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Prodution and distribution in a network: thesystem struture predominates the individualpro�ienyDaniele FellettiKeywords: networks, system dynamis, stohasti matrix, irreduible matrix,Perron{Frobenius theorem, orporate value.AbstratA system of produing �rms is onsidered here. The �rms owneah other through �xed quotas of stoks, so they periodially sharethe inomes and the losses (i.e., they lose the books).A network model is introdued to desribe the system. The valuesof the �rms evolve dynamially aording to the �nanial ows (whihdepend on the topology of the network) and to the distribution of theindividual produtivities, nevertheless, on the long run, only the systemstruture matters. In the limit ase in whih the shares matrix isirreduible (it represents a strongly onneted graph), the values of the�rms are determined ratios of the total prodution, whih evolves like aBrownian motion. So the values tend to be perfetly orrelated. Theseratios are determined only by the shares matrix, while the individualpro�ienies a�et only the total prodution of the system. When theshares matrix is reduible (the graph is onneted, but not strongly),some �rms inrease their value muh more than the other ones.1 IntrodutionThe value of a ompany is learly related to the revenues oming from itsprodutivity. However, a ompany an own some shares the other ones. Inthis ase its value is a�eted not only by its own produtivity, but also bythe value of the other ones. Several works have investigated the e�et ofmergers and aquisitions on the stok prie (e.g., [9℄, [6℄). They atuallybind eah other in a network of relationships so that it is often not easy tounderstand who ontrols who. The network struture of ompanies is a fat,besides it seems to be sale{free ([3℄). It introdues a feedbak e�et on thedynamis and is aountable for the systemi risks ([2℄ and ([4℄).In this work a basi model is introdued in order to aount for the �-nanial revenues, whih learly play a part in the total inomes. The modelatually desribe a distributive system sine the �rms, while inreasing (or1



dereasing) their value thanks to their prodution (whih is random, butaounts for their individual pro�ieny), share their values aording to�xed quotas. The result is a N{dimensional, disrete time, stohasti pro-ess. However, aording to the topology of the network, the values on thelong run are weakly related to the individual pro�ieny. If the strutureis strongly onneted (it is a direted, weighted graph), they atually aredetermined only by the topology and by the total value of the system. Ifthere are some onneted omponents, eah one evolves autonomously, whilewhen it is onneted, but not strongly, one set of �rms has no shares of theremaining �rms. In this ase the �rms of the latter group inrease theirvalue muh more quikly than those of the former set.2 The dynamis of the valueLet xt be the vetor of the values of the �rms (their ash) at time t. xt isthe value vetor. At time t+ 1, every �rm loses the books, distributing itsash among the owners aording to the shares matrix P. Then i-th �rmreeives a fration Pij of j-th �rm value xj;t, besides its ash is inreased bythe revenue oming from the individual prodution "i;t+1 relatively to theperiod [t; t + 1℄. The random vetor "t is the output vetor. Clearly, if xj;tis negative, the owners must pay, aording to the same ratios, to avoid thebankrupty.1 The following reursive identity holdsxi;t+1 = NXj=1 Pij xi;t + "j;t+1 () xt+1 = Pxt + "t+1 (1)By bakward reurrene: xt = Pt x0 + tXj=1Pt�j "j (2)3 Gaussian produtionsMost of the results do not depend on the probability distribution of theoutput vetor, however if "t are Gaussian (and x0 is �xed or Gaussian),the values are Gaussian for every t. Then, to onsider Gaussian outputvetors improves the onision of the omments. Besides, thanks to thelaw of large numbers and the entral limit theorem, most of the results holdindependently on the probability distribution of the output vetor sine theyonern the dynamis of the system on the long run.1The inlusion of bankrupty in the model is straightforward, but the onsequenesare not. So it is a subjet for further researh.2



