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Chapter 1

Introduction

”At the present time there is no direct experimental evidence that supersymmetry is a

fundamental symmetry of nature.” [1].

At the present time this sentence was written 27 years ago, when I was 6 months old. 27
years later, the same sentence is still current and can be used as starting point for a Ph.D.
thesis. This long interval of time could have produced negative feelings about the actual
existence of supersymmetry in nature at some impatient researcher. However, it would
be stupid to give up on the patient right now: LHC is now running and, likely, if I were
simply few years younger, I should have found a different sentence to start my thesis.

Let us suppose for a while that LHC was out of our present technological possibilities.
What would be our attitude with respect to supersymmetry? I mean, with respect to a
symmetry that unifies objects that at our energy scales are very well distinct: Spacetime
symmetries with internal symmetries, fermionic particles with bosons and, when promoted
to be a local symmetry, gravity with matter.

A patient and trustful research would still be justified by the incredible variety of
applications that supersymmetry has found through the years. Among the main results
of supersymmetry, in fact, we can mention the solution of the hierarchy problem of the
Standard Model, the proposal of a candidate for Dark Matter and the crucial role played
by this symmetry in GUT theories.

These problems are spread over the whole frontier of modern, experimentally sup-
ported, theoretical description of nature and extend far beyond the original purposes that
led to supersymmetry. Thus we can be reasonably confident that from supersymmetry
other implications – at the moment unpredictable – for our future understanding of nature
will follow.

Even though they play a crucial role, supersymmetry and symmetries in general are
few of the ingredients of physical theories, which are definitely the principal elements of
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our investigation of nature. The scientific method states in fact that a physical descrip-
tion of natural phenomena follows from few postulates that define the theories and from
mathematically deduced predictions that can be falsified by empirical evidences. Unfor-
tunately, given our present technological level, there are theories that have few chances
to be checked by experiments. Nevertheless we can use towards these theories the same
attitude that we have for supersymmetry: A theory becomes more and more intriguing
as it touches a larger and larger set of problematics and suggests new ideas to solve them.
From this point of view, a critical eye cannot be insensible to string theory and to the
incredible multiplicity of ideas that this theory has produced in the past and still produces.

It is not the aim of this introduction to go along the historical path that led to
the suggestion of string theory as a renormalizable quantum theory of gravity and as
the ultimate theory of great unification of the fundamental forces, overcoming many
unsatisfactory features of the Standard Model (the huge number of unfixed parameters
and the unnatural smallness of some of them) and, at the same time, providing a consistent
description of gravity where General Relativity breaks down (at black holes singularities
and at the primordial stages of life of our universe). It is sufficient to note that up to
now string theory is the only known consistent theory that has the potentials to solve all
these problems at once. I would prefer to focus here on another remarkable peculiarity
of strings: String theory, in fact, is a natural environment where old ideas can find solid
physical basis, new ideas can be carried out and models can be built and applied in the
most unexpected fields of high and low energy physics.

The idea of strings as a solution–inspiring theory becomes preeminent after the dis-
covery of D–branes but some intuition of these potentialities can be found even before.
The concept of extra dimensions is an illustrative example of this fact. Extra dimensional
theories were developed before the formalization of string theory but they were confined
into the sphere of mathematical speculations. On the contrary, a ten dimensional space-
time became a mandatory request for the consistency of the superstring theory. As a
consequence inside string theory extra dimensions got a concrete physical foundation.
Starting from this renewed basis, extra dimensions has become more and more relevant
for the research in high energy physics. In fact, even experiments at LHC have been set
to catch possible signs of their presence.

An impressive improvement in the possibilities to build up models in the context of
string theory followed from the discovery of D–branes. D–branes are dynamical non–
perturbative objects of string theory. Their nature is twofold: 1) They interact with
closed strings, so we can look at them as sources of mass and charge; 2) They are hyper–
surfaces of various dimensionalities where open strings have their end points. Yang–Mills
(YM) theories are localized on their worldvolume.

The properties of D–branes allow new descriptions of different physical systems inside
string theory. Bound states of strings and D–branes have been used to build a microscopic
description of the thermodynamic of Black Holes (BH). The degeneracy of these bound
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states reproduces the Bekenstein area law for the entropy of a BH. The same models also
replicate correctly the Hawking radiation rates from BHs and offer a perspective for the
solution of the information paradox.

D–branes have been also used to build up cosmological models. These constructions
give an explanation to the expansion of our universe and the presence of Dark Energy,
responsible for the current acceleration in the expansion rate of the universe. At the same
time, they give solutions to the horizon problem and the flatness puzzles alternative to
inflation.

These models are tangible proofs of the descriptive potentialities of string theory. The
only problem with them is an old issue of the string: The comparison with experiments
is always a daunting enterprise, even for D–brane models. In recent years, however,
string theory has started to overcome even the frontier of experimental testability: The
AdS/CFT correspondence is the new idea that allows for covering this step.

The AdS/CFT correspondence is a consequence of the open–closed string duality built
in the concept of D–branes. It states that YM theories in four dimensions are equivalent
to string theories in curved higher dimensional backgrounds. At energies far below the
string scale, this translates into a weak–strong duality between gauge theories and gravity
theories. Strongly coupled gauge theories are dual to weakly coupled gravity theories and
vice versa. Thus, string theory is not only the ultimate ultraviolet completion of YM gauge
theories and of gravity at the Plank scale but, through the AdS/CFT correspondence,
it becomes the theory that replaces Super–YM (SYM) theories, and hopefully QCD, in
their non–perturbative regime.

The basic idea of the correspondence is however more general, suggesting that strongly
coupled physical systems can be described by higher dimensional gravity models. These
models can be directly linked to string and D–brane constructions (top–down approach) or
can be stringy–inspired gravity models constructed ad–hoc for particular physical systems
(bottom–up approach). In both cases, inside strongly coupled systems we can find signs
of strings, or of ideas that they produce, at energies accessible by our technology.

Remarkably, we have in fact a couple of experimental checks: 1) Experiments on
the Quark Gluon Plasma confirm the existence of a bound on the ratio between share
viscosity and entropy of strongly coupled plasmas which has been derived by general
considerations in AdS/CFT ; 2) Phase transition diagrams of superconductors have been
exactly reproduced by gravity models.

These results are not the definitive answer on the validity of string theory but they
confirm that it is a very prolific theory of ideas and solutions for many topics at the
frontier of modern physics. Thus we can be reasonably confident that from string theory
other implications – at the moment unpredictable – for our future understanding of nature
will follow.

The same words have been previously referred to supersymmetry: Nowadays LHC can
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reach the energy scales at which the existence of supersymmetry can be probed directly.
It is likely that we will never be able to have experimental access to the energy regimes
at which the stringy nature of the fundamental constituents of nature becomes manifest.
However, this is not a limitation to string theory: In the spirit of the AdS/CFT , it
seems plausible that in the future string theory will turn itself into something more easily
accessible by our experimental inspections.

This thesis

The results presented in this thesis set into the context of the AdS/CFT correspondence.

The thesis is divided in two parts: In the first part the AdS/CFT correspondence is
considered on its gravity side. In a top–down approach some aspects of strongly coupled
systems are investigated. In particular, results concerning the mass spectra of mesonic
quark–antiquark bound states are presented.

In the second part, powerful methods based on superspace are developed for high preci-
sion perturbative computations of scattering amplitudes in SYM theories. The AdS/CFT
correspondence predicts a lot of properties for these objects at strong coupling. There
are evidences that they can be extended also at weak coupling. Our methods allow to
perform direct and definitive checks of them.

Part I: AdS/CFT & mesonic spectra

As previously mentioned, AdS/CFT opens new perspectives on the study of confined
phases of YM theories and primarily of QCD. Recent progresses in this direction con-
cern the inclusion in the correspondence of flavor symmetry and of matter in the
fundamental representation of the gauge group.

The holographic description of flavored YM theories is obtained by considering the low
energy limit of a system of N D3 and Nf D7–branes. In particular, the D3–branes
span the usual four dimensional Minkowski spacetime and the D7 branes extend on these
directions and wrap a S3 sphere in the internal ones. The SU(N) gauge symmetry is
realized on the worldvolume of the D3–branes while the presence of D7–branes provides
the SU(Nf ) flavor symmetry.

In the stringy picture, the gluons of the theory are represented by open strings
stretched between two D3–branes while the quarks by D3–D7 strings. The distance be-
tween the D3 and the D7 branes in their mutual orthogonal directions is directly propor-
tional to the mass of the quarks. Open strings with the endpoints on the same D7–brane
represent quark–antiquark qq̄ bound states, i.e. the mesons of the theory. Thus, it is
possible to compute the mesonic mass spectrum by considering fluctuations of the flavor
branes around their equilibrium configurations. These fluctuations satisfy a system of
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second order differential equations often coupled between themselves.

The first study of mesonic spectra have been done for N = 4 SYM theory. The
spectrum turns out to be discrete and with high degeneracy. After this first example,
a lot of work has been done in the direction of studying more QCD–like theories (i.e.
non–conformal theories, less supersymmetric theories, ...).

In the first part of the thesis I have extended the analysis to include marginally
β–deformations of N = 4 SYM theory. The effect of these deformations is to break
partly or completely supersymmetry. Unfortunately, these theories are still conformal
symmetric, thus they cannot be used to give a realistic description of the RG flow of
a gauge theory towards a confining phase. Nevertheless it is interesting to consider the
effects of supersymmetry breaking on the D7–brane configurations and on the mesonic
spectrum.

The results found show that the deformed spectrum has the same number of degrees
of freedom of the undeformed case. The main effect of the deformation is the resolution of
the huge degeneracy of the undeformed mass levels in a way that share a lot of similarities
with the resolution of the degeneracy due to the Zeeman effect in the quantum mechanical
description of the hydrogen atom.

These results follow from the study of a system of differential equations that is much
more involved with respect to the undeformed N = 4 SYM case. Nevertheless, as in
the undeformed case, it has been possible to solve it analytically. Together with the
undeformed N = 4 SYM theory, this is the only case where solutions for the spectrum
has been computed exactly, without using numerical computational techniques.

Part II: Superspace & scattering amplitudes

In the last few years much attention has been payed to scattering amplitudes in gauge
theories. There is, of course, an obvious phenomenological interest since the recent activity
at the accelerators calls for highly precise theoretical results in YM theories. On the
other hand, inside the AdS/CFT correspondence new interesting properties have been
highlighted for scattering amplitudes in Super–YM theories.

The most intensive activity have been done in the study of the so called color ordered
Maximally Helicity Violating (MHV) amplitudes i.e. amplitudes with two particles
with the same helicity and the others with opposite helicity.

The most interesting results have been found in the context of N = 4 SYM theory.
They are: A) the BDS ansatz, a recursive relation for the finite parts of the amplitudes
that mimics and extends the recursive behavior of the IR poles. It was postulated that this
ansatz would be valid to all loops and for an arbitrary number of gluons, but actually it
fails at 2 loops and 6 particles and a correction is required; B) TheMHV amplitudes–
Wilson loop duality, i.e. the observation that the expectation values of Wilson loops
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with a particular light–like contour are equivalent to MHV amplitudes. The validity of this
equivalence has been demonstrated at strong coupling via AdS/CFT . All the perturbative
level computations performed so far indicate that the equivalence should be valid also at
weak coupling but a general proof is still missing; C) A new symmetry, called dual
superconformal symmetry, that characterizes N = 4 scattering amplitudes. Once
again this symmetry has been postulated on AdS/CFT indications.

The computational techniques employed to get these results, are based on the optical
theorem and the reconstruction of the amplitudes from their infrared singularities. Their
validity is based on two main assumptions: A) the cut–constructibility, i.e. the
possibility to reconstruct the full amplitude by looking at its singularities at the cuts;
B) the no–bubble no–triangle hypothesis, i.e. the absence of bubbles and triangles
in any integral entering the final expression of an amplitude. Even if these hypothesis
are in agreement with the dual conformal invariance and are supposed valid at any loop
order, general proofs have been produced only at one loop and only for N = 4 SYM
theory. Moreover, moving to less supersymmetric theories, these hypothesis are no more
applicable and the computations become more and more involved.

From this point of view, an assumption–free computational technique at more
than one loop is definitively necessary since it would give more insights on the consistency
of these assumptions and would check the results and the properties found for the N = 4
SYM theory. The development of a direct perturbative technique is indeed the subject of
the second part of this thesis.

The perturbative computation of a scattering amplitude can be reduced to the com-
putation of the effective action. In fact an amplitude is constructed by composing trees
of vertices and propagators given by 1PI Green functions. In particular a scattering
amplitude involving n particles at ℓ loops requires the evaluation of the effective action
truncated at n–points at the same perturbative order.

Our computational strategy concentrates on the derivation of the complete all–n point
effective action at a fixed loop order. We provide a master equation from which it is in
principle possible to derive any scattering amplitude at a given perturbative order. The
method is based on a combined use of background field method and superspace
technologies together with an appropriate use of the helicity and color informations of
the interacting particles. It is important to stress that we work in N = 1 superspace, so
the general set up we develop is suitable not only for N = 4 SYM but for any SYM
theory.

In our method, the computation of the full effective action follows from the iden-
tification of a set of vacuum–like Feynman diagrams in superspace. The loop lines of
these superdiagrams represent background covariant propagators. These propagators are
given as power series in the external fields. Thus the covariant propagators make possible
to incorporate inside the vacuum superdiagrams informations about interactions of any
number of external fields in an extremely compact form. Each single contribution to the
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effective action can be extracted from the vacuum superdiagrams by a suitable expansion
of the propagators in the external fields.

The covariant D–algebra procedure (generally called ∇–algebra) can be used to re-
duce the vacuum superdiagrams to sums of ordinary Feynman diagrams. To this end,
we need to expand the covariant propagators in powers of covariant spinorial superspace
derivatives, where the coefficients of the expansion are functions of the external fields.
As such, they can be written as power series in the external fields. However the ∇–algebra
procedure can be worked out before the replacement of the coefficients with their power
series so that the effective action turns out to be expressed in terms of the coefficients
rather than their expansions. The advantage is evident: These formulas for the effective
action are in fact independent of the number n of interacting particles and, poten-
tially, of their helicity configurations. Thus the ∇–algebra procedure and the use of the
coefficients provide master equations for the all–n effective action at a fixed loop order.

A generic contribution to the effective action corresponding to a fixed number n of ex-
ternal fields is then obtained by expanding the coefficients in power series only in a second
step. Its form will be given by the product of a loop integral times a tensorial structure
represented by a string of n fermionic and bosonic superfields. This second structure
contains the informations about the scattered particles (their number, momentum, color
and helicity).

The consistency of our superspace construction is supported by a set of non–trivial
relations between the propagator coefficients. These identities follow straightforwardly
from the basic algebraic relations satisfied by the covariant superspace derivatives. Their
role in the computational process is twofold: They provide a lot of simplifications in the
general expressions for the effective action and, at the same time, order by order in n they
constitute highly non–trivial checks for the power series expansions of the coefficients.

The large number of terms involved in the computation of the effective action motivates
the automatization of the computational procedure. A completely new program system,
Pierre, has been developed. It is based on various program languages (mainly on FORM, a
symbolic calculus language, and on Mathematica).

Pierre provides a complete automatization of the three key steps of the computational
procedure for an n point scattering amplitude, that is the derivation of the complete effec-
tive actions, the power series expansion of the propagator coefficients and the extraction
of the fixed n–point effective action from the full all–n effective action.

Pierre is able to deal with both the tensorial and the loop structures of Feynman
diagrams in superspace. The tensorial structure is controlled through a small set of
basic superspace algebraic relations. The loop integrals are worked out with standard
procedures like Passarino–Veltman reduction.

As a first application of our technology, we have computed the all–n MHV effective
action at two loop for N = 4 SYM theory. This expression turns out to be a linear
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combination of Feynman diagrams written in terms of the propagator coefficients.

N = 4 SYM theory is expected to be Ultraviolet (UV) finite. By power counting it
is possible to distinguish the UV divergent contributions in the formula for the effective
action and to separate them from the finite ones. Indeed, a careful analysis shows that
all the UV divergent diagrams resum into UV finite ones. A key role in this resummation
is played by the relations between the propagator coefficients.

Therefore the main result of the second part of this thesis is the following: We give a
general expression for the two loop MHV effective action of N = 4 SYM theory that is
manifestly UV–free and valid for any number of external particles. The cancellation of
the UV divergences provides a highly non–trivial check of our results and, more generally,
of the computational strategy adopted.

An immediate application of our results is the evaluation of the two loop four point
amplitude. From the all–n effective action it is possible to extract the four point MHV
effective action and from there the four point MHV scattering amplitude. Partial results
show that only 1PI diagrams contribute to this amplitude. The extrapolation of the four
point scattering amplitude is work in progress.

In conclusion, it has been a common belief that a direct approach to scattering ampli-
tudes in YM theories based on Feynman diagrams would be impossible, due to the large
number of contributions that should be considered as soon as the number of loops and of
interacting particles increases. Nevertheless, our computational method shows that non–
trivial superspace techniques open the possibility of a direct computation in the context
of SYM theories.
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Chapter 2

AdS/CFT in short

One of the main challenges of elementary particle theoretical physics is the understanding
of the low energy regime of confining theories, primarily QCD. Progress in this direc-
tion is expected in the context of the AdS/CFT correspondence [2] which allows for
a dual description of Yang–Mills theories at strong coupling in terms of a perturbative
string/supergravity theory.

The arguments that Yang–Mills theories are related to string theories are quite old
and motivated at different levels.

The first argument has heuristic features. During the 60s, the nature of strong interac-
tions at energies below the confinement/deconfinement transition phase was investigated
with the aim of stringy like models. At that energies strong interactions are responsible
for the formation of hadrons, i.e. bounded states of quarks, and can be modeled by color
flux tubes extending between the quarks: These flux tubes can be described by strings.

In models like these mesons are described by strings that extend between a quark and
an anti–quark and bind them. The mass of the mesons is in correspondence with the
eigenvalues of the oscillatory modes of the flux tube strings. The study of the spectra
of these oscillations led to a theoretical explanation of the the Regge behavior between
the mass M and the total angular momentum J, J ∼ a + bM2, observed in the mesonic
spectra.

However, after the discovery of the asymptotically free nature of the strong interactions
at distances below the Fermi scale, QCD came across as a more satisfactory description
of the strong dynamics and the string like models were laid aside.

A more general argument in favor of a relation between YM and string theory is due
to ’t Hooft [3] and is valid for any SU(N) gauge theory. In the large N limit, a systematic
expansion of physical quantities in powers of 1/N is available. In order to keep finite self–
energy diagrams while N → ∞, one is forced to take at the same time the limit g → 0

13



on the gauge coupling constant in such a way that the product λ = g2N remains finite.
This limit is called ’t Hooft limit.

In the ’t Hooft limit, it is possible to show that all possible graphs are finite. More
remarkably, there exists an unambiguous correspondence between graph topologies in the
field theory perturbative series and Riemann surfaces in two dimensions, classified by
genus g. The general expression for the free energy takes this form

F =
∞
∑

g=0

N2−2gfg(λ) (2.0.1)

This same perturbative expression is what one gets for the loop expansion of string theory
with coupling constant gs ≡ eφ = 1/N . This suggest that a more intimate relation between
large N YM theories and string theory should exist.

The AdS/CFT conjecture is nowadays the most sophisticated and complete relation
between these theories. It states that a gauge theory at strong coupling is describable as
a string theory on a curved background in higher dimensions. Despite its name, explicit
examples of the duality were found for non–conformal theories too: This is of primary
importance in order to get eventually more insight into the confined phases of YM theories
and, in particular, of QCD.

The first explicit example of gravitational dual of a YM field theory was found for the
SU(N) N = 4 SYM theory. It has been conjectured and largely tested that in the large
N limit the strong coupling regime of this theory is described by type IIB superstring
theory on curved AdS5 × S5 background.

This Chapter is primarily devoted to an introduction both to N = 4 SYM theory and
to its gravitational dual. The goal is to provide the basic characteristics of the theory and
to show how the correspondence works in this particularly simple case. The dictionary of
the correspondence, valid for all the known examples of gravity duals of YM theories, is
built by using the N = 4 SYM theory as an example. In the last Section we outline in
which directions the original formulation of the correspondence should be extended to get
more QCD–like models. In particular, we concentrate on the problem of flavor symmetry
and of quarks inside AdS/CFT .

Beyond a natural theoretical interest in the development of these models, also very
recent experimental activity asks for a better understanding of the behavior of physical
systems at strong coupling. For example, we remember the results of the RHIC experiment
at the Brookheaven National Laboratory, where for the first time a new, strongly coupled,
state of matter, the quark–gluon plasma (QGP) was produced. Looking at the near
future, the ALICE experiment at LHC, but CMS and ATLAS experiments too, promises
to discover even newer aspects of QGP. On the theoretical side, all our present possibilities
to give a description to the properties of strongly coupled systems are based on lattice
simulations and on AdS/CFT correspondence. In this respect, all the efforts devoted to
produce more realistic gravitational models are strongly motivated.
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2.1 Generalities about N = 4 SYM

The N = 4 SYM theory is the maximally extended global supersymmetric theory in
4 dimensions. This peculiarity made it one of the most studied supersymmetric gauge
theories. The large amount of symmetry is the main reason of its many properties.

The physical content of the N = 4 vector multiplet in four dimensions is given by
a spin–1 vector, 4 spin–1

2
Majorana spinors and 6 scalars [4, 5]. All these particles are

massless and transforming in the adjoint representation of the gauge group SU(N). In
the N = 4 SYM theory the interactions are governed by the same coupling constant g.
Thus, the theory presents two parameters: the coupling constant g and the number of
colors N .

In principle the best description of the theory would have been in terms of N = 4
superfields since most of the symmetries of the theory would have been respected explicitly.
Unfortunately, such a description has never been found. However, it has been discovered
that a description in terms of unconstrained N = 1 superfields is available [6]. In fact, the
field content of the N = 4 multiplet can be organized as an N = 1 vector superfield V and
3 chiral N = 1 superfields Φi. The action with explicit off–shell N = 1 supersymmetry is

S =

∫

d8z Tr
(

e−gV Φ̄ie
gVΦi

)

+
1

2g2

∫

d6z TrW αWα

(2.1.1)

+
ig

3!
Tr

∫

d6z ǫijkΦ
i
[

Φj ,Φk
]

+
ig

3!
Tr

∫

d6 z̄ǫijkΦ̄
i
[

Φ̄j , Φ̄k
]

Here Wα = i∇̄2
(

e−gV∇αe
gV
)

is the gauge field strength, ∇α (∇α̇) is the (anti)chiral
covariant superspace derivative, Φi (Φ̄i) are covariant (anti)chiral fields

∇α = e−VDαe
V ∇α̇ = Dα̇

(2.1.2)

∇α̇Φ = ∇αΦ = 0

At the classical level the component action is invariant under superconformal transfor-
mations and SU(4)R R–symmetry transformations. On the other hand, the action (2.1.1)
is manifestly invariant under global SU(3)R × U(1)R transformations. These groups act
respectively on the indices i, j, k of the superfields and on the phases of the super-
fields. Moreover, the action (2.1.1) is manifestly invariant under one of the four super-
symmetry transformations too. The remaining three supersymmetries and the global
QR = SU(4)R/ [SU(3)R × U(1)R] symmetries are realized by these transformations

δΦi = −(W α∇αχ
i + cijk∇2

χje
−VΦke

V − i∇2 [
(∇αζ)∇αΦ

i
]
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(2.1.3)

δ∇α = ∇α

[

i(χiΦ
i − χie

−VΦ
i
eV ) + (W β∇β +W β̇∇β̇)ζ

]

The χi and ζ are chiral supermultiplets: The parameters for translations and central
charge transformations, supersymmetry transformations and global QR transformations
are encoded, respectively, in the θ–independent, linear and quadratic components of these
fields. The χi transform in the fundamental representation of the SU(3)R global group,
while ζ is invariant with respect to these global transformations.

Superconformal symmetry survives even at the quantum level at any order in the per-
turbation series. In general, it is expected that loop corrections introduce a mass scale
that would eventually break conformality. However, explicit calculations [7, 8, 9], demon-
strate that the β–function of the theory vanishes up to three loops. These results were
extended at any loop order in the perturbation theory by using the light–cone superfield
formalism [10, 11] and, alternatively, general power counting arguments [12]. Accordingly
to these observations, it is a general statement to affirm that N = 4 SYM is a truly CFT
at any loop order.

2.2 Generalities about AdS/CFT

The main motivations for the AdS/CFT correspondence come from the study of D–branes
in string theory.

Dp–branes are solitonic objects in string theory. Their tension is inversely proportional
to the string coupling constant gs: This means that in the perturbative regime (gs ≪ 1)
they are objects much more massive than the other fundamental string theory objects.
Furthermore, D–branes act as charge sources for RR supergravity fields. Both mass and
charge contribute to the stress–energy tensor. Thus the presence of D–branes distorts
spacetime geometry around them. In particular, very close to the surface of the brane the
geometry develops a region of high negative curvature, the AdS throat, while away from
the brane the geometry is asymptotically flat.

Although they are heavy objects, D–branes are dynamical objects as well. The concept
of D–branes arises quite naturally in perturbation string theory as p–spatial extended
hyperplanes on which an open string can have its endpoints [15, 16]. In the presence
of only one brane, the massless modes of open strings with the endpoints on it describe
U(1) gauge fields living along the brane as well as the fluctuations of the brane in its
transverse directions around its equilibrium positions. In the presence of a stack of N
branes placed one above the other, the low energy dynamics on the branes is described
by a U(N) massless gauge field theory in p+ 1 dimensions.

Consider now string theory in presence of D–branes. There exists two kinds of light
excitations in the spectrum. In addiction to low energy open string excitations, we have to
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consider also close string excitations away from the brane. In the low energy limit, in fact,
they reproduce the massless supergravity degrees of freedom. The full spectrum includes
then massive closed fields from both open and closed strings and fields that describe the
interactions between them. However, at low energies all these modes can be integrated
out and the effective action reduces to the two decoupled actions describing U(N) gauge
theory on the brane and supergravity in ten dimensional flat space.

The correspondence is defined by matching these two theories with the light excitations
of string theory in the throat–like curved background generated by the presence of the
branes. In this curved space, for an observer sitting at infinity there are two kinds of low
energy excitations: The massless modes of closed strings that live in the asymptotic flat
region far from the D–branes and the the full spectrum of closed string modes that lives
in the highly curved region close to the branes and that undergo gravitational red–shift.
The first excitations are the same supergravity modes in flat ten dimensional spacetime
we found in the descriptions of branes as dynamical objects. It is then natural to match
the second modes, i.e. stringy closed modes in the throat region close to the D–branes,
with the U(N) gauge theory sitting on the branes.

The reasoning described here above is applicable whatever is the dimensionality p of
the stack of Dp–branes. However, since we are mainly interested in four dimensional field
theories, the most relevant situation is for D3–branes. The field theory described along
the worldvolume of a stack of N coincident D3–branes is, in fact, a 3 + 1 SU(N) gauge
theory. The stack of branes breaks a half of the supersymmetry present in the bulk, so,
the theory is actually the N = 4 SYM theory.

On the other hand, the solutions to the supergravity equations of motion in presence
of a stack of N D3–branes is [17]

ds2 = H− 1

2ηµνdx
µdxν +H

1

2

[

du2 + u2dΩ5

]

F5 = (1 + ∗)dtdx1dx2dx3dH−1

H = 1 +
R4

u4
, R4 = 4πgsα

′2N (2.2.1)

The branes extends in the four xµ directions and dΩ5 is the metric of a five dimensional
sphere S5. F5 is the self dual field strength sourced by the branes:

∫

S5

F5 = N (2.2.2)

Branes are located at u = 0, u ∈ (0,∞) being a sort of radial coordinate in the transverse
space to the branes. For u ≫ R, i.e. far away from the branes, the space becomes
asymptotically flat. On the other hand, by setting u ≪ R we become more and more
sensitive to the deformations induced by the presence of the D3–branes. In this limit the
geometry becomes

ds2 =
u2

R2
ηµνdx

µdxν +
R2

u2
du2 +R2dΩ5 (2.2.3)
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This metric describes an AdS5 × S5 space with radius R.

In the light of what was said before, the dual geometric description of the N = 4
SYM theory is given by type IIB string theory in the AdS5 × S5 curved background.
More precisely the AdS/CFT correspondence states that there is a one to one map
between observables in the two theories and a prescription that allows to compare physical
quantities on the two sides of the duality.

The matching between observables comes from the observation that fields propagating
in AdS5 act as sources for operators at the boundary of AdS. Since the boundary is four
dimensional Minkowski space, it is natural to associate these operators to operators in
the dual field theory and to match fields in AdS with the operators that they source in
Minkowski. This connection is often found using symmetry: Natural couplings as

∫

d4x
√
G (gµνTµν + AµJ

µ + · · ·) (2.2.4)

suggest that the the graviton in AdS is associated to the stress–energy tensor in CFT’s,
gauge fields to currents etc..

Once a map between fields φ(xµ, x) in AdS and operators O(xµ) in CFT’s has been
established, the prescription that matches observables on the two sides of the correspon-
dence follows from this relation that connects the partition functions of the two theories

〈e
∫

d4xφ0(xµ)O(xµ)〉CFT = Zstring

[

φ(xµ, x)|x=0 = φ0(x
µ)

]

(2.2.5)

In particular, this equivalence occurs between the generating function of the correlation
functions relative to the operator O in conformal field theory (computed by taking func-
tional derivatives with respect to φ0(x

µ) and by setting φ0 = 0) and the string theory
partition function with boundary conditions for the field φ fixed to be φ0 at the boundary
of AdS.

The predictional limits of prescription (2.2.5) are built in the limits of the geometric
construction (2.2.1): The metric (2.2.1) is derived in the supergravity approximation of
string theory, i.e. by taking α′ → 0. Thus, the near–horizon metric (2.2.3) suffers for
the same limitations. In particular, that solution is valid as far as the string physical
dimensions are smaller than the other length scales. In the solution (2.2.3), the only scale
is given by R: Thus the gravitational dual description is valid when

1 ≪ R4

α′2 ∼ gsN ∼ g2N (2.2.6)

In the last passages we have used the definition of R (2.2.1) and the relation between the
string gs and the Yang–Mills g couplings: gs = g2.

Equation (2.2.6) states that the gravity description of the N = 4 SYM theory is avail-
able at large ’t Hooft coupling, when the usual perturbative field theory description fails.
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On the other hand perturbation theory is available when the theory is weakly coupled,
i.e. when the supergravity solution (2.2.1) becomes unreliable. The two descriptions are
not in competition but complete each other giving a different representation of the same
physical theory at different coupling regimes.

This fundamental aspect of the correspondence is at the same time a problematic
point for finding explicit proofs of it. In general, in fact, physical quantities usually
depend on the coupling regime. So, quantities that can be computed in a coupling regime
(for example in the perturbative regime for the field theory) cannot be computed in the
other regime (i.e. at strong coupling) and vice versa. However, there are properties of a
CFT (in our specific case of the N = 4 SYM theory) such as the global symmetries of
the theory, the spectrum of chiral operators, the moduli space, etc. that are independent
of the coupling constant and can be used to prove the validity of the correspondence.
A comprehensive list of these properties and a discussion on their behavior in the two
different regimes is given in [18]. For the purposes of this thesis it is sufficient to consider
how the global symmetries of a YM theory are realized at strong coupling. For the moment
we concentrate only on the N = 4 SYM case.

We have seen in Section 2.1 that the global symmetry groups of N = 4 theory are
the SU(4)R R–symmetry and the SO(2, 4) conformal symmetry. These are exactly the
isometries of the S5 and AdS5 parts that form the dual geometric background of this
theory.

The consequences of this observation are of primary importance. First of all, we have
already discussed that the presence of the AdS geometry and of its flat boundary is
crucial for the definition of the prescription (2.2.5) relating CFT’s operators and string
fields in the bulk. Since any four dimensional CFT has a SO(2, 4) conformal symmetry
group, its dual must be in the form AdS5 × H5, with H5 a generic five–dimensional
compact manifold. Since H5 is compact, the string theory is effectively five dimensional.
More generally, gravity duals of CFT’s in d dimensions must be written in the form
AdSd+1 ×H9−d. Prescription (2.2.5) continues to be valid for all these extensions of the
correspondence.

On the other hand, deforming the geometry on the gravity side would correspond
to deform in some way the corresponding field theory. Deformations eventually break
isometries of the original background and this corresponds on the field theory side to get
less symmetric theories. The converse is true as well: Field theories with less symmetries
have gravity duals with fewer isometries.

By considering the AdS5×S5 geometry dual to the (N = 4) SYM theory, deformations
that affect the S5 sphere would break part or completely the R–symmetry group and, with
it, the supersymmetry of the theory. In the next Chapter one example of this kind of
deformations, i.e. the Lunin–Maldacena background [19, 20], is discussed in details. Other
examples of theories with reduced supersymmetry with known gravitational duals come
out by replacing the S5 with other compact Sasaki–Einstein spaces such as the conifold
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[21], the Y p,q spaces [22, 23] and the Lp,q,r spaces [24, 25]. However, as far as the AdS5

factor stays untouched, the dual field theory is always a four dimensional CFT.

Breaking conformality means deforming the AdS5 factor. Examples of gravity duals
of non–conformal theories have been found by considering different systems of branes
[26, 27, 28] or by looking at N = 4 SYM theory at finite temperature [29]. In the first
cases, the dual field theory has N = 1 supersymmetry while in the last example the
temperature breaks all the supersymmetries explicitly.

These examples of non–conformal backgrounds are quite important: Even if the gravity
dual of QCD is not yet known, however these models, sharing the same IR behavior of
QCD can be used as toy models in order to give at least a qualitative description of real
strongly coupled systems. Of course, the more the theory shares similarities with QCD,
the more that our models become interesting.

From these point of view, a crucial step towards a more realistic model for QCD
concerns the generalization of the AdS/CFT correspondence to include matter in the
fundamental representation of the gauge group [30, 31]. Quarks in QCD are objects
that transform in the fundamental representation of the gauge group and, at the same
time, in the anti–fundamental representation of a global flavor symmetry group. Non–
perturbative phenomena involving quarks in the real world are the formation of hadrons,
the spontaneous chiral symmetry breaking, the scattering and the decay of pions, just
mentioning the mains.

Quarks in QCD are strongly connected to the concept of flavor symmetry. In the
gravity picture, a new symmetry is realized by the addiction of a new stack of branes
along which the symmetry gets realized. The degrees of freedom representing the quarks
are given by the open strings that are stretched between this new set of branes and the
branes that produces the original unflavored background.

The problem of constructing more QCD–like theories and to include quarks in them
have been extensively studied in the literature (see [32] for a review) and led to discover
gravitational duals for a rich variety of theories. The main results found allow to affirm
that, beyond being a beautiful theoretical construction, AdS/CFT has much to say about
real physical systems.

2.3 Geometric construction of flavor symmetry

The gravity description of a 4D supersymmetric Yang–Mills theory with fundamental
matter can be obtained by considering a system of intersecting D3–D7 branes. Precisely,
the near horizon geometry of a system of N D3–branes in the presence of Nf spacetime–
filling D7–branes, in the large N limit and Nf fixed, gives the dual description of a N = 4
SU(N) SYM theory living on the D3–branes with supersymmetry broken to N = 2 by
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Nf hypermultiplets in the fundamental representation of SU(N). The field content of the
hypermultiplets, i.e. quarks and squarks, is given by excitations of fundamental strings
stretching between D3 and D7–branes. This analysis has been firstly accomplished in [30].

In N = 1 superspace language the N = 2 hypermultiplets are described by Nf chi-
ral superfields Qr transforming in the (N, N̄f) of SU(N) × SU(Nf ) plus Nf chirals Q̃r

transforming in the (N̄ , Nf).

The lagrangian describing the theory is [30]

L =

∫

d4θ
[

Tr
(

e−g V Φ̄ie
g VΦi

)

+ tr
(

Q̄eg VQ+ Q̃e−g V ¯̃Q
)]

+
1

2g2

∫

d2θTr (W αWα)

+ i

∫

d2θ
[

gTr
(

Φ1
[

Φ2,Φ3
])

+ g tr
(

Q̃Φ1Q
)

+m tr
(

Q̃Q
)]

+ h.c. (2.3.1)

where the trace Tr is over color indices and tr is over the flavor ones. This action is
N = 2 supersymmetric with (Wα,Φ1) realizing a N = 2 vector multiplet and (Φ2,Φ3) an
adjoint matter hypermultiplet. Note that by fixing Qr = Q̃r = 0 we recover the N = 4
lagrangian (2.1.1). The coupling of Φ1 with massive matter fields leads to a non–trivial
vev 〈Φ1〉 = −m/g.

The theory has a SU(2)Φ×SU(2)R global invariance corresponding to a symmetry that
exchanges (Φ2,Φ3) and to the N = 2 R–symmetry, respectively. In addition, for m = 0,
there is a U(1) R–symmetry under which (Qr, Q̃r) and (Φ2,Φ3) are neutral, whereas Φ1

has charge 2 and Wα has charge 1 [65, 47]. Finally, the theory also possesses a U(1)
baryonic symmetry under which only (Qr, Q̃r) are charged (1,−1). This is a residual of
the original U(Nf ) = SU(Nf )× U(1) invariance.

For m = 0 and in the large N limit with Nf fixed the theory is superconformal
invariant. In fact, the β–function for the ’t Hooft coupling λ = g2N is proportional to
λ2Nf/N and vanishes for Nf/N → 0. On the other hand, for mass m 6= 0 conformal
symmetry is explicitly broken.

All these features are reproduced at strong coupling by a system of N color D3–branes
and Nf flavor D7–branes.

We have already observed that the presence of extra stacks of branes introduces in
the model extra symmetry groups localized on the worldvolume of the new branes. In
principle, these symmetries are local symmetries. However, their coupling is given by
λf = gsNf in the same way as the ’t Hooft coupling for the D3–branes is λ = gsN . So,
by taking

N ≫ Nf (2.3.2)

we find in the ’t Hooft limit that λf → 0 and the SU(Nf ) symmetry turns to be a global
symmetry. The limit (2.3.2) is called quenching approximation and it plays a crucial role
in the construction of the geometric background.
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In general, new sets of branes are new sources of charge and mass and this would
backreact on the background generated by the N color branes. However, in the quenching
approximation the backreaction of flavor branes on the background becomes negligible and
flavor branes can be considered as probes in the geometry sourced by the color branes.
On the field theory side, this corresponds to considering quarks as external fields that do
not run in loops, neglecting in this way the quantum effects produced by fundamental
fields.

The dynamics of probe branes is described by the DBI action. When Nf = 1 we can
use the abelian form for the DBI action

SDp = −µp

g

∫

dp+1ξ

{

e−Φ
√

− det [P (G− B)ab + 2πα′Fab]

}

+

+µp

∫

P
(

∑

Cne
−B2

)

e2πα
′F2 (2.3.3)

To be useful, the expression (2.3.3) requires to specify the dimensionality p of the flavor
probe brane and how it is displaced inside the background geometry, i.e. the relative
displacement of flavor and color branes.

There are various arguments that can be used to understand why p = 7 is the correct
choice for the flavor branes in backgrounds generated by D3–branes. In supersymmetric
theories, the strongest motivations come from the study of systems of intersecting branes
[33]. In that contest it is found that systems of Dp color branes and D(p + 4), D(p + 2)
and Dp flavor branes are 1/4 BPS objects and so preserve N = 2 supersymmetry. Since
they are BPS systems, they are stable configurations of branes. For p = 3 this reduces the
choice of flavor branes to D7, D5 and D3–branes. In Tab. 2.1 it is reported the disposition
of flavor branes with respect to D3 color branes as it is required by supersymmetry.

x0 x1 x2 x3 X1 X2 X3 X4 X5 X6

D3 X X X X
D7 X X X X X X X X
D5 X X X X X X
D3 X X X X

Table 2.1: Relative displacement of color and flavor branes preserving N = 2 supersym-
metry

D7–branes are the only flavor branes that cover all the four dimensional Minkowski
space M4 spanned by the worldvolume directions xµ of the color D3–branes. The other
sets of branes extent along subspaces of M4 and the corresponding dual flavored theories
are constrained to live on a lower dimensional spacetime. These theories, called defects
theories [34], are more exotic and do not have an immediate phenomenological relevance.
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So, N = 2 supersymmetry and the request to describe a four dimensional flavored field
theory select the D7–branes as the correct candidate for flavor branes.

Let’s go back to consider the flavored N = 4 SYM theory: The embedding of a probe
D7 flavor brane displaced as prescribed in Tab. 2.1 inside the AdS5 × S5 background is

ds2 =
L2 + ρ2

R2
ηµνdx

µdxν +
R2

L2 + ρ2
(

dρ2 + ρ2dΩ2
3

)

u2 = L2 + ρ2 L2 = X2
5 +X2

6 (2.3.4)

The parameter L determines the separation of the D3 and D7–branes along the mutual
orthogonal directions (X5, X6) (see Fig. 2.1). When L = 0 the branes overlaps and the

(ρ ,ϕ )

(ρ ,ϕ )

(ρ ,ϕ )

1 2

5 6 1 1

2 2

3 3

L

D7

��
��
��

��
��
��

xµ

3 4(X ,X ) =  

(X ,X ) = 

(X ,X ) =  

  D3

Figure 2.1: The relative displacements of D3 color branes (red) and D7 flavor branes
(green) in the internal directions.

induced D7 metric (2.3.4) reduces to AdS5×S3. The isometries of the original AdS5×S5
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space filled with such flavor branes are

SO(2, 4) × SO(4) × SO(2) = SO(2, 4) × SU(2)× SU(2) × U(1) (2.3.5)

These symmetry groups come from the isometries of AdS5, S
3 and rotations in the

(X5, X6) plane respectively. They match exactly the symmetries of the lagrangian (2.3.1)
when m = 0. On the other hand, when L 6= 0 the isometry group gets reduced to just
SO(4): Both the isometries of AdS5 and of the plane (X5, X6) are broken explicitly by
the presence of the flavor branes. Since in the lagrangian the presence of a non–zero mass
induces exactly the same consequences, we are definitely led to identify the geometric
parameter L in the gravity picture to the mass parameter m in the field theory picture.
By dimensional reasons, the proportionality relation is m ∝ L/R2.

Intuitively the role of the parameter L can be understood in this way: Consider
an oriented open string stretched between the color and the flavor branes. The cor-
responding operators transform, according with the orientation, in the fundamental or
anti–fundamental of the color group and in the anti–fundamental or fundamental of the
flavor group. Basically, the D3–D7 strings are the holographic description of quarks in
field theory. When L 6= 0 their minimum length is L and their tension is non–zero. So,
the spectrum of their modes is massive, with mass proportional to L. This corresponds
to massive quark states in field theory. On the other hand, when L = 0 the minimum
length string is tensionless and massless degrees of freedom can be found in the spectrum.
These correspond to the massless quark states in field theory with m = 0.

As proposed in [31] (see also [35]), excitations of fundamental strings with both ends
on the D7–branes represent bound quark–antiquark states with equal masses of the corre-
sponding SYM field theory, i.e. mesonic qq̄ states. Thus, studying the fluctuations of the
D7 probe branes allows for determining the mass spectrum of the mesonic excitations.

The spectrum can be computed by reducing the D7–worldvolume on S3. For example,
the scalar states are given by looking for regular and normalizable solutions of the equation
of motion of the form

X5 + iX6 = L+ ǫf(ρ)eikxYl

(

S3
)

(2.3.6)

In this expansion, Yl (S
3) are the scalar spherical harmonics of S3 and the massM2 = −k2

is interpreted as the mass of the mesons. The equations of motion follow by expanding
the DBI action (2.3.3) for the D7 brane at the second order ǫ2 in the fluctuation. The
problem in the AdS5 × S5 case is particularly simple and exactly solvable. The ansatz
(2.3.6) reduces the equation of motion to an ODE for the function f(ρ)

∂2ρf(ρ) +
3

ρ
∂ρf(ρ) +

(

M̄2

(ρ2 + L2)
− l(l + 2)

ρ2

)

f(ρ) = 0 (2.3.7)

where M̄2 = R4M2/L2. A regular and normalizable solution to this equation is given in
terms of hypergeometric functions

f(ρ) =
ρl

(ρ2 + L2)n+l+1
F (−(n+ l + 1),−n, l + 2;−ρ2/L2) (2.3.8)
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In this expression, the principal quantum number n is related to the massM of the mesons
by

M2 =
4L2

R4
(n+ l + 1)(n+ l + 2) (n, l ∈ N) (2.3.9)

Thus, the spectrum turns out to be discrete, dependent on the S3 angular quantum num-
ber and with a mass gap [36]. Moreover, the mass of the mesons is directly proportional
to the distance L between flavor and color branes, i.e. to the mass of its constituents. An
unpleasant feature of the result is that at large l the mass is proportional to the angular
momentum M ∼ J and this violates the Regge behavior M ∼

√
J .

