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Chapter 1

Introduction and conclusions

It is just in the ’90s, with the AdS/CFT correspondence revolution, thatstring theory was able to interpret the strong coupling limit in gs, thestring coupling. In this big picture, the role of type IIA is peculiar, sincein the strong coupling limit it is possible to show that one dimensionmore is excited and the theory is eleven dimensional supergravity.
Actually this last statement is only true when the Romans mass is notturned on. In 1986, few years before the duality revolutions, Romans [1]proposed a generalization of type IIA supergravity in which the B-fieldacquires mass through Stückelberg mechanism. This extra parameter inthe action has some interesting peculiarities: since it can be rearrangedas a scalar Ramond Ramond field, it is a fixed parameter (it has to satisfythe Bianchi identity) and it behaves like a negative 10 dimensional cos-mological constant.
Moreover, in [2] it was shown that, for classical solutions of massive IIA(i.e. with non zero Romans mass), the string coupling is bounded by thecurvature in string units. In a sense, this makes the problem more rare:any solution with large gs is already invalidated by being strongly curved.This makes the need for a non-perturbative completion less pressing.
There is still one feature of the Romans mass that should be mentioned:if one looks at the Wess Zumino coupling in string theory, the Romansmass appears in the interaction

F0
∫
D2CS(a), (1.0.1)

where a is the gauge field over the D2 and CS is the Chern Simons La-grangian. This kind of coupling created a puzzle when [3] arose: withoutgoing into details, the original model proposed a duality between an AdS4not experiencing a Romans mass with a Chern Simons theory with levels(k,−k). Where was the F0? [4] pointed out that the F0 was hidden in the
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symmetric form of the levels of the conformal theory: once a non zeroRomans mass is added, the levels split to (k, F0 − k).
To summarize, the message so far is that the Romans mass avoids uplift-ing to M-theory and it is dual with Chern Simons theory.
However, let us consider the case of an O6 plane. If one approaches tothe O6, the metric in the massless theory, i.e. with a vanishing Romansmass, reads

ds2O6 = Z−1/2dx2
‖ + Z1/2dx2

⊥ , Z = 1− r0
r , r0 = lsgs . (1.0.2)

Even if we excise the unphysical “hole” r < r0, the metric becomes singu-lar for r → r0. Actually, approaching to r ∼ r0, the dilaton starts growing,such that the supergravity approximation cannot be used and the theoryshould be uplifted to eleven dimension.
After quantum and instantonic corrections the metric appears to be theAtiyah-Hitchin one, studied for the first time in [5]: it is a smooth metric,without singularities, but with a minimal radius at r = π2 r0.
The story of the metric near the O6 in M-theory is quite peculiar. TheAtiyah-Hitchin metric studied in [5] was obtained through the analysis ofhyper-Kähler manifold defined by 2 interacting monopoles with isometry
SU(2); the construction was pure geometric. Later, it was proposed, [6],that the moduli space for the Coulomb branch of a 3 dimensional SuperYang Mills theory with gauge group SU(2) was described exactly by theAtiyah-Hitchin manifold. Moreover [6] compared the infrared limit withthe long distance behaviour of the metric from [5] and they found perfectagreement. The absence of singularities in the metric was then read asthe absence of singularities on the gauge theory side. The stringy expla-nation of this construction was given by [7]: they proposed the theorydefined in [6] to be the theory living on a D2 probe in the nearby of theO6 in M-theory: in this picture, the instantons present in the theory wereD0 exchanged by the D2 with its own image under the O6.
So the singularity of the massless O6 solution (1.0.2) is resolved in M-theory to a smooth hole. What about O6-planes in massive IIA?
Since the theory can not be uplifted, two natural questions arise:
1. What is the solution in supergravity, if there is one?
2. How should the theory on the D2 probe be deformed, in order toencode the effect of the Romans mass, if the massive system has asolution?
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Solutions of massive IIA with an O6 source have been assumed to exist,especially in the context of flux compactifications. A popular trick in su-pergravity is to “smear” sources over the internal manifold; namely, toreplace the localized source with one which is spread all over space. Foran orientifold plane in string theory, this is not really physically allowed,since such sources are supposed to sit on the fixed loci of the orientifoldinvolutions. Nevertheless, smeared solutions are often a good indicatorof whether a bona fide background will exist. Using this sleight of hand,quite a few massive O6 solutions have been found. A well-known earlyexample [8, 9] of moduli stabilization is of this type. Also, the presenceof both O6’s and F0 is considered the most promising avenue for pro-ducing de Sitter vacua in string theory which are completely classical (asopposed to de Sitter vacua such as [10, 11]); examples with the smearingtrick include [12, 13].
In this thesis we will find evidence for the existence of supersymmetricmassive O6-plane solutions, [14]. We will mostly consider a spacetime ofthe form AdS4 ×M6 , (1.0.3)since we have already at least the example [8, 9], which is of this form.The O6 will be filling the four-dimensional spacetime, as well as three ofthe six directions in M6. We will also consider the possibility Mink4×M6;however, we do not know of any supersymmetric Minkowski compact-ification with O6-planes and Romans mass, and for this reason we willgive more attention to (1.0.3).
Actually, although some of our considerations will be more general, wewill just focus on what happens close to the O6, so taking implicitly
M6 = R6, meaning that corrections coming from the curvature of theinternal space are not going to be considered. We cannot expect the ge-ometry on this R6 to approach flat space, however, as would be the caseif one factorized the metric (1.0.2) as Mink4×R6. This is because neitherAdS4 × R6 nor Mink4 × R6 are vacua for the massive theory. We areintroducing two new length scales: 1√

−Λ and 1
gsF0 (since F0 always appearsmultiplied by eφ in the equations of motion). When both of these scalesare large, it is possible to study the features of the geometry closer to thesource (order r0 = gsls).

The deformation induced by the Romans mass on the D2 theory isstill subject of analysis with the collaboration of my advisor AlessandroTomasiello and with Gonzalo Torroba, from SLAC and Stanford Univer-sity. Because of the coupling (1.0.1), the deformation on the theory livingon the D2 due to a non vanishing F0 is a Chern Simons interaction. In thelast chapter we will present our intermediate results: we calculated themetric for the moduli space corrected by quantum effects. It is possibleto see that the singularity disappears. Moreover, the deformation of themetric is proportional to the inverse of the Chern Simons level.
3



Let us give a synopsis of the thesis. It is split in two parts, the first dedi-cated to the supergravity side of the problem of the O6 singularity in IIA,the second examining the gauge theory side of the phenomenon.
Part I begins with chapter 2, introducing the main definitions in the con-text of supergravity for vacua configuration of type II. As an appetizer,we are going to propose some relations among the different charactersin the game due to constraints from the equations of motion and we willpresent briefly an unlucky proposal for a dS vacuum configuration oftype IIA.
In chapter 3, we will show how to relate the existence of a spinor to prop-erties of differential forms. This chapter is going to be crucial: the firstconcepts in order to face supersymmetry equations on vacua of type IIare presented. The main idea is to convert the supersymmetry equations(that have been shown to be solution of the equations of motions too onvacua configuration, [15, 16]), which are spinorial in two parameters, intoequations for differential forms, since differential forms provide geomet-rical interpretation quite automatically. The case examined in this chapteris going to be the easy case in which the two spinorial parameters of su-persymmetry equation are taken to be parallel. At the end of the day, thesituation is like studying properties due to the existence of just one spinor.
In chapter 4 we take the most general case, i.e. the one with two inde-pendent spinorial parameter. It has been shown, [17, 18], that in that casethe usual differential geometry is not enough: the geometry should bestudied on the generalized tangent bundle,

