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Abstract

The aim of this paper is to obtain the analytical solution to the
method of moments for Zenga’s model (Zenga, M. M., 2010). First,
the central moments of Polisicchio’s distribution are used to derive
the corresponding central moments for Zenga’s model. Secondly, the
method of moments is applied to such central moments, and then the
analytical solution of the related system is obtained. These analytical
results are then compared with the numerical ones in Zenga et al.
(2010a).

Keywords: central moments, mixture, central moments of a mixture,
method of moments.

1 Introduction

Zenga, M. M. (2010) proposed a new three-parameter model whose char-
acteristics can be useful for income, wealth, financial and actuarial distri-
butions. This new model is obtained by mixturing of particular truncated
Pareto distributions introduced by Polisicchio (2008) with Beta weights.
The probability density function of the model (for µ > 0, α > 0 and θ > 0)
is given by:

f(x : µ;α; θ) =























1

2µB(α; θ)

(

x

µ

)

−1.5 ∫ x

µ

0

k
α+0.5−1(1− k)θ−2

dk, if 0 < x < µ

1

2µB(α; θ)

(

µ

x

)

−1.5
∫

µ

x

0

k
α+0.5−1(1− k)θ−2

dk, if x > µ.

(1)

∗Although this paper arises from a collaboration of the three authors, the paragraphs
1 and 7 have to be attribuited to M. M. Zenga, the paragraphs 3 and 4 to F. Porro, and
the paragraphs 2, 5 and 6 to A. Arcagni
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The parameter µ corresponds to the expected value, while α and θ are shape
parameters. The model has Paretian right tail and the moment of order r
is finite only if r < α + 1. As the method of moments needs the existence
of the third moment, the corresponding estimates of α will be necessarily
greater than 2.

Zenga et al. (2010a) inplemented the method of moments estimation for
model (1) starting from the following system:























x̄ = µ

m2 =
µ2

3

θ(θ + 1)

(α− 1)(α+ θ)

m′3 =
µ3

5

1

B(α; θ)
{B(α− 2; θ − 1)−B(α+ 3; θ − 1)}

(2)

where x̄, m2 and m′3 are the sample mean, variance and third moment about
zero, respectively. Using the second equation of the system (2), the following
expression for α is easily obtained:

α̃(θ) =

(θ + 1)







−1 +
√

1 +
4

3

x̄2

m2

θ

θ + 1







2
+ 1. (3)

Rearranging the third equation using (3), we obtain a polynomial of fourth-
degree, quite difficult to solve, which is here provided in its implicit form
only:

T (α̃(θ); θ) = 5
m′3
x̄3

. (4)

The estimate of θ is obtained by solving numerically equation (4) while the
estimate of α can be achieved by replacing in (3) θ with the corresponding
estimate.

In this paper we find the analytical solution of the method of moments,
starting from a different system based on the mean, the variance and the
third central moment. We will show that replacing the third equation in (2)
results in a definite simplification.

The paper is organized as follows. A general result regarding the central
moments of a mixture is provided in section 2. In section 3 the first four
central moments of Polisicchio random variable are obtained. In section 4
the corresponding central moments of Zenga distribution are derived. In
section 5 the analytical solution of the method of moments is provided.
In section 6, the results are compared with the numerical solution of the
method of moments, evaluated in Zenga et al. (2010a).
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2 The central moments of a mixture

Let X be a continuous mixture on the support S where g(k) is the mixing
density function, and f(x : k) the conditional density of X given k. The
probability density of the mixture X is:

f(x) =

∫

K

f(x : k)g(k) dk

where K is the support of the density g(k).
Let be µ′r the r-th moment about zero and µr the r-th central moment

of the mixture X, and let µ′r(k) and µr(k) be the corrisponding moments of
the conditional distribution of X given k.

By definition, the r-th central moment of the mixture X is:

µr = E
[

(X − µ′1)
r
]

=

∫

S

(x− µ′1)
rf(x) dx

=

∫

S

(x− µ′1)
r

[
∫

K

f(x : k)g(k) dk

]

dx.

