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Existence and bounds of positive solutions

for a nonlinear Schrödinger system

Benedetta Noris∗ and Miguel Ramos

December 1, 2009

Abstract. We prove that, for any λ ∈ R, the system −∆u+λu = u3−βuv2, −∆v+λv =

v3 − βvu2, u, v ∈ H1
0 (Ω), where Ω is a bounded smooth domain of R

3, admits a bounded

family of positive solutions (uβ , vβ) as β → +∞. An upper bound on the number of nodal

sets of the weak limits of uβ − vβ is also provided. Moreover, for any sufficiently large

fixed value of β > 0 the system admits infinitely many positive solutions.
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1 Introduction

We consider systems of the form

−∆u+ λu = u3 − βuv2, −∆v + µv = v3 − βvu2, u, v ∈ H1
0 (Ω), (1.1)

where Ω is a smooth bounded domain in R
3 and λ, µ, β are real parameters. We are mainly

interested in the case where λ = µ and β is positive and large. Such a system arises

when searching for standing wave solutions of the associated time dependent Schrödinger

system, which consists of two coupled Gross–Pitaevskii equations. This has been proposed

as a mathematical model to describe both phenomena arising in nonlinear optics (see for

example the references in [17]) and binary Bose–Einstein condensation.

In this second case the parameter β represents the interspecies scattering length, which

determines the interaction between unlike particles: the choice β > 0 corresponds to repul-

sive interaction (we refer to [19] for an exhaustive physical review on B–E condensation).

It has been showed experimentally that a large interspecies scattering length may induce

∗Partially supported by MIUR, Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”.
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the interesting phenomenon of phase separation, that is the two different states may re-

pel each other and form segregated domains. Hence the analysis of system (1.1) with β

positive and large, besides its mathematical significance, also assumes physical relevance

and has recently raised a lot of interest (see references hereafter). As it concerns the self

interaction of one single state, we concentrate on the focusing case (attractive interaction),

which corresponds to our choice of sign in the pure power nonlinear terms in the system

(1.1). We stress that in our results below we could replace the constants λ and µ by trap-

ping potentials λ(x) and µ(x), provided these are smooth and bounded in the C1-norm in

Ω.

The existence of minimal energy solutions of (1.1) in the whole space R
3 has been

established in [1, 11, 14, 17]. These results concern the focusing case, both for the attractive

and repulsive problems (see also the references therein and [12, 13] for a related problem).

Namely, for definiteness let us consider the system (1.1) with λ = µ = 1 and solutions

u, v ∈ H1(R3); we denote by Iβ the associated energy functional, whose expression is given

below, and

cβ = inf{Iβ(u, v) : u 6= 0, v 6= 0, I ′β(u, v)(u, 0) = 0, I ′β(u, v)(0, v) = 0}.

In [11, Theorem 1] it is shown that cβ is not attained in case β > 0 while in [17, Theorem

1] it is proved that cβ is indeed attained in case β 6 0, β 6= −1; in fact, cβ is attained by

the diagonal pair ( w√
1−β

, w√
1−β

) where w is a positive ground state solution of the equation

−∆w + w = w3 in H1(R3). The existence of a positive solution was already observed in

[1, Thorem 5.4] in case β ∈ (−1, 0). Moreover, by combining [17, Theorem 1] with [1,

Theorem 5.3] or [14, Theorem 2.3] we infer that if β < −1 then cβ = Iβ( w√
1−β

, w√
1−β

) is

the least energy critical level among all non-zero solutions of the problem, i.e. solutions

(u, v) with u 6= 0 or v 6= 0. In contrast with the quoted negative result in [11], in case

β > 0 it is also proved in [17, Theorem 2] that a solution with non-zero and non-negative

components always exists; the existence of a non-zero solution was already observed in

[1, Theorem 5.4]. All these solutions are shown to be radially symmetric. In connection

with our Theorem 1.2 below, we mention that the computation of the Morse index of the

solutions is a crucial tool in the work [1]. We stress that the quoted papers deal with more

general systems, namely by allowing linear terms λu, µv with λ 6= µ, and nonlinear terms

µ1u
3, µ2v

3 with µ1 6= µ2; in particular, in this case one can find ranges of β < 0 for which

the problem has no solutions with non-zero and non-negative components at all, see [17,

Theorem 1].
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We now concentrate on the bounded domain case. We denote by λ1(Ω) the first

eigenvalue of (−∆, H1
0 (Ω)). It has been proved by Dancer, Wei and Weth in [8, Theorem

