τj,cj−1 < y∗j

cj − 2, if τj,cj−2 < y∗j ≤ τj,cj−1

...

1 if τj,1 < y∗j ≤ τj,2

0 if y∗j ≤ τj,1

.

It is important to underly that all the model error terms, ζh and ǫj, are

considered to be uncorrelated with each other and with other variables in

the model. The variance of the structural errors ζh will be indicated with ψh

.

We implemented two different estimation methods:

• Structural Equation Model standard (SEMstd),

• Structural Equation Model with IRT approach (SEMirt).

In Appendix we have included the scripts of Mplus used to apply these

methods.

SEMstd is the simple Structural Equation Model just seen in equations

(3.1) and (3.2). We are interested in the estimation of the coefficient

regression b and of the threshold parameters τh,k. We have to remember

that, in RSM, the threshold parameters are equal for all the items referring

to the same latent construct, so τh,k is the threshold parameter for the k-th

categories for all the items referring to the h-th construct. To homogenize

the comparisons with the results obtained through other estimation

methods and with different experimental conditions, we always standardize

all the estimated variables and coefficients, so instead of talking about

regression coefficient b, we will refer to beta weights β, presented in the first

Appendix (A.1).

SEMirt is a version of previous the model, inspired by the work of

Gibbons et al. (2007), that introduces the structure of IRMs in SEM.

Mplus do not allow to specify directly the difficulty item parameters δj, so

we have to introduce p fake latent variables ∆j (one for each ordinal
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indicator item) which, formally, are latent variables, but their variance is

imposed equal to 0. The ∆j are completely uncorrelated with each other

and with all other variables in the model. The means of these fake variables

represent the difficulty item parameters δj. Furthermore, to recreate IRMs,

we have to impose that all relevant loadings be equal to 1. So, we have:

The Structural Model

θ1 = ζ1

θ2 = βθ1 + ζ2

∆1 = δ1 + ζ3

∆2 = δ2 + ζ4

∆3 = δ3 + ζ5

∆7 = δ7 + ζ6

∆5 = δ5 + ζ7,

with var(∆j) ≡ 0. The parameter δj, the mean of the variable ∆j,

represents the difficulty of the j-th item.

The Measurement Model

Y ∗1 = θ1 +∆1 + ǫ1

Y ∗2 = θ1 +∆2 + ǫ2

Y ∗3 = θ1 +∆3 + ǫ3

Y ∗4 = θ2 +∆4 + ǫ4

Y ∗5 = θ2 +∆5 + ǫ5,

where ǫj ∼ N(0, 1).

With this model, we can estimate the standardized regression coefficient

β, the threshold parameters τh,k and, in addition to the previous model, the

item difficulty parameters δj (through the means of ∆j).

For SEMs, several indices of goodness of fit have been proposed, but it is
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not possible to proceed to the analysis of reliability and make all the other

considerations (for example on the unidimensionality of constructs, the item

analysis and correct categories order) that represent a significant part of the

Two-step procedure.

3.2.2 The Two-step Procedure

This procedure is combined with the Item Response Theory approach (see

Section 2.4), which focuses on observed variables. The first step of this

method consists in estimating, through a IRM, the measure of each latent

variable. These measures are then entered into a regression model to estimate

the dependence relationships between the constructs.

In the first step, we divide the items in many subdatabases as there are

latent factors, so that items belonging to each subdataset refer to a single

construct. This is necessary to respect the character of unidimensionality

required by IRMs. Once the various measures are constructed, for each of

them we can analyze the goodness of results. All IRMs include an analysis

phase where researchers have to determine if the constructed measure mets

all the main features of these models (for example unidimensionality and

category proper order), and to estimate their reliability.

Once this analysis successfully, we turn to the second step in which we

want to estimate the dependence relationships between the constructs. We

implement a linear regression model where we use, as regressors and

response variables, the measures obtained in the first step. Applying this

model, we should consider that these measures are affected by measurement

error, that can greatly influence the estimation of parameters in the second

step.

Because of the properties of the Two-step procedure have not yet been

adequately detailed in the literature, we define two different method for this

procedure, with the intention of being able to evaluate the essential

characteristics of the estimators on simulated data:

• Rating Scale Model - Linear Regression Model with Measurement Error
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(RSM-LRMme);

• Rating Scale Model - Standard Linear Regression Model

(RSM-LRM).

The first method has been implemented searching to define a Two-step

method that present low levels of bias and loss of efficiency, as close as

possible to that of One-step methods. Crucial element is to find a correct

model that considers that the measures obtained by the first step are

affected by measurement errors. Instead the second method, more

traditional, aware that the measures are affected by measurement error.

In Appendix we have included the scripts of R used to apply these

methods.

The first step of both methods is the same: for each of the m constructs,

we estimate its measure, Y ∗, through an extended RSM (2.10), and their

person reliability, using the standard errors of the person parameters (Mair

and Hatzinger, 2007b). In this phase, we use the R package eRm of Mair

and Hatzinger (2007a).