What we have shown here is just a sketch of what actually one has to do to com-
pute the complete mesonic spectrum. The full description is postponed to the following
Chapter, where we consider the embedding of a D7–brane in the Lunin–Maldacena–Frolov
marginally deformed AdS5× S̃5 background. Since this background is a continuous three
parameter deformation of the undeformed AdS5 × S5 scenario, we can read the unde-
formed solutions in the deformed ones by turning off the deformation. We postpone to
there any further comment.
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Chapter 3

Mesons in marginally deformed
AdS/CFT

Since the original proposal of inserting D7–branes in the standard AdS5× S5 geometry, a
lot of work has been done in the direction of finding generalizations to less supersymmetric
and/or non–conformal backgrounds [37]–[51].

Among the formulations of the AdS/CFT correspondence with less supersymmetry,
the one–parameter Lunin–Maldacena (LM) background [19] corresponding to N = 1 β–
deformed SYM theories plays an interesting role, being the field theory and the dual string
geometry explicitly known. The gravitational background is AdS5 × S̃5 where S̃5 is the
β–deformed five sphere obtained by performing a TsT transformation (consisting in a
T–duality, a shift in the angles, an a second T–duality) on a 2–torus inside the S5 of the
original background. This operation breaks the SO(6) symmetry group of the five sphere
down to U(1)× U(1)× U(1).

On the field theory side, this deformation corresponds to promoting the ordinary
products among the fields in the N = 4 action to a ∗–product

ΦiΦj −→ Φi ∗ Φj = eiπγ(Q
a
i Q

b
j−Qa

jQ
b
i)ΦiΦj (3.0.1)

which depends on the charges Qa, Qb of the fields under U(1)a × U(1)b global symmetry
and allowing for the chiral coupling constant to be different from the gauge coupling.
Consistently with what happens on the string side, these operations break N = 4 to
N = 1 supersymmetry, as the third independent global U(1) inside the global SO(6)
symmetry group corresponds to the R–symmetry. Further generalizations [20] lead to a
dual correspondence between a non–supersymmetric Yang–Mills theory and a deformed
LM background depending on three different real parameters γ1, γ2 and γ3

∗.

A nice features of these theories is that they are a continuous deformation of the N = 4

∗We use the standard convention to name real deformation parameters with γ.
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SYM theory: This theory can always be recovered by switching off the deformation, i.e.
by setting γi = 0.

All these models are (super)conformal invariant since the string geometry still has an
AdS factor. As such they cannot be used to give a realistic description of the RG flow of
a gauge theory towards a confining phase. However, it is interesting to investigate what
happens if we insert D7–branes in these deformed backgrounds †. In particular, we expect
to find a parametric dependence of the mesonic spectrum on γi’s which could then be used
to fine–tune the results.

In what follows we accomplish this project by studying the effects of inserting D7–
branes in the more general non–supersymmetric LM–Frolov background. In the probe
approximation (Nf ≪ N), we first study the stability of the D3–D7 configuration. We
find that, independently of the value of the deformation parameters, an embedding can
be found which is stable, BPS and in the γ1 = γ2 = γ3 case it is also supersymmetric.

We then study fluctuations of a D7–brane around the static embedding which corre-
spond to scalar and vector mesons of the dual field theory. We consider the equations
of motion for the tower of Kaluza–Klein modes arising from the compactification of the
D7–brane on a deformed three–sphere. The background deformation induces a non–trivial
coupling between scalar and vector modes. However, with a suitable field redefinition, we
manage to simplify the equations and solve them analytically, so determining the mass
spectrum exactly.

The effects of the deformation on the mesonic mass spectrum and on the correspond-
ing KK modes are the following: i) As in the undeformed case the mass spectrum is
discrete and with a mass gap, but it acquires a non–trivial dependence on the defor-
mation parameters. Precisely, it depends on the parameters γ2, γ3 which are associated
to TsT transformations along the tori with a direction orthogonal to the probe branes,
whereas the parameter γ1 associated to the deformation along the torus inside the D7
worldvolume never enters the equations of motion for quadratic fluctuations and does not
affect the mass spectrum. ii) Since the deformation breaks SO(4) (the isomorphisms of
the three–sphere) to U(1) × U(1) a Zeeman–like effect occurs and the masses exhibit a
non–trivial dependence on the (m2, m3) quantum numbers associated to the two U(1)’s.
The dependence is through the linear combination (γ2m3−γ3m2)

2 so that the mass eigen-
values are smoothly related to the ones of the undeformed case by sending γi → 0. iii)
The corresponding eigenstates are classified according to their SO(4) and U(1) × U(1)
quantum numbers. Expanding in vector and scalar harmonics on the three–sphere, we
find Type I elementary fluctuations ‡ in the ( l∓1

2
, l±1

2
)(m2,m3) representations and Type II,

Type III and scalar modes in the ( l
2
, l
2
)(m2,m3). For a given l the total number of degrees

of freedom is 8(l + 1)2 as in the undeformed theory but, given the degeneracy breaking,

†Several works in the literature are devoted to the study of D–branes in this context [52, 53, 54, 55,
56, 57, 58].

‡We use the classification of [36].
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they split among different eigenvalues. For any given triplet (l, m2, m3) we compute the
degeneracy of the corresponding mass eigenvalue. We find that the splitting is different
according to the choice γ2 6= γ3 or γ2 = γ3 (which includes the N = 1 supersymmetric
deformation). In the last case the spectrum exhibits a mass degeneracy between scalars
and vectors which is remnant of the N = 2 supersymmetric, undeformed case.

The Chapter is organized as follows. In Section 3.1 we review the three–parameter
deformation of the AdS5 × S5 by using a set of coordinates suitable for the introduction
of D7–branes. In Section 3.2 we study the static embedding of a D7–brane and discuss
its stability. In the γ1 = γ2 = γ3 case, we argue that our configuration is supersymmetric.
We then find the equations of motion for the bosonic fluctuations of a D7–brane in Section
3.3 and solve them analytically in Section 3.4 determining the exact mass spectrum. In
Section 3.5 we discuss the properties of the spectrum and analyze in detail the splitting of
the mass levels and the corresponding degeneracy. Finally, in Section 3.6 we formulate the
field theory dual to our configuration, whereas our conclusions, comments and perspectives
are collected in Section 3.7.

The results exposed in this Chapter are based on the papers [125] and [126].

3.1 Generalities on the three–parameter deformation

of AdS5 × S5

Following [19, 20] we consider a type IIB supergravity background obtained as a three–
parameter deformation of AdS5 × S5. It is realized by three TsT transformations along
three tori inside S5 and driven by three different real parameters γi. The corresponding
metric is usually written in terms of radial/toroidal coordinates (ρi, φi), i = 1, 2, 3,

∑

i ρ
2
i =

1 on the deformed sphere, and in string frame it reads (we set α′ = 1)

ds2 =
u2

R2
ηµνdx

µdxν +
R2

u2
du2 +R2





∑

i

(dρ2i +Gρ2i dφ
2
i ) +Gρ21ρ

2
2ρ

2
3

(

∑

i

γ̂idφi

)2




G−1 = 1 + γ̂23ρ
2
1ρ

2
2 + γ̂22ρ

2
3ρ

2
1 + γ̂21ρ

2
2ρ

2
3 γ̂i ≡ R2γi (3.1.1)

where R is the AdS5 and S5 radius. A further change of coordinates may be useful (we
use the notation cξ ≡ cos ξ, sξ ≡ sin ξ for any angle ξ)

ρ1 = cα , ρ2 = sαcθ , ρ3 = sαsθ (3.1.2)

leading to the description of this background in terms of Minkowski coordinates xµ plus
the AdS5 coordinate u and five angular coordinates (α, θ, φ1, φ2, φ3). The deformations
correspond to TsT transformations along the three tori (φ1, φ2), (φ1, φ3), (φ2, φ3) and are
parametrized by constants γ̂3, γ̂2 and γ̂1 respectively.
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This background is non–supersymmetric and it is dual to a non–supersymmetric but
marginal deformation of N = 4 SYM (the deformation has to be exactly marginal since
the AdS factor is not affected by TsT ’s). The N = 1 supersymmetric background of [19]
can be recovered by setting γ̂1 = γ̂2 = γ̂3.

With the aim of embedding D7–branes in this background we find more convenient to
express the metric in terms of a slightly different set of coordinates. We describe the six
dimensional internal space in terms of Xm ≡ {ρ, θ, φ2, φ3, X5, X6} which are mapped into
the previous set of coordinates by the change of variables

ρ = u sα , X5 = u cα cφ1
, X6 = u cα sφ1

(3.1.3)

In string frame and still setting α′ = 1, we then have

ds2 =
u2

R2
ηµνdx

µdxν +
R2

u2
GmndX

mdXn (3.1.4)

where the non–vanishing components of the metric Gmn are

Gρρ = 1 Gθθ = ρ2

Gφ2φ2
= G

(

1 + γ̂22ρ
2
1ρ

2
3

)

ρ22 u
2 Gφ3φ3

= G
(

1 + γ̂23ρ
2
1ρ

2
2

)

ρ23 u
2

Gφ2φ3
= G γ̂2γ̂3 ρ

2
1ρ

2
2ρ

2
3 u

2

Gφ2X5
= −G γ̂1γ̂2 ρ22ρ23X6 Gφ2X6

= G γ̂1γ̂2 ρ
2
2ρ

2
3X5

Gφ3X5
= −G γ̂1γ̂3 ρ22ρ23X6 Gφ3X6

= G γ̂1γ̂3 ρ
2
2ρ

2
3X5

GX5X5
= 1− X2

6

u2ρ21

[

1−G
(

1 + γ̂21ρ
2
2ρ

2
3

)]

GX6X6
= 1− X2

5

u2ρ21

[

1−G
(

1 + γ̂21ρ
2
2ρ

2
3

)]

GX5X6
=
X5X6

u2ρ21

[

1−G
(

1 + γ̂21ρ
2
2ρ

2
3

)]

(3.1.5)

where G is given in (3.1.1) and now

ρ21 =
X2

5 +X2
6

u2
, ρ22 =

ρ2c2θ
u2

, ρ23 =
ρ2s2θ
u2

(3.1.6)

The constraint
∑3

i=1 ρ
2
i = 1 is traded with the condition u2 = ρ2 +X2

5 +X2
6 .

The LM–Frolov supergravity solution is characterized by a non–constant dilaton

e2φ = e2φ0G (3.1.7)

where φ0 is the constant dilaton of the undeformed background related to the AdS radius
by R4 = 4πeφ0N ≡ λ. For real deformation parameters γ̂i the axion field C0 is a constant
and can be set to zero.
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This background carries also a non–vanishing NS-NS two–form and R-R forms as well.
In our set of coordinates they read

B =
R2G

u2

(

(X5dX6 −X6dX5) ∧ (γ̂3ρ
2
2dφ2 − γ̂2ρ23dφ3) + γ̂1ρ

2
2ρ

2
3 u

2dφ2 ∧ dφ3

)

C2 = 4R2e−φ0ω1 ∧
(

γ̂1
X5dX6 −X6dX5

u2ρ21
+ γ̂2dφ2 + γ̂3dφ3

)

, ω1 =
ρ4

4u4
cθsθdθ

C4 = 4R4e−φ0

(

u4

4R8
dt ∧ dx1 ∧ dx2 ∧ dx3 −Gω1 ∧

X5dX6 −X6dX5

u2ρ21
∧ dφ2 ∧ dφ3

)

(3.1.8)

The corresponding field strengths are given by the general prescription F̃q = dCq−1−dB∧
Cq−3.

The missing forms of higher degrees can be found by applying the ten–dimensional
Hodge duality operator

F̃7 = − ⋆ F̃3, F̃9 = ⋆F̃1 (3.1.9)

From the first identity and using the equation of motion for C2

d(⋆F̃3) = dC4 ∧ dB, (3.1.10)

it is easy to see that d(C6 −B ∧C4) = 0, i.e. C6 −B ∧ C4 = dX for an arbitrary 5–form
X . We make the gauge choice

C6 = C4 ∧B (3.1.11)

Finally, from the second identity in (3.1.9), by using (3.1.11) and taking into account that
B ∧ B = 0 and C0 = 0 we find F̃9 = dC8 = 0. Therefore, in what follows we set C8 = 0.

The deformed background written in terms of the original internal coordinates (ρ, α, θ, φ1, φ2, φ3)
has a manifest invariance under constant shifts of the toroidal coordinates (φ1, φ2, φ3)
which correspond to three U(1) symmetries. With our choice of coordinates the invari-
ance under φ2,3 → φ2,3 + const. is still manifest, whereas the third U(1) associated to
shifts of φ1 is realized as a rotation in the (X5, X6) plane.

3.2 The embedding of D7–branes

We now study the embedding of Nf ≪ N D7–branes in the deformed background de-
scribed in the previous Section. For simplicity we consider the case of a single spacetime
filling D7–brane (Nf = 1) which extends in the internal directions (ρ, θ, φ2, φ3) (we work
in the static gauge where the worldvolume coordinates σa of the brane are identified with
the appropriate ten dimensional coordinates). The X5, X6 coordinates parametrize the
mutual orthogonal directions of the intersecting system of N sources D3–branes and one
flavor D7–brane.
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The dynamics of bosonic degrees of freedom of the D7–brane is described by the action

S = SDBI + SWZ (3.2.1)

where SDBI is the abelian Dirac–Born–Infeld term (in what follows latin labels a, b, ...
stand for worldvolume components)

SDBI = −T7
∫

Σ8

d8σ e−φ
√

−det(gab + Fab) (3.2.2)

whereas SWZ is the Wess–Zumino term describing the coupling of the brane to the R-R
potentials

SWZ = T7

∫

Σ8

{

(2πα′)3

6
P [C2] ∧ F ∧ F ∧ F +

(2πα′)2

2
P [C4 − C2 ∧ B] ∧ F ∧ F

}

(3.2.3)

Here gab ≡ GMN∂aX
M∂bX

N is the pull–back of the ten–dimensional spacetime metric
(3.1.4, 3.1.5) on the worldvolume Σ8 and T7 is the D7–brane tension. The U(1) world-
volume gauge field strength Fab enters the action through the modified field strength
Fab = 2πα′Fab − bab, where bab is the pull–back of the target NS-NS two–form potential
in (3.1.8), bab = BMN∂aX

M∂bX
N . Moreover, in (3.2.3) P [...] denotes the pull–back of the

R-R forms on Σ8.

We look for ground state configurations of the D7–brane. These are static solutions
of the equations of motion for X5, X6 and εF (ε ≡ 2πα′) derived from (3.2.1).

In the ordinary AdS5 × S5 background static embeddings (see for example [44]) can
be found by setting X6 = 0, F = 0 and X5 = X5(ρ) satisfying

d

dρ

(

ρ3
√

1 + (∂ρX5)2
dX5

dρ

)

= 0 (3.2.4)

with asymptotic behavior X5(ρ) = L + c
ρ2

for ρ ≫ 1. The mass solution X5 = L is the
only well–behaved solution and corresponds to fixing the location of the D7–brane in the
56–plane at X2

5 + X2
6 = L2. This is a BPS configuration since the energy density turns

out to be independent of L [59, 43].

In the deformed background we consider an embedding of the form

XM = (xµ, ρ, θ, φ2, φ3, X5(ρ), X6(ρ)) , F = F (XM) (3.2.5)

where, as in the ordinary case, we allow for a non–trivial dependence of the orthogonal
directions on the non–compact internal coordinate ρ. Solving the equations of motion for
X5, X6 and F in the present case requires a bit of care since the non–vanishing NS-NS
2–form in (3.1.8) can act as a source for the field strength εF .
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We expand the action (3.2.1) up to second order in εF . The WZ action is simply

SWZ =
T7
2

∫

Σ8

P [C4 − C2 ∧ B] ∧ εF ∧ εF (3.2.6)

whereas the expansion of SDBI gives

LDBI = −T7
√

−det(g − b+ εF )√
G

= −T7
√

−det(g − b)√
G

√

det(1 + Y )

= −T7 ρ3sθcθ
√

Ω2

{

1 +
1

2
Tr(Y )− 1

4
Tr(Y 2) +

1

8
[Tr(Y )]2 + · · ·

}

(3.2.7)

where we have defined

Y ≡ (g − b)−1 εF

Ω2 ≡ 1 + (∂ρX5)
2 + (∂ρX6)

2 (3.2.8)

and set eφ0 ≡ 1.

The source for εF comes from the term

1

2
Tr(Y ) =

ε

R2Ω2
[(X5 ∂ρX6 −X6 ∂ρX5)(γ̂2 Fρφ3

− γ̂3 Fρφ2
)− γ̂1Ω2 Fφ2φ3

] (3.2.9)

In the abelian case the last term is a total derivative and, once integrated on the world-
volume of the brane, it cancels. We are left with the first term which gives a non–trivial
coupling between the scalars and the vectors. We note that these couplings are propor-
tional to the deformation parameters and disappear for γ̂i = 0, consistently with the
undeformed case.

Since all the F components except Fρφ2
and Fρφ3

satisfy homogeneous equations we
can set them to zero and concentrate on the system of coupled equations of motion for
X5, X6, Fρφ2

and Fρφ3
. It is easy to realize that a solution is still given by X6 = 0,

Fρφ2
= Fρφ3

= 0, whereas X5(ρ) satisfies eq. (3.2.4) and can be chosen as X5 = L.

Therefore, even in the deformed case, the ground state of the probe brane is given
by a static location at X2

5 + X2
6 = L2 with no F flux and absence of non–trivial quark

condensate. The choice X5 = L and X6 = 0 breaks the rotational invariance in the
(X5, X6) plane.

This configuration is stable (BPS). In fact, the corresponding action

S = −T7
∫

Σ8

d8σρ3sθcθ (3.2.10)
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coincides with the one of the undeformed case and satisfies the no–force condition [59, 43].

Setting X2
5 +X2

6 = L2, the induced metric on the D7–brane reads

ds2I ≡ gab dX
adXb

=
L2 + ρ2

R2

(

−dt2 + dx21 + dx22 + dx23
)

+
R2

L2 + ρ2
(dρ2 + ρ2dθ2)

+
R2Gρ2

(L2 + ρ2)

[

c2θdφ
2
2 + s2θdφ

2
3 +

ρ2L2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(L2 + ρ2)2

]

(3.2.11)

where G in (3.1.1) takes the explicit form

G =
(L2 + ρ2)2

(L2 + ρ2)2 + γ̂21ρ
4s2θc

2
θ + γ̂22L

2ρ2s2θ + γ̂23L
2ρ2c2θ

(3.2.12)

We note that, due to the particular embedding we have realized, the parameter γ̂1
associated to the TsT transformation on the (φ2, φ3) torus inside the D7 worldvolume
enters the metric differently from γ̂2,3 which are instead associated to deformations on
tori with one parallel and one orthogonal direction to the probe.

The different role played by γ̂1 respect to (γ̂2, γ̂3) can be also understood by looking
at the conformal case (L = 0) or the UV limit (ρ → ∞) of the theory. In both cases
the dependence on (γ̂2, γ̂3) disappears and the worldvolume metric reduces to the one for
AdS5 × S̃3 where S̃3 is the deformed three–sphere with metric

ds2
S̃3

R2
= dθ2 +G(c2θdφ

2
2 + s2θdφ

2
3) , G =

1

1 + γ̂21c
2
θs

2
θ

(3.2.13)

Instead, for ρ finite and L 6= 0 the AdS5 factor is lost, the theory is no longer conformal
and a non–trivial dependence on all the deformation parameters appears.

The particular probe brane configuration we have chosen is smoothly related to the
one of the undeformed case. In fact, sending γ̂i → 0 we recover the usual Karch–Katz [30]
picture of flavor branes in AdS5× S5. As we have just proved, the stability of the D3–D7
system survives the deformation.

We have embedded flavor D7–branes in a deformed background. When the D7–brane
is spacetime filling and wraps the (φ2, φ3) torus the configuration is stable and no world-
volume flux is turned on. Alternatively, we could have started with a configuration of
D7–branes in the undeformed AdS5×S5 background and perform the three TsT transfor-
mations as a second step. If the D7–branes were to be placed along the same directions
as before, we would obtain exactly the same configuration of stable D7–branes in the
deformed background with no flux turned on. In fact, along the directions (φ1, φ2, φ3)
affected by TsT transformations the probe branes have Dirichlet–Neumann–Neumann
(DNN) boundary conditions. Considering the proposal in [54] and according to the anal-
ysis of [56] a DNN configuration with no flux is mapped into the same configuration,
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whatever is the TsT transformation we perform. Therefore, for the particular embed-
ding we are analyzing the two operations i) Adding a probe to the deformed background
and ii) Performing a TsT transformation on the undeformed brane scenario are equiva-
lent processes. The stability of our brane configuration for any value of the deformation
parameters then follows from the fact that TsT transformations do not affect the BPS
nature of the original brane system [19] (see also [55]).

It is worth stressing that the possibility of applying equivalently prescriptions i) or ii) is
peculiar of the particular brane configuration we have chosen. Had we considered different
embeddings, the two procedures wouldn’t had led necessarily to equivalent settings [54,
56]. Furthermore, the stability of the configuration would have become questionable.

When the deformation parameters γ̂i are all equal the AdS5 × S̃5 background has
N = 1 supersymmetry. The question is whether our D7–brane embedding preserves
supersymmetry. The standard way of finding supersymmetric configurations is to look
at the κ–symmetry condition of the probes. However, since the β–deformed background
can be described by an SU(2) structure manifold, it is more convenient to work using the
formalism of G–structures [60] and Generalized Complex Geometry (GCG) [61]. In this
framework the supersymmetry conditions for D–branes probing SU(2) structure manifolds
have been established in [57]. For spacetime filling D7–branes a class of supersymmetric
embeddings is given by z1 ≡ X5 + iX6 = L, with z2 ≡ X1 + iX2 and z3 ≡ X3 + iX4

arbitrarily fixed and no worldvolume flux turned on. This embeddings break one of the
U(1) global symmetries. Since our configuration belongs to this class we conclude that
our embedding is supersymmetric.

3.3 Probe fluctuations

As proposed in [31, 35] D7–brane fluctuations around its ground state are dual to color
singlets which may be interpreted as describing mesonic states of the four dimensional
gauge theory. The mass spectrum of the mesons is given by the Kaluza–Klein spectrum
of states which originate from the compactification of the D7–brane on the internal sub-
manifold. In the ordinary undeformed scenario the spectrum is discrete and with a mass
gap [36].

Our main purpose is to investigate probe fluctuations in the deformed background.

A generic vibration of the brane around its ground state can be described by

X5 = L+ ε χ(σa) , X6 = ε ϕ(σa) (3.3.1)

together with a non–trivial flux εFab = ε(∂aAb − ∂bAa). The fluctuations are functions of
the worldvolume coordinates σa and ε is a small perturbation parameter.

35



We expand the action of the probe brane in powers of the small parameter

S = SDBI + SWZ =

∫

Σ8

d8σ{L0 + εL1 + ε2L2 + · · ·} (3.3.2)

and consider terms up to the quadratic order in ε.

We first concentrate on the DBI term

LDBI = −T7
1√
G

√

−det(g − b+ εF ) (3.3.3)

where we have written the dilaton field as in (3.1.7) with eφ0 ≡ 1.

We expand the various terms by writing

g = g(0) + εg(1) + ε2g(2) , b = b(0) + εb(1) + ε2b(2)

1√
G

= G(0) + εG(1) + ε2G(2) (3.3.4)

Therefore, the determinant can be written as

√

−det(g − b+ εF ) =
√

−det (g(0) − b(0))
√

det(1 + Y )

=
√

−det (g(0) − b(0))
[

1 +
1

2
Tr(Y )− 1

4
Tr(Y 2) +

1

8
[Tr(Y )]2 + · · ·

]

(3.3.5)

where the matrix Y is given by

Y =
(

g(0) − b(0)
)−1 [

ε
(

g(1) − b(1) + F
)

+ ε2
(

g(2) − b(2)
)

+ · · ·
]

(3.3.6)

At the lowest order the contribution g(0) is easily read from (3.2.11), whereas for the

pull–back of B from eq. (3.1.8) we find that the only non–vanishing component is b
(0)
φ2φ3

=
γ̂1R

2Gρ22ρ
2
3.

It is convenient to introduce the undeformed induced metric

G = diag

(

−L
2 + ρ2

R2
,
L2 + ρ2

R2
,
L2 + ρ2

R2
,
L2 + ρ2

R2
,

R2

L2 + ρ2
,
R2ρ2

L2 + ρ2
,
R2ρ2c2θ
L2 + ρ2

,
R2ρ2s2θ
L2 + ρ2

)

(3.3.7)

the auxiliary metric C defined by

dŝ2 ≡ Cabdσadσb

=
L2 + ρ2

R2

(

−dt2 + dx21 + dx22 + dx23
)

+
R2

L2 + ρ2
(dρ2 + ρ2dθ2)

+
R2Ĝρ2

L2 + ρ2

[

c2θdφ
2
2 + s2θdφ

2
3 +

ρ2L2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(L2 + ρ2)2

]

(3.3.8)
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with

Ĝ =
(L2 + ρ2)2

(L2 + ρ2)2 + γ̂22L
2ρ2s2θ + γ̂23L

2ρ2c2θ
(3.3.9)

and two deformation matrices T and J given by

T φ2φ2 = γ̂23 T φ3φ3 = γ̂22 T φ2φ3 = T φ3φ2 = −γ̂2γ̂3
J φ2φ2 = 0 J φ3φ3 = 0 J φ2φ3 = −J φ3φ2 = γ1 (3.3.10)

The metric C is nothing but the induced metric (3.2.11) evaluated at γ̂1 = 0. Its inverse
can be expressed as

C−1 = G−1 +
L2

R2(L2 + ρ2)
T (3.3.11)

It turns out that the matrix
(

g(0) − b(0)
)−1

in (3.3.6) can be written as

(

g(0) − b(0)
)−1

= C−1 + J = G−1 +
L2

R2(L2 + ρ2)
T + J (3.3.12)

Since the whole dependence on the deformation parameters is encoded in T and J , the
γ̂i → 0 limit is easily understood.

Now a long but straightforward calculation allows to determine the first order correc-
tions g(1), b(1), G(1) as well as the second order ones g(2), b(2), G(2). Inserting in LDBI we
eventually find

L(0)
DBI = −T7ρ3cθsθ
L(1)

DBI = T7ρ
3cθsθγ̂1Fφ2φ3

/R2

L(2)
DBI = −T7ρ3cθsθ

[

R2

2(L2 + ρ2)
Cab∂aχ∂bχ+

R2

2(L2 + ρ2)
Gab∂aϕ∂bϕ

+
1

4
FabF

ab +
L

(L2 + ρ2)
(γ̂2Faφ3

− γ̂3Faφ2
)Gab∂bϕ

]

(3.3.13)

where F ab ≡ CacCbdFcd and Cac is given in (3.3.11). The first order Lagrangian is a total
derivative since our embedding X5 = L, X6 = 0 is an exact solution of the equations of
motion.

The Wess–Zumino Lagrangian starts with a second order term in ε given by

LWZ = T7
1

2
P [C4 − C2 ∧ B] ∧ F ∧ F = T7

(L2 + ρ2)2

R4
ǫijk∂ρAi∂jAk (3.3.14)

where we use latin indices to indicate coordinates on the three–sphere parametrized by
(θ, φ2, φ3), Ai is the flux potential on it and ǫijk is the Levi–Civita tensor density (ǫθ23 =
1). This term turns out to be independent of the deformation parameters since the
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combination (C4 − C2 ∧ B) at lowest order gives exactly the 4–form of the AdS5 × S5

undeformed geometry.

Determining the equations of motion from the previous Lagrangian is now an easy
task. Introducing the fixed vector

va = γ̂2δ
a
3 − γ̂3δa2 (3.3.15)

for the χ and ϕ scalars we find

∂a

[

√

−det(G)
(

R2

(L2 + ρ2)
Gab +

L2

(L2 + ρ2)2
vavb

)

∂bχ

]

= 0 (3.3.16)

∂a

[

√

−det(G) R2

(L2 + ρ2)
Gab

(

∂bϕ+
L

R2
vcFbc

)]

= 0 (3.3.17)

whereas, using (3.3.17) the equations of motion for the gauge fields take the form

∂a

[

√

−det(G) GacGbd Fcd

]

− 4ρ(L2 + ρ2)

R4
ǫbjk∂jAk (3.3.18)

−
√

−det(G) L

(L2 + ρ2)
vd∂d

[

Gbc
(

∂cϕ+
L

R2
vfFcf

)]

= 0

It is interesting to note that the equations of motion depend only on the deformation
parameters γ̂2 and γ̂3 hidden in the vector v. In fact, at this order the dependence on
the parameter γ̂1 associated to the torus inside the D7 worldvolume completely cancels
between the factors

√

−det(g − b+ εF ) and 1/
√
G.

The scalar fluctuation χ along the direction where the branes are located at distance
L decouples from the rest. The scalar ϕ, instead, interacts non–trivially with the world-
volume gauge fields through terms proportional to the deformation parameters.

The vector v has non–vanishing components only on the three–sphere and selects there
a fixed direction. As a consequence, the equations of motion (3.3.16 – 3.3.18) loose SO(4)
invariance.

As a first application we consider the L = 0 conformal case. The vibration of the
brane is given by X5 = ε χ(σa) and X6 = ε ϕ(σa). The equations of motion reduce to

∂a

[

√

−det(G) R
2

ρ2
Gab ∂bΨ

]

= 0

∂a

[

√

−det(G)GacGbd Fcd

]

− 4ρ3

R4
ǫbjk∂jAk = 0 . (3.3.19)

where Ψ ≡ (ϕ, χ) and Gab is the inverse of the matrix (3.3.7) evaluated at L = 0. We
see that the dependence on the deformation parameters disappears completely and the
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equations of motion reduce to the ones of the undeformed case [36]. In particular, the
scalar and gauge fluctuations decouple. Written explicitly, the scalar equations read

R4

ρ4
∂µ∂µΨ+

1

ρ3
∂ρ(ρ

3∂ρΨ) +
1

ρ2
∆S3Ψ = 0 (3.3.20)

where

∆S3Ψ ≡
1

cθsθ
∂θ(cθsθ∂θΨ) +

1

c2θ
∂22Ψ+

1

s2θ
∂23Ψ (3.3.21)

is the Laplacian on the unit 3–sphere (∂2 ≡ ∂φ2
, ∂3 ≡ ∂φ3

).

According to the results in [30, 36] the corresponding AdS5 masses are above the
Breitenlohner–Freedman bound [62]. This is a further check of the stability of our brane
configuration.

3.4 The mesonic spectrum

We now concentrate on the more general situation X5 = L + ε χ(σa), X6 = ε ϕ(σa) and
solve the equations of motion (3.3.16 – 3.3.18) for scalar and vector modes. We write the
abelian flux in terms of its potential one–form, Fab = ∂aAb−∂bAa, and choose the Lorentz
gauge ∂µA

µ = 0 on the spacetime components.

We find convenient to introduce covariant derivatives on the unit three–sphere (θ, φ2, φ3).
Given its metric g = diag(1, c2θ, s

2
θ), we have ∇iV

j = ∂iV
j + Γj

ikV
k with the only non–

vanishing components being Γθ
22 = −Γθ

33 = cθsθ, Γ
2
2θ = −sθ

cθ
and Γ3

3θ =
cθ
sθ
.

In order to simplify the equations we introduce the special operators

Oγ̂ ≡
R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ3
∂ρ(ρ

3∂ρ) +
1

ρ2
1√
g
∂i(
√
g∂i) +

L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)2

Õγ̂ ≡
R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ(L2 + ρ2)2
∂ρ
[

ρ(L2 + ρ2)2∂ρ
]

+
1

ρ2
∇l∇l

+
L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)2 (3.4.1)

along with their undeformed versions O0 ≡ Oγ̂ |γ̂2=γ̂3=0, Õ0 ≡ Õγ̂ |γ̂2=γ̂3=0.

Equation (3.3.16) for the χ mode then takes the compact form

Oγ̂ χ = 0 (3.4.2)

whereas equation (3.3.17) can be rewritten as

O0Φ−
L

R2
(γ̂2∂3 − γ̂3∂2)

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l

]

= 0 (3.4.3)
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where we have defined

Φ ≡ ϕ+
L

R2
vaAa = ϕ+

L

R2
(γ̂2A3 − γ̂3A2) (3.4.4)

Equations (3.3.18) for the vector modes come into three classes, according to b being
in Minkowski, or b = ρ or b = i ≡ {θ, φ2, φ3}. We list the three cases.

• b in Minkowski: For b = µ and expressing the F flux in terms of its one–form
potential, equation (3.3.18) becomes

Oγ̂ Aµ − ∂µ
[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2) Φ

]

= 0 (3.4.5)

with Φ defined in (3.4.4).

We apply ∂µ to this equation and sum over µ. Using [∂µ,Oγ̂ ] = 0 and Lorentz
gauge, solutions corresponding to non–trivial dispersion relations (k2 6= 0) satisfy

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)Φ

]

= 0 , Oγ̂ Aµ = 0 (3.4.6)

• b = ρ: Again, expressing the flux in terms of the vector potential we obtain

Oγ̂ Aρ −
[

1

ρ3
∂ρ(ρ

3∂ρAρ) +
1

ρ2
∂ρ∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂ρΦ

]

= 0 (3.4.7)

• b = i: On the internal S̃3 sphere we have

Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2
1

cθsθ
ǫjlm∇lAm

)

(3.4.8)

− 1

ρ(L2 + ρ2)2
∂ρ
[

ρ(L2 + ρ2)2∂jAρ

]

− LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2) ∂jΦ = 0

where we have used 1√
g
∂i(
√
gF ij) = ∇iF

ij = ∇i∇iAj −∇i∇jAi.

Now, collecting all the equations and using the first of (3.4.6) in (3.4.3) the system of
coupled equations we need solve is

(0) Oγ̂χ = 0 ; Oγ̂ Aµ = 0

(3.4.9)

(1) Oγ̂ Φ = 0
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(2)

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lAl +

LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2) Φ

]

= 0

(3) Oγ̂ Aρ −
[

1

ρ3
∂ρ(ρ

3∂ρAρ) +
1

ρ2
∂ρ∇lAl +

LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂ρΦ

]

= 0

(4) Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2
1

cθsθ
ǫjlm∇lAm

)

− 1

ρ(L2 + ρ2)2
∂ρ
[

ρ(L2 + ρ2)2∂jAρ

]

− LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂jΦ = 0

Equations (1)–(4) exhibit a non–trivial interaction between the scalar Φ and the compo-
nents of the vector potential along the internal directions. The modes χ and Aµ instead
decouple.

It is convenient to search for solutions expanded in spherical harmonics on S3. Scalar
spherical harmonics are a complete set of functions Ym2,m3

l in the
(

l
2
, l
2

)

representation of
SO(4) and with definite U(1)× U(1) quantum numbers (m2, m3) satisfying |m2 +m3| =
|m2 −m3| = l − 2k, l, k = 0, 1, . . .. For fixed l the degeneracy is (l + 1)2. Their defining
equations are §

∆S3 Ym2,m3

l = −l(l + 2)Ym2,m3

l

∂

∂φ2,3

Ym2,m3

l = im2,3 Ym2,m3

l (3.4.10)

Vector spherical harmonics come into three classes. Choosing them to be also eigenfunc-
tions of ∂

∂φ2,3
we have longitudinal harmonics Hi = ∇iYm2,m3

l , l ≥ 1 which are in the ( l
2
, l
2
)

representation of SO(4) with (m2, m3) ranging as before. Transverse harmonics areM+
i ≡

Y (l,m2,m3);+
i with l ≥ 1 in the

(

l−1
2
, l+1

2

)

andM−
i ≡ Y (l,m2,m3);−

i with l ≥ 1 in the
(

l+1
2
, l−1

2

)

.
Their degeneracy is l(l+2) and it is counted by |m2+m3| = l±1−2k, |m2−m3| = l∓1−2k.
These harmonics satisfy

∇i∇iM±
j −Rk

jM±
k = −(l + 1)2M±

j

ǫijk∇jM±;k = ±√g (l + 1)M±
i

∇iM±
i = 0

∂

∂φ2,3
M±

i = im2,3M±
i (3.4.11)

where
√
g = cθsθ is the square root of the determinant of the metric on S3, whereas

Ri
j = 2δij is the Ricci tensor.

As in the undeformed case [36] we require the solutions to be regular at the origin
(ρ = 0), normalizable and small enough to justify the quadratic approximation. All these
conditions are used to select the actual mass spectrum of the mesonic excitations.

§For their explicit realization see for instance [63, 53].
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3.4.1 The decoupled modes

The scalar mode χ

We start solving the equation for the decoupled scalar χ. Using the general identity
1√
g
∂i(
√
g∂is) = ∇i∇is valid for any scalar s, the equation Oγ̂χ = 0 reads explicitly

R4

(L2 + ρ2)2
∂ν∂νχ +

1

ρ3
∂ρ(ρ

3∂ρχ) +
1

ρ2
∇l∇lχ +

L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)2χ = 0 (3.4.12)

We look for single–mode solutions of the form

χ(σa) = r(ρ) eikx Ym2,m3

l (θ, φ2, φ3) (3.4.13)

Inserting in (3.4.12) we obtain an equation for r(ρ) that, after the redefinitions

̺ =
ρ

L
, Γ̂2 = −k

2R4

L2
− (γ̂2m3 − γ̂3m2)

2 = M̄2 − (γ̂2m3 − γ̂3m2)
2 , (3.4.14)

becomes

∂2̺r +
3

̺
∂̺r +

[

Γ̂2

(1 + ̺2)2
− l(l + 2)

̺2

]

r = 0 (3.4.15)

This has exactly the same structure of the equation found in the undeformed case [36].
The only difference is the presence of the deformation parameters in Γ̂2 which in the
undeformed case reduces simply to M̄2. Following what has been done in that case [36]
we find that the general solution is

r(ρ) = ρl(L2 + ρ2)−αF (−α,−α + l + 1; l + 2;−ρ2/L2) (3.4.16)

where F is the hypergeometric function and α = −1+
√

1+Γ̂2

2
. This solution satisfies the

conditions of regularity and normalizability if the quantization condition

Γ̂2 = 4(n+ l + 1)(n+ l + 2) n ∈ N , n, l ≥ 0 (3.4.17)

is imposed. Using (3.4.14) and M2 = −k2, the mass spectrum of scalar mesons then
follows

Mχ(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(3.4.18)

with n, l ≥ 0 and |m2 +m3| = |m2 −m3| = l − 2k, k a non–negative integer.

We see that the deformation parameters induce a non–trivial dependence of the mass
spectrum on the two U(1) quantum numbers (m2, m3), so breaking the degeneracy of the
undeformed case.

The mass spectrum is smoothly related to the one of the undeformed case for γ̂i → 0.
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The Type II modes

We look for excitations of the form

Aµ(σ
a) = ζµ ZII(ρ) e

ikx Ym2,m3

l (θ, φ2, φ3) , k · ζ = 0 (3.4.19)

Following the classification introduced in [36] for the undeformed case we call them Type
II modes. The equation Oγ̂Aµ = 0 in (3.4.9) yields to

R4

(L2 + ρ2)2
∂ν∂νAµ+

1

ρ3
∂ρ(ρ

3∂ρAµ)+
1

ρ2
∇l∇lAµ+

L2

(L2 + ρ2)2
(γ̂2∂3−γ̂3∂2)2Aµ = 0 (3.4.20)

This is exactly the same equation as the one for the scalar mode χ. Therefore, for each
component Aµ we follow the same strategy of subsection 5.1.1 and find the mass spectrum

MII(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(3.4.21)

with n, l ≥ 0 and |m2 +m3| = |m2 −m3| = l − 2k.

Even for this type of vector fluctuations the spectrum is smoothly related to the
undeformed one for γ̂i → 0.

3.4.2 The coupled modes

Having performed the field redefinition (3.4.4) we solve the coupled equations (1)–(4) by
considering elementary fluctuations of Φ, Aρ and Ai.

The Type I modes

Being in a different representation the harmonicsM±
i do not mix with the others. There-

fore we can make the ansatz ¶

Φ = 0, Aρ = 0, Ai(σ
a) = Z±

I (ρ) e
ikxM±

i (θ, φ2, φ3) (3.4.22)

By using the identity ∇iA
i = 0 as follows from (3.4.11), equations (1), (2) and (3) in

(3.4.9) are identically satisfied whereas eq. (4) reads

Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2
1

cθsθ
ǫjlm∇lAm

)

= 0 (3.4.23)

¶We note that if we were to follow closely the classification of [36] we would call Type I modes the
elementary modes with ϕ = 0, i.e. with no fluctuations along the X6 coordinate. However, given the
structure of the equations of motion, in our case we find the definition (3.4.22) more convenient. In any
case, the two definitions coincide for γ̂i = 0.
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Considering the explicit expression for the operator Õγ̂ in (3.4.1) and using properties
(3.4.11) we find that Z±

I (ρ) is a solution of the equation

1

̺
∂̺
[

̺(̺2 + 1)2∂̺Z
±
I

]

+

[

Γ̂2 − (̺2 + 1)2

̺2
(l + 1)2 ∓ 4(̺2 + 1)(l + 1)

]

Z±
I = 0 (3.4.24)

where we have used the definitions (3.4.14). This is formally the same equation as the
one of the undeformed case, except for the different definition of Γ̂2. Therefore, following
the same steps [36] we find that the solutions are still hypergeometric functions

Z+
I (ρ) = ρl+1(ρ2 + L2)−α−1F (l + 2− α,−1− α; l + 2;−ρ2/L2)

Z−
I (ρ) = ρl+1(ρ2 + L2)−α−1F (l − α, 1− α; l + 2;−ρ2/L2) (3.4.25)

where α = −1+
√

1+Γ̂2

2
. Requiring them to be regular at infinity we obtain the following

quantization conditions

Γ̂2
+ = 4(n+ l + 2)(n + l + 3)

Γ̂2
− = 4(n+ l)(n + l + 1) n ≥ 0 (3.4.26)

As a consequence the mass spectrum reads

MI,+ =
2L

R2

√

(n+ l + 2)(n+ l + 3) +

(

γ̂2m3 − γ̂3m2

2

)2 {

|m2 +m3| = l − 1− 2k
|m2 −m3| = l + 1− 2k

MI,− =
2L

R2

√

(n+ l)(n+ l + 1) +

(

γ̂2m3 − γ̂3m2

2

)2 {

|m2 +m3| = l + 1− 2k
|m2 −m3| = l − 1− 2k

(3.4.27)

where l ≥ 1 and k is a non–negative integer.

The Type III modes

Finally, we consider the following fluctuations

Φ(σa) = XIII(ρ) e
ikx Ym2,m3

l (θ, φ2, φ3)

Aρ(σ
a) = YIII(ρ) e

ikx Ym2,m3

l (θ, φ2, φ3) (3.4.28)

Ai(σ
a) = ZIII(ρ) e

ikx∇iYm2,m3

l (θ, φ2, φ3) ≡ ∇iA(σ
a)

with l ≥ 1. We note that l = 0 corresponds to having Ai = 0. We will comment on this
particular case at the end of this Section.
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Inserting in (3.4.9) and using the identities (3.4.10) for the scalar harmonics, after a
bit of algebra the equations (1)–(4) can be rewritten as

(1)

[

R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ3
∂ρ
(

ρ3∂ρ
)

− l(l + 2)

ρ2
− L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2

]

Φ = 0

(2)
1

ρ3
∂ρ(ρ

3Aρ)−
l(l + 2)

ρ2
A+ i

LR2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2) Φ = 0

(3)
R4

(L2 + ρ2)2
∂ν∂νAρ +

1

ρ2
∂ρ

(

1

ρ
∂ρ(ρ

3Aρ)

)

−
[

l(l + 2)

ρ2
+

L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2

]

Aρ

+ 2iLR2 (L2 − ρ2)
ρ(L2 + ρ2)3

(γ̂2m3 − γ̂3m2) Φ = 0

(4)
R4

(L2 + ρ2)2
∂ν∂νA +

1

ρ(L2 + ρ2)2
∂ρ
(

ρ(L2 + ρ2)2∂ρA
)

− L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2A− 1

ρ(L2 + ρ2)2
∂ρ
[

ρ(L2 + ρ2)2Aρ

]

− i LR2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2) Φ = 0 (3.4.29)

It is worth mentioning that eq. (1) in (3.4.9) contains the operator 1√
g
∂i(
√
g∂i) which

acts differently on scalars and spherical vectors. Therefore, when this operator is applied
on Φ = ϕ+ L

R2 (γ̂2A3 − γ̂3A2), in principle one should split it as acting on ϕ and Ai sepa-
rately. However, since in the present case Ai = ∇iA, exploiting the algebra of covariant
derivatives and the properties of scalar harmonics in (3.4.28), it is easy to show that

1√
g
∂i(
√
g∂i∇jA) = ∇i∇i∇jA− 2∇jA = −l(l + 2)∇jA (3.4.30)

This is exactly the same relation satisfied by the scalar ϕ, so we are led to 1√
g
∂i(
√
g∂iΦ) =

−l(l + 2)Φ. This confirms that considering Φ as an elementary scalar fluctuation is a
consistent procedure.