1.2] that, for any fixed λ = µ > −λ1(Ω) and β > 0 sufficiently large (specifically, β > 1

in the case of system (1.1)), the system admits a positive solution (u, v) (i.e. u > 0 and

v > 0 in Ω); in fact, they proved that the system admits an unbounded sequence of positive

solutions (uk,β , vk,β)k∈N, in the sense that ||uk,β||H1

0
(Ω)+||vk,β||H1

0
(Ω) → ∞ as k → ∞. Their

proof also provides a bound ||uk,β||H1

0
(Ω) + ||vk,β||H1

0
(Ω) 6 Ck as β → +∞, for every fixed

k ∈ N. We mention that such large positive solutions do not exist in case β < 1 (cf. [8,

Theorem 1.1]), although trivial solutions can be found by simply taking a diagonal pair

( w√
1−β

, w√
1−β

) where w is any positive solution of the equation −∆w+λw = w3 in H1
0 (Ω).

Since we assume λ = µ, we rewrite our problem as

−∆u+ λu = u3 − βuv2, −∆v + λv = v3 − βvu2, u, v ∈ H1
0 (Ω). (1.2)

We recall that solutions of (1.2) can be seen as critical points of the C2 energy functional

Iβ : H1
0 (Ω) ×H1

0 (Ω) → R,

Iβ(u, v) =
1

2

∫
Ω
(|∇u|2 + |∇v|2 + λu2 + λv2) − 1

4

∫
Ω
(u4 + v4) +

β

2

∫
Ω
u2v2, u, v ∈ H1

0 (Ω).

The invariance of Iβ with respect to the involution (u, v) 7→ (v, u) is a key ingredient in the

proof of the quoted existence result in [8]. Besides, heuristically speaking, these solutions

can somehow be seen as bifurcating from the ground state positive solutions of the single

equation −∆u+ λu = u3 in H1
0 (Ω), as β decreases from +∞; we stress that such positive

solutions do exist since λ > −λ1(Ω).

Of course, the latter feature changes drastically in case λ 6 −λ1(Ω). However, our

previous motivation to the system (1.2) suggests that the mere existence of positive so-

lutions of the system should not depend on the value of the parameter λ. We will prove

that this is indeed the case, namely that positive solutions of the system do always exist,

and this will be due to the actual presence of the (sufficiently large) parameter β.

Theorem 1.1. For any λ ∈ R and sufficiently large β > 0, the system (1.2) admits an

unbounded sequence of solutions (u, v) with u > 0, v > 0, u 6= v.

In order to prove Theorem 1.1 we will introduce a suitable minimax framework which

takes advantage, as in the work of [8], of the above mentioned symmetry property of the

energy functional. This is described in Section 2. We mention that in the case when

the quadratic part of Iβ is coercive (that is, in case λ > −λ1(Ω)), bounds on the critical
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points and, more generally, on the Palais-Smale sequences of Iβ follow immediately from

any available bounds on the energy functional. This is not the case when λ 6 −λ1(Ω),

and therefore the lack of compactness is an issue here.

In order to bypass this difficulty we will work in Section 2 with a truncated problem. In

the second part of our proof we recover the original system by establishing a priori bounds

on the solutions; since in our situation energy estimates are useless, we rely instead on the

information of their Morse indices. This will be presented in Section 3.

It turns out that the estimates in Section 3 are uniform in β, regardless of its magnitude

and sign, and apply to not necessarily positive solutions of the system; see Section 3 for

the details. In particular, as a by-product of our argument we are able to derive a bound

which is independent of β, as β → +∞.

Theorem 1.2. For a given k ∈ N (sufficiently large), as β → +∞ we can choose a

positive solution (uβ , vβ) of (1.2) in such a way that their Morse indices (with respect to

the functional Iβ) are bounded by k. Moreover, ||uβ||H1

0
(Ω) + ||vβ||H1

0
(Ω) 6 Ck for every β.

We postpone a comment on this result to Remark 2.7 below. We stress that the

solutions obtained in Theorem 1.2 are genuine positive solutions of the system, in the

sense that uβ > 0, vβ > 0 and uβ 6= vβ. In particular, as already observed in [8], since∫
Ω uβvβ(v2

β − u2
β) = 0, this implies that the components uβ and vβ are not ordered.