Before moving to the next step, we standardize all the estimated measures

and the other quantities involved in the model. In this way, the regression

coefficients that we will estimate in the second step will be the beta weights,

β, presented in the first Appendix (A.1), and they will be comparable with

that obtained by the other estimation methods or with different experimental

conditions.

The second step changes between the two methods. To explain the

differences, we assume to have two measures, Y ∗1 and Y ∗2 , (obtained in the

previous step), which are a function of the constructs, θ1 and θ2, plus

measurement errors, ǫ1 and ǫ2.

In RSM-LRMme, we implemented a linear regression model taking into

account, to estimate the regression coefficients, that the model variables are

affected by measurement errors. It is important to include this information

in the model, to compensate for the attenuation effect, that we have amply

described in the first chapter (see Section 1.3.1 at page 7). The regression
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equation is:

θ2 = βθ1 + ζ2,

where

Y ∗1 = λ11θ1 + ǫ1

Y ∗2 = λ22θ2 + ǫ2,

with the loadings λij.

To estimate this model, we used the RAM (in Section 2.3.5),

implemented in the R package “sem” of Fox (2006). As measurement error

variance estimates, we use the variance error estimates derived in the

previous step (2.13). We decide to refer to the Rasch Person Reliability

Index (2.12), still not used in scientific papers to estimate the variance of

measurement error, because it can conceptually be an element of

connection between the first and second stage of Two-step procedure, as it

is calculated together with the measures in the first step and it determines

the magnitude of measurement error in the second one.

In RSM-LRM, for the second step we refer to a simple linear

regression model, where the measures are used directly in the regression

equation, without considering that they are affected by measurement errors:

Y ∗2 = βY ∗1 + ε1.

What we expect, and we will verify with the simulation study, is that

estimated regression coefficients β̂, obtained with the latter method, are

lower than those obtained with the RSM-LRMme method, because of the

attenuation effect of measurement error (1.7).

3.3 The Simulation Design

The objective of this study is to compare the results obtained applying the

4 different analytical methods, previously described, to the same data. We

created many different simulated databases in order to evaluate the obtained
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estimates, knowing the real value of the parameter of interest. We indica

with p be the total number of the items, p1 is the number of the indicators

for the first construct, p2 that for the second one and p3 that for the third

one.

We imagined two scenarios: the first is simple with only two latent factors

and a dependence relationship of the second versus the first; in the second

one we have considered three latent factors, where one is dependent from the

other two.

For the first scenario, the parameter p2 is always fixed at 5, while p1 = 5

for case A, and p1 = 10 for case B. The model generating the data is therefore

(Figure 3.1):

The Structural Model

θ1 = ζ1

θ2 = β12θ1 + ζ2

∆1 = δ1 + ζ3
... =

...

∆p = δp + ζp + 2,

with var(∆j) ≡ 0, ζ1 ∼ N(0, 1) and ψ2 fixed such that θ2 ∼ N(0, 1).

The Measurement Model

Y ∗1 = θ1 +∆1 + ǫ1
... =

...

Y ∗p1
= θ1 +∆p1

+ ǫp1

Y ∗p1+1 = θ2 +∆p1+1 + ǫp1+1

... =
...

Y ∗p = θ2 +∆p + ǫp

with ǫj ∼ N(0, 1).
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Figure 3.1. SEMirt 2 latent factors Mplus model

For the second scenario, the parameters p2 and p3 are always equal to 5,

while p1 is equal to 5 for case An and to 10 for case B. The model generating

the data is (Figure 3.2):

The Structural Model

θ1 = ζ1

θ2 = β12θ1 + β32θ3 + ζ2,

θ3 = ζ3

∆1 = δ1 + ζ4
... =

...

∆p = δp + ζp+3,

with var(∆j) ≡ 0. Both ζ1 and ζ1 are distributed as a standard normal. ψ2,

that is the variance of ζ2, is fixed so that the variance of θ2 is equal to 1 and

we have θ2 ∼ N(0, 1). ψ2 changes according to the value of the regression

coefficients β12 and β32.
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The Measurement Model

Y ∗1 = θ1 +∆1 + ǫ1
... =

...

Y ∗p1
= θ1 +∆p1

+ ǫp1

Y ∗p1+1 = θ2 +∆p1+1 + ǫp1+1

... =
...

Y ∗p1+5 = θ2 +∆p1+5 + ǫp1+5

Y ∗p1+6 = θ3 +∆p1+6 + ǫp1+6

... =
...

Y ∗p = θ3 +∆p + ǫp

with ǫj ∼ N(0, 1).

For each scenario, we fixed the variance of the latent variables equal to 1,

then we changed the value of three basic model parameters in order to create

different configuration sets.

1. We changed the number of indicators for the first regressor: p1 is equal

to 5, in the case A, and equal to 10, in the case B. The parameter p2

(and p3 for the second scenario) is fixed at 5. From the IRT (Baker

and Kim, 2004), we know that increasing the number of indicators,

the measure reliability increases, we want to control if it is verified in

our simulations. Each indicator is a categorical variable with 5 ordered

categories.

