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TRUNCATED DECOMPOSITIONS AND FILTERING METHODS
WITH REFLECTIVE/ANTI-REFLECTIVE BOUNDARY

CONDITIONS: A COMPARISON

C. TABLINO POSSIO∗

Abstract. The paper analyzes and compares some spectral filtering methods as truncated
singular/eigen-value decompositions and Tikhonov/Re-blurring regularizations in the case of the re-
cently proposed Reflective [18] and Anti-Reflective [21] boundary conditions. We give numerical
evidence to the fact that spectral decompositions (SDs) provide a good image restoration quality
and this is true in particular for the Anti-Reflective SD, despite the loss of orthogonality in the
associated transform. The related computational cost is comparable with previously known spectral
decompositions, and results substantially lower than the singular value decomposition. The model
extension to the cross-channel blurring phenomenon of color images is also considered and the related
spectral filtering methods are suitably adapted.
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1. INTRODUCTION. In this paper we deal with the classical image restora-
tion problem of blurred and noisy images in the case of a space invariant blurring.
Under such assumption the image formation process is modelled according to the
following integral equation with space invariant kernel

g(x) =
∫

h(x− x̃)f(x̃)dx̃ + η(x), x ∈ R2, (1.1)

where f denotes the true physical object to be restored, g is the recorded blurred
and noisy image, η takes into account unknown errors in the collected data, e.g.
measurement errors and noise.
As customary, we consider the discretization of (1.1) by means of a standard 2D
generalization of the rectangle quadrature formula on an equispaced grid, ordered
row-wise from the top-left corner to the bottom-right one. Hence, we obtain the
relations

gi =
∑
j∈Z2

hi−jfj + ηi, i ∈ Z2, (1.2)

in which an infinite and a shift-invariant matrix Ã∞ = [hi−j ](i,j)=((i1,i2),(j1,j2)), i.e., a
two-level Toeplitz matrix, is involved.
In principle, (1.2) presents an infinite summation since the true image scene does
not have a finite boundary. Nevertheless, the data gi are clearly collected only at a
finite number of values, so representing only a finite region of such an infinite scene. In
addition, the blurring operator typically shows a finite support, so that it is completely
described by a Point Spread Function (PSF) mask such as

hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2
(1.3)
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where hi1,i2 ≥ 0 for any i1, i2 and
∑q

i=−q hi = 1, i = (i1, i2), q = (q1, q2) (normaliza-
tion according to a suitable conservation law).
Therefore, relations (1.2) imply

gi =
q∑

s=−q

hsfi−s + ηi, i1 = 1, . . . , n1, i2 = 1, . . . , n2, (1.4)

where the range of collected data defines the so called Field of View (FOV).
Once again, we are assuming that all the involved data in (1.5), similarly to (1.2), are
reshaped in a row-wise ordering. In such a way we obtain the linear system

Ãf̃ = g − η (1.5)

where Ã ∈ RN(n)×N(n+2q) is a finite principal sub-matrix of Ã∞, with main diagonal
containing h0,0, f̃ ∈ RN(n+2q), g, η ∈ RN(n) and with N(m) = m1m2, for any two-
index m = (m1,m2).
Such a reshape is considered just to perform the theoretical analysis, since all the
deblurring/denoising methods are able to deal directly with data in matrix form.
For instance, it is evident that the blurring process in (1.4) consists in a discrete
convolution between the PSF mask, after a rotation of 180◦, and the proper true
image data in

F̃ = [fi1,i2 ]i1=−q1+1,...,n1+q1,i2=−q2+1,...,n2+q2
.

Hereafter, with a two-index notation, we denote by F = [fi1,i2 ]i1=1,...,n1,i2=1,...,n2
the

true image inside the FOV and by G = [gi1,i2 ]i1=1,...,n1,i2=1,...,n2
the recorded image.

Thus, assuming the knowledge of PSF mask in (1.3) and of some statistical properties
of η, the deblurring problem is defined as to restore, as best as possible, the true
image F on the basis of the recorded image G. As evident from (1.4), the problem is
undetermined since the number of unknowns involved in the convolution exceeds the
number of recorded data. Boundary conditions (BCs) are introduced to artificially
describe the scene outside the FOV: the values of unknowns outside the FOV are fixed
or are defined as linear combinations of the unknowns inside the FOV, the target being
to reduce (1.5) into a square linear system

Anf = g − η (1.6)

with An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2 and f, g, η ∈ RN(n).
The choice of the BCs does not affect the global spectral behavior of the matrix.
However, it may have a valuable impact both with respect to the accuracy of the
restored image and to the computational costs for recovering f from the blurred
datum, with or without noise.
Notice also that, typically, the matrix A is very ill-conditioned and there is a significant
intersection between the subspace related to small eigen/singular values and the high
frequency subspace. Such a feature requires the use of suitable regularization methods
that allow to properly restore the image F with controlled noise levels [12, 13, 14, 24],
among which we can cite truncated SVD, Tikhonov, and total variation [12, 14, 24].
Hereafter, we focus our attention on special case of PSFs satisfying a strong symmetry
property, i.e., such that

h|i| = hi for any i = −q, . . . , q. (1.7)
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This assumption is fulfilled in the majority of models in real optical applications.
For instance, in most 2D astronomical imaging with optical lens [5] the model of
the PSF is circularly symmetric, and hence, strongly symmetric; in the multi-image
deconvolution of some recent interferometric telescopes, the PSF is strongly symmetric
too [6]. Moreover, in real applications when the PSF is obtained by measurements (like
a guide star in astronomy), the influence of noise leads to a numerically nonsymmetric
PSF, also when the kernel of the PSF is strongly (or centro) symmetric. In such a case,
by employing a symmetrized version of the measured PSF, comparable restorations
are observed [15, 1].

The paper is organized as follows. In Section 2 we focus on two recently pro-
posed BCs, i.e., the Reflective [18] and Anti-Reflective BCs [21] and their relevant
properties. Section 3 summarizes some classical filtering techniques as the truncated
singular/eigen-values decomposition and the Tikhonov method. The Re-blurring
method [11, 9] is considered in the case of Anti-Reflective BCs and its re-interpretation
in the framework of the classical Tikhonov regularization is given. In Section 4 the
model is generalized for taking into account the cross-channel blurring phenomenon
and the previous filtering methods are suitable adapted. Lastly, Section 5 deals with
some computational issues and reports several numerical tests, the aim being to com-
pare the quoted filtering methods and the two type of BCs, both in the case of gray-
scale and color images. In Section 6 some conclusions and remarks end the paper.

2. BOUNDARY CONDITIONS. In this section we summarize the relevant
properties of two recently proposed type of BCs, i.e., the Reflective [18] and Anti-
Reflective BCs [21]. Special attention is given to the structural and spectral properties
of the arising matrices. In fact, though the choice of the BCs does not affect the global
spectral behavior of the matrix A, it can have a valuable impact with respect both
to the accuracy of the restoration (especially close to the boundaries where ringing
effects can appear), and the computational costs for recovering the image from the
blurred one, with or without noise.
Moreover, tanking into account the scale of the problem, the regularization methods
analysis can be greatly simplified whenever a spectral (or singular value) decomposi-
tion of A is easily available. This means that the target is to obtain the best possible
approximation properties, keeping unaltered the fact that the arising matrix shows
an exploitable structure. For instance, the use of periodic BCs enforces a circulant
structure, so that the spectral decomposition can be computed efficiently with the
fast Fourier transform (FFT) [8]. Despite these computational facilities, they give
rise to significant ringing effects when a significant discontinuity is introduced into
the image.
Hereafter, we focus on two recently proposed boundary conditions, that more care-
fully describe the scene outside the FOV.
Clearly, several other methods deal with this topic in the image processing literature,
e.g. local mean value [22] or extrapolation techniques (see [17] and references therein).
Nevertheless, the penalty of their good approximation properties could lie in a linear
algebra problem more difficult to cope with.