Now, by combining Theorem 1.2 with the Brezis-Kato estimates, one immediately

deduces that the family ||uβ||L∞(Ω) + ||vβ||L∞(Ω) is bounded uniformly in β. This allows to

conclude that the solutions we found undergo the phenomenon of phase separation, which

has, as we mentioned above, some physical relevance. The phase separation has been

studied starting from [4] and more recently in [15, 18]; see also the pioneering papers [5, 6]

where similar problems are analyzed. Using the results in [15] we deduce in particular

that the family ||uβ ||C0,α(Ω) + ||vβ||C0,α(Ω) is also bounded for any α ∈ (0, 1) and, up to

a subsequence, we have strong convergence in H1
0 (Ω) ∩ C0,α(Ω) to a couple of disjointly

supported functions (u, v) with u 6= 0 and v 6= 0. The main feature here is that the

limiting domains are unknown; recent results concerning the regularity of the limiting

profile and its nodal set were obtained in [3]. Still, in our case it remains unclear whether

a limit configuration (u, v) (or rather, its difference u − v) does satisfy a non singular

differential equation. Nevertheless, we are able to provide the following information on

the limit configuration.
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Theorem 1.3. Let (uβ , vβ) be given by Theorem 1.2 and let (u, v) be such that uβ → u

and vβ → v in H1
0 (Ω) as β → +∞. Then the number of connected components of the set

{u+ v > 0} is less than or equal to k.

As mentioned before, the proofs of Theorems 1.1–1.3 will be presented in Sections 2

and 3.

Acknowledgement. This work was completed while the first author was visiting CMAF

- Lisbon on leave from Bicocca University. The support of both institutions is gratefully

acknowledged. The second author was supported by FCT, Fundação para a Ciência e a

Tecnologia, Financiamento Base 2008 - ISFL/1/209.

2 A minimax principle

Since Theorem 1.1 is covered by [8, Theorem 1.2 (a)] in case λ > −λ1(Ω) (see also

Remark 2.6 hereafter), we will henceforth assume λ 6 −λ1(Ω), say, in order to simplify

the notations, λ = −1. That is, we look for positive solutions of the system

−∆u = u+ u3 − βuv2, −∆v = v + v3 − βvu2, u, v ∈ H1
0 (Ω),

where Ω is such that λ1(Ω) 6 1. We denote u± := max{±u, 0}. Since the map u 7→∫
Ω(u+)2 is not of class C2 in H1

0 (Ω) and also for later purposes of compactness (see Lemma

2.3 below), we replace the identity map f(s) = s by a function which is superlinear near

0 and sublinear at infinity. For any small ε > 0, let fε : R → R be the odd symmetric

function given by fε(s) := s1+ε if 0 6 s 6 1 and fε(s) := (1 + ε)s − ε if s > 1. Then

fε ∈ C1(R; R) and the map u 7→
∫
Ω Fε(u

+) is C2 in H1
0 (Ω), where Fε(s) :=

∫ s

0 fε(ξ) dξ.

Now, for any large R > 0, let fε,R : R → R be the odd symmetric function given by

fε,R(s) := fε(s) if 0 6 s 6 R and fε,R(s) := 2
√
R
√
s − R, if s > R. We observe that

|f ′ε,R(s)| 6 2 ∀ε,R > 0.

We look for solutions of the truncated system

−∆u = fε,R(u+) + (u+)3 − βuv2, −∆v = fε,R(v+) + (v+)3 − βvu2, u, v ∈ H1
0 (Ω).

Solutions of this system correspond to critical points of the C2 functional I = Iε,R,β :

H1
0 (Ω) ×H1

0 (Ω) → R,

I(u, v) = I0(u) + I0(v) +
β

2

∫
Ω
u2v2,

where I0(u) := 1
2 ||u||2 −

∫
Ω Fε,R(u+) − 1

4

∫
Ω(u+)4 and ||u||2 := ||u||2

H1

0
(Ω)

=
∫
Ω |∇u|2. We

denote by Ek the eigenspace associated to the first k eigenfunctions of (−∆, H1
0 (Ω)). In
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the sequel we assume that β > 0 is sufficiently large (β > 26 is enough, see the proof

below).

Lemma 2.1. Given M > 0 we can find k0 ∈ N, independent of ε,R and β, such that, for

any k > k0 there exists a large constant ρk > 0 such that

inf{I(u, v) : u− v ∈ E⊥
k−1, ||u− v|| = ρk} > M.

Proof. We recall that 0 6 Fε,R(s) 6 C0s
2 ∀s ∈ R, ∀ε,R > 0, for some C0 > 0. We denote

C1 = 4C2
0 |Ω|. Let u − v ∈ E⊥

k−1, ||u − v|| = ρk. It is clear that, for every k sufficiently

large, ρk can be chosen in such a way that, for such pairs (u, v),

1

4

∫
Ω
|∇(u− v)|2 − 1

2

∫
Ω
(u− v)4 > M + C1.