Equations (3.4.29) are four equations for three unknowns XIII , YIII , ZIII and lead to
non–trivial solutions only if they are compatible. Indeed it turns out that equation (4) is
identically satisfied once the others are. We then concentrate on the first three equations.

We first solve equation (1). By observing that it is identical to the equation for the
scalar χ (see eq. (3.4.12)) we immediately obtain

XIII(ρ) = ρl(L2 + ρ2)−n−l−1F (−(n+ l + 1),−n; l + 2;−ρ2/L2) (3.4.31)
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where the quantization condition (3.4.17) has been used. As a consequence, the mass
spectrum is

MΦ(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(3.4.32)

where n ≥ 0, l ≥ 1 and |m2 +m3| = |m2 −m3| = l − 2k.

Equation (2) can be used to express the mode A in terms of Φ and Aρ. Inserting the
expressions (3.4.28) we obtain

ZIII =
1

l(l + 2)

[

1

ρ
∂ρ(ρ

3YIII) + i
LR2ρ2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)XIII

]

(3.4.33)

We then consider equation (3) which exhibits an actual coupling between XIII and YIII .
In order to solve for YIII given the solution (3.4.31) for XIII we set

YIII(̺) = ̺l−1(1 + ̺2)−α P (̺) (3.4.34)

Using the definitions (3.4.14) together with the quantization condition (3.4.17) and defin-
ing y ≡ −̺2, after some algebra the equation for P reads

y(1− y)P ′′(y) + [(l + 2) + (2n+ l) y]P ′(y)− n(n + l + 1)P (y)

= η
(1 + y)

(1− y)2F (−(n+ l + 1),−n; l + 2; y) (3.4.35)

where we have defined η ≡ i R2

2L2 (γ̂2m3 − γ̂3m2). This is an inhomogeneous hypergeo-
metric equation whose source is a polynomial of degree n, solution of the corresponding
homogeneous equation. The most general solution is then of the form

P (y) = c F (−(n+ l + 1),−n; l + 2; y) + P̄ (y) (3.4.36)

for arbitrary constant c, where P̄ is a particular solution of (3.4.35). Exploiting the general
identity

(1− y)F ′(−(n + l + 2),−n; l + 1; y) + (n+ l + 2)F (−(n+ l + 2),−n; l + 1; y)

=
(n+ l + 1)(n+ l + 2)

(l + 1)
F (−(n+ l + 1),−n; l + 2; y) (3.4.37)

valid for hypergeometric functions with integer coefficients, it is easy to show that a
solution is given by

P̄ (y) = η
(l + 1)

(n+ l + 1)(n+ l + 2)

F (−(n+ l + 2),−n; l + 1; y)

1− y (3.4.38)
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The general solution of equation (3) is then

YIII(ρ) = ρl−1(L2 + ρ2)−n−l−2
[

c (L2 + ρ2)F (−(n+ l + 1),−n; l + 2;−ρ2/L2)

+ η
(l + 1)

(n+ l + 1)(n+ l + 2)
F (−(n+ l + 2),−n; l + 1;−ρ2/L2)

]

(3.4.39)

This solution is regular at the origin and not divergent for ρ→∞. Due to the quantization
condition (3.4.17) the corresponding mass spectrum is still given by

MIII(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(3.4.40)

with n ≥ 0, l ≥ 1 and |m2 +m3| = |m2 −m3| = l − 2k.

Before closing this Section we comment on the particular l = m2 = m3 = 0 mode.
In (3.4.28) this corresponds to turn off Ai = ∇iA since A(σa) is independent of the
three–sphere coordinates. Equation (2) reduces to ∂ρ(ρ

3Aρ) = 0 which, together with the
condition of regularity at ρ = 0, sets Aρ = 0. Equations (3) and (4) in (3.4.29) are then
automatically satisfied, whereas eq. (1) provides a non–trivial solution for Φ as given in
(3.4.31) with mass (3.4.32) where we set l = m2 = m3 = 0 .

As a slightly different attitude we can consider the configuration with all the vector
modes turned off (YIII = ZIII = 0) and study only scalar Φ fluctuations of the form
(3.4.28). In this case Φ is still solution of equation (1) but, as follows from the rest of
equations, it is constrained by the further condition

(γ̂2m3 − γ̂3m2)Φ = 0 (3.4.41)

In general, for non–vanishing and distinct deformation parameters, non–trivial solutions
can be found only for m2 = m3 = 0, i.e. only the U(1) × U(1) zero–mode sector is
selected and the fluctuations are independent of (φ2, φ3). A greater number of solutions,
corresponding to the modes m2 = m3, is instead allowed when γ̂2 = γ̂3, therefore in
particular for the supersymmetric deformation. In any case, the mass spectrum is given
by

MΦ(n, l) =
2L

R2

√

(n + l + 1)(n+ l + 2) n ≥ 0 l (even) ≥ 0 (3.4.42)

and coincides with the undeformed mass.

3.5 Analisys of the spectrum

From the previous discussion it follows that the bosonic modes arising from the compact-
ification of the D7–brane on the deformed S̃3 give rise to a mesonic spectrum which is
given by
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• 2 scalars and 1 vector in the ( l
2
, l
2
) with l ≥ 0, |m2 ±m3| = l − 2k and mass

Mχ,Φ,II(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

• 1 scalar in the ( l
2
, l
2
) with l ≥ 1, |m2 ±m3| = l − 2k and mass

MIII(n, l,m2, m3) =
2L

R2

√

(n+ l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

• 1 scalar in the ( l−1
2
, l+1

2
) with l ≥ 1, |m2 ±m3| = l ∓ 1− 2k and mass

MI,+(n, l,m2, m3) =
2L

R2

√

(n+ l + 2)(n+ l + 3) +

(

γ̂2m3 − γ̂3m2

2

)2

• 1 scalar in the ( l+1
2
, l−1

2
) with l ≥ 1, |m2 ±m3| = l ± 1− 2k and mass

MI,−(n, l,m2, m3) =
2L

R2

√

(n+ l)(n+ l + 1) +

(

γ̂2m3 − γ̂3m2

2

)2

for any n ≥ 0. This matches exactly the bosonic content found in the undeformed case
[36]. However, in this case the γ–deformation breaks SO(4)→ U(1) × U(1) and induces
an explicit dependence of the mass spectrum on the the quantum numbers (m2, m3) with
a pattern similar to the Zeeman effect for atomic electrons where the constant magnetic
field which breaks SU(2) rotational invariance down to U(1) induces a dependence of the
energy levels on the azimuthal quantum number m ‖.

The dependence on the deformation parameters disappears completely in the m2 =
m3 = 0 sector (or for γ̂2 = γ̂3 and m2 = m3) and the mass eigenvalues coincide with
the ones of the undeformed theory. When γ̂2 = γ̂3 the mass spectrum acquires an extra
symmetry under the exchange of the two U(1)’s and an extra degeneracy corresponding
to m2 → m2 +m, m3 → m3 +m, m integer.

For any value of γ̂i there are no tachyonic modes, so confirming the stability of our
configuration. Moreover, massless states are absent and the spectrum has a mass gap
given by

Mgap = 2
√
2
L

R2
(3.5.1)

This is exactly the mass gap present in the undeformed theory [36].

‖A similar effect has been observed in the case of backgrounds with B fields turned on in Minkowski
[49, 64].
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In order to analyze in detail the mass splitting induced by the deformation and study
how the modes organize themselves among the different eigenvalues it is convenient to
rewrite the mass of a generic eigenstate X as

MX(n, l,m2, m3) =

√

(

M
(0)
X (n, l)

)2

+
4L2

R4
(∆M(m2, m3))

2 (3.5.2)

where M
(0)
X is the undeformed mass, whereas

∆M(m2, m3) ≡
(

γ̂2m3 − γ̂3m2

2

)

(3.5.3)

is the Zeeman–splitting term.

Since for any l ≥ 2 the following mass degeneracy occurs

M
(0)
χ,Φ,II(n, l) =M

(0)
III(n, l) =M

(0)
I,+(n, l − 1) =M

(0)
I,−(n, l + 1) (3.5.4)

for γ̂i = 0 we have 8(l + 1)2 bosonic degrees of freedom corresponding to the same mass
eigenvalue. For the particular values l = 0, 1 the number of states is reduced since for
l = 0 modes A(I,+) and AIII are both absent, whereas for l = 1 A(I,+) is still absent. For
any value of l they match the bosonic content of massive N = 2 supermultiplets [36].

In the present case mass degeneracy occurs among states which satisfy the above
condition and have the same value of ∆M(m2, m3). Therefore, having performed the l–
shift for the (I,±) modes as in (3.5.4), we concentrate on the degeneracy in ∆M(m2, m3)
for fixed values of (n, l). It is convenient to discuss the γ̂2 = γ̂3 and γ̂2 6= γ̂3 cases,
separately.

γ̂2 = γ̂3 ≡ γ̂: This case includes the supersymmetric LM–theory. The deformation enters
the mass spectrum only through the difference (m2 − m3) and the splitting term ∆M
depends only on a single integer j

l even 2j ≡ |m2 −m3| = 0, 2, · · · , l ∆M(j) = γ̂ j

l odd 2j + 1 ≡ |m2 −m3| = 1, 3, · · · , l ∆M(j) = γ̂

(

j +
1

2

)

(3.5.5)

Excluding for the moment the l = 0, 1 cases, for any given value of 2j and 2j + 1 the
degeneracies of the corresponding mass levels are listed in Table 3.1 and Table 3.2, re-
spectively.

For any value of l ≥ 2 we observe Zeeman–like splitting as shown in Fig. 3.1. Precisely,
the splitting occurs in the following way: For l even there are 8(l+1) d.o.f. corresponding
to j = 0 and 16(l + 1) for each j 6= 0. Since we have l/2 possible values of j 6= 0, the
total number of states sum up correctly to 8(l+ 1)2. Analogously, for odd values of l the
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State |m2 −m3| = 2j Degeneracy

χ, Φ, AIII
0

2, 4, · · · , l
l + 1

2(l + 1)

Aµ
0

2, 4, · · · , l
l + 1

2(l + 1)

AI,+
0

2, 4, · · · , l
l − 1

2(l − 1)

AI,−
0

2, 4, · · · , l
l + 3

2(l + 3)

Table 3.1: Degeneracy of states in the case γ̂2 = γ̂3 and l ≥ 2 even. The degeneracy in
the third column refers to every single value of j.

State |m2 −m3| = 2j + 1 Degeneracy

χ, Φ, AIII 1, 3, · · · , l 2(l + 1)
Aµ 1, 3, · · · , l 2(l + 1)
AI,+ 1, 3, · · · , l 2(l − 1)
AI,− 1, 3, · · · , l 2(l + 3)

Table 3.2: Degeneracy of states in the case γ̂2 = γ̂3 and l ≥ 3 odd.

number of levels is (l+ 1)/2, each of them corresponds to 16(l+ 1) d.o.f., so we still have
8(l + 1)2 modes.

The l = 0 case corresponds to m2 = m3 = 0 (j = 0). The deformation is then harmless
and we are back to the bosonic content of the undeformed theory, that is three scalars
χ, Φ, A(I,−) and one vector with M (0)(n, 0). Similarly, for l = 1 (j = 0), excluding
A(I,+) we have three scalars and one vector in the (1/2, 1/2) of SO(4) and one scalar
in the (3/2, 1/2), all corresponding to M2 = (M (0)(n, 1))2 + γ̂2L2/R4. These cases can
be included in Tables 3.1 and 3.2 with the agreement to discharge modes which are not
switched on.

We note that there is an accidental mass degeneracy which is remnant of the un-
deformed N = 2 theory. In particular, in the supersymmetric LM case this allows to
organize the bosonic states in N = 1 supermultiplets.

In principle, this unexpected degenenracy could be related to the particular theories
we are considering which are smooth deformations of their undeformed counterpart. In
order to better understand N = 2 vs. N = 1 supersymmetry at the level of mesonic
spectrum, the study of the fermionic sector is a mandatory requirement.
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Figure 3.1: The Zeeman–splitting of the undeformed 8(l + 1)2 d.o.f. for γ̂2 = γ̂3 and l
even (left) or odd (right).

γ̂2 6= γ̂3: The splitting term ∆M now depends on both m2,3 and no longer on their dif-
ference. In order to make the comparison with the γ̂2 = γ̂3 case easier, for fixed l it is
convenient to label ∆M by two numbers j and s

l even ∆M(j, s) =
(j + s) γ̂2 + (j − s) γ̂3

2

l odd ∆M(j, s) =
(j + 1

2
+ s) γ̂2 + (j + 1

2
− s) γ̂3

2
(3.5.6)

where j is still defined as before, whereas s is integer if l is even and half–integer if l is
odd. Its range can be read in Tables 3.3 and 3.4.

State |m2 −m3| = 2j s Degeneracy

χ, Φ, AIII

0

2, 4, · · · , l

0

1, 2, · · · , l
2

− l
2
, · · · , 0, · · · , l

2

1
2

2

Aµ

0

2, 4, · · · , l

0

1, 2, · · · , l
2

− l
2
, · · · , 0, · · · , l

2

1
2

2

AI,+

0

2, 4, · · · , l

0

1, 2, · · · , l−2
2

− l−2
2
, · · · , 0, · · · , l−2

2

1
2

2

AI,−
0

2, 4, · · · , l

0

1, 2, · · · , l+2
2

− l+2
2
, · · · , 0, · · · , l+2

2

1
2

2

Table 3.3: Degeneracy of states in the case γ̂2 6= γ̂3 and l ≥ 2 even. The degeneracy in
the fourth column refers to every single pair (j, s).
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State |m2 −m3| = 2j + 1 s Degeneracy

χ, Φ, AIII 1, 3, · · · , l − l
2
, · · · , l

2
2

Aµ 1, 3, · · · , l − l
2
, · · · , l

2
2

AI,+ 1, 3, · · · , l − l−2
2
, · · · , l−2

2
2

AI,− 1, 3, · · · , l − l+2
2
, · · · , l+2

2
2

Table 3.4: Degeneracy of states in the case γ̂2 6= γ̂3 and l ≥ 3 odd.

As appears in the Tables the degeneracy is almost completely broken. In fact, except
for the m2 = m3 = 0 case, only a residual degeneracy 2 survives due to the fact that the
mass (3.5.2) is invariant under the exchange (m2, m3) → (−m2,−m3).

To better understand the level splitting it is convenient to compare the present situ-
ation with the previous one. In fact, fixing j, the degenerate degrees of freedom of the
γ̂2 = γ̂3 case further split according to the different values of s. If l is even and j = 0, the
previous 8(l + 1) degenerate levels split in (l/2 + 2) new mass levels, while for j 6= 0 the
16(l+ 1) levels open up in (l+ 3) levels (see Fig. 3.2). If l is odd we find (l+ 3) different
mass levels as drawn in Fig. 3.3.

Figure 3.2: The Zeeman–splitting of the γ̂2 = γ̂3 = γ̂ d.o.f. for γ̂2 6= γ̂3 and l even. The
value of ∆M here appearing is pictured considering the case γ̂3 < γ̂ < γ̂2.

The particular cases l = 0, 1 can be read from Tables 3.3 and 3.4 by discharging
(A(I,+), AIII) and A(I,+), respectively. For l = 0 three modes χ, Φ and Aµ correspond to
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Figure 3.3: The Zeeman–splitting of the γ̂2 = γ̂3 d.o.f. for γ̂2 6= γ̂3 and l odd. Once again
γ̂3 < γ̂ < γ̂2.

∆M = 0 (j = s = 0), whereas the three degrees of freedom of A(I,−) split into one d.o.f.

with ∆M = 0 (j = s = 0) and two with ∆M = γ̂2−γ̂3
2

(j = s = 1). Already in the simplest
l = 0 case the SO(4) breaking is manifest. For l = 1 (j = 0) the four degrees of freedom
of each mode χ, Φ, AIII and Aµ now split into two states with ∆M = γ̂2/2 and two states
with ∆M = γ̂3/2. On the other hand, the 8 d.o.f. corresponding to A(I,−) split into two
states with ∆M = γ̂2/2, two states with ∆M = γ̂3/2, two states with ∆M = (2γ̂2− γ̂3)/2
and two with ∆M = (2γ̂3 − γ̂2)/2.

As discussed in [36] the undeformed spectrum exhibits a huge degeneracy in ν ≡ n+ l
which can be traced back to a (non–exact) SO(5) symmetry. This originates from the fact
that the induced metric on the D7–brane is conformally equivalent to E(1,3)×S4. If in the
quadratic action for the fluctuations the conformal factor can be re–absorbed by a field
redefinition the corresponding equations of motion are invariant under S4 diffeomorphisms.
Therefore, solutions can be found by expanding in spherical harmonics of S4 and the
mass spectrum of the elementary modes depends only on the SO(5) quantum number
ν. This happens for instance for scalar modes and vectors which, for a given ν, organize
themselves into reducible representations (0, 0)⊕(1/2, 1/2) · · ·⊕(ν/2, ν/2) of SO(4). This
is indeed the decomposition of the highest weight representation [ν, 0] of SO(5) in SO(4)
representations.

In principle, the same analysis can be applied also to our case. Here the induced metric
(3.2.11) is conformally equivalent to E(1,3)× S̃4 where S̃4 is the deformed four–sphere (set
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̺ = ρ/L)

ds2
S̃4

=
R4

4L2

4

(1 + ̺2)2
(d̺2 + ̺2dΩ̃2

3) (3.5.7)

and

dΩ̃2
3 = dθ2 +G

[

c2θdφ
2
2 + s2θdφ

2
3 +

̺2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(1 + ̺2)2

]

(3.5.8)

is the deformed three–sphere.

It follows that a dependence on the SO(5) quantum number ν = n + l still appears
if the conformal factor (1 + ̺2)L2/R2 can be compensated by a field redefinition and the
action can be entirely expressed in terms of the metric of E(1,3) × S4 plus deformations.
A close look at the action (3.3.13) reveals that this is always the case for the decoupled
modes χ, Aµ and also for Φ. Despite of the presence of the deformation terms which
break explicitly the SO(5) invariance, we can still search for solutions expanded in spher-
ical harmonics on S4 and, consequently, the mass spectrum exhibits a dependence on n
and l only in the combination n+ l. In particular, in the zero–mode sector m2 = m3 = 0 a
degeneracy appears which is remnant of the SO(5) invariance. Of course, the eigenstates
corresponding to degenerate eigenvalues never reconstruct the complete [ν, 0] representa-
tion of SO(5), being organized into a direct product of SO(4) representations with integer
spins only (0, 0)⊕ (1, 1) · · · ([ν/2] , [ν/2]), since m2 = m3 = 0 only occurs for even values
of l.

3.6 The dual field theory

In this Section we construct the 4D conformal field theory whose composite operators are
dual to the mesonic states just found.

As already discussed in Section 3.2, in the supergravity description the operations of
TsT deforming the AdS5× S5 background and adding D7–branes commute. Since on the
field theory side TsT deformations correspond to promoting all the products among the
fields to be ∗–products [19], whereas the addition of D7–branes corresponds to adding
interacting fundamental matter [30] we expect that in determining the action for the dual
field theory the operations of ∗–product deformation and addition of fundamental matter
commute. Therefore, in order to obtain the dual action we proceed by promoting to
∗–products all the products in the N = 2 SYM action with fundamental matter (2.3.1)
corresponding to the undeformed Karch–Katz model.

Given Nf probe D7–branes embedded in the ordinary AdS5 × S5 background with
N units of flux, N ≫ Nf , in the large N limit the dual field theory on the D3–branes
consists of N = 4 SU(N) SYM coupled in a N = 2 fashion to Nf N = 2 hypermultiplets
which contain new dynamical fields arising from open strings stretching between D3 and
D7–branes.
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The lagrangian has been given in the previous Chapter (see eq. (2.3.1)). For conve-
nience, we report it here

L =

∫

d4θ
[

Tr
(

e−g V Φ̄ie
g VΦi

)

+ tr
(

Q̄eg VQ+ Q̃e−g V ¯̃Q
)]

+
1

2g2

∫

d2θTr (W αWα)

+ i

∫

d2θ
[

gTr
(

Φ1
[

Φ2,Φ3
])

+ g tr
(

Q̃Φ1Q
)

+m tr
(

Q̃Q
)]

+ h.c. (3.6.1)

According to the AdS/CFT duality the lowest components of the three chirals Φi are
in one–to–one correspondence with the three complex coordinates of the internal 6D space
as (we use notations consistent with Section 2)

X1 + iX2 ≡ uρ3e
iφ3 → Φ3|θ=θ̄=0

X3 + iX4 ≡ uρ2e
iφ2 → Φ2|θ=θ̄=0 (3.6.2)

X5 + iX6 ≡ uρ1e
iφ1 → Φ1|θ=θ̄=0

Since we are interested in non–supersymmetric deformations of this theory we need
the Lagrangian (3.6.1) expanded in components. Given the physical components of the
multiplets being

Φi =
(

ai, ψi
α

)

Qr = (qr, χr
α)

Wα = (λα, fαβ) Q̃r = (q̃r, χ̃rα) (3.6.3)

after eliminating the auxiliary fields through their algebraic equations of motion, the
Lagrangian (2.3.1) takes the form

L = LN=4 + Lb + Lf + Lint (3.6.4)

where ∗∗

LN=4 = Tr

(

−1
2
fαβfαβ + iλ

[

∇, λ̄
]

+ āi�a
i + iψi

[

∇, ψ̄i

]

)

+g2Tr

(

−1
4

[

ai, āi
] [

aj , āj
]

+
1

2

[

ai, aj
]

[āi, āj]

)

+

{

igTr

(

[

ψ̄i, λ̄
]

ai +
1

2
ǫijk
[

ψi, ψj
]

ak
)

+ h.c.

}

(3.6.5)

is the ordinary N = 4 Lagrangian,

Lb = tr
(

q̄
(

�− |m|2
)

q + q̃
(

�− |m|2
)

¯̃q
)

− g2

4
tr
(

q̄ q q̄ q + q̃ ¯̃q q̃ ¯̃q − 2q̄ ¯̃q q̃ q + 4q̃ ¯̃q q̄ q
)

+
g2

2
tr
(

q̃
[

ai, āi
]

¯̃q − q̄
[

ai, āi
]

q
)

−
{

tr

(

gm̄(q̄a1q + q̃a1¯̃q) +
g2

2

(

q̄ā1a
1q + q̃a1ā1¯̃q + 2q̃ [ā2, ā3] q

)

)

+ h.c.

}

(3.6.6)

∗∗We use superspace conventions of [1]. When ψλ indicates the product of two chiral fermions it has
to be understood as ψαλα. The same convention is used for antichiral fermions.
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describes the bosonic fundamental sector and its interactions with bosonic matter in the
adjoint

Lf = i tr
(

χ̄
−→∇χ− χ̃←−∇ ¯̃χ

)

+
{

im tr
(

χ̃χ
)

+ h.c.
}

(3.6.7)

describes the free fermionic fundamental sector and

Lint = ig tr
(

χ̄λ̄q − q̃λ̄¯̃χ + q̃ψ1χ+ χ̃ψ1q + χ̃a1χ
)

+ h.c. (3.6.8)

contains the interaction terms between bosons and fermions.

The most general non–supersymmetric marginal deformation of this theory can be
obtained by promoting all the products among the fields in the Lagrangian to be ∗–
products according to the following prescription [66]

f g −→ f ∗ g = eiπQ
f
i
Qg

j
ǫijkγk f g (3.6.9)

where γk are the deformation parameters, whereas (Q1, Q2, Q3) are the charges of the
fields under the three U(1) global symmetries of the original N = 4 theory associated
to the Cartan generators of SU(4). On the dual supergravity side they correspond to
angular shifts in (3.6.2). Accordingly, the charges of the chiral Φi superfields are chosen
as in Table 3.5 [66] with the additional requirement for the charges of the spinorial super-
space coordinates to be (1/2, 1/2, 1/2). This insures invariance of the superpotential term
∫

d2θTr(Φ1[Φ2,Φ3]) under the three U(1)’s. The charges for the matter chiral superfields

are determined by requiring the superpotential term
∫

d2θtr(Q̃Φ1Q) to respect the three

global symmetries in addition to the condition for Q and Q̃ to have the same charges.

Φ1 Φ2 Φ3 Q Q̃

Q1 1 0 0 0 0
Q2 0 1 0 1

2
1
2

Q3 0 0 1 1
2

1
2

Table 3.5: U(1) charges of the chiral superfields. The corresponding antichirals have
opposite charges.

The gauge superfield Wα and the gaugino have charges (1/2, 1/2, 1/2), whereas the
gauge field strength fαβ is neutral under the three U(1)’s.

In the absence of mass term in (3.6.1) the corresponding currents (Jφ1
, Jφ2

, Jφ3
) are

conserved, whereas Jφ1
fails to be conserved when m 6= 0. Moreover, (Jφ2

, Jφ3
) are ABJ–

anomaly free also in the presence of fundamental matter, whereas Jφ1
is non–anomalous

only in the quenching limit Nf/N → 0.

As is well–known, the ordinary Lunin–Maldacena U(1)×U(1) charges [19] are associ-
ated to (ϕ1, ϕ2) angular shifts after performing the change of variables (in our notations)

ϕ1 =
1

3
(φ1 + φ2 − 2φ3), ϕ2 =

1

3
(φ2 + φ3 − 2φ1), ϕ3 =

1

3
(φ1 + φ2 + φ3), (3.6.10)
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Expressing the (Jϕ1
, Jϕ2

) generators in terms of (Jφ1
, Jφ2

, Jφ3
) we easily find that the

Lunin–Maldacena charges are given by

Q
(LM)
1 = Q2 −Q3 , Q

(LM)
2 = Q2 −Q1 (3.6.11)

In the case of supersymmetric deformations the third linear combination QR ∼ (Q1 +
Q2 +Q3) provides the R–symmetry charge.

We are now ready to derive the deformed action by using the prescription (3.6.9) in
the original undeformed one.

We begin with the one–parameter deformation, γ1 = γ2 = γ3. In this case N = 1
supersymmetry survives and we can work directly with the superspace action (3.6.1).
Since only form = 0 the ∗–product is well–defined being the three U(1) charges conserved,
the correct way to proceed is to deform the massless theory and then add the mass operator
as a perturbation. Following this prescription and taking into account the superfields
charges given in Table 3.5, the Lagrangian of the deformed theory is

L =

∫

d4θ
[

Tr
(

e−g V Φ̄ie
g VΦi

)

+ tr
(

Q̄eg VQ+ Q̃e−g V ¯̃Q
)]

+
1

2g2

∫

d2θTr (W αWα)

+ ig

∫

d2θ
[

Tr
(

eiπγΦ1Φ2Φ3 − e−iπγΦ1Φ3Φ2

)

+ tr
(

Q̃Φ1Q
)

+m tr
(

Q̃Q
)]

(3.6.12)

We note that a non–trivial deformation appears in the superpotential only in the pure
adjoint sector. The interaction and the mass terms involving flavor matter do not change,
so that the vev for Φ1 which is related to the D7–brane location through the dictionary
(3.6.2) is the same as in the undeformed theory, 〈Φ1〉 = −m/g ≡ L. Since in the su-
pergravity description we have chosen L to be real (X5 = L, X6 = 0) here and in what
follows we restrict to real values of m.

As already stressed, for m 6= 0 the Q1 charge is not conserved, neither is Q
(LM)
2 .

Therefore, this deformed theory possesses only one U(1) non–R–symmetry corresponding

to Q
(LM)
1 .

The action (3.6.12) has been obtained by ∗–product deforming the N = 2 SYM action
(3.6.1). However, it could have been equivalently obtained by adding fundamental chiral
matter to the N = 1 β–deformed SYM theory of [19]. In particular, the appearance of
the gauge coupling constant in front of the adjoint chiral superpotential insures that for
m = 0 and in the probe approximation the theory is superconformal invariant [67].

We now consider the more general non–supersymmetric case. We implement the ∗–
product (3.6.9) in the action (3.6.4). Using the deformed commutator [66]

[Xi, Xj]Mij
≡ eiπMijXiXj − e−iπMijXjXi (3.6.13)
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where for Xi fermions

Mfermions ≡ B =









0 1
2
(γ1 + γ2) −1

2
(γ1 + γ3) −1

2
(γ2 − γ3)

−1
2
(γ1 + γ2) 0 1

2
(γ2 + γ3) −1

2
(γ3 − γ1)

1
2
(γ3 + γ1) −1

2
(γ2 + γ3) 0 −1

2
(γ1 − γ2)

1
2
(γ2 − γ3) 1

2
(γ3 − γ1) 1

2
(γ1 − γ2) 0









(3.6.14)

whereas for scalars

Mscalars ≡ C =





0 γ3 −γ2
−γ3 0 γ1
γ2 −γ1 0



 (3.6.15)

the deformed LN=4 takes the form

LN=4 = Tr

(

−1
2
fαβfαβ + iλ

[

∇, λ̄
]

+ āi�a
i + iψi

[

∇, ψ̄i

]

)

+ g2Tr

(

−1
4

[

ai, āi
] [

aj , āj
]

+
1

2

[

ai, aj
]

Cij
[āi, āj ]Cij

)

+

{

igTr

(

[

ψ̄i, λ̄
]

Bi4
ai +

1

2
ǫijk
[

ψi, ψj
]

Bij
ak
)

+ h.c.

}

(3.6.16)

while the bosonic sector reads

Lb = tr
(

q̄
(

�−m2
)

q + q̃
(

�−m2
)

¯̃q
)

− g2

4
tr
(

q̄ q q̄ q + q̃ ¯̃q q̃ ¯̃q − 2q̄ ¯̃q q̃ q + 4q̃ ¯̃q q̄ q
)

+
g2

2
tr
(

q̃
[

ai, āi
]

¯̃q − q̄
[

ai, āi
]

q + q̄ā1a
1q + q̃a1ā1¯̃q

)

+
{

g2 tr
(

q̃ [ā2, ā3]C23
q
)

− gm tr
(

e−iπ(γ2−γ3)q̄a1q + eiπ(γ2−γ3)q̃a1¯̃q
)

+ h.c.
}

(3.6.17)

and the fermionic one

Lf = i tr
(

χ̄
−→∇χ− χ̃←−∇ ¯̃χ

)

+
{

im tr
(

χ̃χ
)

+ h.c.
}

(3.6.18)

Finally the boson–fermion interaction terms become

Lint = ig tr
(

ei
π
4
(γ2−γ3)χ̄λ̄q − e−iπ

4
(γ2−γ3)q̃λ̄¯̃χ

+ ei
π
4
(γ2−γ3)q̃ψ1χ+ e−iπ

4
(γ2−γ3)χ̃ψ1q + χ̃a1χ

)

+ h.c. (3.6.19)

We observe that the fundamental fields q and q̃ experiment the γ1–deformation only
through the modified commutator [ā2, ā3]C23

in Lb. Moreover, γ2 and γ3 are always present
in the combination (γ2 − γ3) so that the corresponding phases disappear when γ2 = γ3,
in particular for supersymmetric deformations.
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3.7 Conclusions

In this first part of the thesis we have studied the embedding of D7–branes in LM–Frolov
backgrounds with the aim of finding the mesonic spectrum of the dual Yang–Mills theory
with flavors, according to the gauge/gravity correspondence. Since these theories have
N = 1 or no supersymmetry depending on the choice of the deformation parameters γ̂i,
they provide an interesting playground in the study of generalizations of the AdS/CFT
correspondence to more realistic models with less supersymmetry.

These geometries are smoothly related to the standard AdS5×S5 from which they can
be obtained by operating with TsT transformations. Therefore, if we consider D7–brane
embeddings which closely mimic the ones of the undeformed case [30] we expect the fla-
vor probes to share some properties with the probes of the undeformed case. Driven by
this observation we have considered a spacetime filling D7–brane wrapped on a deformed
three–sphere in the internal coordinates. We have found that for both the supersym-
metric and the non–supersymmetric deformations a static configuration exists which is
completely independent of the specific values of the deformation parameters γ̂i. As a
consequence the D7–brane still lies at fixed values of its transverse directions and ex-
hibits no quark condensate [30]. We remark that this shape is exact and stable in the
supersymmetric as well as in the non–supersymmetric cases.

Although the shape of the brane does not feel the effects of the deformation, its
fluctuations do. In fact, studying the scalar and vector fluctuations we have found that
a non–trivial dependence on the γ̂2,3 parameters appears both in terms which correct
the free dynamics of the modes and in terms which couple the U(1) worldvolume gauge
field to one of the scalars in the mutual orthogonal directions to the D3–D7 system. All
the deformation–dependent contributions arise from the Dirac–Born–Infeld term in the
D7–brane action, whereas the Wess–Zumino term does not feel the deformation. The γ̂1
parameter, associated to a TsT transformation along the torus inside the D7 worldvolume,
never enters the equations of motion.

A smooth limit to the undeformed equations of motion exists for γ̂i → 0. In this limit
all the modes decouple and we are back to the undeformed solutions of [36]. The effect of
the deformations becomes negligible also in the UV limit (ρ → ∞). This is an expected
result since the deformations involve tori in the internal space and in the UV limit the
metric of the background reduces to flat four dimensional Minkowski spacetime.

On the other hand, the situation changes once we consider the general deformed equa-
tions. In fact, solving analytically these equations for elementary excitations of scalars
and vectors we have found that the mass spectrum is still discrete and with a mass gap
and the corresponding eigenstates match the one of the undeformed case. However, the
mass eigenvalues acquire a non–trivial dependence on γ̂2,3. These new terms, being pro-
portional to the U(1)×U(1) quantum numbers (m2, m3), induce a level spitting according
to a Zeeman–like effect.
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We have performed a detailed analysis of the level splitting and of the corresponding
degeneracy. The situation turns out to be very different according to γ̂2 and γ̂3 being
equal or not. In fact, for γ̂2 6= γ̂3 the degeneracy is almost completely broken since
only a residual degeneracy associated to the invariance of the mass under (m2, m3) →
(−m2,−m3) survives. In particular, the breaking of SO(4) is manifest. Instead, for γ̂2 =
γ̂3 the mass levels split but for each value of the mass an accidental degeneracy survives
which is remnant of the N = 2 case. While in the supersymmetric case (γ̂1 = γ̂2 = γ̂3)
this allows to arrange mesons in massive N = 1 multiplets according to the fact that
our embedding preserves supersymmetry, this higher degree of degeneracy in the bosonic
sector of the theory does not have a clear explanation at the moment. In order to make
definite statements about the supersymmetry properties of the mesonic spectrum and
supersymmetry breaking one should study the fermionic sector. A useful strategy could
be the bottom–up approach described in [47]. We leave this interesting open problem for
the future.

Our analysis shares some similarities with other cases considered in the literature.

First of all, we have found that a stable embedding of the probe brane can be realized
which is static and independent of the deformation parameters. This feature has been
already encountered for other brane configurations in deformed backgrounds. An example
is given by particular dynamical probe D3–branes (giant gravitons) which have been
first well understood in [55]. In fact, there it has been shown that giant gravitons exist
and are stable even in the absence of supersymmetry and their dynamics turns out to
be completely independent of the deformation parameters, being then equal to the one
of the undeformed theory. Moreover, since the giants wrap the same cycle inside the
internal deformed space as our D7–brane does, their bosonic fluctuations encode the same
dependence on the deformation parameters observed in the mesonic spectrum coming from
the D7.

A second similarity emerges with the case of flavors in non–commutative theories
investigated in [41]. In fact, the non–trivial coupling between scalar and gauge modes
that in our case is induced by the deformation resembles the one which appears in the
case of D7–branes embedded in AdS5 × S5 with a B field turned on along spacetime
directions. This is not surprising since both theories can be obtained performing a TsT
transformation of AdS5 × S5: If the TsT is performed in AdS one obtains the dual of a
non–commutative theory while the LM–Frolov picture is recovered if this transformation
deforms the internal S5.

The field theory dual to the (super)gravity picture we have considered can be obtained
by deforming the standard action for N = 4 super Yang–Mills coupled to massive N = 2
hypermultiplets by the ∗–product prescription [19]. In principle, in the supergravity dual
description this should correspond to performing a TsT deformation after the embedding
of the probe brane. However, as we have discussed, adding the flavor brane in the deformed
background or deforming the Karch–Katz D3–D7 configuration are commuting operations.
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Therefore, the prescription we propose on the field theory side is consistent with what
we have done on the string theory side. It is important to stress that the choice of the
embedding we have made is crucial for the above reasoning.

What we obtain is a deformed gauge field theory with massive fundamental matter
parametrized by four real parameters γi and m. We can play with them in order to
break global U(1) symmetries, conformality and/or supersymmetry in a very controlled
way. In fact, in the quenching approximation a non–vanishing mass parameter related
to the location of the probe in the dual geometry breaks conformal invariance and one
of the U(1) global symmetries of the massless theory. On the other hand, the values of
the deformation parameters γi determine the degree of supersymmetry of the theory, as
already discussed. It is interesting to note that as we found on the gravity side, the three
deformation parameters play different roles in the fundamental sector of the theory. In
fact, γ2,3 always appear in the combination (γ2 − γ3), so that if γ2 = γ3 this sector gets
deformed only by γ1–dependent phases induced by the interaction with the adjoint matter.
In the supersymmetric case this particular behavior is manifest when using superspace
formalism since a non–trivial deformation appears only in the adjoint sector, whereas the
flavor superpotential remains undeformed.

Let us conclude mentioning some directions in which this work could be extended. We
have considered only the non–interacting mesonic sector. Expanding the D7–brane action
beyond the second order in α′ one can get informations on the interactions among the
mesons and understand how the deformation enters the couplings. Moreover, one could
extend our analysis to mesons with large spin in Minkowski, similarly to what has been
done in the ordinary, undeformed case [36].

Finally it could be very interesting to study in detail the other embeddings proposed in
[57] and in particular the one which seems to exhibit chiral symmetry breaking. Moreover,
going beyond the quenching approximation has been representing an interesting subject
since the recent efforts to study back–reacted models [46].
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Part II

Scattering amplitudes in N = 4 SYM
theory
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Chapter 4

General introduction to scattering
amplitudes

On–shell scattering amplitudes are one of the most basic quantities that can be computed
in any theory. Their connections to physical observables of primary importance, like the
cross sections and the time of decay of particles, make of them crucial objects in order to
understand the behavior of a theory.

We are mainly interested in scattering processes in non–abelian gauge theories: For
definiteness, we concentrate on the SU(N) gauge theory. The scattered particles are
massless particles described by on–shell momenta pi (p

2
i = 0) and helicity λi. Any particle

carries also an adjoint gauge index ai = 1, · · · , N2 − 1.

In quantum field theories, the LSZ theorem [70] relates scattering amplitudes to
Green’s functions. At weak coupling, Green’s functions can be computed from the la-
grangian of the theory through the technology of Feynman diagrams. The symmetries
of the action turn out to be manifest not at the level of single Feynman diagrams but
when they are resummed into physical quantities. This usually complicates a lot the
computation: Expected simplicity in the results is hidden inside very cumbersome inter-
mediate expressions, in particular when loop corrections are taken into account. This fact
motivated throughout the years a lot of activity with the aim to find shortcuts in the
computational processes.

There are mainly two non–exclusive strategies in order to make the perturbative cal-
culation of an amplitude more accessible

1) Simplify the object
By using the informations about the quantum numbers of the particles involved in
the scattering process it is possible to move from the full amplitude to the simpler
concept of color and helicity ordered partial amplitudes.
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2) Improve the computational methods
When a naive Feynman diagram approach is used, proliferation in the number of
terms with the number of loops and of scattered particles follows from the fact
that neither global symmetries of the theory nor gauge symmetries are respected.
Symmetry respecting approaches, by including these kinds of symmetries, reduce
drastically the number of the contributions at any stage of the computation.

We can distinguish between indirect and direct symmetry respecting approaches.
The firsts make use of analytic properties of the amplitudes, the seconds are more
sophisticated versions of the common techniques based on Feynman diagrams. Both
incorporates the simplifying properties of global and local invariance of the theory.

Indirect techniques have been extensively developed and used during the years, both
at tree level [72, 73, 74] and at loops [78]. Most of the known results about the ampli-
tudes at weak coupling are based on these techniques. However, the applicability of
indirect methods is limited at loop level by a set of assumptions whose validity is not
guaranteed at any loop order and for any SYM theory. Direct techniques have the
advantage of not requiring any sort of assumptions. They are more sophisticated
versions of the usual Feynman diagrammatic approach. As a consequence, their
validity and applicability have the same full generality of the traditional techniques.

These new ideas have been very prolific in their applications to supersymmetric as
well as non supersymmetric quantum field theories, QCD included [118]. Moreover, they
led to new hypothesis about the UV behavior of supergravity theories [119]. However,
the most remarkable results were found for the N = 4 SYM theory (see for example [97]
for a review).

In this Chapter we introduce the concept of partial amplitudes and we describe the
main indirect technique used for loop computations, namely the unitarity cuts technique.
Moreover we discuss the main results found through these methods for amplitudes in
N = 4 SYM theory and we show why these results actually ask for new inspections based
on a direct approach.

4.1 Quantum number analysis

Quantum numbers of scattered particles can be used to separate the full scattering am-
plitude into simpler independent objects called color ordered partial amplitudes.

In a SU(N) gauge theory, a scattering amplitude involving n gluons is a function
of their quantum numbers {pi, λi, ai}, i.e. their momenta, helicities λi = ± and color
numbers. At tree level, these informations, in particular the informations about the color,
allow to decompose the full amplitude in basic building blocks proportional to different
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color trace structures

An({pi, λi, ai}) = gn−2
∑

σ∈Sn/Zn

Tr (T aσ1 · · ·T aσn )An

(

σ
(

1λ1
)

, · · · , σ
(

nλn
))

(4.1.1)

The sum runs over all possible non–cyclic permutations of the external particles in such a
way that the traces appearing in this combination are all the possible traces of n distinct
color matrices. The coefficients An are the color ordered partial amplitudes. In this sense,
it is convenient to think of the traces in (4.1.1) as the elements of a basis over which
expanding the full amplitude An and the color ordered amplitudes An as its expansion
coefficients.

At higher loops, formula (4.1.1) is still valid provided that the planar (large N) limit is
considered. This means that in these hypothesis the physical content of the full scattering
amplitude An is entirely contained in the simpler color ordered amplitudes An.

Note that at each amplitude with a fixed configuration of helicities λi corresponds a
set of color ordered amplitudes An. Thus, when all possible configurations of helicities
are considered, in principle the number of color ordered amplitudes becomes very large.
However, discrete symmetries reduce the number of independent color ordered amplitudes
An. In particular, a lot of connections between different color ordered amplitudes are pro-
duced by the P–parity that reverses all the helicities in an amplitudes, the C–parity that
exchanges a particle with an anti–particle, and the cyclic permutation symmetry in the
elements of An that follows from the cyclic symmetry of the color trace Tr (T aσ1 · · ·T aσn )
associated to each An.

For example, by using these symmetries it is possible to show that in a four point
amplitude there are just four independent partial amplitudes, namely

A4(1
+, 2+, 3+, 4+), A4(1

+, 2+, 3+, 4−), A4(1
+, 2+, 3−, 4−), A4(1

+, 2−, 3+, 4−)

(4.1.2)

The same happens at five points. By going up with the number of scattered particles it
is in general convenient to organize color ordered amplitudes by looking at the number of
negative helicity gluons involved in the scattering process.

It is quite easy to show that scattering amplitudes of all particles or all but one
particles with the same helicity vanishes in any YM theory at tree level. In SYM theories,
this follows from imposing the Super–Ward identities [71]. Since the validity of SWI goes
beyond the perturbative computations, this result is true at any loop order in perturbation
theory for SYM theories

A(L)
n (1±, 2±, · · · , n±) = A(L)

n (1∓, 2±, · · · , n±) = 0 (4.1.3)

Thus, the first non–trivial amplitude in any SYM theory has all but two plus (or all but
two minus) helicity gluons. These amplitudes are called Maximally Helicity Violating
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(MHV ) amplitudes. MHV planar amplitudes in N = 4 SYM theory are the main objects
of our investigation in the second part of this thesis. Amplitudes with 3, · · · , k+2 negative
helicity gluons are usually referred to as NMHV,∗· · · , NkMHV amplitudes.

When supersymmetric theories are considered, using supersymmetry transformations
we can express any amplitude in terms of gluonic amplitudes. The following identity holds
for the MHV case

A(L)
n (1−, 2−p , 3

+
p , 4

+, · · · , n+) =

(〈12〉
〈13〉

)2|hp|
A(L)

n (1−, 2−φ , 3
+
φ , 4

+, · · · , n+) (4.1.4)

where no subscript refers to gluons, the subscript φ refers to scalar fields (the ± apex
indicates if they are particles or antiparticles) and p refers to any particle (scalar, fermion
or gluon).