2.1. REFLECTIVE BOUNDARY CONDITIONS. In [18] Ng et al. ana-
lyze the use of Reflective BCs, both from model and linear algebra point of view. The
improvement with respect to Periodic BCs is due to the preservation of the continuity
of the image. In fact, the scene outside the FOV is assumed to be a reflection of
the scene inside the FOV. For example, with a boundary at x1 = 0 and x2 = 0 the
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reflective condition is given by f(±x1,±x2) = f(x1, x2).
More precisely, along the borders, the BCs impose

fi1,1−i2 = fi1,i2 , fi1,n2+i2 = fi1,n2+1−i2 , for any i1 = 1, . . . , n1, i2 = 1, . . . , q2

f1−i1,i2 = fi1,i2 , fn1+i1,i2 = fn1+1−i1,i2 , for any i1 = 1, . . . , q1, i2 = 1, . . . , n2,

and, at the corners, the BCs impose for any i1 = 1, . . . , q1, i2 = 1, . . . , q2

f1−i1,1−i2 = fi1,i2 , fn1+i1,n2+i2 = fn1+1−i1,n2+1−i2 ,
f1−i1,n2+i2 = fi1,n2+1−i2 , fn1+i1,1−i2 = fn1+1−i1,i2 ,

i.e., a double reflection, first with respect to one axis and after with respect to the
other, no matter about the order.
As a consequence the rectangular matrix Ã is reduced to a square Toeplitz-plus-
Hankel block matrix with Toeplitz-plus-Hankel blocks, i.e., An shows the two-level
Toeplitz-plus-Hankel structure. Moreover, if the blurring operator satisfies the strong
symmetry condition (1.7) then the matrix An belongs to DCT-III matrix algebra.
Therefore, its spectral decomposition can be computed very efficiently using the fast
discrete cosine transform (DCT-III) [23].
More in detail, let Cn = {An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2 | An =
RnΛnRT

n} be the two-level DCT-III matrix algebra, i.e., the algebra of matrices that
are simultaneously diagonalized by the orthogonal transform

Rn = Rn1 ⊗Rn2 , Rm =

[√
2− δt,1

m
cos
{

(s− 1)(t− 1/2)π
m

}]m

s,t=1

, (2.1)

with δs,t denoting the Kronecker symbol.
Thus, the explicit structure of the matrix is An = Toeplitz(V )+Hankel(σ(V ), Jσ(V )),
with V = [V0 V1 . . . Vq1 0 . . . 0] and where each Vi1 , i1 = 1, . . . , q1 is the unilevel
DCT-III matrix associated to the ith1 row of the PSF mask, i.e., Vi1 = Toeplitz(vi1) +
Hankel(σ(vi1), Jσ(vi1)), with vi1 = [hi1,0, . . . , hi1,q2 , 0, . . . , 0]. Here, we denote by σ
the shift operator such that σ(vi1) = [hi1,1, . . . , hi1,q2 , 0, . . . , 0] and by J the usual flip
matrix; at the block level the same operations are intended in block-wise sense.
Beside this structural characterization, the spectral description is completely known.
In fact, let f be the bivariate generating function associated to the PSF mask (1.3),
that is

f(x1, x2) = h0,0 + 2
q1∑

s1=1

hs1,0 cos(s1x1) + 2
q2∑

s2=1

h0,s2 cos(s2x2)

+4
q1∑

s1=1

q2∑
s2=1

hs1,s2 cos(s1x1) cos(s2x2), (2.2)

then the eigenvalues of the corresponding matrix An ∈ Cn are given by

λs(An) = f
(
x[n1]

s1
, x[n2]

s2

)
, s = (s1, s2), x[m]

r =
(r − 1)π

m
,

where s1 = 1, . . . , n1, s2 = 1, . . . , n2, and where the two-index notation highlights the
tensorial structure of the corresponding eigenvectors.
Lastly, notice that standard operations like matrix-vector products, resolution of lin-
ear systems and eigenvalues evaluations can be performed by means of FCT-III [18]
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within O(n1n2 log(n1n2)) arithmetic operations (ops). For example, by multiplying
by e1 = [1, 0, . . . , 0]T both the sides of RT

n An = ΛnRT
n , it holds that

[Λn](i1,i2) = [RT
n (Ane1)](i1,i2)/[RT

n e1](i1,i2), i1 = 1, . . . , n1, i2 = 1, . . . , n2,

i.e., it is enough to consider an inverse FCT-III applied to the first column of An,
with a computational cost of O(n1n2 log(n1n2)) ops.

2.2. ANTI-REFLECTIVE BOUNDARY CONDITIONS. More recently,
Anti-reflective boundary conditions (AR-BCs) have been proposed in [21] and studied
[2, 3, 4, 9, 10, 19]. The improvement is due to the fact that not only the continuity of
the image, but also of the normal derivative, are guaranteed at the boundary. This
regularity, which is not shared with Dirichlet or periodic BCs, and only partially
shared with reflective BCs, significantly reduces typical ringing artifacts.
The key idea is simply to assume that the scene outside the FOV is the anti-reflection
of the scene inside the FOV. For example, with a boundary at x1 = 0 the anti-reflexive
condition impose f(−x1, x2)−f(x∗1, x2) = −(f(x1, x2)−f(x∗1, x2)), for any x2, where
x∗1 is the center of the one-dimensional anti-reflection, i.e.,

f(−x1, x2) = 2f(x∗1, x2)− f(x1, x2), for any x2.

In order to preserve a tensorial structure, at the corners, a double anti-reflection, first
with respect to one axis and after with respect to the other, is considered, so that the
BCs impose

f(−x1,−x2) = 4f(x∗1, x
∗
2)− 2f(x∗1, x2)− 2f(x1, x

∗
2) + f(x1, x2),

where (x∗1, x
∗
2) is the center of the two-dimensional anti-reflection.

More precisely, by choosing as center of the anti-reflection the first available data,
along the borders, the BCs impose

f1−i1,i2=2f1,i2−fi1+1,i2 , fn1+i1,i2=2fn1,i2−fn1−i1,i2 , i1 = 1, . . . , q1, i2 = 1, . . . , n2,
fi1,1−i2=2fi1,1−fi1,i2+1, fi1,n2+i2=2fi1,n2−fi1,n2−i2 , i1 = 1, . . . , n1, i2 = 1, . . . , q2.

At the corners, the BCs impose for any i1 = 1, . . . , q1 and i2 = 1, . . . , q2,

f1−i1,1−i2 = 4f1,1 − 2f1,i2+1 − 2fi1+1,1 + fi1+1,i2+1,
f1−i1,n2+i2 = 4f1,n2 − 2f1,n2−i2 − 2fi1+1,n2 + fi1+1,n2−i2 ,
fn1+i1,1−i2 = 4fn1,1 − 2fn1,i2+1 − 2fn1−i1,1 + fn1−i1,i2+1,

fn1+i1,n2+i2 = 4fn1,n2 − 2fn1,n1−i2 − 2fn1−i1,n2 + fn1−i1,n2−i2 .

