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Chapter 1

Introduction and conclusions

It is just in the '90s, with the AdS/CFT correspondence revolution, that
string theory was able to interpret the strong coupling limit in g,, the
string coupling. In this big picture, the role of type IIA is peculiar, since
in the strong coupling limit it is possible to show that one dimension
more is excited and the theory is eleven dimensional supergravity.

Actually this last statement is only true when the Romans mass is not
turned on. In 1986, few years before the duality revolutions, Romans [1]
proposed a generalization of type IIA supergravity in which the B-field
acquires mass through Stiickelberg mechanism. This extra parameter in
the action has some interesting peculiarities: since it can be rearranged
as a scalar Ramond Ramond field, it is a fixed parameter (it has to satisfy
the Bianchi identity) and it behaves like a negative 10 dimensional cos-
mological constant.

Moreover, in [2] it was shown that, for classical solutions of massive 1A
(i.e. with non zero Romans mass), the string coupling is bounded by the
curvature in string units. In a sense, this makes the problem more rare:
any solution with large g; is already invalidated by being strongly curved.
This makes the need for a non-perturbative completion less pressing.

There is still one feature of the Romans mass that should be mentioned:
if one looks at the Wess Zumino coupling in string theory, the Romans
mass appears in the interaction

F, [ CSla), (1.0.1)
D2

where a is the gauge field over the D2 and CS is the Chern Simons La-
grangian. This kind of coupling created a puzzle when [5] arose: without
going into details, the original model proposed a duality between an AdS,
not experiencing a Romans mass with a Chern Simons theory with levels
(k, —k). Where was the F;? [4] pointed out that the F, was hidden in the
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symmetric form of the levels of the conformal theory: once a non zero
Romans mass is added, the levels split to (k, Fy — k).

To summarize, the message so far is that the Romans mass avoids uplift-
ing to M-theory and it is dual with Chern Simons theory.

However, let us consider the case of an O6 plane. If one approaches to
the O6, the metric in the massless theory, i.e. with a vanishing Romans
mass, reads

dsb = ZPdx? + Zdxt,  Z=1-20,  ro=lg. (102

Even if we excise the unphysical “hole” r < r(, the metric becomes singu-
lar for r — ry. Actually, approaching to r ~ ro, the dilaton starts growing,
such that the supergravity approximation cannot be used and the theory
should be uplifted to eleven dimension.

After quantum and instantonic corrections the metric appears to be the
Atiyah-Hitchin one, studied for the first time in [5]: it is a smooth metric,
without singularities, but with a minimal radius at r = Zro.

The story of the metric near the O6 in M-theory is quite peculiar. The
Atiyah-Hitchin metric studied in [5] was obtained through the analysis of
hyper-Kahler manifold defined by 2 interacting monopoles with isometry
SU(2); the construction was pure geometric. Later, it was proposed, [6],
that the moduli space for the Coulomb branch of a 3 dimensional Super
Yang Mills theory with gauge group SU(2) was described exactly by the
Atiyah-Hitchin manifold. Moreover [6] compared the infrared limit with
the long distance behaviour of the metric from [5] and they found perfect
agreement. The absence of singularities in the metric was then read as
the absence of singularities on the gauge theory side. The stringy expla-
nation of this construction was given by [7]: they proposed the theory
defined in [6] to be the theory living on a D2 probe in the nearby of the
O6 in M-theory: in this picture, the instantons present in the theory were
DO exchanged by the D2 with its own image under the OG.

So the singularity of the massless O6 solution (1.0.2) is resolved in M-
theory to a smooth hole. What about O6-planes in massive 11A?

Since the theory can not be uplifted, two natural questions arise:
1. What is the solution in supergravity, if there is one?
2. How should the theory on the D2 probe be deformed, in order to

encode the effect of the Romans mass, if the massive system has a
solution?



Solutions of massive IIA with an O6 source have been assumed to exist,
especially in the context of flux compactifications. A popular trick in su-
pergravity is to “smear” sources over the internal manifold; namely, to
replace the localized source with one which is spread all over space. For
an orientifold plane in string theory, this is not really physically allowed,
since such sources are supposed to sit on the fixed loci of the orientifold
involutions. Nevertheless, smeared solutions are often a good indicator
of whether a bona fide background will exist. Using this sleight of hand,
quite a few massive O6 solutions have been found. A well-known early
example [3, 9] of moduli stabilization is of this type. Also, the presence
of both O6’s and Fj is considered the most promising avenue for pro-
ducing de Sitter vacua in string theory which are completely classical (as
opposed to de Sitter vacua such as [10, 11]); examples with the smearing
trick include [12, 175].

In this thesis we will find evidence for the existence of supersymmetric
massive O6-plane solutions, [14]. We will mostly consider a spacetime of
the form

AdS, x Mg, (1.0.3)

since we have already at least the example [, 9], which is of this form.
The O6 will be filling the four-dimensional spacetime, as well as three of
the six directions in Ms. We will also consider the possibility Mink, x Ms;
however, we do not know of any supersymmetric Minkowski compact-
ification with O6-planes and Romans mass, and for this reason we will
give more attention to (1.0.3).

Actually, although some of our considerations will be more general, we
will just focus on what happens close to the O6, so taking implicitly
Ms = RS, meaning that corrections coming from the curvature of the
internal space are not going to be considered. We cannot expect the ge-
ometry on this R® to approach flat space, however, as would be the case
if one factorized the metric (1.0.2) as Mink, x R®. This is because neither
AdS, x R% nor Mink, x R® are vacua for the massive theory. We are
introducing two new length scales: \/+7 and ﬁ (since F, always appears
multiplied by e? in the equations of motion). When both of these scales
are large, it is possible to study the features of the geometry closer to the

source (order rg = g;ls).

The deformation induced by the Romans mass on the D2 theory is
still subject of analysis with the collaboration of my advisor Alessandro
Tomasiello and with Gonzalo Torroba, from SLAC and Stanford Univer-
sity. Because of the coupling (1.0.1), the deformation on the theory living
on the D2 due to a non vanishing Fj is a Chern Simons interaction. In the
last chapter we will present our intermediate results: we calculated the
metric for the moduli space corrected by quantum effects. It is possible
to see that the singularity disappears. Moreover, the deformation of the
metric is proportional to the inverse of the Chern Simons level.
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Let us give a synopsis of the thesis. It is split in two parts, the first dedi-
cated to the supergravity side of the problem of the O6 singularity in IIA,
the second examining the gauge theory side of the phenomenon.

Part I begins with chapter 2, introducing the main definitions in the con-
text of supergravity for vacua configuration of type II. As an appetizer,
we are going to propose some relations among the different characters
in the game due to constraints from the equations of motion and we will
present briefly an unlucky proposal for a dS vacuum configuration of
type IIA.

In chapter 3, we will show how to relate the existence of a spinor to prop-
erties of differential forms. This chapter is going to be crucial: the first
concepts in order to face supersymmetry equations on vacua of type II
are presented. The main idea is to convert the supersymmetry equations
(that have been shown to be solution of the equations of motions too on
vacua configuration, [15, 16]), which are spinorial in two parameters, into
equations for differential forms, since differential forms provide geomet-
rical interpretation quite automatically. The case examined in this chapter
is going to be the easy case in which the two spinorial parameters of su-
persymmetry equation are taken to be parallel. At the end of the day, the
situation is like studying properties due to the existence of just one spinor.

In chapter 4 we take the most general case, i.e. the one with two inde-
pendent spinorial parameter. It has been shown, [17, 18], that in that case
the usual differential geometry is not enough: the geometry should be
studied on the generalized tangent bundle,

T® T, (1.0.4)

somehow duplicating the original space. We will find that the most gen-
eral case has a SU(3) x SU(3)—structure and that the geometrical infor-
mation is encoded in polyformic pure spinors living in T & T*. We will
see what are the different ways to write a pure spinor, depending on
the topology they define; finally we will see how to write supersymmetry
equations in terms of pure spinors.

In chapter 5 we will apply the formalism defined in the previous chap-
ter to the case at hand, i.e. the localized O6 in ITA in vacua with a non
zero Romans mass. We will see that the presence of the Romans mass
by itself saves the O6 from singularities. Moreover, the metric nearby
the O6 can be seen as R x S? in transverse directions and the presence
of the Romans mass fixes the dimension of the transverse S? to be non
zero even in the origin, somehow substituting the O6 plane with a bub-
ble. Furthermore, since there is no singularity, no minimal radius and
everything is smooth even at the origin, the metric can be analytically
continued to negative radii.



So, in part I there is the supergravity formalism and results. In the part
IT there is the gauge theory side.

In chapter 6 there is a brief introduction to the original Seiberg—Witten
3 dimensional model, [6]. Here we will see that, after breaking the gauge
group down to U(1), the low energy effective theory gets quantum and
instanton corrections. As we already mentioned, the metric of the moduli
space is the Atiyah-Hitchin and it can be seen as the theory on a D2 probe
next to an O6 in M-theory.

In chapter 7, the last one of part I, we will present the last results on
the subject of the deformed theory on the D2 probe. We deformed the
N = 4 Super Yang Mills with a Chern Simons term, breaking super-
symmetry down to N = 2. Here, we do expect the metric to be smooth
even in the origin, as its supergravity counterpart is. We were able to
obtain the quantum-corrected metric and in fact the metric does not
exhibit singularities in the IR regime. We have an argument about the
non existence of instantons in this theory, differently from the original [6].

Finally, in the appendix it is possible to find the formalism used in the
different chapters and the living project E, marginally related to the main
topic of this thesis.






Part 1

Pure Spinors formalism for
supersymmetry equations and
the O6 singularity in the
massive IIA






Chapter 2

String vacua basics

In this first chapter we are going to analyse implications of studying vacua
in supergravity. These configurations are warped products (meaning a
fibration defined through the warping factor A(y)) of the internal six
dimensional manifold and the external one (the four dimensional space-
time), in which the external one has been chosen to be maximally sym-
metric, that is Minkowski, AdS or dS. As the name “vacuum” says, these
configurations do not have any particles in the external spacetime, since
they would break the maximal symmetry of Minkowski, AdS and dS.

We are going to work out equations of motion for vacua model and the
supersymmetry ones. The former are not so trivial to solve, since they
are second order differential equations; on the other hand; the latter,
even if they are first order in the derivatives and, once they are satisfied,
they had been shown to satisfy equations of motion, at first sight they are
not so easy to work with. Anyway, in the following chapter we are going
to see that it is possible to reduce supersymmetry equations on vacua
in a much more friendly form, defining univocally the geometry of the
internal manifold.

However, in this chapter we are going to show that even equations of
motion can deliver important information: in section 2.2 we are going
to show that general results for vacua, known in the literature, can be
reproduced just from the equations of motion.

2.1 Vacua definition and first implications

2.1.1 Basic definitions

Before starting let us give the basic definitions of type Il supergravity. In
the next chapters we are going to be much more interested in type IIA,
but for completeness even the IIB scenario will be presented.



The massless bosonic field contents of type II can be divided in two sec-
tors from its very first construction: the Neveu-Schwarz-Neveu-Schwarz
sector, (NSNS) and the Ramond-Ramond sector (RR). The fields contents
of NSNS is the same for the two different type of supergravity theories,
while RR is different due to the fact the IIA fermions have different chi-
ralities, while IIB have not.

As it could have been guessed, the NSNS sector, since it is equal for
both theories, is related to properties that are fundamental for every
gravitational field theory and it contains the metric gy, the Kalb-Ramond
field Byy (a 2—form) and the dilaton ¢ (a scalar). In type IIA, RR field are
forms of odd degree, C;, Cs,Cs, ..., while in type IIB these are forms
of even degree, Cy, Cy, ... In the following we are going to work much
more with field strengths than with fields: for the NS sector, the only one
is

H =dB (2.1.1)

(d is the exterior derivative!) for the B-field. Fields strengths for the RR
sector do involve the B-field too,

gp = de_1 —HA Cp_g. (212)
The RR field strenghts are constrained by the Hodge duality relation,
Fp = (—1) 2 % Fyg, (2.1.3)

where |- | is the integer part of the argument. Because of (2.1.3), just
field strength of lowest degrees are often used, i.e F¢, Fy, F, in IIA and
Fi1,F5,Fs in 1IB. In the following we will use a different electric basis,
the “democratic” one, using at the same time all the field strength present
in the theory and later imposing the (2.1.3) as an extra condition.

Anyway, it is quite demanding to work with all these fields, so it appears
much nimbler to work with polyforms: define

C= Zc ; (2.1.4)
p

this C is the sum of forms (C,,) of different degrees, all odd (IIB) or even
(ITA). In terms of C defined in (2.1.4), one can write a polyformic field
strength

F=dC-HAC. (2.1.5)

In terms of the previous polyforms, Bianchi Identity (BI) for IIA and 1IB
can be written as

dH = 0; dF -HAF =dyF =0, (2.1.6)

where in the last step we defined the operator di;- =d- — HA -2 There
is another subtlety to remember due to sources: as in electromagnetism,

IFor the notation of exterior derivatives and contractions, see the appendix A.
Note that, as it happens for the usual exterior derivative, {dy,dy} = 0, once dH = 0.
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in the presence of a source, say an electric charge, the flux of the field
strength through a closed surface is proportional to the charge inside the
surface. Usual Dirac quantization arguments implies that even the field
strength %, experiences a quantization

/ Fp ~ n, neN, (2.1.7)
Zp

where ¥, is a p—cycle and ~ means that, for the moment, we forget
about factors depending on the dimension of the cycle.

The fermionic sector contains two Majorana Weyl spinors, the gravitino
¥y and the dilatino A. Gravitinos (dilatinos) are two and they have the
same chiralities in IIB, while they are different in ITA. The chiralities of
one gravitino and the corresponding dilatino is the same.

2.1.2 Vacuum definition

String theory lives in 10 dimension: among these 10, we want to take
the 4 of the spacetime we experience. Let us assume that our total 10-
dimensional space time M is fibred over a 4-dimensional manifold,

M10 . M4 X MG. (218)

M, is called the “external spacetime”; the fiber is called “internal mani-
fold”.

Vacua configurations are those with a maximally symmetric external
space, so they enjoy the maximal amount of Killing vectors. In 4 di-
mension, this happen to be 10 and it allows just three symmetry group,
determining the sign of the cosmological constant A:

Minkowski (A = 0) Poincaré group
AdS (A < 0) SO(3,2) (2.1.9)
dsS (A > 0) SO(41)

As the name suggests, in supergravity vacua the external space contains
no particle: in fact, just the presence of a particle breaks the maximal
symmetry since it singles out a special point or direction.

The fibration (2.1.8) and the requirement for maximal symmetry permit
to write the most general metric allowed as

ds? = e*Wgi dxtdx” + gl dy™dy", (2.1.10)

where gﬁv is one of the three metric allowed form the external space
(2.1.9), g8, is the metric in the internal manifold and A(y) is called the
warping factor and it depends only on the internal coordinates (again, in
order not to break maximal symmetry).

11



Other bosonic fields in the game are the curvature for the B-field and
the RR field strength. The requirement of vacuum configuration on H is
trivial, since it means just that the field has to depend on y coordinates
only and none of indices has to take values among the external one. For
9 the story is a little bit trickier, since a tensor with 4 indices all in the
external manifold is allowed, since it treats all directions of internal space
symmetrically. The way out is to write 9 in terms of forms defined over
Mgi

F =F +vol, NF, (2.1.11)

where vol, is the volume form for M,. Imposing the Hodge duality
condition, it is possible to gain a Hodge duality condition for F and F,

restricted to Ms: i
F = Alx F), (2.1.12)

where the operator A on forms of degree p is defined as
A= (=1)5]. (2.1.13)

As we saw, bosonics fields are easy to control in this situation, but what
happens to fermionic ones? The situation is a little bit more complicated:
take € to be a fermion in 10d. In order to satisfy the decomposition of
the space (2.1.8), we should write € in terms of fermions written in 4d
and 6d. It turn out that the most logical thing to do is

€:=Cy @M +C_ QM (2.1.14)

where € is a fermion on M, and n one defined on M. Note that € is
automatically Weyl once €. and 7. are spinors of fixed chirality. In order
to demand € to be Majorana one has to impose € = €*. Once chosen the
right basis for the expansion of gamma matrices®, this condition turn to

n=nt;  Co=C (2.1.16)

This is a great simplification, but in not enough, since so far we did not
impose the maximal symmetry of M,.

If one (€ is specified, then it is possible to construct a vector, i.e. to find a
direction among the possible four of M, by v* = ¢!y*¢ and so to break
maximal symmetry. The idea is that all fermionic equation should be
solved for € in such a way that they appear symmetric for a transforma-
tion of the maximal symmetry group of the external space.

If we would like to have the smallest amount possible of supersymmetry,
we would like to have N = 1 in 4d, so just one ¢ with two possible

3Using the fact that the total manifold is a warping product between the external and
the internal space, it is possible to define

Fy=e’7,0L Tm=7% ¥m- (2.1.15)

12



chiralities. But in order to have a N" = 2 (we are in type Il supergravity)
in 10d, then one has to have two possible 7. So, at the end of the day

el=¢Con+éonl, a=1,2 (2.1.17)

Apart from some subtleties to take into account, working with vacua
means studying what are the configuration of the fields of the theory in
the internal space Ms.

2.2 Equations of Motions

Before going into the magic kingdom of supersymmetry, let us wait for
the moment in front of the walls and look to something “easier”, i.e.
equations of motion. If we are interested just in the bosonic part, the
equation of motion for the external graviton:

e~2‘1’<e~2AA ~O6A — 4(V A2 + 2(V , A) (VD) ) (ZFk + T ) ~ 0

(2.2.1)
where ¢ is the dilaton, [Jg = gm"V,,V,, A is the warping and A is the
cosmological constant of the external space. T, is the contribution from
branes: it contains a density factor (which is a Dirac delta for localized
sources or a finite density function for smeared ones) and a tension term,
which is positive for D-branes, while negative for orientifolds.

Fr,.mdx™ A -« Adx™*
Fp = fmem@X7 A AAX (2.2.2)
k!
and the k—forms F, are the RR field strengths defined earlier in (2.1.11)
S0

F2 = %Fmimmkf"”i'"mk. (2.2.3)

On the other hand, the internal graviton gives:

(HZ)mn
e“”b[Rﬁfgn—z,vanA ~ 4V A)(Vall) + 2V Vb — 5 ]

o (S (B~ T2) + T (T2 1) = 0
k

(2.2.4)

where R,,, is the Ricci tensor restricted to Mg and I1,,, is the pullback
of the metric on the source and

1
(Flg)mn = (k _ 1) Fm my..Mmg_ 1F111Tl1 k=t (225)

Instead the dilaton equation of motion is
e 2% [0, 0 +8(V , A) (VD) —4(V D +H3] (Z [F2(k—5)] Tpnmm> -0
k
(2.2.6)

13



Let us calculate the trace of (2.2.4):

QkST

&2 (R~ 4DA - 4(VAP +2[]<I>—2H2> ZF = 0. (2.2.7)

If we focus on the bosonic sector, no other contribution can appear. As
for the Bianchi identities, they can be seen as the equations of motions
for the RR-fields, due to auto-duality.

2.2.1 General properties

Just combining together the equations, it is possible to obtain several
properties for vacua configurations.

A = const and deSitter
Let us consider (2.2.4) and take the case A = const:

ZkFlg"l'TP

o AP 4 Skk

=0 (2.2.8)

In the case of constant warping, dS (meaning A > 0) is possible only
when T, < 0, so in the presence of an orientifold.
A, ® = const, with no source

Let us consider the case of A, ® = const without sources (T, = 0): (2.2.7)
becomes

3 k-3
R—EHQ—YL;Fg( 5 ) =0 (2.2.9)

while (2.2.6) is
(2.2.10)

H? + Zl—f(k
k

where we reabsorbed factors of exp(—2®) in the definitions of the fields.
Summing (2.2.9) and (2.2.10),

R-—— — ZFQ - (2.2.11)

meaning that R > 0.

No deSitter without orientifolds

Let us integrate the (2.2.1), multiplied by e**

/de —Ge“[e*?q’( AN o A—4(V AP +2(V A v%) (ZP§+T)]
(2.2.19)

14



After integration by parts,

/de —Ge*P0A = ]de —Ge" (- 4VA-VA+2VA- VD),

(2.2.13)
So

/dﬁx\/—_Ge“A [e—%(e—%‘/\ + %(ZF,S + T,,)] ~ 0 (2.2.14)
k

means that the dS case need necessarly a source (that should be an orien-
tifold, T, < 0). The result already found in [19], but here it comes directly
from the equations of motion for the external space.

2.2.2 A unlucky proposal for a dS vacua

In order to have stable dS vacua of type IIA, [20, 12, 21] showed that there
are several necessary ingredients: in particular it is necessary in order
to stabilize moduli to have an orientifold O6 as a source and a non zero
Romans mass Fy. In my first year of the Ph.D. my supervisor and I tried
to build a dS model satisfying those constraints.

The geometry of the internal space was I x S? x S°, where [ is the finite
interval [0, ;t]. We supposed that the metric could be written as

ds® = d6* + a(6)*ds2, + b(0)*dsZ;, (2.2.15)

with the scaling factors a, b defined in order to vanish in the opposite
boundary of I:
a@=0)=0; b(6 = ) = 0. (2.2.16)

In this way it was possible to prove that the system does not experience
any singularity. To avoid problems due to localization we used a smeared
06, meaning that the source, instead being localized in a point through
a delta function, had a finite density. The O6 lied in the origin of the S?,
meaning that the transverse space respect to O6 is I x S2.

Field strengths were chosen in order to live completely on one of the
two spheres defining the geometry, i.e., having all indices on the same
subspace of I x §? x S%:

Fy =f, volg

F4 Ef4 do A VOlgs

\ (2.2.17)

Fs =kse " volg

H =h;d6 A vol,

where © indicates quantities expressed in terms of comoving coordinates.

“In full generality H should have a term proportional to the volume Volgg, but the
Bianchi identity for F, with the smeared O6 forces it to be zero.
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In order to simplify the problem, we asked the system to have codimen-
sion one, i.e. all fields to depend just on the variable 6. For completeness
we reported the equations of motion for the system in the appendix B.

We tried to solve the equations of motion numerically, fixing the bound-
ary condition (2.2.16). The algorithm used evolved the system from both
sides of our compact space (8 = 0 and 6 = 7) and then tries to minimize
the difference from the value of the fields at an intermediate point in
0. After several attempts, we saw that it was not possible to “close” the
internal space.

Actually this project is shelved: there is the possibility of resuming the
system introducing a DS, i.e. a plane that make the value of the Romans
mass change from side to side. In this way we would have a free pa-
rameter to fix (the position of the D8 relative to the O6) and hence much
more freedom.