One of the main features of the MHV amplitudes is that loop corrections can be
factorized into a universal scalar function MMHV

n . Calling j and k the positions of the
two negative helicity particles, we can write

AMHV
n

(

1+, · · · , j−, · · · , k−, · · · , n+
)

= AMHV
n,tree + g2AMHV

n,1 loop +O
(

g4
)

= AMHV
n,tree MMHV

n

(

{sij} , g2
)

(4.1.5)

The function MMHV
n is a function of the Mandelstam kinematic invariants sij and of

the coupling constant g. On the other hand, the tree level amplitude takes a very easy
form [75, 72]

AMHV
n,tree =

〈jk〉4
〈12〉〈23〉 · · · 〈n1〉 (4.1.6)

This formula, known as the Parke–Taylor formula, makes use of the spinor helicity for-
malism, where momenta pµ are replaced by the product of two–component commuting
Weyl spinors λα and λ̃α̇ of helicity ±1/2 (pαα̇ = σαα̇

µ pµ = λαλ̃α̇) and 〈jk〉 = ǫαβλαλβ.

4.2 Unitarity techniques and recursive relations

The factorization properties (4.1.5) of the MHV amplitudes reduce the problem of com-
puting an amplitude to the problem of determining the scalar function MMHV

n . Being a
scalar function, it can be written as a combination of scalar loop integrals and rational
functions

MMHV
n =

∑

j∈B
cjIj +R (4.2.1)

∗Acronym for Next to MHV
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The set B of integrals and the rational functions R depend on the process that is consid-
ered, the loop order at which the process is computed and, of course, the theory in which
the scattering process takes place.

Unitarity based techniques provide indirect methods to select the set of integrals B
and to evaluate the coefficients cj in the expansion (4.2.1). The simplifying properties
of local and global invariance are incorporated into a recursive procedure that allows the
analytic construction of on–shell loop amplitudes in terms of on–shell tree level (gauge
and globally invariant) amplitudes.

These techniques are based on the unitarity property of the S matrix SS† = 1. Sepa-
rating in the S matrix the interaction part T

S = 1 + iT (4.2.2)

it follows that

i
(

T † − T
)

= 2ℑ (T ) = T †T (4.2.3)

The left hand side of this equation corresponds to a discontinuity of the scattering ampli-
tude, i.e. to a branch cut in complex momenta space and this is related to the imaginary
part of an amplitude. On the other hand the right hand side is given by the product of
lower loop on–shell amplitudes and it can be interpreted as a higher loop amplitude with
some propagator replaced by on–shell cut propagators

1

ℓ2 + iǫ
≡ pp

(

1

ℓ2

)

− 2πiθ(ℓ0)δ+
(

ℓ2
)

→ −2πiθ(ℓ0)δ+
(

ℓ2
)

(4.2.4)

At the diagrammatic level, this replacement is universally known as Cutkosky rules [117].
For example, the discontinuity at a double cut in the s–channel for a four point amplitude
at one loop can be written

−iDiscA4,1|s−cut = (2π)2
∑

helicity

∫

dDℓ

(2π)D
δ(+)(ℓ2) Atreen−j+2(K − ℓ · · · , ℓ)×

× δ(+)((ℓ−K)2) Atreej+2 (−ℓ · · · , ℓ−K)

(4.2.5)

The sum in this formula is taken over all possible helicities of the internal legs that
have been cutted. The amplitudes are on–shell amplitudes. So eq. (4.2.5) tells us that
by ”sewing” together lower loop on–shell amplitudes it is possible to reconstruct the
discontinuity at the cut, i.e. the imaginary part at the cut, of higher loop amplitudes.

The unitarity methods go beyond this by assuming that even the real part of the
amplitude at the cut can be obtained by the sewing procedure simply replacing in (4.2.5)
the δ functions with the full propagators (basically using relation (4.2.4) in the opposite
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sense). For example, at one loop both the real and the imaginary parts of the amplitude
derive from the formula

A4,1|s−cut =
∑

helicity

∫

dDℓ

(2π)D
i

ℓ2
Atreen−j+2(K − ℓ · · · , ℓ)

i

(ℓ−K)2
Atreej+2 (−ℓ · · · , ℓ−K)

(4.2.6)

The amplitudes entering in this formula continue to be on–shell amplitudes. Formula
(4.2.6) is valid just for those terms with an s–channel branch cut. Terms with other
branch cuts can be reconstructed by considering different sets of cuts. The full amplitude,
up to rational terms, can be reconstructed by considering cuts in all possible channels.
Rational terms can be computed at least at one loop by performing cuts in D = 4 − 2ǫ
dimensions [76, 77].

The procedure here outlined can be understood in this way. Suppose that a description
of the amplitude in terms of the sum of Feynman diagrams (i.e. of sets of propagators
and vertices) exists. When a cut on a particular channel is considered, basically one is
selecting only those Feynman diagrams that exhibit the cut propagators. So, at each
piece of the full amplitude, identified through a set of cuts and computed by gluing in a
particular way lower loop amplitudes, it corresponds a set of propagators. By analyzing
all possible sets of cuts one probes all possible combinations of propagators and thus all
possible Feynman diagrams that contribute to the scattering process.

When a basis of integrals is known a priori, the reconstruction of the amplitude through
unitarity gets heavily simplified since all possible sets of propagators are known from the
very beginning. This is the case of any one loop process in any pure SYM theory [78, 101].
It is an old known result, in fact, that a good basis of integrals is composed by box, triangle
and bubble scalar integrals with massless or massive legs (see Fig 4.2). For the N = 4

j

k

l

ii

j

k i

j

Figure 4.1: Massive and massless box, triangle and bubble one loop scalar integrals.

SYM theory the situation at one loop is more and more easier since it has been explicitly
demonstrated [78] that at this perturbative order the contributions from triangles and
bubbles cancel.

Higher loops are affected by complications even in N = 4 SYM theory. In particular,
in contrast with the one loop case, a general basis of independent scalar integrals is not
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known. This follows from the fact that the integrals in the proposed basis are actually
related one to the other by a set of identities that occur between Feynman integrals. The
most important of them are integration by parts identities [79] and the Lorentz invariance
identities [81]. A set of master integrals can be identified only in particularly lucky cases
such as the two loop four point scattering process with none [82] or one massive external
leg [83]. However this is far from being the full story at two loops.

Despite that, parts of the full amplitude at higher loops containing specific sets of
propagators can be isolated as well through the cutting techniques [84]. Nevertheless, the
possibility to reconstruct the full amplitude at higher loops is more an assertion than a
theorem, even for the easiest N = 4 SYM theory case.

In [85, 84] a general procedure, the rung rule, has been proposed to build up a basis of
integrals contributing at higher loop once that a lower loop basis is known. Although it
has been shown that the rung rule fails to reproduce all the integrals in the basis for the
N = 4 MHV amplitudes since four loops on [109], nevertheless it has been use to point
out some general features of the integral basis.

In general higher loop integrals can be formed by inserting extra lines inside a lower
loop integral. For example, starting from a one–loop box integral and inserting an extra
line, one produces doublebox, pentabox and bubblebox two loop integrals (see Fig 4.2).

=⇒

doubleboxes

pentaboxes

bubbleboxes

Figure 4.2: The addiction of an extra internal (dashed) line allow to move from one loop
to two loop integrals.

The rung rule is a more precise formalization of this observation. Basically, the rung
rule asserts that once that all the integrals contributing to an amplitude at L−1 loop are
known, then the integrals contributing at L loop are recovered by inserting inside the L−1
loop integrals an extra internal line (a ”rung”) in all possible ways (see Fig 4.3). Each
inserted line must be multiplied by the imaginary unit i times the invariant constructed
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by the momenta flowing in the lines connected by the extra rung. Note that when the

1l

l2

1l

l2 1l +( l
2

)2i

Figure 4.3: The rung rule.

external lines are massless, extra lines forming a bubble or a triangle has associated a null
multiplicative factor. This means that, in these hypothesis, no bubbles or triangles can
be formed at higher loops. This is the case, for example, of the four point amplitude in
the N = 4 SYM theory. Since at one loop, the amplitude is proportional to the massless
box integral, it is expected that at higher loops no extra bubbles and triangles can be
formed.

For n > 4 scattering processes, the one loop amplitude, even in the N = 4 SYM
theory, is proportional to box integrals with massive legs and this argument cannot be
used to exclude the presence of triangles at higher loops. Nevertheless, it is assumed that
any MHV scattering process in the N = 4 SYM theory is triangle and bubble free at any
loop order. This assumption is known as the no–bubble no–triangle prescription.

This prescription can be partially related to the ultraviolet behavior of the N = 4
SYM theory. A well known relation [1] valid for SYM theories and involving the number
of supersymmetries N , the number of loops L and the dimensionality D

D < 2L(N − 1) + 2 (4.2.7)

implies that the N = 4 SYM theory at two loop is UV finite even in D = 6. Bubbles
and triangles diverge in D = 6 and their disappearance could be in principle suggested by
the relation (4.2.7). However, this argument is far from being a demonstration of the no–
triangle assumption. In fact, the UV behavior of triangles and bubbles does not prevent
the possibility that they enter in the final expressions in linear combinations such that
their UV divergent part in D = 6 cancel. Moreover, the argument cannot be extended
for L > 2. Last but not least, in four dimensional spacetime, where usually one works,
just the bubbles diverge but this is completely unrelated to their disappearance even at
one loop.

In spite of the lack of a general proof, the rung rule and the no–bubble no–triangle
assumptions helped a lot in the computation of a higher loops N = 4 SYM MHV ampli-
tudes.

The first higher loop computation was the four gluon amplitude (1+, 2+, 3−, 4−) at two
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loops [85]. The result found for this object is

M2 loop
4 = −1
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(4.2.8)

Actually this result was found without using the no–bubble no–triangle hypothesis. How-
ever, by using this hypothesis the computation of the amplitude becomes immediate. In
fact, among all possible integrals that could appear at two loop (see Fig 4.2) just the
two doubleboxes do not have sub–triangles or sub–bubbles. Thus, the computation of the
amplitude gets reduced by the no–bubble no–triangle assumption to compute only the
two coefficients of these integrals.

The no–bubble no–triangle assumption has been applied in more involved computa-
tions too: At higher loops (the four point amplitude at five loops has been computed
in [86]) and with a larger number of scattered particles (up to five [87] and six [88, 89]
gluons at two loops). The results found have opened the way to a lot of new relations and
properties of MHV color ordered planar amplitudes in N = 4 SYM theory. However, the
confidence that we have on these properties is linked to the validity of the assumptions
of the unitarity computational techniques. As far as a general proof of these properties
is not found (even for higher loops), there is always the possibility that the beautiful
characteristics of N = 4 scattering amplitudes are just a midsummer night dream.

A partial example of this is given by the BDS ansatz, initially supposed valid for MHV
amplitudes with any number of particles at any loop but falsified by a computation at two
loop involving six particles scattered. A better established property of MHV amplitudes
is the dual conformal invariance. A description of these two properties and of the state
of the art in their validation follows in the next two Sections.

4.2.1 The BDS ansatz

The rung rule suggests that the integrals entering in the expression for an amplitude at
higher loop are related to the lower loop contributing integrals. In particular, it relates
the arguments of (some of) the loop integrals at different perturbative orders. Supposing
to be able to compute all the integrals that contribute to an MHV amplitude at L − 1
and at L loops in the dimensional regularization scheme, it seems reasonable to expect
that the two results show some regularity.

The comparison of the four point two loop amplitude (4.2.8) with the same one loop
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amplitude [1, 90] exhibits the first hints that a regularity actually exists. By fixing D =
4− 2ǫ, it was found

M2 loop
4 (ǫ) =

1

2

(

M1 loop
2 (ǫ)

)2

+ f (2)(ǫ)M1 loop
2 (2ǫ) + C(2) +O(ǫ) (4.2.9)

This relation between amplitudes is not completely new, since a similar structure for
infrared ǫ poles has been known since a long time [91, 92]. However, the extension to the
finite parts makes equation (4.2.9) more and more precious, in particular if it is true for
amplitudes at higher points too. A similar relation valid for the splitting functions [90],
by linking higher to lower point amplitudes at fixed perturbative order seems to suggests
that this is the case. Moreover, the rung rule and the no–bubble no–triangle hypothesis
suggest that a similar behavior could be extended to higher loops too.

All these pieces of evidence have been collected in [92] in an iterative formula, known
as BDS ansatz, valid for MHV planar amplitudes in N = 4 SYM theory. This formula
connects MHV amplitudes at any perturbative order to the one loop amplitudes for any
number of external particles. The BDS ansatz reads

Mn = exp

{ ∞
∑

l=1

al
(

f (l)(ǫ)M (1)
n (lǫ) + C(l) +O(ǫ)

)

}

(4.2.10)

where the factor

a ≡ Nαs

2π

(

4πe−γ
)ǫ

(4.2.11)

keeps track of the loop order. The coefficients f l(ǫ) = f l
0 + ǫf l

1 + ǫ2f l
2 are independent

of the number of external legs and f l
0 are the Taylor coefficients of the cusp anomalous

dimension

f(a) = 4
∞
∑

l=0

alf
(l)
0 (4.2.12)

By construction the presence of the cusp anomalous dimension includes in (4.2.10) the
correct infrared behavior under collinear and soft limits [92]. Therefore possible deviations
from the behavior imposed by the BDS ansatz can be found just in the IR regular terms
and must vanish as soon as two particles become collinear in any possible channel.

A lot of work has been done in order to check the BDS ansatz. Principally pertur-
bative computations have been performed using unitarity and assuming the no–bubble
no–triangle hypothesis. Indirect checks due to the supposed equivalence between MHV
planar amplitudes and Wilson loops have been done too [102, 103, 105]. The results show
an agreement between unitarity calculations and the BDS ansatz for four and five point
amplitudes. However, at six points and two loops [106, 88, 89] deviations have been ob-
served. Their origin has been interpreted as due to the presence of three particle collinear
limits for such amplitudes, while the BDS ansatz includes just the two particle collinear
limits.
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4.2.2 Dual conformal symmetry

A direct inspection of the form of the four point MHV amplitudes of the N = 4 SYM
theory up to three loop puts in evidence the possibility that they satisfy a new symmetry,
called dual conformal symmetry [108, 102].

The integrals that appear in those results, in fact, if regularized by keeping the external
legs off–shell, exhibit a conformal SO(2, 4) symmetry unrelated to the conformal group of
the N = 4 SYM theory. In order to distinguish it from the manifest SO(2, 4) invariance
of the N = 4 lagrangian, this symmetry is referred to as dual conformal symmetry.

Consider, for example, the box integral that enters in the expression for the four point
amplitude at one loop

I =

∫

dDk
1

k2 (k − p1)2 (k − p1− p2)2 (k + p4)2
(4.2.13)

If the external legs are put off–shell p2i 6= 0, in the integral we can safely keep D = 4.
The dual conformal properties of this integral become manifest by using a set of dual
coordinates xi, related to the external and loop momenta. In this specific case

p1 = x1 − x2 ≡ x12, p2 = x23, p3 = x34, p4 = x41, k = x15 (4.2.14)

Graphically, the xi are the vertices of the dual diagram of the loop integral. The propa-

x5

p4

p3p2

p1

x4

x3

x2

x1

Figure 4.4: Dual diagram for the one loop box integral

gators of the integral are written in the x space as the square of differences of two of the
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x, namely x2ij . Indices i and j refer to the x’s at the extrema of the segments that form
the dual diagram. Integral (4.2.13) can be rewritten as

I =

∫

dDx5
1

x215x
2
25x

2
35x

2
45

(4.2.15)

In this form, the integral is manifestly invariant with respect to translations and rotations
of the xi and, if D = 4, it transforms covariantly with respect to conformal inversions

x̃µ =
xµ

x2
(4.2.16)

This same analysis can be extended to all the four point integrals that have been
found to contribute to the scattering amplitude up to three loops [108]. Note that these
integrals are the ones recursively constructed from the one loop box by using the rung rule
and the no–bubble no–triangle hypothesis. However, the relevance of the dual conformal
symmetry goes beyond that of the rung rule.

First of all, supposing true the dual conformal symmetry for a general MHV amplitude,
then the rung rule and the no–bubble no–triangle hypothesis follow as straightforward
consequences. Triangle and bubble integrals, in fact, are not conformally covariant in the
x space.

Moreover, the dual conformal symmetry constraints also eventual rational terms in
the final expressions for the amplitudes. In fact, if the dual conformal symmetry is valid,
the finite parts must be functions of conformal invariant ratios. This ratios in the x space
have the general form

uijkl =
x2ijx

2
kl

x2ikx
2
jl

, xij = xi − xj (4.2.17)

Thus, on shell condition p2i = 0 and the definitions (4.2.14) imply that no such invariants
can be built for four and five scattered particles. As a consequence, no rational functions
exists for the four and five amplitudes and the ǫ–finite part in their final expressions is
given by the finite parts of the loop integrals that contribute to those amplitudes.

Last but not least, it is in principle possible to use dual conformal symmetry as an a
priori criterion to see if a Feynman integral can contribute or not to an amplitude. Not all
the integrals that can be constructed with the rung rule and the no–bubble no–triangle
hypothesis enter in the final expressions for an amplitude at a fixed loop order. A direct
inspection of the four point amplitude since three loops on [109, 110, 102] showed in
fact that there are integrals that do not contribute to the amplitude, although they have
been constructed following the rung rule. These integrals actually diverge even when the
external legs are put off–shell and, as a consequence, are not conformal invariant objects.
If we assume that planar MHV amplitudes respect the dual conformal symmetry, the null
contribution from these integrals finds an immediate explanation.
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Thus, if valid in general, dual conformal symmetry would be a great step toward the
definition of a basis of independent contributing integrals at least for MHV amplitudes.
However, in the lack of a general proof of its validity, this symmetry is just an assumption
that can find support primarily from computations. In this sense, it assume great impor-
tance the observation that at two loops both the five point and the six point amplitudes
where found to be functions of conformal integrals only [87, 88].

AdS/CFT correspondence provides other more fundamental arguments in favor of the
general validity of the dual conformal symmetry.

Scattering amplitudes at strong coupling are given by the area of the minimal surface
that ends on a closed line formed by light–like segments on the boundary of AdS space
[93]. Formally, this prescription for scattering amplitudes is exactly the same as the one
for computing the expectation values of Wilson loops in AdS/CFT [96]. Dual conformal
invariance of MHV scattering amplitudes at strong coupling follows from the ordinary
conformal invariance of these Wilson loops.

It has been conjectured that even in the perturbative regime the expectation value of
Wilson loops with a contour given by light–like segments could reproduce the results for
the MHV scattering amplitudes. This conjecture have been tested by comparing unitarity
results for MHV amplitudes and new computations for Wilson loops [102, 103, 105, 104]
up to two loops. If proved at all perturbative orders, the equivalence between Wilson loops
and scattering amplitudes would give a general proof of the dual conformal symmetry.
Unfortunately, this general demonstration is still missing and the origins of the duality
between MHV amplitudes and Wilson loops at weak coupling are still obscure.

4.3 Why a direct computation

In the previous Section we highlighted the main properties discovered about planar MHV
amplitudes in N = 4 SYM theory. Although remarkable results have been acquired, still
there are open problems and possible objections that can be excepted.

First of all, the unitarity techniques, as we have seen, are based on a set of assumptions
that consist in extending properties of MHV amplitudes directly observed at low loop
and for low number of particles to any loop and any MHV process. In particular, there
are three main assumptions that still wait for a general proof: 1) The possibility of
reconstructing through the sewing procedure not just the imaginary part of an amplitude
at a cut but the real part too; 2) The possibility of reconstructing correctly the rational
parts of an amplitude by performing cuts in D = 4 − 2ǫ dimension; 3) The no–bubble
no–triangle hypothesis for the construction of higher loop integrals when a basis of lower
loop integrals is known.

The failure of the BDS ansatz to predict the rational parts of six point MHV ampli-
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tudes, although it finds a technical justification as the triple collinear limits are considered,
on the other hand could be symptomatic of some problem in the general strategy adopted.
The presence of the extra rational terms at six points can be understood on the basis of
the dual conformal symmetry that allows for an arbitrary function of conformal cross
ratios from six points on and excludes it at lower points. However, a general proof of the
dual conformal invariance is confined at strong coupling. On the other hand, the pertur-
bative computations performed in order to check it at weak coupling, being based on the
no–bubble no–triangle hypothesis, partially assume some of the same consequences that
the dual conformal symmetry would imply.

From this point of view, a computation of MHV scattering amplitudes through di-
rect, assumption–free techniques, is definitively necessary. A direct approach, in fact, by
overcoming the problematics of indirect approaches, can check the consistency of indirect
computations and of their assumptions.

In order to accomplished this program it is required at least a computation of MHV
amplitudes at two loop. All the known results at one loop, in fact, are completely well
established and supported by evidences. The BDS ansatz correctly predicts at any loop
order the IR behavior of the amplitudes. Thus possible deviations from the known results
are expected only in the rational parts of the expression for the amplitudes. On the other
hand, rational parts at four and five points are excluded by the dual conformal symmetry.
Thus, the first non trivial check is for the four point MHV amplitude at two loop.

In the following Chapters we develop a direct computational technique that allows, in
principle, to compute any two loop MHV process in N = 4 SYM theory. Moreover, we
move from our expressions, valid for a generic number of scattered particles towards the
four point amplitude.
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Chapter 5

Superspace approach to scattering
amplitudes in SYM theories

Superspace [1] is the most natural arena in which supersymmetric theories play. In partic-
ular, the supergraph technology turns out to be a powerful tool for a Feynman diagram-
matic approach to the perturbative evaluation of physical quantities in SYM theories.

In this Chapter we describe the generalities of the superspace approach to scattering
amplitudes in SYM theories. This provides a direct and symmetry respecting proposal
for the computation of amplitudes in SU(N) supersymmetric gauge theories.

An amplitude in superspace formalism is a local expression in the spinorial coordinates.
It is given by a string of superfields times a kinematic factor expressed as a combination of
loop integrals. The informations about the quantum numbers of the interacting particles
(which particles they are, their helicity, color, momentum) are carried by the string of
superfields. In particular, all the ordinary fields in the same superfield carry the same
helicity. Thus the notion of helicity decomposed amplitudes can be easily enhanced to
the notion of helicity decomposed superamplitudes. To reach this goal an extension of
the twistor formalism in superspace turns out to be very useful.

Our direct computational strategy is based on a combined use of ordinary superspace
technologies and background field method. Moreover, we take advantage from the color
ordering and from a proper employment of the helicity informations relative to the scat-
tered particles.

The perturbative evaluation of a scattering amplitude can be reduced to the compu-
tation of the effective action. The amplitude, in fact, is computed as a combination of
trees of vertices and propagators given by the Green functions.

In general, the evaluation of the complete effective action becomes more and more
involved as soon as the number of loops and of interacting particles increases. Nevertheless
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our superspace technology allows to overcome the problem of increasing complexity related
to the increasing of the number of external particles.

The computation in the background field method follows from the identification of a
relatively small set of vacuum diagrams that contain in an extremly compact form the full
effective action. Thus, from the same set of vacuum diagrams it is in principle possible
to derive any scattering amplitude at fixed perturbative order. This allows to threat all
the amplitudes at a fixed order once for all and to find results valid for any number of
interacting particles.

The basis of our computational techniques is constituted by a set of algebraic relations
involving various spinorial structures in superspace (mainly superspace and spacetime
covariant derivatives and field strength). These identities are the core of our technique:
Although they are only a small set and are quite simple relations, they enter in the
definition of the vertices of the theory and of the Feynman rules, they provide constraints
on the form of the field propagators and of their expansion coefficients and they constitute
the basic computational tools that are heavily used while managing the vacuum diagrams
and extracting from them the effective action. Last bu not least, their properties and their
simpplicity open the way for an automation of the (most part of the) computational steps
with the help of the computer. We accomplished this project by writing completely new
programs that deal with the spinorial structures through symbolic calculus languages
(in particular FORM and Mathematica). The set up of these softwares, although time–
consuming, gives us now a very fast tool to perform direct perturbative computations in
superspace.

The most natural test–area for our techniques is represented by the MHV amplitudes
in N = 4 SYM theory. As we have described in Chapter 4 the important features
characterizing these objects give an immediate relevance to a direct computation that
focuses on them. However, a remarkable features our technologies is that they can be
extended without modifications to any SYM theory in four dimensions and to any helicity
configuration of the particles involved in a scattering process.

This Chapter starts with a description of the twistor formalism in superspace and of the
general features of a superamplitude. Then, we review the supersymmetric background
field method and we give the Feynman rules suitable for any SYM theory. In the last two
Sections we sketch the computational procedure that carry from the vacuum diagrams to
the complete expression of the effective action and from there to the scattering amplitudes
with an arbitrary number of interacting particles.

Although it was a common opinion that a direct Feynman diagram–based approach
to the problem of the amplitudes was out of our present possibilities, in this and the
following Chapters we show that a smart use of non–trivial superspace technologies makes
this available at least for SYM theories.
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5.1 The superamplitude

In this Section we describe the general superspace approach to the definition of super-
amplitudes in SYM theories. The discussion is suitable both for N = 1 and extended
supersymmetric gauge theories.

5.1.1 The twistor formalism in superspace

In N = 1 superspace language the field content of a supersymmetric gauge theory is
given in terms of covariant superspace derivatives and superfield strengths. All objects
are functions of a real prepotential V , according to the following definitions (we work in
chiral representation and use conventions of [1] summarized in the Appendix A)

∇α = e−VDαe
V ≡ Dα − iΓα , ∇α̇ = D̄α̇ ≡ D̄α̇ − iΓα̇

∇αα̇ = −i{∇α,∇α̇} ≡ ∂αα̇ − iΓαα̇ (5.1.1)

where Γα, Γ̄α̇ and Γαα̇ are the spinorial and spacetime connections respectively, while

Wα = −1
2

[

∇α̇
,∇αα̇

]

, W α̇ = −1
2
[∇α,∇αα̇] (5.1.2)

are the (anti)chiral superfield strengths. Connections and field strengths are in the adjoint
representation of the gauge group. While the bosonic connection Γαα̇ is subject to gauge–
fixing, the field strengths transform covariantly.

The field content of the theory is made manifest in the WZ gauge, V | = DαV | =
D2V | = 0. In this gauge, the bosonic connection Γαα̇ contains the ordinary gauge field as
its θθ̄ component

Aαα̇ = Γαα̇| =
1

2
[D̄α̇, Dα]V | (5.1.3)

The field content of the covariant superfield strengths is instead

Wα = λ̃α + θβfαβ + θ2D′ , W α̇ = ¯̃λα̇ + θ̄β̇ f̄α̇β̇ + θ̄2D̄′ (5.1.4)

We recognize (λ̃α,
¯̃
λα̇) as being the gaugino field, fαβ , f̄α̇β̇ the (anti)self–dual components

of the ordinary field strength and D′ a complex scalar field.

In order to describe physical (on–shell) asymptotic states in terms of gauge superfields,
we find convenient to fix the gauge of superspace, D2V = D̄2V = 0, rather than the WZ
gauge. In fact, this gauge does not break supersymmetry and it is therefore suitable for
the kind of calculations we have in mind.

We implement the twistor formalism to superfields. Introducing commuting spinors

(λα, λ̄α̇) as described before, we identify the positive (negative) helicity gluino λ̃α (¯̃λα̇) in
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(5.1.3) with cλα (c
¯̃
λα̇), where c is a “cocycle” which transforms the commuting spinor λα

into an anticommuting one. The cocycle satisfies

c† = −c , c2 = 1

θαcλα = −cλαθα (5.1.5)

In terms of these objects and introducing reference spinors (µα, µ̄α̇), a suitable expansion
for the real prepotential V in the gauge of superspace is

V = θα
cµα

〈λµ〉 + θ̄α̇
cµ̄α̇

[λ̄µ̄]
+ θαθ̄α̇

(

µαλ̄α̇
〈λµ〉 −

λαµ̄α̇

[λ̄µ̄]

)

− 1

2
θαθ̄2cλα +

1

2
θ̄α̇θ2cλ̄α̇ (5.1.6)

where we have set the auxiliary field D′ on–shell (D′ = 0). Moreover, we have chosen
V | = 0 by exploiting the residual gauge invariance

V → V +G with D2G = D̄2G = 0 (5.1.7)

which survives after imposing the gauge of superspace ∗.

We can rewrite the expansion (5.1.6) as V = V + + V −, where

V + = c
µ̄β̇

[λ̄µ̄]

[

−θ̄β̇ + θ̄β̇θαcλα +
1

2
θαθ̄2λ̄β̇λα

]

≡ c
µ̄β̇

[λ̄µ̄]
χ̄β̇

V − = c
µβ

〈λµ〉

[

−θβ + θβ θ̄α̇cλ̄α̇ −
1

2
θ̄α̇θ2λβλ̄α̇

]

≡ c
µβ

〈λµ〉 χ
β (5.1.8)

are given in terms of χ, χ̄ fields which do not depend on the reference polarization spinors.

Consequently, we can define Γαα̇ ≡ Γ+
αα̇ + Γ−

αα̇, where at linearized level Γ±
αα̇ ≡

1
2
[D̄α̇, Dα]V

±. The lowest components

Γ+
αα̇| =

λαµ̄α̇

[λ̄µ̄]
, Γ−

αα̇| =
µαλ̄α̇
〈λµ〉 (5.1.9)

are the two possible polarization states of the gauge field Aαα̇.

From the expansion of the prepotential V we find

Wα = i

[

cλα + θβλαλβ −
1

2
θβ θ̄α̇λαλ̄α̇λβc

]

W α̇ = i

[

cλ̄α̇ + θ̄β̇λ̄α̇λ̄β̇ −
1

2
θβ θ̄β̇λβλ̄β̇λ̄α̇c

]

(5.1.10)

∗We note that since the physical components of G are G|, DαG| and [Dα, D̄α̇]G|, the residual gauge
invariance acts only on the V components which depend on non–physical arbitrary quantities, that is V |
and the reference spinors.
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Defining spinorial derivatives in momentum space as

Dα = ∂α +
1

2
θ̄α̇λαλ̄α̇ , Dα̇ = ∂̄α̇ +

1

2
θαλαλ̄α̇ (5.1.11)

it is easy to check that, as a consequence of the twistors property λαλα = λ̄α̇λ̄α̇ = 0, the
previous expressions satisfy

chirality conditions D̄α̇Wα = 0 , DαW α̇ = 0

on− shell conditions DαWα = 0 , D̄α̇W α̇ = 0 (5.1.12)

Therefore, in the expansion (5.1.10) we recognize the on–shell gluini as first components
and the on–shell positive and negative helicity components of the gauge field strength as
θ and θ̄ components, respectively.

The addition of matter in a given representation of the gauge group is realized by
the inclusion of a certain number of chiral and antichiral superfields Φi, Φ̄i, where i is a
flavor index. On–shell (anti)chirals describe the propagation of scalar (anti)particles and
positive (negative) helicity spinors.

5.1.2 Color–ordered superamplitudes

Having identified the helicity content of the gauge superfields, it is now easy to write the
most general superspace expression for a color–ordered superamplitude.

As we have just described, fermionic helicity states are contained in Wα (positive) and
W α̇ (negative), while gluons with definite helicity can be represented either by the field
strengths and by the Γ+

αα̇ and Γ−
αα̇ parts of the bosonic connection.

We Fourier transform the superfields respect to the bosonic coordinates, while keeping
the original dependence on the spinorial coordinates. Therefore, when we write an external
superfield as A(1) (A stands for gauge connections or field strengths) we mean A(p1, θ, θ̄)
where p1 is the on–shell momentum of particle 1.

A color–ordered superamplitude is then given by a string of superfields, local in the
spinorial coordinates, integrated on the superspace coordinates. For a given configuration
of external helicities, with j positive helicity states and (n − j) negative helicity states,
its expression is roughly of the form

A(1+, 2+, · · · , j+, (j + 1)−, · · · , n−) = (5.1.13)
∫

d4θ Tr
(

W (1)Γ+(2) · · ·W (j + 1) · · ·Γ−(n− 1)W (n)
)

G(p1, · · · , pn)

with spinorial indices suitably contracted among them or with external momenta which
may appear for dimensional reasons. Here G(p1, · · · , pn) is the kinematic coefficient which
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can be computed perturbatively, and the trace is over gauge indices. The group structure
can be stripped out as in the bosonic case (see equation (4.1.1)).

Performing the θ–integration in (5.1.13) we reduce the integrand in components. Each
component corresponds to an ordinary amplitude with a given number of fermionic and
bosonic ordered helicity states.

As an example, we consider the four particle superamplitude A(1+, 2+, 3−, 4−). At
one loop, its expression is well known [1] and given by

A(1+, 2+, 3−, 4−) =
∫

d4θ Tr
(

W α(1)Wα(2)W
α̇
(3)W α̇(4)

)

G(1)(p1, p2, p3, p4) (5.1.14)

where G(1) is the one–loop kinematic factor associated to the box diagram

G(1)(p1, p2, p3, p4) =

∫

d4k

(2π)4
1

k2(k − p1)2(k − p1 − p2)2(k + p4)2
(5.1.15)

Higher order corrections are expected to have the same configuration of external super-
fields. The kinematic coefficient is the only part sensible to the loop order. This is the
superspace translation of the factorization property (4.1.5) of MHV amplitudes.

In what follows we develop a superspace technique for computing G(2)(p1, · · · , pn) for
any number n of external particles.

5.2 The supergraph approach

The general strategy we are going to describe is valid for any N = 1 SYM theory, inde-
pendently of the chiral matter content.

Superamplitudes can be constructed perturbatively from trees of vertices and propa-
gators given by 1P-irreducible Green functions. To obtain a contribution to the S–matrix
it is then sufficient to cut the external propagators and set the external lines on–shell with
physical polarizations.

The generating function of 1PI diagrams is the effective action. Therefore, the problem
of computing scattering amplitudes at a given loop order is reduced to determining the
effective action up to that order.

We focus on the construction of the gauge effective action. In a generic N = 1
theory this is useful for evaluating gluons and gluini scattering amplitudes. In maximally
supersymmetric theories, the ones we have in mind for applications, this is exhaustive
since matter and gauge amplitudes are related by supersymmetry.

The important observation which simplifies dramatically the calculation is that we
need evaluate the effective action only on–shell. In fact, on one hand 1PI diagrams with
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external lines proportional to the equations of motion do not contribute to the 1PI sector of
the amplitude: They are automatically zero once the external propagators are amputated
and the corresponding lines are set on–shell. On the other hand, they do not either
contribute to the construction of reducible diagrams, as can be directly proved. This is
nothing but the general statement that Green functions proportional to the equations of
motion are always vanishing (known as Zimmermann’s theorem).

The most convenient approach for computing the effective action in Yang–Mills the-
ories is background field method [98, 99]. In fact, by splitting the gauge fields into an
external and a quantum part, it allows to gauge–fix the quantum component while keep-
ing manifest covariance in the external fields. This leads to an expression for the effective
action in terms of the external fields which is manifestly gauge invariant.

We use the supersymmetric generalization of the background field method [7, 1, 100]
which can be applied for perturbative calculations in a generic N = 1 SYM theory.

5.2.1 Feynman rules in background field method

We quickly review the supersymmetric background field method by stressing the main
ingredients useful for our calculation.

In superspace language, the quantum–background splitting is performed on the co-
variant derivatives (5.1.1) according to the prescription ∇α = e−V∇∇αe

V , ∇α̇ = ∇∇α̇ = D̄α̇

and ∇αα̇ = −i{e−V∇∇αe
V , D̄α̇}, where plain and boldface letters indicate quantum and

external quantities, respectively. As a consequence, the field strengths can be expanded
in powers of the quantum V field

Wα =
i

2
{D̄α̇, {D̄α̇, e

−V∇∇αe
V }} = Wα + iD̄2∇∇αV +

i

2
D̄2[∇∇αV, V ] + · · · (5.2.1)

W α̇ =
i

2
{e−V∇∇αe

V , {e−V∇∇αe
V , D̄α̇}} = Wα̇ − i∇∇2D̄α̇V +

i

2
∇∇2[D̄α̇V, V ] + · · ·

For chiral superfields in the adjoint representation of the gauge group the splitting is
Φ = eVΦe−V and Φ = Φ where boldface objects are covariantly (anti)chiral superfields.

We gauge–fix the quantum V field by choosing the gauge∇∇2V = ∇̄∇2
V = 0. Therefore,

for a generic N = 1 SYM theory with interacting matter, the full action is

Stot = Sgauge + Smatter + Sgf + SFP + SNK (5.2.2)

where

Sgauge =
1

2g2

∫

d6z Tr(W αWα)

Smatter =

∫

d8z Tr
(

e−gV Φ̄ie
gVΦi

)

+

∫

d6z V(Φi) +

∫

d6 z̄ V̄(Φ̄i)
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Sgf = − 1

2g2
Tr

∫

d8z V
(

∇∇2∇̄∇2
+ ∇̄∇2∇∇2

)

V

SFP = Tr

∫

d8z (c′ + c̄′) L1

2
V

(

(c+ c̄) + coth
(

L 1

2
V (c− c̄)

))

SNK = Tr

∫

d8z b̄b (5.2.3)

Here c, c′ (b̄, c̄, c̄′) are the Faddeev–Popov ghosts and b (b̄) are the Nielsen–Kallosh ghosts.
They are full covariantly (anti)chiral superfields. NK ghosts give contributions only at
one loop.

Once we have specified the superpotential V, from the action (5.2.2) we can read the
vertices suitable for loop calculations at a given order, while from the quadratic part we
obtain the following propagators

〈V V 〉 =
1

�̂

〈Φ̄Φ〉 = − 1

�+
〈ΦΦ̄〉 = − 1

�−

〈c̄′c〉 = − 1

�+
〈c′c̄〉 = 1

�−
(5.2.4)

where �± and �̂ have been defined in (B.0.4) as functions of the external superfields.

Moreover, every time we contract a chiral superfield we get an extra ∇2
, while antichirals

give an extra ∇2 (in the rest of the thesis we avoid using boldface symbols for background
fields since it should be clear from the context which is quantum and which is external).

As already discussed, we are interested in computing the on–shell gauge effective
action. In background field method this means that the external gauge fields satisfy

∇αWα = 0,∇α̇
W α̇ = 0 and, consequently, ∇2Wα = ∇2

W α̇ = 0, ∇αα̇Wα = ∇αα̇W α̇ = 0.

In this case, the propagators take the simplified form (B.0.9). It is convenient to
expand them in powers of spinorial derivatives as

1

�+
=

1

�− iW α∇α
= A +Bα∇α + C∇2

1

�−
=

1

�− iW α̇∇α̇

= Ā + B̄α̇∇α̇ + C̄∇2
(5.2.5)

and

1

�̂
=

1

�+ − iW α̇∇α̇

(5.2.6)

= A +Bα∇α + C∇2 + D̄α̇∇α̇ + Eαα̇∇α∇α̇ + F̄ α̇∇2∇α̇ + Ḡ∇2
+Hα∇α∇2

+ L∇2∇2
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or, equivalently

1

�̂
=

1

�− − iW α∇α

(5.2.7)

= Ā + B̄α̇∇α̇ + C̄∇2
+Dα∇α + Ēαα̇∇α̇∇α + F α∇2∇α +G∇2 + H̄ α̇∇α̇∇2 + L̄∇2∇2

The coefficients are given as power series in the background fields, as discussed in Appen-
dices C and D. In the same Appendices we derive a lot of identities that the coefficients
satisfy. These relations follow from basic algebraic relations involving the covariant deriva-
tives and the covariant propagators.

As an example of the power expansion of the coefficients, in Fig 5.1 we draw the
expansion of the coefficients of the chiral propagator up to three fields (see Appendices C
and D for the corresponding algebraic expression). The straight lines on the right hand
sides correspond to 1/� covariant propagators. Similar expansions for the coefficients of
the antichiral propagator are easily obtained by taking the bar of these expressions.

A
= +

Wα Wα

i∇αα + · · ·

B
α

=

i Wα

+

Wβ (∇βWα)

+ · · ·

C
=

Wα Wα

+ · · ·

Figure 5.1: Expansion of the A,B,C coefficients up to two external fields.

5.3 From the effective action...

The general prescription for computing the effective action Γ =
∫

eS at a given loop order
is to draw all possible vacuum diagrams at that order by using the covariant Feynman
rules given above. We then expand the covariant propagators in powers of spinorial
derivatives as in eqs. (5.2.5)–(5.2.7) and perform covariant ∇–algebra [1, 100] in order
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to reduce the supergraph to a sum of ordinary Feynman momentum integrals. This is
achieved by integrating by parts the spinorial derivatives and playing with their algebra

(see Appendix B) until we obtain a ∇2∇2
for each loop. The result is a linear combination

of expressions local in the spinorial variables, integrated over d4θ.

The contribution to the effective action is eventually given by a sum of ordinary
Feynman diagrams with the internal propagators carrying coefficients A,B, · · · , L. From
this expression, a 1PI Green function with n external lines is obtained by expanding these
coefficients at order n in the external fields. This amounts to take the explicit expression
of the coefficients as power series in W and W and further expand the 1/� covariant
propagators inside them in powers of the bosonic connection Γαα̇ (see eq. (C.0.37)).
It follows that 1PI Green functions are generically of of the form 〈Wα, · · ·W α̇, · · ·Γββ̇〉
with, possibly, covariant derivatives acting on the fields in order to have all the indices
contracted.

As a simple example, we review in this language the well known calculation of the
one–loop effective action in N = 4 theory [1].

The contribution from (matter and ghosts) chiral superfields is given by a vacuum
one–loop diagram where the internal line is 1/�+. Since we are contracting a chiral with

an antichiral superfield we have a factor ∇2∇2
in the loop. This factor is already sufficient

to perform ∇–algebra, so no extra derivatives need come out from the expansion (5.2.5)
of the propagator. Therefore, the only non–trivial contribution arises from 1

�+
→ A.

Inserting the explicit expression (C.0.4) for A, we find that at one–loop a chiral loop
contributes to a 〈WW 〉 two–point function, a 〈W (∇W )W 〉 three–point function etc...
However, at one loop the contributions from the chiral matter fields and the chiral ghosts
fields cancel exactly.

The contributions we are left with come from a vector loop when we consider a vac-
uum one–loop diagram with propagator 1/�̂. In this case the correct number of spinorial
derivatives required by ∇–algebra have to be extracted from the expansion of the propa-

gator. From eq. (5.2.6) we see that this happens when 1
�̂
→ L∇2∇2

. Expanding the L

coefficient as in (D.0.15) we find that the first non–trivial Green function is a 〈WWWW 〉
four–point function [1].

A second example is given in Fig 5.2 where a pure chiral two–loop contribution to the
gauge effective action is drawn. This result is easily obtained by moving towards the left
vertex the antichiral derivatives from the expansion of the 1

�− on the middle line. Since

∇3
= 0, all the terms that present a ∇ on the far left of the middle line are zero. So, the

middle line propagator can be replaced by

Ā− {∇α̇
, B̄α̇}+

1

2
{∇α̇

, [∇α̇, C̄]} (5.3.1)

By using identity (C.0.24) we can reduce the middle line to the simple A coefficient. No
extra spinorial derivatives can be originated by the middle line. On both the upper and
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∇2

∇2

∇2

∇2

A

A

A

1/ -

1/ -

1/ -

Figure 5.2: Pure chiral two loop contribution to the gauge effective action

the lower loop we are left with the same structure, namely

∇2 1

�−
∇2 =

1

�+
∇2∇2 (5.3.2)

A simple algebra shows that a ∇2∇2 factor can be produced from the A coefficient inside
1
�+

only. As a consequence, the result on the right side of Fig 5.2 is produced.

5.4 ...to MHV scattering amplitudes

We are mainly interested in the evaluation of scattering amplitudes at two–loops. Exten-
sions of the procedures that we are going to describe here follow immediately by using
the two loop case as an example.

At two loop, amplitudes are given by irreducible two–loop diagrams with external lines
set on–shell, by two–loop diagrams with trees attached to some of the external lines and,
finally, by one–loop (ir)reducible diagrams attached to each other.

Following the procedure described in the previous Section, we compute the effective
action up to two loops as a function of the A,B, · · ·L coefficients. Expanding the coef-
ficients up to a suitable order in the external fields we give rise to n points scattering
amplitudes for n arbitrary. The great advantage of our procedure is that the evaluation
of all the amplitudes is reduced to the evaluation of a single object, the on–shell effective
action, which can then be considered as the master equation of the theory.

In order to be definite, we focus on MHV amplitudes of the form (− − + · · ·+).
However, there is nothing special in the evaluation of these amplitudes. Our procedure
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can be easily adapted to any other external configuration.

We list the various steps for going from the effective action to the scattering ampli-
tudes.

Step 1:
Fix the number n of external particles involved in the scattering process. Then expand
the A,B, · · · , L coefficients up to power n in the external fields. Since we are interested in
MHV amplitudes of the form (−−+ · · ·+), taking into account that W α̇ carries helicity
−1 we can restrict the expansions to terms with at most two W ’s close to each other.
In fact, as long as irreducible contributions are concerned this is all we need. When we
attach trees to a two–loop diagram in order to generate a reducible contribution, two
W ’s might be not sufficient if attaching a tree to a W line we can produce W terms.
However, it is not difficult to convince that from a W line at least one line of the same
helicity always comes out. This is an obvious consequence of helicity conservation and
can be explicitly checked in superspace language. Therefore, in the effective action we
can neglect contributions proportional to more than two W ’s and contributions where
the two W ’s are not close to each other. As explained in Appendices C and D, these
rules allow to take advantage of non–trivial identities which greatly simplify the process
of expanding the propagators. There, we list the expansions of the coefficients suitable
for MHV amplitudes up to six particles.