2. We impose ψ2, the structural error variance of the dependent latent

variable θ2, to be equal to 0.1, 0.3, 0.5, 0.7, or 0.9. In this way, we can

define the strength of the dependence link between the latent variables:

having fixed the variance of the latent dependent variable θ2 equal to 1,

when we increase ψ2, we reduce the dependence relationship between

of θ3 from θ2 and θ1.
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Figure 3.2. SEMirt 3 latent factors Mplus model
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3. Only for the second scenario, we changed the intensity of dependence

of θ2 from θ1 and θ3. We have

θ2 = β12θ1 + β32θ3 + ζ2.

Whereas the structural errors (ζh) are uncorrelated with each other, we

know that

var[θ2] = β2
12var[θ1] + β2

32var[θ3] + var[ζ2]

= β2
12ψ1 + β2

32ψ3 + ψ2.

var[θ2] is fixed at 1, we set ψ2 equal at one of five levels indicated at

point 1, so κ = (1−ψ2) represents the total dependence link of θ2 from

the regressor constructs. We create 3 different situations:

• Case (1
4
; 3

4
), where β12 =

√

κ
10

and β32 = 3β12. In this case the

dependence of θ2 from θ1 is three times more intense than that

from θ3.

• Case (1
2
; 1

2
), where β12 = β32 =

√

κ
2
, so the dependence of θ2 from

θ1 has the same intensity than that from θ3.

• Case (3
4
; 1

4
), where β12 = 3

√

κ
10

and β32 =
√

κ
10

. We create this

case only when p1 = 10.

Obviously, when we change these three groups of parameters, we change

also the values of the regression coefficients, β12 and β32. For example, in

the second scenario, with ψ2 = 0.1, in the case (3
4
; 1

4
) we have β12 = 0.9 and

β32 = 0.3; while in the case (1
2
; 1

2
) we have β12 = β32 = 0.67082.

In total, we created 35 different parameter configurations, 10 for the first

scenario and 25 for the second one. For each set, we simulate N samples

of size n. We make some preliminary studies to understand the optimal N

and n. Because, as we saw in Chapter 2 (page 29), SEMs are large samples

methods, we fixed the sample size to 1000.
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Figure 3.3. Stability of the simulation results: mean estimates of regression
coefficient β12 in the first scenario for all 10 parameter configurations
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Figure 3.4. Stability of the simulation results: mean estimates of standard
errors of regression coefficient β12 in the first scenario for all 5 parameter
configurations of the case A
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To decide the number of samples, we tested the stability of estimates for

each of the 4 different methods above described. To simplicity, we report

only the case of the first scenario (with two constructs). In Figure 3.3, we

see the simulated mean estimates of the regression coefficient β12 for all the

10 different parameter configuration. The true value of the parameter (equal

for the case A and B) is 0.95 for ψ2 = 0.1, 0.84 for ψ2 = 0.3, 0.70 for ψ2 = 0.5,

0.55 for ψ2 = 0.7, 0.32 for ψ2 = 0.9. We note that estimates become stable

with a few dozen repetitions, so observing these graphs we could fix N = 100.

Then we focused on the standard error of the estimates. In Figure 3.4, we

report the simulated mean standard error estimates of regression coefficient

β12 for all the 10 different parameter configuration. We can note that we

need more iterations, and so more samples, to have stable standard error

means. Considering, therefore, the stability of the estimates and the trend

of the standard errors, we decided to set the number of samples (N) equal

to 500, for each parameter set. The size of samples, N greatly influences the

computing time, for this reason we tried to keep it relatively low, while the

sample size n, had a lower impact on it.

3.3.1 The Data Generation Process

The data have been generate with Mplus, following the model described in

equations (3.1) and (3.2). The parameters have been set as presented in

the previous paragraph. For the generation procedure, we had to decide

whether to use a probit or logit model (Agresti, 1996, Muthén and Muthén,

2007). To understand which to choose, we made another small simulation.

We generated some samples with both models, and then we verified the

results, obtained using different software: Mplus, “eRm” package of R, and

Winstep (Linacre, 2003). We found that with the probit model, we obtained

more consistent results with the different softwares. For a binary dependent

variable, the probit regression model expresses the probability of response
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as:

P (yij = 1|θi) = F (a0 + a1θi)

= F (−τj + a1θi),

P (yij = 0|θi) = 1− P (yij = 1|θi),

where F is the standard normal distribution function, a0 is the probit

regression intercept, a1 is the probit regression slope, τj is the probit

threshold (in this case τj = −a0). For the ordered categorical dependant

variables with 5 categories, the probability of response for the probit

regression model is:

P (yij = 0|θi) = F (τj1 − a1θi)

P (yij = 1|θi) = F (τj2 − a1θi)− F (τj1 − a1θi)

P (yij = 2|θi) = F (τj3 − a1θi)− F (τj2 − a1θi)

P (yij = 3|θi) = F (τj4 − a1θi)− F (τj3 − a1θi)

P (yij = 4|θi) = F (−τj4 + a1θi),

where τjk are the probit thresholds.