For µr finite the Fubini’s theorem can be applied and the integrals can
be inverted:

µr =

∫

K

[
∫

S

(x− µ′1)
rf(x : k) dx

]

g(k) dk

=

∫

K

{
∫

S

[(

x− µ′1(k)
)

+
(

µ′1(k)− µ′1
)]r

f(x : k) dx

}

g(k) dk.

Using the binomial identity:

(a+ b)r =
r

∑

i=0

(

r

i

)

aibr−i, r ∈ N,

the r-th central moment of the mixture X can be written as:

µr =

∫

K

{

∫

S

[

r
∑

i=0

(

r

i

)

(

x− µ′1(k)
)i (

µ′1(k)− µ′1
)r−i

]

f(x : k) dx

}

g(k) dk

=

∫

K

r
∑

i=0

(

r

i

)[

(

µ′1(k)− µ′1
)r−i

∫

S

(

x− µ′1(k)
)i
f(x : k) dx

]

g(k) dk

=

r
∑

i=0

(

r

i

)
∫

K

[

(

µ′1(k)− µ′1
)r−i

∫

S

(

x− µ′1(k)
)i
f(x : k) dx

]

g(k) dk.

In the last equation, the integral
∫

S
(x− µ′1(k))

i
f(x : k) dx is equal to

the i-th central moment of the conditional distribution of X given k; it
follows that:

µr =
r

∑

i=0

(

r

i

)
∫

K

(

µ′1(k)− µ′1
)r−i

µi(k)g(k) dk. (5)
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If r = 2, the formula (5) is the known variance decomposition:

µ2 = Var(X) =

(

2

0

)
∫

K

(

µ′1(k)− µ′1
)2

µ0(k)g(k) dk +

+

(

2

1

)
∫

K

(

µ′1(k)− µ′1
)

µ1(k)g(k) dk +

+

(

2

2

)
∫

K

µ2(k)g(k) dk,

the central moment of order 0 is always equal to 1 and the central moment
of order 1 is always equal to 0. Then:

µ2 =

∫

K

(

µ′1(k)− µ′1
)2

g(k) dk +

∫

K

µ2(k)g(k) dk. (6)

The first integral of (6) is the variance of the means (between variance)
and the second one is the mean of the variances (within variance).

Equation (5) for r = 3 gives:

µ3 = E
[

(X − µ′1)
3
]

=

(

3

0

)
∫

K

(

µ′1(k)− µ′1
)3

µ0(k)g(k) dk +

+

(

3

1

)
∫

K

(

µ′1(k)− µ′1
)2

µ1(k)g(k) dk +

+

(

3

2

)
∫

K

(

µ′1(k)− µ′1
)

µ2(k)g(k) dk +

+

(

3

3

)
∫

K

µ3(k)g(k) dk

=

∫

K

(

µ′1(k)− µ′1
)3

g(k) dk + 3

∫

K

(

µ′1(k)− µ′1
)

µ2(k)g(k) dk

+

∫

K

µ3(k)g(k) dk.

By equation (5) we can also note that:

µr =

r−1
∑

i=0

(

r

i

)
∫

K

(

µ′1(k)− µ′1
)r−i

µi(k)g(k) dk +

+

(

r

r

)
∫

K

(

µ′1(k)− µ′1
)0

µr(k)g(k) dk

=
r−1
∑

i=0

(

r

i

)
∫

K

(

µ′1(k)− µ′1
)r−i

µi(k)g(k) dk +

∫

K

µr(k)g(k) dk. (7)

An important case is µ′1(k) = µ ∀k ∈ K, then also µ′1 = µ, and, by
equation (7) the r-th central moment of the mixture can be expressed as:

µr =

∫

K

µr(k)g(k) dk. (8)
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3 Variance, third and fourth central moment of
Polisicchio’s truncated Pareto density

The density of Zenga’s distribution f(x : µ;α; θ) (with µ > 0, α > 0,
θ > 0) is obtained as a mixture of Polisicchio’s truncated Pareto densities
(see Polisicchio, 2008):

f(x : µ; k) =











√
µ

2
k0,5(1− k)−1x−1,5 µ ≤ x ≤ µ

k

0 otherwise

(9)

where µ > 0 and k ranges in the interval (0, 1). The mixing parameter k
in Zenga’s distribution has a Beta density g with parameters α and θ. The
parameter µ of Polisicchio’s density (9) and of Zenga’s density is equal to
their expectation. In this section, we obtain the second, the third and the
fourth central moment of Polisicchio’s density.