2.3 Supersymmetry equations

As it can be easily seen, equations of motion are second order in the
derivatives and hence not so trivial to solve. Instead the supersymmetry
variation equations are first order equations in the derivatives and, in the
vacua case, they have the useful property of solving the equations of mo-
tion automatically, [15, 16].

First, let us look at the supersymmetry equations in type II formalism.
In order to simplify the formalism, not so easy by itself, let us convert
spinor quantities into differential forms. This at first sight may appear
quite odd, but it is sound. The idea is to send

'™ dxM, (2.3.1)
or in other words
@ = aiiminrir"” — = %dri1 A--- Adx'n, (2.3.2)

where summation on equal indices is implicit. This mapping is called
Clifford map.

Using this formalism, borrowed from [22], the supersymmetry variations
for the gravitino are

¢
S0l =(Dy + M)t 4 € g, e

4 16 (2.3.3)
2 Hyy o €° 1
(SlpM =<DM — T)€ — EA(QZ)FM[‘€ )

where €%, a = 1,2, is the supersymmetry parameter of the transfor-
mation and all other characters have already been met in the previous
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section.

The variation of the dilatino can be arranged easily in term of the super-
symmetric variation of the gravitino:

A~ TMsyl, = — (D - 06 + L)'

4

4 (2.3.4)
6)\,2 — ]__‘Mél'b?w = — (D — 6¢ — 2)62,

where D = Dy, I’ and 8¢ = I'Moy;¢.

Let us focus on vacua configurations: if we decompose the (spinorial)
parameter of the supersymmetry variation € as we did in (2.1.17) and
divide the gravitino in component with M = p and M = m, our four
equations (2.3.3), (2.3.4) become

Hp, 4 €° 0
(Dm - T)m + gF?’mn; =0

Hp, , €° |
(Dm T)U; - g)LF’)’mTLL =0

“nl +0A 1_e_¢[_,2_0
”e n+ + n+ n¢ -
4¢ (2.3.5)

pe M + 0AN2 — AF)L = 0

. H
opent + Dl + (a(QA—¢) + Z)rﬁ ~ 0

H
2pe~ni + Dnf + (6(2A - ¢) - Z)ni =0

Even if at first sight they may not look so beatiful (and for sure they are

not), they have the property that on vacua their solutions are enough

to solve equations of motion. In the following chapters we are going to

show how (2.3.5) can be rephrased in a more geometrical way.
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Chapter 3

Spinor, G-structures and
differential forms

In this chapter we are going to review some preliminar basics in order
to face the formalism that is going to be used in the rest of the thesis to
find solutions to the supersymmetry equations on vacua (2.3.5).

As we saw, supersymmetry equations in vacua of type II are first order
differential equations on two spinors defined in 6 dimensions. For the
moment, let us consider the special case in which the two supersymmetry
parameters are proportional, i.e.

nt =an’. (3.0.1)

(Do not worry about the most general case, it will be treated in the next
section). We can say that now supersymmetry equations involve just one
spinorial parameter.

In this case we can divide constraints from supersymmetry equations into
two parts:

1. the existence of a well defined spinor (our supersymmetry parameter);
2. differential conditions.

Constraint 1. fixes the topology of our problem, while 2. constraints the
possibility of “gluing” together different patches of our manifold.

In particular, constraint 1. can be set at the same time as:
A. the existence of a well defined spinor;
B. the existence of “special” differential forms;

C. the structure group of the the tangent bundle our theory is defined
on.
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These three definitions are equivalent and it is possible to convert the
information from one formulation to any other:

spinor

’ differential forms \ structure group

Next sections will follow the previous scheme upside down, starting from
the topology defined by G-structures, finishing with the one from a spinor.
At the end of every section differential conditions and their meaning
will be presented, together with comparisons with other topological ap-
proaches.

3.1 G-structures

First let us approach the problem from the G-structure door. In order
to make this thesis (almost) self consistent, let us start for the very first
definition of the fiber bundle.

Informally, a bundle E on a manifold M (called base) with a fiber F is
a manifold that locally looks like the product of M x F. This can be
rephrased more mathematically in the following way:

Definition 3.1.1 Fiber Bundle
A manifold E is called fiber bundle with fiber F over a base manifold M
if there is a projection it : E — M which satisfies the following condition.

Take x € M and U, C M a local neighbourhood of x and call &,
the isomorphism that sends U, x F to n='(U,) c E. If we denote an
element of U, x F as (x, f), we ask that 7~ (®,(x, f)) = x as a consistency
condition, called local triviality.

We call transition functions those which relate two isomorphism ®,, ®g,
defined over two overlapping open subsets U,, Ug in M:

By = Do, (3.1.2)

Let us introduce the two fiber bundles we will study most in the following:
the tangent bundle TM is the fiber bundle whose fiber, for every x € M,
is Ty M; the cotangent bundle T*M has fiber T; M for every x on the base.

Using TM definition, the bundle over the base M with fiber an ordered
basis of TM can be defined; this bundle is called frame bundle and it will
be identified with FM. Locally it is possible to define the element of FM
as (x, e,), where x € M and e, is a basis of T, M; if d is the dimension of
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M, e® transforms under the action of the group GL(d,R). The group of
transition functions is the structure group and in this case it GL(d, R).

Anyway, GL(d, R) is quite a “big” group and it would be nice to reduce it to
something easier to work with, say G ¢ GL(d,R). A manifold M whose
tangent bundle has structure group G C GL(d,R) is said to have a G-
structure. This possibility depends on the topology of the base manifold.
In the following we present several examples of G-structure manifold.

Example 3.1.3 Riemannian manifolds

A Riemannian manifold is a manifold with a symmetric positive-definite
globally defined non degenerate tensor, g (the metric)!. Its structure
group is O(d). The structure group can be reduced to SO(d) if it is
possible to define, starting from the metric, a globally defined volume
form voly.

This statement is quite intuitive: the “extra” S in the group means just
that the determinant of the transformation has to be 1, so no variation
of the modulus is allowed, thus preserving the volume.

If the manifold is “spin”, meaning that one can take SO(d) to its double
cover Spin(d), it is possible to consider spinor bundle too. Since, at
the end of the day, we are interested in working out the geometrical
properties of spinorial (differential) equations, this is going to be the
case.

Example 3.1.4 Presymplectic structures

Let us define ] € A*(M), a globally defined 2—form over a differential
manifold M of dimension d. If it is not degenerate, i.e. there in no x €
M such that ], = O, ] is called presymplectic structure. The structure
group of a manifold which admit such a 2-form reduces to Sp(d, R).

Example 3.1.5 Almost Complex Structure
Let us define a map I : TM — TM such that,

I? = —1,. (3.1.6)

If we ask I to satisfy the structure group symmetry, (I v) = m(v) for
every v € TM. It can be proven that in this case, the structure group
reduce to GL(d/2,C) and I is called an almost complex structure. In
fact, because of (3.1.6), I has eigenvalues in C and those are i and —i,
but in order to do that we should complexify our fiber: TM — TM ® C.

LEven if this pletora of bombastic words may look scary, it just means that Rieman-
nian manifolds are those manifolds which admit a customary metric.
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The existence of two different eigenvalues permits to divide our bundle
into two subbundles: L, the one which has eigenvalue i under I and L,
the one which has eigenvalue —i. So, every basis can be split in co-
ordinates over L, say “holomorphic”, and over L, say “antiholomorphic”.

However, since I is invariant under the structure group in passing
from x toy (where x,y € M), (3.1.6) is satisfied, but it is possible to
mix coordinates from L, to those from L, (so holomorphic coordinates,
say, are allowed to be mapped to antiholomorphic ones), even if the
decomposition in L, and Ly is present. In order to have a local definition
of holomorphicity, one has to ask for differential conditions (which are
going to be discussed in the following subsection,).

Example 3.1.7 Hermitian meftric

Since I : TM — TM, it can be seen as an element of tensor defined
over T*M x TM. If over a presymplectic manifold, the almost complex
structure satisfies

It =7 (3.1.8)

(hermicity condition), it i possible to define a symmetric tensor called
hermitian metric
g=-JL (3.1.9)

It can be proven that equivalently one can ask for the satisfaction of
I'gl = g over a Riemannian manifold and define a pre-symlectic struc-
ture as | = gl. It can be shown that the structure group is U(d/2).

3.1.1 Integrability

All conditions found so far define the topology of the manifold we are
interested in. Now we have to consider what are the implications coming
from differential conditions. Before starting, let us give few definitions.

First, let us start with the Lie derivative.

Definition 3.1.10 Lie derivative
Lie derivative X of a scalar function f respect to a vector field X is
defined as

Lx(f) = X(f), (3.1.11)

meaning that if a% (i=1,...,d)is abasis over TM, then X = Xi% and
. of

= X'—. A.12

£4() = X' (5.1.42)

Instead, Lie derivative of a vector field Y respect to a vector field X is
defined as the Lie bracket of the two vector fields,

Lx(V)=[X,V], VX, Ve TM. (3.1.13)
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Now, let us call a distribution a subbundle locally spanned by smooth
vector fields. It can be proved (Frobenius’'s theorem, see for example
[23]) that if the distribution L is closed under the action of Lie brackets
(the distribution is involutive), all its elements can be written locally as

. oxt
X = , 3114
¢ 9o ( )
where X,, a = 1,...,rank(L) are vectors spanning L for every x € M

and o, is a proper basis. Property (3.1.14) is called “integrability”, since
there is the possibility, somehow, of integrating the vector fields on a
specific distribution; at first sight it would seem a trivial property (given
a vector, there is always the possibility to find locally an integral curve),
but the crucial aspect is that it is possible to do that without exiting from
the distribution L. The importance of the integrability statement, in fact,
is that it allows for coordinate transformations that collect local basis
for a certain distribution. Integrability permits also to choose the most
comfortable vector basis, i.e. the adapted coordinates, that is %, i =
1,...,rank(L), for some x. The main implications of these properties are
examined directly in the following examples.

Example 3.1.15 Complex structure

Applying directly integrability to I implies that is possible to define a
neighbourhood of x € M over which it is possible to define a holo-
morphic and antiholomorphic subbundle L and L (eigenbundle of the
almost complex structure with eigenvalue respectively i and —i), i.e. to
choose a special basis for each distribution.

We call the most convenient basis for L holomorphic coordinates 8%,
0

while antiholomorphic coordinates 7 are those for L. Once integra-
bility is imposed, it is convenient to remain on the same holomorphic

(antiholomorphic) subbundle, going around in the neighbourhood of x.

If the integrability condition is satisfied the almost complex structure I
becomes a complex structure. Using Frobenius theorem, it is possible
fo convert the integrability conditions in terms of closure with respect
fo Lie brackets:

IX=iX && IY=iYVY=IX Y] =iX Y] (3.1.16)
If (3.1.16) is satisfied, the Nijenhuis tensor
Ni{(X, V) =I[IX, Y] + I[X,IY] - [IX,IY] + [X, Y] (3.1.17)

is identically zero. The converse is also true®. So, a complex manifold
can be defined as a manifold with an almost complex structure which
satisfies Ni(X,Y) = 0 for every X, Y.

2..but it is far from being trivial to prove it.
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Example 3.1.18 Symplectic structure and Darboux theorem

As for the complex structure, the presympectic structure can be made
a symplectic structure once

dJ =0, (3.1.19)

for every x € M. Using Darboux theorem (that is, somehow, the inte-
grability statement for symplectic structure, [2?4]), it is possible to write
J as

J = dx' Ady' (3.1.20)

for a certain adapted basis (x!,...,x¥*y' ..., y%?).

3.2 Differential Forms vs. G-structures

At the moment we have several notions about manifold properties de-
pending on the G-structures, i.e. how to relate one tangent bundle to
another, with respect to our spacetime manifold (taken as a base for the
tangent bundle). It would be great to convert these properties into differ-
ential forms properties, since they are really easy to work with.

Let us see what happens case by case, among those studied previously.

Example 3.2.1 Almost complex structure

Before examining how to identify a complex structure, let us start with
some definitions.

We saw that, because of the presence of an almost complex structure
I, it is possible to decompose the tangent bundle into two subbundle
L and L, depending on the eigenvalue they take under the action of
I. The same decomposition can be taken over the cotangent bundle:
if AP(M) is the set of the p—forms, we say that a 1-form w; belongs
to AMO(M) if w(X) = 0 for every X € L. Analogously, one can define
AOY(M).

So, when an almost complex structure is defined, it is possible to de-
compose the cotangent bundle into two subbundle T*M"% and T*M*1,
The same things happens for every p—form, that can be decompose
according to previous decomposition

AP(M) = € APTP(M). (3.2.2)
0<q<p

Using this decomposition, it is possible to construct a (d/2,0)-form
made by the wedge product of d/2 (1,0)—forms “)51,0) constituting a
frame:

Q= N\ wjy (3.2.3)



Note that it is possible to define L (and so, even L) starting from Q:
L={XecTMixQ =0} (3.2.4)

(the equivalent version for L can be obtained by defining Q as wedge
product of d/2 (0,1)—forms constituting a frame). So, at the end of the
day, the existence of an almost complex structure implies the local ex-
istence of Q.

In the previous section we saw that an almost complex structure has
a structure group GL(d/2,C). This means that our Q2 can get a com-
plex factor in passing from a patch to the following and so €2 is not
globally defined. If we want to avoid this problem, we have to reduce
the structure group to SL(d/2, C). Moreover, Q2 has to be decomposable,
meaning that locally can be written as (3.2.3).

Example 3.2.5 Hermitian presymplectic structure and U(d/2)-structure

Hermitian presymplectic structure is already a form J € A*(M). If we
ask ] to satisfy hermiticity condition too, then it should be J ¢ A1 (M).
Since Q2 is a (3,0)—form, the previous condition can be rephrased as

JAQ =0. (3.2.6)

The structure group in this case, as we already saw in Example 3.1.7,
is U().

Example 3.2.7 Hermitian symplectic structure and SU(d/2)-structure

In the example 3.2.1 we saw that, when defining a (d/2,0)—form <,
thanks to the decomposition induced by an almost complex structure,
there is the freedom to change <2 by a complex factor in passing from
patch to patch. If we want to give a global definition of 2 we should
avoid this possible factor. We already saw that it is possible, reducing
the structure group from GL(d/2,C) to SL(d/2,C).

If we ask a non degenerate | to satisfy the hermiticity condition with
a (now globally defined) 2, as in the previous example, this condition
reads

JAQ =0, (3.2.8)
and the structure group is reduced to SU(d/2).

Since €2 has a global definition, a sort of “normalization” can be fixed,
just linking the adapted basis for ] to the one for 2. Using the same

one for both gives

ﬂ=2&AQ. (3.2.9)
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Before continuing it is important to underline the fact that all properties
so far are valid point by point: again, if, for instance, we want to relate the
splitting of our almost complex tangent bundle everywhere in a neigh-
bourhood of x € M, we should add some differential conditions. As we
already saw in the previous sections, these are just the notion of inte-
grability. When relating to differential forms, this statement has an easy
formulation that can be applied and generalized in different situations.

3.2.1 Integrability again

Again, in order to face integrability, i.e. the possibility to upgrade the
almost complex structure to a complex one, Lie derivatives are needed.
When acting on differential forms, Lie derivatives can be written in terms
of contractions and exterior derivatives®:

Lx = {ix,d}. (3.2.10)

One does not need a lot of machinery in order to obtain that

ux,v) = [Lx tv] = [{ix,d}ty]. (3.2.11)
So, how do we use the integrability condition we mentioned in the pre-
vious section? If we look back at the cases examined before, the only
really new argument is expressing integrability of the almost complex
structure trough Q (even in the previous section a symplectic structure
is already defined in term of a globally defined differential form J). Other

cases start from considering an almost complex structure and imposing
integrability on it.

Example 3.2.12 Complex structure and €2.
At the end of the day the integrability condition is just

Q=R =0, VX, Vel = ixyQ=0, (3.2.13)
but using (3.2.11), that is nothing but
IxtydS2 = 0, (3.2.14)
meaning that dQ2 € A*>'(M), condition that can be rewritten as
dQ = W AQ (3.2.15)

for a certain Ws € A'°(M). In section 3.4 we will see why we choose
such an odd name for Ws.

5For the notation of exterior derivatives and contractions, see the appendix A.
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3.3 Spinors vs. G-structures vs. Forms

So, we finally arrived to the heart of the subject of this chapter, how to
relate the existence of a spinor to the G-structure of a manifold. First,
let us notice that, since GL(d, R) in general does not have a spinorial rep-
resentation, we have to reduce the structure group. As we saw in the
previous sections, it is possible to reduce the structure group to SO(d, R)
once we introduce a metric and an orientation. If the structure group
has been reduced to SO(d, R) its double cover Spin(d, R) has a spinorial
representation.

Anyway the story does not end here. How is this spinor related to forms?
We already saw how to do that at the beginning of the section 2.3, that is
using a Clifford map.

So, we saw that we can relate forms to gamma matrices (we used this fact
in order to find a better way to write down supersymmetric equations).
In order to simplify the problem, let us focus on 6 dimensions, the ones
we are going to work with in the following sections. So, let us define two
forms from a pure spinor*® 1, and its complex conjugate n_:

]ij = nz.?/l]n+; Qi1...id/2 = ni?’ii...id/gn+° (3‘3'1)

The definitions (3.3.1) are compatible with (3.2.8) and (3.2.9) written ear-
lier. Since we are in 6 dimensions, that means that the structure group
defined by the existence of a never vanishing spinor is SU(3).

So, we were able to reproduce the scheme at the beginning of the chapter.

3.4 Differential conditions on spinors and tor-
sion classes

Before generalizing the statements of this chapter, let us focus on how
to classify possible supersymmetry solutions due to the differential con-
dition on J and €.

Let us make some comments about the result found so far: when working
with vacua of type II, supersymmetry equations are spinorial differential
equations involving two six dimensional spinorial parameters. When con-
sidering just one of them (that is taking the two spinorial parameters to

“In 6 dimensions, the background we are going to work with in the following sections,
every Weyl spinor is a pure spinor (a pure spinor is a spinor that is annihilated by the
maximal amount of gamma matrices). That is a very lucky feature of six dimensions
that really simplifies calculations so much: [25] found a very intricate way to use the
same formalism of next sections to 10 dimensions and the “intricateness” relies exactly
on the fact that in dimension greater that 6 not all Weyl spinors are pure spinors.

5The pedices indicate the chirality of the spinors.
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be parallel), the geometry of the problem is constrained by the super-
symmetry equations themselves: in fact it is possible to relate a spinor
in six dimension to the form J and 2 and the geometry is defined by
the differential condition on these two forms. But how to interpret the
solutions?

Let us make a step back and introduce the concept of holonomy: in mov-
ing upon a contraible closed curve 7;, the physical field ¢ is transformed
under the action of a subgroup of SO(d, R) (which is the structure group)
and this subgroup is called holonomy group.
In general, a torsionful connection, compatible with metric® can be writ-
ten as

Ve = Viens + T, (3.4.1)

where V¢ is the Levi-Civita connection (which is torsionless) and T is
the cotforsion tensor, somehow encoding how far from being Levi-Civita
a torsionful connection is.

It is possible, in the case of SU(3) structure, to show that there always
exists a metric compatible connection V, in general with non zero co-
torsion tensor, such that

Vrn: =0. (3.4.2)

Because of relation (3.4.1) it is possible to relate every torsionful con-
nection with its own cotorsion tensor, i.e. it is possible to classify every
Riemannian manifold using the cotorsion tensor. It is possible [23], [26],
to convert informations from the cotorsion tensor into five forms W;
(called torsion classes) such that

3 _
dJ =5Im(WiQ) + Wy AT + W; (3.4.3)

dQ =W, + WoAJ + Ws AQ,

where W, is a complex scalar (or 0—form, if you prefer), W, is a com-
plex primitive (1,1)—form, Ws is a real primitive (1,2) + (2,1) form’ and
W, a real 1-form and W5 a complex (1,0)—form. Nice tables on how
the values of different torsion classes can define the geometry of the six
dimensional manifolds can be found in [23], [26].

Here we just limit ourselves to two comments: first, W5 found in section
3.2.1 is exactly the same of (3.4.3). Then, note just that a Calabi Yau
manifold, which is defined as the manifold that allows V cn = 0 for a
certain well defined spinor 7, has all torsion classes equal to zero.

6Metric compatibility means just Vg = 0.
"Primitivity condition for W, is Wy A J? = 0, while for W5 is W5 A J = 0.
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Chapter 4

Generalized Complex Geometry
formulation of supersymmetry
equations on vacua

In the previous chapter we saw that it is possible to relate the geometrical
properties of a certain tangent bundle with differential conditions over
its structure group, with differential conditions over “special” differential
forms and with differential conditions over a never vanishing spinor.

That is not enough to solve (2.3.5): in the most general situation we have
two never vanishing spinors satisfying differential conditions.

Somehow the solution can be seen as duplicating the solution found for
one spinor, but instead of working on the properties of the (co)tangent
bundle, we have to work on the properties of this Generalized Tangent
Bundle,

T ® T (4.0.1)

In fact, while we saw that the structure defined by a single non vanishing
spinor in 6 dimensions is SU(3), we will show that the structure defined
by two non vanishing spinors is SU(3) x SU(3). Complications arise even
in the differential forms side of the statement: what once were | and 2
now are two polyforms &, called pure spinors.

For the first time [17, 18] presented the supersymmetry equations (2.3.5)
in terms of polyforms and what is its interpretation in term of general-
ized complex geometry.

In the following we will present first the generalized tangent bundle ba-
sics, then pure spinors and supersymmetry equations in terms of pure
spinors. In the last section of this chapter we will present how a pure
spinor should be written and what are its main features.
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4.0.1 Before the very beginning:
Clifford algebra for forms in 6d

Let us start with basic concepts of differential geometry. In what follows
M is a manifold of real dimension 6, as the internal space of our theory.

If we choose a coordinates basis x on M, the derivatives axim can be used
to define contractions t’s: t,, =t o acts on differential forms as
X

n(dx™ A -+ Adx™) = pSlitdx® A--- Adainl, (4.0.2)

A generic vector v € T can act by contraction as v. = v™1,,, where a sum
over equal indices is implicit. So, contractions t,, and differential forms
dx™ satisfy the following algebra

{dx™A,dx"A} = {tm,ta} = 0; {dx™A, 1} = 6y, (4.0.3)

(At the end of the day, the (4.0.3) is just a mathematical way of expressing
the duality between tangent and cotangent space and the antisymmetry
of wedge products and contractions.)

That looks quite funny: if we define an element of T @ T* as (v, w) where
ve Tand w e T (4.0.3) is a Clifford algebra respect to the metric

[ O s
g - < Lo > (4.0.4)

(O is the six dimensional null matrix), so there is a sort of natural metric
in term of which a product between elements of T & T* can be defined:
if v,we TM and ¥, ¥ € T*M,

(v+ 1, w+yx)=1w+ xLv (4.0.5)
In this way the structure group reduces from GL(12,R) to O(6,6)".