We started generating multivariate normal data for the independent

variables in the model (θ1, θ3, ∆j). Then the data for the continuous

dependent variable, θ2, have been generated according to a distribution

that is multivariate normal conditional on the independent variables.

Finally, we generated the categorical dependent variables, Yj, according to

the probit model, using the fixed values of the thresholds and item difficulty

parameters. The thresholds, τhk, and the item difficulties, δj, have been

chosen to obtain items with different response distributions (positively

asymmetric, symmetric and asymmetric negative). We tried to maintain

these distributions in all sets of parameters generated (Figure 3.5).
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Figure 3.5. The frequency distribution for the item response categories of
the 10 items of the first scenario, case A, ψ2 = 0.1.

3.4 The Simulation Results

In this Section, we will present the key findings from the simulation study.

All reported results refer to the estimated regression coefficients β12 and β32,

which estimate the dependence relationships between the latent variables, the

final goal of many of the socio-economic studies that we mentioned earlier.

To compare the results obtained with the 4 estimation methods, we evaluate:

• the Relative Bias, RB(β̂) = β−β̂

β
;

• the Relative Standard Error, RSE(β̂) = SE(β̂)
β

;

• the Relative Root Mean Square Error, RMSE =
√

RB(β̂)2+RSE(β̂)2.

We choose to use relative indices, that is they have been divided by the

actual value of the parameter, to allow a correct comparison in the several

presented cases (important forethought because the regression coefficient

takes values in [0.1, 0.9]).
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3.4.1 First Scenario

We start the result analysis from the first scenario, where we have two latent

variables, the second one (θ2) dependent from the first construct (θ1).

In Figure 3.6, we see the relative bias, RB(β̂12), for the regression

coefficient β12. In boxes (a) and (b), we find the results for the cases in

which the independent construct has 5 or 10 items, respectively. We can

immediately observe that the results of RSM-LRM method show a strong

negative bias, consistent with the theory of measurement errors (Section

1.3.1 at page 7). In boxes (c) and (d), we brought the same results of the

two previous ones, by removing those of the fourth method. SEMstd and

SEMirt methods show a distortion of reduced entity (in absolute value less

than 1%). It is interesting to note that the broken line of the two One-step

procedures are practically overlapping, though they represent, conceptually,

two very different methods. Indeed, we recall that the method SEMirt

corresponds to the data generator model, while the less constrained

SEMstd method is a traditional SEM, which does not take into account

the IRT structure. The bias of the Two-step procedure RSM-LRMme

increases as ψ2, the variance of structural error term ζ2, increases.

It is also interesting to note that, in case B, the distortion of the RSM-

LRMme method is less than the case with few indicators for the independent

latent variable, consistent with IRT.

In Figure 3.7, we see the relative standard errors, RSE(β̂12), for the

regression coefficient β12. The RSM-LRM method shows relative standard

errors lower than other methods. The broken line of the two One-step

procedures, again, are practically overlapping and they show the same

trend; while the Two-step procedure RSM-LRMme is the less precise.

For all the 4 methods, the standard errors increase as ψ2, the variance of

structural error term ζ2, increases.

In Figure 3.8, we see the relative RMSE(β̂12) for the estimates of the

regression coefficient β12. From this graph, we note the importance of

considering, in the estimation procedure, the measurement errors that

affect the variables.
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Figure 3.6. Simulation Results: the Relative Bias (RB) for the estimates of
the regression coefficient β12 in the first scenario
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Figure 3.7. Simulation Results: the Relative Standard Error (RSE) for the
estimates of the regression coefficient β12 in the first scenario

In fact, the only method that ignored the problem, the RSM-LRM,

presents a very high relative RMSE(β̂12) (up to 10 times the other method

values). It is due to the strong bias, not sufficiently compensated by the good

accuracy in estimating. The broken line of the two One-step procedures,

SEMirt and SEMstd, are practically overlapping and they have the lowest

RMSE, less than 10%, except in the case of maximum relative variance,

where is nearly 12%. The SEM-LRMme method has a slightly higher

RMSE(β̂12), although the discrepancy with the One-step procedure is never

more than 3 percentage points. For example, in the case B with ψ2 = 0.9,

for SEMirt we have RMSE(β̂12) = 11.1%, while for the RSM-LRMme

equal it is equal to 13.6%.

Similar considerations can be drawn observing the Boxplot chart in

Figure 3.9. Boxplots (also known as a box-and-whisker diagrams) display

the differences between populations without making any assumptions of the

underlying statistical distribution. The ends of the whiskers represent the

minimum and maximum of the sample data; the dashed red line indicates

the true value of the estimated parameter. This graph shows very well the

relationship between accuracy of the estimate and the number of indicators

used for the measures. We actually note that all estimates of case B present
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Figure 3.8. Simulation Results: the Relative Root Mean Square Error
(RMSE) for the estimates of the regression coefficient β12 in the first scenario

smaller box plots, and they are less dispersed around their median.