Polisicchio (2008) proved that the r−th moment (r ∈ N) about zero of
the density (9) is given by:

µ′r =
µrk1−r(1− k)2r−1

(2r − 1)(1− k)
. (10)

By using the relation

1 + k + k2 + ...+ kn =
1− kn+1

1− k

Zenga, M. M. (2010) showed that the moments of Polisicchio density can be
equivalently obtained by:

µ′r =
µr

2r − 1

2r−1
∑

i=1

ki−r. (11)

Notice that, from (11),

µ′2 =
µ2

3
(k−1 + 1 + k) =

µ2

3k
(1 + k + k2).

Consequently the variance of the density (9) is

µ2

3k
(1 + k + k2)− µ2 =

µ2

3k
(1− 2k + k2) =

µ2

3k
(1− k)2. (12)

In order to obtain the third central moment, firstly it can be remarked
that, for any random variable X (with finite third moment), the following
holds:

E(X − µ)3 = E(X3 − 3µX2 + 3µ2X − µ3)

= E(X3)− 3µE(X2) + 3µ2
E(X)− µ3

= E(X3)− 3µE(X2) + 2µ3
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and, since E(X2) = V ar(X) + µ2, it follows that:

E(X − µ)3 = E(X3)− 3µ[V ar(X) + µ2] + 2µ3

= E(X3)− 3µV ar(X)− 3µ3 + 2µ3

= E(X3)− 3µV ar(X)− µ3. (13)

By equation (11), the third moment of Polisicchio r.v. can then be
obtained as:

µ′3 =
µ3

5
(k−2 + k−1 + 1 + k + k2) =

µ3

5k2
(1 + k + k2 + k3 + k4) (14)

and therefore, using (12), equation (13) gives the third central moment:

µ3

5k2
(1 + k + k2 + k3 + k4)− µ3

k
(1− k)2 − µ3 =

=
µ3

5k2
[1 + k + k2 + k3 + k4 − 5k(1 + k2 − 2k)− 5k2] =

=
µ3

5k2
(1 + k + k2 + k3 + k4 − 5k + 5k3 + 10k2 − 5k2) =

=
µ3

5k2
(1− 4k + 6k2 − 4k3 + k4) =

=
µ3

5k2
(1− k)4.

The same approach can be used to get the fourth central moment. The
following expressions hold for any random variable X (with finite fourth
moment):

E(X − µ)4 = E(X4 − 4µX3 + 6µ2X2 − 4µ3X + µ4)

= E(X4)− 4µE(X3) + 6µ2
E(X2)− 4µ2

E(X) + µ4

= E(X4)− 4µE(X3) + 6µ2
E(X2)− 3µ4

= E(X4)− 4µE(X3) + 6µ2[V ar(X) + µ2]− 3µ4. (15)

By (11), the fourth moment of Polisicchio r.v. is

µ′4 =
µ4

7
(k−3+k−2+k−1+1+k+k2+k3) =

µ4

7k3
(1+k+k2+k3+k4+k5+k6)

and therefore, the fourth central moment of (9) is

µ4

7k3
(1 + k + ...+ k6)− 4µ4

5k2
(1 + k + ...+ k4) +

2µ4

k
(1 + k + k2)− 3µ4 =

=
µ4

35k3
[

5(1 + k...+ k6)− 28k(1 + k + ...+ k4) + 70k2(1 + k + k2)− 105k3
]

=

=
µ4

35k3
[5− 23k + 47k2 − 58k3 + 47k4 − 23k5 + 5k6] =

=
µ4

35k3
(1− k)4(5k2 − 3k + 5).
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4 Variance, third and fourth central moment of
Zenga’s density f(x : µ;α; θ)