Step 2:
Substitute in the effective action the explicit expressions of the coefficients and keep only
terms with a number of external fields less or equal to n. Since different coefficients
carry a different number of external fields, we can easily classify the various contributions
according to the topology of the associated diagram. For example, contributions which
arise from a diagram with a A coefficient on one line will give rise to bubbles when taking
the 1/�0 part of A (see eqs. (C.0.4), (C.0.37) and Fig 5.1) . Similarly, contributions
with a B coefficient on one line will give rise to triangles when we take the first order
term in the B expansion (see eq. (C.0.5)). For the terms with a number of external fields
k < n further expand covariant propagators and derivatives (see equations (A.0.15) and
(C.0.37)) and keep terms up to l − k connections Γ’s.

Step 3:
Fourier transform external fields and propagators to momentum space following the con-
ventions in Appendix G. Working out the associated group factor, the various contribu-
tions end up to be the product of a given trace structure of a string of external fields
times a loop momentum integral.

Step 4:
In general, the momentum integrals have vector–like or tensor–like numerators. It is
therefore necessary to apply Passarino–Veltman reduction in order to rewrite them as a
linear combination of scalar integrals.
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Step 5:
Once we have the effective action in terms of scalar integrals, we generate all possible
contributions to the n–point (−−+ · · ·+) scattering amplitude by constructing trees of
1PI diagrams. 1PI contributions are obtained from terms in the effective action with
exactly n external lines, once we identify the external lines with background on–shell
fields and sum over all possible cyclic permutations of their quantum numbers (momenta,
helicity and gauge index). Reducible contributions are obtained by attaching trees to 1PI
contributions with a smaller number of external lines or by attaching lower loop order
diagrams and, again, summing over all cyclic permutations of the external particles. Since
at one loop the first non–trivial Green function is (WWWW ), when we attach two one–
loop diagrams in order to get a two–loop contribution to (− − + · · ·+) we are forced to
connect two W ’s lines. Note that the first case where these contributions appear is the
six–point amplitude.

As long as we are not interested in the final result for the amplitude but only in the
structure of scalar momentum integrals involved, this is it. The main observation is Steps
1-5 can be implemented by computer’s programs once we have determined the effective
action. On the other hand, the same ∇–algebra procedure, which is the key step for
the determination of the effective action, can be performed by following a mechanical
procedure that can be programmed. Even if rigid procedures are not the smartest way to
perform the ∇–algebra and this, in principle, could produce more than the minimal set
of contributing diagrams, however the computational power of a computer is extremely
useful to make exceptionally quick and comfortable the extraction of these contributions.
Moreover, it is always possible (even if not tightly necessary) to use the large number
of identities between the coefficients worked out in the Appendices C and D and reduce
the output of the computer to a minimal set of diagrams. A description of the system of
programs we developed and extensively used along the computation is given in Appendix
J.
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Chapter 6

Two loop effective action in N = 4

SYM theory

The N = 4 SYM theory, although it has been widely studied in the last decades, is still
nowadays one of the main subject of modern theoretical research and reserves again a lot
of surprises. As discussed in Chapter 4, although the cutting techniques discovered a lot
of remarkable properties of planar MHV amplitudes, the general validity of the method
and of the regularities that it seems to reveal are questionable. It is so natural that the
first application of our direct computational technologies points in the direction to give
new insights in the contest of this theory or to confirm the old issues.

The aim of this Chapter is to write a general master formula for the n point 1PI MHV
effective action at two loops in N = 4 SYM theory. From there, by following the general
procedure outlined in Section 5.4, it is in principle possible to extract the two loop MHV
scattering amplitude for any number of scattered particles.

We divide the computational procedure into three conceptually different steps:

1) From the gauge fixed N = 4 lagrangian, we extrapolate the interaction vertices. In
principle, there is an infinite series of quantum vertices. However, as soon as we
are interested in a two loop computation we need to keep only the cubic and the
quartic quantum vertices. These vertices are used to form the vacuum diagrams.
By looking at the covariant propagators forming the diagrams, we can divide them
into nine different classes. Diagrams inside the same class are distinguishable for a
different distribution of spinorial derivatives at the vertices. We have a total of 43
distinct vacuum diagrams in which all the scattering amplitudes of the N = 4 SYM
theory at two loop are summarized in an extremely compact form.

2) We follow the ∇–algebra procedure in order to extrapolate from each vacuum dia-
gram the contributions to the planar MHV amplitude. In some case the ∇–algebra
is quite trivial, as in the example of Fig. 5.2. In the most of the cases, in particular
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when the vector propagator 1
�̂

is involved, the computations are very long. Con-
fidence in our results follows from the perfect agreement between hand made and
computer made results for each of the vacuum diagrams.

3) In principle, at the end of the previous step we have already an expression for the
all–n MHV effective action. However, some of the terms in the expressions presents
UV divergences in D = 4. Since the N = 4 SYM theory is UV finite, it must be
that all the divergent terms sum into finite contributions: This is the case. This
fact is a very complex test for our results and for all the computational strategy we
followed. In order to get this point a key role is played by the identities between
the propagator coefficients listed in Appendices C and D.

In the following three Sections each of these three steps are analyzed in details. The
final expression that we get is a UV finite master equation for the MHV planar effective
action at two loop. This is the main result of the second part of the thesis.

After UV divergences are canceled, the master equation is given by a linear combi-
nation of Feynman diagrams dependent on the expansion coefficients of the covariant
propagators. Each term in the combination is UV finite. As a consequence, no diagrams
with bubbles are present. However, this is not a demonstration of the validity of the
no–bubble hypothesis at two loop for any number of interacting particles. In fact, other
bubbles are produced when we Fourier transform to momentum space the effective action
and perform the Passarino–Veltman reduction on vector and tensor loop integrals. Of
course, the extra bubbles enter the final expression in combinations such that their UV
divergent part cancel.

Less and less can be said at this level about the no–triangle hypothesis. In fact, in
the master equation there are a lot of terms that include triangles and their supposed
cancellation at this level has still the appearance of a miracle.

We start the computation of the master equation by analyzing the gauge fixed N = 4
lagrangian and by extracting from there the interaction vertices.

6.1 N = 4 Lagrangian, vertices and vacuum diagrams

The physical content of the N = 4 vector multiplet is given by a spin–1 vector, 4 spin–1
2

Majorana spinors and 6 scalars, all transforming in the adjoint representation of the gauge
group SU(N).

The field content can be organized in N = 1 superfields as a vector superfield V and
3 chiral superfields Φi. The full action of the theory is recovered from the the general
expression (5.2.2) for SYM theories by fixing the superpotential V (Φi) to be

V(Φi) = +
ig

3!
Tr
(

ǫijkΦ
i
[

Φj ,Φk
])

(6.1.1)

94



6.1.1 N = 4 SYM quantum vertices

By performing the quantum–background splitting as prescribed by the background field
method (see Section 5.2.1) and by expanding the N = 4 SYM action in powers of the
quantum fields, we can work out the quantum vertices of the theory needed for two loop
calculations. In what follows we list and divide them in five different classes according to
their field content.

1) Pure (anti)chiral 3pt vertex

+
ig

3!
Tr

∫

d6z ǫijkΦ
i
[

Φj ,Φk
]

+
ig

3!
Tr

∫

d6z̄ǫijkΦ̄
i
[

Φ̄j , Φ̄k
]

−→

V1 = ig(ifabc) Φa
1Φ

b
2Φ

c
3 V̄1 = ig(ifabc) Φ̄a

1Φ̄
b
2Φ̄

c
3 (6.1.2)

2) 3pt and 4pt chiral–vector vertices
∫

d8z Tr
(

e−gV Φ̄ie
gVΦi

)

−→

V2 = g(ifabc)Φ̄a
i V

bΦc
i V3 = − g2

2
(fabef cde)Φ̄a

i V
bV cΦd

i (6.1.3)

3) 3pt pure vector vertex

From the expansion of the gauge action we read

1

2g2

∫

d6z TrW αWα −→

g

2

∫

d8z Tr

(

V {∇αV,∇2∇αV }+
1

3
[[∇αV, V ], V ]iWα

)

= −g
2
ifabc

∫

d8z Tr

(

(∇αV a)V b∇2∇αV
c +

1

3
(∇αV a)V b[iWα, V ]

c

)

(6.1.4)

For these expressions see also [100].

In view of building the pure vector vacuum diagrams, we consider the six permutations
of the three quantum lines (three cyclic permutations plus three anticyclic ones). Then,
we integrate by parts in order to free one line, let’s say the upper one. In so doing we find

g

2

∫

d8z Tr(V {∇αV,∇2∇αV })→
g

2
ifabc V a

(

− 2∇2
V b∇2V c + 2∇αV b∇α∇2

V c − 2∇α̇
V b∇α̇∇2V c +∇αV bi∇αα̇∇α̇

V c

−∇α̇
V bi∇αα̇∇αV c − i∇αα̇V b∇α̇∇αV

c −∇αV b[iWα, V ]
c

+ exchange of lines b and c
)

(6.1.5)
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and

g

2

∫

d8z Tr(
1

3
[[∇αV, V ], V ]iWα)→

g

2
ifabc V a

(

∇αV b[iWα, V ]
c + exchange of lines b and c

)

(6.1.6)

where “exchange of lines b and c” means writing terms with the two entries interchanged
taking into account a sign from facb → −fabc and possible signs from the exchange of
fermions∗.

Summing the two contributions, the terms containing Wα cancel! This simplification
of the vertex implies that a smaller number of vacuum diagrams can be constructed.
Thus, this cancellation can be interpreted as an automatic resummation of a lot of terms
in the effective action.

In conclusion, the analogous of the permuted vertex we need use is

V4 =
g

2
ifabc V a

(

− 2∇2
V b∇2V c + 2∇αV b∇α∇2

V c − 2∇α̇
V b∇α̇∇2V c

+∇αV bi∇αα̇∇α̇
V c −∇α̇

V bi∇αα̇∇αV c − i∇αα̇V b∇α̇∇αV
c

+ exchange of lines b and c
)

= −g
2
ifabc

(

− 2∇2
V aV b∇2V c + · · · · · ·

)

(6.1.7)

4) 4pt pure vector vertex

From the gauge action we read

1

2g2

∫

d6z TrW αWα −→ (6.1.8)

g2

2

∫

d8z Tr

(

−1
3
(∇2∇αV )[V, [V,∇αV ]]− 1

4
[V,∇αV ]∇2

[V,∇αV ]

+
i

12
[[[∇αV, V ], V ], V ]Wα

)

−→

V5 = (fabef cde)

(

g2

8
V a(∇αV b)∇2

(V c(∇αV
d)) +

g2

6
(∇2∇αV a)V bV c(∇αV

d)

)

=
g2

8
(fabef cde)

(

V a∇αV b∇2
V c∇αV

d − 1

3
V a∇αV bV c∇2∇αV

d

+ V a∇αV b∇α̇
V c∇α̇∇αV

d
)

V6 =
g2

24
(fabff fcgf gde)(∇αV )aV bV cV dW e

∗See Appendix I for a detailed discussion
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5) 3pt and 4pt ghost–vector vertices

Interactions between ghosts and vector fields are described by the following vertices

Tr

∫

d8z (c′ + c̄′) L 1

2
gV

[

(c+ c̄) + coth
(

L1

2
gV

)

(c− c̄)
]

−→ (6.1.9)

Tr

∫

d8z

{

g

2
(c′ + c̄′) [V, c+ c̄] +

g2

12
(c′ + c̄′) [V, [V, c− c̄]]

}

−→

V7 =
g

2
(ifabc)c′aV bcc V 7 =

g

2
(ifabc)c̄′aV bc̄c

V8 =
g

2
(ifabc)c′aV bc̄c V 8 =

g

2
(ifabc)c̄′aV bcc

V9 =
g2

12
(fabefecd)c

aV bV cc′d V 9 = −g
2

12
(fabefecd)c̄

aV bV cc̄′d

V10 =
g2

12
(fabefecd)c

aV bV cc̄′d V 10 = −g
2

12
(fabefecd)c̄

aV bV cc′d

Note that the Nielsen–Kallosh ghosts are not present because they contribute at one loop
only.

6.1.2 Vacuum graphs and combinatorics

Using the vertices listed in the previous Section, we can build up the the two–loop vacuum
diagrams in which the effective action is built in†. We can distinguish between two
classes of diagrams: 1) The cubic vertex vacuum diagrams and 2) the tadpole–like vacuum
diagrams. More in detail we have

1) Diagrams coming from the contractions 〈V1V 1〉, 〈V2V2〉, 〈V4V4〉, 〈V7V 7〉 and 〈V8V 8〉
(see Fig 6.1) The name of these diagrams is a consequence of the fact that the
quantum vertices forming them are cubic vertices.

2) Diagrams from the higher point vertices V3, V5, V10, V 10 and V6 (see Fig 6.2) These
diagrams are formed by the four point quantum interactions. The fact that their
loops are formed by two covariant propagators, one on each loop, allow to think at
them as to squares of one loop diagrams in view of computing the ∇–algebra.

Note that in this list of diagrams we have never used vertices V9 and V 9. Although they
are four point vertices, they cannot form two loop vacuum diagrams. Thus they do not
contribute at this perturbative order.

A quick inspection shows that graph (i) in Fig 6.2 cannot contribute to the MHV effective
action since it would give strings with at least four W ’s. Therefore, we will discard it in
the rest of the discussion.

†For the vertices we follow the same labeling Vi of the previous Section
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(a) pure chiral (b) chiral–vector (c) pure vector

(d) ghost–vector (e) ghost–vector

Figure 6.1: Cubic vertex vacuum diagrams

In diagrams (d) and (e) of Fig 6.1 where ghosts are involved we distinguish between
graphs built up with pure (anti)chiral vertices of type 7 (graphs (d) with square vertices)
and mixed chiral-anti chiral vertices of type 8 (graphs (e) with blob vertices). This
distinction is useful since the ∇–algebra and the combinatorial factors are different in the
two cases.

The combinatorial factors including signs and coefficients from the second order ex-
pansion of eS, from the vertices and from the propagators times the actual combinatorics
are summarized in Table 6.1. In diagrams (a–e) fabc is the color factor from the left

Graph Combinatoric Graph Combinatoric

(a) −1
2
g2(fabcf def) (e) −1

4
g2(fabcf def)

(b) 3
2
g2(fabcf def) (f) 3

2
g2
(

fabef ecd
)

(c) −1
8
g2
(

fabcf def
)

(g) 1
8
g2
(

fabef ecd
)

(d) 1
8
g2(fabcf def) (h) 1

12
g2
(

fabef ecd
)

Table 6.1: Combinatoric for vacuum diagrams

vertex, f def the one from the right vertex both with the indices ordered from the upper
to the bottom line. For diagrams (f–h) the way the color indices are distributed on the
lines will be explicitly indicated in the pictures containing the results of the ∇–algebra
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(f) 4 pts chiral–vector (g) 4 pts pure vector (h) 4 pts ghost–vector

(i) 5 pts pure vector

Figure 6.2: Tadpole–like vacuum diagrams

(see Section 6.2.2).

We stress that each picture (a)–(i) refers actually to a class of one or more vacuum
diagrams that come out from the same vertices contractions but differs for the distribution
of spinorial derivatives on the left and the right vertices.

A further remarkable observation is that the results that we attribute here to the
N = 4 SYM theory, actually can be partially used for other SYM theories too. Since the
differences between two SYM theories are given by the matter content of the theories and
are contained in the superpotential V (Φi), at the level of vacuum diagrams they manifest
themselves only in the graphs involving chiral lines (i.e. in diagrams (a), (b) of Fig 6.1
and (f)of Fig 6.2) and in their combinatorial factors. All the diagrams involving vectors
and ghosts are shared by all the SYM theories. For example, the pure N = 1 SYM theory
can be obtained from the same analysis here performed by simply discarding all the parts
involving the chiral matter fields.

6.2 ∇–algebra for the two-loop contributions

In the previous Section, using the interaction vertices of the N = 4 action we built all
two–loop vacuum diagrams. In this Section we analyze them case by case and we perform
the covariant derivative algebra (∇–algebra) in the planar limit and by keeping terms
that contain up to two W . Thus our results are suitable for the computation of MHV
amplitudes.

As we have previously mentioned, N = 4 SYM theory is UV finite. In spite of
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this, power counting analysis of the ∇–algebra results shows that there are UV divergent
diagrams. We postpone the problem of the cancellation of the divergences after the
description of the ∇–algebra results. However, in the following we distinguish between
UV finite graphs (we close them in boxes) and UV divergent ones. We will take care of
the latters in Section 6.3.

Before entering the calculation, we remind the expansion of the propagators as given
in the appendices C and D. The chiral propagators are given by

1

�+
= A+Bα∇α + C∇2

1

�−
= Ā+ B̄α̇∇α̇ + C̄∇2

(6.2.1)

For the vector propagator we write

1

�̂
= A +Bα∇α + C∇2 + D̄α̇∇α̇ + Eαα̇∇α∇α̇ + F̄ α̇∇2∇α̇ + Ḡ∇2

+Hα∇α∇2
+ L∇2∇2

= Ā + B̄α̇∇α̇ + C̄∇2
+Dα∇α + Ēαα̇∇α̇∇α + F α∇2∇α +G∇2 + H̄ α̇∇α̇∇2 + L̄∇2∇2

(6.2.2)

Moreover

∇α
1

�+
= Aα + B β

α ∇β + Cα∇2

∇α̇
1

�−
= Āα̇ + B̄ β̇

α̇ ∇β̇ + C̄α̇∇
2

∇α
1

�̂
= D β

α ∇β + Ē ββ̇
α ∇β̇∇β + F β

α ∇
2∇β + Gα∇2 + H̄ β̇

α ∇β̇∇2 + L̄α∇2∇2

∇α̇
1

�̂
= D̄ β̇

α̇ ∇β̇ + E ββ̇
α̇ ∇β∇β̇ + F̄ β̇

α̇ ∇2∇β̇ + Ḡα̇∇
2
+H β

α̇ ∇β∇2
+ Lα̇∇2∇2

∇α̇∇α
1

�̂
= d β

αα̇∇β + ē ββ̇
αα̇ ∇β̇∇β + f β

αα̇ ∇
2∇β + gαα̇∇2 + h̄ β̇

αα̇∇β̇∇2 + l̄αα̇∇2∇2

(6.2.3)

The results of the ∇–algebra are expressed in term of these expansion coefficients. It is
important to point out that these results are fully general in the number of interacting
particles and they potentially include all possible external helicity configurations. The
selection of a particular scattering process (for example a MHV process with a fixed
number of particles) enters after the ∇–algebra procedure and is based on the knoledge
of the explicit form of the power expansion of the coefficients.
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6.2.1 Diagrams with cubic vertices

We analyze first of all the cubic vertex diagrams of Fig. 6.1. For this class of diagrams,
in the planar limit the ∇–algebra gets simplified. In fact, the planarity of the diagrams
requires that at the final stage one of the lines must be free from any background insertion.
This result can be reached in three steps: Firstly choose a line and free it up from the
derivatives coming from the vertices. Then replace the propagator on that line with its
expansion previously described and integrate away the new covariant derivatives that
the expansion coefficients carry. As last step, we need insert the expansions for the
covariant propagators present on the other two lines and select on each line only the

terms that produces a ∇2∇2
or ∇2∇2. Here enters the planar limit: Looking at the

explicit expressions for the coefficients, only diagrams with at least a coefficient that
includes a single 1

�0
‡ have to be considered.

The computational procedure here described is general enough to be applied to all
vacuum diagrams in this class. Moreover it is extremely mechanic. These two features
made possible to transpose the computation of the ∇–algebra for these diagrams in useful
and time conserving computer programs. We describe them in Appendix J.

Pure chiral graph

The pure chiral diagram in Fig. 6.1 (a) is built by contracting the V1 and V 1 vertices
(6.1.2) coming from the superpotential part of the action

ig(ifabc)Φa
1Φ

b
2Φ

c
3 + ig(ifabc)Φ̄a

1Φ̄
b
2Φ̄

c
3 (6.2.4)

When contracting, we find convenient to treat the two diagrams, the one with the chiral
vertex on the left and the one with the chiral vertex on the right, separately. We can
summarize the results in the following table (we put arrows on chiral propagators with
the convention that they go from a chiral to an anti–chiral leg)

V1

∇2

∇2

∇2

∇2

1/ -

1/ -

1/ -

V̄1 −→

A

A

A

(6.2.5)

‡They are A, Ā, B β
α , B̄ β̇

α̇ and ē ββ̇
αα̇
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V̄1

∇2

∇2

∇2

∇2

1/ +

1/ +

1/ +

V1 −→

A

A

A

(6.2.6)

It is important to remark that we have not yet impose the planar limit on each of
these contributions. We postpone this problem after finishing with the ∇–algebra of the
other sectors of the theory: We will take care of it in Section 6.3 where the cancellation
of UV divergences is considered.

Before concluding this section, we remember that the combinatorial factor is

−1
2
g2(fabcf def) (6.2.7)

The ∇–algebra relative to this sector has been described in details after Fig. 5.2.

Chiral–vector graphs

The second type of graphs we consider are the ones obtained from the cubic chiral–vector
vertex V2 (6.1.3) (see Fig. 6.1 (b)). The vertex has this form

g(ifabc)Φ̄a
i V

bΦc
i i = 1, 2, 3 (6.2.8)

Note that in this case the exchange of the right and left vertices does not give rise to a
different situation as in the pure chiral case. Studying the only graph that can be written,
we get

V2

∇2

∇2

∇2

∇2

1/ -

1/

1/ +

V2

⇓
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A

A

A

Bα D̄α̇

+
A

+
A

B̄α̇i∇αα̇ − C̄iWα Bαi∇αα̇ − CiW α̇

Ai∇αα̇ AiW
α̇

–
A

+
A

Eαα̇ F̄α̇

F̄ α̇ Ā

+ A i∇α
  α + δbe

B̄β̇i∇αβ̇ − C̄iWα L

(6.2.9)

Even here, we did not impose the planar limit on these results. Notice that there are
cases in which this operation is straightforward: One of this cases is the last tadpole–like
diagram, where we were forced to add a δbe on the color indices.

After some integration by parts and by using relations (C.0.12)–(C.0.17) and (D.0.3)–
(D.0.8) given in Appendices C and D, it is possible to re–write (6.2.9) in a form that
is manifestly self conjugated. Keeping only the terms that are relevant for an MHV
amplitude (in particular, let us remember that the addenda in L have always two W
external fields (see expression (D.0.15))), the amplitude takes the following form

V2

∇2

∇2

∇2

∇2

1/ -

1/

1/ +

V2

⇓

1
2

A

A

A

+ 1
2

Ā

A

Ā

− 1
2

Ai∇αα̇

A

Eαα̇

− 1
2

Āi∇αα̇

A

Ēαα̇
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−1
2

A

A

F̄ α̇iW α̇ +HαiWα

+

Dα

A

B̄α̇i∇αα̇ − C̄iWα

+

D̄α̇

A

Bαi∇αα̇ − CiW α̇

+

1
�

δbe

L

(6.2.10)

The combinatorial factor of these graphs is

3

2
g2(fabcf def) (6.2.11)

The factor 3 comes from the 3 different chiral fields that enter the vertex (6.1.3).

Vector–ghosts graphs

Using vertices V7, V̄7, V8 and V̄8 (6.1.9) we can draw four different diagrams

V7 V̄7 V̄7 V7

V8 V8 V̄8 V̄8

(6.2.12)

The first two are of type (d), whereas the last two of type (e) of Fig. 6.1. We consider
them separately.

• Type (d) graphs

We consider the first two graphs in (6.2.12). The∇–algebra of these graphs can be reduced

to the one of the pure–chiral diagram by first moving one of the ∇2 (or ∇2
) on the vector

line, using 1
�̂
∇2 = 1

�−
∇2 (and analogous) and bring ∇2 (or ∇2

) back on the original line.

The results are then straightforwardly read from formulas (6.2.5) and (6.2.6)
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V7

∇2

∇2

∇2

∇2

1/ -

1/

1/ -

V̄7 −→

A

A

A

(6.2.13)

V̄7

∇2

∇2

∇2

∇2

1/ -

1/

1/ -

V7 −→

A

A

A

(6.2.14)

The combinatorial factor multiplying this result is

1

8
g2(fabcf def) (6.2.15)

• Type (e) graphs

We consider the graphs constructed using twice V8 or twice V̄8 (second line of (6.2.12)).
Consider first the 〈V8V8〉 case. The ∇–algebra is the same as the one for the chiral–vector
diagram. Therefore, from (6.2.10) we read the result for this sector

V8

∇2

∇2

∇2

∇2

1/ -

1/

1/ +

V8

⇓

1
2

A

A

A

+ 1
2

Ā

A

Ā

− 1
2

Ai∇αα̇

A

Eαα̇

− 1
2

Āi∇αα̇

A

Ēαα̇
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−1
2

A

A

F̄ α̇iW α̇ +HαiWα

+

Dα

A

B̄α̇i∇αα̇ − C̄iWα

+

D̄α̇

A

Bαi∇αα̇ − CiW α̇

+

1
�

δbe

L

(6.2.16)

The 〈V̄8V̄8〉 gives these same ∇–algebra results.

The combinatorial factor turns out to be

−1
8
g2(fabcf def )× 2 (6.2.17)

where the extra factor 2 comes from summing 〈V8V8〉 and 〈V̄8V̄8〉.

Summing chirals, mixed and ghost diagrams

It is useful useful to sum the previous contributions from chiral (6.2.5), (6.2.6), mixed
(6.2.10) and ghost (6.2.13), (6.2.14), (6.2.16) diagrams since some simplification occurs.
The result, including combinatorial factors (6.1), is (Finite diagrams in boxes)

−3
8

A

A

A

− 3
8

A

A

A

+ 5
8

A

A

A

+ 5
8

Ā

A

Ā

−5
8

Ai∇αα̇

A

Eαα̇

− 5
8

Āi∇αα̇

A

Ēαα̇

− 5
8

Ā

A

F̄ α̇iW α̇ +HαiWα

+ 5
4

1
�

δbe

L
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+5
4

Dα

A

B̄α̇i∇αα̇ − C̄iWα

+ 5
4

D̄α̇

A

Bαi∇αα̇ − CiW α̇

(6.2.18)

Taking into account the planar limit on the graphs of the third line, further simplifi-
cations occur. We will be back to the planar limit when we have computed everything.

Pure vector graphs

We construct diagrams (c) of Fig. 5.1 by contracting the cubic gauge vertex (6.1.4)

−g
2
(ifabc)

(

(∇αV )a V b (∇2∇αV )c +
1

3
(∇αV )a V b [iWα, V ]

c

)

(6.2.19)

with itself. In order to keep track of all possible contractions of vectors lines we write the
left vertex as the sum of the six permutations of factors. After some integrations by parts
done for freeing one line from derivatives, it can be written as (6.1.7)

V4 =
g

2
ifabc V a

(

− 2(∇2
V )b (∇2V )c + 2(∇αV )b (∇α∇2

V )c − 2(∇α̇
V )b (∇α̇∇2V )c

+ (∇αV )b i(∇αα̇∇α̇
V )c − (∇α̇

V )b i(∇αα̇∇αV )c − i(∇αα̇V )b (∇α̇∇αV )
c

+ exchange of lines b and c
)

= −g
2
ifabc

(

− 2(∇2
V )a V b (∇2V )c + · · · · · ·

)

(6.2.20)

As right vertex, instead, we keep the two vertices (6.2.19). The contraction of (6.2.20)
with (6.2.19) produces 24 graphs on which we have to perform ∇–algebra. However, it is
immediate to see that 6 of them are zero.

It is important to stress few points concerning the right vertex:

1) if z1 and z2 are the superspace coordinates of the left and the right vertices respectively,
on each line we have to deal with strings of the form

(· · ·∇ · · ·) 1
�̂
δ(z1 − z2)(· · ·∇ · · ·) (6.2.21)

where the derivatives on the left act on the variable z1, whereas the ones on the right act
on z2. It is convenient to trade the z2–derivatives with z1–derivatives using well–known
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relations (see [1]). In so doing, the first term in (6.2.19) picks up two minus signs, whereas
the second term picks up one minus. However, ...

2) ... the second term, when thought of as right vertex, needs Wα as second entry of the
commutator in order to fix the correct order of color indices. Therefore, we pick up an
extra minus sign from the commutator which, together with the sign from sliding ∇α,
does not give any sign.

Therefore, as right vertex we use the following expression

−g
2
(ifabc)

(

(∇αV )a V b (∇2∇αV )
c +

1

3
(∇αV )a V b [V, iWα]

c

)

(6.2.22)

where derivatives are acting on z1.

Below we give in a graph by graph analysis the results of the ∇–algebra. The results
keep trace of planarity and MHV condition. Note also that again we take advantage of

simplifications which allow to write, in the middle of some expression, ∇2
1/�̂ = 1/�̂+∇2

,
etc. Moreover, in order to simplify a little bit the result, we performed some easy resum-
mation between the diagrams of different sectors.

We put UV finite diagrams inside boxes.

All the contributions of this section must be multiplied by combinatorial factor

−1
8
g2
(

fabcf def
)

(6.2.23)

More details on the construction of these vacuum diagrams, in particular on the signs
that they carry, can be found in Appendix I.

First contributions: Sector A

These contributions come from contracting each term of (6.2.20) with the first term in
(6.2.19). We take into account signs coming from sliding derivatives from z2 to z1 and
signs coming from exchange of fermions in the contraction.
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2A − 2

∇β

∇α∇2

∇α

∇β∇2

1/

1/

1/

= −2

Fαβ

1/

CαiWβ

(6.2.24)

4A
∇β

i∇α
  α

 ∇α

∇α

∇β∇2

1/

1/

1/

=

= −

F
β̇

i∇αα1/ i∇β
  α

Eαββ̇

−

i∇αα̇C i∇β
α̇

1/

Fαβ

−

C

i∇αα1/ i∇β
  α

Fαβ

(6.2.26)
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2Ax −2
∇β∇α∇2

∇α
∇β∇2

1/

1/

1/

=

= +2

Bαβ

A

Dαβ

− 2

Bβαi∇γα̇

Eαα

Dβγ

− 2

F
α̇

1/ i∇α
  α

Eβ β̇

α i∇ββ̇

+2

Bαβ iW
α̇

F α

Bαβ

− 2

F
α̇

1/

Aα i∇αα̇

−2

Bα

1/

Eβ α̇

β i∇αα̇

+ 2

Bα

1/

Fβ
β iWα

+2

Bα

1/

Aα

− 2

C

1/

Eα α̇

α iW α̇

− 2

C

1/

Fα
α �

−2

Eαα̇

1/

Cα iW α̇

− 2

D
α̇

1/

Cα i∇αα̇

(6.2.25)
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4Ax

∇β
i∇α

  α
 ∇α

∇α
∇β∇2

1/

1/

1/

=

= −

Dαβ

A

i∇ α̇
α Hα̇β

+

i∇ββ̇D α̇

β̇

Eα
  α

Dβα

+

F
α̇

i∇α
  α1/

E ββ̇

α i∇ββ̇

−

F
α̇

1/

i∇ββ̇ Bβ̇ i∇βα̇

−

Bα

1/

i∇ α̇
α Cα̇

−

Eαα̇

1/

i∇ββ̇Hβ̇α i∇βα̇

−

D
α̇

1/

i∇αβ̇ Eβ̇αα̇

−

D
α̇

1/

i∇αβ̇ F β̇ i∇αα̇

(6.2.27)
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5A −

∇β

i∇α
  α ∇α

∇α

∇β∇2

1/

1/

1/

=

= −

i∇αα̇D β
α

A

Hα̇β

−

i∇ββ̇D α
β

Eα
  α

Dβ̇α̇

−

F
α̇

1/

i∇α
α̇ E

ββ̇

α i∇ββ̇

+

F
β̇

i∇αα1/

Bα̇ i∇αβ̇

+

Bα

i∇α
  α1/

Cα̇

+

Eββ̇

i∇αα1/

Hα̇β i∇αβ̇

+

D
β̇

i∇αα1/

Eα̇αβ̇

+

D
β̇

i∇αα1/

F α̇ i∇αβ̇

(6.2.28)

112



5Ax −

∇β
i∇α

  α ∇α

∇α
∇β∇2

1/

1/

1/

=

= −

F
β̇

1/ i∇αα

i∇β
α̇ Eβαβ̇

−

i∇αα̇F β
α

1/

C i∇βα̇

−

C

1/ i∇αα

i∇β
α̇Fβα

(6.2.29)
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6A −

∇β

∇α∇α

i∇αα

∇β∇2

1/

1/

1/

=

= +

F
β̇

1/ i∇αα

i∇αα̇ Bβ̇

−

i∇αα̇Hβ

1/

dαα̇β

−

Bα

1/ i∇α
  α

i∇β
α̇ Hβ

+

C

1/ i∇αα

i∇αα̇ C

+

Eαβ̇

1/ i∇α
  α

i∇β
α̇ Eββ̇

(6.2.30)
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6Ax
∇β∇α∇α

i∇αα
∇β∇2

1/

1/

1/

=

= −

Eββ̇

i∇αα
 A

eαα̇ββ̇

−

F
β̇

i∇αα1/

E β

α α̇ i∇ββ̇

+

F
α̇

1/

i∇α
α̇B

β̇
i∇αβ̇

+

i∇αα̇Dβ

1/

fαα̇β

−

Bβ

i∇αα1/

fαα̇β

−

Eαα̇

1/

i∇β
α̇ E

β̇
α i∇ββ̇

−

D
α̇

1/

i∇α
α̇ Dα

(6.2.31)

Second contributions: B sector

These contributions come from contracting each term of (6.2.20) with the second vertex
(6.2.19). The results are:
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2B − 2

3

∇β

∇α∇2

∇α

i Wβ

1/

1/

1/

= = +2
3

Fαβ

1/

Cα iWβ

(6.2.32)

2Bx −2
3

∇β∇α∇2

∇α
i Wβ

1/

1/

1/

=

= −2
3

Bαβ

1/

Lα iWβ
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+2
3

C

1/

Fαβ i(∇αWβ)

− 2
3

B
α̇

1/

Hα

α̇ iWα

+2
3

Eαα̇

1/

Eβαα̇ iWβ

− 2
3

Eαα̇

1/

Hβ

α̇ i(∇αWβ)

+ 2
3

F
α̇

1/

Eαβα̇ i(∇αWβ)

−2
3

Bα

1/

Fβ
α iWβ

− 2
3

Bα

1/

Lβ
i(∇αWβ)

(6.2.33)

1B+3B − 2
3

∇β

∇2

∇2

i Wβ

1/

1/

1/

+ 2
3

∇β

∇α∇2

∇α

i Wβ

1/

1/

1/

=
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= +2
3

F α

1/

1
�
iWα

−2
3

Eαα̇

1/

Bα̇ iWα

(6.2.34)

We stress that the results of the last two subsections contains only terms up to two
W ’s. Moreover we did not report terms that come up from different graphs but canceled
exactly between each other. That is why, for example, we found convenient to report the
sum of graphs 1B and 3B.

6.2.2 Diagrams with quartic vertices

Chiral–Vector 4 pts graphs

In order to construct graph (f) of Fig. 5.1 we start from the vertex V3 of eq. (6.1.4)

V3 = − g2

2
(fabef cde)Φ̄a

i V
bV cΦd

i (6.2.35)

and perform self–contractions. The result of the ∇–algebra is straightforward

1
� a

b

c

d
L (6.2.36)

We add to this graph color labels, since in quartic vertices it will become important to
distinguish between different color contractions (see Appendix E).

The combinatorial factor associated to this graph is

3

2
g2
(

fabef ecd
)

(6.2.37)

Note that in the picture of equation (6.2.36) we included also small arrows inside
loops. They signal which is the sense one must follow to read color labels associated to
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coefficients inside each loop. So, for example, equations (6.2.36) is proportional to the
following color structure

fabefecd

(

1

�

)

ad

(L)bc (6.2.38)

Color labels associated to 1
�
and L are in the order specified by the extra arrows inside

the loops.

Pure Vector 4 pts graphs

Consider the vertex V5 of eq. (6.1.8)

V5 =
g2

8
(fabef cde)

(

V a∇αV b∇2
V c∇αV

d − 1

3
V a∇αV bV c∇2∇αV

d

+ V a∇αV b∇α̇
V c∇α̇∇αV

d
)

(6.2.39)

and take all possible contractions. Each term in V5 gives rise to three different graphs
depending on how the legs are contracted. Different contractions differ both for the color
structure (we keep track of this in the pictures) and for ∇–algebra. Regarding the last
issue we need pay attention since in this case we have to deal with closed loops. We
regard them as limit cases of open lines when the extremal points are joined together. In
this way, it is possible to identify which are the derivatives operating on the right of the
propagators and apply the same procedure we described for the right cubic gauge vertex
in order to slide derivatives from the right to the left.

In listing the result of the ∇–algebra we keep only contributions that are relevant for
an MHV amplitude (so we discard terms that have more than two W ’s)

−4
3
Hα

a

c

d

b
Bα

+ C
a

b

d

c

Fα
α
− 1

3
L

a

b

d

c

Bα
α

+ F̄ α̇

a

b

d

c

Ēααα̇

+ Hα

a

b

c

d
Cα − 1

3 B
α

a

b

c

d
L̄α

+ Eαα̇

a

b

c

d
H̄αα̇
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(6.2.40)

In the last graph we have made use of Ēαα̇ = −Eαα̇ + Li∇αα̇, selecting only MHV
contributing terms.

The combinatorial factor is

1

8
g2(fabef ecd) (6.2.41)

Ghosts–Vector 4 pts graphs

We now consider the last diagram (h) of Fig. 5.1. It is constructed by using the following
vertices (see eq. 6.1.9)

V10 =
g2

12
(fabefecd)c

aV bV cc̄′d V 10 = −g
2

12
(fabefecd)c̄

aV bV cc′d (6.2.42)

As in the case of the chiral–vector four point diagrams there is only one possibility of
contracting legs and the result is

2 1
� a

b

c

d
L (6.2.43)

The first contribution comes from vertex V10, while the second one from V̄10. In any case,
the combinatorial factor is

1

12
g2
(

fabef ecd
)

(6.2.44)

It is important to note that for an MHV amplitude A and Ā can be substituted by 1/�
(L contains already two W ’s) and the two contributions are indeed the same.

6.3 Cancellation of UV divergences

It is an old issue that the N = 4 theory is UV finite at any perturbative order in D = 4
[12]. On the other hand, as we have seen after ∇–algebra there are a lot of diagrams that
are singularly divergences. So, it must happens that the sum of all these divergent is a
finite expression. A detailed analysis of the divergent terms shows that actually this is
the case!

There are two order of consequences: 1) Cancellation of divergences is a non trivial
check that the procedure we followed for the derivation of the results (the vertices, the
combinatorial factors and the procedure to build up vacuum diagrams) is indeed correct; 2)

120



Since the resummation of divergences occur before we expand the coefficients A,B, · · · , L
in the external fields, we can prove the cancellation for the complete two loop effective
action. The final expression we get is a formula valid for all n. This is what we called the
master equation for the MHV effective action at two loops in N = 4 theory.

6.3.1 Divergent terms revisited

From power counting the only two possible sources of divergences are

1) If there are two propagators 1
�0

on one loop (self–energy diagrams)

2) If there are three propagators 1
�0

and two spacetime derivatives in the same loop
(triangle with two spacetime derivatives).

It is worth noting that since we are using a covariant formalism, we do not have explicit
1
�0

but always covariant 1
�
. Fortunately, power counting works with the same criteria 1)

and 2) also for covariant propagators.

∇–algebra results are written it terms of the coefficients of the expansion of covariant
propagators. In order to extract possible divergent structures, we write for any coefficient
that has 1

�
as lowest order component

X = X̂ +
1

�
(6.3.1)

and for any coefficient whose lowest order component is 1
�
W 1

�

§

X = X̃ +
1

�
W

1

�
(6.3.2)

Replacements (6.3.1) and (6.3.2) allow to isolate divergent terms from finite ones in
∇–algebra results. After applying (6.3.1), (6.3.2), each graph that includes a divergence
produces finite terms that include X̂ or X̃ and divergent ones that satisfy 1) or 2). The
divergent contributions can be further manipulated and their sum can be shown to be
written in terms of finite expressions. Collecting the results, we then have finite terms
with two distinct origins: Finite terms with X̂ and X̃ that derive from (6.3.1), (6.3.2) and
finite terms from the manipulation of divergent graphs. At the end of this procedure, all
UV divergences are canceled.

In what follows we divide the ∇–algebra results that include divergences in three
categories:

§With 1

�
W 1

�
we mean any structure with two propagators and a background field. This symbol

includes also possible extra spacetime derivatives that can appear at the right of the second propagator.
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a Cubic vertex graphs that satisfy power counting criteria 1) and 2) on both loops.
We call these Double Divergent graphs.

b Cubic vertex graphs that satisfy power counting criteria 1) or 2) only on one of the
two loops. We call these Single Divergent graphs.

c Divergent contributions from tadpoles. We call these simply Tadpole divergent

graphs.

Inside these categories we make a further classification, dividing Pure–Vector sector
from all the other contributions¶. As done before, in what follows we close the resulting
finite contributions in boxes.

For each diagram we include the numerical combinatorial factor (sign included) fol-
lowing Tab. 6.1. We do not include the factor g2fabcf def .

The computations behind the results in this Section are quite heavy. We tried to give
as much references as possible to the formulas we used.

6.3.2 Double Divergent Graphs

Consider cubic vertex graphs that satisfy power counting on both loops. These are graphs
which have on each line a coefficient whose lowest order term is 1

�
. We list the contribu-

tions separately according to their origin.

• Consider first contributions coming from the sum of all but the pure–vector sectors
(see eq. (6.2.18)): All the graphs in the first line are double divergent. They are

−3
8

A

A

A

− 3
8

A

A

A

+ 5
8

A

A

A

+ 5
8

Ā

A

Ā

(6.3.3)

Imposing the planar limit and separating the divergent terms from the finite ones

¶The same classification has been used in Section 6.2.
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with the help of (6.3.1), (6.3.2), we get

1
2

1
�

1/

1
�

+ 3
4

Â

1/

1
�

+ 3
4

Â

1/

1
�

−1
2

Â

1/ 0

Â

− 1
2

Â

1/ 0

Â

+ 5
2

Â

1/ 0

Â

(6.3.4)

The first line includes the divergent terms while in the second line there are the
finite ones.

• Consider the Pure–Vector sector: There is only one contribution to this category,
namely the first graph of the sector 2Ax (see eq. (6.2.25))

−1
4

Bαβ

A

Dαβ

(6.3.5)

We can rewrite (6.3.5) by setting (see eq. (C.0.30) and (D.0.19))

Bαβ = Pαβ +

(

Â+
1

�

)

cαβ Dαβ = Qαβ +

(

Â+
1

�

)

cαβ (6.3.6)

where

Pαβ = {∇α, Bβ}
Qαβ = {∇α, Bβ} − {∇α, F̄ α̇}i∇β

α̇ − Eαα̇i∇β
α̇ + [∇α, L]iW β − F αiW β

(6.3.7)

The result is

−1
2

1
�

1/

1
�

− 3
2

Â

1/

1
�

+ 1
4

(Pα
α +Qα

α)

1/

1
�
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−3
2

Â

1/ 0

Â

+ 1
2

Â

1/ 0

(Pα
α +Qα

α)

− 1
4

Pαβ

1/ 0

Qαβ

(6.3.8)

where in the first line we collected the divergent terms and in the second the finite
ones.

Note that the first and worst divergent term in (6.3.8) cancels exactly with the first term
in eq. (6.3.4). The other terms of (6.3.8) take the following form

−3
2

Â

1/

1
�

+ 1
2

Hα

1/

1
�
iWα

−1
2

Aα

1/ 0

Bα

− 1
2

Aα

1/ 0

Dα

− 1
4

Pαβ

1/ 0

Qαβ

−1
2

Â

1/ 0

F α i Wα

− 3
2

Â

1/ 0

Â

− 1
4

Bα i ∇ α̇
α − C i W

α̇

1/ 0

Cα̇ −Bα̇

(6.3.9)

To get this expression, we have used equations (6.3.7) and (C.0.12).

Consider now the sum of expressions (6.3.4) and (6.3.9): The divergent terms (see the
first lines) sum up to give

+
1

2

Hα

1/

1
�
iWα

+
3

4

(

A− A
)

1/

1
�

= +
1

2

Hα

1/

1
�
iWα
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+
3

4

Cα̇

1/ 0

[

∇α̇,
1
�

]

− 3

4

B
α̇

1/ 0

[

∇α̇,
1
�

]

(6.3.10)

where we have used the identity (C.0.21).