Furthermore, this representation highlights the strong distortion of

SEM-LRM method. To simplicity, we present only one of five available

boxplot charts (one for each level of ψ2), the others have a similar trend.

Focusing for a moment on the Two-step procedure, we can analyze the

reliability indices of the estimated measures. We compared the values of

Cronbach’s alpha and the Rasch Person Reliability Index (RPRI), proposed

in the chapter 2 (Section 2.4.4 at page 50), and we have seen that they are

perfectly consistent, as evidenced the Figure 3.10 (a). We can just multiply

the RPRI index by a factor g (in this case gǫ[1.2, 1.3]) to obtain the

corresponding value of α. Furthermore, it is important to observe that the

index values for the two measures, Y ∗1 and Y ∗2 , estimated at the first stage

of the Two-step approach, are always above the threshold 0.7, which is

referred to as the minimum acceptable level for Cronbach’s alpha (Nunnally

and Bernstein, 1994). It is also very interesting to note that Y ∗1 , which is

associated with the construct measured by 10 indicators, presents reliability

indices significantly higher than Y ∗2 . It is also worth emphasizing that this

increase is observed, similarly, in both of the indices.

In Figure 3.10 (b) and (c), we present Cronbach’s alpha index values,
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Figure 3.9. Simulation Results: the boxplot chart for the estimate of the
regression coefficient b12 in the first scenario

more used in literature, for the two measures, Y ∗1 and Y ∗2 . This graph,

again, clearly shows the increase in reliability due to the increase of indicators

for the first construct. In fact, the 5 Boxplots related to the independent

latent variable of case B clearly show that the reliability indices in these

samples are significantly higher than others; their α1 values increased by

almost 10 percentage points compared to that of the measures with only 5

indicators. From this graph, we can deduce that the weakening of dependence

relationship between the two latent variables, does not affect the estimation

of measurement associated with each latent variable.

This reliability analysis, in addition to a series of other considerations

about, for example, the unidimensionality, the correct order of categories

and the differential item functioning (Hambleton et al. 1991; Roju et al.

1995; Emons et al. 2005; Zumbo, 2007), are possible only with the Two-step

procedure, that separates the estimation of the measures from the estimation

of the construct relationships. It is a very important step in the latent

variable analysis, which has not an analogue into the One-step procedure,

where we can only verify the goodness of fit, but not the reliability of the

constructs (in IRMs terms).
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Figure 3.10. Simulation Results first scenario: (a) comparison between the
RPRI values and the Cronbach’s alpha values for the two measures Y ∗1 and
Y ∗2 , (b) and (c) the boxplot chart for the Cronbach’s alpha indices for the
two measures Y ∗1 and Y ∗2
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3.4.2 Second Scenario

The second scenario presents three latent variables, where θ2 depends from

θ1 and θ3. The results are similar to those already presented for the first

scenario, we will briefly summarize the most salient.

In Figure 3.11, we see the relative bias for the regression coefficients β12

and β32, case A (3
4
; 1

4
), where β12 = 3β32. As for the first scenario, we can

immediately observe that the results of RSM-LRM show a strong negative

bias, consistent with the theory of measurement errors (1.7 at page 7). In

boxes (c) e (d), we brought the same results of boxes (a) e (b), by removing

those of the fourth method. The two One-step procedures, that follow a

similar trend, show a distortion of reduced entity (in absolute value less than

1%). The bias of the Two-step procedure RSM-LRMme increases as ψ2

increases, but in absolute value is always lower than 10%.

In Figure 3.12, we see the relative standard error for the estimates of

the regression coefficients β12 and β32. The RSM-LRM method shows

RSE(β̂12) and RSE(β̂32) lower than other procedures, even if they are all

very close. While for the case (1
2
; 1

2
) the estimates of two different

coefficients have standard errors of equal magnitude, we note that for the

case (3
4
; 1

4
), with ψ2 = 0.9, the relative standard errors of β̂12 are very high,

between 30% and 40% of the parameter value. For all the 4 methods, the

standard errors increase as ψ2 increases.

The relative RMSE(β̂12), for the estimates of the regression coefficients

β12 and β32 are shown in table 3.1. In the last rows of the table, we

reported the actual values of the regression coefficients. Consistent with

what is already shown in the first scenario, we observe that RSM-LRM,

ignoring the presence of measurement errors, presents a very high RMSE

(up to 3 times that of other methods). It is due to strong bias already seen

in previous graphs, not sufficiently compensated by the good accuracy in

estimating. The two One-step procedures, SEMirt and SEMstd, have the

lowest relative RMSE, even if the SEM-LRMme relative RMSE values

are very close to the previous, only from 2 to 4 percentage points more.