As a consequence the rectangular matrix Ã is reduced to a square Toeplitz-plus-Hankel
block matrix with Toeplitz-plus-Hankel blocks, plus an additional structured low rank
matrix.
Moreover, under the assumption of strong symmetry of the PSF and of a mild finite
support condition (more precisely hi = 0 if |ij | ≥ n − 2, for some j ∈ {1, 2}), the
resulting linear system Anf = g is such that An belongs to the AR2D

n commutative
matrix algebra [3]. This new algebra shares some properties with the τ (or DST-I)
algebra [7].
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Going inside the definition, a matrix An ∈ AR2D
n has the following block structure

An =



D0 + Z [1] 0T 0
D1 + Z [2] 0

...
...

Dq1−1 + Z [q1] 0
Dq1 τ(D0, . . . , Dq1) Dq1

0 Dq1−1 + Z [q1]

...
...

0 D1 + Z [2]

0 0T D0 + Z [1]


,

where τ(D0, . . . , Dq1) is a block τ matrix with respect to the AR1D blocks Di1 ,
i1 = 1, . . . , q1 and Z [k] = 2

∑q1
t=k Dt for k = 1, . . . , q1. In particular, the AR1D block

Di1 is associated to ith1 row of the PSF, i.e., h
[1D]
i1

= [hi1,i2 ]i2=−q2,...,q2 and it is defined
as

Di1 =



hi1,0 + z
[1]
i1

0T 0
hi1,1 + z

[2]
i1

0
...

...
hi1,q2−1 + z

[q2]
i1

0
hi1,q2 τ(hi1,0, . . . , hi1,q2) hi1,q2

0 hi1,q2−1 + z
[q2]
i1

...
...

0 hi1,1 + z
[2]
i1

0 0T hi1,0 + z
[1]
i1


,

where z
[k]
i1

= 2
∑q2

t=k hi1,t for k = 1, . . . , q2 and τ(hi1,0, . . . , hi1,q2) is the unilevel τ

matrix associated to the one-dimensional PSF h
[1D]
i1

previously defined.
Notice that the rank-1 correction given by the elements z

[k]
i1

pertains to the contribu-
tion of the anti-reflection centers with respect to the vertical borders, while the low
rank correction given by the matrices Z[k] pertains to the contribution of the anti-
reflection centers with respect to the horizontal borders.
It is evident from the above matrix structure that favorable computational properties
are guaranteed also by virtue of the τ structure. Therefore, firstly we recall the rele-
vant properties of the two-level τ algebra [7].
Let Tn = {An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2 | An = QnΛnQn} be the
two-level τ matrix algebra, i.e., the algebra of matrices that are simultaneously diag-
onalized by the symmetric orthogonal transform

Qn = Qn1 ⊗Qn2 , Qm =

[√
2

m + 1
sin
{

stπ

m + 1

}]m

s,t=1

. (2.3)

With the same notation as the DCT-III algebra case, the explicit structure of the
matrix is two level Toeplitz-plus-Hankel. More precisely,

An = Toeplitz(V )−Hankel(σ2(V ), Jσ2(V ))
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with V = [V0 V1 . . . Vq1 0 . . . 0], where each Vi1 , i1 = 1, . . . , q1 is a the unilevel
τ matrix associated to the ith1 row of the PSF mask, i.e., Vi1 = Toeplitz(vi1) −
Hankel(σ2(vi1), Jσ2(vi1)) with vi1 = [hi1,0, . . . , hi1,q2 , 0, . . . , 0]. Here, we denote by
σ2 the double shift operator such that σ2(vi1) = [hi1,2, . . . , hi1,q2 , 0, . . . , 0]; at the
block level the same operations are intended in block-wise sense.
Once more, the spectral characterization is completely known since for any An ∈ Tn

the related eigenvalues are given by

λs(An) = f
(
x[n1]

s1
, x[n2]

s2

)
, s = (s1, s2), x[m]

r =
rπ

m + 1
,

where s1 = 1, . . . , n1, s2 = 1, . . . , n2, and f is the bivariate generating function
associated to the PSF defined in (2.2).
As in the DCT-III case, standard operations like matrix-vector products, resolution
of linear systems and eigenvalues evaluations can be performed by means of FST-I
within O(n1n2 log(n1n2)) (ops). For instance, it is enough to consider a FST-I applied
to the first column of An to obtain the eigenvalues

[Λn](i1,i2) = [Qn(Ane1)](i1,i2)/[Qne1](i1,i2), i1 = 1, . . . , n1, i2 = 1, . . . , n2.

Now, with respect to the AR2D
n matrix algebra, a complete spectral characterization

is given in [3, 4]. A really useful fact is the existence of a transform Tn that simulta-
neously diagonalizes all the matrices belonging to AR2D

n , although the orthogonality
property is partially lost.

Theorem 2.1. [4] Any matrix An ∈ AR2D
n , n = (n1, n2), can be diagonalized by

Tn, i.e.,

An = TnΛnT̃n, T̃n = T−1
n

where Tn = Tn1 ⊗ Tn2 , T̃n = T̃n1 ⊗ T̃n2 , with

Tm =


α−1

m 0T 0

α−1
m p Qm−2 α−1

m Jp

0 0T α−1
m

 and T̃m =


αm 0T 0

−Qm−2p Qm−2 −Qm−2Jp

0 0T αm


The entries of the vector p ∈ Rm−2 are defined as pj = 1−j/(m− 1), j = 1, . . . ,m−2,
J ∈ Rm−2×m−2 is the flip matrix, and αm is a normalizing factor chosen such that
the Euclidean norm of the first and last column of Tm will be equal to 1.

Theorem 2.2. [3] Let An ∈ AR2D
n , n = (n1, n2), the matrix related to the PSF

hPSF = [hi1,i2 ]i1=−q1,...,q1,i2=−q2,...,q2 . Then, the eigenvalues of An are given by
• 1 with algebraic multiplicity 4,
• the n2− 2 eigenvalues of the unilevel τ matrix related to the one-dimensional

PSF h{r} = [
∑q1

i1=−q1
hi1,−q2 , . . . ,

∑q1
i1=−q1

hi1,q2 ], each one with algebraic
multiplicity 2,

• the n1− 2 eigenvalues of the unilevel τ matrix related to the one-dimensional
PSF h{c} = [

∑q2
i2=−q2

h−q1,i2 , . . . ,
∑q2

i2=−q2
hq1,i2 ], each one with algebraic

multiplicity 2,
• the (n1 − 2)(n2 − 2) eigenvalues of the two-level τ matrix related to the two-

dimensional PSF hPSF .
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Notice that the three sets of multiple eigenvalues are exactly related to the type
of low rank correction imposed by the BCs through the centers of the anti-reflections.
More in detail, the eigenvalues of τn2−2(h{r}) and of τn1−2(h{c}) take into account
the condensed PSF information considered along the horizontal and vertical borders
respectively, while the eigenvalue equal to 1 takes into account the condensed infor-
mation of the whole PSF at the four corners.
In addition, it is worth noticing that the spectral characterization can be completely
described in terms of the generating function associated to the PSF defined in (2.2),
simply by extending to 0 the standard τ evaluation grid, i.e., it holds

λs(An) = f
(
x[n1]

s1
, x[n2]

s2

)
, s = (s1, s2), sj = 0, . . . , nj , x[m]

r =
rπ

m + 1
,

where the 0−index refers to the first/last columns of the matrix Tm [3].
See [2, 4] for some algorithms related to standard operations like matrix-vector prod-
ucts, resolution of linear systems and eigenvalues evaluations with a computational
cost of O(n1n2 log(n1n2)) ops.
It is worthwhile stressing that the computational cost of the inverse transform is com-
parable with that of the direct transform and, at least at first sight, the very true
penalty is the loss of orthogonality due to the first/last column of the matrix Tm.