This implies

I(u, v) > M + C1 + (
β

2
+ 3)

∫
Ω
u2v2 +

1

4

∫
Ω
(u4 + v4) − C0

∫
Ω
(u2 + v2)

−2

∫
Ω
uv(u2 + v2)

> M + C1 +
β − 26

2

∫
Ω
u2v2 +

1

8

∫
Ω
(u4 + v4) − C0

∫
Ω
(u2 + v2)

> M +
β − 26

2

∫
Ω
u2v2.

The conclusion follows, provided β > 26.

We denote H := H1
0 (Ω) ×H1

0 (Ω) and by σ the involution σ(u, v) = (v, u). Also, for a

large positive constant Rk > ρk, we let Qk := BRk
(0) ∩Ek, ∂Qk := {u ∈ Qk : ||u|| = Rk}.

Let

Γk := {γ ∈ C(Qk;H) : γ(−u) = σ(γ(u)) ∀u ∈ Qk and γ(u) = (u+, u−) ∀u ∈ ∂Qk}.

We observe that by denoting γ(u) = (γ1(u), γ2(u)) then γ1(−u) = γ2(u) and γ2(−u) =

γ1(u) ∀γ ∈ Γk. The associated map θ(u) := γ1(u) − γ2(u) is therefore continuous and

odd symmetric, and moreover θ(u) = u ∀u ∈ ∂Qk. Our next lemma is then a direct

consequence of the Borsuk-Ulam theorem.

Lemma 2.2. For every γ ∈ Γk,

γ(Qk) ∩ Sk 6= ∅, with Sk := {(u, v) ∈ H : u− v ∈ E⊥
k−1, ||u− v|| = ρk}.

8



Now, let

ck = ck,ε,R,β := inf
γ∈Γk

sup
u∈Qk

I(γ(u)).

By the previous two lemmas, ck → +∞ as k → ∞, uniformly in ε, R and β. Also, it

is clear that

I(u+, u−) 6
1

2
||u||2 − 1

4

∫
Ω
u4 < 0, ∀u ∈ ∂Qk,

provided Rk is chosen sufficiently large.

Lemma 2.3. For every fixed ε, R and β, the functional I satisfies the Palais-Smale

condition in H.

Proof. Suppose I(un, vn) 6 C ∀n and I ′(un, vn) → 0 as n→ ∞. Then

||un||2 + ||vn||2 +

∫
Ω
(fε,R(u+

n )u+
n − 4Fε,R(u+

n )) +

∫
Ω
(fε,R(v+

n )v+
n − 4Fε,R(v+

n ))

= 4I(un, vn) − I ′(un, vn)(un, vn) 6 C + C(||un|| + ||vn||).

Since fε,R is sublinear at infinity, the sequence ||un||2 + ||vn||2 is bounded. It is easy to

conclude.

Proposition 2.4. For every fixed ε, R, β and k, with β and k sufficiently large, there

exists a critical point (uk, vk) of I such that I(uk, vk) = ck. Moreover, (uk, vk) can be

chosen in such a way that its Morse index m(uk, vk) is less than or equal to k.

Proof. Since I(σ(u, v)) = I(u, v) ∀(u, v) ∈ H, the gradient flow η associated to ∇I is

σ-equi-invariant (that is, η(σ(u, v)) = σ(η(u, v)) ∀(u, v) ∈ H); in particular (η ◦ γ)(−u) =

σ((η◦γ)(u)) ∀γ ∈ Γk, u ∈ Qk. Therefore, in view of the previous lemmas (just take M = 1

in Lemma 2.1) and by using a standard argument, ck is a critical value of the functional

I. Since Ek is a k-dimensional space, the statement concerning the Morse index is also

classical, see e.g. [10].

Proof of Theorem 1.1. For the sake of clarity we split the proof into several steps.

Step 1. For a given M > 0, let us fix k so large that ck > M uniformly in ε,R, β (this is

possible by virtue of Lemma 2.1 and Lemma 2.2) and let (uε,R,β , vε,R,β) be given by the

above proposition; we simplify the notations by dropping the subscripts, and write (u, v) in

the following computations. By using the fact that I ′(u, v)(u−, 0) = 0 and I ′(u, v)(0, v−) =

0 we see that u > 0 and v > 0. In this way we solve the problem

−∆u = fε,R(u) + u3 − βuv2, −∆v = fε,R(v) + v3 − βvu2, u, v ∈ H1
0 (Ω), u, v > 0.
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Step 2. Since m(u, v) 6 k there exists Ck > 0, independent of ε,R and β, such that

||u||+ ||v||+ ||u||L∞(Ω) + ||v||L∞(Ω) 6 Ck. We postpone to Section 3 the proof of this fact.