The very high values (above 30%), occurred when ψ2 = 0.90, β̂12 (1
4
; 3

4
) and
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Figure 3.11. Simulation results: the Relative Bias (RB) for the estimates of
the regression coefficients β12 and β32 in the second scenario case A (3

4
; 1

4
),

where β12 is the 75% of κ and β32 is the 25% of κ
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Figure 3.12. Simulation results: the Relative Standard Error (RSE) for
estimates of the regression coefficients β12 and β32 in the second scenario
case A
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Table 3.1. Simulation results: the relative Root Mean Square Error (in %) for
the estimate of the regression coefficients β12 and β32, in the second scenario
case B
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β̂32 (3
4
; 1

4
), are due to the fact that the index is divided by 0.1 (actual value

of the parameters β12 and β32, respectively).

In Figure 3.13, we have the Boxplot charts, that underly, again, the strong

distortion of SEM-LRM method.

Finally, we pay attention on the reliability indices for the measures of

Two-step procedure As in the first scenario, the two indices, RPRI and

Cronbach’s alpha, are perfectly consistent. We can just multiply the RPRI

index by a factor g for computing the value of α. We present the

Cronbach’s alpha results, which is certainly more used in literature. In

Figure 3.14, we can see the index for the three measures, Y ∗1 Y ∗2 and Y ∗3 ,

estimated at the first stage of the Two-step approach. We note that all the

index values are significant because they are greater than 0.7. Furthermore

the measures built across 10 indicators are characterized by an index of

reliability far superior to the others.

Time computer processing

To conclude the analysis of results, we also talk about the computer

processing time required by the different methods. For the first scenario,

the method SEMstd takes about 7 hours for each parameter configuration

of case A and more than 12 hours for each set of parameters of case B, a

total of about 100 hours of elaboration. SEMstd method takes about 15

hours for each parameter configuration of case A and more than 27 hours

for each parameter configuration of case B, a total of about 230 hours of

elaboration. RSM-LRMme method took about 16 hours for all parameter

configurations of case A and 1 day for all configurations of case B, in total

about 40 hours of elaboration. RSM-LRM method, actually based on

information estimated from the first step the other method, took 5 hours

total, for both Case A and B, to perform only the second step. Thus, for

the first scenario, we note that the procedures Two-step are considerably

faster than One-step procedures.

This difference becomes much more significant with the second scenario.

SEMstd method requires approximately 8 hours for each parameter
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Figure 3.13. Simulation results: the boxplot charts for the two regression
coefficients β12 and β32 in the second scenario, case ψ2 = 0.3, with distribution
(1

4
; 3

4
) and (1

2
; 1

2
)
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Figure 3.14. Simulation results: the boxplot chart for the Cronbach’s alpha
indices for the three measure Y ∗1 , Y ∗2 and Y ∗3 in the second scenario, with
distribution (1

2
, 1

2
)

configuration of case A and more than 19 hours for each set of parameters

of case B, a total of about 380 hours of elaboration. SEMstd method takes

about 21 hours for each parameter configuration of case A and more than

35 hours for each set of parameters of case B, a total of about 750 hours of

elaboration. RSM-LRMme method took about 30 hours for all parameter

configurations of case A and two days for all configurations of case B, in

total about 40 hours of processing. RSM-SEM took, to perform only the

second step, a total of 2 hours, including both the cases A and B.

These processing times are the averages of the elaborations carried out

on faster computers, but during the simulation process we had to use less

powerful machines which have considerably slowed down the analysis.

Overall, the simulations with the 35 presented configurations took more

than three months, at which we should add the time for the simulations

carried out to determine the parameter values presented in Section 3.3.



Conclusion and Future Research

A first consideration is about the RSM-LRM method. Although at times

the standard linear regression is used also with variables affected by

measurement errors, our simulation showed that the bias of estimator for

the parameter of interest is very strong. Precisely for this reason, in our

conclusions, we consider, for the Two-step procedure, only the

RSM-LRMme method.

Remembering that one of our goals was to implement a Two-step

procedure efficient and precise, we focus the attention on the Root Mean

Square Error index (that combines an assessment of bias and efficiency).

From the reported results in table 3.2, study, referred only to the SEMstd

and the RSM-LRMme methods, we can deduce that, consistent with the

theory proposed in Chapter 2, the Two-step procedure has a slight

distortion and a loss of efficiency, but its estimates are coherent with that

providing by the One-step procedure and often the difference with them is

really very small. The difference between the two procedures is just few

percentage points (up to 4.3 in the second scenario, for the case A, β12,

(1
4
, 3

4
)). It is a very interesting result, that provides a useful tool for future

analysis starting to real data.

We have repeatedly stressed the advantages of IRM in terms of greater

flexibility of analysis and possibility of verification of hypothesized relations,

but we did not know what was the price to pay in terms of loss of efficiency

and distortion. Given this simulation data, we could say that, for the cases

presented, the Two-step procedure results sufficiently precise and unbiased.