3. FILTERING METHODS. Owing to the ill-conditioning, the standard so-
lution f = A−1

n g is not physically meaningful since it is completely corrupted by the
noise propagation from data to solution, i.e., by the so called inverted noise. For
this reason, restoration methods look for an approximate solution with controlled
noise levels: widely considered regularization methods are obtained through spectral
filtering [14, 16]. Hereafter, we consider the truncated Singular Values Decomposi-
tions (SVDs) (or Spectral Decompositions (SDs)) and the Tikhonov (or Re-blurring)
regularization method.

3.1. TRUNCATED SVDs AND TRUNCATED SDs. The Singular Values
Decomposition (SVD) highlights a standard perspective for dealing with the inverted
noise. More precisely, if

An = UnΣnV T
n ∈ RN(n)×N(n)

is the SVD of An, i.e., Un and Vn are orthogonal matrices and Σn is a diagonal matrix
with entries σ1 ≥ σ2 ≥ . . . σN(n) ≥ 0, then the solution of the linear system Anf = g
can be written as

f =
N(n)∑
k=1

(
uT

k g

σk

)
vk,

where uk and vk denote the kth column of the matrix Un and Vn, respectively.
With regard to the image restoration problem, the idea is to consider a sharp filter,
i.e., to take in the summation only the terms corresponding to singular values greater
than a certain threshold value δ, so damping the effects caused by division by the
small singular values. Therefore, by setting the filter factors as

φk =
{

1, if σk ≥ δ,
0, otherwise,
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the filtered solution is defined as

ffilt =
N(n)∑
k=1

(
φk

uT
k g

σk

)
vk =

∑
k∈Iδ

(
φk

uT
k g

σk

)
vk, Iδ = {k | σk ≥ δ}.

Due to scale of the problem, the SVD of the matrix An is in general an expensive
computational task (and not negligible also in the case of a separable PSF). Thus,
an “a priori” known spectral decomposition, whenever available, can give rise to a
valuable simplification. More precisely, let

An = VnΛnṼn ∈ RN(n)×N(n), Ṽn = V −1
n

be a spectral decomposition of An, then the filtered solution is defined as

ffilt =
N(n)∑
k=1

(
φk

ṽkg

λk

)
vk =

∑
k∈Iδ

(
φk

ṽkg

λk

)
vk, Iδ = {k | |λk(A)| ≥ δ},

where vk and ṽk denote the kth column of Vn and the kth row of Ṽn, respectively, and
where φk = 1 if k ∈ Iδ, 0 otherwise.

3.2. TIKHONOV AND RE-BLURRING REGULARIZATIONS. In the
classical Tikhonov regularization method, the image filtering is obtained by looking
for the solution of the following minimization problem

min
f
‖Anf − g‖22 + µ‖Dnf‖22, (3.1)

where µ > 0 is the regularization parameter and Dn is a carefully chosen matrix
(typically Dn = In or represents the discretization of a differential operator, properly
adapted with respect to the chosen BCs).
The target is to minimize the Euclidean norm of the residual ‖Anf − g‖2 without
explosions with respect to the quantity ‖Dnx‖2. As well know, (3.1) is equivalent to
the solution to the damped least square problem

(AT
nAn + µDT

n Dn)f = AT
ng. (3.2)

In addition, the regularization Tikhonov method can be reinterpreted in the frame-
work of classical spectral filtering method. For instance, in the case of Dn = In, by
making use of the SVD of An = UnΣnV T

n , the solution of (3.2) can be rewritten as

ffilt = VnΦnΣ−1
n UT

n g,

where Φn = diag(φk) with φk = σ2
k/(σ2

k + µ), k = 1, . . . , N(n).
A severe drawback in adopting the Tikhonov regularization approach in the case of
An ∈ AR2D

n is due to the fact that AT
n /∈ AR2D

n , so that all the favorable compu-
tational properties are substantially spoiled. An alternative approach, named Re-
blurring, has been proposed in [11, 9]: the proposal is to replace AT

n by A
′

n in (3.2),
where A

′

n is the blurring matrix related to the current BCs with a PSF rotated by
180◦. This approach is completely equivalent to (3.2) in the case of Dirichlet and
Periodic BCs, while the novelty concerns both Reflective BCs and Anti-Reflective
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BCs, where in general A
′

n 6= AT
n . The authors show that the Re-blurring with anti-

reflective BCs is computationally convenient and leads to a larger reduction of the
ringing effects arising in classical deblurring schemes. From the modelling point of
view, the authors motivation relies upon the fact that Re-blurring smoothes the noise
in the right hand side of the system, in the same manner as this happens in the case
of Dirichlet, Periodic and Reflective BCs.
Hereafter, we consider an explanation of the observed approximation results. As pre-
viously claimed, we focus our attention on the case of a strongly symmetric PSF, so
that the matrix A

′

n equals the matrix An. Moreover, also in this case it is evident
that the linear system

(A2
n + µD2

n)f = Ang. (3.3)

is not equivalent to a minimization problem, again because the matrix A ∈ AR2D
n

is not symmetric. Nevertheless, the symmetrization of (3.3) can be performed by
diagonalization, so obtaining

(Λ2
A,n + µΛ2

D,n)f̂ = ΛA,nĝ, (3.4)

where f̂ = T̃nf and ĝ = T̃ng. In such a way (3.4) is again equivalent to the minimiza-
tion problem

min
f
‖ΛA,nT̃nf − T̃ng‖22 + µ‖ΛD,nT̃nf‖22, (3.5)

or equivalently, again by making use of the diagonalization result, to

min
f
‖T̃n(Anf − g)‖22 + µ‖T̃nDnf‖22. (3.6)

Clearly, the last formulation in (3.6) is the most natural and it allows to claim that the
Re-blurring method can be interpreted as a standard Tikhonov regularization method
in the space transformed by means of T̃n.
Recalling that T̃n is not an orthogonal transformation, the goal becomes to com-
pare ‖T̃nf‖2 and ‖f‖2, that is to bound ‖T̃n‖2 = ‖T̃n1‖2‖T̃n1‖2, being ‖T̃nf‖2 ≤
‖T̃n‖2‖f‖2.
A quite sharp estimate of such a norm can be found by exploiting the structure of the
unilevel matrix T̃m ∈ Rm×m. Let f̆ = [f2, . . . , fm−1], it holds that

‖T̃mf‖22 = α2
mf2

1 + ‖Qm−2(−f1p + f̆ − fnJp)‖22 + α2
mf2

m

= α2
m(f2

1 + f2
m) + ‖ − f1p + f̆ − fnJp‖22

≤ α2
m(f2

1 + f2
m) + (‖f̆‖2 + (|f1|+ |fn|)‖p‖2)2

≤ α2
m(f2

1 + f2
m) + ‖f̆‖22 + 3‖p‖22‖f‖22 + 4‖p‖2‖f‖22

≤ (1 + 2‖p‖2)2‖f‖22,

being α2
m = 1 + ‖p‖22. Since, by definition, ‖p‖22 ' m, we have

‖T̃m‖2 ≤ 1 + 2‖p‖2 ' 2
√

m. (3.7)

Notice that the bound given in (3.7) is quite sharp, since for instance ‖T̃me1‖22 equals
1 + 2‖p‖22.
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4. CROSS-CHANNEL BLURRING. Hereafter, we extend the analysis of
the deblurring problem to the case of color images digitalized, for instance, according
to the standard RGB system. Several techniques can be used for recording color im-
ages, but the main problem concerns the fact that light from one color channel can
end up on a pixel assigned to another color. The consequence of this phenomenon is
called cross-channel blurring among the three channels of the image and it sums up to
the previously analyzed blurring of each one of the three colors, named within-channel
blurring.
By assuming that the cross-channel blurring takes place after the within-channel blur-
ring of the image, that it is spatially invariant and by assuming that the same within-
channel blurring occurs in all the three color channels, the problem can be modelled
[16] as

(Acolor ⊗An)f = g − η (4.1)

with An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2, and

Acolor =

 arr arg arb

agr agg agb

abr abg abb

 .