For completeness, let us give the definition of Lie brackets acting on
forms,
[v, W]LieL= [{d, vL }, wi], (4.0.6)

where d is the exterior derivative.

4.1 Generalized Complex Structure
Let us consider the generalized tangent bundle,

T T (4.1.1)

'Remember from (3.1.3) that in the case of “usual” differential geometry a well defined
metric reduces the structure group from GL(d,R) to O(d).
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We saw that the existence of a never vanishing spinor can be related
to the structure group SU(3), i.e. the structure group for an hermitian
symplectic structure. Let us generalize it to T & T*.

Let us first define a generalized almost complex structure ¥, a map

T TOT > TaT (4.1.2)
such that §2 = —I;, and satisfies
J'99 =9, (4.1.3)

where ¥ is the simplectic metric on T @ T* that we already seen in (4.0.4)
and it plays the role of the metric on T @& T* and the (4.1.3) is the gener-
alized equivalent of the hermiticity condition we saw in usual differential
geometry, (3.1.8). As in differential geometry the existence of a hermi-
tian symplectic manifold reduces the structure group from O(6) to U(3)
in 6 dimensions, here in generalized complex geometry, what happens
is that the structure group is reduced from O(6,6) to U(3, 3) because of
the existence of §. Hermiticity condition permits to write J in a matrix
form:

J = < £ _plt > (4.1.4)

with P, L antisymmetric matrices and I* + PL = I

4.1.1 Integrability again

In the previous chapter we saw that the solution for having a well defined
holomorphic basis was asking something that could sound as

[L,L]c L, (4.1.5)

in the sense that the tangent holomorphic bundle should be closed un-
der Lie brackets, otherwise claimed as “holomorphic coordinates go into
holomorphic coordinates”. How that condition could be reinterpreted in
the generalized geometry scenario?

The problems are two: first, understanding what is the generalized ver-
sion of T"YM and then understanding what is the analogous of Lie brack-
ets. The first one can be easily solved: T!YM is the subset of TM of
holomorphic vector, i.e. those for which

m vt =iv™. (4.1.6)

n

So, the analogous object to T"OM in T & T* is

Ly = {X e T®T9X = iX}. (4.1.7)

2The previous two condition comes directly from asking 92 = —I.
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The second problem seems worse, since the Lie brackets are just defined
on T and brackets satisfying Jacobi identity over T T* in full generality do

not exist. Anyway, Courant brackets, defined as a sort of generalization®
of (4£.0.6),

X, Ylcomant = 5 (X, d) Y]~ [(¥-,d]. X)), (418

for X,Y € T & T* satisfy Jacobi identity once restricted to isotropic sub-
bundles.

Having fixed all these problems, we can defined a generalized complex
structure as a generalized almost complex structure that satisfies the
integrability condition in T ® T*,

[Lgr' Lﬁ]Courant C Lg’ (419)

At the end of this first section on generalized space, let us make two
(hopefully) clarifing examples:

Example 4.1.10 Almost Complex Structure
The main reason we decide fo call I the element in the matrix repre-
sentation of § in (4.1.4) is that, when P = L = Q, i.e.

Jr = < (é) ioit > (4.1.11)

if I satisfies (3.1.6) (so it is an almost complex structure on T) it induces
a natural generalized almost complex structure over T @ T*. If (4.1.7)
is satisfied too, the two almost complex structure, the usual and the
generalized one, are not “almost” any more.

Example 4.1.12 Symplectic structure
IfI=0and P=Jand L = —]~' (] € A*(M)), i.e.

Jy = < _(])_1 (é) > (4.1.13)

it is easy to show that | is a non degenerate two form. Once (4.1.7)
is satisfied, it impies dJ = 0, so | is a symplectic structure and the
manifold is a symplectic one.

So, the two “extreme” cases, diagonal and antidiagonal form of J, corre-
spond respectively to complex structures and symplectic structures. The
generalization of taking all P,L,I # O is considering all possible situa-
tions between these two.

3As it can be easily seen, Courant brackets reduce to Lie’s once X,V are projected
to the tangent space.
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4.2 Compatibility of
Generalized Almost Complex Structure

So far, the structure group has been reduced from O(6,6) to U(3,3). Is
it possible to reduce it further?

Let us suppose that, instead of only one generalized almost complex struc-
ture, we have two of them, ¥, and ¥, such that

[J1, 2] = 0. (4.2.1)

First, note that it is possible to define

= -J1J2 (4.2.2)

which has the properties
G? = Ly; 96 = G'9, (4.2.3)
where we used the definition of (4.0.4) and the defining property of the J.

We saw in the previous chapter that a hermitian symplectic manifold, i.e.
the one which admit a complex structure which is compatible with the
metric, has a structure U(3). In the previous section, instead, we saw that
its generalized complex geometry equivalent is a U(3, 3) structure (since
the space we are working with is bigger).

For the moment, let us forget about the freedom of varying the norm of
the spinor and just consider the U(3) structure (fixing the norm of the
spinor is going to be the subject of the next section). Because, at the
end of the day, our goal is to describe the topological locus defined by
the existence of two never vanishing spinors, we could imagine that we
should consider two “compatible” hermitian symplectic structures, since
in “conventional” differential geometry the existence of a well defined
spinor corresponds to a hermitian symplectic manifold. The condition
(4.2.1) encodes exactly this idea of “compatibility”. In this way, the struc-
ture group reduce from U(3,3) to U(3) x U(3).

There is another reason why the generalized metric G is so important:
the properties (4.2.3) have been shown to imply that it is possible to write

-1 -1
_ -g-B g _ -I O\ 4
§_<g—Bg"1B Bg"1>—€<(0) ]I>£ ) (4.2.4)
where g is symmetric, B is antisymmetric (both B and g are non-degenerate)
and
I I
€_<g+B —g+B>' (4.2.5)
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So, it appears natural to identify g as the metric and B as the Kalb-
Ramond field of the original theory. It can be shown, [27], that

L O _
J10 =€ < (5) 1, > e, (4.2.6)

where [, » are two almost complex structure.

Example 4.2.7 Hermitian symplectic

(4.1.11) and (4.1.13) are compatible if and only if the hermicity condition
on the metric (3.1.9) is satisfied by the g in (4.2.4). In that case, both
I = I, =1 in (4.1.10) and the structure group is U(3), as already seen
in the previous chaptfer.

4.2.1 Last comments before facing pure spinors defini-
tion

So, at the end of the day, we defined the main features of generalized com-
plex tangent bundle we would like to work with: it is a generalization of
the hermitian symplectic space we saw in the “conventional” differential
geometry, in the sense that its metric is compatible with a almost (now)
generalized complex structure.

Integrability condition has been translated into generalized complex ge-
ometry formalism by asking the “holomorphic” section of the general-
ized tangent bundle to close under the action of Courant brackets, i.e.
the generalization of the Lie brackets. We saw, also, that it is possible to
obtain back the case already seen in the previous chapter as special cases.

So, somehow the geometry is under control. How can we glue this in-
formation to forms and to spinors?

4.3 Pure spinors

The message delivered from section 4.0.1 was that in 6 dimensions forms
and contractions satisfy a Clifford algebra respect to the metric (4.0.4).
So, it is natural to identify the spinor bundle to the cotangent bundle of all
degrees, A(M) = Y AP(M) and every spinor can be mapped in a poly-
form. The parity of the degree of the polyforms (odd or even) appears to
be the chirality (somehow it is related in the behaviour under the action
of a wedge product).

Before looking to what properties may have a polyformic spinor, let us
define some quantities that permits to “well” define a polyformic spinor. In

order to have a good definition, a spinor should have a norm, hopefully
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never vanishing. It is possible to define a product between polyforms
using the Mukai pairing, i.e.

(A, B) = (A A A(B)) (4.3.1)

6'

where poly]‘orm| ¢ Indicates the coefficient of vols of the part of 6-form
contained in polyform and A is the operator defined in (2.1.13). Using
the Mukai pairing it is possible to define the norm for a pure spinor &
as

||®]? = i(P, D). (4.3.2)

Let us define Ls the annihilators set of a spinor & as the set of those
elements A € T @ T* such that

A.-® =0. (4.3.3)

Why are we so interested in the annihilators? As always in this chapter,
let us relate the ideas from “conventional” differential complex geome-
try to generalized complex geometry: in dimensions less or equal® to 6,
all spinors are pure, meaning that the number of annihilators is maxi-
mum (in 6 dimensions is equal to 6). The notion can be translated in the
language of forms adding a consistence condition, i.e. the one of never
vanishing norm:

Definition 4.3.4 Pure spinor

(In 6 dimension) a polyform ® such that dim(Ls) = 6 and ||®|| # 0 in
T & T* is called pure spinor. If dim(Le) = 6, the set of the annihilator
Le is said to be maximally isotropic.

As it was done in the previous chapter, this condition can be related to
the geometry of the generalized tangent bundle (as the existence of a
never vanishing spinor defined an SU(3) structure manifold and its ge-
ometrical properties were set in terms of differential conditions for the
forms defining the manifolds).

The fact is that a pure spinor can be used in order to define the eigen-
bundle of the generalized almost complex structure J:

Ls ¢ Lo. (4.3.5)

Note that the mapping cannot be one-to-one, since it is possible to rescale
the norm of the pure spinor without changing its annihilators. So the map
should be intended between the eigenbundle of § and a line bundle of a
pure spinor.

Example 4.3.6 Almost Complex Structure (reprise)
Let us reprise 4.1.10: it easy to see that the eigenbundle of (4.1.11) is
just

L; = T g (T%)01, (4.3.7)

“We are safe!
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confirming our idea that it is just the complex structure eigenbundle
extended fo T & T*.

How should I write a polyformic spinor in order that the annihilators
are elements of (4.3.7)? The answer is quite easy: the Q defined in
(3.2.3) has exactly the properties needed. So,

P, = Q. (4.3.8)

Example 4.3.9 Symplectic structure (reprise)
The eigenbundle of L; is less trivial, i.e.

Ly = {v" + iv"]pyn|Vv = v"0p, € T} (4.3.10)
The pure spinor that has annihilator (4.3.10) can be shown to be
®; =e . (4.3.11)

It has been shown, [27], (and after these two examples it appears much
more believable) that the most general way to write a pure spinor is

d = Q. NeBH, (4.3.12)

where €2, is a k—form and B and j are real two—-forms. We will go back
to this subject in 4.5.

4.53.1 Compatible pure spinors

As we saw that it was possible (and useful, from the supergravity point of
view) to look for compatible generalized almost complex structure, the
natural question is what are the defining properties of compatible pure
spinors. As we already said, in order to reduce the structure group to
SU(3) x SU(3), the norm of the two pure spinor should be under control,
ie.

@4 = ||l (43.43)

Moreover, it has been shown, [25], that [, J2] = O can be reformulated
as
(P, XPy) =0, VXeTa T, (4.3.14)

which implies that ®; and &, must have different parity. Moreover, note
that, since the generalized metric can be written in terms of the original
metric and Kalb-Ramond field, it is also possible to relate a couple of
compatible pure spinors to those geometrical quantities. We will come
back to this issue in the following section, when we will write explicitly
pure spinors for different structure group.

Example 4.3.15 SU(3) structure
If (4.3.8) and (4.3.11) are compatible, the structure reduces to SU(3).

Compared to the case analysed in (4.2.7), the difference is that, by
fixing the norm of the two pure spinors, the value of the volume is
under control and the structure group is reduced from U(3) to SU(3).
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There is just one step missing: we saw that it is possible to define the
geometry of internal space in terms of polyformic spinor that can be
related to “ordinary spinors”, but we do not know how this map should
be performed. We will not prove it (a partial, but clarifying, proof can
be found in [29]) but the demonstration split into two parts: first the
demonstration that CI(6,6) ~ CI(6) x CIl(6) and then that it is possible
write a compatible pair of pure spinors as

o, =e"'nl ® i), (4.3.16)

where B is a some two form and n\. are ordinary CI(6) spinors of fixed
chirality.

4.4 Pure spinors supersymmetry equations

Now that we learned how to write polyformic pure spinors in term of the
original spinors, it is possible to write supersymmetry equations (2.3.5) as

dylm(®Py) =0
iHRe(cbi) = — 2p1e "Re(dy) (4.41)
dH(e Re(q)2)> =0

du(e*Im(dy)) = — 3pRe(®y) + €™ #4 A(f)

in the case of AdS. All characters have been already met in the previous
two chapters, but dg = d — HA and p = VA/3 (where A < 0 is the cos-
mological constant).

The Minkowski version of the previous equations is just the limit g — 0.

Even if the simplicity of the (4.4.1) is amazing, there is one ingredient
that may appear annoying: #* the 6 dimensional Hodge star, calculated
respect to ge, is quite disturbing, since the metric informations are con-
tained in the pure spinors, whose differential equations we are trying
to solve. In order to fix this problem, there is a second version of the
previous equations, [25], that is

du(P1) = — 2e " Red,
F =91 -dyle **Im®d,) + Spe **Red;,

where ¥, is the almost complex structure induced by &;.

(4.4.2)

There is just the only missing point: we saw that two compatible pure
spinors have to have opposite parity, but the equations look symmetric in
the sense that so far we did not decide, between ®; and ®,, which is the
odd and which is the even polyform. It turns out that different choices
take to different theories: if

P, =D,

(h.4.3)
Py =D
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the theory is IIA. If, instead

D) =b_

(be )
Dy, =D,

the theory is IIB.

Before going on, note that (4.4.2) is invariant under the transformation®
H —- H —-déb, F - e S*F, b, - e D, . (4.4.5)

As it turns out, the bg, determined by &, transforms as by, — be, + 6b
under (4.4.5). The physical NS three-form is the combination

Hyngs = H + dba, |, (4.4.6)

which is thus invariant under (4.4.5). The physical RR field is the one
which obeys physical Bianchi identities dp,,  Fongs = 6:

Fohys = €"="F . (4.4.7)

4.5 How to write a pure spinor
and its properties

In the following, since we will focus on type IIA compactification, we are
going to consider how to write pure spinors just in the type IIA case.
This situation can be generalized to IIB just switching ®, < &_.

In (4.3.12) we saw what is the general way to write a pure spinors. Is
there the possibility of restricting more the forms in the game? In order
to do that, let us consider the possible way of writing a pure spinor.

Let us call the type of a pure spinor & = ZkaO ®, the smallest degree k
that appears in the sum; in other words, ® only contains forms of degree
type(®) or higher. It turns out that the type of a pure spinor in dimension
6 can be at most 3. There are then three cases:

®, has type 0, and ®_ has type 3: this is the usual SU(3) structure case
that we saw;

®_ has type 0, and ®_ has type 1: this is the most generic case (so SU(3) x
SU(3) ), and it is sometimes just called “intermediate SU(2) struc-
ture”;

&, has type 2, and ¢, has type 1: this is called “static SU(2) structure”
case.

In this thesis, we will only need the first two cases.

5This property is the main reason we are using the system (4.4.2) rather than the
original form of these equations, involving the Hodge star. Those equations can be
made invariant under (4.4.5) only after defining a rather awkward #, = e xe® operator.
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4.5.1 Pure spinor and SU(3)

Let us slightly modify the definitions (4.3.8) and (4.3.11), in order to have
a deeper control on the pure spinors®:

&, = pelle ™, d_=pQ, (4.5.1)

with p and 6 real functions and J and €2 are the ones already met, i.e.
they satisfies
3 _
JAQ =0, ]3=Zi§2/\§2#0. (4.5.2)

We will now describe how to map the metric, the dilaton and the Kalb-
Ramond field for this case. The b, obtained by it is zero:

bs, = 0. (4.5.3)

The metric defined by ®. is just g = JI, as we already saw. Finally, the
dilaton is given by

3A
0= (4.5.4)
p
We also give the form of ¥, -, which enters (4.4.2):
g, =JA=] . (4.5.5)

4£.5.2 Pure spinors and SU(3) x SU(3)structure

In this case, one can parameterize the most general solution to (4.4.2) as

[30, 31, 52]

&, =pe'’exp[—ily], (4.5.6a)
d_ =pv Aexpliwy] , (4.5.6b)
where
1 . i _ 1 i
Jy = cos(lb)] + 2tan2(1,b)v AV, Wy = Sin() <Rea) + —cos(lp) Ima)> ,
(45.7)

for some (varying) angle 1, real function p, one-form v and two-forms
w, j satisfying

jAw=0, w?> =0, wAw =22 (4.5.8)

(4.5.8) can be seen as the 2-dimensional version of (4.5.2), which means
that w,j define an SU(2) structure.” These can also be rewritten more
symmetrically as

jARew = Rew Almw = ImwAj=0, (4.5.9a)
i = (Rew)” = (Imw)? ; (4.5.9b)

60f course, our modifications do not change the physical contents of the theory.

"Actually, from the fact that the norm of pure spinors never vanishes, one would
get (45.8) wedged with v A ¥, but one can show [52, Sec. 3.2] that these can be dropped
without any loss of generality.
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these equations are reminiscent of the defining relations of the quater-
nions i, j, k, which is ultimately because SU(2)=Sp(1). Finally, the non van-
ishing of the norm of the pure spinors implies that the top-form v A ¥ A j?
should be non-zero everywhere.

We will now detail the map to the metric and other usual geometric
quantities for this case. This can be inferred by comparing (4.5.6) to its
derivation in [30, 51, 52] from spinor bilinears. For example, [32, Eq. (3.19)]
can be connected to (4.5.6) by a b-transform; from this, we see that the
bs, defined by the pure spinors is non-zero:

by, = tan(Y)Imw . (4.5.10)

The metric can be found by relating the forms j, w and v in (4.5.6) to the
spinor bilinears of an SU(3) structure. In [32] one finds | = j+ fzAZ, Q =

w A z, where z = mv. This tells us that the metric is the direct sum of
a two-by-two block zz = mvfz, and of a four-by-four block determined

by the SU(2) structure j, w. In other words, we have two orthogonal
distributions (namely, subbundles of T): D, and D,. The explicit form
of the four-by-four block in the metric is g, = jI,, where I, is an almost
complex structure along D,. This means that I, squares to -1 along D;:

I; = -1, , (4.5.11)

where (I1,)™, = 6™, —Rev™Rev, —Imv™Imy, is the projector on D,. We
should now compute I,. This can be done by writing I, = (Rew) 'Imw
(which can be derived in holomorphic indices). Since w only spans four
directions, Rew has rank 4; so writing (Rew)™! is an abuse of notation. It
should be understood as an inverse along the distribution D,. In practice,
it can be computed as a matrix of minors:

m n -
[(Rew)~ ] — —p/X /Zgjw)z/\/\Rj“/’\g VAT (45.12)
Putting all together, we have
ds? = jI, + tanQ(lb)V‘_] , L = (Rew) 'Imw . (4.5.13)
Finally, the dilaton ¢ is determined by
oA
e? = s cos(1)). (4.5.14)

We also give the form of the operator J . - that appears in (4.4.2) is similar
to the one in (4.5.5):

oo =T A=Ty'c. (4.5.15)
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Chapter 5

Localized O6 in massive IIA

5.1 Introduction

In the previous section we organized all tools needed to find solutions to
supersymmetric vacua models. Converting the whole spinorial informa-
tion to differential form, it is possible to analyse supersymmetry equations
as differential conditions over the differential forms defined over

T & T (5.1.1)

A part from simplifying calculations, the generalized geometry formalism
for the analysis of supersymmetry equations provide a natural geometri-
cal frame for the interpretation of the solution found.

We can apply this method to the main subject of this thesis, i.e the mas-
sive deformation of the metric in the nearby of the O6 plane. In order to
understand how these deformations should appear in supergravity, let us
analyse first the massless case, i.e. when F; = 0, and then the smeared
massive solution proposed by [3]. These two have SU(3)—structure.

In the following sections we will show the explicit form of supersym-
metry equation in generalized geometry formalism for the most general
SU(3) x SU(3) case and we proposed a deformation due to the presence
of a non zero Romans mass. In the end of this chapter we will show
the numerical result to the first order in the perturbation due to Romans
mass and to full order.

In order to spoil the suspense, let us introduce the final results: the
presence of the Romans mass prevents the O6 to experience singularities.
The metric in the transverse space is locally R x S? and the S? has finite
dimension even in the origin, i.e. where the O6 lies; the dimension of
the transverse S? in the origin depends on the value of the F,. This can
be interpreted as the presence of an O6 “bubble”, instead of O6 plane,
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in the massive case. Moreover, the absence of singularities permits to
analytically continue the theory for negative radii.

5.2 0O6 solution

In this brief section, we will review how the O6 solution in flat space,
whose metric was given in (1.0.2), solves the system (4.4.2) in the Minkowski
case.

The internal space Ms is in this case nothing but R®, with coordinates x!
and y' (to be thought of respectively as parallel and orthogonal to the
06). The O6 solution is of SU(3)-structure type (4.5.1). For cosmological
constant A = 0, and hence g = v —-A/3 = 0, the equations in (4.4.2) read

p=e**%—=const, dJ=0=H; de?ReQ) =0 (5.2.1)
F, = -] 'Ld(e?ImQ) , dF, =6 . (5.2.2)

Notice that, in this case, 0 is constant, but otherwise undetermined.

In general, in (5.2.1) § is a delta-like current supported on the sources
present. For the O6 solution, it reads

8 = 605 = —4nl6(y")S8(y*)5(y°)dy' Ady® Ady® ; (5.2.3)

an SU(3) structure that solves (5.2.1) can then be given as

J =dx' Ady',
Q = -(Z—1/4dx1 + izi/4dy1) A (Z—1/4dx2 + izi/ltdyQ) A (Z—i/ltdx3 + izi/éd’yS)
(5.2.4)
with Z the Green function for the flat Laplacian in R®:
Z=1—$, r=vVyy, ro=gdls, (5.2.5)

as we already saw in (1.0.2).! We also have

~e

l S 1
F, = —— e,y dy/ Ady®, A z-14 ¢ = g, Z 3" _
2 2P3€]ky yAay € e g p 7

(5.2.6)
g, is a constant that we can think of as the value of e? at infinity.

The SU(3) structure in (5.2.4) is one possible solution to (5.2.1), and by
itself it only describes four supercharges; there are other solutions, re-
lated to the one in (5.2.4) by flipping some signs, which describe the other
supercharges. In this paper, we will focus on (5.2.4): for this reason, our

'If we had had N D6-branes instead of an O6-plane, the function Z would have read
1+ %, with rg = Nl;gs/2.

42



massive solutions will have N* = 1 supersymmetry.

Finally, notice that, since the solution stops making sense before we can
get to r — 0, the equation dF, = 6 has to be understood as a Gauss’ law:
namely,

js Fp = by, (5.2.7)

for any S? that surrounds the origin, where the O6-plane is located.