A− A =
1

2

{

∇α̇
, Bα̇

}

− 1

2

{

∇α̇
, Cα̇
}

(6.3.11)

Therefore, Double Divergent diagrams sums to give a divergent term

+
1

2

Hα

1/

1
�
iWα

(6.3.12)

and the following finite ones

−2

Â

1/ 0

Â

− 1
2

Â

1/ 0

Â

+ 5
2

Â

1/ 0

Â

−1
2

Aα

1/ 0

Bα

− 1
2

Aα

1/ 0

Dα

− 1
4

Pαβ

1/ 0

Qαβ

−1
2

Â

1/ 0

F α i Wα

− 1
4

Bα i ∇ α̇
α − C i W

α̇

1/ 0

Cα̇ −Bα̇

+ 3
4

[

∇α̇
, 1
�

]

1/ 0

Cα̇ −Bα̇

(6.3.13)
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6.3.3 Single Divergent Graphs

It is more difficult to deal with these type of divergences since many more graphs are
involved. However, a bit of care in the computation allows to get the following results.

All but the Pure–Vector Single Divergent Graphs

We start by studying the divergent graphs coming from the pure–chiral, vector–chiral
and vector–ghosts sectors. From equation (6.2.18) and by using the replacements (6.3.1),
(6.3.2), we find the following divergent terms

−5
8

1
�
i∇αα̇

1/

(Eαα̇ + Eαα̇)

− 5
8

1
�

1/

F̄ α̇iW α̇ +HαiWα

+ 5
4

1
�

δbe

L

(6.3.14)

whereas the finite contributions, using E
αα̇

= −Eαα̇ + iL∇αα̇ and up to terms with more
than 2 W ’s, are

+5
8

(

A− A
)

1/ i∇αα
0

Eαα̇

− 5
8

(

A− A
)

i∇αα̇

1/ 0

Eαα̇

−5
8

Â

1/ 0

F̄ α̇iW α̇ +HαiWα

− 5
8

Â

1/ 0

F̄ α̇iW α̇ +HαiWα

(6.3.15)

The divergent contributions in (6.3.14) can be further manipulated and become

5
8

1
�
∇αα̇

1/

L∇αα̇

− 5
8

1
�

1/

F̄ α̇iW α̇ +HαiWα

+ 5
4

1
�

δbe

L

(6.3.16)
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By using the identities

1
�
∇αα̇

1/

L∇αα̇

= −

1
�

1/

L�

(6.3.17)

and

L� = −F α̇
iW α̇ −HαiWα (6.3.18)

the divergent diagrams with cubic vertices in (6.3.16) cancel and we are left with

+
5

4

1
�

δbe

L

= +
5

4

(

1
�
− 1

�0

)

δbe

L

(6.3.19)

In the last line we expanded 1
�

= 1
�0

+ · · ·. The 1
�0

contribution cancels since it is a

tadpole. The term proportional to
(

1
�
− 1

�0

)

is indeed finite (see the discussion after
(6.3.37) in Section 6.3.4).

So all divergent contributions from these sectors of the theory sum up to zero. Sum-
marizing, the convergent terms from this sector are (see equations (6.3.15) and (6.3.19))

+5
8

(

A− A
)

1/ i∇αα
0

Eαα̇

− 5
8

(

A− A
)

i∇αα̇

1/ 0

Eαα̇

−5
8

Â

1/ 0

F̄ α̇iW α̇ +HαiWα

− 5
8

Â

1/ 0

F̄ α̇iW α̇ +HαiWα

+ 5
4

(

1
�
− 1

�0

)

δbe

L

(6.3.20)
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Pure–Vector Single Divergent Graphs

Since the number of divergent graphs in this sector is very high, it is useful to group the
graphs with respect to the coefficient that appears on the non-divergent loop. In this
way it is possible to divide the analysis in five divergent subsectors. We remind that in
each sector there are finite contributions associated with hat and tilde coefficients (see
replacements (6.3.1) and (6.3.2)) and finite contributions associated with manipulations
of divergent terms.

• Divergences with Eαα̇

From graphs (2Ax,2), (4Ax,2), (5A,2) and (6Ax,1)‖ we have two divergent contri-
butions

1

4

Eαα̇

1/

1
�
i∇αα̇

+
1

8

Eαα̇

1/

i∇αα̇
1
�

(6.3.21)

and the following finite ones
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i∇αα1/ 0

êββ̇αα̇

+1
8

Eαα̇

1/ 0

i∇ β̇
α D̂β̇α̇

+ 1
8

Eβα̇

i ∇α
  α1/ 0

D̂αβ

− 1
8

Eαα̇

1/ 0

i∇β
α̇D̂βα

− 1
8

Eαβ̇

i∇α
  α1/ 0

D̂α̇β̇

(6.3.22)

‖I use the notation (A,n), where A means the sector 2A, 2B, · · · and n position of the graph in the list.
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The divergent contributions (6.3.21) can be rewritten in this way:
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(6.3.23)

The first of these contribution is divergent, while the second is not.

• Divergences with Hα

From graph (3B,1) we have the simple divergent contribution
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iWα

(6.3.24)

and no convergent ones.

• Divergences with F α̇

The contributing graphs in this sector are the following: (2Ax,3), (2Ax,4), (2Ax,5),
(4A,1), (4Ax,3) and (4Ax,4), (5A,3), (5A,4), (5Ax,1), (6A,1), (6Ax,2) and (6Ax,3).
After replacements (6.3.1), (6.3.2) they give divergent contributions
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(6.3.25)
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where we have used (6.3.2). Moreover, we get the following finite terms
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Ẽ
ββ̇

α i∇ββ̇

+ 1
8

F
α̇

1/ 0

i∇ββ̇ B̃β̇ i∇βα̇

+1
8

F
α̇

1/ 0

i∇α
α̇ Ẽ
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After integrating by parts spacetime derivatives, it is possible to write eq. (6.3.25)
in this form (up to non–planar terms)
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In the first line we collected the only UV divergent term while in the second line
the finite ones.

• Divergences with Lα

There is only one contributing graph with this coefficient: So from (2Bx,1) we get
the divergent term
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(6.3.28)

and the finite one
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(6.3.29)

After some integration by parts and using the relation

Lα
= [∇α, L]−Hα (6.3.30)
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it is possible to write (6.3.28) (up to terms with more than 2 W ’s) as
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(6.3.31)

• Divergences with Hα̇α

Consider graphs (4Ax,1) and (5A,1). After replacements (6.3.1), (6.3.2), their di-
vergent parts give
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while the finite terms are
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By using Hα̇α =
{

∇α̇, Hα

}

−Eαα̇ + iL∇αα̇ it is possible to manipulate (6.3.32) and
get

3
8

[

i∇αα̇, 1
�

]

1/ 0

Hα̇α

− 3
8

1
�
i∇αα̇

1/

Eαα̇

− 3
8

1
�
∇αα̇

1/

L∇αα̇

+ 3
8

1
�
i∇αα̇

1/

{

∇α̇, Hα

}

= −3
8

1
�
i∇αα̇

1/

Eαα̇

+ 3
8

L�

1/

1
�

− 3
4

Hα

1/

1
�
iWα

132



+3
8

[

i∇αα̇, 1
�

]

1/ 0

Hα̇α

+ 3
8

Hαi∇ α̇
α

1/ 0

[

∇α̇,
1
�

]

(6.3.34)

As usual, we write on different lines the divergent and the finite terms.

Consider now the sum of all the divergent terms we found in this section, that is the
first line of equations (6.3.23), (6.3.27), (6.3.34) plus (6.3.24) and (6.3.31). They sum up
to the following simple expression
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where in the last equation we used (6.3.18).

Adding to this expression the divergence we found at the end of section (6.3.2) (see
equation (6.3.12)), we find that the divergent part of all cubic–vertex diagrams is
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(6.3.36)

In the next section we will show that an opposite divergent contribution comes from
the tadpoles. So we end up with an UV free formula for the effective action.
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6.3.4 Tadpole divergent graphs

Consider now the divergences associated with tadpole diagrams. In particular, we refer
to equations (6.2.36), (6.2.40) and (6.2.43).

In this sector we can distinguish two different types of divergences: When on one loop
there is a single 1

�
and when there is only one external W or W field inserted in.

In the first type, we include contributions from eq. (6.2.36), (6.2.43) and from part
of the third graph of equation (6.2.40)∗∗. It is immediate to see that the divergent terms
sum up to
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(6.3.37)

The first line vanishes since the diagrams are genuine tadpoles. We then concentrate on
the second line. We have already encountered these type of graphs (see eq.(6.3.19)). We
show now how the cancellation of the divergences occurs. Consider the following loop

(

1
�
− 1

�0

)

(6.3.38)

and in the expansion of the covariant propagator 1
�

take only terms that contribute to

∗∗See equation (C.0.30).
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the divergence of (6.3.38)
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Replacing (6.3.39) in (6.3.38) and writing the corresponding loop integrals (we denote
with ℓ loop momentum and with pi external momenta) we get
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In (6.3.40) we use the convention that outgoing momenta are positive. Moreover we
remind that 1

�0
= − 1

p2
and this provides an extra minus sign in I4 compared to the rest.

By using standard formulas†† it is straightforward to see that I1 cancels exactly against
I2 and I3 cancels the divergent part of I4 (when we take ℓαα̇ℓββ̇ in the numerator of I4).
So, what we are left with are only UV finite terms coming from the other terms in I4 and
from the higher order expansion of 1

�
in (6.3.39).

The second type of divergences comes from the pure–vector graphs of eq. (6.2.40) of
∇–algebra. In particular, we can distinguish two subclasses of divergent diagrams.

In the first one we include the part of the third diagram in (6.2.40) proportional to
{∇α, Bα} and the part of the sixth proportional to the commutator [∇α, L] (remember

††See for instance Appendix A of [116]
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that Lα
= [∇α, L]−Hα)
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(6.3.41)

Integrating by parts the ∇α appearing in the second graph, we get
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(6.3.42)

Both the contributions of (6.3.42) are not divergent on–shell. In fact the only linear term
in Pα

α is proportional to (∇αWα), which is zero on–shell.

The second subclass of divergent tadpoles are due to the linear terms in the coefficients
Bα, Cα, Eα̇αβ̇ and Eαα̇β. The graphs contributing are the first, the fourth, the fifth one of
(6.2.40) and the part of the sixth proportional toHα. We can extrapolate from these terms
the divergences by using the substitution (6.3.2). We get the divergent contributions:
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and the finite ones:
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This graphs are multiplied by the combinatorial color factor

g2(fabef ecd) (6.3.45)

By considering carefully the color structure of diagrams in (6.3.43) and using Jacobi
identity (E.1.5), it is possible to rewrite them in the following way

−1
4

Hα

d

c

b

a

i 1
�
Wα

1
�

− 1

4

F
α̇

d

c

b

a

i 1
�
W α̇

1
�

(6.3.46)

We then find convenient to rewrite the tadpoles in (6.3.46) by multiplying for 1 = ( 1
�
�)

the 4 points vertex. This produces a loop integral structure that is exactly the one of the
cubic vertex diagrams (6.3.36). Then, by integrating by parts the � on the right vertex,
we find
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The first terms in (6.3.47) cancels exactly against (6.3.36). No other divergent terms
are left! The second line gives the last finite terms we have to keep.

Summarizing, all the divergent graphs present in the ∇–algebra results of Section 6.2
sum into squared expressions of equations (6.3.20), (6.3.22), (6.3.23), (6.3.26), (6.3.27),
(6.3.29), (6.3.33), (6.3.34), (6.3.37), (6.3.42), (6.3.44) and (6.3.47).

These contributions need be combined with finite contributions from Section 6.2,
namely equations (6.2.18), (6.2.24), (6.2.25), (6.2.26), (6.2.27), (6.2.28), (6.2.29), (6.2.30),
(6.2.31), (6.2.32), (6.2.33), (6.2.34), (6.2.40).

The total sum provides the master equation for the 2–loop n–point MHV effective
action of the N = 4 SYM theory in the planar limit.

Note that from the absence of UV divergences it follows that no bubble diagrams
are present at this level. However, this is not a proof of the no–bubble part of the
no–bubble no–triangle hypothesis. In fact, bubbles can be produced in further passages
of the computation of an amplitude. In particular, the contributing diagrams of the
master equation should be interpreted in configuration space. As we Fourier transform to
momentum space and we perform the Passarino–Veltman reduction on vector and tensor
loop integrals (see Step 5 in Section 5.4) a lot of bubble–like scalar integrals are produced.
Of course, they are produced in combinations such that their UV divergent part cancel
but this do not allow to conclude that the full integral cancel.

138



For what concernes the triangles, the master equation contains a lot of triangle–like
diagrams: Triangles, in fact, are produced by coefficients whose expansion starts at first
order in the external fields W , W (for example Bα, Cα,...) and there are a lot of these
coefficients. Thus the cancellation of the triangles is, at this stage of the computation, a
miraculous accident.
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Chapter 7

Towards the four point MHV
amplitude

The previous Chapter ends with a master equation that encodes in our formalism the
all–n two loop MHV planar effective action of the N = 4 SYM theory. In this Chapter
we want to extrapolate from there the four point MHV effective action, i.e. the first non
trivial effective action. In particular, we look for that part of the full effective action that
contributes to the A(1+, 2+, 3−, 4−) color ordered amplitude. The scattering amplitude
can then be obtained from the effective action by summing over the permutations of the
quantum numbers (momenta, helicity and color numbers) of the interacting particles.

In Section 5.4 the complete procedure to move from the master equation for the
effective action to the n particle MHV scattering amplitude is presented in five steps. In
this Chapter we follow that scheme but we optimize it for the four point particle case.

In particular, we show that the four point effective action gets contributions just from
1PI effective action diagrams dressed with two W ’s and two W ’s. Thus we do not need to
include trees of 1PI diagrams nor diagrams including connections Γ. While showing this,
we automatically demonstrate that at two and three points the effective action vanishes on
shell as it should. These results follow from general features about covariant supergraphs,
in particular their behavior under exchange of lines (Up–Down symmetry) and of vertices
(Left–Right symmetry) and their Lorentz structure.

Since the cancellation of UV divergences implies that there are no bubbles at the level
of the effective action, at four points all the contributions can be reduced to have one of
the four loop structures of Fig 7.1. More precisely, all the contributions to the four point
effective actions in configuration space are given by the product of a tensorial structure
described by two W ’s and two W ’s times a kinematic structure given by one of the loop
structures 7.1 and two spacetime derivatives that allow to preserve the Lorentz invariance
of each contributing term.
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c) Pentabox + + - / - d) Pentabox + - -/ +

Figure 7.1: Four point topologies for the N = 4 SYM theory

The factorization properties of helicity structures for MHV amplitudes (4.1.5) im-
plies that the W ’s and the W ’s appear with indices contracted between themselves. In
momentum space this means that a structure like

W α(p1) Wα(p2) W
α̇
(p3) W α̇(p4) (7.0.1)

should be present in front of each contribution∗. In our computation, this index struc-
ture turns out to be a consequence of Passarino–Veltman reduction of vector and tensor
integrals and of the on–shell conditions (B.0.8).

After PV reduction the effective action is given by a complicated combination of dou-
blebox and pentabox–like scalar integrals with various numerators too. However, by work-
ing out this expression with the aid of various identities occurring between the integrals,

∗See eq. (5.1.14) for the four point helicity structure at one loop
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it is possible to cancel all the pentabox–like contributions. This fact is a consequence of
an incredible combination of the coefficients of each contribution.

The final result for the four point effective action is quite asymmetric in the two
doublebox structures, since in one sector it presents only one term while the other sectors
is given by a linear combination of various scalar integrals. It is possible to recognize
inside our expression the contributions that reproduce the results for the color ordered
four point amplitude computed through the indirect techniques. However we have many
other terms. Various checks of the validity of our result are still in progress.

The first Section of this Chapter is devoted to describe the computation of the four
point effective action and to sketch its characteristics in the configuration space. Although
a good part of the arguments here exposed are valid for n > 4 too, our attention is mostly
attended to the four point case. In the second Section we give our final expression for the
effective action in momentum space. In order to follow the computations scattered along
the Chapter, Appendices E, F, G and H play a fundamental role.

7.1 Up to four points

While we look for the n–point effective action, the first operation to do is to replace all
the coefficients that appear in the formula for the all–n effective action with their power
expansions in the external fields. After this operation, we are left with a large number of
covariant graphs that are functions of covariant propagators 1

�
, covariant derivatives ∇αα̇

and a number of background fields Wα, W α̇ smaller or equal to n. MHV condition further
constraints the number of W ’s and W ’s to be smaller than n− 2 and than 2 respectively.

At this point a second expansion must be performed. In fact covariant propagators
and derivatives must be expanded up to the required number of connections Γ. This
operation allows to distinguish between two classes of covariant contributing diagrams:

1) Diagrams with n W ’s and W ’s:
They do not need any further expansion and covariant propagators and derivatives
are simply replaced by their Γ independent terms

1

�
−→ 1

�0
∇αα̇ −→ ∂αα̇ (7.1.1)

No connections enter in the final expression for the amplitude from these contribu-
tions.

2) Diagrams with m < n W ’s and W ’s:
All covariant objects must be expanded and replaced inside covariant diagrams up
to (n−m) order in the connections. At the end, the resulting diagrams present m
W ’s and W ’s and (n−m) Γ’s.
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This second class of diagrams obliges to start the analysis of the n–point effective action
from the lowest W covariant terms that come out from the master equation. Since the
master equation for theN = 4 SYM theory is free of bubbles, we have to start our analysis
from the two W covariant contribution.

Note that, in principle, the two classes of diagrams 1) and 2) must be kept distinct
since their superfield content is different. Possible cancellations between the two sectors
would eventually be manifest just at the component level, not at the superfield one. How-
ever, the on–shell superfield formalism allows us to rewrite two and three point covariant
contributions as four point covariant contributions before expanding 1

�
and ∇. This, as

outlined in the introduction to this Chapter, has two implications:

a) When we are interested in the four point effective action we do not have to worry
about connections. Connections start to become relevant since five points on;

b) This is a direct proof of the well known fact [9, 68] that the two and the three point
amplitudes vanish on–shell.

The proof of the vanishing of the effective action up to four points makes use of
general properties of the covariant diagrams that we call geometric symmetries. Geometric
symmetries follow from the fact that, given a vacuum diagram (for example a cubic vertex
vacuum diagram of Fig 6.1), it is always possible to interchange two quantum lines or two
quantum vertices. In the first case we talk about Up–Down symmetry while in the second
of Left–Right symmetry of the vacuum diagrams. After that ∇–algebra is performed and
coefficients A, B, · · ·, L are replaced by their explicit expressions, the covariant effective
action diagrams that come out still is remnant of these geometric symmetries and many
untrivial relations between various terms can be worked out by using UD and LR. We show
in the next sections which of these relations are fundamental to prove the vanishing of the
two and the three point amplitudes. A detailed description of UD and LR symmetries is
given in Appendix F.

7.1.1 Two point covariant contributions

By power expanding in the external fields the coefficients that appear in the effective
action and by using Up–Down and Left–Right symmetry, we find the following covariant
contributions up to two W ’s:
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(7.1.2)

The goal of this Section is to show that it is possible to rewrite all that contributions as
four and higher point covariant diagrams. In the following we give a detailed computation
that describes how this is possible.

Let’s start by considering some useful diagrammatic identity that follows from LR sym-
metry, on–shell conditions and planarity

1
�
W α∇ α̇

α
1
�

1/ 0

1
�
W α̇

1
�

=

1
�
W α 1

�

1/ 0

1
�
W

α̇∇αα̇
1
�

= 0 (7.1.3)

1
�
W

α̇ 1
�

1/ ∇α
  α0

1
�
Wα

1
�

= 0 (7.1.4)

Identity (7.1.3) follows from the fact that after LR symmetry and by using on–shell
condition (∇αα̇Wa) = 0 the diagram is turned into itself but with opposite sign. The
same happens for identity (7.1.4) but there one has to use relation (B.0.13) and impose
planarity to prove it.

Integrating by parts, from (7.1.4) we find

1
�
W α 1

�
∇ α̇

α

1/ 0

1
�
W α̇

1
�

=

1
�
W α 1

�

1/ 0

1
�
W

α̇ 1
�
∇αα̇

(7.1.5)
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Note that these relations involve covariant diagrams, not ordinary ones. As soon as the
covariant propagators 1

�
are expanded in the connections Γ, they turn out to be very

complicated relations involving a lot of ordinary diagrams. Thus, these relations are
actually highly non–trivial relations.

Using (7.1.3), (7.1.4) and (7.1.5), the two point function (7.1.2) can be rewritten in a very
compact form

Two point
function

= −9
4
i

1
�
W α 1

�

1/ 0

1
�
W

α̇ [ 1
�
,∇αα̇

]

+
1

4

1
�
(∇W )αβ 1

�

1/ 0

1
�
(∇W )αβ

1
�

(7.1.6)

We consider now the two diagrams in (7.1.6) and we manipulate them separately

1) Consider the first diagram in (7.1.6). By using the Jacobi identities it is possible to
write the commutator

[

∇αα̇,
1
�

]

as
[

∇αα̇,
1

�

]

= −i
[

{

∇α,∇α̇

}

,
1

�

]

=

= −i
({

∇α,

[

∇α̇,
1

�

]}

+

{

∇α̇,

[

∇α,
1

�

]})

=

= i

({

∇α,
1

�
W β∇βα̇

1

�

}

+

{

∇α̇,
1

�
W

β̇∇αβ̇

1

�

})

(7.1.7)

Substituting expression (7.1.7) in the first diagram in (7.1.6) and integrating by
parts the spinorial derivatives†, we get

−9
4
i

1
�
W α 1

�

1/ 0

1
�
W

α̇ [ 1
�
,∇αα̇

]

= −9
4

1
�
W α 1

�
W β∇ α̇

β
1
�

1/ 0

1
�
W α̇

1
�
W

β̇∇αβ̇
1
�

+
9

4

1
�
W α 1

�
W β∇ α̇

β
1
�

1/ 0

1
�
W

β̇∇αβ̇
1
�
W α̇

1
�

+
9

4

1
�
W α 1

�
W

β̇∇αβ̇
1
�

1/ 0

1
�
W β∇ α̇

β
1
�
W α̇

1
�

(7.1.8)

†See the comments in the next Section for an exhaustive description of the procedure
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2) Consider the second diagram in (7.1.6) and suppose to integrate by parts the spino-
rial derivative that appears in the first line. After using LR symmetry, we get

1

4

1
�
(∇W )αβ 1

�

1/ 0

1
�
(∇W )αβ

1
�

= −1
2

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
(∇W )αβ

1
�

+
1

2

1
�
(∇W )αβ 1

�
W

α̇∇βα̇
1
�

1/ 0

1
�
Wα

1
�

(7.1.9)

Integrating by parts the last spinorial derivative we get the final result

1

4

1
�
(∇W )αβ 1

�

1/ 0

1
�
(∇W )αβ

1
�

= +
1

2

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
Wα

1
�
W

β̇∇ββ̇
1
�

(7.1.10)

Summarizing the results, the contributions (7.1.2) can be rewritten as the sum of the
right hand sides of equations (7.1.8) and (7.1.10)

Two point contribution to
the 4 point effective action

= −9
4

1
�
W α 1

�
W β∇ α̇

β
1
�

1/ 0

1
�
W α̇

1
�
W

β̇∇αβ̇
1
�

+
9

4

1
�
W α 1

�
W β∇ α̇

β
1
�

1/ 0

1
�
W

β̇∇αβ̇
1
�
W α̇

1
�

+
9

4

1
�
W α 1

�
W

β̇∇αβ̇
1
�

1/ 0

1
�
W β∇ α̇

β
1
�
W α̇

1
�

+
1

2

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
Wα

1
�
W

β̇∇ββ̇
1
�

(7.1.11)

So, the original expression (7.1.2) for the two point function has been rewritten as the
sum of four point covariant terms. No connection Γ is present. In particular the two
point function gives contributions to both the doublebox + + / − − and the doublebox
+ − / + − sectors (see Fig 7.1). Since we are left with no two W ’s diagrams, the two
point function is zero [9].
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7.1.2 Three point covariant contributions

The three point diagrams that contribute to the 4 point MHV effective action must contain
two W ’s and one W or two W ’s and one W . In fact, configurations with three external
fields with the same helicity are excluded by the MHV condition.

This observation allows us to predict the form of all covariant diagrams that appear
at three points. Consider the two W ’s one W case as an example. By Lorentz and
supersymmetry invariance of the diagrams, we know that all the indices that enter in a
Feynman graph must be saturated. This is possible only by introducing in the graph a
spacetime derivative ∇αα̇ and by requiring that one of the W ’s has a spinorial derivative
acting on it. Dimensional arguments forbid to introduce extra derivatives‡. So, each three
point graph is built up with these elements:

Wα, (∇W )αβ, W α̇, ∇αα̇ (7.1.12)

More precisely, since by on–shellness (∇αWα) = 0, indices between elements (7.1.12) must
be contracted in the following way

W α, (∇W ) β
α , W

α̇
, ∇βα̇ (7.1.13)

These elements can enter in various reciprocal locations with respect to themselves and
to the propagators 1

�
. However, their index structure is constrained to be the one shown

in (7.1.13). Examples of three points diagrams that come out when the coefficients inside
the master equation are replaced with their power expansion are represented in (7.1.14)

A)

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
(∇W )αβ

1
�

, B)

1
�
(∇W )βα 1

�
Wβ

1
�

1/ 0

1
�
W

α̇ 1
�
∇αα̇

, C)

1
�
(∇αα̇W β) 1

�
W α̇

1
�

1/ 0

1
�
(∇W )αβ

1
�

(7.1.14)

Suppose now to integrate by parts the spinorial derivative that appears in (∇W )αβ. From
a technical point of view, this operation can be managed in this way:

1) By observing that (∇W )αβ = ∇αWβ +Wβ∇α, replace this expression for (∇W )αβ
inside the diagrams (7.1.14). On–shell condition (∇W )αβ = (∇W )βα give us the
possibility to choose the index carried by the spinorial derivative. We fix this ambi-
guity by imposing that ∇ carries the same index carried by the other chiral W field
present in the diagram. In what follows, let’s suppose that this index is α;

‡Lorentz and supersymmetry invariance let open the possibility to include extra spacetime derivatives
with indexes contracted between them. However this would chance the dimensionality of the diagram.
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2) Move towards the left (right) vertex the ∇α that appears to the left (right) of Wβ;

3) Once the spinorial derivative is arrived at the vertices, integrate it by parts on the
other lines;

4) Move the spinorial derivative close to the left vertex towards the right. It is imme-
diate to see that no terms with ∇’s operating on the right vertex survive. All we
are left with are commutators of ∇’s with propagators 1

�
and spacetime derivatives

∇αα̇.

Since these commutators are proportional to W ’s, this procedure assures us that all
three point diagrams are transformed in combinations of four point diagrams. Note that
the choice of spinor index carried by the spinorial derivative plays a crucial role. Our
prescription at step 1) avoids by on–shell conditions to produce back other (∇W )αβ terms
when spinorial derivatives are moved along the lines of the diagram.

Note that the operations 1)–4) require just three main ingredients: Commutation
relations between covariant objects (see Appendix B), integration by parts of spinorial
derivatives and on–shell conditions (5.1.12)§.

As examples, we report the results of the integration of spinorial derivatives on the
diagrams (7.1.14).

A)

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
(∇W )αβ

1
�

= −

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
Wβ

1
�
W

β̇∇αβ̇
1
�

+

1
�
W α 1

�
W

α̇∇β
α̇

1
�

1/ 0

1
�
W

β̇∇αβ̇
1
�
Wβ

1
�

(7.1.15)

B)

1
�
(∇W )βα 1

�
Wβ

1
�

1/ 0

1
�
W

α̇ 1
�
∇αα̇

= −

1
�
W α 1

�
Wα

1
�

1/ 0

1
�
W

α̇ 1
�
W α̇

−

1
�
W α 1

�
W β 1

�
W

β̇∇ββ̇
1
�

1/ 0

1
�
W

α̇ 1
�
∇αα̇

§We followed the same procedure described in points 1)–4) to integrate by parts the spinorial derivative
in (7.1.8) and (7.1.9).
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+

1
�
W α 1

�
W β 1

�

1/ 0

1
�
W

α̇ 1
�
W

β̇∇ββ̇
1
�
∇αα̇

−

1
�
W α 1

�
W β 1

�

1/ 0

1
�
W

β̇∇ββ̇
1
�
W

α̇ 1
�
∇αα̇

+

1
�
W

β̇∇β

β̇
1
�
W α 1

�
Wβ

1
�

1/ 0

1
�
W

α̇ 1
�
∇αα̇

(7.1.16)

C)

1
�
(∇W )αα̇β 1

�
W α̇

1
�

1/ 0

1
�
(∇W )αβ

1
�

= −

1
�
W αW

α̇ 1
�
W α̇

1
�

1/ 0

1
�
Wα

1
�

+

1
�
(∇W )αα̇β 1

�
W α̇

1
�
W

β̇∇ββ̇
1
�

1/ 0

1
�
Wα

1
�

−

1
�
(∇W )αα̇β 1

�
W α̇

1
�

1/ 0

1
�
Wβ

1
�
W

β̇∇αβ̇
1
�

−

1
�
(∇W )αα̇β 1

�
W

β̇∇ββ̇
1
�
W α̇

1
�

1/ 0

1
�
Wα

1
�

(7.1.17)

In the results we kept just diagrams that contribute to the A(1+, 2+, 3−, 4−) color ordered
planar amplitude¶.

Thus, all three point covariant terms can be rewritten as combination of four point
covariant terms. This result implies that the three point amplitude vanish on–shell‖.
Moreover, together with the result we found for the two point covariant contribution
(7.1.11), this analysis of the three point function assures us that connections Γ from the
expansion of covariant propagators 1

�
and covariant derivatives ∇αα̇ play a role just from

five points on.

¶This means that the two W ’s must be consecutive by reading clockwise the diagram
‖On–shellness is a fundamental ingredient of procedure 1)–4)
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7.1.3 Four point covariant contributions

Each four point graph is a function of W ’s, W ’s, covariant propagators 1
�
and spacetime

derivatives ∇αα̇. If we are interested in a process that involves at most four particles, the
covariant propagators and derivatives can be replaced by ordinary propagators 1

�0
and

derivatives ∂αα̇.

MHV condition imposes to have two W ’s and two W ’s. Supersymmetry invariance
and dimensional analysis require the presence of two spacetime derivatives to saturate
open spinorial indices. All possible index contractions and relative positions between
background fields and spacetime derivatives are acceptable.

In principle, situations with just one spacetime derivative, a chiral ∇α and an anti–
chiral ∇α̇ covariant derivative applied to a chiral W and an anti–chiral W field satisfy
constraints due to the request of symmetry invariance and mass dimensions. However, any
such diagram, by integrating by parts one of the spinorial derivatives, can be transformed
into a graph with two spacetime derivatives and no spinorial ones. In eq. (7.1.18) we give
an example of this mechanism.

i

∇αα̇ 1
�
W β 1

�
(∇αWβ)

1
�

1/ 0

1
�
(∇α̇W

β̇
) 1
�
W β̇

1
�

= −

∇βα̇ 1
�
W α 1

�
Wβ

1
�

1/ 0

1
�
(∇αα̇W

β̇
) 1
�
W β̇

1
�

+ O(W 3W
2
) (7.1.18)

Thus, we can assert that any four point diagram contributing to the MHV effective action
is function of two W ’s, two W ’s and two spacetime derivatives ∇αα̇.

Consider now the case of a cubic vertex diagram: Due to the absence of UV diver-
gences, the external fields rearrange along the quantum lines in such a way to reproduce
a doublebox or a pentabox topology (see Fig 7.1).

There is just one exception to this rule, i.e. when the two spacetime derivatives can be
substituted with a � and this cancels a propagator 1

�
. We can distinguish between two

cases: 1) When the canceled propagator is the one on the middle line, the cubic vertex
diagram is turned into a tadpole–like diagram. Some subtlety due to color factors must
be carefully considered (see appendix E); 2) When the canceled propagator is in any other
position, the diagram is turned into a trianglebox like diagram. Color structure is not
problematic in this case.

In order to reduce the number of sectors in which the four point effective action
is partitioned, it is convenient to rewrite tadpoles and triangleboxes as pentabox and
doublebox–like diagrams. The key trick consist in inserting 1 = 1

�
� = 1

2
1
�
∇αα̇∇αα̇ where

a propagator is missing (see Fig 7.2).
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Tadpoles −→

Triangleboxes −→

Figure 7.2: Tadpoles and triangleboxes can be written as doubleboxes and pentaboxes

Summarizing, the structure of the terms that contribute at four points includes two W ’s,
two W ’s and two spacetime derivatives. The topology of each diagram can be traced back
to one of the four topologies of Fig 7.1.

The diagrams are produced from three different sources:

1) From the two point contribution enhanced to four point (see eq. (7.1.11));

2) From the three point contribution enhanced to four point through the integration
by parts of spinorial derivatives;

3) From the contributions that come out with four W ’s directly from the master equa-
tion.

The total number of terms from sectors 1), 2) and 3) includes a few hundreds different
diagrams. Their sum constitutes the full expression for the four point effective action.

In Fig 7.3 we give some example of four point effective action diagrams, one for each
sector.
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1
�
W β 1

�
Wβ

1
�
∇αα̇

1/ 0

1
�
W

β̇ 1
�
W β̇

1
�
∇αα̇

1
�
W α 1

�
W

α̇ 1
�

1/ ∇α
  β

0

1
�
W β 1

�
(∇βα̇W β̇)

1
�

a) Doublebox + + / - - b) Doublebox + - / + -

1
�
W α 1

�
W β 1

�
W

α̇ 1
�

1/ 0

∇ β̇
β

1
�
(∇αα̇W β̇)

1
�

1
�
W α∇ α̇

α
1
�
W

β̇ 1
�
W β̇

1
�

1/ 0

1
�
W β∇βα̇

1
�

c) Pentabox + + - / - d) Pentabox + - -/ +

Figure 7.3: Examples of contributions to the four point effective action

7.2 The results

After having reshuffled the two, three and four point functions as described in the previous
Section, in order to get the final expression for the four point effective action it is worth
to move all the diagrams to momentum space. The conventions that we followed while
Fourier transforming are given in Appendix G.

A general effective action contribution in momentum space reads
∫

d4θ
d4p1 · · · d4p4

(2π)16
δ(
∑

(pi))
(

tr(tatbtctd) + tr(tdtctbta)
)

×
(

W α(p1)
)a(

W β(p2)
)b (

W
α̇
(p3)

)c (

W
β̇
(p4)

)d

×Gαβα̇β̇(p1, p2, p3, p4)

(7.2.1)

where the function Gαβα̇β̇ represents the loop integral structure and can be written

Gαβα̇β̇ ∝
∫

ddk ddℓ
vαα̇wββ̇

denominator
(v, w) = {p1, p2, p3, p4, k, ℓ} (7.2.2)

The denominator is given by the propagator structure relative to one of the four sectors
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of Fig 7.1 in which the effective action is divided. The conventions we follow for the
denominators are summarized in Fig G.3. At numerator, v and w are the Fourier trans-
form of the two spacetime derivatives present in all the contributions of the four point
effective action. They can be loop or external momenta. When one (two) of them is a
loop momentum, the loop integral has a vector (tensor) Lorentz structure.

PV reduction (see Appendix H) allows to express vector and tensor integrals as combi-
nations of scalar integrals. In particular PV reduction and on–shell conditions transform
the expression (7.2.1) in this way

∫

d4θ
d4p1 · · · d4p4

(2π)16
δ(
∑

(pi))
(

tr(tatbtctd) + tr(tdtctbta)
)

×
(

W α(p1)
)a(

Wα(p2)
)b (

W
α̇
(p3)

)c
(

W α̇(p4)
)d

×
(

asGs(p1, p2, p3, p4) +
∑

v

avGv(p1, p2, p3, p4) +
∑

t

atGt(p1, p2, p3, p4)

)

(7.2.3)

Note that this general structure assures that our expressions for the effective action (and
consequently for the scattering amplitudes) are real.

The integrals Gs, Gv and Gt in (7.2.3) have the same denominator structure but differ
at numerator. The Gs integrals have a trivial numerator while the Gv and Gt ones exhibit
respectively one and two squared loop structure like, for example, k2 or ℓ2(k + p1)

2.

The different mass dimension in these three classes of loop integrals is compensated by
the coefficients as, av and at. This coefficients are rational functions of the Mandelstam
variables s = (p1 + p2)

2, t = (p1 + p4)
2 and u = (p1 + p3)

2. Note that Gt integrals are
produced only by contributions with a tensor Lorentz structure, Gv by vector and tensor
structures and Gs by vector and scalar structures. Moreover we stress that it is only after
the PV reduction that the expected helicity structure (7.0.1) emerges.

We are now ready to exhibit the results that we get after Fourier transforming and hav-
ing done the PV reduction. We divide the results in the two doublebox and the two
pentabox sectors. We do not report the explicit denominator structure of these diagrams
but only the numerators of the various contributions. The conventions we used for the
denominators can be read in Fig G.3. The numerators are expressed as scalar products or,
equivalently, as squared of loop and external momenta. We have used a mixed notation
in order to try to keep more compact the expressions∗∗.

∗∗We remind that in our superspace conventions the relation between the two structures is vββ̇wββ̇ =

(v + w)2 − v2 − w2.

154



Doublebox ++ /−−

Doublebox + + / - - = −
(

1

2
s+

1

8
(ℓ+ p1)

2 +
1

8
(ℓ− p2)2

)

(7.2.4)

Doublebox +− /+−

Doublebox + - / + - = −1
8
t +

1

8

(

(k + ℓ)ββ̇ (p14)ββ̇ +
t

s
(k − ℓ)ββ̇ (p12)ββ̇

)

− t

16s

(

(k)ββ̇ (k)ββ̇ + (ℓ)ββ̇ (ℓ)ββ̇

)

+
1

16s

(

(k)ββ̇ (k)γγ̇ + (ℓ)ββ̇ (ℓ)γγ̇
)

×

×
(

(p1)ββ̇ (p2)γγ̇ − (p1)ββ̇ (p3)γγ̇ + (p2)ββ̇ (p2)γγ̇ + (p2)ββ̇ (p3)γγ̇

)

+
t

16s2

(

(k)ββ̇ (k)γγ̇ + (ℓ)ββ̇ (ℓ)γγ̇
)

(p12)ββ̇ (p12)γγ̇

+
1

8

(

2 +
t

s

)

(k)ββ̇ (ℓ)ββ̇ −
t

8s2
(k)ββ̇ (p12)ββ̇ (ℓ)

γγ̇ (p12)γγ̇

+
1

8s
(k)ββ̇ (ℓ)γγ̇

(

− (p1)ββ̇ (p2)γγ̇ − (p1)ββ̇ (p3)γγ̇

− (p2)ββ̇ (p2)γγ̇ − 2 (p2)ββ̇ (p3)γγ̇

+2 (p3)ββ̇ (p1)γγ̇ + (p3)ββ̇ (p2)γγ̇

)

−1
4

(

ℓ2 + (k + p14)
2
)

(7.2.5)

Pentabox ++−/−

Pentabox + + - / - = −1
4

(

(k)ββ̇ (p1)ββ̇ +
t

s
(k)ββ̇ (p12)ββ̇

)

+
1

4

(

(ℓ)ββ̇ (p1)ββ̇ +
t

s
(ℓ)ββ̇ (p12)ββ̇

)

+
1

4
(ℓ)ββ̇ (ℓ)ββ̇ −

1

4
(k)ββ̇ (ℓ)ββ̇
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+
1

4s
(k)ββ̇ (ℓ)γγ̇

(

(p12)ββ̇ (p3)γγ̇ − (p3)ββ̇ (p12)γγ̇

)

(7.2.6)

Pentabox +−−/+

Pentabox + - - / + = +
1

4
(k)ββ̇ (p1)ββ̇ −

1

4
(ℓ)ββ̇ (p12)ββ̇

−1
4
(ℓ)ββ̇ (ℓ)ββ̇ +

1

4
(k)ββ̇ (ℓ)ββ̇

+
1

4s
(k)ββ̇ (ℓ)γγ̇

(

(p1)ββ̇ (p2)γγ̇ − (p2)ββ̇ (p1)γγ̇

)

−1
4
(ℓ− p2)2 (7.2.7)

We remember that these expressions are multiplied by

±
∫

d4θ
d4p1 · · ·d4p4

(2π)16
δ(
∑

(pi))
(

tr(tatbtctd) + tr(tdtctbta)
)

×
(

W α(p1)
)a(

Wα(p2)
)b (

W
α̇
(p3)

)c
(

W α̇(p4)
)d

(7.2.8)

where we get the plus sign for the doublebox structures and the minus sign for the
pentabox ones. This difference of sign is due to color factors (see Tab E.1).

Although these expressions are a bit scary, it is possible to reduce them. All the in-
tegrals involved in the results, in fact, are scalar integrals and they can be thought as
functions f(s, t) of the independent Mandelstam variables. As a consequence, transforma-
tions on the external momenta (in particular exchanges of external momenta) that leave
the Mandelstam variables unchanged can be used to discover useful identities between
the integrals. The relations between the scalar integrals are developed in Appendix H.1.

The identities among scalar integrals make possible to discover a lot of cancellations
in the previous results. Dramatic simplifications between the contributions in different
sectors occur. In particular the two pentabox sectors (7.2.6) and (7.2.7) can be resummed
and produce only one term proportional to the first pentabox. More precisely, the sum
of the two pentabox sectors reads

−1
4
(ℓ+ p14)

2 × pentabox ++-/- (7.2.9)

where “pentabox ++-/-” represents the denominator structure give by picture C) in Fig
G.3.
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Amazingly, the contribution (7.2.9) cancels exactly the two squared terms proportional
to the first doublebox (see eq. (7.2.4)) once that the relative minus sign (7.2.8) between
doubleboxes and pentaboxes is taken into account.

Thus, we are left with an expression for the four point amplitude that is proportional
to the two doubleboxes only. Moreover, the part proportional to the first of the two
doubleboxes is extremely simple, since it is made by one term only. More precisely, we
have

Doublebox ++ /−−

2b + + / - - = −1
2
s (7.2.10)

Doublebox +− /+−

2b + - / + - = −1
2
t

−1
4
(k − ℓ)2

+
t

8s

[

(k − p2)2 − (k + p1)
2 − (k − ℓ)2

]

+
1

4s

[

− 2 (ℓ+ p1)
2 (k + p14)

2 + ℓ2 (k + p14)
2 + (k − p2)2 (ℓ+ p1)

2

+k2 (k + p1)
2 + ℓ2 (ℓ+ p1)

2 − (k − p2)2 (k + p1)
2 − k2 (k + p14)

2
]

+
t

8s2

[

(

(k + p1)
2)2 +

(

(k − p2)2
)2 − 2 (k + p1)

2 (k − p2)2

+ (k + p1)
2 (ℓ− p2)2 + (k − p2)2 (ℓ+ p1)

2 − 2 (k + p1)
2 (ℓ+ p1)

2
]

(7.2.11)

Written in another way, the sum of expressions (7.2.10) and (7.2.11) gives the following
formula for the effective action

p1

p4

l-k

p2

l

p3

×
(

−s
2

)
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+

p1

p4

l-k

p2

l

p3

×
(

− t
2
+

t

8s
(k − p2)2 +

1

4s
(k − p2)2 (ℓ+ p1)

2

+
t

8s2
(

(k − p2)2
)2

+
t

8s2
(k − p2)2 (ℓ+ p1)

2

)

+

p1

p4

l-k

p2

l

p3

×
(

− t

8s
− 1

4s
(k − p2)2 +

t

8s2
(k + p1)

2 − t

4s2
(

(k − p2)2 + (ℓ+ p1)
2)
)

+

p1

p4

l-k

p2

l

p3

×
(

− 1

2s
(ℓ+ p1)

2 +
1

4s
(k − p2)2

)

+

p1

p4

k

p2

l

p3

×
(

−1
4
− t

8s

)

+

p1

p4

l-k

p2

k

p3

×
(

1

4s

)

+
p1

p4

l-k

p2l

p3

×
(

t

8s2

)

+

p4 p1

l-k

p2

l

p3

×
(

1

4s

)

+

p1

p4

l-k

p2

l

p3

×
(

− 1

4s

)

(7.2.12)

This expression gets multiplied by (7.2.8). To obtain from there the color ordered am-
plitude A(1+, 2+, 3−, 4−) we have to drop the pi integrals, sum over the permutations
of the momenta pi (this involves also to interchange the internal symmetry indices) and
keep terms proportional to the color trace structure tr

(

tatbtctd
)

only. This turns out
to be equivalent to sum the results (7.2.12) over the cyclic permutations of the external
momenta, i.e. to add to these two equations the same expressions with s↔ t.

A few comments about this expression for the four point effective action are necessary.

• When we extract from (7.2.12) the formula for the four point scattering amplitude
we cannot reproduce in a straightforward way the results derived with the cutting
techniques (see eq. (4.2.8) and [85]). In particular, when we compare the two results
we see that equation (7.2.10) plus the first line of eq. (7.2.11) give exactly the result
(4.2.8) computed with the indirect techniques.
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Nevertheless we have a lot of extra contributions in (7.2.11). All these contributions
share the general feature to have a non–trivial numerator. It is not to exclude the
possibility that these integrals actually cancel. In general, it is true that each two
loop four point scalar integral can be reduced to a linear combination of a set of
scalar master integrals. Thus it could be the case that the extra pieces in (7.2.11)
cancel once that they are rewritten in terms of the master integrals.