The row-entries denote the amount of within-channel blurring pertaining to each
color channel; a normalized conservation law prescribes that Acolore = e, e = [1 1 1]T .
Lastly, the vectors f, g, η ∈ R3N(n) are assumed to collect the three color channels in
the RGB order.
Clearly, if Acolor = I3, i.e., the blurring is only of within-channel type, the problem is
simply decoupled into three independent gray-scale deblurring problems.
In the general case, taking into account the tensorial structure of the whole blurring
matrix Acolor ⊗ An is evident that the truncated SVDs and SDs can be formulated
as the natural extension of those considered in the within-blurring case. Notice that
in the case of SDs, we will consider a SVD for the matrix Acolor, since it naturally
assures an orthogonal decomposition, no matter about the specific matrix, while its
computational cost is negligible with respect to the scale of the problem. In addition,
we tune the filtering strategy with respect the spectral information given only by the
matrix An, i.e., for any fixed σk (or λk) we simultaneously sum, or discard, the three
contribution on f related to the three singular values of Acolor.
With respect to the Tikhonov regularization method, the approach is a bit more
involved. Under the assumption An = AT

n = VnΛnṼn, the damped least square
problem

[(Acolor ⊗An)T (Acolor ⊗An) + µI3n]f = (Acolor ⊗An)T g

can be rewritten as

[(AT
colorAcolor)⊗ VnΛ2

nṼn + µ(I3 ⊗ In)]f = (Acolor ⊗ VnΛnṼn)T g. (4.2)

Thus, by setting S3n = I3 ⊗ Ṽn, f̂ = S3nf , ĝ = S3ng, (4.2) can be transformed in

S3n[(AT
colorAcolor)⊗ VnΛ2

nṼn + µ(I3 ⊗ In)]S−1
3n f̂ = S3n(Acolor ⊗ VnΛnṼn)T S−1

3n ĝ,

so obtaining the linear system

[(AT
colorAcolor)⊗ Λ2

n + µ(I3 ⊗ In)]f̂ = (AT
color ⊗ Λn)ĝ,
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that can easily be decoupled into n1n2 linear systems of dimension 3.
Clearly, in the case of any matrix An ∈ Cn, all these manipulations can be performed
by means of an orthogonal transformation S3n. Notice also that the computational
cost is always O(n1n2 log n1n2) ops.
With respect to An = TnΛnT̃n ∈ AR2D

n , we can consider the same strategy by
referring to the Re-blurring regularization method. More precisely, the linear system

[(AT
colorAcolor)⊗A2

n + µ(I3 ⊗ In)]f = (AT
color ⊗An)g

can be transformed in

[(AT
colorAcolor)⊗ Λ2

n + µ(I3 ⊗ In)]f̂ = (AT
color ⊗ Λn)ĝ.

Though the transformation S3n = I3 ⊗ T̃n is not orthogonal as in the Reflective case,
the obtained restored image are fully comparable with the previous ones and the
computational cost is still O(n1n2 log n1n2)) ops.

5. NUMERICAL TESTS.

5.1. SOME COMPUTATIONAL ISSUES. Before analyzing the image re-
storation results, we discuss how the methods can work without reshaping the involved
data. In fact, the tensorial structure of the matrices, obtained by considering Reflec-
tive and Anti-Reflective BCs, can be exploited in depth, so that the algorithms can
deal directly, and more naturally, with the data collected in matrix form. Hereafter,
we consider a two-index notation in the sense of the previously adopted row-wise or-
dering.
In the SD case considered in Section 3.1, since ṽk = ṽ

[n1]
k1

⊗ ṽ
[n2]
k2

is represented in

matrix form as (ṽ[n1]
k1

)T ṽ
[n2]
k2

, the required scalar product can be computed as

ṽkg =
[(

ṽ
[n1]
k1

)T

ṽ
[n2]
k2

]
�G,

where � denotes the summation of all the involved terms after a element-wise product.
Clearly, vk = v

[n1]
k1

⊗ v
[n2]
k2

is represented in matrix form as v
[n1]
k1

(ṽ[n2]
k2

)T . In a similar
manner, in the case of the SVD of An with separable PSF h = h1 ⊗ h2, we can
represent vk = v

[n1]
k1

⊗ v
[n2]
k2

in matrix form as v
[n1]
k1

(v[n2]
k2

)T and uT
k = (u[n1]

k1
⊗ u

[n2]
k2

)T

as u
[n1]
k1

(u[n2]
k2

)T .
The eigenvalues required for the SD can be stored into a matrix Λ∗ ∈ Rn1×n2 . In the
case of An ∈ Cn this matrix can be evaluated as

Λ∗ =
(
Ṽn2A

∗Ṽ T
n1

./ Ṽn2E
∗
1 Ṽ T

n1

)T

where A∗ ∈ Rn2×n1 denotes the first column of An and E∗
1 the first canonical basis

vector, reshaped as matrices in column-wise order. In addition, the two-level direct
and inverse transform y = Vnx and y = Ṽnx can be directly evaluated on a matrix
data as

Y = Vn1XV T
n2

= (Vn2(Vn1X)T )T and Y = Ṽn1XṼn2 = (Ṽn2(Ṽn1X)T )T

by referring to the corresponding unilevel transforms.
In the same way, the eigenvalues required in the case of An ∈ AR2D

n can be suitably
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stored as

Λ∗ =



1 Λ∗(τn2−2(hr)) 1

Λ∗(τn1−2(hc)) Λ∗(τn−2(h)) Λ∗(τn1−2(hc))

1 Λ∗(τn2−2(hr)) 1


∈ Rn1×n2 ,

with reference to the notations of Theorem 2.2, where the eigenvalues of the unilevel
and two-level τ matrices are evaluated as outlined in Section 2.2.
Lastly, the linear systems obtained, for any fixed µ, in the case of Tikhonov and Re-
blurring regularization methods can be solved with reference to the matrix Φn of the
corresponding filter factors by applying the Reflective and Anti-Reflective transforms
with a computational cost O(n1n2 log n1n2) ops.

5.2. TRUNCATED DECOMPOSITIONS. In this section we compare the
effectiveness of truncated spectral decompositions (SDs) with respect to the standard
truncated SVDs both in the case of Reflective and Anti-Reflective BCs. Due to scale
of the problem, the SVD of the matrix An is in general an expensive computational
task (and not negligible also in the case of a separable PSF). Thus, a spectral decom-
position, whenever available as in these cases, leads to a valuable simplification.
Firstly, we consider the case of the separable PSF caused by atmospheric turbulence

hi1,i2 =
1

2πσi1σi2

exp

(
−1

2

(
i1
σi1

)2

− 1
2

(
i2
σi2

)2
)

,

where σi1 and σi2 determine the width of the PSF itself. Since the Gaussian function
decays exponentially away from its center, it is customary to truncate the values in
the PSF mask after an assigned decay |i1|, |i2| ≤ l. It is evident from the quoted defi-
nition that the Gaussian PSF satisfies the strong symmetry condition (1.7). Another
example of strongly symmetric PSF is given by the PSF representing the out-of-focus
blur

hi1,i2 =
{

1
πr2 , if i21 + i22 ≤ r2,
0, otherwise,

where r is the radius of the PSF.
In the reported numerical tests, the blurred image g has been perturbed by adding a
Gaussian noise contribution η = ηnν with ν fixed noise vector, ηn = ρ‖g‖2/‖ν‖2, and
ρ assigned value. In such a way the Signal Noise Ratio (SNR) [5] is given by

SNR = 20 log10

‖g‖2
‖η‖2

= 20 log10 ρ−1 (dB).