T ⊕ T∗, (1.0.4)
somehow duplicating the original space. We will find that the most gen-eral case has a SU(3) × SU(3)−structure and that the geometrical infor-mation is encoded in polyformic pure spinors living in T ⊕ T∗. We willsee what are the different ways to write a pure spinor, depending onthe topology they define; finally we will see how to write supersymmetryequations in terms of pure spinors.
In chapter 5 we will apply the formalism defined in the previous chap-ter to the case at hand, i.e. the localized O6 in IIA in vacua with a nonzero Romans mass. We will see that the presence of the Romans massby itself saves the O6 from singularities. Moreover, the metric nearbythe O6 can be seen as R × S2 in transverse directions and the presenceof the Romans mass fixes the dimension of the transverse S2 to be nonzero even in the origin, somehow substituting the O6 plane with a bub-ble. Furthermore, since there is no singularity, no minimal radius andeverything is smooth even at the origin, the metric can be analyticallycontinued to negative radii.
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So, in part I there is the supergravity formalism and results. In the partII there is the gauge theory side.
In chapter 6 there is a brief introduction to the original Seiberg–Witten3 dimensional model, [6]. Here we will see that, after breaking the gaugegroup down to U(1), the low energy effective theory gets quantum andinstanton corrections. As we already mentioned, the metric of the modulispace is the Atiyah-Hitchin and it can be seen as the theory on a D2 probenext to an O6 in M-theory.
In chapter 7, the last one of part II, we will present the last results onthe subject of the deformed theory on the D2 probe. We deformed the
N = 4 Super Yang Mills with a Chern Simons term, breaking super-symmetry down to N = 2. Here, we do expect the metric to be smootheven in the origin, as its supergravity counterpart is. We were able toobtain the quantum–corrected metric and in fact the metric does notexhibit singularities in the IR regime. We have an argument about thenon existence of instantons in this theory, differently from the original [6].
Finally, in the appendix it is possible to find the formalism used in thedifferent chapters and the living project E, marginally related to the maintopic of this thesis.
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Part I

Pure Spinors formalism for
supersymmetry equations and

the O6 singularity in the
massive IIA
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Chapter 2

String vacua basics

In this first chapter we are going to analyse implications of studying vacuain supergravity. These configurations are warped products (meaning afibration defined through the warping factor A(y)) of the internal sixdimensional manifold and the external one (the four dimensional space-time), in which the external one has been chosen to be maximally sym-metric, that is Minkowski, AdS or dS. As the name “vacuum” says, theseconfigurations do not have any particles in the external spacetime, sincethey would break the maximal symmetry of Minkowski, AdS and dS.
We are going to work out equations of motion for vacua model and thesupersymmetry ones. The former are not so trivial to solve, since theyare second order differential equations; on the other hand; the latter,even if they are first order in the derivatives and, once they are satisfied,they had been shown to satisfy equations of motion, at first sight they arenot so easy to work with. Anyway, in the following chapter we are goingto see that it is possible to reduce supersymmetry equations on vacuain a much more friendly form, defining univocally the geometry of theinternal manifold.
However, in this chapter we are going to show that even equations ofmotion can deliver important information: in section 2.2 we are goingto show that general results for vacua, known in the literature, can bereproduced just from the equations of motion.
2.1 Vacua definition and first implications

2.1.1 Basic definitionsBefore starting let us give the basic definitions of type II supergravity. Inthe next chapters we are going to be much more interested in type IIA,but for completeness even the IIB scenario will be presented.
9



The massless bosonic field contents of type II can be divided in two sec-tors from its very first construction: the Neveu-Schwarz-Neveu-Schwarzsector, (NSNS) and the Ramond-Ramond sector (RR). The fields contentsof NSNS is the same for the two different type of supergravity theories,while RR is different due to the fact the IIA fermions have different chi-ralities, while IIB have not.
As it could have been guessed, the NSNS sector, since it is equal forboth theories, is related to properties that are fundamental for everygravitational field theory and it contains the metric gMN , the Kalb-Ramondfield BMN (a 2−form) and the dilaton φ (a scalar). In type IIA, RR field areforms of odd degree, C1, C3 , C5, . . . , while in type IIB these are formsof even degree, C0 , C2, . . . In the following we are going to work muchmore with field strengths than with fields: for the NS sector, the only oneis

H ≡ dB (2.1.1)(d is the exterior derivative1) for the B-field. Fields strengths for the RRsector do involve the B-field too,
Fp ≡ dCp−1 −H ∧Cp−3. (2.1.2)The RR field strenghts are constrained by the Hodge duality relation,
Fp = (−1)b p2 c ∗ F10−p, (2.1.3)where b · c is the integer part of the argument. Because of (2.1.3), justfield strength of lowest degrees are often used, i.e F0 ,F2 ,F4 in IIA and

F1 ,F3 ,F5 in IIB. In the following we will use a different electric basis,the “democratic” one, using at the same time all the field strength presentin the theory and later imposing the (2.1.3) as an extra condition.
Anyway, it is quite demanding to work with all these fields, so it appearsmuch nimbler to work with polyforms: define

C ≡
∑
p
Cp; (2.1.4)

this C is the sum of forms (Cp) of different degrees, all odd (IIB) or even(IIA). In terms of C defined in (2.1.4), one can write a polyformic fieldstrength
F ≡ dC −H ∧ C. (2.1.5)In terms of the previous polyforms, Bianchi Identity (BI) for IIA and IIBcan be written as

dH = 0; dF −H ∧F ≡ dHF = 0, (2.1.6)where in the last step we defined the operator dH · = d · −H ∧ · 2. Thereis another subtlety to remember due to sources: as in electromagnetism,
1For the notation of exterior derivatives and contractions, see the appendix A.2Note that, as it happens for the usual exterior derivative, {dH , dH} = 0, once dH = 0.
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in the presence of a source, say an electric charge, the flux of the fieldstrength through a closed surface is proportional to the charge inside thesurface. Usual Dirac quantization arguments implies that even the fieldstrength Fp experiences a quantization∫
Σp

Fp ∼ n, n ∈ N, (2.1.7)
where Σp is a p−cycle and ∼ means that, for the moment, we forgetabout factors depending on the dimension of the cycle.
The fermionic sector contains two Majorana Weyl spinors, the gravitino
ψM and the dilatino λ. Gravitinos (dilatinos) are two and they have thesame chiralities in IIB, while they are different in IIA. The chiralities ofone gravitino and the corresponding dilatino is the same.
2.1.2 Vacuum definitionString theory lives in 10 dimension: among these 10, we want to takethe 4 of the spacetime we experience. Let us assume that our total 10-dimensional space time M10 is fibred over a 4-dimensional manifold,

M10 : M4 ×M6. (2.1.8)
M4 is called the “external spacetime”; the fiber is called “internal mani-fold”.
Vacua configurations are those with a maximally symmetric externalspace, so they enjoy the maximal amount of Killing vectors. In 4 di-mension, this happen to be 10 and it allows just three symmetry group,determining the sign of the cosmological constant Λ: Minkowski (Λ = 0) Poincaré groupAdS (Λ < 0) SO(3,2)dS (Λ > 0) SO(4,1) (2.1.9)
As the name suggests, in supergravity vacua the external space containsno particle: in fact, just the presence of a particle breaks the maximalsymmetry since it singles out a special point or direction.
The fibration (2.1.8) and the requirement for maximal symmetry permitto write the most general metric allowed as

ds2 = e2A(y)g4
µνdxµdxν + g6

mndymdyn, (2.1.10)
where g4

µν is one of the three metric allowed form the external space(2.1.9), g6
mn is the metric in the internal manifold and A(y) is called thewarping factor and it depends only on the internal coordinates (again, inorder not to break maximal symmetry).
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Other bosonic fields in the game are the curvature for the B-field andthe RR field strength. The requirement of vacuum configuration on H istrivial, since it means just that the field has to depend on y coordinatesonly and none of indices has to take values among the external one. For
F the story is a little bit trickier, since a tensor with 4 indices all in theexternal manifold is allowed, since it treats all directions of internal spacesymmetrically. The way out is to write F in terms of forms defined over
M6:

F = F + vol4 ∧ F̃, (2.1.11)where vol4 is the volume form for M4. Imposing the Hodge dualitycondition, it is possible to gain a Hodge duality condition for F and F̃ ,restricted to M6:
F̃ = λ(∗6 F ), (2.1.12)where the operator λ on forms of degree p is defined as
λ · = (−1)b p2 c · (2.1.13)

As we saw, bosonics fields are easy to control in this situation, but whathappens to fermionic ones? The situation is a little bit more complicated:take ε to be a fermion in 10d. In order to satisfy the decomposition ofthe space (2.1.8), we should write ε in terms of fermions written in 4dand 6d. It turn out that the most logical thing to do is
ε± = ζ+ ⊗ η± + ζ− ⊗ η∓, (2.1.14)

where ζ is a fermion on M4 and η one defined on M6. Note that ε isautomatically Weyl once ζ± and η± are spinors of fixed chirality. In orderto demand ε to be Majorana one has to impose ε = ε∗. Once chosen theright basis for the expansion of gamma matrices3, this condition turn to
η− = η∗+; ζ− = ζ∗+. (2.1.16)