In this embryoni work, only simultaneous produtions are supposed tobe orrelated, besides the probability distribution of the output vetor isassumed onstant:"t � N(�;�) () E ["i;t℄ = �i ; ov ["i;s; "j;t℄ = �ij Æstwhere Æst is the Kroneker delta, while � is the ovariane matrix of simulta-neous produtions. Finally the initial value x0 is assumed to be a onstant(i.e., not a random vetor).The following results holdE [xt℄ = Pt x0 + t�1Pj=0Pj! �C = t�1Pj=0Pj � �Pj�T (3)where Cij = ov [xi;t; xj;t℄.Equations (1) and (2) learly show the stohasti dynamis of the valuevetor. The hypothesis of Gaussian output vetors simpli�es the reasoningsine, being the value vetor Gaussian for every t, the value vetor is totallyidenti�ed by the vetor E [xt℄ and the matrix C.24 The dynamis of the value in the long runThe shares matrix is neessarily a stohasti matrix sinePij 2 [0; 1℄ ^ uT P = u (4)where uT = (1; 1; 1; : : : ; 1). The �rst ondition is obvious, while the seondondition states that the olumns sum to one. This is neessarily true sinei-th olumn onsists of the quotas of ownership of i-th �rm, whih must sumto one.Consequently 1 is an eigenvalue for P and u is a left eigenvetor.Perron{Frobenius theorem and Wielandt's theorems ([7℄) are useful tounderstand the system dynamis when the shares matrixP is irreduible andwhen it is primitive. Even though it is not used in this work, to �gure outthe Jordan anonial form of P ([1℄) may help to understand the dynamis.See the Appendix for the details.The theory states that P an not have (omplex) eigenvalues with normgreater than 1, that is its spetral radius. Besides, when uT � 6= 0, there isno need to solve the sums to know the asymptoti behavior of xt for large t.2This is true even when the output vetors are orrelated in time, provided they areGaussian. 3



4.1 Primitive shares matrixWhen P is primitive all the (eventually omplex) eigenvalues have norm lessthan 1. The vetor u alone generates the left eigenspae of 1. Let v be aright eigenvetor for A (the right eigenspae is learly one{dimensional too,so all the right eigenvetors of 1 are multiples of eah other).Equation (6) states thatlimt!+1Pt = 1uTv vuT = ~v uTwhere ~v = vuT vis the only right eigenvetor for P whose entries sum to one (i.e., the Perronvetor of P). The rate of onvergene depends on the seond eigenvalue ofP ([5℄). Then Theorem (7) in the Appendix impliestPj=1Pt�j = t ~vuT + o(t)tPn=1Pt�n � �Pt�n�T = t2 ~v uT �u ~vT + o �t2� = t2 �uT �u� ~v ~vT + o �t2�Consequently, in the long run (t! +1), if uT� 6= 0, the values of the �rmsare xt � t �uT �� ~vi.e., E [xt℄ = t �uT �� ~v + o(t)C = t2  v vT + o �t2�where  = uT �uLet3 Gt = uT tXj=1 "jthe total prodution. SineE [Gt℄ =< G >= �uT �� t ; Var[Gt℄ =  t23To onsider ~Gt = uT  x0 + t
Pj=1 "j! does not hange the results, exept forEh ~Gti = `uT �´ t+ `uT x0´. 4



the values of the �rms are asymptotially equal toxt � Gt ~vThat is: the value of i-th �rm tends to be a �xed quota vi of the totalprodution Gt, being vi determined only by the topology of the network P.It implies that the orrelations tend to 1:4orr[xi;t; xj;t℄ =  t2 vi vj + o �t2�q t2 v2i + o (t2)q t2 v2j + o (t2) � 15 Irreduible shares matrixWhen P is irreduible, the Perron vetor exists sine the eigenspae of 1 isone{dimensional, but there are h unitary eigenvalues. However the eigen-values are in the form �k = e2 kh� iwith k = 0; : : : ; h, where h is the index of imprimitivity. This is the reasonwhy a non{negative, irreduible but not primitive matrix is said periodi.Besides every eigenvalue is simple (i.e., its eigenspae is one{dimensional).Pt does not onverge in this ase, however it is similar to a matrix inthe following form:~P = 0BBBBBB� 1 0 0 : : : 0 00 e� i 0 : : : 0 00 0 e2� i : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : e(h�1) � i 00 0 0 : : : 0 A
1CCCCCCAwhere � = 2�h and A is a matrix with spetral radius less than 1. Thatis P =M ~PM�1 for some non{singular (omplex) matrix M. As a onse-quene Pj =M ~PjM�1.~P is a blok{diagonal matrix, then~Pj = 0BBBBBB� 1 0 0 : : : 0 00 ej � i 0 : : : 0 00 0 e2 j � i : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : e(h�1) j � i 00 0 0 : : : 0 Aj
1CCCCCCA4By Perron{Frobenius theorem, v has positive entries.  > 0 unless all the entries ofthe output vetor have a perfet orrelation (the result learly holds in this ase too).5