5.3 Smeared O6 with Romans mass

Our aim is to find a O6 solution in the presence of Romans mass. As
recalled in the introduction 1, a solution of this type can be found easily
if one “smears” the O6 source; this was done in [3] in the language of
effective field theory, and lifted to ten dimensions in [9].

We take a spacetime of the form (1.0.3): the four-dimensional part has
non-zero cosmological constant. This means that p + 0, and thus we
have to use the AdS version of the supersymmetry conditions (4.4.2). If
we also take

0=0, (5.3.1)

we get?

dj =0, dQ2 = —igsFo N, H = 2pReQ2 p = const , A=0;

g.Fo=5u, dF,~HE, =6, gF=-p?, Fo=0.
(53.2)

From (4.5.4), it also follows that the dilaton is constant; g; = e®.

So far, the source 6 was unspecified. To find the solution in [5], take
F, = 0. Then we see that the Bianchi identity for F, implies

6 = —2nFyReQ . (5.3.3)

This is the “smearing” proposed in [9].

To get a sense of the physics of this compactification, let us moreover
assume as in [3] that Fj is of order one, that the periods of F, are of order
N, and that the internal space has volume ~ R°. We know already that
6 x ReQ2; it makes sense to fix the proportionality constant as

1
6 ~ —ﬁReQ , (5.3.4)
2The first two equations in (4.4.2), which are the ones that are equivalent to the
conditions of unbroken supersymmetry, do not by themselves imply that A = 0. For the
Romans mass they would give g,Fy = 5ue*?; if one now also adds the Bianchi condition
dFy = 0, one gets that A is constant. In (5.3.2) we set it to zero, because a non-zero value
can always be reabsorbed in the definition of p.
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so that integrating 6 along a 3-cycle gives an order one number. The
Bianchi identity then says Fop ~ R~%; moreover, from (5.3.2) we see that
Fy ~ pn/gs and F, ~ FyR*. We thus find that the parameters scale as

R ~ N'Y4, gs ~ L ~R73 ~ N9, (5.3.5)

We have seen that it is easy to find a supersymmetric solution including
O6 planes and Romans mass, if one is willing to smear the O6 source 6
as in (5.3.4). As stressed in the introduction 1, smearing an O6 is not re-
ally meaningful in string theory, but solutions obtained with this trick are
often precursors to “localized” solutions, namely ones where the source
is delta-like as it should be (as in (5.2.4)). So we can take the solution re-
viewed in this section as an inspiration for the solution we are looking for.

The most natural course of action might seem to solve the equations
(5.3.2) without assuming F, = 0, and with an unsmeared source, unlike in
(5.3.4). However, we immediately face a problem: (5.3.2) imposes A = 0.
This does not seem possible for a solution with a source: in particular,
the solution with F; = 0 has a non-constant A, as we can check from
(5.2.6).

So unfortunately we cannot use SU(3) structure solutions. We are left
with the second and third cases in section 4.5. If we think of adding a
small amount of Fj to the massless solution, which is SU(3), it seems more
natural to select second case, which is generic and can be continuously
connected to the SU(3) structure case, rather than third one, which is
isolated. This is the reason we did not study the third case in section
45. In section 4.5.2 we reviewed the solution (4.5.6) of the algebraic
constraints (4.3.13, 4.3.14) for SU(3) x SU(3) structure; we will now analyze
the corresponding differential equations.

5.4 SU(3) x SU(3) structure compactifications

As we just saw, a localized O6 with Romans mass cannot be an SU(3)
structure solution; this motivates us to look for an SU(3) x SU(3) struc-
ture solution. For that class, the algebraic constraints have been reviewed
in section 4.5.2; we will now use those results (in particular (4.5.6)) in the
system (4.4.2). This section contains both a review of old results, and
some new ones — most importantly, the expressions for the fluxes.

For reasons explained in the introduction 1, we will first look at the AdS
case, which we divide in two sections, 5.4.1 and 5.4.2. We will then also
analyze the Minkowski case, in section 5.4.3.
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5.4.1 AdS: generic case

Geometry

We will start by the first equation in (4.4.2), dy®, = —2ue *Red_. Using
(4.5.6), the one-form part says that

d(p sin(0)) =0, (5.4.1)
oA
Rev = mde (5.4.2)
In deriving (5.4.2), we have solved (5.4.1) by taking
Po
= ) .
P = sin(6) (5.4:3)

where pg is a constant. This means that we have assumed
6+0 (5.4.4)

everywhere. In this subsection, we will continue our analysis in this
assumption. The case 0 = 0 is quite different, and will be described in
section 5.4.2.

Coming back to dy®, = —2ue *Red_, its three-form part now gives
H = —d(cot(0)]y) , (5.4.5)
1 _
d <sin—(9)]¢> = 2ue ™ Im(v A wy) - (5.4.6)

Finally, the five-form part can be shown to follow from the one- and
three-form parts, (5.4.2) and (5.4.6).
Flux

We will now look at the second equation in (4.4.2). We have seen that
H is determined by (5.4.5). We can then use (4.4.5) with the choice
b = —cot(0)]y, so that we end up with H = 0 in (4.4.2).

However, there is a price to pay. Once we transform &, — e °*"d,, we
also have to transform the associated operator J, -:

G, —» e NG, e, (5.4.7)

For the choice 6b = —cot(0)];, remembering (4.5.15), we get that the new
g, operator is

Joo = O]t 1 Tyn)em OO (5.4.8)

This can be computed in two ways. The first is to compute the associated
action on T ® T*, where e is represented by ( % ?). The second is to
just use the formula e *Be® = B + [B,A] + §[B,[B,A]] + ..., and

Uil JuAl =h,  hwp=(3-kw, (5.4.9)
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as an example of the usual Lefschetz representation of SI(2, R) on forms
(see for example [53, Ch. 0.7]). Either way, we get
1

76 Jo A (5.4.10)

Jiv = —]1;1L+ cot(f)h +

We can now compute the fluxes from the second equation in (4.4.2):

Fo = —]JiLd(pe‘z’AImV) + 5ppe A cos(h) ; (5.4.11a)
F, = Fycot(6)], — J;'Ld Relpe v A wy) (5.4.11b)
+ ppe ™ [(5 + 2tan*(¥)) sin(6)], + 2sin(0)Rev A Imy — 2 cos(0) tan®(¥)Imwy)] ;
2
F, = Foj—ll’2 +d [p e 3MJy Almy — cot(0)Re(v A wy))| ; (5.4.11c)
2 sin”(6)
1 cos(0) ppe*l‘A)
Fe = — volg | F 3 . 5.4.11d
0 cos2(y) 0 < Osin3(9) sin(0) ( )

Recall that p is related to the dilaton by (4.5.14). The expression for F,
already appeared in [4]. The expressions for F, and F, are new; their
expressions appear much simpler than in earlier computations, thanks
in part to the 6b transformation we performed earlier.

Notice that the Bianchi identities for (5.4.11) are now dF} = 0, away from
sources. The one for F, just says F, is constant, as usual. If we now
consider dF;, we see that the term not multiplying Fj is exact, so it drops
out. On the other hand, the form ]?b/ sin?(0) that multiplies F, is easily
seen to be closed as a consequence of (5.4.6). So we conclude

In other words, the Bianchi identity for F, is redundant. This fact will be
very important for the rest of this paper.

We should stress once again that the F}, given in (5.4.11) are the ones
which are closed under d — and which are locally given by F, = dCy_;.
The physical NSNS three-form is given by combining (4.4.6), (£.5.10) and
(5.4.5):

Hphys = dBpnygs = d(—cot(0)]y + tan(y)Imw) ; (5.4.13)

the RR fluxes which are closed under (d — Hpnys/\) are then given by

F = eBow\F | (5.4.14)

5.4.2 AdS: special case

We will again start by the first equation in (4.4.2), dy®, = —2ne *Red_.
Our generic analysis in section 5.4.1 relied on the assumption that 6 # 0;
in this section we will consider the case

0=0. (5.4.15)
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This obviously solves (5.4.1). The remaining one-form equation now says

A
Rey = - & 9P (5.4.16)
2pp

which replaces (5.4.2).

The three-form part of dy®, = —2ne*Re®d_ now gives
d(pJy) =0, H = 2ue™Reliv A wy) - (5.4.17)

Finally, the five-form part can be shown to follow from the one- and
three-form parts, (5.4.16) and (5.4.17).

We now turn to the RR fluxes. Unlike in section 5.4.1, this time there
is no natural b-transform to perform, because H given in (5.4.17) is not
necessarily exact. So we will give the expressions of the fluxes which are
closed under dy, rather than under d:

Fo = —]JiLd(pe‘SAImV) + 5ppe ™4 ; (5.4.18a)
Fy, = '—]l;il_d Im(ipe v A wy) — 2upe A tanQ(w)Imww ; (5.4.18Db)
F, =]y [%Fo — ppe 2| + J, AdIm(pe**v) ; (5.4.18c¢)
Fs=0. (5.4.18d)

Unlike in section 5.4.1, this time the flux equations for F, are not obvi-
ously following from the ones for Fj, or from any other combination of
equations.

5.4.3 Minkowski

The first equation in the Minkowski version (4.4.2), dy®, = 0, simply
gives

p = const , 0 = const , dJ, =0, H=0. (5.4.19)
The second equation in the Minkowski (4.4.2), dgRe®_ = 0,
d(e™*Rev) =0, dRe(ie™ v Awy) =0 . (5.4.20)

(The five-form part of dyRe®_ = 0 can be shown to be redundant.)
The RR fluxes can now easily be computed from the third equation in

Fo = —J;'cd(pe > Imv) ; (5.4.21)

F, = —J;'cdIm(ipe v A wy) ; (5.4.22)
1

F, = éFO Ji + dImpe*v A Ty) ; (5.4.23)

Fs=0. (5.4.24)

Once again, the Bianchi identity for F, follows from the one for Fj, as in
(5.4.11c), (5.4.12).
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5.5 A general massive deformation

Using the results of section 5.4, we will now point out the existence of
a first-order AdS deformation of any SU(3) Minkowski solution in IIA.
As we saw in the introduction, this includes any solution obtained as
back-reaction of O6-D6 systems in [IA — although in section 5.6 we will
specialize it to the case of a single O6 in R°. The expansion parameter is
pn =+ —A/3. This deformation should not be taken as a modulus: as we
will see below, the fluxes we will introduce contain p1, and flux quantization
will in general discretize it. Rather, our expansion is to be understood as
a formal device to establish the existence of a solution at finite p.

We will start by determining how 6 should be deformed. As we re-
marked after (5.2.2), this parameter is an undetermined constant for the
O6 solution we want to deform. However, we would like our solution to
have something to do with the DGKT solution we reviewed in section 5.3.
More specifically, we would expect our solution to approach the DGKT
solution far from the source. Remembering (5.3.1), we will take 0 to be
small. Since our deformation parameter is i, we might then take 6 to be
of order p.

This decision seems to run into trouble, however, as soon as we consider
(5.4.2). If 0 is of order u, v seems to diverge as p — 0, whereas we need
it to go to zero.

To cure this potential disaster, we need at least two more factors of u in
the numerator of (5.4.2). One can try to postulate that these extra factors
are somehow supplemented by the derivative. This leads us to

O~p+pmT+.... (5.5.1)

As in [4], we also suppose that everything is either odd or even in p1, so that
whatever function or form is already non-zero before the deformation
will be unchanged at first order. This means, in particular, that we do
not change the dilaton, internal metric and warping given in section 5.2.
This gives

Rev = geAdT +Op?) . (5.5.2)

Also, since now v is introduced at first order, we can mimic the procedure
in [4, Sec. 4.1] and use it to deform an SU(3) structure into an SU(3) x SU(3)
structure. The conclusions reached in that reference can be summarized
as follows. The function ¥ and the one-form v start at first order:

Y=pP+ 0@, v=pv+0OQ@?; (5.5.3)

the pure spinors have the form
d, =1 +i0e V7 +0p?, (5.5.4)
P = <%V/\ a)> + VA <1 + %j2> +O(?) . (5.5.5)
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Comparing the order u° part of ®_ with (4.5.1), we get

Q= vAw, (55.6)
Yy
which means, in particular, that v, is a (1,0) form with respect to the
almost complex structure defined by the three-form Q of the SU(3) struc-
ture solution. This can be used to derive the imaginary part of v;:

1 1
Imvy; = QGAI-dT , v = QeAa’r +On?) (5.5.7)
where [ - is the action of the almost complex structure determined by €2,
and 0 is the corresponding Dolbeault operator. Finally, notice that (5.5.6)
can be inverted by writing

i
w=—-—"u.0Q. (5.5.8)
2Yy
So far we have only looked at equation (5.4.2) and to the algebraic con-
straints on the pure spinors ®.. We now turn to the other differential
equations, starting with the ones that constrain the geometry.

The first equation we consider is (5.4.1), that at first order simply reads
dp = 0. In view of (4.5.14), this is consistent with our postulate that A and
¢ should not be deformed at first order. Comparing with (5.4.3), we see
that p, is an odd function of p:

Po = —p+ O . (5.59)

S

We have called the first coefficient in the expansion 1/g,, so as to con-
form with the value of p in the particular solution (5.2.6).

Equation (5.4.6) is more problematic, because of the sin(6) in the denomi-
nator that makes the perturbation series start at order p~! in the left-hand
side. Enforcing again our policy that all our power series in p be either
even or odd function of u, we can expand J; up to second order:

Jo =T + i) + Olp”) . (5.5.10)
Equation (5.4.6) is then, at order p~!,
df =0. (5.5.11)

This is one of the equations in the system we are deforming, as we can
see from (5.2.1). At order p, (5.4.6) then gives

hm+<é—r>l

As we will see, this equation is the only one we will encounter in which
Jio) appears at all, so at this order Ji has nothing else to satisfy. The

d = 2¢"ReQ . (5.5.12)
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right hand side is automatically closed, because of (5.2.2); but saying that
it should be exact is a possible obstruction to deforming a given SU(3)
structure Minkowski solution.

We will now look at the fluxes. Our formula for H, (5.4.5), has a sin(6) in
the denominator, just like (5.4.6). That would again force us to start our
perturbation theory with negative powers of p. In this case, however, we
can actually use (5.4.6) to rewrite H so that it starts at first order:

Hphys = ph + O(p?) h = 2ReQ + d (¥4 Imw) . (5.5.13)

Notice that the first term in h is the same as the one for H in the SU(3)
structure solution given in (5.3.2), and the second term vanishes wher-
ever 1 tends to a constant.

As for the RR fluxes, only Fy and F, will be generated at first order; F,
will keep the same expression it had at zeroth order, (5.2.2). F, is given
by

Fy = pfo + O®) gsfo = —J tLd(e ®Imvy) + 5e 279 . (5.5.14)

We have expanded (5.4.11a) at first order in p, and used (4.5.14). As
remarked after (5.4.12), that the Bianchi identity for F, follows from the
one for Fy. So the only Bianchi identity we have to impose at first order
is that

dfo=0. (5.5.15)

For completeness, however, we also give here the expression for F;.
Actually, the Laurent series for F, in (5.4.11¢) starts with a term ~ FoJ?/p?,
which diverges like p~!. So F, only becomes finite once one considers a
finite p. This is not terribly worrying: as we anticipated at the beginning
of this section, the expansion in pu is simply a formal device to establish
the existence of a solution at finite 1. In any case, the p~! terms disappear
if we go back to the F,, which are closed under (d — Hpngs/\). We get

F, =pfi + O(®),
gsfs = <%gsfo — e*4A> J?2 + ] Ad(e 3 Imvy) — Y Imw A J7tid(e A ImQ) .
(55.16)

Let us now summarize this section. We found a first-order perturbation
of an SU(3) Minkowski solution which turns it into an AdS solution of
SU(3) x SU(3) type. The perturbation parameter is g = v —A/3. The only

input is the function T in (5.5.1), which has to satisfy (5.5.15). One also
has to solve (5.5.12), but this simply requires to invert d.

We are now going to apply this first-order deformation to O6 solutions.
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5.6 Massive O6 solution

In section 5.5, we have found a procedure to deform any SU(3)-structure

Minkowski solution at first order in g =/ —%. In this section, we will try
to promote this deformation to a fully-fledged supergravity solution.

Although the first-order deformation procedure can potentially be ap-
plied to any O6-D6 system, we will focus on the region around a single
O6. This means that we will take the internal manifold to be R, with a
single localized source as in (5.2.3). By doing this, we gain more symme-
tries than would be available for a general O6-D6 system; that will help
us solve the system.

However, as we anticipated in the introduction, this should not be under-
stood too literally as a massive O6 “in flat space”. Unlike for (1.0.2), in the
massive case the metric will not approach flat space far away from the
source, simply because flat space is not a solution in the massive case.
There are two new length scales associated with the massive problem,
,% and ﬁ, and the deviations from flat space asymptotics will become
apparent at distances of the order of the smallest of these two length
scales. The solution of this section should be thought of as a “close-up”
around an O6 source in an AdS; x Mg geometry where Mg is compact

— so the large r-behaviour will not too important.

After some preliminaries in section 5.6.1, in section 5.6.2 we will special-
ize the general procedure of section 5.5 to a single O6. In section 5.6.3
we will then promote it to a finite deformation; this will culminate in the
numerical study of section 5.6.3, where we will find numerical solutions
and describe their physical features, some of which were described in
the introduction. We will also study the system at higher order in pertur-
bation theory, in section 5.6.4. In section 5.6.5 we will show that choosing
0 = 0 in the pure spinors (4.5.6) does not lead to a solution. Finally, in
section 5.6.6 we will look briefly at the system for the Minkowski case;
we also found numerical solutions in this case, but they do not seem to
satisfy flux quantization. Moreover, we do not know of any Minkowski
compactification that uses this ingredient. We will not describe these
solutions in as much detail as the AdS ones.

5.6.1 Symmetries

As in section 5.2, we will denote by x! the coordinates parallel to the O6,
and by y' the coordinates transverse to it.

The massless O6 solution is symmetric under rotations of the three yi,
rotations of the three xi, and translations in the x':

ISO(3) x SO(3) . (5.6.1)
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It is already clear that the massive solution will not be symmetric under
the whole group (5.6.1). As we have argued in section 5.3, we need to
consider an SU(3) x SU(3) solution. One of the data in its definition is a
complex one-form v; as we saw in section 4.5.2, the algebraic constraints
in (4.3.13, 4.3.14) demand in particular that v A ¥ A j2 # 0 everywhere. So
the real and imaginary part of v are two linearly independent one-forms.
However, the only linearly indepedent one-form which does not break
any of the symmetries in (5.6.1) is

1 . .
dr = ;y’dy’ . (5.6.2)
Thus, in the massive solution the symmetry group (5.6.1) will be broken.
In section 5.6.2, we will see that a natural subgroup emerges when one
applies the general first-order procedure of section 5.5 to the O6 solution
of section 5.2.

5.6.2 First order deformation

We will still demand that translation along the three internal coordinates
x! parallel to the O6 should remain a symmetry. This will not be valid for
a solution where there are several O6 sources, such as the one reviewed
in section 5.3. However, this invariance will be restored when we get
closer to an individual O6, which is the focus of the present paper.

Since everything can only depend on the transverse coordinates y', from
now on we will use the notation

& = 0y (5.63)
Using (5.5.2) and (5.5.7), we then have

v = —%pz—maﬂ(z—“‘*dxi +iZVdy) (5.6.4)

Since T depends on r only, we have 0; = %ar, and Imv is proportional to
y'dx', (5.6.5)

which breaks the symmetries (5.6.1) of the massless O6 solution, as an-
ticipated in section 5.6.1. Indeed, the one-form (5.6.5) is neither invariant
under either the SO(3) that rotates the transverse y‘, nor under the SO(3)
that rotates the parallel x'. It is still invariant, however, under the diag-
onal SO(3) that rotates both the x' and the y' simultaneously. Also, it
is still invariant under translations along the x!, as we stipulated at the
beginning of this section. So (5.6.4) breaks (5.6.1) to

1SO(3) . (5.6.6)

It is not hard to list all the possible forms invariant under (5.6.6); we have
done so in appendix C. We will see that the rest of the solution respects
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this smaller symmetry group.

Let us now go back to applying the first order procedure of section 5.5
to the O6 solution.” The next step is to impose (5.5.15), namely that F,,
calculated at first order, is constant:

1
df, =0, gsfo = —EAT +5Z = const. , (5.6.7)

where A = 8,0;, and g; is the value of e? at infinity in the unperturbed
solution (5.2.6). Explicitly, using (5.2.5), we get

1
T = 3 (5 — gsfo) r® — Bror , (5.6.8)
setting to zero an inconsequential integration constant.

The other equation to be solved is (5.5.12). This can be inverted to give

1 r a 1
Jioy = =2 <§ - i + %) Wy + 2w — S was t <T 5" oc> wys (5.6.9)

where a prime denotes 0,. We have used the two-forms defined in (C.0.2);
those forms are invariant under (5.6.6), as promised. The constant p and
the function a = a(r) are as yet undetermined.

At this point, we have already demonstrated the existence of a solution
at first order. For completeness, however, let us also give the physical
fluxes explicitly. First of all, we can determine 1y from imposing that
J» — J. Looking at the expression of J, in (4.5.7), this can be done by

checking that J~1_ <2+b2v1 A x71> = 1; we get
1

’

T
= —. 5.6.10
Ui Wi ( )
Now we can compute the first-order fluxes f, and h from (5.5.13), (5.5.16):
. 1 5 r 1
gsfs = 3 <—§I’o + Z_1> ws1 + <ﬁ - 3(4 + gsf0)> Ws4 ; (5.6.11)
T +2r 2 T 1
h=d [<—TO + g> Wy + <2I’Z -—2> W + Ew%} .

As already stressed, the flux F, will not get deformed at first order in p.

5As remarked in section 5.2, we will deform one particular SU(3) structure which
solves (5.2.1); for this reason, our massive solution will have only four supercharges,
or N' =1 in four dimensions, just like the solutions in [8, 9]. Incidentally, it is easy to
show that any supersymmetric SU(3) structure solution with Romans mass has only
four supercharges.
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Let us now pause to consider the properties of the first-order solution we
have just obtained. First of all, we note that we have a certain freedom:
we have left undetermined a function a(r) in (5.6.9), which does not enter
in the fluxes, and a constant f, defined in (5.5.14) as the ratio between
the deformation of F; and u. Let us see what happens if we set

5
fO =
Js
inspired by (5.3.2), which is valid for SU(3) structures. We see that we

cancel the r? term in (5.6.8), which now goes linearly. One can then
check that

(5.6.12)

r-o0 = f;- 2]2 , h — 2ReQ2; (5.6.13)

in other words, far from the O6 source the solution approaches the SU(3)
solution in (5.3.2).