This is a great simplification, but in not enough, since so far we did notimpose the maximal symmetry of M4.
If one ζ is specified, then it is possible to construct a vector, i.e. to find adirection among the possible four of M4 by vµ = ζtγµζ and so to breakmaximal symmetry. The idea is that all fermionic equation should besolved for ε in such a way that they appear symmetric for a transforma-tion of the maximal symmetry group of the external space.
If we would like to have the smallest amount possible of supersymmetry,we would like to have N = 1 in 4d, so just one ζ with two possible

3Using the fact that the total manifold is a warping product between the external andthe internal space, it is possible to define
Γµ = eAγµ ⊗ I; Γm = γ5 ⊗ γm. (2.1.15)
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chiralities. But in order to have a N = 2 (we are in type II supergravity)in 10d, then one has to have two possible η. So, at the end of the day
εa± = ζ+ ⊗ ηa± + ζ− ⊗ ηa∓, a = 1, 2. (2.1.17)

Apart from some subtleties to take into account, working with vacuameans studying what are the configuration of the fields of the theory inthe internal space M6.
2.2 Equations of Motions
Before going into the magic kingdom of supersymmetry, let us wait forthe moment in front of the walls and look to something “easier”, i.e.equations of motion. If we are interested just in the bosonic part, theequation of motion for the external graviton:
e−2Φ(e−2AΛ−�6A − 4(∇mA)2 + 2(∇mA)(∇mΦ)) + 14(∑

k

F2
k + Tp

) = 0
(2.2.1)where φ is the dilaton, �6 = gmn∇m∇n, A is the warping and Λ is thecosmological constant of the external space. Tp is the contribution frombranes: it contains a density factor (which is a Dirac delta for localizedsources or a finite density function for smeared ones) and a tension term,which is positive for D-branes, while negative for orientifolds.

Fk ≡
Fm1...mkdxm1 ∧ · · · ∧ dxmk

k! (2.2.2)
and the k−forms Fk are the RR field strengths defined earlier in (2.1.11)so

F2
k = 1

k!Fm1...mkFm1...mk . (2.2.3)On the other hand, the internal graviton gives:
e−2Φ[R(6)

mn−4∇m∇nA − 4(∇mA)(∇nA) + 2∇m∇nΦ− (H23 )mn2 ]
− 12(∑

k

((F2
k )mn − gmn2 (F2

k)) + Tp(gmn2 −Πmn)) = 0 (2.2.4)
where Rmn is the Ricci tensor restricted to M6 and Πmn is the pullbackof the metric on the source and

(F2
k )mn = 1(k − 1)!Fm m1...mk−1Fm1...mk−1

n (2.2.5)
Instead the dilaton equation of motion is
e−2Φ[2�6Φ+8(∇mA)(∇mΦ)−4(∇mΦ)2+H23

]+12(∑
k

[F2
k (k−5)]−TpΠm

m

) = 0
(2.2.6)
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Let us calculate the trace of (2.2.4):
e−2Φ(R− 4�A− 4(∇A)2 + 2�Φ− 32H2)−∑

k

F2
k
k − 32 −pTp2 = 0. (2.2.7)

If we focus on the bosonic sector, no other contribution can appear. Asfor the Bianchi identities, they can be seen as the equations of motionsfor the RR-fields, due to auto-duality.
2.2.1 General propertiesJust combining together the equations, it is possible to obtain severalproperties for vacua configurations.
A = const and deSitterLet us consider (2.2.4) and take the case A = const:

e−2(A−Φ)Λ + ∑
k F2

k + Tp4 = 0 (2.2.8)
In the case of constant warping, dS (meaning Λ > 0) is possible onlywhen Tp < 0, so in the presence of an orientifold.
A,Φ = const, with no sourceLet us consider the case of A,Φ = const without sources (Tp = 0): (2.2.7)becomes

R − 32H2 −∑
k

F2
k
(k − 32 ) = 0, (2.2.9)

while (2.2.6) is
H2 +∑

k

F2
k
(k − 52 ) = 0, (2.2.10)

where we reabsorbed factors of exp(−2Φ) in the definitions of the fields.Summing (2.2.9) and (2.2.10),
R − H22 −∑

k

F2
k = 0, (2.2.11)

meaning that R ≥ 0.
No deSitter without orientifoldsLet us integrate the (2.2.1), multiplied by e4A:∫
d6x√−G e4A[e−2Φ(e−2AΛ−�6A−4(∇mA)2+2(∇mA)(∇mΦ))+14(∑

k

F2
k+Tp)] = 0,

(2.2.12)
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After integration by parts,∫
d6x√−G e4A−2Φ�A = ∫ d6x√−G e4A−2Φ(− 4∇A ·∇A+ 2∇A ·∇Φ),(2.2.13)So ∫

d6x√−G e4A[e−2Φ(e−2AΛ + 14(∑
k

F2
k + Tp

)] = 0 (2.2.14)
means that the dS case need necessarly a source (that should be an orien-tifold, Tp < 0). The result already found in [19], but here it comes directlyfrom the equations of motion for the external space.
2.2.2 A unlucky proposal for a dS vacuaIn order to have stable dS vacua of type IIA, [20, 12, 21] showed that thereare several necessary ingredients: in particular it is necessary in orderto stabilize moduli to have an orientifold O6 as a source and a non zeroRomans mass F0. In my first year of the Ph.D. my supervisor and I triedto build a dS model satisfying those constraints.
The geometry of the internal space was I × S2 × S3, where I is the finiteinterval [0, π]. We supposed that the metric could be written as

ds2 = dθ2 + a(θ)2 ds2
S2 + b(θ)2ds2

S3 , (2.2.15)with the scaling factors a, b defined in order to vanish in the oppositeboundary of I :
a(θ = 0) = 0; b(θ = π) = 0. (2.2.16)In this way it was possible to prove that the system does not experienceany singularity. To avoid problems due to localization we used a smearedO6, meaning that the source, instead being localized in a point througha delta function, had a finite density. The O6 lied in the origin of the S2,meaning that the transverse space respect to O6 is I × S2.

Field strengths were chosen in order to live completely on one of thetwo spheres defining the geometry, i.e., having all indices on the samesubspace of I × S2 × S34:
F2 ≡f2 vol0S2
F4 ≡f4 dθ ∧ vol0S3
F6 ≡κ6e−4A vol6
H ≡h1 dθ ∧ vol0S2 ,

(2.2.17)
where 0 indicates quantities expressed in terms of comoving coordinates.

4In full generality H should have a term proportional to the volume vol0S3 , but theBianchi identity for F2 with the smeared O6 forces it to be zero.
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In order to simplify the problem, we asked the system to have codimen-sion one, i.e. all fields to depend just on the variable θ. For completenesswe reported the equations of motion for the system in the appendix B.
We tried to solve the equations of motion numerically, fixing the bound-ary condition (2.2.16). The algorithm used evolved the system from bothsides of our compact space (θ = 0 and θ = π) and then tries to minimizethe difference from the value of the fields at an intermediate point in
θ. After several attempts, we saw that it was not possible to “close” theinternal space.
Actually this project is shelved: there is the possibility of resuming thesystem introducing a D8, i.e. a plane that make the value of the Romansmass change from side to side. In this way we would have a free pa-rameter to fix (the position of the D8 relative to the O6) and hence muchmore freedom.
2.3 Supersymmetry equations
As it can be easily seen, equations of motion are second order in thederivatives and hence not so trivial to solve. Instead the supersymmetryvariation equations are first order equations in the derivatives and, in thevacua case, they have the useful property of solving the equations of mo-tion automatically, [15, 16].
First, let us look at the supersymmetry equations in type II formalism.In order to simplify the formalism, not so easy by itself, let us convertspinor quantities into differential forms. This at first sight may appearquite odd, but it is sound. The idea is to sendΓM Ï dxM , (2.3.1)or in other words

/α ≡ αi1...inΓi1···n Ï α ≡ αi1...in
n! dxi1 ∧ · · · ∧ dxin , (2.3.2)

where summation on equal indices is implicit. This mapping is called
Clifford map.
Using this formalism, borrowed from [22], the supersymmetry variationsfor the gravitino are