We are now ready to apply the results obtained in Section 2 to a random
variable X following Zenga’s distribution, which can be regarded as a mix-
ture of conditional density (9), In the notation of Section 2, µ′1 = µ′1(k) = µ;
hence, by applying (8) with r = 2:

V ar(X) =

∫ 1

0

µ2

3k
(1− k)2 · g(k : α; θ) dk =

∫ 1

0

µ2

3k
(1− k)2 · k

α−1(1− k)θ−1

B(α, θ)
dk =

=
µ2

3

1

B(α, θ)

∫ 1

0
k(α−1)−1(1− k)(θ+2)−1 dk.

For α > 1 the last integral is B(α− 1, θ + 2), therefore:

V ar(X) =
µ2

3
· B(α− 1, θ + 2)

B(α, θ)

=
µ2

3
· Γ(α− 1)Γ(θ + 2)

Γ(α+ θ + 1)
· Γ(α+ θ)

Γ(α)Γ(θ)

=
µ2

3
· Γ(α− 1)(θ + 1)θΓ(θ)

(α+ θ)Γ(α+ θ)
· Γ(α+ θ)

αΓ(α− 1)Γ(θ)

=
µ2

3
· θ(θ + 1)

(α− 1)(α+ θ)
(16)

where:

Γ(a) =

∫

∞

0
ta−1e−t dt, a > 0

and:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, a > 0, b > 0.

Note that the expression (16) has been obtained, following another approach,
in Zenga, M. M. (2010).

For the third central moment of Zenga’s distribution, equation (8) with
r = 3 gives

E(X − µ)3 =

∫ 1

0

µ3

5k2
(1− k)4 · g(k : α; θ) dk

=

∫ 1

0

µ3

5k2
(1− k)4 · k

α−1(1− k)θ−1

B(α, θ)
dk

=
µ3

5

∫ 1

0

k(α−2)−1(1− k)(θ+4)−1

B(α, θ)
dk.
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If α > 2 the latter integral converges and by the definition of the beta
function:

E(X − µ)3 =
µ3

5
· B(α− 2, θ + 4)

B(α, θ)

=
µ3

5
· Γ(α− 2)Γ(θ + 4)

Γ(α+ θ + 2)
· Γ(α+ θ)

Γ(α)Γ(θ)

=
µ3

5
· Γ(α− 2)(θ + 3)(θ + 2)(θ + 1)θΓ(θ)

(α+ θ + 1)(α+ θ)Γ(α+ θ)
· Γ(α+ θ)

(α− 1)(α− 2)Γ(α− 2)Γ(θ)

=
µ3

5
· θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α+ θ + 1)(α+ θ)
. (17)

Similarly, the fourth central moment of Zenga’s distribution follows:

E(X − µ)4 =

∫ 1

0

µ4

35k3
(1− k)4(5k2 − 3k + 5) · g(k : α; θ) dk

=

∫ 1

0

µ4

35k3
(1− k)4(5k2 − 3k + 5) · k

α−1(1− k)θ−1

B(α, θ)
dk

=
µ4

35

∫ 1

0
(1− k)4(5k−1 − 3k−2 + 5k−3) · k

α−1(1− k)θ−1

B(α, θ)
dk

=
µ4

35

[

5

∫ 1

0

k(α−1)−1(1− k)(θ+4)−1

B(α, θ)
dk − 3

∫ 1

0

k(α−2)−1(1− k)(θ+4)−1

B(α, θ)
dk+

+5

∫ 1

0

k(α−3)−1(1− k)(θ+4)−1

B(α, θ)
dk

]

. (18)

If α > 3 all the integrals in (18) converge; therefore:

E(X − µ)4 =
µ4

35

[

5
B(α− 1, θ + 4)

B(α, θ)
− 3

B(α− 2, θ + 4)

B(α, θ)
+ 5

B(α− 3, θ + 4)

B(α, θ)

]

=
µ4

35B(α, θ)
[5B(α− 1, θ + 4)− 3B(α− 2, θ + 4) + 5B(α− 3, θ + 4)] .