86



CHAPTER 3. THE ESTIMATION PROCEDURES: A SIMULATION STUDY 87

Table 3.2. Simulation results: A comparison of all RMSE indices for all the
different parameter configurations for the SEMstd and the RSM-LRMme
method
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Obviously the choice of which procedure to implement is the prerogative

of the researcher and it depends strongly of the purposes of its analysis, but

for the cases described in the simulation study, both the two approaches

could be used to obtain statistically significant results.

Even if the second scenario represents already a degree of complexity

present in many real researches, the obtained results, providing a good

indication for future research in this area, are not generalizable to more

complex analysis (for example with three or more regressors, or with

correlated regressors).

Another finding obtained by simulated data is the increase of reliability in

the case of the latent variables measured by a greater number of indicators.

As already mentioned, it is a result known in the literature for the IRMs,

but our simulations also showed a similar result for the SEM. From Table

3.2, it can be noted that, for the first construct, the value of RMSE for the

case B is in all cases lower than the analogous of case A also for the One-

step procedure. Therefore, we can say that the introduction of additional

indicator variables, although affected by measurement errors, improves the

model goodness.

With reference to the analysis of reliability indices, moreover, the

simulation allowed us to compare the performance of two indices used in

this context: Cronbach’s alpha and Rasch Person Reliability Index (RPRI).

The data showed that these indices followed a similar pattern, thus

providing similar indications. In our RSM-LRMme method, we decide to

use the RPRI as it is the natural index of reliability under the IRMs

(Schumacker and Smith., 2007). In fact, this index represents the logical

link between the first and second steps of our estimation procedure. In the

first step we get, through a RSM, the estimates of Rasch measures and,

through RPRI, their reliability. In the second step, we develop a regression

model with these measures, which we give an estimate of the variance of

their errors. For logical consistency, these estimates are represented by the

RPRI values obtained in the previous step.

All the above considerations do not take into account computer

elaboration times. We did not consider them, because it is a typical
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problem of simulation studies, not present in real cases, where we do not

have to test hundreds of samples, but at most a few dozen. The procedure

for Two-step is the fastest, but about a dozen samples the difference is in

the order, at most, of a couple of hours.

Our simulation study, although provided many different cases, should be

considered as a baseline for future analysis. We have already begun to study

the case with measurement errors of different sizes, but in this case we must

be careful not to generate data that present too low reliability indices.

Another interesting research cue will be the extension to multilevel cases.

For SEM, there is already an extensive literature on the subject, while for the

IRT, although some models have been proposed, there is not still a substantial

theoretical basis.

Finally, because as we said earlier, this research draws upon a real

problem, we would apply the estimation methods to a real case, obviously

having to deal with any problems that this entails (eg missing data,

unreliable measures, incorrect orders in response categories).
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Appendix A

Basic Statistical Concepts

TO entering the analysis of SEMs, it could be useful to recall briefly some

statistical prerequisites: correlation, regression, data preparation and

screening.

A.1 Pearson Correlation

The Pearson correlation

ρxy =
σxy

σxσy

, ρxy ǫ [−1, 1],

estimates the degree of linear association between two continuous variablesX

and Y , where σx, σy are their standard deviations and σxy is their covariance.

If ρxy > 0, the variables X and Y are said to be directly (or positively)

correlated, when ρxy = 0 there is no linear relation (but there could be a

curvilinear association), if ρxy < 0, X and Y are inversely (or negatively)

correlated. ρxy could be about zero not only when the relation between X

and Y is nonlinear, but also when the variance of either X or Y is relatively

narrow, when the shapes of the frequency distributions of the two variables

are very different, or when the reliability of the scores on either X or Y is

about zero.

The variable means don’t affect ρxy or σxy, so if we are interested to

changes in means, we have to choose a SEM method that can include them
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in the analysis.

A.2 Regression

We start from the case of only two continuous variables, the predictor X

and the dependent variable Y . Based on their association, the regression

equation is

Ŷ = b0 + bxX.

bx is the unstandardized regression coefficient and it indicates the predicted

difference on Y given a 1-point increase on X. The residuals (Y − Ŷ ) reflect

the part of Y that cannot be explained by X, so they are uncorrelated with

X. The coefficient bx is related to the standard deviations of X and Y and

the pearson correlation index ρxy:

bx = ρxy

σy

σx

.

From the equation above, we can understand that if we have two standardized

variables, their correlation is also the standardized regression coefficient, It

indicates the expected difference on Y in standard deviation units, given an

increase on X of one full standard deviation.

We can extend this reasoning to the case of multiple regression analysis,

with p, (p ≥ 2) predictors:

Ŷ = α+ bx1
X1 + . . .+ bxp

Xp,

where (bx1
, . . . , bxp

) indicates the expected raw score difference in Y given a

difference of a single point in one predictor while we are controlling for the

others. The multiple regression equation for standardized variables is

Ẑy = βx1
Zx1

+ . . .+ βxp
Zxp

,

where (Zy, Zx1
, . . . , Zxp

) are the standardized variables of (Y,X1, . . . , Xp) and

(βx1
, . . . , βxp

) are the standardized regression coefficients, also called beta
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weights.