• Is our result wrong? We could transform this question in two different questions:
1) Is it possible that we have done a mistake somewhere in the calculation?
2) Which kind of properties should a result exhibit in order to be trustable?

The answer to the first question is that, of course, the length of the computation
makes a computational mistake possible. However, this mistake should have very
special features.

In fact, if it affects the ∇–algebra procedure it should not touch the cancellation
of the UV divergent terms. If it affects the power expansion of the coefficients of
the propagators it should do it in such a way that all the general relations among
the coefficients are respected. It could be a problem of the PC programs we wrote
but we made a lot of checks on each single part of them. Moreover we managed to
perform the calculation by following different procedures with respect to the best
way sketched in Fig J.1 of Appendix J but always we got the same answer here
above described.

More in general, this mistake should be a big mistake, since the number of extra
terms in our results is large, but, on the other hand it cannot be so big, otherwise
the nice cancellations that occur between the two pentabox sectors and the nice
result (7.2.10) proportional to the first doublebox would be inexplicable.

Moreover, it should affect mainly the second doublebox sector. Under this point
of view, it is worth to mention that the derivation of the master equation for the
effective action is blind with respect to the various sectors that contribute at four
points. In general, in fact, a diagram of the master equation produces contributions
to more than one sector of the four point function. The same can be said for the
elaboration of the two point and three point covariant contributions described in
the Section 7.1. Thus it is very unlikely that the mistake is in these parts of the
computations, although they are the most tricky ones.

About the second question, there are two features that make a result trustable: The
infrared divergences and the analysis of the cuts in the s and the t channels. In
particular, the combination of the extra contributions of eq. (7.2.11) should be IR
free and its cut in the s and the t channels should be zero.

The analysis of the IR divergences requires or the knowledge of the analytic form
of each of the extra integrals of (7.2.11) or, alternatively, a numerical evaluation of
them††. This second road is preferred since it allows quicker checks. Unfortunately

††Public programs like FIESTA [124] are very useful in order to get this goal
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the analysis is complicated by the fact that the extra integrals in (7.2.11) present
both IR and UV divergences and it is not guaranteed that a numerical evaluation
can distinguish between them.

Thus we expect that easier checks would come from the analysis of the cuts in the
s and the t channel. This is work in progress.

• Are the cutting techniques wrong? If the extra integrals do not cancel, no mistakes
are present in our calculation and we are able to show that our results has the
correct behaviours at the IR poles and at the cuts, this should be the logical answer
that we would be left with.

From this point of view, it is important to note that the extra terms in our re-
sults present integrals with triangles and bubbles. These are produced when the
numerators in (7.2.11) cancel one or two of the propagators in the same loop at
denominator. Moreover, there are other integral structures with numerators that
do not cancel any of the propagators. This structures are assumed to be absent or
are even not considered by the cutting techniques. They are these ansatzs of the
indirect techniques that should be eventually reconsidered more carefully.

Summarizing, although our results in (7.2.12) for the two loop four point MHV effective
action look strange, they are the end of a procedure that presents strong internal checks at
various stages of the computation. However, these internal checks cannot be completely
exhaustive about the validity of our results and more general checks are required. The
results of these extra checks could open various scenarios about what we know (or we
suppose to know up to know) about MHV amplitudes in N = 4 SYM theory.
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Chapter 8

Conclusions

In the second part of this thesis we have studied the problem of scattering amplitudes in
YM theories. The great interest in these objects is due both to phenomenological reasons
and to remarkable properties of MHV color ordered amplitudes that recently emerged in
the context of N = 4 SYM theory through the AdS/CFT correspondence.

At weak coupling, what we know about the quantum corrections to the amplitudes are
the results of computations performed using indirect computational methods, primarily
the cutting techniques. The validity of these techniques is based on assumptions that
arbitrarily extend to any perturbative order and to any number of interacting particles
regularities in the MHV amplitudes observed at the first loops and for only a few scattered
particles.

In order to give more insights into the validity of indirect techniques and to the prop-
erties that they display, in the second part of the thesis we have developed a direct,
assumption–free computational method based on a Feynman diagrammatic approach in
superspace.

Our method makes available the complete effective action at a fixed loop order in any
SYM theory. From there, the scattering amplitudes follow by composing trees of vertexes
and propagators given by the 1PI Green functions.

The strategy we have described along the thesis makes use of background field method
in superspace. The computation of the effective action follows from the identification of
a set of vacuum diagrams in superspace. The propagators of these diagrams are back-
ground covariant propagators and represent the propagation of quantum fields and their
interactions with the external background fields. Thus, the effective action is implicitly
built in the vacuum propagators in an extremely compact way.

The ∇–algebra procedure and a suitable expansion of the propagators in power of
spinorial derivatives allow to extract from the vacuum diagrams the complete effective
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action. This expression turns out to be a linear combination of Feynman diagrams de-
pending on the expansion coefficients of the covariant propagators.

The coefficients are functions of the external fields and can be expanded in power series
with respect to them. However, as long as it is possible to deal with the coefficients before
they are expanded, our expressions for the effective action are completely independent of
the number of interacting particles. The explicit expression for a specific n–point effective
action is extracted from the all–n formulas by expanding the coefficients only in a second
time.

Along the computation a special role is played by a lot of relations satisfied by the
coefficients. Their origin can be traced back to the basic algebraic identities satisfied by
the covariant superspace derivatives. Thus, they enjoy the same generality of the basic
superspace relations. The relations between the coefficients help in simplifying the all–n
expressions and furnish non trivial consistency checks in various steps of the computation.

We have firstly applied the computational strategy here summarized to compute the
two loop all–n MHV effective action in N = 4 SYM theory. With respect to the general
strategy, computations in N = 4 SYM theory requires an extra constraint that must be
satisfied. This theory, in fact, is UV finite. Thus, the cancellation of the UV divergences
in the results becomes a key check of the consistency all our computational apparatus.

Indeed, a careful analysis of the divergent contributions show that they can be re-
summed into finite terms. The relations between the propagator coefficients display all
their usefulness while getting this result.

Thus, the main result of the second part of the thesis is the following: We have given
a formula for the two–loop MHV effective action of the N = 4 SYM theory that is
manifestly UV finite and valid for any number of interacting particles. From this formula
it is in principle possible to extract any two loop MHV scattering amplitude.

As an immediate application of our techniques we extrapolated the four point effective
action. It turns out that only 1PI diagrams contribute at four points. Moreover all the
contribution has a well defined structure involving the field strengths and of the spacetime
derivatives whose origins can be traced back to supersymmetry, Lorentz invariance and
on–shell conditions.

After moving to momentum space and performing the Passarino–Veltman reduction,
all the contributions to the effective action present the same helicity structure that can
be factorized out. What we are left with is a linear combination of scalar integrals. Four
different topological sectors can be recognized. Two of them are doubleboxes and two are
pentaboxes.

Non–trivial cancellations can be worked out between the two pentabox sectors and
one of the doublebox sectors. At the end of these cancellations the result we get is
a half of what is necessary to reproduce the formula for the color ordered amplitude
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computed through the indirect techniques. The other half we need can be found in the
other doublebox sector. However, other extra contributions occur in this sector. The
interpretation of the extra terms is still an open problem and requires extra checks that
are in progress.
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Chapter 9

Acknowledgments

Chi è arrivato a leggere dall’introduzione fino a qui si ricordi che . . .

”Io conosco un pianeta su cui c’è un signor Chermisi.

Non ha mai respirato un fiore. Non ha mai guardato una stella.

Non ha mai voluto bene a nessuno. Non fa altro che addizioni.

E tutto il giorno ripete come te: ”Io sono un uomo serio! Io sono un uomo serio!”

e si gonfia di orgoglio. Ma non è un uomo, è un fungo!”

Non tutti, però, sono funghi . . .

My first thought is due to my supervisor S. Penati and my collaborators M. T. Grisaru
and M. Pirrone. My hope is that they could appreciate my acquaintance as much as I
appreciated theirs.

A great thank goes to my Ph.D. mates – and former student–mates – A. Amariti, S.
Alioli and E. Re for a friendship that started in the physics but that soon went beyond
it.

Last but not least, ehi . . . mamma, papà, Franci e zio (e zia Rosalimpia . . .), I know
that if it was for you I could even not mention you here, but you see . . . somewhere
sometime something . . . and I think that this is the place, the time and the kind of things
that gives you that joy that you like.
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”Gli uomini non hanno più tempo per conoscere nulla.

Comprano dai mercanti le cose già fatte.

Ma siccome non esistono mercanti di amici,

gli uomini non hanno più amici.

Se tu vuoi un amico, addomesticami!”

Addomesticare un Ratto? Ebbene, succedono anche di queste cose . . .

Nell’antica mitologia greca il destino di un’uomo era deciso dal filare, tessere e recidere
il filo della vita da parte delle tre Moire. Si dice che queste donne avessero un occhio solo
che si palleggiavano l’un l’altra di volta in volta per vedere il presente ed il futuro.

Nella mia vita di studente che in queste pagine si conclude posso anche io rintracciare
tre donne che, palleggiandomi fra loro come l’occhio delle Moire nel mito, hanno con-
tribuito in modo determinante a ciò che ora sono. La mia maestra Nuccia ha filato ciò
che poi Elena si è trovata a svolgere e dipanare. Infine, Silvia, ora tocca a te decidere di
tagliare il filo.

C’è però un’altra persona che devo e dovrò sempre tener presente nelle mie attività
future. Non è però cosa difficile ricordare un uomo che in sè raccoglie tutto quello che
un giovane dovrebbe sapere di ciò che lo ha preceduto e che ha creato il mondo in cui
oggi ci troviamo. Sono estremamente felice di averti conosciuto, Marc, e non credo che
una semplice frase nei ringraziamenti di una tesi (nè una torta di compleanno spedita agli
antipodi) possa esprimere tutta la mia riconoscenza nei tuoi confronti.

Passiamo agli amici e qualcuno lo dimenticherò di sicuro. Non vogliatemene: scrivo di
fretta e con la mente stanca la pagina numero xxx di troppo di questo malloppone. E poi,
non mi piaceva leggere i cataloghi delle navi, figuriamoci se mi piace scriverli! Quindi,
se qualcuno non trova di sè qui mentre legge, prego il suo cuore di scovare ciò che i suoi
occhi cercano e non vedono. Perchè mai nulla è come appare ma bisogna sempre porsi in
ascolto e cercare. E solo il cuore sa sentire e ascoltare per davvero. A buon intenditor . . .

Un pensiero a chi ha condiviso con me l’incontenibile senso di fratellanza che nasce
sulla cima di un 4000. Simo, Vir e soprattutto tu Ema. Vero è che abbiamo condiviso
negli anni molto più che la sola montagna ma la libertà ho trovato insieme a voi in quei
luoghi è un sentimento indescrivibile, che intender non può chi no lo prova.

Stando in ambito universitario: Anto! Marco! ”terroni” amici di un purosangue
brianzolo come me! Incredibile ma vero! Lo stesso si può dire dei bergamaschi Andrea,
Giacomo e Paolo, della brianzola di passaporto Elisa, della buona Ceci e del quasi milanese
Fede, del vero milanese Marco, della comasca Silvia e dello yankee Sean. Per non parlare
poi degli amici stranieri Elisa (accento sulla a, prego!), Stephane e Sophie: spero tanto
per loro che non vengano mai più attaccati sul far del tramonto da un branco di capre
piemontesi! Ma possibile che non ci siano altri purosangue brianzoli? Beh, puri puri forse
no, di certo però Giordano, Luca e Pietro hanno respirato aria buona a lungo. Ed anche
Tommaso ora è in una provincia dal buon nome.
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I brianzoli, però non mi sono di certo mancati, perchè nelle lunghe serate di sfogo
tirando una palla in un cesto, era con gente della mia terra che il più delle volte ci si
confrontava. Questo sin dai tempi delle giovanili di Arosio con Marco Pozzi e Rosso; poi
su fino ai campionati senior mai vinti con la Verano di Teo, Gerry, Vale, Michi, Galbia,
Diego ”Raul” e Mambro (ehi, ragazzo: grazie per venerd̀ı!); per finire, la Nibionno di
tanti bravi ragazzi, un grande allenatore, ed ottimi amici vecchi (vero Buch?) e meno
vecchi (BumBum Kappe, tu meno vecchio? Ebbene s̀ı!) il cui sguardo corre, bellissimo,
a cercare la propria bambina sugli spalti appena la palla si insacca da dietro l’arco. Che
dire . . . abbiamo condiviso più di un bel gioco e chissà che la cosa non continui un giorno.

Ecco . . . ho fatto anche io il mio catalogo, mannaggia a me!

Pensieri particolari ora per chi ha più o meno consapevolmente contribuito ad un buon
epilogo della storia qui sopra raccontata. Caty e Madda (e Albino!) avete avuto tanto
tanto buon cuore verso di me e mi avete sempre dato tante iniezioni di fiducia. Fil . . ., a
te sono toccati i miei momenti più duri . . . non so perchè ma per mia fortuna sono capitati
quando c’eri anche tu. Diana . . . in genepy veritas . . . soprattutto se bevuto sul far del
giorno. Ci siamo capiti e di altro non c’è bisogno. Caro Guarna, ricordati sempre che non
conta chi scrive tesi di dottorato ma in che modo uno affronta le proprie sfide ed io non ne
conosco che le affrontano con la tua energia. Chiudo il cerchio dei pensieri tornando molto
vicino al punto di partenza: Marta, tu sei una persona che definire speciale è toglierle
qualcosa. Spero che quando sarà il tuo turno di scrivere la pagina dei ringraziamenti della
tesi di dottorato, vorrai ricordarti di me anche se non so, a oggi, dirti se mi sarà possibile
essere presente come tu sei stata.

È tempo di terminare.

Gli uomini coltivano 5000 rose nello stesso giardino . . .
e non trovano quello che cercano . . .

e tuttavia quello che cercano potrebbe essere trovato in una sola rosa,

rossa, nera o di qualsiasi colore.

Ma gli occhi sono ciechi: bisogna cercare col cuore.

Cos̀ı finisce il tempo del mio dottorato in fisica.
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Appendix A

Basic conventions for Superspace

In this appendix we report the most basilar conventions for superspace we used.

1) Spinorial derivatives of Grassmann variables

∂αθ
β = δ β

α ∂αθβ = −δ β
α

∂αθβ = +cαβ ∂αθβ = +cαβ (A.0.1)

2) Ricci tensor contractions

cαβc
γδ = δ γ

α δ
δ

β − δ γ
β δ

δ
α

cαβcαβ = 2 cαβcβα = −2 (A.0.2)

Written in matrix form
(

0 −i
i 0

)

(A.0.3)

3) Hermitian conjugation

(ψα)† = ψ̄α̇ (ψα)
† = −ψ̄α̇ (A.0.4)

Notice that on derivatives this means
(−→
∂ α

)†
= −←−̄∂ α̇ = +

−→̄
∂ α̇ (A.0.5)

For the Ricci tensor it holds

(cαβ)
† = cα̇β̇ (A.0.6)

From equations (A.0.1), (A.0.5), (A.0.6) we get

∂̄α̇θ̄
β̇ = δ β̇

α̇ ∂̄α̇θ̄β̇ = −δ β̇
α̇

∂̄α̇θ̄β̇ = +cα̇β̇ ∂̄α̇θ̄β̇ = +cα̇β̇ (A.0.7)
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4) Products of Grassmann variables

θα θβ = θ2cβα θ̄α̇ θ̄β̇ = θ̄2cβ̇α̇

∂αθ
2 = θα ∂̄α̇θ̄

2 = θ̄α̇ (A.0.8)

5) Spacetime derivative

i∂αα̇ = pαα̇ = λαλ̄α̇ (A.0.9)

6) Superspace covariant derivatives

Dα = ∂α +
i

2
θ̄α̇∂αα̇

Dα̇ = ∂̄α̇ +
i

2
θα∂αα̇ (A.0.10)

It holds that
{

Dα, D̄α̇

}

= i∂αα̇ (A.0.11)

7) Field strengths

Wα = iD
2 (
e−VDαe

V
)

W α̇ = iD2
(

eV D̄α̇e
−V
)

(A.0.12)

Linearizing

Wα = iD
2
DαV

W α̇ = iD2D̄α̇V (A.0.13)

8) Covariant derivatives
In a non–abelian field theory and in real representation the covariant derivatives are
defined as

∇α = e−
V
2 Dαe

V
2 ∇α̇ = e

V
2 Dα̇e

−V
2

∇αα̇ = −i
{

∇α,∇α̇

}

(A.0.14)

If we write the covariant derivatives in terms of the connections Γα

∇α = Dα − iΓα ∇α̇ = Dα̇ − iΓα̇

∇αα̇ = ∂αα̇ − iΓαα̇ (A.0.15)

we find that, in full generality,

Γαα̇ = −i
(

Dα̇Γα

)

− i
(

DαΓα̇

)

−
{

Γα,Γα̇

}

(A.0.16)

At linear order in the vector field V , from the definitions (A.0.14), we write

Γα =
i

2
(DαV ) Γα̇ = − i

2

(

Dα̇V
)

(A.0.17)

From (A.0.16) and (A.0.17), it follows

Γαα̇ =
1

2

([

Dα̇, Dα

]

V
)

(A.0.18)
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Appendix B

On–shell ∇–algebra

In this Appendix we give the (anti)commutation algebra for covariant derivatives and
several on–shell identities which have been used in the course of two–loop ∇–algebra.

The basic commutators for full and background covariant derivatives are

{∇α,∇α̇} = i∇αα̇

[∇α,∇ββ̇] = CαβW β̇ , [∇α̇,∇ββ̇] = Cα̇β̇Wβ

[∇α,∇2
] = i∇ α̇

α ∇α̇ + iWα , [∇α̇,∇2] = i∇α
α̇∇α + iW α̇

[∇2,∇αα̇] = −W α̇∇α , [∇2
,∇αα̇] = −Wα∇α̇ (B.0.1)

[

∇αα̇,∇ββ̇

]

= −icαβ(∇α̇W β̇)− icα̇β̇(∇αWβ)

∇ β̇
α ∇ββ̇ = − i

2
cαβ(∇β̇

W β̇) + i(∇αWβ) + cβα�

∇ β
α̇ ∇ββ̇ = − i

2
cα̇β̇(∇βWβ) + i(∇α̇W β̇) + cβ̇α̇�

[∇α,�] = W
α̇∇αα̇ −

1

2
(∇ α̇

α W α̇) (B.0.2)

[∇2,∇2
] = i∇αα̇∇α̇∇α + iW α∇α − iW α̇∇α̇ +�

= −i∇αα̇∇α∇α̇ + iW α∇α − iW α̇∇α̇ −� (B.0.3)

Background covariant propagators are given by 1
�±

and 1
�̂
where

�+ = �− iW α∇α −
i

2
(∇αWα) � =

1

2
∇αα̇∇αα̇

�− = �− iW α̇∇α̇ −
i

2
(∇α̇

W α̇)

�̂ = �− iW α∇α − iW α̇∇α̇ (B.0.4)
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As a consequence of the previous (anti)commutation relations they satisfy

∇2∇2∇2
= �+∇2

, ∇2∇2∇2 = �−∇2 (B.0.5)

[∇α̇,
1

�+
] = 0 , [∇α,

1

�−
] = 0 (B.0.6)

∇2∇2 1

�+
=

1

�−
∇2∇2

, ∇2∇2 1

�−
=

1

�+
∇2∇2 (B.0.7)

When computing scattering amplitudes we work with on–shell background fields, that
is fields satisfying

∇αWα = 0 ∇2Wα = 0 ∇αα̇Wα = 0 ∇αWβ = ∇βWα (B.0.8)

plus the corresponding barred equations for W α̇ . Under these assumptions the covariant
propagators take the simplified form

1

�+
=

1

�− iW α∇α
,

1

�−
=

1

�− iW α̇∇α̇

1

�̂
=

1

�+ − iW α̇∇α̇

=
1

�− − iW α∇α
(B.0.9)

and satisfy the on–shell identity

∇2 1

�̂
=

1

�̂
∇2 =

1

�−
∇2 , ∇2 1

�̂
=

1

�̂
∇2

=
1

�+

∇2
(B.0.10)

Further on–shell identities involving the propagators are
[

∇α,
1

�

]

= − 1

�
W

α̇∇αα̇
1

�
(B.0.11)

[

∇α̇,
1

�

]

= − 1

�
W α∇αα̇

1

�
(B.0.12)

[

∇αα̇,
1

�

]

= i
1

�

(

(∇αW
β)∇βα̇ + (∇α̇W

β̇
)∇αβ̇ + {Wα,W α̇}

) 1

�
(B.0.13)

[

∇α,
1

�+

]

= − 1

�+
W

α̇∇αα̇
1

�+
+ i

1

�+
(∇αW

β)∇β
1

�+
(B.0.14)

[

∇α̇,
1

�−

]

= − 1

�−
W α∇αα̇

1

�−
+ i

1

�−
(∇α̇W

β̇
)∇β̇

1

�−
(B.0.15)

[

∇2,
1

�+

]

=
1

�+

W
α̇∇αα̇∇α 1

�+

− 1

�+

W
α̇
W α̇

1

�+

(B.0.16)

[

∇2
,
1

�−

]

=
1

�−
W α∇αα̇∇α̇ 1

�−
− 1

�−
W αWα

1

�−
(B.0.17)

[

∇α,
1

�̂

]

=
1

�̂

(

i∇αW
β
)

∇β
1

�̂
(B.0.18)

[

∇α̇,
1

�̂

]

=
1

�̂

(

i∇α̇W
β̇
)

∇β̇

1

�̂
(B.0.19)
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Appendix C

Expansion of the covariant
(anti)chiral propagators and their
derivatives

We now compute the coefficients in the expansion of the on–shell (anti)chiral propagators
1/�± as defined in eq. (B.0.9). We provide expressions suitable for computing MHV
amplitudes up to six external particles.

As explained in the text, since we are interested in the evaluation of (− − + · · ·+)
amplitudes, when computing the coefficients we keep only terms with at most two W ’s.
Moreover, if two W ’s are present we keep only terms where they are close to each other
or, as it is clear from the cyclicity of the trace, where they appear at the two extremes of
the string of fields. As an immediate consequence, we can take advantage of important
identities which simplify dramatically the calculation. For instance, setting the external
fields on–shell and up to terms with two W ’s separated by a string of W ’s, the following
identities hold

(any string with at least one W )×
(

W
α̇
W α̇ −W α̇∇α

α̇

1

�
W

β̇∇αβ̇

)

= 0

(any string with at least one W )×
(

W αWα −W α∇ α̇
α

1

�
W β∇βα̇

)

= 0

(any string with at least one W )× {∇α,
1

�
W

β̇∇ββ̇

1

�
} = 0

(any string with at least one W )× {∇α̇,
1

�
W β∇ββ̇

1

�
} = 0 (C.0.1)

The expansion of the on–shell chiral propagator can be done recursively. Starting from
the explicit expression for �+ in eq. (B.0.9) we can write the following chain of identities

1

�+
=

1

�
+

1

�
iW α∇α

1

�+
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=
1

�
+

1

�
iW α∇α

1

�
+

1

�
iW α∇α

1

�
iW β∇β

1

�
+ · · · (C.0.2)

In each term we use the on–shell (anti)commutators listed in Appendix B for bringing all
the spinorial derivatives at the very right. Defining

1

�+
= A+Bα∇α + C∇2 (C.0.3)

we then find

A =
[ 1

�
− i 1

�
W α 1

�
W

α̇∇αα̇
1

�
+

1

�
W α 1

�
(∇αW

β)
1

�
W

β̇∇ββ̇

1

�
(C.0.4)

+ i
1

�
W α 1

�
(∇αW

β)
1

�
(∇βW

γ)
1

�
W

γ̇∇γγ̇
1

�

− 1

�
W α 1

�
(∇αW

β)
1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
W

δ̇∇δδ̇

1

�

]

Bα =
[

i
1

�
W α 1

�
− 1

�
W β 1

�
(∇βW

α)
1

�
− 1

�
W β 1

�
Wβ

1

�
W

α̇∇α
α̇

1

�
(C.0.5)

− i 1
�
W β 1

�
(∇βW

γ)
1

�
(∇γW

α)
1

�
− i 1

�
W β 1

�
(∇βW

γ)
1

�
Wγ

1

�
W

α̇∇α
α̇

1

�

+
1

�
W β 1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
(∇δW

α)
1

�

+
1

�
W β 1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
Wδ

1

�
W

α̇∇α
α̇

1

�

+
1

�
W β 1

�
W

β̇∇ββ̇

1

�
W α 1

�

− i 1
�
W β 1

�
Wβ

1

�
W

γ̇∇γ
γ̇

1

�
(∇γW

α)
1

�
+ i

1

�
W β 1

�
(∇βW

γ)
1

�
W

γ̇∇γγ̇
1

�
W α 1

�

+ i
1

�
W β 1

�
W

β̇∇ββ̇

1

�
W γ 1

�
(∇γW

α)
1

�

+
1

�
W β 1

�
Wβ

1

�
W

γ̇∇γ
γ̇

1

�
(∇γW

δ)
1

�
(∇δW

α)
1

�

− 1

�
W β 1

�
W

β̇∇ββ̇

1

�
W γ 1

�
(∇γW

δ)
1

�
(∇δW

α)
1

�

+
1

�
W β 1

�
(∇βW

γ)
1

�
Wγ

1

�
W

δ̇∇δ
δ̇

1

�
(∇δW

α)
1

�

− 1

�
W β 1

�
(∇βW

γ)
1

�
W

γ̇∇γγ̇
1

�
W δ 1

�
(∇δW

α)
1

�

− 1

�
W β 1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
W

δ̇∇δδ̇

1

�
W α 1

�

]
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C =
[ 1

�
W α 1

�
Wα

1

�
+ i

1

�
W α 1

�
(∇αW

β)
1

�
Wβ

1

�
(C.0.6)

− 1

�
W α 1

�
(∇αW

β)
1

�
(∇βW

γ)
1

�
Wγ

1

�

+ i
1

�
W α 1

�
Wα

1

�
W

β̇∇β

β̇

1

�
Wβ

1

�
− i 1

�
W α 1

�
W

α̇∇αα̇
1

�
W β 1

�
Wβ

1

�

− 1

�
W α 1

�
Wα

1

�
W

β̇∇β

β̇

1

�
(∇βW

γ)
1

�
Wγ

1

�

+
1

�
W α 1

�
W

α̇∇αα̇
1

�
W β 1

�
(∇βW

γ)
1

�
Wγ

1

�

+
1

�
W α 1

�
(∇αW

β)
1

�
W

β̇∇ββ̇

1

�
W γ 1

�
Wγ

1

�

− 1

�
W α 1

�
(∇αW

β)
1

�
Wβ

1

�
W

γ̇∇γ
γ̇

1

�
Wγ

1

�

]

We stopped the expansions at the 5th order in the external fields so that in principle we
are able to compute amplitudes up to six points.

For the anti–chiral propagator 1/�− we proceed in the same manner. We find

1

�−
= Ā+ B̄α̇∇̄α̇ + C̄∇̄2 (C.0.7)

where

Ā =
[ 1

�
− i 1

�
W

α̇ 1

�
W α∇αα̇

1

�
+

1

�
W

α̇ 1

�
(∇α̇W

β̇
)
1

�
W β∇ββ̇

1

�

]

(C.0.8)

B̄α̇ =
[

i
1

�
W

α̇ 1

�
− 1

�
W

β̇ 1

�
(∇β̇W

α̇
)
1

�
− 1

�
W

β̇ 1

�
W β̇

1

�
W α∇ α̇

α

1

�
(C.0.9)

+
1

�
W

β̇ 1

�
W β∇ββ̇

1

�
W

α̇ 1

�

]

C̄ =
1

�
W

α̇ 1

�
W α̇

1

�
(C.0.10)

The reduced number of terms in Ā, B̄, C̄ compared to A,B,C is due to the MHV selection
rule which requires the presence of no more than two W ’s.

The coefficients that we have determined are not all independent, but satisfy general
identities which arise from the algebra of covariant derivatives. We list such identities and
their origin since they are crucial for canceling UV divergences in the N = 4 SYM case.
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Starting from the the first identity in eq. (B.0.5) rewritten as

1

�+

∇2∇2∇2
= ∇2

(C.0.11)

and expanding 1
�+

in terms of its coefficients, we find

A�+ CW
α̇
W α̇ − Bα∇ α̇

αW α̇ = 1 (C.0.12)

BαiWα + C� = 0 (C.0.13)

Bα�− iBβ(∇βWα)− AiWα + CW
α̇∇αα̇ = 0 (C.0.14)

Analogously, using the second identity in (B.0.5) we obtain

Ā�+ C̄W αWα − B̄α̇∇α
α̇Wα = 1 (C.0.15)

B̄α̇iW α̇ + C̄� = 0 (C.0.16)

B̄α̇�− iB̄β̇(∇β̇W α̇)− ĀiW α̇ + C̄W α∇αα̇ = 0 (C.0.17)

Further relations can be worked out from the identities in eq. (B.0.6). Inserting there the
expansions for 1/�± we obtain

[∇α̇, A]− Bαi∇αα̇ + CiW α̇ = 0 (C.0.18)

{∇α̇, B
α}+ Ci∇α

α̇ = 0 (C.0.19)

[∇α̇, C] = 0 (C.0.20)

and

[∇α, Ā]− B̄α̇i∇αα̇ + C̄iWα = 0 (C.0.21)

{∇α, B̄
α̇}+ C̄i∇α

α̇ = 0 (C.0.22)

[∇α, C̄] = 0 (C.0.23)

Finally, inserting the expansions of 1
�±

in eq. (B.0.7) we find

A = Ā− {∇α̇
, B̄α̇}+

1

2
{∇α̇

, [∇α̇, C̄]} (C.0.24)

Bαi∇αα̇ − CiW α̇ = [∇α̇, Ā] +
1

2
[∇β̇

, {∇β̇, B̄α̇}] (C.0.25)

BαiWα + C� =
1

2
{∇α̇

, [∇α̇, Ā]} (C.0.26)

From the previous identities we also find

{∇α̇
, [∇α̇, A]} = {∇α, [∇α, Ā]} = 0 (C.0.27)
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In the process of doing ∇–algebra we find convenient to write also the following ex-
pansions

∇α
1

�+
= Aα + B β

α ∇β + Cα∇2

∇α̇
1

�−
= Āα̇ + B̄ β̇

α̇ ∇β̇ + C̄α∇
2

(C.0.28)

where the new coefficients are given in terms of the original ones by

Aα = [∇α, A] (C.0.29)

B β
α =

{

∇α, B
β
}

+ Aδ β
α ≡ P β

α + Aδ β
α (C.0.30)

Cα = [∇α, C]− Bα (C.0.31)

and

Āα̇ =
[

∇α̇, Ā
]

(C.0.32)

B̄ β̇
α̇ =

{

∇α̇, B̄
β̇
}

+ Āδ β̇
α̇ ≡ P̄ β̇

α̇ + Āδ β̇
α̇ (C.0.33)

C̄α̇ =
[

∇α̇, C̄
]

− B̄α̇ (C.0.34)

Using (C.0.34), the identity (C.0.24) can be rewritten as

A− Ā =
1

2
{∇α̇

, C̄α̇ − B̄α̇} (C.0.35)

The expansion of the coefficients as given above is suitable for performing ∇–algebra.
However, they are given in terms of the covariant 1

�
propagator which is a function of the

background bosonic connection Γαα̇.

In order to compute an n point correlator, that is the n-derivative of the effective
action respect to the background fields, we need also extract the background dependence
from 1

�
. Recalling that

� =
1

2
∇αα̇∇αα̇ (C.0.36)

and using equation (A.0.15) we find

1

�
=

1

�0

+
1

� 0
Γαα̇ i∂αα̇

1

� 0
+

1

2

1

� 0

(

i∂αα̇Γαα̇

) 1

� 0

+
1

2

1

� 0
Γαα̇Γαα̇

1

�0
+

1

�0
Γαα̇ i∂αα̇

1

�0
Γββ̇ i∂ββ̇

1

� 0
+ · · · (C.0.37)

This expression was used in (6.3.39) where the cancellation of UV divergences of tadpoles
is concerned.
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Appendix D

Expansion of the covariant vector
propagator and its derivatives

In order to expand the vector propagator, it is first of all convenient to write the on–shell
�̂ in terms of �+ or �−, as in eq. (B.0.9). It follows that we can write two different
expansions

1

�̂
=

1

�+ − iW α̇∇α̇

(D.0.1)

= A +Bα∇α + C∇2 + D̄α̇∇α̇ + Eαα̇∇α∇α̇ + F̄ α̇∇2∇α̇ + Ḡ∇2
+Hα∇α∇2

+ L∇2∇2

or

1

�̂
=

1

�− − iW α∇α
(D.0.2)

= Ā + B̄α̇∇α̇ + C̄∇2
+Dα∇α + Ēαα̇∇α̇∇α + F α∇2∇α +G∇2 + H̄ α̇∇α̇∇2 + L̄∇2∇2

where A,B,C and Ā, B̄, C̄ are the coefficients appearing in the expansion of the (anti)chiral
propagators.

When doing ∇–algebra we use indifferently (D.0.1) or (D.0.2) according to what is
more convenient for the particular diagram under investigation.

Identifying the two expressions for 1
�̂
we find the following set of identities

C = G C̄ = Ḡ (D.0.3)

Hα = F α F̄ α̇ = H̄ α̇ (D.0.4)

L = L̄ (D.0.5)

A = Ā + Ēαα̇ i∇αα̇ − F α iWα + F̄ α̇ iW α̇ + L � (D.0.6)
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Bα = Dα + F̄ α̇ i∇α
α̇ − L iW α ; B̄α̇ = D̄α̇ + F α i∇ α̇

α − L iW
α̇

(D.0.7)

Eαα̇ = −Ēαα̇ + L i∇αα̇ (D.0.8)

L�+ F αiWα + F̄ α̇iW α̇ = 0 (D.0.9)

which allow to express the coefficients in (D.0.2) in terms of the ones in (D.0.1). It is then
sufficient to list the explicit expression for the coefficients in (D.0.1).

As in the (anti)chiral case, the expansion of the vector propagator can be done recur-
sively according to

1

�̂
=

1

�+
+

1

�+
iW

α̇∇α̇
1

�̂

=
1

�+
+

1

�+
iW

α̇∇α̇
1

�+
+

1

�+
iW

α̇∇α̇
1

�+
iW

β̇∇β̇

1

�+
+ · · · (D.0.10)

Applying the MHV selection rule, setting the external fields on–shell and stopping the
expansion at the correct order for computing amplitudes up to six external particles, we
find

D
α̇
=
[

iAW
α̇ 1

�
− 1

�
W

β̇ 1

�
(∇β̇W

α̇
)
1

�
+ iBaW

α̇ 1

�
W

β̇∇αβ̇

1

�
(D.0.11)

+ iBβW
β̇ 1

�
(∇ββ̇W

α̇
)
1

�
− i 1

�
W

β̇
Bα(∇αβ̇W

α̇
)
1

�

]

Eαα̇ =
[

iAW
α̇
Bα − iBαW

α̇ 1

�
(D.0.12)

+BβW
α̇ 1

�
(∇βW

α)
1

�
+BαW

β̇ 1

�
(∇β̇W

α̇
)
1

�

− 1

�
W

β̇
Bα(∇β̇W

α̇
)
1

�
− 1

�
W

β̇ 1

�
(∇β̇W

α̇
)Bα

+ iBβW
α̇ 1

�
(∇βW

γ)
1

�
(∇γW

α)
1

�
+ iBβW

β̇ 1

�
(∇β̇W

α̇
)
1

�
(∇βW

α)
1

�

+ iBβW
α̇ 1

�
W

β̇∇ββ̇B
α + iBβW

β̇ 1

�
(∇ββ̇W

α̇
)Bα − i 1

�
W

β̇
C(∇α

β̇
W

α̇
)
1

�

− iCW α̇ 1

�
W

β̇∇α
β̇

1

�
− iCW β̇ 1

�
(∇α

β̇
W

α̇
)
1

�

− BβWbα̇
1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
(∇dW

α)
1

�

− BβW
β̇ 1

�
(∇β̇W

α̇
)
1

�
(∇βW

γ)
1

�
(∇gW

α)
1

�

+ CW
α̇ 1

�
W

β̇∇β

β̇

1

�
(∇βW

α)
1

�
+ CW

β̇ 1

�
(∇β

β̇
W α̇)

1

�
(∇βW

α)
1

�
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− iBβW
β̇ 1

�
(∇β̇W

α̇
)
1

�
(∇βW

γ)
1

�
(∇γW

δ)
1

�
(∇δW

α)
1

�

+ iCW
β̇ 1

�
(∇β

β̇
W

α̇
)
1

�
(∇βW

γ)
1

�
(∇γW

α)
1

�

+ iCW
α̇ 1

�
W

β̇∇β

β̇

1

�
(∇βW

γ)
1

�
(∇γW

α)
1

�

]

F̄ α̇ =
[

iBαW
α̇
Bα + iCW

α̇ 1

�
+ iAW

α̇
C (D.0.13)

− BαW
α̇ 1

�
(∇αW

β)Bβ − BαW
β̇ 1

�
(∇β̇W

α̇
)Bα −BαW

α̇
Bβ(∇αWβ)

1

�

− CW β̇ 1

�
(∇β̇W

α̇
)
1

�
− 1

�
W

β̇
C(∇β̇W

α̇
)
1

�
− 1

�
W

β̇ 1

�
(∇β̇W

α̇
)C

− iBαW
α̇ 1

�
(∇αW

β)
1

�
(∇βW

γ)Bγ + iBαW
α̇ 1

�
(∇αW

β)Bγ(∇βWγ)
1

�

− iBαW
β̇ 1

�
(∇β̇W

α̇
)
1

�
(∇αW

β)Bβ + iBαW
β̇ 1

�
(∇β̇W

α̇
)Bβ(∇αWβ)

1

�

+ iBαW
α̇ 1

�
W
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(D.0.14)
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]
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L =
[

− BαW
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�
W α̇Bα + CW
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�
+
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W

α̇
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�
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− iBαW
α̇ 1

�
W α̇

1

�
(∇αW

β)Bβ + iBαW
α̇ 1

�
W α̇B

β(∇αWβ)
1

�

+BαW
α̇ 1

�
W α̇

1

�
(∇αW

β)
1

�
(∇βW

γ)Bγ − BαW
α̇ 1

�
W α̇(∇αWβ)B

γ(∇βWγ)
1

�

]

To get expressions with an explicit dependence on background fields, A, B and C must
be replaced with their expansions (C.0.4), (C.0.5) and (C.0.6).

In order to facilitate the ∇–algebra procedure, it is convenient to define also the
following expansions

∇α
1

�̂
= D β

α ∇β + Ē ββ̇
α ∇β̇∇β + F β

α ∇
2∇β + Gα∇2 + H̄ β̇

α ∇β̇∇2 + L̄α∇2∇2

(D.0.16)

∇α̇
1

�̂
= D̄ β̇

α̇ ∇β̇ + E ββ̇
α̇ ∇β∇β̇ + F̄ β̇

α̇ ∇2∇β̇ + Ḡα̇∇
2
+H β

α̇ ∇β∇2
+ Lα̇∇2∇2

(D.0.17)

∇α̇∇α
1

�̂
= d β

αα̇∇β + ē ββ̇
αα̇ ∇β̇∇β + f β

αα̇ ∇
2∇β + gαα̇∇2 + h̄ β̇

αα̇∇β̇∇2 + l̄αα̇∇2∇2

(D.0.18)

The new coefficients are given in terms of the ones in eqs. (C.0.3), (C.0.7), (C.0.29)–
(C.0.34), (D.0.11) according to

D β
α = B β

α − iH̄ α̇
α ∇β

α̇ + iL̄αW
β ≡ Q β

α + Aδ β
α

Ē ββ̇
α = −

[

∇α, E
ββ̇
]

+ D̄β̇δ β
α + iL̄α∇ββ̇

Gα = [∇α, C]− Bα = Cα
F β

α =
{

∇α, H
β
}

+ Ḡδ β
α

H̄ α̇
α =

{

∇α, F̄
α̇
}

+ E α̇
α

L̄α = [∇α, L]−Hα (D.0.19)
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α̇ = B̄ β̇

α̇ − iH β
α̇ ∇ β̇

β + iLα̇W
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E ββ̇
α̇ =

[

∇α̇, E
ββ̇
]

+Bβδ β̇
α̇ − iF̄ β̇∇β

α̇

F̄ β̇
α̇ =

{

∇α̇, F̄
β̇
}

+ Cδ β̇
α̇

H β
α̇ =

{

∇α̇, H
β
}

− Eβ
α̇ + iL∇β

α̇

Lα̇ =
[

∇α̇, L
]

− F̄α̇

Ḡα̇ =
[

∇α̇, C̄
]

− B̄α̇ = C̄α̇ (D.0.20)
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and

ē ββ̇
αα̇ =

{

∇α̇, Ē ββ̇
α

}

+D β
α δ

β̇
α̇

f β
αα̇ =

[

∇α̇,F β
α

]

− Ē β
α α̇

h̄ β̇
αα̇ =

[

∇α̇, H̄ β̇
α

]

− Gαδ β̇
α̇

l̄αα̇ =
{

∇α̇, L̄α

}

+ H̄αα̇

d β
αα̇ = [∇α̇,D β

α ]

gαα̇ = {∇α̇,Gα} (D.0.21)

A crucial quantity which enters the cancellation of UV divergences in N = 4 SYM is
Q α

α with Q β
α defined in (D.0.19). Using the identities (C.0.35), (D.0.6)–(D.0.9) we find

Q α
α = {∇α, B

α − F̄ α̇i∇α
α̇ + LiW α} − 2iF̄ α̇iW α̇ + Eαα̇i∇αα̇ − FαiW

α

= {∇α, D
α}+ (Ā− A)− FαiW

α

= {∇α, D
α} − 1

2
{∇α̇

, Cα̇ − Bα̇} − FαiW
α (D.0.22)
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Appendix E

Color structures

In this Appendix we review briefly the color structure associated to each diagram. First
of all we remark that we are considering SU(N) as gauge group in the large N (planar)
limit. This simplifies many relations from the very beginning, since the same definitions
of structure constant become easier. Moreover it allows to keep only leading N terms in
the final results.

E.1 Color conventions

The color conventions we used are defined by the following relations.

(Anti)commutators of color matrices T define structure constant f and d. In the large
N limit we get

[

T a, T b
]

= ifabcT c (E.1.1)
{

T a, T b
}

= dabcT c (E.1.2)

To fix completely the conventions we need only two other relations. They are

Tr(T aT b) = δab (E.1.3)

T a
ijT

a
kl = δilδjk (E.1.4)

Structure constants satisfy Jacobi identity

fabmfcdm + fcbmfdam + fdbmfacm = 0 (E.1.5)
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E.2 Color structure and covariant effective action di-

agrams

In a theory with just adjoint fields, like in the N = 4 SYM, the color structure of a
diagram involves just structure constants fabc. In the background field method there are
two possible sources of f ’s: The covariant propagators, i.e. the quantum–background
vertices, and the pure quantum vertices. Consistently with this, we can separate the
color analysis in two steps, one general and involving just vacuum diagrams (i.e. pure
quantum vertices) and one specific for a peculiar scattering process.

When color is considered, two characteristics distinguish covariant propagators from
usual propagators: They are not diagonal with respect to color and the color factor
associated to them changes with the number of insertions of background fields when they
are power expanded. This is a direct consequence of the fact that covariant propagators
include interactions between quantum and background fields. In general, one should think
at covariant propagators as objects carrying two open color indices

1

�+
→
(

1

�+

)

ab

,
1

�−
→
(

1

�−

)

ab

,
1

�̂
→
(

1

�̂

)

ab

(E.2.1)

More precisely, the two color indices of the propagators refers order by order in the
expansion to a different color structure. Diagrammatically we read

a b = a b + a b

c

+ a b

c d

e e + · · ·
(E.2.2)

So, at each insertion of external fields m p

n

it corresponds a color factor ifmnp. Just
the first term in the expansion is diagonal in color.

Color factors associated to pure quantum vertices has been extrapolated in Section
6.1. From there we derive the color structure of each vacuum diagram. We find that∗

• Cubic vertices graphs

a
b

c

d
e

f

−→ fabcfdef (E.2.3)

This factor is common to each cubic vertex vacuum diagram.