The perturbative procedure, however, can only work in an appropriate
regime. We have already determined ]y in (5.6.9). Since 1 actually grows
with r, Jy) seems to grow large at large r, thus invalidating the first-order
procedure. If fy = 5/gs, for example, we see from (5.6.8) that T grows
linearly; if a = O, since J;, = ] + ;12](2) + ..., and recalling that ro = g.ls, we
have that the perturbation procedure is valid only if

r < (5.6.14)

gslsp?
We are not necessarily interested, however, in what happens outside this
region, because eventually we want to compactify the six “internal” direc-
tions, and in particular the three directions y'. In the smeared solution
we reviewed in section 5.3, we see from (5.3.5) that the compactification
radius in string units goes like R ~ p~'3, whereas 1/(g;u?) ~ p~°. In
other words, the perturbative procedure breaks down for distances of
order n~%, which are much larger than the compactification radius p~*/%.

In any case, we are now going to set up the study of the system of dif-
ferential equations at all orders, guided by the results of this section. We
will come back to perturbation theory in p in section 5.6.4.

5.6.3 Full solution

We now want to check whether the solution we just found at first order
in p survives beyond first order. We are not going to use perturbation
theory in this section; we will go back to using it in section 5.6.4.

Variables

At first order, the whole solution was determined by a single piece of
data, the function T in (5.5.1), which then has to solve (5.5.15).
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Beyond first order, however, the input data are many more: the functions
Y, 0 and the forms v, j, w, in (£.5.6), as well as the warping function A in
(2.1.10). At first order, the continuous symmetry (5.6.6) emerged, and we
are going to assume that it is not broken in the full solution. This means
that we should expand v in terms of the one-forms (C.0.1), and j, w in
terms of the two-forms (C.0.2).

There is also a discrete symmetry that we can use to our advantage.
The solution we are looking for contains an O6, which is defined by
quotienting the theory by the symmetry Q(—)" LI, where €2 is the world-
sheet parity, F}, is the fermionic number for left-movers, and

xl — xt
I, : { ot (5.6.15)

is the inversion in the three y' directions. The pure spinors ¢. should
then transform as [54]

Lée =Ag.), Lo =Ald.), (5.6.16)
where A is the sign operator defined in (2.1.13). This implies

I'v=v, Lj=-j, 'w=-0. (5.6.17)

y y

All the invariant forms in appendix C transform by simply picking up a
sign, as detailed in table C.1. Using that table, (5.6.17) implies

A 4
Vv = er1,o+iviw1,1 , j= E jia)2,i , 0.)=a()(1)2,o+i E a; Wi ;
i=1

i=1
(5.6.18)
the coefficients v,, v;, j;, a; are now all real.

Algebraic equations

With this parameterization in hand, we can now proceed to imposing the
algebraic equations (4.5.8). These give:

jo=jsr?,  as=asr’,  aji + ayjp = 2asjsr?, (5.6.19)

air® —ajay = ai = j5r* —jijs . (5.6.19b)

Specifically, (5.6.19a) comes from (4.5.9a), whereas (5.6.19b) comes from
(4.5.9b). Moreover, the requirement in (4.3.13) that (®_, ®_) + 0 demands*
ap# 0. (5.6.20)

Given a solution to the algebraic constraints (5.6.19), one can also compute
the internal, six-dimensional metric associated to the pure spinors. This

“In fact, the first two equations in (5.6.19a) are linear precisely because we divided
by a common factor ag, since it cannot vanish.
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is not really needed in finding a solution, except for one important check:
that its signature should be Euclidean. Applying (4.5.13), we find

ds® = (167 + apy'y)dx'dx) + (a8 + a3’y )dy'dy’ + asepy'dx/dy*

(5.6.21)
where the a; = a;(r) are given by
= —Aoj3 + a3j2p2 a = Aoj3 — Aszjo N v?
Qo ' Qo tan®(¢) ' o — Qoji — 1o
, , , , ) - -
aijjs —a —ajs + a v a
5 = 1)3 3]1r2 ' o = 1J3 31 n ; 0
ao ao tan®(v)
(5.6.22)

The metric (5.6.21) is symmetric under ISO(3), as we argued above (5.6.6).
If we go to polar coordinates for the y!, by defining r = \/y'y' as in (5.2.5),
and

y , (5.6.23)

Ly
r
we can write (5.6.21) as

9 9
3 T r’a
ds? = (187 + r’ay9'9/)Dx'Dx’ + (a5 + riay)dr? + r? <a3 - 5> dsZ, ,

4@1

9
Dx! = dx! — ﬂ61""Q3“J"d5/k ,
26(1
(5.6.24)

where ds\%2 is the round metric of unit radius on the S? in the y' directions
(which is the one that surrounds the O6). This exhibits the metric as
a fibration of the R> spanned by the x! (along which the O6-plane is
wrapped) over the R® spanned by the yi, or by r and the §. Since the
connection is a globally defined one-form, this fibration is topologically
trivial. Notice that the function multiplying dr? simplifies to

2
as + r’a, = <ta"n—‘(’lm> , (5.6.25)

using (5.6.22).

Differential equations

The differential equations we have to impose are (5.4.2), (5.4.6), dF, = 0,
and dF, = 606, where Fy and F, are given by (5.4.11a) and (5.4.11b), and
606 is given by (5.2.3). Recall that dF, = 0 follows from dF, = 0, as
pointed out before (5.4.12).

First of all, (5.4.2) gives

er 0
vV, = ———

2 St (5.6.26)
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(5.4.6) is clearly odd under I,. From table C.1, we see that there are four
odd three-forms; so (5.4.6) has four non-trivial components. One of these
turns out to be algebraic:

_ € jp tan(¥)
our? ag sin(@)

(5.6.27)

Vi

So v is completely determined algebraically, at all orders. The other
three components in (5.4.6) are

.3 ’
ar log <L> = a1 9

sin(0) cos(v) i sin(y)
Jor' a, O
ar log <m> = j-Qm B (5.6.28)

D LGN N OV T cos2<¢>> "
9 log <sin(9) cos(v,b)) Bl <a3 baortp? sin®(6) / jssin(y)

We now turn to the Bianchi identities. We have one first-order equation
that reads F, = const. After some manipulation we write it as an equation
linear in the derivatives of the variables:

3A

3, log <vire"

o 5 Foe™*  jsv; cos(y)e?
sin(@) > = 0 cot*(v)) <§ cot(0) — + >

2ppo aZp sin(0)

(5.6.29)
We also have dF, = Spg. A priori, this would seem to have four compo-
nents, since Fy is odd under I[,. However, closer inspection reveals that
only three components are non-trivial:

4
1 1
F, = E fo,iwoi dFy = (3fo1+rfy)wss+foowss— <f2,3 + ;fé,4> w3,5+;fé,2w3,7-
i1

(5.6.30)
The component of dF, along ws 4 can be set to zero by taking f,; propor-
tional to r—°; the proportionality constant can be fixed by requiring that
it reproduces the correct factor in 5pg. This can be read off (5.2.6). Thus
the non-trivial equations are three:

s ,
for = T3 foo =0, fou = —rfos . (5.6.31)

These fy; are determined by (5.4.11b) in terms of the data j;, a;, ¥, 6, A and
their first derivatives. The equations for f,; and fy, give two equations
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which are again linear in the derivatives of the variables:

or log < aivirte ™ > o J1 <_%(lb) + 3Sin(¢)>

sin®(0) sin(2) " 2a
3 4A 2 4A; .. oA
,.cos (¥) <_lse cos() - 490 _ FoeMjicot(6) | aspje 2 ” ’

sin(¥) \ popr jo popt agu’r? sin”(6)

(5.6.32a)
243
6p109< Lare > =
sin®(0) sin(2)

. 3 4A 2 94

jn O osin(y) + C(?S (V) <_5 _ e cot(0) . asje i >} .

2a, sin() Pol atr?p? sin”(0)
(5.6.32D)

Remarkably, by using these two equations and (5.6.28), one can show that
the last equation in (5.6.31) is actually automatically satisfied.

All in all, we have three differential equations from (5.6.28) (coming from
(5.4.6)), one from (5.6.29) (coming from F, =const), and two from (5.6.32)
(coming from dF, = Spg), for a total of six. All of these are first-order,
and linear in the first derivatives.

Having counted our equations, let us now count our variables. We can
use (5.6.26) and (5.6.27) to eliminate v, and v; from the system; moreover,
we can use the first two in (5.6.19a) to eliminate j, and a,. It is less clear
how to use the remaining three equations in (5.6.19); one possibility is to
derive ay, j; and js. This leaves us with the variables

Qo , as , as ; Jo A, 0, Vv, (5.6.33)

for a total of seven variables. We should also notice, however, that we
have not yet fixed the gauge invariance coming from reparameterizations
of the radial direction:

r — p(r) . (5.6.34)

Under these reparameterizations, the coefficients of j and w a priori could
mix. It turns out, however, that only the coefficients of ws and w; mix; if
we impose the algebraic equations in (5.6.19), even the coefficients along
those two are proportional. So, in particular we have

ap — <§>200 , (ag, o) — <§> (ag, Jo) as — <g>3as ,  (5.6.35)

whereas of course A, 6, ¥ transform as functions.

Thus, out of the seven variables in (5.6.33), one is redundant because of
the gauge invariance (5.6.34). This effectively leaves us with six variables,
which is as many as the differential equations (5.6.28), (5.6.29), (5.6.32). So
we have as many equations as variables, and we expect a solution to exist.
We will now study the system numerically.
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Numerics

The system we found in section 5.6.3 is first-order, and linear in the
derivatives of our variables. We found it useful to fix the gauge invariance
(5.6.34) by demanding 0 to be exact at order p®; namely,

Oyt = p + p°t (5.6.36)

with T given (5.6.8). In other words, the ... terms in (5.5.1) are absent.
This gauge makes it easier to compare the massless limit of our numer-
ical solutions with the solution in section 5.2.

Also, we imposed boundary conditions at an r much larger than ry = g;ls,
but much smaller than the scales (g, Fy) ™' and 1!, where deviations from
the massless asymptotics become apparent. Using the first-order solution
in section 5.6.2 as a clue, we identified a family of boundary conditions
(depending on Fy and p) such that, when one takes the limit F, — 0
and p — O (thus forgetting for a moment about flux quantization), one
recovers the massless solution®. This works quite well, especially if one
takes the limit by keeping gSTFO = b, as in the special choice (5.6.12) for
the first-order solution. We take all this as a check that our numerical
analysis is sound.

We then increased F, until it satisfied the flux quantization condition
Fo = 3%, ng € Z. The behavior of the solutions for ny # 0 is qualita-
tively different from the massless solution: notably, it does not display
the divergence at ro = gsls that plagues the massless solution (1.0.2) —
see figure 5.1. We checked that the eigenvalues of the metric (5.6.21)
remain positive in our numerical solutions.

Let us now focus on the asymptotic behavior of our solutions at r — 0.
In our gauge, 6 tends to a constant at r — 0; numerically, one can see
and A also tend to constants 1y and Ay. We can then use the differential
equations (5.6.28), (5.6.29), (5.6.32) to find the asymptotic behavior of the
coefficients a;, ji:

ap ~ agr 2, a ~ apr™’, as ~ agpr", as ~ azr’;
. . -3 . . 1 . . -3
Ju ~ Jiwol Jo ~ Jool =, J3 ~ Jsol' ",
(5.6.37)

where the a;p and j;, are constants. These are also in agreement with the
algebraic constraints (5.6.19).
From (5.6.37) it follows that the «; in (5.6.21) behave as

ay — ay, ag ~ agr 2, as ~ azpr 2, ay ~ ar*, as ~ asor 2,

(5.6.38)

5The family is obtained with the help of the perturbative expansion we will consider
in section 5.6.4; actually, besides Fy and p, the family also depends on an integration
constant in as. This constant has no influence on the massless limit.
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(b) A O6 solution with Romans mass.

Figure 5.1: Comparison between the massless O6 solution and a solution with
Romans mass. The solid line is e?; the dotted line is e?; the dashed lines are
js (positive) and ag (negative). On the left we plot these coefficients (in string
units, for g5 = 0.1) for the solution with Fy = 0: from (1.0.2) and (5.2.4) we get

A — (1 —ro/r)"V% js = 1/r% ag = —1/r. In particular, the solution diverges at

e =

r = rg = 0.115. On the right, we plot the same coefficients for a supersymmetric
solution with localized O6 source, for p ~ .055, Fy = Wltls j3 and ag retain a
power-law behavior, while e no longer diverges at ro = 0.1. At larger distances,
one can see deviations from the flat-space behavior, due to the fact that flat space

is not a solution for Fy # 0, as observed earlier.

where a;, are non-zero constants. For the crucial combination as + r’ay,

however, which multiplies dr? in (5.6.24), from (5.6.25) and (5.6.26) we see
that

2
as + rla, — <§gsp> ; (5.6.39)

thus, the r—2 divergencies cancel out, and this coefficient goes to a con-
stant.

As r — 0, the metric (5.6.24) then tends to

2
2 4ayg s

. . a50 A A
Dox' = dx' — Te”kgﬂdyk .
10

N o o 5 2 2
ds® = (a106” + ago9'9’) Dox' Doxt! + <—gsp> dr? + <a30 _ %50 > ds?

(5.6.40)
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This metric factorizes in a factor dr?, and a five-dimensional R® fibration
over S%. Thus, asymptotically we have R x Ms.

For most values of 1, the curvature of M5 is small, and we can trust the
supergravity approximation. However, the size of the S? remains finite,
and the metric is no longer geodesically complete. Fortunately, it is pos-
sible to perform an analytic continuation by going to polar coordinates
for the y'. One can then see that, in the system described in sections 5.6.3
and 5.6.3, all explicit dependence on r drops out; the only dependence is
introduced by the way we fix the gauge freedom (5.6.34). One can then
continue r to negative values. With our gauge choice (5.6.36), one can
see that for r < 0 the metric gets continued essentially to a mirror copy
of itself.

One might feel unsatisfied by the fact that the S? that surrounds the orien-
tifold never shrinks to a zero size; so the O6-plane locus does not really
exist in these metrics, even though all fields transform as they should
under the antipodal map ' — —9' of an O6 projection. Even in the
massless case, however, the transverse S? does not shrink in the smooth
Atiyah-Hitchin metric (see for example the discussion in [35, Sec. 3]).

For special choices of u, the curvature of Ms gets large; in that case, the
supergravity approximation breaks down. It is possible that a’ correc-
tions make the size of the S? shrink, but this is of course speculation.

5.6.4 Back to perturbation theory in

In section 5.6.2 we considered our equations to order p, and found an ex-
plicit solution. In section 5.6.3 we analyzed the conditions for unbroken
supersymmetry in the setup suggested by the first-order solution, culmi-
nating in the numerical analysis in 5.6.3. In this section we will go back

to perturbation theory in p = —%, to see how explicit can the solution
be made.

First, a bit of notation: we are going to expand the various coefficients
and functions as a power series in u, keeping the same assumptions in
section 5.5 about which expansions contain even or odd powers:

. .

Ji = Jio + Wiz + 2 + O, ¥ = py + piPs + O(°)
a; = aio + g + prag, + Olp*), A =Ag+p*Ay + Op'), (56.41)
0=p+p’t+p°6s+0OQ) .

As it turns out, the equations at order p? and p® mix quite a bit. Using the
algebraic equations, we found it convenient to use the variables

Ay, 05 , s ; Jia Joi s J32 agy - (5.6.42)
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For example, even if we have already solved ]y at second order in (5.6.9),
we did so only up to an unknown function a(r). This means that one com-
ponent was actually undetermined; in terms of the expansion (5.6.41), this
remaining equation can be written in terms of the variables (5.6.42). At
the same time, of the equations in (5.4.6) only two contain the variables in
(5.6.42); the third involves variables at higher order, and we can ignore it
at this level. We then have one equation F;, = const. and three equations
from dF, = Spg, just like in our discussion at all orders in section 5.6.3.

In section 5.6.3, the system of differential equations was first-order and
linear in the derivatives of the variables. The perturbative system we
are considering in this subsection, once we use the solution found at
first order in section 5.6.2, is also linear (inhomogenous) in the variables
themselves. This means that we can write it as

vV=Mv+b, v = (05, U3, Ji 4 Jour 3.2, Aoo) (5.6.43)

The matrix M is particularly simple in the gauge A = A, = log(Z~%/*), and
with the simplifying assumption f, = 5:

0 -2VZ 0 0 10ryr? 7

0 1(¢-Z) 0o 0o -3  =in
0 0 50 8rZ 47
M=, 0 bt o (5.6.44)
0 0 0 -5k 2 vZ
1 2 13 Z
0 0 0 %z vz = <; - a)

The expression for the vector b is more complicated, and we see no rea-
son to inflict it on the reader. The first three columns of (5.6.44) show
three obvious eigenvalues; the variables 65, 15, j; , are determined once
the other three are. So the crucial part of M is the lower-right 3 x 3 block,
concerning the variables j, 4, js2, aso. The eigenvalues of this block can
be found by the Cardano-Tartaglia formula, and so in principle the sys-
tem at this order can be solved analytically.

5.6.5 The special case 6 =0

In section 5.4 we have divided the analysis of SU(3) x SU(3) structure so-
lutions in three cases: AdS for 6 # 0 (the “generic” case of section 5.4.1),
AdS for 6 = 0 (the “special” case of section 5.4.2), and the Minkowski case
(in section 5.4.3). So far, in this section we have analyzed the system in
detail in the generic AdS case 6 # 0. We now want to go back to the
other two cases. We will begin in this subsection by the special AdS case,
0 = 0.

We will again work with the symmetry group (5.6.6), for the same rea-
sons explained in section 5.6.1 and 5.6.2. The parameterization of the
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forms v, j, w is still the same as in section 5.6.3. The algebraic equations
satisfied by them can still be written as in (5.6.19).

Since in this case H in (5.4.17) is not already exact (as for (5.5.13)), we
have to impose by hand that dH = 0. Since H is odd, the only non-zero
component of this equation is the one along w, :

as v, =0. (5.6.45)

v, cannot be zero because of the requirement (®_,®_) = 0 in (4.3.13).
Also, p # 0 by assumption; so we get a, = 0.

We then look at d(p],) = 0, again from (5.4.17). This has four non-zero
components, but in particular the one along ws 3 tells us that

jo=0. (5.6.46)

We can now go back to the algebraic system (5.6.19), and use that a, =
jo = 0. The last equation of (5.6.19a) tells us that asjs = 0. But, both if
az = 0 and if j5s = 0, (5.6.19b) now tells us ap = 0. This means that Rew = 0,
which is not possible, again because of the requirement (®_,®_) = 0 in
(4.3.13).

Thus, in this section we have quickly disposed of the case 6 = 0. This
case cannot lead to massive O6 solutions with the symmetry (5.6.6).

5.6.6 Minkowski

Finally, in this section we will look at the Minkowski case.

Once again, we can use the parameterization of the forms v, j, w in sec-
tion 5.6.3, whose coefficients have to satisfy the algebraic equations in
(5.6.19).

The relevant differential equations were given in 5.4.3. We start with
(5.4.19). This says
rij

cos(¥)

3z . 3
].220 . < rejs > _ _VerCOS (lp)

= const. , 0, log —— .
rjs sin“(1)
(5.6.47)
We then turn to (5.4.20). The first is trivially satisfied, using the symme-
tries of our setup. The second gives

3.-A
apvir’e Ay v
O log < sin(¥) > ~agvicos(y) (56.48)

We now turn to the Bianchi identities. They can be discussed along the

lines of the AdS case in section 5.6.3. One consists in imposing that Fj is
constant, and can be written as

8, log(vire 34) = — ¥ <2’3Vfcos(¢) —Foe3A> . (5.6.49)

tan®(v) a?
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As in (5.6.31), F, would seem to give three equations. The ones for f;,
and fy o read:

5,1 <a1vir4e*3A> _U cos() <_2C10 2aszjyvir L c052(¢)63A>

sin(21) ai vr  altan’(y) sin(y)r?
(5.6.50a)
2 a—3A 3 I
3, log <a2x.Jlr e > _ 2(:052(11)) a3]2Vr:ll” (5.6.50b)
sin(2) sin“(¥)  aqag

Once again, the third equation in (5.6.31) can be shown to be automati-
cally implied by (5.6.50) and by (5.6.47), (5.6.48).

So we have one differential equation from (5.6.47), one from (5.6.48), one
from (5.6.49), and two from (5.6.50). This gives a total of five differential
equations, which are all first order, and linear in the derivatives.

Let us now count our variables. Unlike in the AdS case, v, and v; are now
independent variables. On the other hand, (5.6.47) allows us to eliminate
jo (which vanishes) and j; (which is a function of other variables). All in
all, we can take as independent variables

as, Js Ve, Vi, A, lp . (5651)

Just as in section 5.6.3, we still have the gauge freedom (5.6.34). This
means that one of these six variables is actually redundant, and we effec-
tively have five variables.

So we again have as many variables as equations. We have studied the
system numerically. The solutions share some qualitative features with
the ones for the AdS case (see figure 5.1(b)); for example, the warping
A stays flat rather than diverging. However, they only survive for small
values of Fj, which do not satisfy the flux quantization condition F;, = #‘;S
For values of F, that do satisfy flux quantization, the system seems to

crash in a singularity before it gets to r = 0.

It is also possible to set up a perturbative study. Since A = 0 in this case,
we cannot perturb in u. We introduce a new perturbation parameter v,
such that v — 0 as v — 0. This can be achieved by taking the coefficients
v, and v; to be odd functions of v, while the other coefficients a;, j; will
be even functions of v. We solved the resulting system at first order in
v, similarly to section 5.6.2.

Finally, it would presumably also be possible to deform the Minkowski

solutions discussed in this section into an AdS solution, by generalizing
the procedure in section 5.5.
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Part 11

Topological resolution of
Coulomb-branch singularities
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Chapter 6

N = 4 Super Yang Mills in 3d

6.1 Introduction and motivations

In the previous chapter we saw that Romans mass can patch up the sin-
gularity of the O6 plane. Summarizing, in the presence of an O6 plane
in the IIA supergravity with zero Romans mass, there is a singularity
in the O6. Anyway, the behaviour of the dilaton next to the singularity
shows that supergravity is no longer reliable, since it starts growing. The
theory has to be uplifted to 11 dimensions and the metric gets quantum
and instantons corrections. After this treatment, the metric transverse to
the O6 is smooth and there is no more a singularity, but just a minimal
radius that can be accessible.

When a non zero Romans mass is added, it is no longer possible to uplift
to M-theory, so the same procedure cannot be used. The fact is that,
without uplifting, the O6 plane is able to protect itself from singularity,
due to the presence of a non zero Fy,. Moreover, there is no longer a
minimal radius and the metric can be continued even for negative radii.