5.2.1. GRAY-SCALE IMAGES.
In Figure 5.1 we report the template true image (the FOV is delimited by a white
frame), together with the blurred image with the Gaussian PSF with support 15× 15
and σi1 = σi2 = 2 and the reference perturbation ν, reshaped in matrix form.
We consider the optimal image restoration with respect to the relative restoration
error (RRE), i.e., ‖ffilt − ftrue‖2/‖ftrue‖2, where ffilt is the computed approximation
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Fig. 5.1. True image (FOV is delimited by a white frame), reference noise perturbation, blurred
image with the Gaussian PSF with support 15× 15 and σi1 = σi2 = 2, and blurred image with the
Out-of-Focus PSF with support 15× 15.

of the true image ftrue by considering spectral filtering. More in detail, the RRE
is analyzed by progressively adding a new basis element at a time, according to the
non-decreasing order of the singular/eigen-values (the eigenvalues are ordered with
respect to their absolute value).
In the case of SDs (or SVDs related to a separable PSF) this can be done as described
in Section 5.1 and, beside the preliminary cost related to the decomposition compu-
tation, the addition of a new term has a computational cost equal to 4n1n2 ops. The
algorithm proposed in [4], that makes use of the Anti-Reflective direct and inverse
transforms, is less expensive in the case of tests with few threshold values.
Hereafter, the aim is to compare the truncated SVD with the truncated SD restora-
tions both in the case of Reflective and Anti-Reflective BCs. Periodic BCs are not
analyzed here, since Reflective and Anti-Reflective BCs give better performances with
respect to the approximation of the image at the boundary.
In Table 5.1 and 5.2 we report the results obtained by varying the dimension of the
PSF support, the parameter ρ related to the amount of the noise perturbation and
the variance of the considered Gaussian blur. As expected the optimal RRE worses as
the parameter ρ increases and the Anti-Reflective BCs show better performances in
the case of low noise levels. In fact, for low ρ values, the reduction of ringing artifacts
is significant, while the quality of the restoration for higher ρ values is essentially
driven by the goal of noise filtering. Therefore, in such a case, the choice of the BCs
becomes more an more meaningless since it is not able to influence the image restora-
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Table 5.1
Optimal RREs of truncated SVD and SD with reference to the true image in Figure 5.1 (Gaus-

sian blur σi1 = σi2 = 2).

Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.059164 0.087402 0.090742 0.093856
SD 0.043754 0.087400 0.090746 0.093867

ρ =0.001
SVD 0.060278 0.091964 0.094468 0.097034
SD 0.060278 0.091964 0.094476 0.097034

ρ =0.01
SVD 0.091151 0.11214 0.11307 0.11495
SD 0.091152 0.11214 0.11307 0.11495

ρ =0.05
SVD 0.11635 0.13356 0.13508 0.13739
SD 0.11635 0.13356 0.13510 0.13739

ρ =0.1
SVD 0.13024 0.14607 0.14746 0.15047
SD 0.13024 0.14607 0.14746 0.15047

Anti-Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.039165 0.064081 0.086621 0.087237
SD 0.038316 0.063114 0.083043 0.083521

ρ =0.001
SVD 0.062182 0.094237 0.098897 0.10042
SD 0.059617 0.089105 0.092814 0.094343

ρ =0.01
SVD 0.096049 0.12231 0.12403 0.12536
SD 0.091383 0.11230 0.11343 0.11495

ρ =0.05
SVD 0.12791 0.15070 0.15188 0.15492
SD 0.11666 0.13414 0.13570 0.13816

ρ =0.1
SVD 0.14399 0.16756 0.16964 0.17225
SD 0.13083 0.14709 0.14852 0.15162

Table 5.2
Optimal RREs of truncated SVD and SD with reference to the true image in Figure 5.1 (Gaus-

sian blur σi1 = σi2 = 5).

Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.063387 0.081274 0.097351 0.14634
SD 0.045365 0.081274 0.096387 0.14634

ρ =0.001
SVD 0.063915 0.096243 0.11449 0.15217
SD 0.063915 0.096274 0.11449 0.15217

ρ =0.01
SVD 0.089032 0.13343 0.14947 0.17397
SD 0.089032 0.13343 0.14946 0.17397

ρ =0.05
SVD 0.12203 0.16002 0.17339 0.18335
SD 0.12203 0.16002 0.17339 0.18335

ρ =0.1
SVD 0.13412 0.16793 0.17963 0.19057
SD 0.13412 0.16793 0.17963 0.19057

Anti-Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.040214 0.079543 0.088224 0.13686
SD 0.039437 0.078970 0.088832 0.13129

ρ =0.001
SVD 0.068197 0.095808 0.11522 0.15767
SD 0.063575 0.093247 0.1127 0.14893

ρ =0.01
SVD 0.09412 0.14482 0.16825 0.21148
SD 0.089038 0.13611 0.15270 0.17446

ρ =0.05
SVD 0.13553 0.18563 0.21006 0.22962
SD 0.12253 0.16269 0.17439 0.18414

ρ =0.1
SVD 0.15010 0.20164 0.22256 0.23960
SD 0.13487 0.16916 0.18088 0.19218

tion quality. Some examples of restored images are reported in Figure 5.2.
More impressive is the fact that SDs give better, or equal, results with respect

to those obtained by considering SVDs. This numerical evidence is really interesting
in the case of Anti-Reflective BCs: despite the loss of the orthogonality property in
the spectral decomposition, the restoration results are better than those obtained by
considering SVD. Moreover, the observed trend with respect to the Reflective BCs is
also conserved.
A further analysis refers to the so-called Picard plots (see Figure 5.3), where the co-
efficients |uT

k g|, or |ṽkg|, (black dots) are compared with the singular values σk, or
the absolute values of the eigenvalues |λk|, (red line). As expected, initially these co-
efficients decrease faster than σk, or |λk|, while afterwards they level off at a plateau
determined by the level of the noise in the image.
The threshold of this change of behavior is in good agreement with the optimal k
value obtained in the numerical test by monitoring the RRE.
Moreover, notice that the Picard plots related to the SDs are quite in agreement with
those corresponding to SVDs. In the case of the Anti-Reflective SD we observe an in-
creasing data dispersion with respect to the plateau, but the correspondence between
the threshold and the chosen optimal k is still preserved.
The computational relevance of this result is due to the significant lower computa-
tional cost required by the Anti-Reflective SDs with respect to the corresponding
SVDs.
Lastly, Table 5.3 reports the spectral filtering results obtained in the case of Out-of-

Focus blur by varying the dimension of the PSF support and the parameter ρ related
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ρ = 0.01

ρ = 0.05

Fig. 5.2. Optimal restorations of truncated SVD and SD in the case of Reflective and Anti-
Reflective BCs with reference to Figure 5.1 (Gaussian blur σi1 = σi2 = 2).



Truncated decompositions and filtering methods with R/AR BCs 17

ρ = 0.01

ρ = 0.05

Fig. 5.3. Picard plot of truncated SVD and SD in the case of Reflective and Anti-Reflective
BCs with reference to Figure 5.1 (Gaussian blur σi1 = σi2 = 2).