In particular, by choosing R large enough we conclude that (u, v) solves the problem

−∆u = fε(u) + u3 − βuv2, −∆v = fε(v) + v3 − βvu2, u, v ∈ H1
0 (Ω), u, v > 0.

Step 3. Since the above bound is uniform in ε, we can pass to the limit in the truncated

system, as ε→ 0. This yields a limit solution, still denoted by (u, v), satisfying

−∆u = u+ u3 − βuv2, −∆v = v + v3 − βvu2, u, v ∈ H1
0 (Ω), u, v > 0.

We stress that we have strong convergence in H1
0 (Ω)×H1

0 (Ω) as ε→ 0; in particular, the

energy levels pass to the limit. Of course, the bound Ck also holds in the limit, uniformly

in β.

Step 4. Arguing by contradiction, suppose v ≡ 0. Then u solves −∆u = u + u3,

u ∈ H1
0 (Ω), u > 0. Since u 6= 0 (this is because I(u, v) > 0), the strong maximum

principle implies u > 0 in Ω. We multiply the equation by the first positive eigenfunction

ϕ1 of (−∆, H1
0 (Ω)) and conclude that λ1(Ω)

∫
Ω uϕ1 =

∫
Ω uϕ1 +

∫
Ω u

3ϕ1 >
∫
Ω uϕ1, hence

λ1(Ω) > 1. This contradicts our assumption that λ1(Ω) 6 1. In conclusion, we have that

u, v > 0 and u, v 6≡ 0. It follows again from the strong maximum principle that u, v > 0

in Ω.

Step 5. Suppose now that v = u. Then u solves in H1
0 (Ω) the equation −∆u+(β−1)u3 =

u and I(u, u) =
∫
Ω |∇u|2 −

∫
Ω u

2 + 1
2(β − 1)

∫
Ω u

4 = −β−1
2

∫
Ω u

4 < 0. This contradicts the

fact that I(u, v) > 0. In conclusion, v 6= u. Since the lower bound M on the energy level

can be chosen arbitrarily large, we have finished the proof of Theorem 1.1.

Remark 2.5. From the previous proof we also deduce that, for fixed k, the bound on

the Morse index is preserved in the limit, that is m(u, v) 6 k for every β. Indeed, for the

moment we denote by (uε, vε) the solution of the approximated problem found in Step 1

above; we stress that, as shown in Step 2, the solution does not depend on R and that

the bound on the Morse index does not depend on β. We denote by (u, v) the limit of

(uε, vε) as ε → 0. Since u and v are positive in Ω, the Lebesgue convergence theorem

yields
∫
Ω f

′
ε(uε)ϕ

2 →
∫
Ω ϕ

2 and the same for vε, and so

I ′′ε (uε, vε)(ϕ,ψ)(ϕ,ψ) → I ′′(u, v)(ϕ,ψ)(ϕ,ψ) as ε→ 0,

for every ϕ,ψ ∈ D(Ω), which immediately implies the claim.
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Remark 2.6. As we mentioned above, the case when λ > −λ1(Ω) is covered by the results

in [8]. In this case one can use constrained minimization on the Nehari manifold associated

to the system, since the functional turns out to be coercive over this manifold. Our method

provides an alternate proof of [8, Theorem 1.2 (a)], with the additional information on

the Morse index of the solutions. We point out that in the case when λ > −λ1(Ω) the

Palais-Smale condition holds for the original functional I, and so there is no need for

arguing by means of a truncated problem, as we did above. As for the argument in the

previous Step 4 (non-vanishing of the components of the solution pair), we can replace it

by the observation that, according to a celebrated result in [9], the positive solutions of

the elliptic equation −∆u + λu = u3 in H1
0 (Ω) are a priori bounded in H1

0 (Ω), whereas

our solutions have arbitrarily large energy levels.

We will close the section by establishing Theorem 1.3.