δψ1
M =(DM + HM4 )

ε1 + eφ16FΓMΓε2
δψ2

M =(DM −
HM4 )

ε2 − eφ16λ(F)ΓMΓε1,
(2.3.3)

where εa, a = 1, 2, is the supersymmetry parameter of the transfor-mation and all other characters have already been met in the previous
16



section.
The variation of the dilatino can be arranged easily in term of the super-symmetric variation of the gravitino:

δλ1 − ΓMδψ1
M =− (D − ∂φ + H4 )ε1

δλ2 − ΓMδψ2
M =− (D − ∂φ − H4 )ε2, (2.3.4)

where D ≡ DMΓM and ∂φ ≡ ΓM∂Mφ.
Let us focus on vacua configurations: if we decompose the (spinorial)parameter of the supersymmetry variation εa as we did in (2.1.17) anddivide the gravitino in component with M = µ and M = m, our fourequations (2.3.3), (2.3.4) become(

Dm −
Hm4 )

η1+ ∓ eφ8 Fγmη2
∓ = 0(

Dm + Hm4 )
η2
∓ −

eφ8 λFγmη1+ = 0
µ e−Aη1+ + ∂Aη1+ − eφ4 Fη2

∓ = 0
µ e−Aη2

± + ∂Aη2
∓ −

eφ4 λ(F )η1
∓ = 0

2µ e−Aη1
− +Dη1+ + (∂(2A − φ) + H4 )η2+ = 0

2µ e−Aη2
± +Dη2

∓ + (∂(2A − φ)− H4 )η1
∓ = 0

(2.3.5)

Even if at first sight they may not look so beatiful (and for sure they arenot), they have the property that on vacua their solutions are enoughto solve equations of motion. In the following chapters we are going toshow how (2.3.5) can be rephrased in a more geometrical way.
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Chapter 3

Spinor, G-structures and
differential forms

In this chapter we are going to review some preliminar basics in orderto face the formalism that is going to be used in the rest of the thesis tofind solutions to the supersymmetry equations on vacua (2.3.5).
As we saw, supersymmetry equations in vacua of type II are first orderdifferential equations on two spinors defined in 6 dimensions. For themoment, let us consider the special case in which the two supersymmetryparameters are proportional, i.e.

η1 = aη2. (3.0.1)
(Do not worry about the most general case, it will be treated in the nextsection). We can say that now supersymmetry equations involve just onespinorial parameter.
In this case we can divide constraints from supersymmetry equations intotwo parts:
1. the existence of a well defined spinor (our supersymmetry parameter);
2. differential conditions.
Constraint 1. fixes the topology of our problem, while 2. constraints thepossibility of “gluing” together different patches of our manifold.
In particular, constraint 1. can be set at the same time as:
A. the existence of a well defined spinor;
B. the existence of “special” differential forms;
C. the structure group of the the tangent bundle our theory is definedon.
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These three definitions are equivalent and it is possible to convert theinformation from one formulation to any other:
spinor

��differential forms

88

structure groupnnNext sections will follow the previous scheme upside down, starting fromthe topology defined by G-structures, finishing with the one from a spinor.At the end of every section differential conditions and their meaningwill be presented, together with comparisons with other topological ap-proaches.
3.1 G-structures
First let us approach the problem from the G-structure door. In orderto make this thesis (almost) self consistent, let us start for the very firstdefinition of the fiber bundle.
Informally, a bundle E on a manifold M (called base) with a fiber F isa manifold that locally looks like the product of M × F . This can berephrased more mathematically in the following way:
Definition 3.1.1 Fiber Bundle
A manifold E is called fiber bundle with fiber F over a base manifold M
if there is a projection π : E Ï M which satisfies the following condition.

Take x ∈ M and Uα ⊂ M a local neighbourhood of x and call Φα
the isomorphism that sends Uα × F to π−1(Uα) ⊂ E. If we denote an
element of Uα×F as (x, f ), we ask that π−1(Φα(x, f )) = x as a consistency
condition, called local triviality.We call transition functions those which relate two isomorphism Φα, Φβ,defined over two overlapping open subsets Uα, Uβ in M :

Φβ ≡ ΦαβΦα. (3.1.2)
Let us introduce the two fiber bundles we will study most in the following:the tangent bundle TM is the fiber bundle whose fiber, for every x ∈ M ,is TxM ; the cotangent bundle T∗M has fiber T∗xM for every x on the base.
Using TM definition, the bundle over the base M with fiber an orderedbasis of TM can be defined; this bundle is called frame bundle and it willbe identified with FM . Locally it is possible to define the element of FMas (x, ea), where x ∈ M and ea is a basis of TxM ; if d is the dimension of
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M , ea transforms under the action of the group GL(d,R). The group oftransition functions is the structure group and in this case it GL(d,R).
Anyway, GL(d,R) is quite a “big” group and it would be nice to reduce it tosomething easier to work with, say G ⊂ GL(d,R). A manifold M whosetangent bundle has structure group G ⊂ GL(d,R) is said to have a G-
structure. This possibility depends on the topology of the base manifold.In the following we present several examples of G-structure manifold.
Example 3.1.3 Riemannian manifolds

A Riemannian manifold is a manifold with a symmetric positive-definite
globally defined non degenerate tensor, g (the metric)1. Its structure
group is O(d). The structure group can be reduced to SO(d) if it is
possible to define, starting from the metric, a globally defined volume
form vold.

This statement is quite intuitive: the “extra” S in the group means just
that the determinant of the transformation has to be 1, so no variation
of the modulus is allowed, thus preserving the volume.

If the manifold is “spin”, meaning that one can take SO(d) to its double
cover Spin(d), it is possible to consider spinor bundle too. Since, at
the end of the day, we are interested in working out the geometrical
properties of spinorial (differential) equations, this is going to be the
case.

Example 3.1.4 Presymplectic structures

Let us define J ∈ Λ2(M), a globally defined 2−form over a differential
manifold M of dimension d. If it is not degenerate, i.e. there in no x ∈
M such that Jx = 0, J is called presymplectic structure. The structure
group of a manifold which admit such a 2-form reduces to Sp(d,R).
Example 3.1.5 Almost Complex Structure
Let us define a map I : TM Ï TM such that,

I2 = −Id. (3.1.6)
If we ask I to satisfy the structure group symmetry, π(I v) = π(v) for
every v ∈ TM. It can be proven that in this case, the structure group
reduce to GL(d/2,C) and I is called an almost complex structure. In
fact, because of (3.1.6), I has eigenvalues in C and those are i and −i,
but in order to do that we should complexify our fiber: TM Ï TM⊗C.

1Even if this pletora of bombastic words may look scary, it just means that Rieman-nian manifolds are those manifolds which admit a customary metric.
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The existence of two different eigenvalues permits to divide our bundle
into two subbundles: L, the one which has eigenvalue i under I and L̄,
the one which has eigenvalue −i. So, every basis can be split in co-
ordinates over L, say “holomorphic”, and over L̄, say “antiholomorphic”.

However, since I is invariant under the structure group in passing
from x to y (where x, y ∈ M), (3.1.6) is satisfied, but it is possible to
mix coordinates from Lx to those from L̄x (so holomorphic coordinates,
say, are allowed to be mapped to antiholomorphic ones), even if the
decomposition in Ly and L̄y is present. In order to have a local definition
of holomorphicity, one has to ask for differential conditions (which are
going to be discussed in the following subsection).