Given two predictors, the formulas for the beta weights are:

βx1
=
ρyx1

− ρyx2
ρx1x2

1− ρ2
x1x2

βx2
=
ρyx2

− ρyx1
ρx1x2

1− ρ2
x1x2

, (A.1)

where ρyx1
, ρyx2

and ρx1x2
are the bivariate correlations among the

dependent variable and the predictors. Because beta weights are adjusted

for intercorrelations among the predictors, their absolute values are usually

less than those of the corresponding bivariate correlations of the predictors

with the dependent variable. Note that if the predictors are independent

(ρ2
x1x2

= 0), then each beta weight equals the corresponding bivariate

correlation, because there is no adjustment for correlated predictors. The

relation between unstandardized and standardized regression coefficients in

multiple regression is

bx1
= βx1

σy

σx1

bx2
= βx2

σy

σx2

.

A.3 Data Preparation and Screening

Basically all SEM methods can analyze either a raw data file or a matrix

summary of the data. The following issues should be considered in choosing

between a raw data file and a matrix summary as program input:

• We have to use raw data file when a nonnormal data are analyzed

with an estimation method that assumes normality but test statistics

are calculated that correct for nonnormality or when we use a special

estimation method that does not assume normal distributions or

accommodates cases with missing observations.

• Matrix input offers a potential economy over raw data files especially

for large samples.

• Sometimes we want to create a correlation (or covariance) matrix using

theory or results from a meta-analysis, so we don’t have raw data, but

only a data matrix.
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Before a raw data file or a matrix summary is created, the original data

should be carefully screened for the following problems: normality of the

data, missing observations, multicollinearity, model identification.

The most widely used estimation methods in SEM assume multivariate

normality, which means that all the univariate distributions are normal, the

joint distribution of any pair of the variables is bivariate normal and all

bivariate scatterplots are linear and homoscedastic. Fortunately, many

instances of multivariate nonnormality are detectable through inspection of

univariate distribution.When we talk about normality of the data we must

first evaluate skew and kurtosis (DeCarlo, 1997) of the data univariate

distribution. If the shape of a unimodal distribution is asymmetrical about

its mean, we have positive skew if the most scores are below the mean, or

negative skew otherwise. For a unimodal, symmetrical distribution, we talk

about positive kurtosis if we have heavier tails and a higher peak and about

negative kurtosis in the opposite case. One way to deal with univariate

nonnormality is with transformations, for example square root, logarithmic,

and inverse functions. Another problem to be addressed during the

preliminary analysis of data is the case of scores that appear to deviate

markedly from other members of the sample, called outliers.

It could happen that the dataset has missing observations, if they are

not systematic then we can talk about ignorable data loss patterns missing

at random (MAR), when missing observations on some variable X differ

from the observed scores on that variable only by chance, or missing

completely at random (MCAR), when the presence versus absence of data

on X is unrelated to any other variable (Allison, 2003). Many authors have

addressed this problem and several solutions have been proposed in the

literature, in different contexts and for different types of data (Jones, 1996,

Little and Rubin, 2002, Zarate et al. 2007).

Another cause of singular covariance matrices is multicollinearity, which

occurs when intercorrelations among some variables are so high that certain

mathematical operations are either impossible or unstable because some

denominators are close to zero. Multicollinearity can occur because more

variables actually measure the same thing. It is easy to spot pairwise
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multicollinearity simply by inspecting the correlation matrix, it is more

difficult to detect multicollinearity among three or more variables. One

method is to calculate a squared multiple correlation, R2
smc, between each

variable and all the rest. A related statistic is tolerance (TOL = 1 − R2
smc)

and it indicates the proportion of total standardized variance that is

unique, that is not explained by all the other variables. Another statistic is

the Variance Inflation Factor (VIF), equals to the ratio of the total

standardized variance to unique variance: 1/TOL.

A final aspect to consider is the model identification. A model is said to

be identified if it is impossible that a population variance-covariance matrix

will be determined from two distinct sets of parameter values. A necessary

condition for identification is that the number of distinct elements in the

observed variance-covariance matrix is at least equal (better if it is greater)

to the numbers of parameters to be estimated. This rule, which implies

that the number of degrees of freedom be nonnegative, is easy to check,

but unfortunately it is not a sufficient condition for identification. Even if

a model is identified theoretically, there might be empirical identification

problems. This happens when the expression of a parameter in terms of

observed variances and covariances involves a denominator that is zero or

close to zero (Kenny, 1979).



Appendix B

Script

B.1 Mplus Script for the Two-step Procedure

B.1.1 Mplus Script to Generate Data for the Second

Scenario, Case B
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B.1.2 Mplus SEMirt Script to Analyze Data for the

First Scenario, Case B
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B.1.3 Mplus SEMstd Script to Analyze Data for the

Second Scenario, Case A
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B.2 R Script for the Two-step Procedure

B.2.1 R RSM-LRMme Script
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B.2.2 R RSM-LRM Script, only Second Step
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