Proof of Theorem 1.3. For a fixed and sufficiently large k ∈ N and for some sequence

β → +∞, let (uβ , vβ) be given by Theorem 1.2, so that m(uβ , vβ) 6 k for every β. We

will show in Section 3 that both (uβ) and (vβ) are bounded in H1
0 (Ω) ∩ L∞(Ω) and so,

as explained in the Introduction, up to a subsequence we may assume that uβ → u and

vβ → v in H1
0 (Ω) as β → +∞. As proved in [15], it holds that uv = 0; moreover, u

satisfies the equation −∆u = u+u3 in the open set {u > 0}, and similarly for v. Let ω be

a connected component of {u+ v > 0} and denote u := u|ω, v := v|ω; then u, v ∈ H1
0 (ω),

see e.g. [2, Theorem IX.17 and Remark 20]. In order to prove the theorem it would be

enough to show that if β is sufficiently large then I ′′(uβ , vβ)(u, v)(u, v) < 0. We prove a

slightly different version of this property which is sufficient to our purposes.

Without loss of generality, suppose u > 0 and v = 0. Since u ∈ H1
0 (ω), we can fix

ϕ ∈ D(ω) in such a way that
∫

ω

|∇ϕ|2 −
∫

ω

ϕ2 − 3

∫
ω

u2ϕ2
6

∫
ω

|∇u|2 −
∫

ω

u2 − 2

∫
ω

u4.

By testing the equation −∆u = u+ u3 in ω with u we see that
∫
ω
|∇u|2 =

∫
ω
u2 +

∫
ω
u4,

and so ∫
ω

|∇ϕ|2 −
∫

ω

ϕ2 − 3

∫
ω

u2ϕ2
6 −

∫
ω

u4 < 0.

Now,

I ′′(uβ , vβ)(ϕ, 0)(ϕ, 0) =

∫
ω

|∇ϕ|2 −
∫

ω

ϕ2 − 3

∫
ω

u2
βϕ

2 + β

∫
ω

v2
βϕ

2,

and so, in order to prove that I ′′(uβ , vβ)(ϕ, 0)(ϕ, 0) < 0 (from which the theorem follows),

it is enough to show that β
∫
ω
v2
βϕ

2 → 0 as β → +∞.
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In order to prove this, we first observe that, by using a compactness argument, it is

sufficient to prove that β
∫
BR

v2
βϕ

2 → 0 for any ball BR = BR(x0) ⊂ B3R(x0) ⊂ ω, x0 ∈
suppϕ. Next we observe that, over the ball B2R, it holds that

−∆vβ = vβ (1 + v2
β − βu2

β) 6 vβ (C − β inf
B2R

u2
β).

Since lim infβ→+∞ infB2R
u2

β > 0, we deduce that

−∆vβ 6 −C ′βvβ in B2R, vβ 6 ||vβ||L∞(ω) on ∂B2R.

It follows then from [7, Lemma 4.4.] that
∫
BR

v2
β 6 4||vβ||2L∞(ω)e

−R
√

C′β and this yields

our claim.

Remark 2.7. The minimax class Γk can be replaced by a similar one in such a way that we

have the additional information m∗(uβ , vβ) > k, where the latter denotes the augmented

Morse index of the critical point (uβ , vβ) of the energy functional (see e.g. [10]). This fact

somehow suggests that the number of connected components of the set {u+ v > 0} of the

limit configurations can be chosen to be arbitrarily large. This, however, remains an open

problem.

3 A priori bounds via Morse index

In this section we prove some estimates that were used in the proof of Theorem 1.1. This

is the content of our next proposition (see also the subsequent remark), which, together

with Remarks 2.5 and 2.6, also implies Theorem 1.2.

In the sequel we consider a system of the form

−∆u+ λu = u3 − βuv2, −∆v + µv = v3 − βvu2, u, v ∈ H1
0 (Ω), (3.1)

where Ω is a smooth bounded domain in R
3 and λ, µ, β are real parameters. Solutions of the

system (not necessarily positive) are critical points of the functional I : H1
0 (Ω)×H1

0 (Ω) →
R,

I(u, v) = Iλ(u) + Iµ(v) +
β

2

∫
Ω
u2v2,

where Iλ(u) := 1
2 ||u||2 + λ

2

∫
Ω u

2 − 1
4

∫
Ω u

4. We observe that, for every u, v, ϕ, ψ ∈ H1
0 (Ω),

I ′(u, v)(ϕ,ψ) = I ′λ(u)ϕ+ I ′µ(v)ψ + β

∫
Ω
(uv2ϕ+ vu2ψ)

and

I ′′(u, v)(ϕ,ψ)(ϕ,ψ) = I ′′λ(u)ϕϕ+ I ′′µ(v)ψψ + β

∫
Ω
(u2ψ2 + v2ϕ2 + 4uvϕψ),
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with I ′′λ(u)ϕϕ = ||ϕ||2 + λ
∫
Ω ϕ

2 − 3
∫
Ω u

2ϕ2.