Example 3.1.7 Hermitian metric

Since I : TM Ï TM, it can be seen as an element of tensor defined
over T∗M ×TM. If over a presymplectic manifold, the almost complex
structure satisfies

I tJI t = J (3.1.8)
(hermicity condition), it i possible to define a symmetric tensor calledhermitian metric

g = −JI. (3.1.9)
It can be proven that equivalently one can ask for the satisfaction of
I tgI = g over a Riemannian manifold and define a pre-symlectic struc-
ture as J = gI. It can be shown that the structure group is U(d/2).
3.1.1 IntegrabilityAll conditions found so far define the topology of the manifold we areinterested in. Now we have to consider what are the implications comingfrom differential conditions. Before starting, let us give few definitions.
First, let us start with the Lie derivative.
Definition 3.1.10 Lie derivative
Lie derivative L of a scalar function f respect to a vector field X is
defined as

LX(f ) ≡ X(f ), (3.1.11)
meaning that if ∂

∂xi (i = 1, . . . , d) is a basis over TM, then X = Xi ∂
∂xi and

LX(f ) = Xi ∂f
∂xi . (3.1.12)

Instead, Lie derivative of a vector field Y respect to a vector field X is
defined as the Lie bracket of the two vector fields,

LX(Y ) ≡ [X,Y ], ∀X, Y ∈ TM. (3.1.13)
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Now, let us call a distribution a subbundle locally spanned by smoothvector fields. It can be proved (Frobenius’s theorem, see for example[23]) that if the distribution L is closed under the action of Lie brackets(the distribution is involutive), all its elements can be written locally as
Xi
a = ∂xi

∂σa , (3.1.14)
where Xa, a = 1, . . . , rank(L) are vectors spanning L for every x ∈ Mand σa is a proper basis. Property (3.1.14) is called “integrability”, sincethere is the possibility, somehow, of integrating the vector fields on aspecific distribution; at first sight it would seem a trivial property (givena vector, there is always the possibility to find locally an integral curve),but the crucial aspect is that it is possible to do that without exiting fromthe distribution L. The importance of the integrability statement, in fact,is that it allows for coordinate transformations that collect local basisfor a certain distribution. Integrability permits also to choose the mostcomfortable vector basis, i.e. the adapted coordinates, that is ∂

∂xi , i =1, . . . , rank(L), for some x. The main implications of these properties areexamined directly in the following examples.
Example 3.1.15 Complex structure

Applying directly integrability to I implies that is possible to define a
neighbourhood of x ∈ M over which it is possible to define a holo-
morphic and antiholomorphic subbundle L and L̄ (eigenbundle of the
almost complex structure with eigenvalue respectively i and −i), i.e. to
choose a special basis for each distribution.

We call the most convenient basis for L holomorphic coordinates ∂
∂za ,

while antiholomorphic coordinates ∂
∂z̄a are those for L̄. Once integra-

bility is imposed, it is convenient to remain on the same holomorphic
(antiholomorphic) subbundle, going around in the neighbourhood of x.

If the integrability condition is satisfied the almost complex structure I
becomes a complex structure. Using Frobenius theorem, it is possible
to convert the integrability conditions in terms of closure with respect
to Lie brackets:

IX = iX && IY = iY Ñ I[X,Y ] = i[X,Y ]. (3.1.16)
If (3.1.16) is satisfied, the Nijenhuis tensor

NI(X,Y ) ≡ I[IX, Y ] + I[X, IY ]− [IX, IY ] + [X,Y ] (3.1.17)
is identically zero. The converse is also true2. So, a complex manifold
can be defined as a manifold with an almost complex structure which
satisfies NI(X,Y ) = 0 for every X, Y.

2...but it is far from being trivial to prove it.
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Example 3.1.18 Symplectic structure and Darboux theorem

As for the complex structure, the presympectic structure can be made
a symplectic structure once

dJ = 0, (3.1.19)
for every x ∈ M. Using Darboux theorem (that is, somehow, the inte-
grability statement for symplectic structure, [24]), it is possible to write
J as

J = dxi ∧ dyi (3.1.20)
for a certain adapted basis (x1, . . . , xd/2;y1 . . . , yd/2).
3.2 Differential Forms vs. G-structures
At the moment we have several notions about manifold properties de-pending on the G-structures, i.e. how to relate one tangent bundle toanother, with respect to our spacetime manifold (taken as a base for thetangent bundle). It would be great to convert these properties into differ-ential forms properties, since they are really easy to work with.
Let us see what happens case by case, among those studied previously.
Example 3.2.1 Almost complex structure

Before examining how to identify a complex structure, let us start with
some definitions.

We saw that, because of the presence of an almost complex structure
I, it is possible to decompose the tangent bundle into two subbundle
L and L̄, depending on the eigenvalue they take under the action of
I. The same decomposition can be taken over the cotangent bundle:
if Λp(M) is the set of the p−forms, we say that a 1-form ω1 belongs
to Λ(1,0)(M) if ω(X̄) = 0 for every X̄ ∈ L̄. Analogously, one can defineΛ(0,1)(M).
So, when an almost complex structure is defined, it is possible to de-
compose the cotangent bundle into two subbundle T∗M (1,0) and T∗M (0,1).
The same things happens for every p−form, that can be decompose
according to previous decompositionΛp(M) = ⊕

0≤q≤pΛp,q−p(M). (3.2.2)
Using this decomposition, it is possible to construct a (d/2, 0)−form
made by the wedge product of d/2 (1, 0)−forms ωi(1,0) constituting a
frame:

Ω ≡ d/2∧
i=1ω

i(1,0). (3.2.3)
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Note that it is possible to define L̄ (and so, even L) starting from Ω:

L̄ = {X ∈ TM|ιXΩ = 0} (3.2.4)
(the equivalent version for L can be obtained by defining Ω̄ as wedge
product of d/2 (0, 1)−forms constituting a frame). So, at the end of the
day, the existence of an almost complex structure implies the local ex-
istence of Ω.

In the previous section we saw that an almost complex structure has
a structure group GL(d/2,C). This means that our Ω can get a com-
plex factor in passing from a patch to the following and so Ω is not
globally defined. If we want to avoid this problem, we have to reduce
the structure group to SL(d/2,C). Moreover, Ω has to be decomposable,
meaning that locally can be written as (3.2.3).

Example 3.2.5 Hermitian presymplectic structure andU(d/2)-structure

Hermitian presymplectic structure is already a form J ∈ Λ2(M). If we
ask J to satisfy hermiticity condition too, then it should be J ∈ Λ(1,1)(M).
Since Ω is a (3, 0)−form, the previous condition can be rephrased as

J ∧Ω = 0. (3.2.6)
The structure group in this case, as we already saw in Example 3.1.7,
is U(d2 ).
Example 3.2.7 Hermitian symplectic structure and SU(d/2)-structure

In the example 3.2.1 we saw that, when defining a (d/2, 0)−form Ω,
thanks to the decomposition induced by an almost complex structure,
there is the freedom to change Ω by a complex factor in passing from
patch to patch. If we want to give a global definition of Ω we should
avoid this possible factor. We already saw that it is possible, reducing
the structure group from GL(d/2,C) to SL(d/2,C).
If we ask a non degenerate J to satisfy the hermiticity condition with
a (now globally defined) Ω, as in the previous example, this condition
reads

J ∧Ω = 0, (3.2.8)
and the structure group is reduced to SU(d/2).
Since Ω has a global definition, a sort of “normalization” can be fixed,
just linking the adapted basis for J to the one for Ω. Using the same
one for both gives

J3 = 34 iΩ ∧ Ω̄. (3.2.9)
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Before continuing it is important to underline the fact that all propertiesso far are valid point by point: again, if, for instance, we want to relate thesplitting of our almost complex tangent bundle everywhere in a neigh-bourhood of x ∈ M , we should add some differential conditions. As wealready saw in the previous sections, these are just the notion of inte-grability. When relating to differential forms, this statement has an easyformulation that can be applied and generalized in different situations.
3.2.1 Integrability again
Again, in order to face integrability, i.e. the possibility to upgrade thealmost complex structure to a complex one, Lie derivatives are needed.When acting on differential forms, Lie derivatives can be written in termsof contractions and exterior derivatives3:

LX = {ιX, d}. (3.2.10)
One does not need a lot of machinery in order to obtain that

ι[X,Y ] = [LX, ιY ] = [{ιX, d}, ιY ]. (3.2.11)
So, how do we use the integrability condition we mentioned in the pre-vious section? If we look back at the cases examined before, the onlyreally new argument is expressing integrability of the almost complexstructure trough Ω (even in the previous section a symplectic structureis already defined in term of a globally defined differential form J). Othercases start from considering an almost complex structure and imposingintegrability on it.
Example 3.2.12 Complex structure and Ω.
At the end of the day the integrability condition is just

ιXΩ = ιYΩ = 0, ∀X, Y ∈ L̄ Ñ ι[X,Y ]Ω = 0, (3.2.13)
but using (3.2.11), that is nothing but

ιXιYdΩ = 0, (3.2.14)
meaning that dΩ ∈ Λ3,1(M), condition that can be rewritten as

dΩ = W̄5 ∧Ω (3.2.15)
for a certain W5 ∈ Λ1,0(M). In section 3.4 we will see why we choose
such an odd name for W5.