Let us go back to the massless case and give more details. Atiyah and
Hitchin calculated the metric of 2 BPS monopoles in the center of mass
system. It is a family of 4 dimensional hyper-Kdhler manifold with a
SO(3) action that rotates the three inequivalent complex structures.

Seiberg and Witten in [6] considered the theory dimensional reduced to
three dimensions of the model proposed in [56]. It is a N = 4 theory
with gauge group SU(2), in which the Coulomb branch is studied. After
considering quantum and instantonic corrections, the moduli space of
the effective theory has been proposed to be the Atiyah-Hitchin one. To
check their proposal, Seiberg and Witten compared the weak coupling
behaviour from supersymmetry with the limit of large spatial separation
between the monopoles for the Atiyah-Hitchin metric and there is perfect
agreement.
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The relation between the three dimensional supersymmetric gauge the-
ory and the geometry defined by two BPS monopoles was explained by
[7, 37]: the theory is the one defined on a D2 probe next to the O6 plane
in M-theory. The 4 dimensional effective theory describes the metric in
the direction that are orthogonal both to the O6 and the D2. After quan-
tum correction, instantons corrections are the exchange of DO between
the D2 and its own image from the O6.

That was the massless case, i.e. when there is a vanishing Romans mass.
What happens when Fj is non zero?

My supervisor Alessandro, our collaborator Gonzalo Torroba from SLAC
and Stanford University, and I are still working on this subject and we
can present some results.

The idea is that the theory on the D2 probe should be modified by a
Chern Simons interaction, since it is the natural coupling (from the Wess-
Zumino interaction) with the Romans mass. Moreover [4] showed that
Chern Simons and Romans mass are deeply related even in the context
of ABJM theory [3]: in the usual formulation of this AdS,/CFTs corre-
spondence, the supergravity side did not enjoy a non zero Romans mass,
while the conformal field theory side has Chern Simons terms with lev-
els (k, —k). Once F, is given a non zero value, the Chern Simons levels
are no longer symmetric, but they become (k, Fy — k).

So it appears natural to expect the Chern Simons term should be the
modification needed in order to describe the gauge theory side of the
resolution of the O6 singularity via Romans mass. In fact we were able
to show that this is the case: in a N = 2 simplified model!, the one-loop
corrections does not show the singularity any more (for the moment our
result is restricted to the IR regime, the calculations in full generality are
still under study).

Work in progress is about the presence of instantons and the explicit
calculation of the metric.

In this chapter we are going to introduce the original N' = 4 theory, then
we will focus to its CS deformation in the next chapter. In this chapter
we will present first the gauge theory of [0], introducing first symmetries
and the Lagrangian, then considering the low energy effective theory;
when the action in the low energy regime is computed, we will compare

!As it can be seen just from counting the number of supercharges, this model cannot
be really the field theory on a D2 probing the solution found in the previous chapter.
However, it is similar enough that it should capture the relevant physics. The N =1
Chern Simons deformation is going to be the subject of future research. Details of the
model studied can be found in future chapter.
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the metric of the moduli space with the celebrated Atiyah-Hitchin metric
and study some of its properties.

6.1.1 Symmetries

The original model by Seiberg and Witten [6] is a N = 4 supersymmet-
ric theory in 3 dimensions, obtained as a dimensional reduction of the
N = 2 theory in 4 dimensions [36] defined over R® x S'. It is an example
of extended supersymmetry, where all fields are in the adjoint represen-
tations of the gauge group.

Let us focus on the structure of this system. The Lagrangian, as we are
going to see in the next section, exhibits three scalars. From the string
theory point of view, they represent directions that are transverse both
to the D2 and the O6. The Lagrangian is symmetric under rotations in
the three scalar fields: it can be seen as the invariance under rotation in
the space transverse to the O6 and because of this intuition we will call
it SU(2)y?% where N means “normal”.

There is also the usual SU(2)r symmetry, acting just on the fermions. Our
theory can be obtained even as dimensional reduction of an N = 1 Su-
per Yang Mills in 6 dimensions; in the original theory there is this SU(2)p
that goes through the dimensional reduction: fermions, then transform
as a doublet under SU(2)p

Moreover there is the Lorentz group, which in the Euclidean is SO(3)g;
we will take the double cover of this group, SU(2)g. So, the total structure
is SU(2)y x SU(2)p x SU(2)r x G, where G is the gauge group.

We are in the context of extended supersymmetry, so scalar fields are in
the same supermultiplet as gauge bosons and thus transform under the
adjoint representation of the gauge group. If the scalars are given a non
zero vacuum expectation value, we fall in the part of the moduli space
called Coulomb branch. This name has been given because the vacuum
expectation value of the scalar leaves one of the gauge boson massless, so
generating a long distance electromagnetic-like forces. From the gauge
group point of view, this happens because the gauge group is reduced by
spontaneous symmetry breaking to U(1) factors.

6.1.2 Three-dimensional supersymmetric theories

Let us start by reviewing the structure of 3 dimensional theories with
N = 2 supersymmetry (4 supercharges).

The vector superfield contains the gauge field A} and gaugino A%, a real
scalar 0¢ (the extra component of the gauge field in reducing from 4 to

’Instead of the original SO(3) we took its double cover SU(2).
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3 dimensions) and an auxiliary D-term D°. Their Lagrangian is®

! ! 1 ira a o) 1 aya
Lgauge = g2 —ZFSvFauv + EDuo—aDuO—a + A% DAY — A0A + §D Dl
(6.1.1)

The gaugino is a 3 dimensional Dirac fermion.

Moving to the matter sector, a chiral superfield contains a complex scalar
¢, a Dirac fermion ¥ and an auxiliary field F. The Lagrangian reads

Linatter =(Dui) D¢ + iy Py — §'0%¢ + ¢'Dp — Yo + iV2Ap — iV2Pre
aw+F7<aw>T_1 FW FW
0; L\ oy 2 0¢;0¢; 0¢; 09;

;
+ FiTFi + F; > ity

(6.1.2)

1
lpilpj—§<

The fields from the vector superfield act on the matter ones as matrices.
For instance, ¢'D¢ = ¢](T*D);;¢;. Similarly,

¢’ = /(0" TE) (0O Th) e -

This term can be understood as coming from g?8D,¢'Dg¢ and the ex-
tra 4 dimensional component of the gauge field, in the four dimensional
theory.

Note that integrating out the D-term sets D* = —g?¢/T?@, and the relevant
part of the Lagrangian becomes

1 una g’ a a
2ngD D + ¢'D¢p — —7(¢TT ¢)(¢'T9). (6.1.3)

6.1.3 The N = 4 theory without flavors

Now we specialize to the simplest case in which singularities in the Coulomb
branch can be studied, namely a 3 dimensional N = 4 theory with gauge
group SU(N) and no flavors. In the notation of 6.1.2, this arises for the
special case of an N = 2 theory with a single matter superfield in the
adjoint representation, and vanishing superpotential, W = 0.

In the N = 4 theory, the normalization of the kinetic terms of the vector
and matter superfields are related by supersymmetry. It is simplest to
choose the normalization to be 1/g?. The Lagrangian of the 3d N = 4

3See the appendix D.1 for the notation.

70



theory is then given by*

1 1 1 sy a a . .a a
L= 5 [ B + D0 Do + (D,¢%) DPG® + iADA® + ig D

= Aok —Pot - ¢70%¢ + 1V20 — V2L - %<¢7TG¢><¢7TG¢> :
(6.1.4)

For our purposes, it will be enough to consider an SU(2) gauge group.
In the string theory side, this arises from a D2 probe near an O6 plane.

For SU(2), fa*¢ = €2¢, and the adjoint representation is three dimen-
sional. Explicitly, the different terms in the action are as follows. Using
the expression for the covariant derivative

Dpd)a = pd)a + €abcApb¢c ’

one obtains a scalar kinetic term

(D)) DF =8,0L8 da — €apc AL (8], Do + B )

T T (6.15)
+ (ApaAg)(d)bd)b) - (Aua(ba)(Ag(bb) .
For the potential term ¢’0%¢ we find
0P = (¢ Pa)(0,0b) — (L 0a)(Pb0b) - (6.1.6)
Similarly,
(STT D) = (] da)(Ppd6) — (DLdL) (Buby) - (6.1.7)

Let us make a few comments before approaching the Coulomb branch:
in the theory the three scalars representing directions transverse to the
O6 are the complex field ¢ (which contains two fields, its real and imag-
inary part) and o. Giving non zero vacuum expectation value to one of
them can be seen, from the string theory point of view, as moving the D2
probe out of the O6 in that direction: the non zero vacuum expectation
value can be related to the distance respect to the OG.

Anyway, remember that we do expect that the effective action moduli
space should be 4 dimensional, i.e. that the massless boson field of the
effective Lagrangian should be four. As we saw, we considered just three
scalars, so it seems that we are missing something. The answer is that
also one of the SU(2) gauge components of the gauge vector boson re-
mains massless. In three dimensions the photon is dual to a scalar and
s0, the net result is of 4 scalars, 3 from the original scalars of the theory
and one from the dual to the photon (the massless gauge vector boson).
In section 6.2 we will see some details about the arising of this scalar.

“Notice that compared to [33], the action (6.1.4) has extra factors of /2. These are
a consequence of the normalization of the gaugino kinetic term, which is chosen to be
the same as that of .
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6.1.4 Gauge fixing Lagrangian in R¢-gauge

Now, let us give an expectation constant value just for the third component
of the real part of ¢, so breaking gauge symmetry,

¢3 =EV+X (6.1.8)

where v € R is a constant and y is the complex Higgs field. As it usually
happens, the non zero vacuum expectation value generates an interaction
between the gauge vector boson and the scalar in the kinetic term:

|Do|? =w — V2ve,sAL8,05
— €apAp | (0up)x + Outp)x” — (Bux)bp — (Bux19p|  (6.1.9)
+ (AR2(v? + V2vgs + 95 ; (i)%) + ...
where we defined
y = %2“”3 and ¢ = %2“1’“, (6.1.10)
where ¢, @ are real fields, a = 1,2 and “...” are terms that are not going

to be interesting in the one-loop calculations.

The annoying term \/EveaBAgﬁu(p,g can be canceled, as usual, using the
gauge fixing Lagrangian,

(Ga)?

Lor = “0g% (6.1.11)

where
Ga = 0,A" + Sqabeap(Phds + Ppdl). (6.1.12)

Respect to the usual gauge fixing, i.e. the one present in the most com-
mon quantum field theory books like [39], (6.1.11) has been chosen to be
quadratic in the scalar fields.

The previous Lagrangian (6.1.11) has been proven to be well-defined, i.e.
BRST exact, and the quadratic contribution has been use to simplify the
p—dependent interaction between the scalar and the vector boson gauge
due to the kinetic term of the scalar.

Once the spontaneous symmetry breaking is performed, every field with
a gauge index a = a = 1,2 has been given a mass

m = V2v, (6.1.13)

while all 3-components remain massless.
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Plugging the information obtained so far, the interacting Lagrangian in-
volved in the one-loop corrections for the scalar s is

L = = m| 9% + 02 — (A4)°| @5 + 2eapAl (950,05 + DpOus)
+ €ap| @3 (Parg — Aatp) + 1 P5(Parp + Aaip)]
i 2] 95 2] ¥4
— 98+ 02 - (A2)°] L - [of + ot - (an)"]| £ (61.14)
- Sm {(93 <(P(21 + Qéaca>] + (1 - S)m (Pa(i)a(b3

2 -0
— 9 (g2 1 200ca) - 68 (g2 + 20c,)
£ 9 (pa+20aca> & 5 <(pa + 2CqCq ) + ...
In the following we will work in the Landau-Lorentz gauge (£ = 0). This
choice is useful in order to the decouple the ghost for the physical fields
and it give a natural geometrical interpretation of the propagator for the

vector boson field in terms of projectors.

6.2 The low energy theory

A useful reference for the material covered in this section can be found
in [40]; we will borrow some of their arguments. At the classical level,
after breaking SU(2)y, the bosonic sector of the effective action is simply
the action of all massless fields:

sheiass _ LA Ay Lo 0 s+ 10,0500 + LS
eff _E/W(Ep(pS <P3+§p<P3 (P3+§p63 63+Z‘”’3)
(6.2.1)
Before focusing on the quantum corrections, let us remember that the
theory we are studying comes from the celebrated [56], one of whose
most peculiar features is the presence of monopoles. Here we have
something analogous to a — term, that can be written, in the low energy

theory as

S _ g / G 15 v, o (6.2.2)
surface 87( (27[)3 ntvpe oLie
This surface term can be seen as a constraint on the Bianchi identity
for Ffw. One can obtain an alternative description of our system just
promoting &° to a dynamical field, so considering 6° as a Lagrangian
multiplier for the Bianchi identity: Naively® using the equations of motion
for F3

v

i
3 2 _pvpa x3,
F,, =-—g~€"*0,67;

S
. L EpupEHY
g

(6.2.3)

®We should use the equations of motion for A3, since F3, is a field strength, not a
field. Anyway, the result is the same. We do prefer this naive formulation here since it

appears much more intuitive.
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we can substitute in the low energy effective lagrangian for F, 31):

1 3 v l ~3 V) 3
- (FEES + 5=5°€" 9, F}, )
& d3q (6.2.4)
0, 5z0"6
(!m) / () B3 05

We said that we can think of ° as a Lagrangian multiplier for the Bianchi
identity, but we did not use so far the Dirac quantization of the charge:
that gives
k= i/ D 150 cmog F5 ¢ 7 (6.2.5)
8 ) (2m)3 H=vp ' o

Since the surface term enters in the path integral as e'*% and the kinetic
term for 6° involves (as always) just derivatives, we see that the system
is invariant under

§° — 6% + 2, (6.2.6)

s0, locally the system looks like R? x S'. It will be useful, in the following,
to define

@3
V= o3 |, (6.2.7)
03

which transforms as 3 of SO(3)y. Using Y the classical bosonic effective
theory can be written as

class 1 d’ 1 ; 4 - .
St = / (2;)1 (GouYV'o'V + 1gﬂ26,1636“63). (6.2.8)

In order to simplify the notation, we can define

@3
o3
X = o5 , (6.2.9)
2
[
5
N

such that
class d3q 1 i i
Soiflass = — / 50X X", (6.2.10)

On the other hand, the fermion sector of the low energy Lagrangian is
much less exotic,

class 1 d3
ngfl = E/ g <l)b3@)b3+llb3@¢3> (6.2.11)

T4



6.2.1 Quantum corrections to the effective action

Consider the one loop correction to (@s@s): after (quite boring) calcula-
tions, it can been shown that, using dimensional regularization,

;2
®s _** @5 = P L O(ph). (6.2.12)
p p 2mor

Since the corrections are finite, it is possible to reinterpret them as a
renormalization of the gauge coupling,

1 1 1
— = T o, 6.2.13
g2 - gz 2mm ( )
such that the effective action, quantum corrected, looks like
- 1 1 d®q 1 , .
Shone-toor / Z9,X'8"X1). 6.2.14
eff (g2 2m7r) (27r)3 (2 M ) ( )

Before going on, let us comment briefly the situation so far. As we said
previously, the scalars in the theory are directions that are orthogonal to
both the O6 and the D2: giving a non-zero vacuum expectations value to
one of them can be seen as taking the D2 away from the O6 by a distance
that is proportional to v. In terms of the metric in the moduli space v is
going to be our radial variable, up to some constant.

Moreover, notice that one-loop corrections introduced a singularity. The
classical theory moduli space was just flat, as obvious, but quantum cor-
rections go like ~ v~!, meaning that the metric should go as ~ r~!, so
it has a singularity in the origin. We will see that instantons corrections
save the theory from singularities.

We avoid the discussion about the fermion sector: at the end of the day
the one-loop corrections are the same.

6.2.2 Instantons corrections

Let us briefly discuss the role and the shape of the instanton corrections
in [0].
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Using the usual Bogomol'ny approach for the euclidean bosonic action:

Fa va il fpa 4)\2
SEue =— / + D”OGQD % 4 Dl + ¢T0% + QTT76) T;i)) ]
/(27‘[) { 5t g TIDg+ 0%+ T |
1 d’q
>— a pH i
2502 / o | BiBs + DuguD %]
1 d q « a
1 d3q
> — — B.DFe,
- g ] (2r)% #
(6.2.15)
where B = @%ng The chain of inequalities is saturated once
B, = Dy@a; 0y = Ppq = 0. (6.2.16)
Using the same ansatz of Polyakov, [41],
x(l
Galx) = flx) 55
(6.2.17)
Ax(x) = alx)ean;,
a H I2
it is possible to check that
f(x) = mlx| coth(m]x]) -
(6.2.18)
wly =t
sinh(m|x|)

(m is the mass defined in (6.1.13)) is a classical solution with boundary
conditions at |[x| — oo for the non vanishing fields

lx|soo X Ix|so0  XHX®
Oq — m?; B; e (6.2.19)
Integrating, we can see that the action of the instanton is, [40]
4
So=m. (6.2.20)
g

As always, the contribution from the instanton is going to appear in the
Lagrangian as e~%. This is not the only contribution: as we already
saw, in the spectrum of the bosonic low energy theory we also have the
scalar dual to the photon &, which should contribute to the action, [6, 41],
incorporating the long distance interaction of the photon. So, the net
contribution from the instanton should be

o\ﬁinst ~ e—So—i(j. (6221)
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What are modifications induced by this term? We should know if there
are zero modes in the theory. It is possible to show [40] that there are 4
bosonic and 4 fermionic zero modes for every instanton. The net modifi-
cation from the boson zero modes affects directly the metric, modifying
the measure of the path integral; the fermionic one gives contribution to
the metric too, but it introduces also a new term in the low energy effec-
tive action. Since, as shown by [40], just the k = 0, =1 charged instantons
contribute to the low energy effective Lagrangian, we will focus on this
case.

As we said at the beginning of this section, instantons in the 3 dimen-
sional theory are solutions of the broken phase. So, if the supercharges
transform as (2, 2, 2) under SU(2)p x SU(2)y x SU(2)y, once a real non
zero (¢s) breaks SU(2)y down to U(1)y, in the broken phase the super-
charge should transform as (2,2)'? @ (2,2)""2, where the exponent are
the U(1)y charge (they are half integers since the supercharges trans-
forms as % spin of SU(2)y). Considered that at the end of the day there
are just 4 fermion zero modes for one instanton, the interaction we ex-
pect should be in the form

~ oS0 (6.2.22)

which at first sight, seems to generate an anomaly, since the total charge
carried by the four fermions is 2(= 4- %). However, we did not fix the

charge of 6 under U(1)y: if the transformation induced by U(1)y acts as
00— 0+ 2a (6.2.23)

the symmetry of the system is restored, [0].

At the end of the day, the instanton corrections enter into the metric
of the low energy effective theory, making it smooth and introduce a
term involving 4 fermions. The effective theory can be shown to be a
non linear supersymmetric 0 —model and the potential for the 4 fermion
modes due to the instanton can be read as the Riemann tensor of the
moduli space:

d’q OmX 0 X" — QDY Ryjpu(X)(Q7 - V) (k- Qh
Seff = k/wgij( ) 2 - 12 ,
(6.2.24)
where X has already been introduced, while €2 is a linear composition 5
and As.

6.3 The metric of the moduli space
After a plethora of different corrections, in the previous section we were

able to find the low energy effective action (6.2.24): it is a supersymmetric
non linear 0 —model where the target space is 4 dimensional. The aim
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of this section is to work out the metric of the moduli space.

What kind of metric do we expect? First, let us consider the holonomy of
our system: for every d —dimensional Riemann manifold, the holonomy
group H C SO(d). In N = 4 the commutativity relation of the supersym-
metry generators with H generators implies that d should be divisible by
four and H C Sp(d/4). By definition, a manifold with symplectic holon-
omy is a hyper-Kahler.

Atiyah and Hitchin calculated the metric of the moduli space of two BPS
monopoles, just using the fact that it is a hyper-Kdahler manifolds with a
SU(2) isometry . It is exactly what we have on both side: a 4 dimensional
hyper-Kahler as the moduli space of a 3 dimensional N = 4 Super Yang
Mills theory with gauge group SU(2)°. Moreover, Atiyah and Hitchin
showed that the only one without singularities was the one that then got
their names. This metric is known to be complete, i.e. any curve of finite
length has a limiting point.

Seiberg and Witten, [6], proposed that the metric of the effective theory
could be the Atiyah-Hitchin one, based on the geometrical properties and
the fact that the absence of singularities could be related to the strong
coupling behaviour of the supersymmetric gauge theory.

Following [55], we parametrize orbits of SO(3)y (whose double cover is
SU(2)y) by Euler angle (8,¢,v) (8 € [0,7], ¢, ¥ € [0,27]). In terms of
them we can define a new coordinate system (0, 0y, 03)":

0y = —sin(¥) dO + cos(y) sin(0) d¢
0, = cos(y)dO + sin(y) sin(0) d¢o (6.3.1)

03 = dy + cos(0)do

Let us label the direction transverse to SO(3)y with r: with SO(3) isometry
the most general metric can be written in the form

ds? = f2(r)d’r + a®(r)o? + b%(r)o? + c?(r)o?. (6.3.2)

Before analysing the properties of (6.3.2), let us focus on the correspon-
dence with the boson fields in our Lagrangian (6.2.24): let us define a
new set of coordinates, Cartesian ones:

x = rcos(¢) sin(0)
y = rsin(¢) sin(6) (6.3.3)

z = rcos(0)

6The isometry SU(2) is the SU(2)y in the moduli space.
"The choice of the name of the coordinate may cause confusion respect to the field
04; we chose to agree with the notation of [35].

78



By definition they do transform as 3 of SO(3), as Y defined in (6.2.7), so,
up to some constant,

X ¥s3
y | =const. | @3 (6.3.4)
zZ O3

The constant can be found looking at the classical bosonic effective ac-
tion: in order to have just g;; = &;; as the metric for the target space, the
field should be renormalized taking the constant in (6.3.4) to be equal to
So/m, meaning that r = S,.

The angle ¥ remained out of the previous definitions; under rotation of
an angle a around the axis (x,y, z), ¥ change as

Y— P+ a. (6.3.5)

The only field out of the game is 5, which transforms under the unbro-
ken U(1)y as
05 — 03 + 2q, (6.3.6)

so it appears sufficiently natural to set
Y= —. (6.3.7)

Let us focus on the metric (6.2.24): it can be shown, [40], that introducing
one-loop effects

a? =b% = S,(Sy — 2) + O(S;™1);

8
2 _ —2.
c” =4+ S_O + O(SO ), (638)
T P O(S55?).
So

Two loops or higher give contributions that are suppressed by powers of
St

At this point the hyper-Kahler condition can be rephrased as a system of
differential equations,

2bc da
SETRLEL R
(6.3.9)

(cyclic permutation of a, b, c)
In order to find a solution to the previous equations we should make an
ansatz on f. In any case, consider that, because of the role that it has in

the metric, the function f just controls the definition of the radial coordi-
nate r. In order to check our correspondence, we should use (6.3.8), but,
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pay attention since (6.3.8) is not defined to every order.