Proposition 3.1. Let (uβ , vβ) be a family of solutions of the system (3.1). If the family

of Morse indices m(uβ , vβ) is bounded, as well as the coefficients λ and µ, so is the family

||uβ|| + ||vβ||.

Remark 3.2. It will be clear that the subsequent proof also applies for a more general

system

−∆u+ fλ(u) = u3 − βuv2, −∆v + fµ(v) = v3 − βvu2, u, v ∈ H1
0 (Ω),

where fλ, fµ are C1 functions in R such that |f ′λ(s)| + |f ′µ(s)| 6 C0 ∀s, uniformly for

bounded λ, µ. Suppose now that β → +∞. By combining Proposition 3.1 with the

Brezis-Kato estimates we deduce that the family ||uβ ||L∞(Ω) + ||vβ||L∞(Ω) is bounded.

These facts were used in the proof of Theorem 1.1 as presented in Section 2.

Proof. We adapt an argument in [16]. For simplicity of notations, we omit the subscript

β in (uβ , vβ). We split the proof into three steps.

Step 1. For any given vector field V = (V1, V2, V3), let W be the Pohoz̆aev-type vector

field

W = 〈∇u, V 〉∇u− 1

2
|∇u|2V + 〈∇v, V 〉∇v − 1

2
|∇v|2V +

1

4
Q(u, v)V,

where

Q(u, v) := u4 + v4 − 2βu2v2 − 2λu2 − 2µv2.

A straightforward computation, using also the system, shows that

divW =
3∑

i,k=1

∂u

∂xi

∂u

∂xk

∂Vi

∂xk
+

3∑
i,k=1

∂v

∂xi

∂v

∂xk

∂Vi

∂xk
− 1

2
(|∇u|2 + |∇v|2)divV +

1

4
Q(u, v)divV.

For a given point x0 ∈ Ω and smooth function ϕ ∈ D(Br(x0)), with Br(x0) ⊂ Ω, we let

V (x) = x. Since 0 =
∫
Ω div(Wϕ2) and divV = 3, we deduce that

3

2

∫
Ω
Q(u, v)ϕ2 =

∫
Ω
(|∇u|2 + |∇v|2)ϕ2 + γ(u, v),

with

|γ(u, v)| 6 C

∫
Ω
(|∇u|2 + |∇v|2 + |Q(u, v)|)|∇ϕ2|.

A similar conclusion can be derived in case x0 ∈ ∂Ω, provided r is sufficiently small. In

this case, we can choose a suitable vector field V such that ||DV − Id||L∞(Br(x0)) = o(1)

as r → 0 and 〈V (x), νx〉 = 0 for every x ∈ Br(x0) ∩ ∂Ω; here νx denotes the unit outward
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normal of Ω at the point x. Moreover, this vector field has the remarkable property that

its divergent is constant (see Remark 3.3 hereafter), namely divV = 3. It follows then as

above that
3

2

∫
Ω
Q(u, v)ϕ2

6 (1 + o(1))

∫
Ω
(|∇u|2 + |∇v|2)ϕ2 + γ(u, v),

with o(1) → 0 as r → 0. On the other hand, using the system we see that

∫
Ω
(|∇u|2 + |∇v|2)ϕ2 =

∫
Ω
Q(u, v)ϕ2 + λ

∫
Ω
u2ϕ2 + µ

∫
Ω
v2ϕ2 −

∫
Ω
〈∇(

u2 + v2

2
),∇ϕ2〉.

Combining this with the previous inequality and by using a compactness argument, we

conclude that it is possible to fix a small number r > 0 and a finite number of points

x1, . . . , xℓ ∈ Ω in such a way that Ω ⊂ ∪ℓ
i=1Br(xi) and, for any smooth function ϕ ∈

D(B2r(xi)), ∫
Ω
(|∇u|2 + |∇v|2)ϕ2

6 Cλ,µ

∫
Ω
(u2 + v2)ϕ2 + γ(u, v).

We apply the Poincaré inequality to the functions uϕ and vϕ. By taking a smaller r if

necessary, so that the L2-norms are absorbed into the left hand member, this leads to the

final estimate ∫
Ω
(|∇u|2 + |∇v|2)ϕ2

6 γ(u, v),

with

|γ(u, v)| 6 C

∫
Ω
(|∇u|2 + |∇v|2 + |Q(u, v)|)|∇ϕ2| + (u2 + v2)|∇ϕ|2).