3For the notation of exterior derivatives and contractions, see the appendix A.
26



3.3 Spinors vs. G-structures vs. Forms
So, we finally arrived to the heart of the subject of this chapter, how torelate the existence of a spinor to the G-structure of a manifold. First,let us notice that, since GL(d,R) in general does not have a spinorial rep-resentation, we have to reduce the structure group. As we saw in theprevious sections, it is possible to reduce the structure group to SO(d,R)once we introduce a metric and an orientation. If the structure grouphas been reduced to SO(d,R) its double cover Spin(d,R) has a spinorialrepresentation.
Anyway the story does not end here. How is this spinor related to forms?We already saw how to do that at the beginning of the section 2.3, that isusing a Clifford map.
So, we saw that we can relate forms to gamma matrices (we used this factin order to find a better way to write down supersymmetric equations).In order to simplify the problem, let us focus on 6 dimensions, the oneswe are going to work with in the following sections. So, let us define twoforms from a pure spinor4,5 η+ and its complex conjugate η−:

Jij ≡ η†+γijη+; Ωi1...id/2 = η†−γi1...id/2η+. (3.3.1)
The definitions (3.3.1) are compatible with (3.2.8) and (3.2.9) written ear-lier. Since we are in 6 dimensions, that means that the structure groupdefined by the existence of a never vanishing spinor is SU(3).
So, we were able to reproduce the scheme at the beginning of the chapter.
3.4 Differential conditions on spinors and tor-

sion classes
Before generalizing the statements of this chapter, let us focus on howto classify possible supersymmetry solutions due to the differential con-dition on J and Ω.
Let us make some comments about the result found so far: when workingwith vacua of type II, supersymmetry equations are spinorial differentialequations involving two six dimensional spinorial parameters. When con-sidering just one of them (that is taking the two spinorial parameters to

4In 6 dimensions, the background we are going to work with in the following sections,every Weyl spinor is a pure spinor (a pure spinor is a spinor that is annihilated by themaximal amount of gamma matrices). That is a very lucky feature of six dimensionsthat really simplifies calculations so much: [25] found a very intricate way to use thesame formalism of next sections to 10 dimensions and the “intricateness” relies exactlyon the fact that in dimension greater that 6 not all Weyl spinors are pure spinors.5The pedices indicate the chirality of the spinors.
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be parallel), the geometry of the problem is constrained by the super-symmetry equations themselves: in fact it is possible to relate a spinorin six dimension to the form J and Ω and the geometry is defined bythe differential condition on these two forms. But how to interpret thesolutions?
Let us make a step back and introduce the concept of holonomy: in mov-ing upon a contraible closed curve γi, the physical field φ is transformedunder the action of a subgroup of SO(d,R) (which is the structure group)and this subgroup is called holonomy group.In general, a torsionful connection, compatible with metric6 can be writ-ten as

∇Tη+ =∇LCη+ + Tη+, (3.4.1)where ∇LC is the Levi-Civita connection (which is torsionless) and T isthe cotorsion tensor, somehow encoding how far from being Levi-Civitaa torsionful connection is.
It is possible, in the case of SU(3) structure, to show that there alwaysexists a metric compatible connection ∇T , in general with non zero co-torsion tensor, such that

∇Tη+ = 0. (3.4.2)Because of relation (3.4.1) it is possible to relate every torsionful con-nection with its own cotorsion tensor, i.e. it is possible to classify everyRiemannian manifold using the cotorsion tensor. It is possible [23], [26],to convert informations from the cotorsion tensor into five forms Wi(called torsion classes) such that
dJ =32Im(W̄1Ω) +W4 ∧ J +W3;
dΩ =W1 J2 +W2 ∧ J + W̄5 ∧Ω, (3.4.3)

where W1 is a complex scalar (or 0−form, if you prefer), W2 is a com-plex primitive (1, 1)−form, W3 is a real primitive (1, 2) + (2, 1) form7 and
W4 a real 1-form and W5 a complex (1, 0)−form. Nice tables on howthe values of different torsion classes can define the geometry of the sixdimensional manifolds can be found in [23], [26].
Here we just limit ourselves to two comments: first, W5 found in section3.2.1 is exactly the same of (3.4.3). Then, note just that a Calabi Yaumanifold, which is defined as the manifold that allows ∇LCη = 0 for acertain well defined spinor η, has all torsion classes equal to zero.

6Metric compatibility means just ∇Tg = 0.7Primitivity condition for W2 is W2 ∧ J2 = 0, while for W3 is W3 ∧ J = 0.
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Chapter 4

Generalized Complex Geometry
formulation of supersymmetry

equations on vacua

In the previous chapter we saw that it is possible to relate the geometricalproperties of a certain tangent bundle with differential conditions overits structure group, with differential conditions over “special” differentialforms and with differential conditions over a never vanishing spinor.
That is not enough to solve (2.3.5): in the most general situation we havetwo never vanishing spinors satisfying differential conditions.
Somehow the solution can be seen as duplicating the solution found forone spinor, but instead of working on the properties of the (co)tangentbundle, we have to work on the properties of this Generalized Tangent
Bundle,

T ⊕ T∗. (4.0.1)
In fact, while we saw that the structure defined by a single non vanishingspinor in 6 dimensions is SU(3), we will show that the structure definedby two non vanishing spinors is SU(3)×SU(3). Complications arise evenin the differential forms side of the statement: what once were J and Ωnow are two polyforms Φ±, called pure spinors.
For the first time [17, 18] presented the supersymmetry equations (2.3.5)in terms of polyforms and what is its interpretation in term of general-ized complex geometry.
In the following we will present first the generalized tangent bundle ba-sics, then pure spinors and supersymmetry equations in terms of purespinors. In the last section of this chapter we will present how a purespinor should be written and what are its main features.
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4.0.1 Before the very beginning:
Clifford algebra for forms in 6dLet us start with basic concepts of differential geometry. In what follows

M is a manifold of real dimension 6, as the internal space of our theory.
If we choose a coordinates basis x on M , the derivatives ∂

∂xm can be usedto define contractions ι’s: ιm = ι ∂
∂xm

acts on differential forms as
ιm(dxi1 ∧ · · · ∧ dxin) ≡ p δ[i1

m dxi2 ∧ · · · ∧ dxin]. (4.0.2)
A generic vector v ∈ T can act by contraction as vx= vmιm, where a sumover equal indices is implicit. So, contractions ιm and differential forms
dxm satisfy the following algebra

{dxm∧, dxn∧} = {ιm, ιn} = 0; {dxm∧, ιn} = δmn , (4.0.3)
(At the end of the day, the (4.0.3) is just a mathematical way of expressingthe duality between tangent and cotangent space and the antisymmetryof wedge products and contractions.)
That looks quite funny: if we define an element of T ⊕T∗ as (v, ω) where
v ∈ T and ω ∈ T∗, (4.0.3) is a Clifford algebra respect to the metric

I = ( O6 I6
I6 O6

) (4.0.4)
(O6 is the six dimensional null matrix), so there is a sort of natural metricin term of which a product between elements of T ⊕ T∗ can be defined:if v,w ∈ TM and ψ, χ ∈ T∗M ,

〈v + ψ,w + χ〉 ≡ ψxw + χxv (4.0.5)
In this way the structure group reduces from GL(12,R) to O(6, 6)1.
For completeness, let us give the definition of Lie brackets acting onforms, [v,w]Liex≡ [{d, vx},wx], (4.0.6)where d is the exterior derivative.
4.1 Generalized Complex Structure
Let us consider the generalized tangent bundle,

T ⊕ T∗. (4.1.1)
1Remember from (3.1.3) that in the case of “usual” differential geometry a well definedmetric reduces the structure group from GL(d,R) to O(d).
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We saw that the existence of a never vanishing spinor can be relatedto the structure group SU(3), i.e. the structure group for an hermitiansymplectic structure. Let us generalize it to T ⊕ T∗.
Let us first define a generalized almost complex structure J, a map