Anyway, in order to have a look to the whole solution and simplify cal-

culations, let us use f = —b/r, the same used by [55]: in this case
. B
r = 2K<sm (§)>, (6.3.10)
where

K(k) = / ’ dr (6.3.11)
0 /1 — k?sin*(1)
is the elliptic integral. With this choice r € [m,00) as B € [0, 7] and

integrating numerically (6.3.9) one can find the behaviour of the functions
a, b, ¢ shown in Figure 6.1.

8 " 78
“b(r)

6 + -1 6
a(r)

s 44

n -

2+ -c(r) 42

0 1 1 1 O

m 4 5 6 7 8
r Fig. 1

Figure 6.1: The Atiyah-Hitchin metric defining functions with the choice
f = —b/r, from [55]. Note that in this choice r € [, 00).

b
With the choice f = . the asymptotic expansions of functions a, b, c

- 2 1
=2 42— — Ve 4+ ...
a r r I”( 21,,2)6 +
2 2 2 1 —-r
) b = I"\ll — ; +41” (1 - ; - @)e +... (6.3-12)

2
2

L r

where all term decaying faster than e™™ has been neglected. Note that
terms e ™' has to be related to instantons, since, even with the choice from
[ ]l r -~ SO'

is
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Chapter 7

Chern Simons deformation

As we already said in the introduction to the previous chapter 6.1, the aim
of my present research, in collaboration with my supervisor Alessandro
and Gonzalo Torroba from SLAC and Stanford University, is to find the
properties of the system described in [6], deformed by the presence of
a non zero Romans mass. The idea is that, if the massless system cor-
respond to the 3 dimensional theory on a D2 probe next to an O6, once
you add a non vanishing F, the theory on the D2 should be deformed
by a Chern Simons term.

We recall why we expect the deformation to be Chern Simons. First, the

natural coupling due to Wess Zumino interaction for the Romans mass
with the D2 is

Fy CSla), (7.0.1)
D2

where a is the gauge field over the brane, and CS(a) is the Chern Simons
Lagrangian for a. There are other hints that Chern Simons should be the
right deformation: in [5], a correspondence from AdS,/CFTs, the con-
formal 3 dimensional theory is a Chern Simons one with levels (k, —k),
while the AdS, side has a vanishing F,. Following [4], once the super-
gravity side enjoys a non zero Romans mass, what happens is that the
two Chern Simons levels are shifted to (k, Fy — k).

We are going to add to the system studied in the previous section a Chern
Simons terms, breaking supersymmetry down to N = 2!, so having 4 su-
percharges. In this way we do expect to find something similar, but not
equal to the system studied from the supergravity side. Why?

Let us consider the number of supercharges. At first sight, one may
expect that a non zero Romans mass should not break any supersym-

IThe Lagrangian in (6.1.4) was obtained somehow “gluing” together Lagrangians
(6.1.1) and (6.1.2), using supersymmetry. Since the Chern Simons term involves just the
gauge fields, it is natural to expect to break one half of the supersymmetry.
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metries, so the total amount of supercharges should be exactly the same
of the massless case. But in order to have a non vanishing Fj,, there
should be a source for it, i.e. a D8, and so we do expect to break some
supersymmetries. When consider a couple of D-branes, say Dp and Dp’,
with p > p’, the condition in order to have a supersymmetric solution, if
Dp’ lies completely on Dp, is

p-p =0 (mod4) (7.0.2)

then the total amount of supercharges is reduced by a factor 1/4, [42].
This description fits with the previous system: we have an O6 and a D2,
so p — p’ = 0(mod 4) and the original 32 supercharges of type IIA are
reduced to 8, as in N' = 4 in 3 dimensions.

For the couple O6-DS, p — p’ = 2 and one should have broken all super-
symmetries. How to build a supersymmetric solution, in this case?

The (7.0.2) condition is valid just when the Dp’ brane lies completely
on the Dp: the difference between the dimensions of the two sources
is not really important, but transverse directions to them is. In fact,
the condition comes from directions not in common between the two
branes. If one chooses the system to have, for example, the configuration
7.1, there is an extra 1/4 for the total amount of supercharges, such
that the final number of supercharges is 2, which means N = 1 in 3
dimensions. There are still conditions about the compatibility of the D2
with the D8: they imply constraints on the B-fields, [45]. According to the
configuration described in the table 7.1, compatibility constraints read as
conditions on B;s, Bg7 and Bso.

Table 7.1: Configuration of branes in the massive theory (B-fields have
to be switched on in direction 45, 67, 89).

01 2 3|4 5|6 7,8 9
D2 e o o
O6| e o o o0 °
D8 e o o o o oo o

In this chapter we are going to study a system with more supersymme-
try than the one studied in 5, say N = 2 in 3 dimensions, in order to
simplify the problem of the effect of a Chern Simons term. The study of
deformed N =1 is going to be the subject of the future research.

But what result do we expect? We think that the Chern Simons term
in the Lagrangian will act like a patch on the singularity, as we saw the
Romans mass does in the chapter 5. Moreover, in 5 we saw that the “size”
of the patch depends on the value of the Fj: this result has been obtained
numerically and we saw just a dependence, whose analytical form we did
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not calculate. So, somehow the patch even in the field theory side should
depend on the Chern Simons level; in section 7.1.1 we will give more
details to strengthen this expectations.

Moreover, is the metric of the moduli space for the deformed case ex-
pected to be hyper-Kahler? No, it is not: since we are going to break
supersymmetry down to N = 2, there is no way to expect the hyper-
Ké&hler condition to be valid. Moreover, in the previous case the expected
moduli space was made by the direction transverse to both the O6 and
the D2 probe in M-theory, so 4 dimensional. What is the dimensionality
we expect for N = 2?

We are already in the position of saying which are the fields that are
not going to participate to the new low energy effective Lagrangian. One
is 03, since it is the one in both the Chern Simons and Yang Mills La-
grangian, so it has a mass coming from the topological term.

In the previous chapter we saw that 6 was the dual to the photon and
in the moduli space it appears as an angular coordinate on a S!; in fact
0 is the coordinate which has opened up because of the strong coupling
limit. Since we are not going to experience M-theory, & is not going to
appear.

So, the moduli space is two dimensional. How can it be? As we explained,
the fact is that there is a stringy interpretation for the N = 1 system, but
not for the N = 2.

We have some intermediate result that confirm this idea for the IR regime
that we are enlarging to the entire system.

7.1 Yang-Mills-Chern-Simons theory

In order to have a protected moduli space, we consider an N = 2 Chern
Simons deformation. This is given by?

1 _
Les = % <eﬂvp(AgavAg - 6fabCAaAbAC) — QAN + 2Daaa> . (744)

v
The full theory is now Yang-Mills-Chern-Simons with matter,
L = Lgauge + Lmatter + Lcs (7.1.2)

where Lyquge and Lyqtter Were defined in (6.1.1) and (6.1.2), respectively.
As in 6 the matter content is taken to be a single chiral superfield in the

2Qur gaugino kinetic term has a Dirac normalization, and this is the reason for the
extra factor of 2 in the gaugino mass in (7.1.1), as compared to [38]. This is verified by
showing that all the vector supermultiplet gets the same supersymmetric mass (7.1.5) .
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adjoint, with no superpotential. This theory has N’ = 2 supersymmetry.

The final form for the Lagrangian is obtained by integrating out the

auxiliary D-term,

g’k

D¢ = —Eca —92¢ZT3¢]"
We then arrive at
1 1 a papy 1 a2 .7a a _
L= g |[~gEnE™ + 5(Du0") + 13 PA* - o
k v aa aiabcabc 1209 12ka ITa 2
+ S [ B p(ApavAp — éf AuAvAp) = 22727 - §g <EO o Tijd)j

+ (Dudi) (D"¢y) + iYh DYy — ¢'0P — Yo + V2ild A — PAP).  (7.1.3)

We will also be interested in the IR limit g> — oo, where the kinetic terms
for the vector supermultiplet are set to zero, and L = L¢s + Liatter- Now
o0, D and A are all auxiliary, and integrating them out sets

a__zt_jT .t 1 fepa a___lt_jTTa
AT = V2T, 0 = —— - (¢'TP)

where (¢p'T¢) = quT.acbj. Therefore, the Lagrangian becomes

i—ij

T k v a a 1 abc pa c
L = (Dud:)DFe; + ity D + . € ALDAL — of be pa Ab AC) (7.1.4)

Bnoveop
16772
B2

(TTT°¢)($ T D) (ST ¢) + %(@T“lb)(chTacb) + %(@T‘VP)WT%)-

7.1.1 Coulomb branch of the Chern-Simons- deformed
theory in IR regime

Let us begin by analyzing the IR limit g?> — oo, described by (7.1.4), for
an SU(2) gauge group. As in 6, the theory is studied around the Coulomb
branch point (¢,) = S6,3v. Note that now the dimension of ¢, and hence
of v, is 1/2, because the kinetic term is no longer multiplied by 1/g.

Before proceeding, it is useful to understand what kind of corrections can
appear along the Coulomb branch. The crucial difference between the
Chern Simons matter theory (7.1.4) and the previous case with nonzero
gauge coupling is that, at least in perturbation theory, there is no dimen-
sionful parameter. The Chern Simons level k, which is dimensionless and
quantized, determines all the interactions. Next, turning on a Coulomb
branch expectation value v, this will be the only dimensionful parameter,
and hence it cannot appear in the loop corrected kinetic term for ¢s. In
the Yang-Mills case there was a dimensionless parameter v/g? that was
appearing in loop corrections, but this is no longer possible in the pure
Chern Simons-matter case. We thus conclude that, if there are quantum
corrections to the Coulomb branch metric, they have to be independent
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of v. As a consequence, this guarantees the absence of singularities along
the Coulomb branch.

Let us calculate the Coulomb branch of the IR limit, (7.1.4): first, consider
the massless boson fields. Using the definition w = v/2v = v/2(¢) and

k
u= 87’ it is possible to define

2
w
Mmes = —. 71.
cs on (7.1.5)

As happened in the previous chapter, even in this case just the compo-
nents 3 of the fields remain massless, but the great difference with respect
to chapter 6 is that in (7.1.4) the field o, has been cancelled, since it acts
like an auxiliary field.

We use the gauge fixing lagrangian,

0,0 £

= A_Il r=v —
igf a 26 2
that is similar to the one used in the previous chapter (6.1.11) but for the
fact that, since the dimension of the field is [¢] = 1/2 and we no longer
have the constant g? ([g?] = 1), the gauge fixing parameter has dimension

(€] = 1.

AY + €apAl 0, (Phds + dld) — 2(PLds + dlda)?,  (7.1.6)

Even in this case we will use Landau gauge, since it automatically decou-
ples ghosts from other fields, as already seen in the previous chapter.

At the end of the day, the interaction terms involved in the one-loop
calculations in Landau gauge are

2wes + 9 + ¥
WPs + 95 + 95 Vo + 2€apAl (90,95 + 0, P3)

int o
one—loop lpa

2p
3 3
+os(WIAL) = 5 50) + 4 pP59ebe
(P2 3‘/‘/2~ 2 (~p2 W2 5 2
+ 5 (gt () + 5 (- gplotr a0 + (A)')

(7.1.7)

Let us calculate one-loop corrections to (@s@s); as predicted, they depend

just on p,
ip® 4
@3 - - » @3 = ——— + O(p”) (7.1.8)
p p dp

So, modifying the bosonic effective action through

- 1 N
P one=toon _ / d*x(1 + o) X5 X, (7.1.9)
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where

@3
Xeg = 4 , 71.10
os < ’ ) (7.1.10)

we have cancelled the singularity.

In the previous chapter we saw that there are corrections coming from
instantons too. Are there instantons in our theory? The subject is dis-
cussed at the moment in the team, but we may say that they are not.

We said that the instantons in the original model described in 6, can be
seen from the stringy point of view as DO exchanged by the D2 probe
with its own image from the O6. In fact, similarly to (7.0.1), there are
even interactions of the type

/ Fa, (7.1.11)
DO

where again a is the gauge field over the D0. This contribution gives a
tadpole in the massive case, so there is no classical solution and so no
instanton solution can be added. This proposal is being checked at the
moment.

7.1.2 Coulomb branch of the Chern-Simons
deformed theory for finite g

Let us take the full lagrangian, Lcs + Lmatter + Lgauge, With finite g:

1 1 a papv 1 a\2 XYl a 7
L = ?[—ZFWF” + 5(Dy0") + A7 PAT — Ao

+ p v

. . 1,/ k ; ?
v a a abc xa ab ac raja 2 = 5@ a
o |€VAROAT — SfTCALAVAS) — 2072 | - g <4ﬂ6 + o Tijd’f)

+ (D) (DRey) + it DYy — ¢T0%p — Yorp + V2i(pTAp — PAd).  (7.1.12)

At first sight one can think that o3 could remain massless, so taking the
moduli space to be 3 dimensional. Because of the non zero vacuum
expectation value for ¢s, this is not the case; in fact, due to the interaction
term

1 2 k a fpa ’
—ﬁg EG + ¢, T | (7.1.13)

0, is given a mass M = 2ug?. This term is not exactly beautiful: if we
take (¢s) = 75, among other term, we have

29°0 W €qp 0o Pg, (7.1.14)
that implies the presence of a two particles vertex, or mixed propagator.

Except for the term (7.1.13), the interaction terms are exactly those from
the original theory (6.1.4), so vertices should be similar (once you pay
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attention to g? factors).

At the end of the day, there are two masses, M and m. The former
is the mass of every gauge fields and depends just on p and g, so it's
not related to the non zero vacuum expectation value of ¢s; the latter is
generated by the spontaneous symmetry breaking (it depends on w). In
the original non deformed theory, we had a 4 dimensional moduli space,
given by the fact that there are 3 scalars in the theory and the dual to the
photon, related to the opening of the new direction of M-theory. One of
the “original” scalars in the game there was o3.

The deformed theory has masses for all gauge fields given by the in-
teraction terms in Chern Simons. Moreover, the spontaneous symmetry
breaking gives an extra mass to all directions but the Higgs one of SU(2)y.
So, 03 is not given an extra mass by symmetry breaking, but it has already
a mass due to Chern Simons. Moreover, we are not going to be uplifted
to M-theory, so even the dual to the photon is not going to appear in
the effective Lagrangian, i.e appear as a coordinate of the moduli space.
So, the moduli space should be still 2 dimensional (as in the IR regime,
where g? — o).
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Appendix A

General definition: signature,
indices and so on...

In the present thesis the signature of the metric has been chosen to
be (-, +,+,...,+). M, N indices are ten dimensional, 1, v are used for
the external spacetime, while m, n indicates quantities defined over the
internal space. In dimension d the Hodge star * action over a k—form is
defined as

1
*q e A Ne%* = mﬁlk“...adaimak“eakﬂ Ao Ned, (AO].)

If we choose a coordinates basis x on M, the derivatives axim can be used

to define contractions t’s: ,, =t o acts on differential forms as
L (dX A Adxin) = pSlitdx® A~ Adxin, (A.0.2)
Let us suppose that the k—form w can be written as
W = Wrdx™ = Wpm,dx™ Ao Adx™, (A.0.3)

where dx™ is the basis dual to axim and w,, are components. The exterior
derivative in terms of local coordinates is d = dx™09,,, such that

dw = dx™ A Om Wi, --m, dX™ A -+« Adx™. (A.0.4)

By definition, d? = 0.






Appendix B

Equations of motion for the dS
proposal of 2.2.2

In the next formulas the 7 is going to be used to indicate derivation respect
to 6. The following equations of motion are valid outside the sources. For
the source corrections, look at the modifications in 2.2.

Because of the symmetry of the system, the non equivalent equations of
motion from the internal graviton are three, one from I,

a” b// ” 2 I 62¢ f2 f4 2 _8A
2 + 3 + A+ 4A” —2N'Y = T(fo + o e ) (B.0.1)

one coming from the S?> components,

1 a\?2 _a'b a’ da . e o f2 P 4 _aa

7 (q) Sapa e A = (e - ie ™),
(B.0.2)

and one from S%’s,

2 b'\2 _a’b’ b" b / e 2 f2 fz. 2 ,-8A

5 2(5) ey p rp A = o (f - G e ™),
(B.0.3)

The external graviton equation of motion,

—92A " a_/ b’ ’ 2 ’ /_e_% 2 f_2 f_4 2 . —8A

Ne A = A (2a +3b>A +AAT 2N - = <f0 S+ s e )

(B.0.4)

is the one involving the internal cosmological constant A.

The dilaton evolution is given by

/

2¢"+2<2 +3b>¢ 4¢’2+8A’¢+h—+ ;( _5f2_






Appendix C

Forms used in chapter 5

In this appendix, we will give a basis of forms symmetric under the sym-
metry ISO(3) we identified in section 5.6.2. This consists of translations in
the directions x' parallel to the O6-plane, and of simultaneous rotations
of both the x! and of the y', transverse to the O6-plane. In the main text,
we have used this basis to expand both our pure spinors and fluxes.
The one-forms are:

wio =y dy =rdr, (C.0.1a)
wiy =y dx. (C.0.1b)
A 2-form basis compatible with the symmetry is:

we0 = €y Ay’ Adx®, (C.0.2a)
we1 = €y Ay Ady", (C.0.2b)
woo = €y dx) Adx®, (C.0.2¢)
wos =y Ay Ay dx = wigAwiy , (C.0.2d)
wos =dx' Ady' =T ; (C.0.2¢)

we recalled here that the last form is nothing but the two-form | of the
massless O6 solution, (5.2.4).
The 3-forms can be written in terms of:

1 ; .
w30 = éeijk dx! A dx/ Adxk = vol; , (C.0.3a)
1 ; )
W51 = g€ dy' A Y A dy* = vol, , (C.0.3b)
wsg = €pdx’ A dy' Ady*®, (C.0.3c)
wss = €jpdx’ A dx! Ady®, (C.0.3d)
w34 = €ijkyi yrdx™ A dy Ady® = wig Awgg , (C.0.3e)
wss =y dX Ndy' AdY = w1 Awoy (C.0.31)
wsg =y d) Adx' Ady' = wioAwos (C.0.3g)
ws7 = €y rdr Adx! Adx® = €y y™ dy™ Adx) Adx®,  (C.0.3h)



4-forms and 5-forms can then be obtained as wedge products from the
previous definitions:

wio = €y dx™ A dx! Ady™ Ady* = woo A wyy (C.0.4a)
Wit = €ijk€imn V' ¥ dX Adx™ AdYE Ady" = woy A woy (C.0.4b)
w0 = y'dx' Avol, = wiq Avol, , (C.0.4c)
ws3 = voly Ay dy' = volj Awyg , (C.0.4d)
Wi, =dx AdX Adyi Ady = -] ; (C.0.4e)

w0 = Woo AVOl, , (C.0.5a)

ws1 = woy A VOl . (C.0.5b)

Crucially, this basis is closed under exterior derivative d wedge product.
One can then express both in terms of appropriate tensors: for example,
the wedge product between the 2-form ¥ = V;w,;,(i = 0,...,4) and the
3-form Q = Quws;, (I =0,...,7) can be written in terms of a tensor Wos:

YAQ=VY;Qrwyi Awsr =¥ Q2 (Wos)i1qwsa = (Y AQ)qwse ,  (C.0.6)

where a = 0,1. The same idea can be applied to the exterior derivative.
For example:
L L

dV¥V =d(¥;wy) = ?iww A wy; + Vid(we;) =

?l(W12)0,i,l + \I]iDi,I} w3

(C.0.7)
with D;; an appropriate tensor. Working out all these tensors speeds up
computations significantly.

Under the a parity transformation

O:Yi — —V; (C.0.8)

in the directions perpendicular to the O6-plane, the forms defined above
transform by picking up signs. These signs are summarized in table C.1.

Table C.1: Parity properties of our form basis under I, in (5.6.15).

| Even \ Odd |
1-forms ) w1 1
2-forms w90 Wy 1, W22, W23, W 4
S-forms || ws0, W32, W34, W36 | W31, W33, W35, W37
4-forms W41, W42, W43, W4 4 w40
5-forms w50 W5 1




Appendix D

Formalism used in part II

D.1 Notations

Even if it can generate confusion, we decide to use the metric with sig-
nature (+ — —) in the last chapter, since it is the one traditionally used in
[6, 40] and it makes the comparison with other results in the literature
easier. The covariant derivative is given by

Dy = By + iALTED; . (D.1.1)

where Tj; are the generators of the gauge group. Consider the gauge

group SU(N) and recall that for a field in the adjoint representation, the
generators are given in terms of the structure constants by
T = —if; .
These generators are normalized according to
te(T2T?) = N 6.
Also, in this case the covariant derivative is given by

D/J¢c = au¢c + félegd)b .

When specializing to SU(2) gauge group (f2°¢ = €2°¢), our convention for
the generators becomes

T5. = —i€abe; (D.1.2)
s0, such that
tr[T?, Tb] = 28ab (D.1.3)
and
Du(ba = au(ba + €abcApb¢c . (D-l'lf)

3d fermions are Dirac, with ¥ = 79°. We choose the representation of
gamma matrices with 7° = 0y, y' = ios, ¥* = ioy.






Appendix E

Towards a family of
(non-)supersymmetric solutions

We saw how is possible to convert supersymmetry equations in terms of
differential conditions on forms. In the case of SU(3) structure, the whole
information is encoded into the simplectic form J and the holomorphic
volume 2, while in the SU(3) x SU(3) case we have a sort of generaliza-
tion of it, involving some J;, and €2,.

We saw ], and €2, can be expressed in term of j and w, defining an SU(2)
structure. It is possible to apply this decomposition to an SU(3) structure
too, since SU(3) ¢ SU(3) x SU(3).

Once a supersymmetric solution with structure SU(3) is found, is it possi-
ble to deform its SU(2) structure in order to find a new supersymmetric
solution, again with SU(3) structure? In this way it would be possible to
build families of supersymmetric solutions from an original forefather.
Moreover, note that in the previous proposal there is not the necessity
of starting from, or finishing to, a certain curvature in the internal space,
so it seems to be possible to pass from an AdS to a Minkowski solution,
or viceversa.

There is a second consideration to analyse: as we said in the second
chapter, supersymmetry equations are differential equations of the first
order, while the equations of motion are of the second. Suppose we
know how to write equations of motion in terms of pure spinors: then,
the same algorithm of the SU(2) deformation could be applied in order
to find non supersymmetric solution. In fact, it could be possible to use
a supersymmetric solution, i.e. a solution of a first degree differential
system of equations, in order to reduce the degree of the equations of
motion.