Step 2. Suppose first that β > 0. Since the solutions have bounded Morse indices, in

each set B2r(xi) \Br(xi) we can find an annulus Ai = {x : a < |x−xi| < b} in such a way

that

I ′′(u, v)(uψ, 0)(uψ, 0) > 0 and I ′′(u, v)(0, vψ)(0, vψ) > 0,

where ψ ∈ D(B2r(xi)) is such that 0 6 ψ 6 1 and ψ|Ai
= 1. We point out that ||∇ψ||L∞(R3)

is bounded uniformly in β; to be precise, ||∇ψ||L∞(R3) 6 Cm(uβ , vβ)/r, for some universal

constant C > 0.

Now, the inequality I ′′(u, v)(uψ, 0)(uψ, 0) > 0 can be written as

∫
Ω
|∇u|2ψ2 + λ

∫
Ω
u2ψ2 + 2

∫
Ω
uψ〈∇u,∇ψ〉 + β

∫
Ω
u2v2ψ2

> 3

∫
Ω
u4ψ2 −

∫
Ω
u2|∇ψ|2,

while it follows from the equation −∆u+λu = u3−βuv2 that the left hand member above

equals
∫
Ω u

4ψ2. As a consequence,

∫
Ω
u4ψ2

6
1

2

∫
Ω
u2|∇ψ|2.
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By replacing ψ with ψ2 and using Hölder inequality we deduce that

∫
Ω
u4ψ4

6 C,

for some constant C independent of β. It follows once more from the equation that

∫
Ω
(|∇u|2 + u4 + βu2v2)ψ4

6 C ′.

We perform a similar computation using the inequality I ′′(u, v)(0, vψ)(0, vψ) > 0. This

yields the final conclusion that

∫
Ai

(|∇u|2 + |∇v|2 + u4 + v4 + βu2v2) 6 C ′′,

for some constant C ′′ independent of β. We combine this estimate with the one obtained

in Step 1, by choosing ϕ ∈ D(B2r(xi)), 0 6 ϕ 6 1, such that ϕ = 1 in Br(xi) and

supp|∇ϕ| ⊂ Ai. This leads to the conclusion that

∫
Br(xi)

(|∇u|2 + |∇v|2) 6 C ′′′,

for some constant C ′′′ independent of β, and the proposition follows.

Step 3. Suppose now that β 6 0. We replace the two first inequalities in Step 2 by the

single one, I ′′(u, v)(uψ, vψ)(uψ, vψ) > 0. This can be written as

∫
Ω
(|∇u|2 + |∇v|2)ψ2 +

∫
Ω
(λu2 + µv2)ψ2 +

1

2

∫
Ω
〈∇(u2 + v2),∇ψ2〉 + 2β

∫
Ω
u2v2ψ2

> 3

∫
Ω
(u4 + v4)ψ2 − 4β

∫
Ω
u2v2ψ2 −

∫
Ω
(u2 + v2)|∇ψ|2,

while it follows from the system that the left hand member above equals
∫
Ω(u4 + v4)ψ2.

As a consequence,

∫
Ω
(u4 + v4)ψ2 + |β|

∫
Ω
u2v2ψ2

6 C

∫
Ω
(u2 + v2)|∇ψ|2.

By replacing ψ with ψ2 and using once more the system we conclude that

∫
Ai

(|∇u|2 + |∇v|2 + u4 + v4 + |β|u2v2) 6 C ′′,

for some constant C ′′ independent of β. We can finish the argument as before.

Remark 3.3. The construction and properties of the vector field V used in the first

step of the above proof are presented in [16, Lemma 2.1], except for the claim that V has

constant divergent. We recall here this construction. The statements are not affected by an
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orthogonal change of coordinates, and therefore we can assume that x0 = 0, ν0 = (0, 0, 1)

and, for a sufficiently small r > 0, ∂Ω ∩ Br(0) = {(x′, x3) : x3 = θ(x′)} ∩ Br(0), where

x′ = (x1, x2) ∈ R
2 and θ : R

2 → R is a smooth map such that θ(0) = 0 and ∇θ(0) = 0. In

this case the vector field V is explicitly given by

V (x′, x3) = (x′, x3 + α(x′)), where α(x′) = 〈∇θ(x′), x′〉 − θ(x′).

We observe that indeed divV = 3.

Remark 3.4. By using again the Pohoz̆aev-type vector field (see Step 1 of the preceding

proof) with V (x) = ν(x), the unit outward normal of Ω extended in a smooth way to the

whole set Ω, we deduce that also
∫
∂Ω(|∇uβ |2 + |∇vβ|2) 6 C.
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