J : T ⊕ T∗ Ï T ⊕ T∗ (4.1.2)
such that J2 = −I12 and satisfies

JtIJ = I, (4.1.3)
where I is the simplectic metric on T ⊕T∗ that we already seen in (4.0.4)and it plays the role of the metric on T ⊕ T∗ and the (4.1.3) is the gener-alized equivalent of the hermiticity condition we saw in usual differentialgeometry, (3.1.8). As in differential geometry the existence of a hermi-tian symplectic manifold reduces the structure group from O(6) to U(3)in 6 dimensions, here in generalized complex geometry, what happensis that the structure group is reduced from O(6, 6) to U(3, 3) because ofthe existence of J. Hermiticity condition permits to write J in a matrixform:

J = ( I P
L −I t

)
, (4.1.4)

with P, L antisymmetric matrices and I2 + PL = I62.
4.1.1 Integrability againIn the previous chapter we saw that the solution for having a well definedholomorphic basis was asking something that could sound as

[L, L] ⊂ L, (4.1.5)
in the sense that the tangent holomorphic bundle should be closed un-der Lie brackets, otherwise claimed as “holomorphic coordinates go intoholomorphic coordinates”. How that condition could be reinterpreted inthe generalized geometry scenario?
The problems are two: first, understanding what is the generalized ver-sion of T (1,0)M and then understanding what is the analogous of Lie brack-ets. The first one can be easily solved: T (1,0)M is the subset of TM ofholomorphic vector, i.e. those for which

Im nvn = i vm. (4.1.6)
So, the analogous object to T (1,0)M in T ⊕ T∗ is

LJ = {X ∈ T ⊕ T∗|JX = iX}. (4.1.7)
2The previous two condition comes directly from asking J2 = −I12.
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The second problem seems worse, since the Lie brackets are just definedon T and brackets satisfying Jacobi identity over T⊕T∗ in full generality donot exist. Anyway, Courant brackets, defined as a sort of generalization3of (4.0.6),
[X,Y ]Courant ≡ 12([{X · , d}, Y · ]− [{Y · , d}, X · ]), (4.1.8)

for X,Y ∈ T ⊕ T∗, satisfy Jacobi identity once restricted to isotropic sub-bundles.
Having fixed all these problems, we can defined a generalized complex
structure as a generalized almost complex structure that satisfies the
integrability condition in T ⊕ T∗,

[LJ, LJ]Courant ⊂ LJ. (4.1.9)
At the end of this first section on generalized space, let us make two(hopefully) clarifing examples:
Example 4.1.10 Almost Complex Structure
The main reason we decide to call I the element in the matrix repre-
sentation of J in (4.1.4) is that, when P = L = O6, i.e.

JI = ( I O
O −I t

)
, (4.1.11)

if I satisfies (3.1.6) (so it is an almost complex structure on T) it induces
a natural generalized almost complex structure over T ⊕ T∗. If (4.1.7)
is satisfied too, the two almost complex structure, the usual and the
generalized one, are not “almost” any more.

Example 4.1.12 Symplectic structure
If I = 0 and P = J and L = −J−1 (J ∈ Λ2(M)), i.e.

JJ = ( O J
−J−1 O

)
, (4.1.13)

it is easy to show that J is a non degenerate two form. Once (4.1.7)
is satisfied, it impies dJ = 0, so J is a symplectic structure and the
manifold is a symplectic one.

So, the two “extreme” cases, diagonal and antidiagonal form of J, corre-spond respectively to complex structures and symplectic structures. Thegeneralization of taking all P , L , I 6= 0 is considering all possible situa-tions between these two.
3As it can be easily seen, Courant brackets reduce to Lie’s once X,Y are projectedto the tangent space.
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4.2 Compatibility of
Generalized Almost Complex Structure

So far, the structure group has been reduced from O(6, 6) to U(3, 3). Isit possible to reduce it further?
Let us suppose that, instead of only one generalized almost complex struc-ture, we have two of them, J1 and J2, such that

[J1, J2] = 0. (4.2.1)
First, note that it is possible to define

G ≡ −J1J2 (4.2.2)
which has the properties

G2 = I12; IG = GtI, (4.2.3)
where we used the definition of (4.0.4) and the defining property of the J.
We saw in the previous chapter that a hermitian symplectic manifold, i.e.the one which admit a complex structure which is compatible with themetric, has a structure U(3). In the previous section, instead, we saw thatits generalized complex geometry equivalent is a U(3, 3) structure (sincethe space we are working with is bigger).
For the moment, let us forget about the freedom of varying the norm ofthe spinor and just consider the U(3) structure (fixing the norm of thespinor is going to be the subject of the next section). Because, at theend of the day, our goal is to describe the topological locus defined bythe existence of two never vanishing spinors, we could imagine that weshould consider two “compatible” hermitian symplectic structures, sincein “conventional” differential geometry the existence of a well definedspinor corresponds to a hermitian symplectic manifold. The condition(4.2.1) encodes exactly this idea of “compatibility”. In this way, the struc-ture group reduce from U(3, 3) to U(3)×U(3).
There is another reason why the generalized metric G is so important:the properties (4.2.3) have been shown to imply that it is possible to write

G = ( −g−1B g−1
g − Bg−1B Bg−1

)
≡ ε

(
−I O
O I

)
ε−1, (4.2.4)

where g is symmetric, B is antisymmetric (both B and g are non-degenerate)and
ε = ( I I

g + B −g + B

)
. (4.2.5)
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So, it appears natural to identify g as the metric and B as the Kalb-Ramond field of the original theory. It can be shown, [27], that
J1,2 = ε

(
I1 O
O ±I2

)
ε−1, (4.2.6)

where I1,2 are two almost complex structure.
Example 4.2.7 Hermitian symplectic
(4.1.11) and (4.1.13) are compatible if and only if the hermicity condition
on the metric (3.1.9) is satisfied by the g in (4.2.4). In that case, both
I1 = I2 = I in (4.1.10) and the structure group is U(3), as already seen
in the previous chapter.

4.2.1 Last comments before facing pure spinors defini-
tionSo, at the end of the day, we defined the main features of generalized com-plex tangent bundle we would like to work with: it is a generalization ofthe hermitian symplectic space we saw in the “conventional” differentialgeometry, in the sense that its metric is compatible with a almost (now)generalized complex structure.

Integrability condition has been translated into generalized complex ge-ometry formalism by asking the “holomorphic” section of the general-ized tangent bundle to close under the action of Courant brackets, i.e.the generalization of the Lie brackets. We saw, also, that it is possible toobtain back the case already seen in the previous chapter as special cases.
So, somehow the geometry is under control. How can we glue this in-formation to forms and to spinors?
4.3 Pure spinors
The message delivered from section 4.0.1 was that in 6 dimensions formsand contractions satisfy a Clifford algebra respect to the metric (4.0.4).So, it is natural to identify the spinor bundle to the cotangent bundle of alldegrees, Λ(M) = ∑

p Λp(M) and every spinor can be mapped in a poly-form. The parity of the degree of the polyforms (odd or even) appears tobe the chirality (somehow it is related in the behaviour under the actionof a wedge product).
Before looking to what properties may have a polyformic spinor, let usdefine some quantities that permits to “well” define a polyformic spinor. Inorder to have a good definition, a spinor should have a norm, hopefully
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never vanishing. It is possible to define a product between polyformsusing the Mukai pairing, i.e.
〈A,B〉 ≡ (A ∧ λ(B))∣∣6, (4.3.1)

where polyform∣∣6 indicates the coefficient of vol6 of the part of 6-formcontained in polyform and λ is the operator defined in (2.1.13). Usingthe Mukai pairing it is possible to define the norm for a pure spinor Φas
||Φ||2 ≡ i〈Φ, Φ̄〉. (4.3.2)Let us define LΦ the annihilators set of a spinor Φ as the set of thoseelements A ∈ T ⊕ T∗ such that

A ·Φ = 0. (4.3.3)
Why are we so interested in the annihilators? As always in this chapter,let us relate the ideas from “conventional” differential complex geome-try to generalized complex geometry: in dimensions less or equal4 to 6,all spinors are pure, meaning that the number of annihilators is maxi-mum (in 6 dimensions is equal to 6). The notion can be translated in thelanguage of forms adding a consistence condition, i.e. the one of nevervanishing norm:
Definition 4.3.4 Pure spinor
(In 6 dimension) a polyform Φ such that dim(LΦ) = 6 and ||Φ|| 6= 0 in
T ⊕ T∗ is called pure spinor. If dim(LΦ) = 6, the set of the annihilator
LΦ is said to be maximally isotropic.