5 Method of moments

Let (x1, ..., xn) be the determination of a random sample from the density
f(x : µ;α; θ). Let

x̄ =
1

n

n
∑

i=1

xi,

m2 =
1

n

n
∑

i=1

(xi − x̄)2,
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and

m3 =
1

n

n
∑

i=1

(xi − x̄)3

be the mean, the variance and the third central moment of the sample,
respectively. As we shown in the previous sections, when X has the density
(1),







































E(X) = µ

V ar(X) =
µ2

3
· θ(θ + 1)

(α− 1)(α+ θ)

E(X − µ)3 =
µ3

5
· θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α+ θ + 1)(α+ θ)

= V ar(X) · 3µ(θ + 3)(θ + 2)

5(α+ θ + 1)(α− 2)
.

Then, according to the method of moments,























µ = x̄

x̄2

3
· θ(θ + 1)

(α− 1)(α+ θ)
= m2

m2 ·
3

5
· x̄ · (θ + 3)(θ + 2)

(α+ θ + 1)(α− 2)
= m3.

(19)

The estimate of µ is hence µ̂ = x̄, while the estimates of α and θ are obtained
as solutions of the system:











x̄2

3
· θ(θ + 1) = m2 · (α− 1)(α+ θ)

m2 ·
3

5
· x̄ · (θ + 3)(θ + 2) = m3 · (α+ θ + 1)(α− 2)











x̄2

3
· θ(θ + 1) = m2 · (α2 + αθ − α− θ)

m2 ·
3

5
· x̄ · (θ + 3)(θ + 2) = m3 ·

[

α2 − 2α+ (θ + 1) · α− 2(θ + 1)
]











x̄2

3
· θ(θ + 1) = m2 ·

[

α2 + α(θ − 1)− θ
]

m2 ·
3

5
· x̄ · (θ + 3)(θ + 2) = m3 ·

[

α2 + α(θ + 1− 2)− 2(θ + 1)
]

It follows that:



















x̄2

3m2
θ(θ + 1) = α2 + α(θ − 1)− θ

3

5
· x̄ · m2

m3
(θ + 3)(θ + 2) = α2 + α(θ − 1)− 2(θ + 1)

9





















x̄2

3m2
θ(θ + 1) + θ = α2 + α(θ − 1)

3x̄

5
· m2

m3
(θ + 3)(θ + 2) + 2(θ + 1) = α2 + α(θ − 1)

and therefore






















x̄2

3m2
θ(θ + 1) + θ = α2 + α(θ − 1)

x̄2

3m2
θ(θ + 1) + θ =

3

5
· x̄ · m2

m3
(θ + 3)(θ + 2) + 2θ + 2.

(20)

From the second equation of (20) it derives that

1

3
· x̄

2

m2
(θ2 + θ) + θ =

3

5
· x̄ · m2

m3
(θ2 + 5θ + 6) + 2θ + 2

θ2
[

1

3

x̄2

m2

− 3

5
x̄
m2

m3

]

+ θ

[

1

3

x̄2

m2

− 3
x̄m2

m3

− 1

]

−
[

18

5

x̄m2

m3

+ 2

]

= 0 (21)

then the estimate of θ is:

θ̂ =

−
[

1

3

x̄2

m2
− 3

x̄m2

m3
− 1

]

+

√

[

1

3

x̄2

m2
− 3

x̄m2

m3
− 1

]2

+ 4

[

1

3

x̄2

m2
− 3

5
x̄
m2

m3

] [

18

5

x̄m2

m3
+ 2

]

2

[

1

3

x̄2

m2
− 3

5
x̄
m2

m3

] ,

since the other solution of (21) is unacceptable.
Combining the last equation and the first equation of system (20) we

obtain the estimate of α, as a function of θ̂:

α̂ =

−(θ̂ − 1) +

√

(

θ̂ − 1
)2

+ 4

[

1

3

x̄2

m2
θ̂
(

θ̂ + 1
)

+ θ̂

]

2
,

since the other solution is not acceptable, being negative.
As above remarked, the reported analytical solutions make sense only

under the restrictions α̂ > 2, and θ̂ > 0.