with At ! 0 as t ! +1. ~Pt an not onverge (and so does P) beausethe diagonal elements ~P22, ~P33, : : : , ~Phh keep on yling. However both thematries have a Ces�aro limit, whih, for P, is:limt!+1 1t t�1Xj=1Pj = ~v uT (5)It is easy to understand, onsidering the Ces�aro limit of ~P and remindingthat the �rst olumn of M must be a multiple of ~v while the �rst row ofM�1 must be a multiple of uT by a oeÆient whih is the reiproal of theformer.Every stohasti matrix has a �nite Ces�aro limit, but it has a di�erentform when the matrix is reduible.Equation (5) implies t�1Xj=0Pj = t ~v uT + o(t)for large t. So that, again,5E (xt) = t �uT �� ~v + o(t)With some more alulations, one obtainsC = t2  v vT + o �t2�Thus the values of the �rms tend to hange oherently even though theshares matrix is not primitive. The irreduibility is suÆient.P is irreduible if and only if the assoiated direted graph is stronglyonneted ([7℄ or [8℄). This means that for every ordered pair of �rms f1,f2, a sequene s1, : : : , sn of �rms an be found suh that f1 owns someshares of s1, whih owns some shares of s2 and so on, until sn whih ownssome shares of f2. The opposite must be true too (in general by a di�erentsequene).Clearly, if the shares matrix is not onneted, every onneted omponentevolves autonomously.6 Reduible shares matrixOnly one ase remains: when the shares matrix is onneted but reduible(i.e., not strongly onneted). In this ase P still has a �nite Ces�aro limit,5Sine ~P jkk, with k = 2; : : : ; h, yle, the sum on j remains bounded. Aj tend expo-nentially to zero, so their sum an not diverge and is bounded. Then the spread o(t) isatually o(f(t)) for every in�nite funtion f(t), no matter how slow f(t) tends to 0. Itlearly holds also in the ase of primitive shares matrix.6



but the form is di�erent ([7℄): by a proper permutation, P an assume theform P = � T11 0T21 T22 �with T11 lower{triangular blok matrix, andT22 =0B� A1 . . . Am 1CAwhere Ak are irreduible. This means that the �rms an be qualitativelygrouped into "owners" (the last listed one, when the shares matrix has theabove{mentioned form) and "owned �rms" (even though they simply do nothave shares of the seond group of �rms). Then, the Ces�aro limit islimt!+1 1t t�1Xj=1Pj = � 0 0ET21 (I�T11)�1 E �where E = 0B� ~v1 uT . . . ~vm uT 1CA~vk is the Perron vetor of the matrix Ak. Furthermorelimt!+1Pt = � 0 0ET21 (I�T11)�1 E �if and only if Ak are all primitive. Otherwise the limit does not exist.This means that the value tend to onentrate on the owners (whih are"more onneted"), while the owned �rms tend to (relatively) derease theirvalue. Atually the mean value of the owners is of order t, while the one ofthe owned �rms is just o(t) (so it does not neessarily tend to zero).7 ConlusionsIn this work the evolution of the value of a set of produing �rms sharingtheir property aording to �xed quotas has been modelled. The model isstill very simple and an be generalized in several manners to approah morerealisti situations. The shares matrix is kept onstant in time, while thisdoes learly not our. Besides, the random produtions are supposed to beindependent on the values of the �rms and orrelated only at simultaneoustimes. However some interesting features emerged: the long run values de-pend weakly on the individual produtivities and strongly on the topology7