Table 5.3
Optimal RREs of truncated SDs with reference to the true image in Figure 5.1 (Out-of-Focus

blur).

Reflective BCs Anti-Reflective BCs
PSF 5x5 11x11 15x15 21x21 5x5 11x11 15x15 21x21
ρ =0 0.072593 0.084604 0.088323 0.096479 0.072821 0.085366 0.091252 0.099293
ρ =0.001 0.072671 0.085809 0.091035 0.10436 0.072904 0.086643 0.093929 0.10752
ρ =0.01 0.080016 0.12255 0.13569 0.15276 0.080427 0.12316 0.13803 0.15683
ρ =0.05 0.10645 0.15365 0.16810 0.18777 0.10685 0.15571 0.17147 0.19172
ρ =0.1 0.12089 0.16314 0.17836 0.20471 0.12147 0.16482 0.17987 0.20829

to the noise perturbation. The RRE follows the same trend observed in the case of
Gaussian blur. Other image restoration tests with different gray-scale images have
been considered in [20].
A more interesting remark again pertains the computational cost. Since the Out-
of-Focus PSF is not separable, but the transforms are, the use of SDs related to
Reflective or Anti-Reflective BCs allows to exploit the tensorial nature of the corre-
sponding transforms, both with respect to the computation of the eigenvalues and of
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Fig. 5.4. True image (FOV is delimited by a white frame) and cross-channel blurred image
with the Gaussian PSF with support 15× 15 and σi1 = σi2 = 2 and matrix Acolor in (5.1).

the eigenvectors (or of the Reflective and Anti-Reflective transforms).

5.2.2. COLOR IMAGES IN THE CASE OF CROSS-CHANNEL BLUR-
RING. Here, we analyze some restoration tests in the case the template color image
reported in Figure 5.4, by assuming the presence of a cross-channel blurring phe-
nomenon modelled according to (4.1). The entity of this mixing effect is chosen
according to the matrix

Acolor =

 0.7 0.2 0.1
0.25 0.5 0.25
0.15 0.1 0.75

 . (5.1)

In Figure 5.4 is also reported the cross-channel blurred image with Gaussian PSF
with support 15 × 15 and σi1 = σi2 = 2. Notice that the entity of the cross-channel
blurring is not negligible, since the whole image results to be darkened and the color
intensities of the additive RGB system are substantially altered.
Table 5.4 reports the optimal RREs of truncated SVDs and SDs obtained by vary-
ing the dimension of the Gaussian PSF support and the parameter ρ related to the
amount of the noise perturbation. It is worth stressing that we tune the filtering
strategy with respect the spectral information given just by the matrix An, i.e., for
any fixed σk (or λk) we simultaneously sum, or discard, the three contribution on
f related to the three singular values of Acolor. In fact, the magnitude of singular
values of the considered matrix Acolor does not differ enough to dramatically change
the filtering information given just by An. Nevertheless, also the comparison with the
restoration results obtained by considering a global ordering justifies this approach.
The color case behaves as the gray-scale one: as expected the optimal RRE becomes
worse as the parameter ρ increases and the Anti-Reflective SD shows better perfor-
mances in the case of low noise levels.
In addition, by referring to Figure 5.5, we note that the truncated SVD in the case

of Anti-Reflective BCs shows a little more ’freckles’ than the corresponding truncated
SVD in the case of Reflective BCs. Nevertheless, for low noise levels, is just the Anti-
Reflective SD that exhibits less ’freckles’ than the Reflective SD.

5.3. TIKHONOV AND RE-BLURRING REGULARIZATIONS. By
considering a Gaussian blurring of the true image reported in Figure 5.1, Table 5.5
compares the optimal RRE obtained in the case of the Tikhonov method for Reflective
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ρ = 0.01

ρ = 0.05

Fig. 5.5. Optimal restorations of truncated SVD and SD in the case of Reflective and Anti-
Reflective BCs with reference to Figure 5.4 (Cross-channel and Gaussian Blur σi1 = σi2 = 2).
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Table 5.4
Optimal RREs of truncated SVD and SD with reference to the true image in Figure 5.4 (Cross-

channel and Gaussian Blur σi1 = σi2 = 2).

Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.078276 0.12114 0.11654 0.1178
SD 0.078276 0.12114 0.11654 0.1178

ρ =0.001
SVD 0.078992 0.1212 0.11663 0.11792
SD 0.078992 0.12119 0.11663 0.11792

ρ =0.01
SVD 0.10152 0.12396 0.12088 0.12198
SD 0.10152 0.12396 0.12088 0.12198

ρ =0.05
SVD 0.12102 0.13853 0.13743 0.13844
SD 0.12102 0.13853 0.13743 0.13844

ρ =0.1
SVD 0.13437 0.14898 0.14854 0.14947
SD 0.13437 0.14898 0.14854 0.14947

Anti-Reflective BCs
PSF 5x5 11x11 15x15 21x21

ρ =0
SVD 0.076646 0.1006 0.1098 0.10646
SD 0.074953 0.098474 0.10508 0.10216

ρ =0.001
SVD 0.077394 0.10639 0.1111 0.11002
SD 0.075727 0.10233 0.10612 0.10443

ρ =0.01
SVD 0.10431 0.12695 0.12624 0.12779
SD 0.10087 0.11737 0.11805 0.118

ρ =0.05
SVD 0.13017 0.15075 0.15063 0.15166
SD 0.12127 0.13699 0.13756 0.13795

ρ =0.1
SVD 0.1456 0.16516 0.16626 0.16647
SD 0.13507 0.14796 0.14955 0.15018

Table 5.5
Optimal RREs of Tikhonov and Re-blurring methods and corresponding µott with reference to

the true image in Figure 5.1 (Gaussian Blur σi1 = σi2 = 2).

PSF 5x5 11x11 15x15 21x21
ρ =0

R 0.041015 4.1e-005 0.079044 9e-006 0.086386 1.1e-005 0.089556 1.6e-005
AR 0.034237 1.1e-005 0.059465 1e-006 0.078963 1e-006 0.079805 1e-006

ρ =0.001
R 0.050155 0.000188 0.087482 5.7e-005 0.090825 4.3e-005 0.093071 4.9e-005
AR 0.048556 0.000163 0.085279 4.6e-005 0.089388 3.3e-005 0.090821 3.3e-005

ρ =0.01
R 0.083456 0.005555 0.10748 0.001786 0.10863 0.001678 0.11023 0.001573
AR 0.083436 0.005536 0.10744 0.001792 0.10868 0.001691 0.11019 0.001575

ρ =0.05
R 0.12024 0.038152 0.12982 0.01929 0.13071 0.018417 0.13307 0.017892
AR 0.12049 0.038379 0.13006 0.01957 0.13096 0.018669 0.1333 0.018105

ρ =0.1
R 0.14767 0.06587 0.14721 0.039231 0.14822 0.038181 0.15097 0.037893
AR 0.14813 0.066251 0.14766 0.039707 0.14866 0.038644 0.15144 0.038296

BCs and of the Re-blurring method for Anti-Reflective BCs. In addition, in Table
5.6, the same comparison refers to the case of the Out-of-Focus PSF.
As expected, the RRE deteriorates as the dimension of the noise level or the dimen-
sion of the PSF support increases. Notice also that the gap between the Reflective
and Anti-Reflective BCs is reduced also for low noise levels. Further numerical tests
can be found in [9, 2].
Lastly, we focus our attention on the case of the color image in Figure 5.4. The
image restorations have been obtained by considering the transformation procedure
outlined at the end of Section 4. Despite the RREs in Table 5.7 are bigger than in
the gray-scale case, the perception of the image restoration quality is very satisfying
and a little less ’freckles’ than in the corresponding SDs and SVDs are observed (see
Figure 5.6). Notice, also that the lack of orthogonality in the S3n transform related
to the Anti-reflective BCs does not deteriorate the performances of the restoration.