6 A comparison with the numerical solution

The previous results were used to estimate the parameters of Zenga’s model
for 35 different datasets. The same datasets in Zenga et al. (2010a) were
selected, in order to compare the analytical solutions of the method of mo-
ments with the numerical ones. The obtained results are reported in Table 1.
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Dataset µ̂ = x̄ α̂ θ̂

Swiss 2000 Household income
unweighted obs. 6764.3426 2.2639 3.3526
weighted obs. 6546.9679 2.2884 3.4979

Swiss 2001 Household income
unweighted obs. 6706.4123 2.4945 2.4638
weighted obs. 6459.2145 2.5142 2.6711

Swiss 2002 Household income
unweighted obs. 6915.4791 2.8680 3.1782
weighted obs. 6577.1703 3.3184 4.0603

Swiss 2003 Household income
unweighted obs. 6785.9832 4.8198 5.7336
weighted obs. 6495.3267 4.9341 6.4201

Swiss 2004 Household income
unweighted obs. 6559.8534 3.9073 4.4095
weighted obs. 6274.9484 4.0224 4.9375

Swiss 2005 Household income
unweighted obs. 6783.7519 4.0210 4.8195
weighted obs. 6495.5388 4.1595 5.3924

US 2000 Household income
unweighted obs. 56452.6973 3.7480 11.0614
weighted obs. 57312.9470 3.7931 11.1456

US 2008 Household income
unweighted obs. 82460.2103 3.9922 10.7071
weighted obs. 79648.7342 3.9492 10.6612

Italy 2006
Household income, unweighted obs. 31918.9279 2.4447 4.0653
Household income, weighted obs. 31813.3998 2.3782 4.2303
Equivalent Household income, unweighted obs. 19121.4372 2.1939 3.6394
Equivalent Household income, weighted obs. 19020.5880 2.1804 3.8017
Individual income obs. 18502.6989 2.2678 4.6497

Italy 2006 North West Macro Region
Household income, unweighted obs. 34693.1135 2.5007 3.6521
Household income, weighted obs. 36194.6888 2.3933 4.3200
Equivalent Household income, unweighted obs. 21572.3309 2.7120 3.0018
Equivalent Household income, weighted obs. 22095.4823 2.5281 3.1886

Italy 2006 South Macro Region
Household income, unweighted obs. 24550.2504 2.4047 4.2064
Household income, weighted obs. 23949.3840 2.3457 4.5969
Equivalent Household income, unweighted obs. 13666.2131 2.6086 3.6902
Equivalent Household income, weighted obs. 13154.5524 2.6245 3.5601

Italy 2006 Center Macro Region
Household income, unweighted obs. 35595.8391 2.3365 4.2729
Household income, weighted obs. 35886.1715 2.3138 4.3195
Equivalent Household income, unweighted obs. 21543.3705 2.1880 5.9061
Equivalent Household income, weighted obs. 22248.2242 2.1900 6.4766

UK 1999/2000 Gross income
unweighted obs. 445.8539 2.8227 5.6448
weighted obs. 461.9370 2.8373 5.7045

Table 1: Analitical solutions of Method of Moments for 35 different datasets

In most cases the analytical and the numerical solutions can be considered
as equivalent, since their difference is less than 10−4. Such a difference is
mainly due to the iterative algorithm used in Zenga et al. (2010a) to solve the
third equation of the system of the method of moments. An approximation
of the exact solution is hence obtained.
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7 Conclusions

In this work we showed how to find the analytical solution of the method
of moments to estimate the parameters of Zenga’s model, by using central
moments. We compared our analytical results with the numerical ones in
Zenga et al. (2010a). From this comparison, it arises that the two approaches
(the analytical and the numerical) are coherent, since the differences of their
estimates are negligible. However, the analytical approach allows a faster
and easier application of the method of moments, whose results can be also
used as starting point of other iterative procedures (see for example Thisted,
1988).
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