At the end of the day, the main target of this construction is to check



if there is the possibility to build non-supersymmetric solutions starting
from supersymmetric ones in terms of pure spinors. In order to do that,
one has to write the equations of motion in terms of pure spinors. Some
attempts to go in that direction are known in the literature, [44, 45, 46], but
at the moment of the writing of this thesis none had done completely in
a satisfying way. This project is (slowly...) evolving with the collaboration
of Stefano Massai, a colleague from Saclay.

Anyway, at the moment, the SU(2) deformation has been studied only for
the first simple step from AdS to AdS (the result is not so exciting, but it
is the first step).

In the whole chapter we will use the following notation: “unhatted” quan-
tities are the known one (the original supersymmetric solution), “hatted”
quantities are the one “deformed” (the output). If &, and ®. are pure
spinors satisfying the previous notations, the main idea can be rephrased
as:

&, = &, (., parameters). (E.0.1)

E.1 SU(3) structure for every pure spinor

Let us ask all pure spinors to have a SU(3)-structure:

a

b, =peile; d_ = p;
d_

Q.

Il
T ™

q)+ _ peiQ e—i]’.

and express the forms in the game in terms of SU(2) structure:

J =j + Re(v) Alm(v); Q=ivAw, (E.1.1)
where
jAw = 0; Re(w) A Im(w) =0;
i? = Re(w)? = Im(w)%; w pure (E1.2)

(the meaning of “pure” will be explained later).

In principle there is no way to know what the shape of J, 2 should be.
In the game there are just 3 real 2-forms:

j, Re(w), Im(w) (E.1.3)

and 2 real 1-forms:
Re(v), Im(v). (E1.4)

Is it possible to decompose | and € in terms of these forms? At first
sight one would say that there is no so much freedom to built a new (1,1)
and a new (3,0) from the forms in the game. Anyway, remember that



modifying 2, somehow the concept of (1,1) is changed . In other words,
what decide what is a (1,1) form, for instance, is the new Q.

So, if Q is pure, it will be enough.

Before going on, note that in the most general case, the warping too
should be modified:

A=A +A (E.1.5)

The shape of the deformation is due to Bianchi identities for the Romans
mass in AdS'.

E.2 From AdS

In the following we will focus on supersymmetric solutions obtained start-
ing from AdS and going to AdS. The result is not so exciting, just a specific
class of known solutions can be built from an AdS supersymmetric solu-
tion. Anyway, the same idea could be used in order to build Minkowski
solutions (quite rare) from AdS one.

The presentation of this living project is the occasion of presenting in
details supersymmetry equations in terms of pure spinors in the special
case of SU(3) structure.

dy(Re(®),) = —2ue *Re(d)_; (E.2.1a)
dy(Im(®),) = 0; (E2.1b)
g _ ]/\d<e‘3AIm(§2)> - ]_1L[d<e_3AIm(Q)> _HA <e-3AIm(Q)>]

+5pne A Re(ee) (E2.1¢)

E.2.1 Supersymmetry equations non involving fluxes

First, let us focus on (E.2.1a) and (E.2.1b). The 1-form contributions say
that

dp = do = 0. (E.2.2)

Instead, the next degree is much more interesting: from (E.2.1a) and
(E.2.1b)

d] = —tan6H = —2une " sinORe(Q);

E.2.3
H =2ne*cosORe(RQ). ( )

'In Minkowski with SU(3) structure the Romans mass is identically zero.
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Implications on torsion classes

Note that the non zero value for dJ turns on the W, torsion class: in fact,

0=d(JARQ)=d]AQ+]ANdQ

E.2.4
= —%i}le‘Asir19]‘7’+W1]3 ( )

4
so W, = gi pesin(@). Let us look at the Q side: the most general case

1S
dQ =W 2+ Wo AT+ Ws A Q, (E.2.5)

with W, A J? = 0. We are asking Ws to be (1,0) and W, to be a (1,1)-form.
Since we have only a 1-form that is (1,0) (and it is v),

W5 = W5V, (E26)
and analogously
Wy = wy;j + wy, Re(v) A Im(v). (E.2.7)

On (E.2.7) let us impose the primitivity condition:

Wy A J? =(2wy; + Wy ,)j* A Re(v) A Im(v) = 0, (E.2.8)
implying wy, = —2wy; = —2wy. So,
Wy = wy (j — 2Re(v) A Im(v)). (E.2.9)
Bianchi identities on H implies
d(e *Re(R)) = 0, (E.2.10)
which means
Re(wy) = 0 .
Im(ws) = —% . (E.2.11)
Re(ws) = —10% = To Im(ws)

(since W, is purely imaginary, it has no contribution from the previous
calculations).

E.2.2 Supersymmetry equations non involving fluxes

, . Fy
In order to avoid useless constant factors, let us renormalize fluxes: — —
F.2.

From (E.2.1c), one can calculate the Romans mass:

F, = 5pe~** cos6 (E.2.12)

Note that it is just a renormalization respect to a constant, see (E.2.2)
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Now you can see why we changed the warping factor as in (E.1.5): in
AdS, the Bianchi identity for the Romans mass,

dFy =0 (E.2.13)

is equivalent to
dA =0, (E.2.14)

which implies that W5 = 0. This is not true for Minkowski, so going to
a space with different external curvature would imply a variation in the
warping as (E.1.5).

Let us calculate Fj:

F, = — ]“1Ld<e“3AIm(Q)> +Bpe*Asing]

~3A
:e_[ — (3w + pe A sin 0)j + (6w — pe ?sin O)Re(v) A Im(v)

3
(E.2.15)
Before going on, let us notice that since j A Q2 = Re(v) AIm(v) AQ =0,
HAF, =0. (E.2.16)

For the calculation of F,, it has been used J~'_ J° = 3J%

3 3
F, =§pe‘4A cos 0] = EFOIQ. (E.2.17)
Last, for completeness, Fg:
—4A s
Py =10 S0 e sin0vols, (E2.18)

Non trivial Bianchi identities

Let us start with F,: these are quite straighforward since dFy, = 0 and
J Ad] = 0 imply dF, = 0. Moreover, thanks to (E.2.16), we see that

dyF, =0 (E.2.19)

and no source for F, (D4 or O4%) is allowed.

Let us look to the remaining F,: with lots of patience, the result is
2
dyF, =e*3A{ —WwjAdx —3wdj + ,ue"A[ —4wsin + ,ue*A<g sin” 0 + 10 cos? 9”

- (Re(v) A Im(w) + Im(v) A Re(w)) }’

=(source)ags.
(E.2.20)

As it is easy to imagine, the problem is going to be fixing sources: this can
be easily done once the beginning and the ending space have the same
curvature in the external manifold, but it is not so clear what to impose
when the external spacetimes enjoy different curvature. The subject is
under study, at the moment.



E.2.3 Exterior derivatives

In what follows, just the forms already presented are going to be used, i.e.
all forms defining the SU(3)-structure are the only forms in the game. In
order to have a complete control over them, we should know the exterior
derivative over them in full generality. Because the differential forms in
the game satisfy different conditions according to the curvature of the
external space, we proposed the most general expansion of the exterior
derivative of our forms; the expansion depends on the curvature of the
external spacetime.

We will not present here how the exterior derivative expansion looks like
in its whole ugliness. Anyway, we just say that in passing from AdS to
AdS lots of simplifications occur and the system give a readable answer
(even if not really interesting...).

E.3 Deformations

Now, let us go to the most (hopefully) interesting part of this chapter, that
is the way the system is deformed.

E.3.1 Conditions for SU(3) structure for &,

In full generality, it is possible to write

N Re(v) A Im(v)

J = aj+bRe(w)+c Im(w) o2

(E.3.1)
where latin letters are real coefficient, while greek ones are complex (the
coefficient to Re(v) AIm(v) may look odd, but the shape chosen will clarify
its geometrical interpretation in the following). j and w satisfy (E.1.2), as
already said.

Let us apply all conditions that define an SU(3) structure: asking that

J* = 2Re(9) AIm(Q) (E.3.2)
implies

a? +b? +c? = e (E.3.3a)

af” + [B]” + |7” = 2. (E.3.3b)
Instead, ] A Q2 = 0 gives

(aa + Bb + yc) = 0, (E.3.4)

that can be separated into the real and the imaginary part:

Re(a)a + Re(B)b + Re(y)c =0;

Im(a)a + Im(B)b + Im(y)c =O0. (E.3.5)

n

; Q = ivAlaj+BRe(w)+y Im(w)),



Now, purity on Q means just that, if Q =i v A ®, then &* = 0, so
0 =0=(a®+p*+ %)% =0, (E.3.6)
which implies
Re(a)? + Re(B)? + Re(y)? = 1 = Im(a)? + Im(B)? + Im(y)? (E.3.7)
and, together (E.3.3b),
a?+p2+92=0

af? + |+ |2 = 2. (5:58)

Note that the case | = J and Q = Q automatically satisfies all our condi-
tions.

E.3.2 Geometrical interpretation

Note that, just considering the parameters for 2 defines a special surface
through (E.3.8), i.e. a locus in R® in which the vector of the real part
is orthogonal to the vector of the imaginary part and both have unitary
modulus. It can be easily seen in formulae. Let us define:

04
a=| B |, (E.3.9)
4

Eqts (E.3.8) can be rewritten as
Re(a)-Re(a) = Im(a) - Im(a) = 1; Re(a) - Im(a) = 0. (E.3.10)

First condition implies that Re(a) define an S%. Anyway, for every Re(a)
there is an orthogonal Im(a), which fix a S!. So the solutions live over
5% x S! = S%, that is the famous Hopf fibrations.

Anyway, since equations (E.3.10) are quadratic, we have an invariance
for the change of sign, so at the end of the day, the parameters for the
definition of € is

S3/Z,. (E.3.11)
If we now add the condition from (E.3.4), the result is quite interesting:
define a vector

a
a=|(b |, (E.3.12)
(&4

which, because of (E.3.3a), has modulus e (in principle e is allowed to
vary as it prefers). The condition (E.3.4) (and following) implies, in terms
of 3 dimensional vectors,

a-Re(a) = a-Im(a) = 0. (E.3.13)

So, the main difference of the vector a respect to Re(a) and Im(a) is the
fact that the modulus is not fixed to 1, but it is controlled by the value
of the coefficient e. The conditions for the deformed SU(2) just define a
system of orthonormal three vectors, so it is like choosing a coordinate
basis in R® to define a point.



E.4 To AdS

Obviously, AdS supersymmetry equations are the same that we already
saw in E.2, but with “hatted” quantities:

dy(Re(d),) = —2fe*Re(d)_; (E.4.1a)
dy(Im(d),) = 0; (E.4.1b)
E =f/\d< “SAIm( )) —j [ < “ﬁ‘lm(f)))ﬁ/\ <e“3AIm(Q)>]

+ 5pe A Re(eile ) (E.4.1c)

As we did in E.2, we normalized the fluxes as 5 - F.

Of course, there is no need to calculate again everything, we can just
“hat” quantities already calculated:

dp=db=0 (E.4.2a)
df = —20e 2 sin O Re(Q) (E.4.2b)
dRe(2) =0 (E.4.2¢)
dIm(Q2) = (Im(Wy) + w)j* + (2Im(W;) — w)j A Re(v) AIm(v)  (E.4.2d)
¢¢5=e-ﬁ{—w;Adx—Sde
+ ﬁe"A[ —4Wsinf + ﬁe*A <% sin” B + 10 cos? @”
(Re()/\hn()A—hn()/\Re())} (E.4.2€)

where j = | — Re(v) A Im(v).

E.4.1 From AdS to AdS: final comments

Plugging all ingredients together is hard, but not so complicated (just a
huge amount of algebra) and some interesting (maybe) results can be
obtained. First, consistency of the algorithm fixes

6=0=0. (E.4.3)

Moreover, there are some differential constraints on a, b, c and «, 8, ¥
currently under study. Anyway, the result is that if there are solutions
(and the system does not have any big evidences of fighting constraints),
there should send a nearly Kahler to another nearly Kahler. This should
not come as a surprise: the building blocks are defined over a nearly
K&ahler manifold and it seems strange that the system could go to some-
thing completely different than a from a nearly Kahler.

Much more interesting results should come from changing the curvature
in the external manifold, i.e. going from AdS to Minkowski, since in this

p



case the system is different and there should be enough freedom to find
a solution.

So, at the end of the day, the idea is to check if there is the possibility
for going from and to spacetime with different external curvature. The
situation, anyway, has a difficulty: how should I work out the shape of
sources? In the system analysed the only possible sources are D6 or O6,
but how to relate the ones in input to the output ones? The easiest idea
should be to ask them to be equal in form?, but the subject is still under
study.

SWith “equal in form” we mean that if in the original theory, for iqstance, the source
is f(Q2), the source contribution of the theory in output should be f(<2).

q






Bibliography

[1] L. J. Romans. Massive N=2a Supergravity in Ten Dimensions. Phys.
Lett., B169:374, 1986.

[2] Ofer Aharony, Daniel Jafferis, Alessandro Tomasiello, and Alberto
Zaffaroni. Massive type IIA string theory cannot be strongly coupled.
JHEP, 1011:047, 2010.

[3] Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Mal-
dacena. N=6 superconformal Chern-Simons-matter theories, M2-
branes and their gravity duals. JHEP, 10:091, 2008.

[4] Davide Gaiotto and Alessandro Tomasiello. Perturbing gauge/gravity
duals by a Romans mass. J. Phys., A42:465205, 20009.

[5] M.F. Atiyah and Nigel ]. Hitchin. Low-Energy Scattering of Non-
abelian Monopoles. Phys.Lett., A107:21-25, 1985.

[6] Nathan Seiberg and Edward Witten. Gauge dynamics and compact-
ification to three-dimensions. 1996.

[7] Gordon Chalmers and Amihay Hanany. Three-dimensional gauge
theories and monopoles. Nucl.Phys., B489:223-244, 1997.

[8] Oliver DeWolfe, Alexander Giryavets, Shamit Kachru, and Washing-
ton Taylor. Type IIA moduli stabilization. JHEP, 07:066, 2005.

[9] Bobby S. Acharya, Francesco Benini, and Roberto Valandro. Fixing
moduli in exact type IIA flux vacua. JHEP, 02:018, 2007.

[10] Shamit Kachru, Renata Kallosh, Andrei Linde, and Sandip P. Trivedi.
De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003.

[11] Vijay Balasubramanian, Per Berglund, Joseph P. Conlon, and Fer-
nando Quevedo. Systematics of Moduli Stabilisation in Calabi—Yau
Flux Compactifications. JHEP, 03:007, 2005.

[12] Eva Silverstein. Simple de Sitter Solutions. Phys. Rev., D77:106006,
2008.



[13] Ulf H. Danielsson, Sheikh Haque, Paul Koerber, Gary Shiu, Thomas
Van Riet, and Timm Wrase. De Sitter hunting in a classical landscape.
Fortschr. Phys., 59:897-933, 2011.

[14] Fabio Saracco and Alessandro Tomasiello. Localized O6-plane solu-
tions with Romans mass. JHEP, 1207:077, 2012.

[15] Jerome P. Gauntlett, Dario Martelli, Stathis Pakis, and Daniel Wal-
dram. G structures and wrapped NS5-branes. Commun.Math.Phys.,
247:421-445, 2004.

[16] Dieter Liist and Dimitrios Tsimpis. Supersymmetric AdS, compacti-
fications of IIA supergravity. JHEP, 02:027, 2005.

[17] Mariana Grana, Ruben Minasian, Michela Petrini, and Alessandro
Tomasiello. Generalized structures of N = 1 vacua. JHEP, 11:020,
2005.

[18] Mariana Grafia, Ruben Minasian, Michela Petrini, and Alessandro
Tomasiello. A scan for new N = 1 vacua on twisted tori. JHEP,
05:031, 2007.

[19] Juan M. Maldacena and Carlos Nufiez. Supergravity description of
field theories on curved manifolds and a no-go theorem. Int. . Mod.
Phys., A16:822-855, 2001.

[20] Sheikh Shajidul Haque, Gary Shiu, Bret Underwood, and Thomas
Van Riet. Minimal simple de Sitter solutions. Phys.Rev., D79:086005,
2009.

[21] Gary Shiu and Yoske Sumitomo. Stability Constraints on Classical
de Sitter Vacua. JHEP, 1109:052, 2011.

[22] Eric Bergshoeff, Renata Kallosh, Tomas Ortin, Diederik Roest, and
Antoine Van Proeyen. New Formulations of D = 10 Supersymmetry
and D8-O8 Domain Walls. Class. Quant. Grav., 18:3359-3382, 2001.

[23] Paul Koerber. Lectures on Generalized Complex Geometry for
Physicists. Fortsch.Phys., 59:169-242, 2011.

[24] A.C. da Silva. Lectures on Symplectic Geometry. Number No. 1764
in Lecture Notes in Mathematics. Springer, 2008.

[25] Alessandro Tomasiello. Generalized structures of ten-dimensional
supersymmetric solutions. JHEDP, 1203:073, 2012.

[26] Mariana Grana. Flux compactifications in string theory: A Compre-
hensive review. Phys.Rept., 423:91-158, 2006.

[27] Marco Gualtieri. Generalized complex geometry. 2003. Ph.D. Thesis
(Advisor: Nigel Hitchin).



[28] Alessandro Tomasiello. Reformulating Supersymmetry with a Gen-
eralized Dolbeault Operator. JHEP, 02:010, 2008.

[29] Alessandro Tomasiello. Geometrical methods for string compactifi-
cations.
http://virgilio.mib.infn.it/ atom/laces.pdf.

[30] Claus Jeschek and Frederik Witt. Generalised G, structures and type
IIB superstrings. JHEP, 03:053, 2005.

[31] Ruben Minasian, Michela Petrini, and Alberto Zaffaroni. Gravity
duals to deformed SYM theories and generalized complex geometry.
JHEP, 12:055, 2006.

[32] Nick Halmagyi and Alessandro Tomasiello. Generalized Kaehler Po-
tentials from Supergravity. Commun.Math.Phys., 291:1-30, 2009.

[33] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry.
Wiley-Interscience [John Wiley & Sons|, New York, 1978. Pure and
Applied Mathematics.

[34] Iman Benmachiche and Thomas W. Grimm. Generalized N = 1
orientifold compactifications and the Hitchin functionals. Nucl. Phys.,
B748:200-252, 2006.

[35] G.W. Gibbons and N.S. Manton. Classical and Quantum Dynamics
of BPS Monopoles. Nucl.Phys., B274:183, 1986.

[36] N. Seiberg and Edward Witten. Electric - magnetic duality, monopole
condensation, and confinement in N=2 supersymmetric Yang-Mills
theory. Nucl.Phys., B426:19-52, 1994.

[37] Amihay Hanany and Edward Witten. Type IIB superstrings, BPS
monopoles, and three-dimensional gauge dynamics. Nucl.Phys.,
B492:152-190, 1997.

[38] Davide Gaiotto and Xi Yin. Notes on superconformal Chern-Simons-
matter theories. JHEP, 08:056, 2007.

[39] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quan-
tum field theory. 1995.

[40] N. Dorey, Valentin V. Khoze, M.P. Mattis, D. Tong, and S. Vandoren.
Instantons, three-dimensional gauge theory, and the Atiyah-Hitchin
manifold. Nucl.Phys., B502:59-93, 1997.

[41] Alexander M. Polyakov. Quark Confinement and Topology of Gauge
Groups. Nucl.Phys., B120:429-458, 1977.

[42] C.V. Johnson. D-branes. 2003.

[43] Edward Witten. BPS Bound states of DO - D6 and DO - D8 systems
in a B field. JHEP, 0204:012, 2002.

u



[44] Dieter List, Fernando Marchesano, Luca Martucci, and Dimitrios
Tsimpis. Generalized non-supersymmetric flux vacua. JHEP, 11:021,
2008.

[45] Ulf H. Danielsson, Sheikh Shajidul Haque, Gary Shiu, and Thomas
Van Riet. Towards Classical de Sitter Solutions in String Theory.
JHED, 0909:114, 2009.

[46] David Andriot, Enrico Goi, Ruben Minasian, and Michela Petrini. Su-
persymmetry breaking branes on solvmanifolds and de Sitter vacua
in string theory. 2010.



	Introduction and conclusions
	I Pure Spinors formalism for supersymmetry equations and the O6 singularity in the massive IIA
	String vacua basics
	Vacua definition and first implications
	Basic definitions
	Vacuum definition

	Equations of Motions
	General properties
	A unlucky proposal for a dS vacua

	Supersymmetry equations

	Spinor, G-structures and differential forms
	G-structures
	Integrability

	Differential Forms vs. G-structures
	Integrability again

	Spinors vs. G-structures vs. Forms
	Differential conditions on spinors and torsion classes

	Generalized Complex Geometry formulation of supersymmetry equations on vacua
	Before the very beginning: Clifford algebra for forms in 6d
	Generalized Complex Structure
	Integrability again

	Compatibility of Generalized Almost Complex Structure
	Last comments before facing pure spinors definition

	Pure spinors
	Compatible pure spinors

	Pure spinors supersymmetry equations
	How to write a pure spinor and its properties
	Pure spinor and SU(3)
	Pure spinors and SU(3)SU(3)structure


	Localized O6 in massive IIA
	Introduction
	O6 solution
	Smeared O6 with Romans mass
	SU(3)SU(3) structure compactifications
	AdS: generic case
	AdS: special case
	Minkowski

	A general massive deformation
	Massive O6 solution
	Symmetries
	First order deformation
	Full solution
	Back to perturbation theory in 
	The special case =0
	Minkowski



	II Topological resolution of Coulomb-branch singularities
	N=4 Super Yang Mills in 3d
	Introduction and motivations
	Symmetries
	Three-dimensional supersymmetric theories
	The N=4 theory without flavors
	Gauge fixing Lagrangian in R-gauge

	The low energy theory
	Quantum corrections to the effective action
	Instantons corrections

	The metric of the moduli space

	Chern Simons deformation
	Yang-Mills-Chern-Simons theory
	Coulomb branch of the Chern-Simons- deformed theory in IR regime
	Coulomb branch of the Chern-Simons deformed theory for finite g



	III Appendix
	General definition: signature, indices and so on...
	Equations of motion for the dS proposal of 2.2.2
	Forms used in chapter 5
	Formalism used in part II
	Notations

	Towards a family of (non-)supersymmetric solutions
	SU(3) structure for every pure spinor
	From AdS
	Supersymmetry equations non involving fluxes
	Supersymmetry equations non involving fluxes
	Exterior derivatives

	Deformations
	Conditions for SU(3) structure for 
	Geometrical interpretation

	To AdS
	From AdS to AdS: final comments


	Bibliography