6. CONCLUSIONS. In this paper we have analyzed and compared SD and
SVD filtering methods in the case both of Reflective and Anti-Reflective BCs. Nu-
merical evidence is given of the good performances achievable through SDs and with
a substantially lower computational cost with respect to SVDs. In addition, the ten-
sorial structure of the Reflective and Anti-Reflective SDs can be exploited in depth
also in the case of not separable PSFs.
A special mention has to be done to the fact that the loss of orthogonality of the
Anti-Reflective transform does not seems to have any consequence on the trend of
the image restoration results. The analysis in the case of cross-channel blurring in
color images allows to confirm the quoted considerations. Finally, the Re-blurring
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Table 5.6
Optimal RREs of Tikhonov and Re-blurring methods and corresponding µott with reference to

the true image in Figure 5.1 (Out-of-Focus blur).

PSF 5x5 11x11 15x15 21x21
ρ =0

R 0.031422 0.000172 0.05346 6.9e-005 0.060954 3.5e-005 0.074785 2.7e-005
AR 0.036213 0.000302 0.051236 6.8e-005 0.06683 5.7e-005 0.084482 5.8e-005

ρ =0.001
R 0.034441 0.000271 0.061465 0.000145 0.073751 0.000101 0.09074 7.9e-005
AR 0.038313 0.000402 0.059957 0.000138 0.076695 0.000126 0.095274 0.000106

ρ =0.01
R 0.069647 0.008493 0.11361 0.004117 0.12881 0.003037 0.14914 0.001873
AR 0.070384 0.008923 0.11404 0.00422 0.12982 0.003139 0.15061 0.001969

ρ =0.05
R 0.12204 0.053687 0.1532 0.030719 0.16614 0.022121 0.18769 0.01346
AR 0.12256 0.05423 0.15402 0.031574 0.16739 0.023213 0.18933 0.014472

ρ =0.1
R 0.16366 0.092379 0.17357 0.055919 0.1829 0.042944 0.20323 0.028803
AR 0.16433 0.093069 0.17485 0.057326 0.18457 0.044901 0.20511 0.031011

Table 5.7
Optimal RREs of Tikhonov and Re-blurring methods and corresponding µott with reference to

the true image in Figure 5.4 (Cross-channel and Gaussian Blur σi1 = σi2 = 2).

PSF 5x5 11x11 15x15 21x21
ρ =0

R 0.069148 0.000203 0.11508 0.001204 0.1123 0.000717 0.11335 0.000726
AR 0.062854 0.000102 0.091232 7e-006 0.1014 4.4e-005 0.098266 1.5e-005

ρ =0.001
R 0.071259 0.000312 0.11515 0.001228 0.11239 0.000744 0.11347 0.000755
AR 0.066734 0.000209 0.098658 5.8e-005 0.10276 7.7e-005 0.10111 4.5e-005

ρ =0.01
R 0.094871 0.004975 0.11896 0.002919 0.11712 0.002421 0.1182 0.002459
AR 0.094458 0.004841 0.1144 0.001884 0.11481 0.00184 0.11507 0.001755

ρ =0.05
R 0.13209 0.029798 0.13662 0.015305 0.13599 0.014896 0.13669 0.014824
AR 0.13239 0.029944 0.13561 0.014992 0.13593 0.014772 0.13611 0.014595

ρ =0.1
R 0.16281 0.051315 0.15543 0.029068 0.15547 0.028822 0.15586 0.02868
AR 0.16341 0.051659 0.15526 0.029213 0.15602 0.029029 0.15588 0.02872

ρ = 0.01

ρ = 0.05

Fig. 5.6. Optimal RREs of Tikhonov and Re-blurring methods with reference to the true image
in Figure 5.4 (Cross-channel and Gaussian blur σi1 = σi2 = 2 - ρ = 0.05).
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regularizing method has been re-interpreted as a standard Tikhonov regularization
method in the space transformed by means of T̃n. Some numerical tests highlight the
image restoration performances, also in the case of cross-channel blurring.
Future works will concern the analysis of effective strategies allowing to properly
choose the optimal regularizing parameters in the Anti-Reflective BCs case.
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[4] A. Aricò, M. Donatelli, J. Nagy, and S. Serra-Capizzano, The anti-reflective transform
and regularization by filtering, submitted, 2006.

[5] M. Bertero and P. Boccacci, Introduction to inverse problems in imaging, Inst. of Physics
Publ. London, UK, 1998.

[6] M. Bertero and P. Boccacci, Image restoration for Large Binocular Telescope (LBT), As-
tron. Astrophys. Suppl. Ser., 147 (2000), pp. 323–332.

[7] D. Bini and M. Capovani, Spectral and computational properties of band symmetric Toeplitz
matrices, Linear Algebra Appl., 52/53 (1983), pp. 99–125.

[8] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.
[9] M. Donatelli, C. Estatico, A. Martinelli, and S. Serra Capizzano, Improved image

deblurring with anti-reflective boundary conditions and re-blurring, Inverse Problems, 22
(2006), pp. 2035–2053.

[10] M. Donatelli, C. Estatico, J. Nagy, L. Perrone, and S. Serra Capizzano, Anti-reflective
boundary conditions and fast 2D deblurring models, Proceeding to SPIE’s 48th Annual
Meeting, San Diego, CA USA, F. Luk Ed, 5205 (2003), pp. 380–389.

[11] M. Donatelli and S. Serra Capizzano, Anti-reflective boundary conditions and re-blurring,
Inverse Problems, 21 (2005), pp. 169–182.

[12] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

[13] C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Integral Equations of
the First Kind, Pitman, Boston, 1984.

[14] P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, Philadelphia, PA, 1997.
[15] M. Hanke and J. Nagy, Restoration of atmospherically blurred images by symmetric indefinite

conjugate gradient technique, Inverse Problems, 12 (1996), pp. 157–173.
[16] P. C. Hansen, J. Nagy, and D. P. O’Leary, Deblurring Images Matrices, Spectra and Fil-

tering, SIAM Publications, Philadelphia, 2006.
[17] R. L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images ,

Springer-Verlag New York, Inc., 1991.
[18] M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with Neu-

mann boundary conditions, SIAM J. Sci. Comput., 21 (1999), no. 3, pp. 851–866.
[19] L. Perrone, Kronecker Product Approximations for Image Restoration with Anti-Reflective

Boundary Conditions, Numer. Linear Algebra Appl., 13–1 (2006), pp. 1–22.
[20] F. Rossi, Tecniche di filtraggio nella ricostruzione di immagini con condizioni al contorno

antiriflettenti, (in Italian), Basic Degree Thesis, University of Milano-Bicocca, Milano,
2006.

[21] S. Serra Capizzano, A note on anti-reflective boundary conditions and fast deblurring models,
SIAM J. Sci. Comput., 25–3 (2003), pp. 1307–1325.

[22] Y. Shi and Q. Chang, Acceleration methods for image restoration problem with different
boundary conditions, Appl. Numer. Math., in press.

[23] G. Strang, The Discrete Cosine Transform, SIAM Review, 41–1 (1999), pp. 135–147.
[24] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002.