∗See Tab 6.1
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• Tadpole graphs
The color factor associated to every quartic vertex is

b c

a d

−→ fabefecd (E.2.4)

As pointed out in Section 6.2.2, when we build up from these vertices tadpole–like
diagrams, it is possible to distinguish between three different cases depending on
which legs are closed to form loops (see Fig. E.1).

a

c

d

b

a

b

d

c

a

b

c

d

a) ab contraction b) ac contraction c) ad contraction

(E.2.5)

Figure E.1: The three different color contraction for the tadpole vacuum diagrams

Note that all the color indices carried by quantum lines are summed indices. For
example, for the cubic vertex diagrams we should write

a
b

c

d
e

f

−→ fabcfdef

(

1

�1

)

ad

(

1

�2

)

be

(

1

�3

)

cf

(E.2.6)

where 1
� (1,2,3)

represent the covariant propagators of the first, second and third line. So, the

only open color indices are the ones carried by the background fields inside the covariant
propagators once that they are expanded at the desired order in W ’s. As a consequence,
different distributions of the legs along the same vacuum diagram, i.e. cubic vertices or
tadpole–like diagrams with different topologies, carry different color structures.

E.3 Four point color structures

Consider the specific case of the four point planar scattering amplitude in N = 4 SYM
theory. The UV finiteness of the theory allows the presence of two different topologies
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in the cubic vertex diagram sector (the doublebox and the pentabox topology (see Fig
F.1)) and for only one topology in the tadpole sector. The color structure for the tadpole
topology must then be analyzed for each of the different cases of Fig E.1. We summarize
the topologies and their associated color structure in Tab E.1†

A few remarks are necessary:

• Orientation of the cubic vertex diagrams
Color structures associated to doublebox and pentabox diagrams induce an orien-
tation on the external legs of the planar diagrams. Color states that cubic vertex
diagrams must be read clockwise or counterclockwise. The “closeness” of two scat-
tered particles follows from the choice of this orientation. In particular, looking at
all possible helicity–dependent four point topologies (see Fig F.1), it is immediate
to see that two plus helicity particles are consecutive in topologies (a), (b), (d) and
(e). So, just these four topologies contributes to the MHV (1+2+3−4−) color ordered
scattering amplitude. The other helicity configurations contribute to the + − +−
amplitudes.

• Trianglebox diagrams:
Consider diagrams like the ones in Fig. E.2. Although they have the same topo-

1)

1
�
W α 1

�
Wα

1
�

1/ 0

1
�
W

α̇ 1
�
W α̇

, 2)

1
�
W α 1

�
Wα

1
�
W

α̇

1/ 0

1
�
W α̇

1
�

, 3)

1
�
W α 1

�
Wα

1
�

1/ iWα
0

1
�
W α̇

1
�

(E.3.1)

Figure E.2: Similar triangleboxes with different color factors

logical structure sketched in Fig E.3 their color structures are respectively the dou-
blebox, the pentabox ones and a structure subleading in color. Note that Jacobi
identity (E.1.5) relates these three different diagrams. It is possible to show that
this is equivalent to integrate by parts the W at the right vertex: In principle one

could write W
α̇
as the commutator of covariant derivatives

W α̇ = −1
2
[∇α,∇αα̇] (E.3.2)

†i factors associated to the structure constants are not considered in the table. Along our computation,
we considered the i’s associated to the quantum vertices in the combinatorics of Tab 6.1. The other four
i’s from quantum–background vertices give an innocuous factor 1.
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a
b

p q

d
b

s

rfc

Figure E.3: General topology for a trianglebox

Covariant derivatives can be integrated by parts on the right vertex and we get back
W by reconstructing the commutator (E.3.2) on the other two lines with eventually
some extra sign. The signs are equivalent to the signs one gets by considering just
the color structure of the original diagram and by applying Jacobi identity on it.
This is a direct proof of the fact that the integration by parts of derivatives respects
the color structure of the diagrams and vice versa.

• Tadpoles and cubic vertex diagrams:
By using the trivial identity 1

�
� = 1 it is possible to write a tadpole–like diagram

as a cubic vertex diagram with a � on the middle line. Roughly speaking, inserting
1
�
� inside a tadpole opens it up into a cubic vertex diagram.

Color plays an active role when this kind of manipulation is performed. The relative
sign in front of the color structures of tadpoles (ac) and (ad) of Fig E.1 causes a
relative sign between the “opened” tadpoles. In particular, the opened (ac) tadpole
becomes a doublebox–like topology diagram while the opened tadpole (ad) pick up
a sign when written as a doublebox with a � on the middle line. This sign is crucial
for the cancellation of UV divergences, as we have seen in Section 6.3.

Note that even if in principle tadpoles (ab) can be opened in the same way as the
other two tadpole topologies, its color structure does not match any one of the cubic
vertex diagrams and prevents us from opening it.
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Topology Color Structure

a
b

p q

d
b

s r

fc

(a) Doublebox

fabcfdbffapmfmqdfcsnfnrf

=

+N2 {Tr (tptstrtq) + Tr (tptqtrts)}

a
b

q

d
b

s

p r

fc

(b) Pentabox

fabcfdbffapmfmqnfnrdfcsf

=

−N2 {Tr (tptstrtq) + Tr (tptqtrts)}

a

c

d

b

p

r

s

q

(c) Tadpole ab

fabefecdfapmfmqbfcrnfnsd
=

+N2 {Tr (tptqtstr) + Tr (tqtptrts)− Tr (tptqtrts)− Tr (tqtptstr)}

a

b

d

c

p

r

s

q

(a) Tadpole ac

fabefecdfapmfmqcfbrnfnsd
=

+N2 {Tr (tptqtstr) + Tr (tqtptrts)}

a

b

c

d

p

r

s

q

(a) Tadpole ad

fabefecdfapmfmqdfbrnfnsc
=

−N2 {Tr (tptqtstr) + Tr (tqtptrts)}

Table E.1: Color factors for four point topologies
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Appendix F

Geometric Symmetries of the
covariant supergraphs

Consider a generic planar cubic vertex Feynman diagram written in terms of background
fields and covariant propagators and derivatives (see figure (F.0.1) as an example).

1
�
W α 1

�
(∇W ) β

α
1
�
∇ α̇

β

1/ 0

1
�
W

β̇ 1
�
(∇W )α̇β̇

1
�

(F.0.1)

In this section we show that it is always possible to rewrite this graph in other equivalent
forms by using symmetry properties of the graphs. We call these symmetries geometric

since they can be thought as reflections of the graphs with respect to particular axes.

F.1 Up–Down Symmetry

The first geometric symmetry we consider is the reflection with respect to the axis iden-
tified by the middle line. This symmetry is a consequence of the fact that in a Feynman
diagram like (F.0.1) it is always possible to exchange two lines of a graph. Since the
graphs that we are considering are planar cubic vertex graphs, the only relevant exchange
of lines is when upper and lower lines are involved. This is exactly what a reflection with
respect to the middle line axis do.

In using this symmetry one must be careful to signs coming eventually from exchange
of fermionic lines. Note that if the middle line is fermionic, it plays and active role from
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this point of view. In fact, to exchange the lower line with the upper one, both these lines
has to cross the middle one. This, of course, can produce signs when the middle line is
fermionic.

The same exchange can be performed on the lines of tadpole–like diagrams too. In
that case Up–Down symmetry consist in exchanging the two loops.

The Up-Down symmetry is actually valid at the more general level of vacuum diagrams,
before ∇–algebra is performed. When legs of quantum vertices are contracted to form the
lines of the vacuum diagrams, there is nothing that forbids to interchange two of them
provided that the statistic of the lines interchanged is considered.

F.2 Left–Right Symmetry

The second geometric symmetry of cubic vertex graphs is connected with the exchange
of the left and right vertices. In general, there is no preferred orientation in the graphs
that forces to read them from the left to the right. So, one is free to rewrite the graph
reading it line by line from the right to the left, i.e. to exchange left and right vertices.
Note that this symmetry acts as a reflection with respect to a vertical axis passing in the
middle of a graph.

While reflecting left–right a graph, the following sign rules must be respected:

1) For each fermionic field exchange the graph picks up a sign;

2) Each covariant derivative entering in the graph along a loop line takes a sign;

3) Covariant derivatives applied to external fields do not take signs;

4) Graphs with an odd number of external W’s fields pick up a sign when reverted

5) Graphs with an even number of external W ’s fields do not pick up signs when
reverted

6) Covariant propagators do not take signs.

The first three rules, in particular the second one, preserve the momentum structure
underlying each graph. On the other hand, the rules (4) and (5) are necessary to preserve
color structures. The basic idea, in fact, is that each external W from the color point
of view corresponds to a structure constant insertion ifabc (see Appendix E for a more
detailed analysis). When the graph is reverted, also the order of indexes in f is reverted
and this produce a minus sign for each f , i. e. for each external W .

Rule (6) is a consistency check of the other rules: 1
�
is, in fact, a complicated expres-

sions that involves connections Γαα̇ and spacetime derivatives ∂αα̇ (see equation (C.0.37)).
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On the other hand, in principle one would expect that all the components of its expansion
behave like the lower order term 1

�0
under Left–Right, i.e. they do not pick up signs. The

rules (1)–(5) guarantee this: Higher order terms of 1
�

present always the same number
of connections and derivatives so that, under Left–Right, at each sign due to an extra
insertion of background fields (rule (4) and (5)) it corresponds another sign due to the
presence of a derivative (rule (2)).

One could be a bit puzzled about the consistence of Left–Right symmetry and ∇–
algebra procedure. In fact, the ∇–algebra has been performed pushing from the left to
the right vertex all the spinorial derivatives and one could expect that this could give an
orientation to the diagrams. Actually, this is not the case. In fact, ∇–algebra procedure
works fine as well by pushing spinorial derivatives from the right to the left vertex and
the results one gets pushing left or right derivatives are the same if they are read the
firsts from left to right and the seconds from right to left. Moreover, in principle one
could exchange the left and the right vertex even before closing the legs to form the
vacuum diagrams and performing the ∇–algebra. The results is clearly unaffected if the
two vertices are exchange at that level. Thus, they are unaffected if the exchange is done
at any stage of the computation.

F.3 Consequences of geometric symmetries

The consequences of Up–Down and Left–Right symmetries go beyond the simple re-
summation and simplification of many terms in the computation of the effective action.
Actually, there are further important restrictions that geometric symmetries impose on
the allowed independent helicity configurations in a scattering process. Moving up–down
and left–right the diagrams, different helicity configurations are in fact mapped one into
the other.

In the specific case of the four point effective action, with two particles with positive
and two with negative helicity, the bunch of independent helicity sectors gets reduced to
the ones in Fig F.1.

In these pictures we have separated the doublebox topologies (figures (a)–(c)) from
the pentabox topologies (figures (d)–(g)). By using these informations and the color
informations it follows that only topologies (a), (b), (d) and (f) give contributions to the
color ordered four point amplitude (A(1+, 2+, 3−, 4−)). These are exactly the topologies
that we considered along our computation.

Up–Down and Left–Right symmetries of course reduce the number independent he-
licity configurations for the scattering processes involving any number of particles. The
extension of the classification of Fig F.1 to higher points follows the same logic used for
the four point case and can be easily reconstructed by using what done here as a road
map.
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(a) Doublebox + + / - - (b) Doublebox + - / + - (c) Doublebox + - / - +

+
+

-
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-

+

-

(d) Pentabox + + - / - (e) Pentabox + - - / +

+
-

-

+ -
+

+

-

(f) Pentabox + - + / - (g) Pentabox - + - / +

(F.3.1)

Figure F.1: Simplifications in the four point topologies induced by the UD and the LR
symmetries
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Appendix G

Conventions in momentum space

In this Appendix we review the basic conventions we used for Fourier transforming the
contributions to the effective action from the configuration representation to the momen-
tum representation. Moreover we give the conventions for the basic scalar integrals in
which the color ordered amplitude A (1+, 2+, 3−, 4−) turns out to be divided.

G.1 Fourier transform conventions

After ∇–algebra has been performed and all covariant objects have been expanded up
to the wanted number of external fields, we are left with diagrams involving background
fields and momentum derivatives ∂αα̇ only. In this appendix we describe the conven-
tions we follow to Fourier transforming these derivatives from position representation to
momentum representation.

Fourier transform for the propagator is

∆(x− y) =
∫

d4p

(2π)4
e−ip(x−y)

p2
(G.1.1)

and for background fields

A(x) =

∫

d4p

(2π)4
e−ipxÃ(p) (G.1.2)

Diagramatically, these relations correspond to the pictures in Fig G.1. Note that we
always take external momenta to be outgoing.

We remind that after ∇–algebra all the derivatives are thought as acting from left to
right. Looking at the position where they enter a diagram, we can distinguish two cases:

• A derivative appears on an internal line as (∂ 1
�
)→ ∂x∆(x− y)
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x y
−→

p
(G.1.3)

x
−→

p
(G.1.4)

Figure G.1: Fourier transform of derivatives on internal and external lines

In this case we replace it with

∂αα̇ −→ −ipαα̇ (G.1.5)

where p is the momentum flowing from left to right on the line corresponding to
the propagator. As it is clear from (G.1.1) and the corresponding figure (G.1.3), if
the momentum flows from right to left we pick up an extra minus sign on the right
hand side of (G.1.5).

• A derivative appears on an external line, that is we have ∂xA(x)
In this case we replace it with

∂αα̇A(x) −→ −ipαα̇Ã(p) (G.1.6)

where p is the external outgoing momentum (see figure (G.1.4)).

The rules here described satisfy conservation of momentum at each vertex and integra-
tion by parts relations. For example, consider the diagrammatic of Fig G.2. This relation
is the diagrammatic version of the algebraic commutation relation

1

�
(∂αα̇A (x))

1

�
≡ 1

�
[∂αα̇, A (x)]

1

�
=

1

�
∂αα̇(A (x)

1

�
)− 1

�
A (x) ∂αα̇

1

�

= − 1

�

←−
∂ αα̇A (x)

1

�
− 1

�
A (x) ∂αα̇

1

�

= (∂αα̇
1

�
)A (x)

1

�
− 1

�
A (x) ∂αα̇

1

�
(G.1.7)
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l l-p

p∂αα

=

l l-p

p

∂αα

−

l l-p

p

∂αα

Figure G.2: Diagrammatic expression for the conservation of the momenta at the vertices

where, when not explicitly indicated, the derivatives are thought as acting from left to
right and we have integrated by parts from the second to the third line.

Moving (G.1.7) to momentum space with the use of (G.1.5) and (G.1.6), we get the
following identity

−ipαα̇ = −iℓαα̇ − (−iℓαα̇ + ipαα̇) (G.1.8)

This is a proof that our momentum conventions are consistent with the algebraic
procedures we heavily used during the computation of the effective action.

We define Mandelstam variables

s = (p1 + p2)
2 t = (p1 + p4)

2 u = (p1 + p3)
2 (G.1.9)

G.2 Topologies for the scalar integrals

In this Section we summarize the loop integral conventions used for the two doublebox
and the two pentabox sectors in which the four point MHV effective action is divided (see
Section 7.1). Note that the propagators of these integrals form a set of nine propagators.
These propagators are called irreducible propagators since they are the smaller set of
independent squared objects formed by the momenta that the conservation of external
momenta and the massless condition allow to construct at two loops and four points.

The list of the integrals is the following
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Figure G.3: List of two loop scalar integrals

198



Appendix H

Scalar, vector and tensor integrals

The loop integrals we have to deal with along the computation can be divided into three
classes according to their Lorentz structure: The scalar integrals, the vector integrals
and the tensor integrals. In this Appendix we show many useful relations between these
integrals. We focus on two main aspects:

1) Symmetries of the scalar integrals
Since a scalar integral is a Lorentz invariant, it must be a function of Mandelstam
variables s, t and u only. Any transformation on the external and loop momenta
that leaves Mandelstam variables unchanged maps a scalar integral into another
equivalent.

2) Passarino–Veltman reduction of vector and tensor integrals
Vector and tensor integrals can be reduced to linear combinations of scalar integrals
through the Passarino–Veltman reduction technique [120].

Thus, after PV reduction, the expression we get are written in terms of scalar integrals
only and a lot of simplifications follow from the symmetries discussed at point 1).

H.1 Symmetries of the scalar integrals

A careful inspection of the propagators that enter in the scalar structures presented in Fig
G.3 shows that all the denominators of the integrals are functions of just nine propagators,
namely

k2, (k + p1)
2 , (k − p2)2 , (k + p14)

2 ,

ℓ2, (ℓ+ p1)
2 , (ℓ− p2)2 , (ℓ+ p14)

2 ,

(ℓ− k)2 . (H.1.1)
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Transformation Permutation

1) k ↔ ℓ {123456789} −→ {567812349}

2)
p1 ↔ −p2
p3 ↔ −p4

{123456789} −→ {132457689}

3)

k → k4 − p14
ℓ→ ℓ− p14
p1 ↔ −p4
p2 ↔ −p3

{123456789} −→ {423186759}

Table H.1: Basic symmetries of the scalar integrals

As we have previously discussed, this set of propagators constitutes the irreducible prop-

agators, i.e. the smaller set of independent propagators that can be built up for a process
involving four massless particles at two loops.

Propagators, in fact, are squared functions of loop and external momenta. At four
points and two loops, when the conservation of external momenta is considered, the set
of independent momenta includes the loop momenta k and ℓ and three combination of
the external momenta. In (H.1.1) we choose (p1, p2 and p14 = p1 + p4) but in principle
any other choice of the external momenta would be equivalent.

The nine propagators in (H.1.1) are the only squared structures that is possible to
construct with our choice of independent momenta. All other squared structures can be
written as combinations of the irreducible ones.

Note that to fix a set of irreducible propagators is equivalent to fix the freedom due
to the conservation relation.

This fact has important consequences as far as two loop scalar integrals are concerned.
The integrand of a scalar integral is, in fact, a function of the irreducible propagators,
since they are the only independent squared structures. On the other hand, since the
scalar integrals are invariant under Lorentz transformations, they must be functions of
the Mandelstam variables only. As a consequence, any transformation on the momenta
k, ℓ and pi (i = 1, · · · , 4) that leaves unchanged the Mandelstam variables and is closed on
the set of irreducible propagators allows to map a scalar integral into another equivalent
one. In this way a web of connections between integrals can be worked out.

There are three basic transformations that can be found. They are summarized in Tab
H.1. Numbers (1, 2, · · ·) refer to the irreducible propagators (k2, (k + p1)

2 , · · ·) as they
appear in the sequence (H.1.1).

Moreover, any combination of the exchanges 1), 2) and 3) of the Tab H.1 produces
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further transformations between the irreducible propagators that leave the final analytic
structure of any scalar integral unchanged. In this way further connections between scalar
integrals can be found.

More generally, it is worth noting that any integral of a polynomial function of the
squares (H.1.1) is invariant with respect to the transformation of Tab H.1. The fact
that the irreducible squares enter in the integrand at denominator (as true Feynman
propagators) or at numerator is completely irrelevant.

Although the most part of the loop integrals that contributes to the effective ac-
tion have vector or tensor Lorentz structures, in the next Section we show that it is
always possible to rewrite these integrals as a combination of scalar integrals through the
Passarino–Veltman reduction procedure.

Thus, since the final expression for the effective action turns out to be a function of
scalar integrals only, the relations between integrals that come from the transformations
(H.1) are of primary importance for the derivation of our final results.

H.2 Passarino–Veltman reduction

In this Section we analyze the Passarino–Veltman reduction for loop integrals that are
relevant for the four point effective action. In principle, we have to analyze the reduction
of vector and tensor integrals separately for each relevant topology (doubleboxes and
pentaboxes). However, PV procedure involves only those parts of the loop integrals that
present a non–trivial index structure and is blind with respect to all the Lorentz–scalar
terms. Since the topology of the diagrams is related to the propagators and since these
are definitely Lorentz invariant, PV reduction works following the same rules for each
topological sector.

The main ingredients for the PV reduction an integral are:

1) A basis ei on which expand the integral in terms of unknown scalar coefficients Ai

Iα1···αnα̇1···α̇n
=

n
∑

i=1

Ai (ei)α1···αnα̇1···α̇n
(H.2.1)

2) A set of tensor objects by which saturate open indices of (H.2.1) and build up a
linear system that defines the coefficients Ai.

The objects that can be used at points 1) and 2) are the only ones that can carry the
Lorentz structure after that the loop integrals are performed. So, generally they are
the independent external momenta (pi)αα̇, the Ricci symbols cαβ , cα̇β̇ and, eventually,
combinations of these elements.
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In the following sections we describe the choices we did at points 1) and 2) and we
will give the solutions for the scalar coefficients Ai for the vector and the tensor cases.

H.2.1 Vector Integrals

Consider a general two loop vector integral with the form

Tαα̇ =

∫

d4k d4ℓ
vαα̇

denominator
(H.2.2)

where vαα̇ can be either kαα̇ or ℓαα̇ and ”denominator” stays for any possible topology
listed in Fig. G.3. A good basis for this kind of integrals is formed by a set of three
independent combination of the external momenta. We choose for convenience p1, p2 and
p4. So, we can write

Tαα̇ = A (p1)αα̇ +B (p2)αα̇ + C (p4)αα̇ (H.2.3)

We need now to choose a set of three vector–like objects by which saturate open indices
in relation (H.2.3) and define a linear system in the unknown coefficients A, B and C.
Coherently with the set of irreducible propagators fixed in (H.1.1) we choose p1, p2 and
p14.

By multiplying (H.2.3) for these vectors, we find the following relations






x = sB + tC
y = sA+ uC
z = tA− tB + tC

(H.2.4)

where x, y and z are defined in the following way

x =

∫

(p1)
αα̇ kαα̇

denominator
=

∫

(k + p1)
2 − k2

denominator

y =

∫

(p2)
αα̇ kαα̇

denominator
=

∫ − (k − p2)2 + k2

denominator

z =

∫

(p14)
αα̇ kαα̇

denominator
=

∫

(k + p14)
2 − k2 − t

denominator
(H.2.5)

As a consequence, the scalar coefficients A, B and C depends only on the irreducible
propagators both at denominator and at numerator. More precisely, the solutions of the
system (H.2.4) are

A =
1

2st
(t (x+ y) + sz)

B = − 1

2su
(2sx+ t (x+ y)− sz)

C = − 1

2tu
(t (x− y) + sz) (H.2.6)
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H.2.2 Tensor Integrals

Consider now a general two loop tensor integral whose a structure can be written

Tαβα̇β̇ =

∫

vαα̇ wαα̇

denominator
(H.2.7)

In this expression v and w can be either ℓ or k.

We expand Tαβα̇β̇ on a basis formed by p1, p2 and p3 and the Ricci symbol c in the
following way

Tαβα̇β̇ = A cαβcα̇β̇
+B (p1)αα̇ (p1)ββ̇ + C (p2)αα̇ (p2)ββ̇ +D (p3)αα̇ (p3)ββ̇
+E (p1)αα̇ (p2)ββ̇ + F (p2)αα̇ (p1)ββ̇
+G (p1)αα̇ (p3)ββ̇ +H (p3)αα̇ (p1)ββ̇
+L (p2)αα̇ (p3)ββ̇ +M (p3)αα̇ (p2)ββ̇ (H.2.8)

Suppose now to multiply (H.2.8) by this set of tensor objects

CαβC α̇β̇ ,

(p1)
αα̇ (p1)

ββ̇ , (p1)
αα̇ (p2)

ββ̇ , (p1)
αα̇ (p3)

ββ̇ ,

(p2)
αα̇ (p1)

ββ̇ , (p2)
αα̇ (p2)

ββ̇ , (p2)
αα̇ (p3)

ββ̇ ,

(p3)
αα̇ (p1)

ββ̇ , (p3)
αα̇ (p2)

ββ̇ , (p3)
αα̇ (p3)

ββ̇ . (H.2.9)

The linear system that we produce is

x1 = 4A+ s(E + F ) + u(G+H) + t(L+M)

x2 = s2C + u2D + su(L+M)

x3 = sA+ tuD + s2F + suH + stL

x4 = uA+ stC + suF + u2H + tuM

x5 = sA+ tuD + s2E + suG+ stM

x6 = s2B + t2D + stG+ stH

x7 = tA+ suB + stE + tuH + t2M

x8 = uA+ stC + suE + u2G+ tuL

x9 = tA+ suB + stF + tuG+ t2L

x10 = u2B + t2C + tuE + tuF (H.2.10)
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In this expression, xi are given by the product of Tαβα̇β̇ by the i–th element of (H.2.9).
So, for example

x1 = CαβC α̇β̇Tαβα̇β̇ =

∫

vαα̇wαα̇

denominator
=

∫ − (v − w)2 + v2 + w2

denominator

x2 = (p1)
αα̇ (p1)

ββ̇ Tαβα̇β̇ =

∫

(p1)
αα̇ vαα̇ (p1)

ββ̇ wββ̇

denominator
=

∫

(

(v + p1)
2 − v2

) (

(w + p1)
2 − w2

)

denominator

(H.2.11)

Note that scalar products inside the xi involving p3 do not produce irreducible prop-
agators (H.1.1). However it is always possible to use conservation of external momenta
and write

pαα̇3 vαα̇ = −pαα̇14 vαα̇ − pαα̇2 vαα̇

= − (v + p14)
2 + t+ (v − p2)2 (H.2.12)

Thus the xi’s and, as a consequence the coefficients A, · · · , L of eq. (H.2.8), can be written
like in the vector case as functions of the irreducible propagators only.

By using the definitions (H.2.11), the solutions of the system (H.2.10) read

A = x1 +
t

2su
x2 −

1

2s
x3 −

1

2u
x4 −

1

2s
x5 +

u

2st
x6 −

1

2t
x7 −

1

2u
x8 −

1

2t
x9 +

s

2tu
x10

B =
t

2su
x1 +

t2

2s2u2
x2 −

t

2s2u
x3 −

t

2su2
x4 −

t

2s2u
x5 +

1

2s2
x6 −

t

2su2
x8 +

1

2u2
x10

C =
u

2st
x1 +

1

2s2
x2 −

u

2s2t
x3 −

u

2s2t
x5 +

u2

2s2t2
x6 −

u

2st2
x7 −

u

2st2
x9 +

1

2t2
x10

D =
s

2tu
x1 +

1

2u2
x2 −

s

2tu2
x4 +

1

2t2
x6 −

s

2t2u
x7 −

s

2tu2
x8 −

s

2t2u
x9 +

s2

2t2u2
x10

E = − 1

2s
x1 −

t

2s2u
x2 +

1

2s2
x3 +

1

2s2
x5 −

u

2s2t
x6 +

1

2st
x7 +

1

2su
x8

F = − 1

2s
x1 −

t

2s2u
x2 +

1

2s2
x3 +

1

2su
x4 +

1

2s2
x5 −

u

2s2t
x6 +

1

2st
x9

G = − 1

2u
x1 −

t

2su2
x2 +

1

2u2
x4 +

1

2su
x5 +

1

2u2
x8 +

1

2tu
x9 −

s

2tu2
x10

H = − 1

2u
x1 −

t

2su2
x2 +

1

2su
x3 +

1

2u2
x4 +

1

2tu
x7 +

1

2u2
x8 −

s

2tu2
x10

L = − 1

2t
x1 +

1

2st
x3 −

u

2st2
x6 +

1

2t2
x7 +

1

2tu
x8 +

1

2t2
x9 −

s

2t2u
x10

M = − 1

2t
x1 +

1

2tu
x4 +

1

2st
x5 −

u

2st2
x6 +

1

2t2
x7 +

1

2t2
x9 −

s

2t2u
x10

(H.2.13)
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Appendix I

Building up the pure vector diagram

In this Appendix we describe which is the correct way to construct all the vacuum dia-
grams coming from the three point pure vector vertex. The cubic gauge vertex (see eq.
(6.2.19)) is

−g
2
(ifabc)

(

(∇αV )a V b (∇2∇αV )c +
1

3
(∇αV )a V b [iWα, V ]

c

)

(I.0.1)

In what follows we analyze in detail what happens for the construction of the vacuum
diagrams when the first term of this expression is contracted with itself. The rules so
derived at the end of this section are applicable also when the second term of the vertex
(I.0.1) is contracted with itself and when the mixed combinations are considered too.

In order to construct all two loop vacuum diagrams from the first part of the vertex
(I.0.1) we have to contract in all possible ways two copies of the vertex. There are six
possible different contractions, namely

fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.2)

fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.3)

fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.4)
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fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.5)

fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.6)

fabcf def ×
(

(∇αV )a V b (∇2∇αV )
c
)

×
(

(∇αV )d V e (∇2∇αV )
f
)

(I.0.7)

Each contraction produces a different vacuum diagram. A very tricky point are the
signs carried by each diagram. There are two sources of signs:

1) Color structure
We want to keep fixed the color factor fabcf def in front of each diagram. At the same
time, we want that the legs of the vertices get contracted always in the following
ordered way:

a↔ d, b↔ e, c↔ f (I.0.8)

This optimal configuration can be obtained by relabeling color indices and by using
the properties of the structure constants under exchange of indices. Signs can be
produced while doing these exchanges.

2) Fermion exchanges
While the vacuum diagram is composed it is possible that fermionic legs of the left
vertex has to jump across fermionic legs of the right vertex. We get a minus sign for
each jump. For example, the contraction (I.0.2) takes a sign for fermion exchanges:

fabcf def ×
(

(∇αV )a V b (∇2∇αV )c
)

×
(

(∇αV )d V e (∇2∇αV )f
)

=

= −fabcf def × (∇αV )a (∇αV )d × V b V e × (∇2∇αV )c (∇2∇αV )
f (I.0.9)
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Expression (I.0.9) is what we usually represent pictorially in this way

∇β

∇α∇2

∇α

∇2∇β

z1z2 (I.0.10)

The arrows indicate the sense in which the derivatives act (the left vertex derivatives
towards right and vice versa).

Once all the six diagrams from equations (I.0.2)–(I.0.7) are composed following rules
1) and 2), it is convenient to free the middle line of spinorial derivatives by integrating
them by parts on the left vertex∗. Note that by construction the middle line is free of
spinorial derivatives at its right end. So, this is an operation that involves the left vertex
only. While performing this operation carefulness must be used once again to signs: There
is a minus for each derivative moved and a minus for each fermionic exchange.

The results, when the second cubic vertex in (I.0.1) is taken into account too, are
exactly the vacuum diagrams represented in the “pure vector cubic diagrams” subsection
of Section 6.2, the only difference being that the derivatives close to the right vertex
operate towards the left and should be turned to be left–pointing derivatives. The rules
to revert right–vertex derivatives are described with accuracy in Section 6.2.

The procedure here described is different with respect to what we did following [100]. In
this Appendix, in fact, we start by constructing diagrams and then we rearrange them.
In [100] and in our computation in Section 6.2 the procedure starts by managing vertices
and constructing diagrams just at the final stage. This second procedure is eventually
faster, since possible cancellations between various contributions occurs immediately in
the vertices, not only in the final stage of the computation. However, in order to follow this
second procedure we need a list of rules to keep under control the signs. The procedure
is the following

A) For the left vertex:

1) Consider the vertices as they are written in (I.0.1). Write all possible per-
mutation of the legs of the vertex. In our case, this means to consider six

∗The convenience follows from the fact that there is a remarkable cancellations between the diagrams
involving the second vertex in (I.0.1) with the diagrams that come out after this reshuffling of vacuum
graphs from the first vertex in (I.0.1). Note that in principle one can do ∇–algebra even on not–free
middle–line diagrams. However the number of vacuum diagrams increases considerably.
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different permutations of the vertex. From the color point of view, three of
them are cyclic and three anti–cyclic. Signs in front of each term are deter-
mined by fermion exchanges while permuting the legs of the vertex and by
color (anti–cyclic permutations get an extra minus sign).

2) By integrating by parts spinorial derivatives on each of the various permuta-
tions, free out the middle line. For the signs, there is a minus sign for each
spinorial derivative moved and and extra minus sign for each fermionic ex-
change.

At the end of this operations we are left with an expression that can be reduced to
equation (6.1.7).

B) For the right vertex:

Use vertex (I.0.1) as it appears there. Remember that the derivatives of this vertex
must be thought to operate towards the left. This can in principle produce signs and
exchange of reciprocal position of derivatives when they are conversed to derivatives
pointing to the right. A clear exposition of this operation is in Section 6.2.

C) Composing the diagrams:

Join left vertex legs with right vertex legs. Lines must be closed by looking at
their positions: Upper with upper, central with central, lower with lower. Pick up
an extra minus sign if a fermionic leg of the right vertex jumps across a fermionic
line of the left vertex.

Signs in front of vacuum diagrams at the end of this quick procedure turn out to be
the same as the signs at the end of the more pedestrian procedure described in the first
part of this Appendix.
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Appendix J

Pierre

Pierre is a set of programs that provides an automatization of many passages of the
superspace approach to scattering amplitudes.

J.1 PC can make your life easier

There are three main troubles that one has to deal with when a direct computation of a
scattering amplitude is done by hand in superspace:

1) There are many contributing diagrams;

2) Each diagram is the result of a lot of algebraic passages;

3) There are both fermionic and bosonic objects.

The consequences of these problems are that hand made computations take a considerable
time. Moreover, the presence of fermionic fields introduce a lot of occasions for sign errors
so that to become confident with the results of long computations longer and longer checks
are required. It is certainly not impossible to perform a perfect hand made computation.
However, every technique that speeds up the computation and makes it safer, can make
easier the life of a Ph.D. student and are welcome.

The possibility of make automatic the superspace approach to scattering amplitudes
by implementing it on the PC is based on two important aspects of the background field

method: 1) There are only a few basic objects, namely the background fields W α, W
α̇
,

the covariant derivatives ∇α, ∇α̇ and ∇αα̇ and the covariant propagator 1
�
; 2) The basic

relations between these objects are the algebraic relations of eq. (B.0.1). All the passages
along the computation can be reduced to this small core–set of relations.
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Algebraic relations are easily implemented on a PC by using symbolic calculus pro-
grams. Most parts of Pierre have been written in FORM, one of the most efficient symbolic
manipulation systems [121, 122]. However, some part of Pierre is based on hybrid pro-
grams that move from FORM to more common computer algebra systems like Mathematica.

The automatization of the computational procedures requires two elements:

1) A dictionary between superspace objects and Pierre’s corresponding elements. In
particular, this requires the programs to be able to deal with spinorial structures
and fermionic objects;

2) The segmentation of the full computational procedure in a set of more elementary
routines and the definition of a precise sequence in which these routines must be
called to reproduce the full computation.

In the next two Sections we give a more detailed description on these aspects of Pierre.

A third element, although not necessary, turns out to be useful: Pierre’s output
data are written in Pierre’s language. An interface between its language and LATEX
textual language makes PC results much more readable. Two different interfaces have
been created for translating strings of superfields and superdiagrams. They make use of
programming languages like Perl and stream editors like Sed. Unfortunately, Pierre’s
outputs consist in a larger class of objects, including loop integrals too, for which a
translator have not been arranged for the moment.

J.2 Pierre’s dictionary

Each basic object in superspace has a specific name in Pierre’s FORM language. The
correspondence between what we usually read in papers (TEX column) and what we
should write for Pierre is recorded in the Tab J.1.

It is worth to mention that only the Ricci tensor cαβ is defined as a commuting function
while all other objects are non–commuting functions. In the Table, the number of empty
slots after each function in Pierre column corresponds to the number of indexes supported
by each field in Superspace. However, we remind that functions in FORM do not have
limitations on the number of the indexes.

The control of spinorial structures is extremely important in superspace. Each string
of superspace objects carries upper and lower dotted and undotted indices. In Pierre

upper and lower indices are distinct by the prefix U and L while a suffix d distinguish the
dotted indices from the undotted ones. So, we have

Ua ≡ α upper, undotted La ≡ α lower, undotted

Uad ≡ α̇ upper, dotted Lad ≡ α̇ lower, dotted (J.2.2)
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TEX Pierre TEX Pierre

∇α D ( ) ∇α̇
Db ( )

∇2 D2 ∇2
Db2

∇αα̇ D ( , ) � Box
1
�

oBox 1
�̂

proph
1
�+

proplus 1
�− prominus

1
�0

oBoxzero
(

1
�
− 1

�0

)

oBoxprime

W α W ( ) W
α̇

Wb ( )
(

∇αW β
)

DW ( , )
(

∇α̇
W

β̇
)

DbWb ( , )
(

∇αα̇W β
)

MW ( , , )
(

∇αα̇W
β̇
)

MWb ( , , )
(

∇αα̇
(

∇βW γ
))

MDW ( , , , )
(

∇αα̇
(

∇β̇
W

γ̇
))

MDbWb ( , , , )

cαβ C ( , )

(J.2.1)

Table J.1: Basic definitions of superspace objects in Pierre’s language

Indexes can be contracted or free. Contracted indices, when moved updown, take a
sign while free indices can be lowered or uppered when opportunely contracted with a
Ricci symbol. Pierre supports these two operations too. In particular the first one is
accomplished by requiring that in a string of superfields a couple of contracted indices
has always the first index up and the second down.

Contracted indices satisfy another important convention, the Einstein summation rule.
Pierre cannot understand what a mute upper or lower index is∗. In spite of this, it is
possible to fix the freedom on the relabeling of indices by imposing a conventional rule
for labeling the contracted couples of indices. This standardization in the names gives
advantages also for the LATEX translators.

Pierre supports other functions that are not reported in Tab J.1. Two of them are
separe and one: These are not objects with a correspondent in superspace but they have a
topological sense. separe specifies where a line ends in a Feynman supergraph. Feynman
diagrams in Pierre’s language are strings of fields separated by the function separe. For

∗In FORM mute indices exist but they are all lower indices. Thus they are not suitable for computations
in superspace
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example

1
�
W α 1

�

1/ 0

1
�
Wα

1
�

≡ oBox*W(Ua)*oBox*separe*oBoxzero*separe*oBox*W(La)*oBox

(J.2.3)

On the other hand, a string like

separe*one*separe (J.2.4)

is the result of the product of 1
�
� = 1 on a the middle line. This means that the middle

line is free of propagators and has to be interpreted as a point. Tadpole–like diagrams
are characterized by the function one on the middle line.

Other important functions are Pierre’s correspondents for the coefficients of the co-
variant propagators (see Appendices C and D for their definition in superspace). Each
coefficient in Pierre is identified by a letter A, B,...,L and by the termination box. Thus,
in general they have the following structure

(prefix ) – X – (suffix ) – box

where X stay for a general letter A, B,...,L. There are two possible prefixes: mc and bar

that stay respectively for the calligraphic coefficients A, B, ... L and for barred coefficients
A, B,..., L. Barred calligraphic coefficients are identified by the combined prefix mcbar.
A suffix h and t is used for hatted and tilted coefficients as they have been defined in
Section 6.3.1. So, for example we have

Bα ≡ Bbox(La)

Ẽαβα̇ ≡ mcbarEtbox(La,La1,Lad) (J.2.5)

J.3 Main routines

The computation of the n point effective action in superspace can be divided in three
main parts

1) The computation of the master equation valid for a generic number of scattered
particles;
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2) The power series expansion of the coefficients of the covariant propagators up to the
wanted number of external fields and with a specific helicity configuration;

3) The extraction from the master equation of the n–point effective action.

Pierre provides an automatization of each of these operations with specific routines.
A partial concatenation of the routines has been programmed in various executable shell
scripts. A full concatenation of these three main steps has not been produced so that,
in order to compute a specific amplitude, manual work is still required. However, the
segmentation in these three steps is not a negative feature. In fact, a rigid recursive
procedure, like a full automatic procedure would be, is unable to find important sim-
plifications in the results that follow from the many identities between the propagator
coefficients (see Appendices C and D). The cancellation of the UV divergences in Section
6.3 furnishes a clear example of this fact.

In what follows, we describe in detail which parts of the computation are completely
automatic.

J.3.1 Computing the master equation

As we have described in Chapter 6, the computation of the all–n expression for the
effective action can be divided in three steps: 1) Compute the vertices of the theory
from the lagrangian; 2) Build up the vacuum diagrams and the combinatorial factors; 3)
Compute the ∇–algebra on each vacuum diagram.

The heavier and most important part of the computation is the third one. Pierre

supplies for an automatic computation of the ∇–algebra of one loop diagrams and two
loop cubic vertices diagrams. Also two loop tadpole like diagrams can be computed by
Pierre by considering them as products of two one loop diagrams. The inputs are simply
the propagators and the covariant derivatives that define a vacuum diagram. Helicity
and planarity conditions are optional conditions: In principle, Pierre can perform the
∇–algebra without using any of these hypothesis.

All the results of Section 6.2 have been computed or checked by Pierre. In particular,
all the two loop vacuum diagrams of the N = 4 theory have been collected in a data file.
A shell script, dalgebra.sh, allows to call them and to process the automatic ∇–algebra
computation. The economy of time is remarkable: Each vacuum diagram is computed in
about 102 seconds.

We stress that combinatorial factors and eventual signs that come out when a vacuum
diagram is constructed† are not included in Pierre and must be computed separately.

†See Appendix I
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J.3.2 Computing the coefficients

The coefficients of the covariant propagators can be divided in two classes by looking at
their origin. The coefficients of 1

�+
, 1

�− and 1
�̂
can be considered as primary coefficients.

All the other coefficients can be derived from them through the identities (C.0.29)–(C.0.34)
and (D.0.19)–(D.0.21). Pierre can compute this second class of coefficients from the first
one: The computation of the primary coefficients must be performed separately by hand.
An improvement to include an automatic computation of the primary coefficients is in
progress.

We have expanded most of the coefficients (although not all of them) up to six external
fields and requiring at most two consecutiveW . The results have been stored in a database
in Pierre’s language. In principle, these data are sufficient to compute MHV amplitudes
involving up six particles in any SYM theory.

It is important to remark that the computation of the non–primary coefficients can be
performed by hand without using the identities between the coefficients. This alternative
derivation can be used as a check of Pierre’s results. We have performed this check up to
three external fields finding a perfect agreement between Pierre’s and hand made results.
We remind that the expansion up to three external fields is required for the computation
of the four points effective action in N = 4 SYM theory.

J.3.3 Computing the n–point effective action

The extraction of a fixed n–point effective action from an all–n master equation is a
complicated operation. As it has been described in Chapter 7 for the easiest four point
case, it is not sufficient to expand the coefficients up to the required order and to replace
this expansion in the master equation but a lot of other operations are necessary. Just to
mention the principal ones we remember the imposition of the Up–Down and Left–Right
symmetries, the integration by parts of the spinorial derivatives, the Fourier transform to
momentum space, the Passarino–Veltman reduction of vector and tensor integrals.

All these operations have been implemented in Pierre in distinct shell scripts. The
programs have been optimized in order to extrapolate the four point MHV effective action
in N = 4 SYM theory. However, they can be easily expanded to more general cases.

The names of the main shell scripts written and their functions have been summarized
in Tab J.2.

The extraction of the four point effective action in configuration space is done auto-
matically from the all–n effective action through a concatenation of many of these simpler
scripts. The concatenation is performed through another shell script, legoland.sh. The
output of this program are two data files that include respectively the two point contri-
butions and the sum of the four and the three point contributions enhanced to four point
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through the integration by parts of spinorial derivatives (see Section 7.1.2). In order to get
the full four point effective action it is necessary to elaborate the two point contributions
manually as it has been described in Section 7.1.1.

The passage from configuration space to momentum space is done by using more
scripts: After the Fourier transformation (reading.sh) it is possible to implement a lot of
simplifications due to on–shell conditions (simply.sh) and to the resummation of antisym-
metric structures through the Ricci symbol (antisym.sh)

ΦαΨβ − ΦβΨα = cβαΦ
γΨγ

After these operations, the result presents scalar loop integrals as well as tensor and vector
integrals. The PV reduction of these last two kinds of integrals is performed through the
scripts PVtens.sh and PVvet.sh respectively. These scripts are written part in FORM and
part in Mathematica.

All the operations in momentum space require the control of both the loop integral
structures and the spinorial structures. The denominator of the loop integrals is easily
handled in Pierre by assign to each of the topologies of Fig G.3 a different name. Un-
fortunately this notation has not permitted to construct a program to implement the
symmetries of scalar integrals.

A general scheme of Pierre is given in Fig J.1. We have put in boxes the main steps
of the computation and in ovals the automatic passages performed by Pierre. Rhombuses
highlight the part of the computation that, unfortunately, still need manual work.

It is worth to mention that beyond Pierre other programs have been useful in the
computation scattered along the second part of this thesis. In particular, they are FIRE

[123] and FIESTA [124], Mathematica based tools for the reduction of loop integrals to
master integrals and for their numerical evaluation.
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Shell script Operation

updown.sh Up–Down symmetry
leftright.sh Left–Right symmetry

renameforlego.sh Relabeling of superdiagrams

spinorial.sh
Integration by parts

of spinorial derivatives

colino.sh
Selector of 4 pts

MHV diagrams only

MHVselector4.sh
Selector of up to 4 pts

MHV diagrams
selector3.sh Selector of 3 pts diagrams
selector2.sh Selector of 2 pts diagrams

reading.sh
Fourier transoform
to momentum space

plus.sh To sum various stuff

simply.sh
On–shell conditions
in momentum space

antisym.sh
Antisymmetrization conditions

in momentum space

PVvet.sh
PV reduction

of vector integrals

PVtens.sh
PV reduction

of tensor integrals

toprint.sh
LATEX translator

for strings of superfields

topaint.sh
LATEX translator
for superfields

Table J.2: List of shell scripts for the extraction of a specific amplitude from a master
equation.
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