of the network representing the shares quotas. As just as the struture be-omes strongly onneted, the produtivities simply ontribute to the totalvalue of the system, whih tends asymptotially to be shared among the�rms aording to quotas that depend only on the network topology. Whenthe network (whih is a weighted, direted graph) is onneted, but notstrongly onneted, the �rms an be grouped into two lasses. The "lessonneted" ones are penalized with respet to the "more onneted" ones.The model an atually be applied to a wider range of systems, sineit desribes the prodution and the distribution on a network and showsthat stronger the onnetion, weaker the dependene of the individual per-formane on the personal pro�ieny. Besides it shows that networks tendto get more sti�ening and to trap their dynamis as they inrease theironnetion.AppendixA Irreduible and primitive matriesHere are ited some useful de�nitions and properties:� A matrix A is reduible ([8℄) if there is a permutation B suh thatBAB�1 = � K11 K120 K22 �where K11 and K22 are square matries. Otherwise it is irreduible.With the model and the onsequent formalism used in this work, amatrix is reduible ifBAB�1 = � K11 0K21 K22 �� A non{negative matrix A is primitive if there is k > 0 suh that Akis positive.� A primitive matrix must be irreduible.� An irreduible matrix is primitive if and only if there is only one eigen-value on its spetral irle.� If a non{negative, irreduible matrix has a positive, diagonal entry, itis primitive.� If A is primitive limn!+1� 1�(A) A�n = r lTlT r > 0 (6)8



where r and l are respetively a right and a left eigenvetor of �(A)for A.� A non{negative, irreduible matrix is imprimitive if there are h eigen-values on its spetral irle. h is the index of imprimitivity.� if (x) = xn + �1xn�k1 + �2xn�k2 + �3xn�k3 + � � � + �sxn�ks is theharateristi polynomial of an imprimitive matrix A in whih onlythe non{zero terms are listed, then the index of imprimitivity is thegreatest ommon divisor of k1, k2, : : : , ks.B Perron-Frobenius theoremIf A is non{negative and irreduible then� the spetral radius �(A) is an eigenvalue for A;� the eigenspae of the spetral radius is one{dimensional;� there is a positive eigenvetor of the spetral radius for A;Besides the Collatz{Wielandt formula holds for all non{negative matries:�(A) = maxx � 0x 6= 0 0BBBB� min1 � j � nxj 6= 0 [Ax℄jxj 1CCCCAC Wielandt's theoremsC.1If jBj � A and A is irreduible then �(B) � �(A). In the ase �(B) = �(A)(i.e., �B = �(A) ei � for some �), thenB = ei �DAD�1 with Dij = (ei �i j = i0 j 6= iC.2If A is non{negative and irreduible and has h eigenvalues �1, �2, : : : , �hon its spetral irle then� every eigenspae of �j is one{dimensional;� �k = �(A) e2� kh i 9



D Some simple proofsD.1 Equation 3ov [xi;t; xj;t℄ = tXn=1 tXm=1Xa Xb �Pt�n�ia �Pt�m�jb ov ["a;n; "b;m℄ == tXn=1 tXm=1Xa Xb �Pt�n�ia �Pt�m�jb Æmn�ab == tXn=1Xa Xb �Pt�n�ia �Pt�n�jb �ab = tXn=1 hPt�n � �Pt�n�T iij == " tXn=1Pt�n � �Pt�n�T#ijD.2 TheoremIf Mn is a onverging sequene of matries and M = limn!1Mn, then asn!1 nXj=1Mj = nM+ o(n) � nM (7)Proof:Sine Mn =M+ o(1), for every " > 0 there is n" 2 N suh thatmaxa;b=1;:::;N j[Mn �M℄abj < " 8n > n"Then1n ������ nXj=1℄Mj � nM������ = 1n ������ nXj=1℄ (Mj �M)������ == 1n ������n"�1Xj=1℄ (Mj �M) + nXj=n" (Mj � M)������ �� 1n ������n"�1Xj=1 (Mj �M)������+ 1n nXj=n" jMj � Mj �� An + 1n nXj=n"N2 " = An + (n� n" + 1)N2 "n � An +B" n!1! 0for some positive numbers A and B.10
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