As it was done in the previous chapter, this condition can be related tothe geometry of the generalized tangent bundle (as the existence of anever vanishing spinor defined an SU(3) structure manifold and its ge-ometrical properties were set in terms of differential conditions for theforms defining the manifolds).
The fact is that a pure spinor can be used in order to define the eigen-bundle of the generalized almost complex structure J:

LJ ↔ LΦ. (4.3.5)
Note that the mapping cannot be one-to-one, since it is possible to rescalethe norm of the pure spinor without changing its annihilators. So the mapshould be intended between the eigenbundle of J and a line bundle of apure spinor.
Example 4.3.6 Almost Complex Structure (reprise)
Let us reprise 4.1.10: it easy to see that the eigenbundle of (4.1.11) is
just

LI = T (1,0) ⊕ (T∗)(0,1), (4.3.7)
4We are safe!
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confirming our idea that it is just the complex structure eigenbundle
extended to T ⊕ T∗.

How should I write a polyformic spinor in order that the annihilators
are elements of (4.3.7)? The answer is quite easy: the Ω defined in
(3.2.3) has exactly the properties needed. So,ΦI = Ω. (4.3.8)
Example 4.3.9 Symplectic structure (reprise)
The eigenbundle of LJ is less trivial, i.e.

LJ = {vm + ivmJmn|∀v = vm∂m ∈ T}. (4.3.10)
The pure spinor that has annihilator (4.3.10) can be shown to beΦJ = e−iJ . (4.3.11)It has been shown, [27], (and after these two examples it appears muchmore believable) that the most general way to write a pure spinor isΦ = Ωk ∧ eB+ij , (4.3.12)where Ωk is a k−form and B and j are real two–forms. We will go backto this subject in 4.5.
4.3.1 Compatible pure spinorsAs we saw that it was possible (and useful, from the supergravity point ofview) to look for compatible generalized almost complex structure, thenatural question is what are the defining properties of compatible purespinors. As we already said, in order to reduce the structure group to
SU(3)×SU(3), the norm of the two pure spinor should be under control,i.e.

||Φ1|| = ||Φ2||. (4.3.13)Moreover, it has been shown, [28], that [J1, J2] = 0 can be reformulatedas
〈Φ1, XΦ2〉 = 0, ∀X ∈ T ⊕ T∗, (4.3.14)which implies that Φ1 and Φ2 must have different parity. Moreover, notethat, since the generalized metric can be written in terms of the originalmetric and Kalb-Ramond field, it is also possible to relate a couple ofcompatible pure spinors to those geometrical quantities. We will comeback to this issue in the following section, when we will write explicitlypure spinors for different structure group.

Example 4.3.15 SU(3) structure
If (4.3.8) and (4.3.11) are compatible, the structure reduces to SU(3).
Compared to the case analysed in (4.2.7), the difference is that, by
fixing the norm of the two pure spinors, the value of the volume is
under control and the structure group is reduced from U(3) to SU(3).
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There is just one step missing: we saw that it is possible to define thegeometry of internal space in terms of polyformic spinor that can berelated to “ordinary spinors”, but we do not know how this map shouldbe performed. We will not prove it (a partial, but clarifying, proof canbe found in [29]) but the demonstration split into two parts: first thedemonstration that Cl(6, 6) ' Cl(6) × Cl(6) and then that it is possiblewrite a compatible pair of pure spinors asΦ± = eB∧η1+ ⊗ (η2
±)†, (4.3.16)where B is a some two form and ηi± are ordinary Cl(6) spinors of fixedchirality.

4.4 Pure spinors supersymmetry equations
Now that we learned how to write polyformic pure spinors in term of theoriginal spinors, it is possible to write supersymmetry equations (2.3.5) as

dHIm(Φ1) =0
dHRe(Φ1) =− 2µe−ARe(Φ2)

dH
(
e−ARe(Φ2)) =0

dH(eAIm(Φ2)) =− 3µRe(Φ1) + e4A ∗6 λ(f )
(4.4.1)

in the case of AdS. All characters have been already met in the previoustwo chapters, but dH = d − H∧ and µ = √Λ/3 (where Λ < 0 is the cos-mological constant).The Minkowski version of the previous equations is just the limit µ Ï 0.
Even if the simplicity of the (4.4.1) is amazing, there is one ingredientthat may appear annoying: ∗6, the 6 dimensional Hodge star, calculatedrespect to gΦ± is quite disturbing, since the metric informations are con-tained in the pure spinors, whose differential equations we are tryingto solve. In order to fix this problem, there is a second version of theprevious equations, [28], that is

dH
(Φ1) =− 2e−AµReΦ2

F =J1 · dH(e−3AImΦ2) + 5µe−4AReΦ1, (4.4.2)
where J1 is the almost complex structure induced by Φ1.
There is just the only missing point: we saw that two compatible purespinors have to have opposite parity, but the equations look symmetric inthe sense that so far we did not decide, between Φ1 and Φ2, which is theodd and which is the even polyform. It turns out that different choicestake to different theories: if Φ1 =Φ+Φ2 =Φ− (4.4.3)
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the theory is IIA. If, instead Φ1 =Φ−Φ2 =Φ+ (4.4.4)
the theory is IIB.
Before going on, note that (4.4.2) is invariant under the transformation5

H → H − dδb , F → e−δb∧F , Φ± → e−δb∧Φ± . (4.4.5)As it turns out, the bΦ± determined by Φ± transforms as bΦ± → bΦ± + δbunder (4.4.5). The physical NS three-form is the combination
Hphys = H + dbΦ± , (4.4.6)which is thus invariant under (4.4.5). The physical RR field is the onewhich obeys physical Bianchi identities dHphysFphys = δ:
Fphys = ebΦ±∧F . (4.4.7)

4.5 How to write a pure spinor
and its properties

In the following, since we will focus on type IIA compactification, we aregoing to consider how to write pure spinors just in the type IIA case.This situation can be generalized to IIB just switching Φ+ ↔ Φ−.
In (4.3.12) we saw what is the general way to write a pure spinors. Isthere the possibility of restricting more the forms in the game? In orderto do that, let us consider the possible way of writing a pure spinor.
Let us call the type of a pure spinor Φ = ∑k≥k0 Φk the smallest degree k0that appears in the sum; in other words, Φ only contains forms of degreetype(Φ) or higher. It turns out that the type of a pure spinor in dimension6 can be at most 3. There are then three cases:Φ+ has type 0, and Φ− has type 3: this is the usual SU(3) structure casethat we saw;Φ+ has type 0, and Φ− has type 1: this is the most generic case (so SU(3)×

SU(3) ), and it is sometimes just called “intermediate SU(2) struc-ture”;Φ+ has type 2, and Φ+ has type 1: this is called “static SU(2) structure”case.In this thesis, we will only need the first two cases.
5This property is the main reason we are using the system (4.4.2) rather than theoriginal form of these equations, involving the Hodge star. Those equations can bemade invariant under (4.4.5) only after defining a rather awkward ∗b ≡ eb ∗eb operator.
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4.5.1 Pure spinor and SU(3)Let us slightly modify the definitions (4.3.8) and (4.3.11), in order to havea deeper control on the pure spinors6:Φ+ = ρeiθe−iJ , Φ− = ρΩ , (4.5.1)with ρ and θ real functions and J and Ω are the ones already met, i.e.they satisfies
J ∧Ω = 0 , J3 = 34 iΩ ∧ Ω̄ 6= 0 . (4.5.2)We will now describe how to map the metric, the dilaton and the Kalb-Ramond field for this case. The bΦ± obtained by it is zero:

bΦ± = 0 . (4.5.3)The metric defined by Φ± is just g = JI , as we already saw. Finally, thedilaton is given by
eφ = e3A

ρ . (4.5.4)
We also give the form of J+ · , which enters (4.4.2):

J+ · = J ∧ −J−1x . (4.5.5)
4.5.2 Pure spinors and SU(3)× SU(3)structureIn this case, one can parameterize the most general solution to (4.4.2) as[30, 31, 32] Φ+ =ρ eiθ exp[−iJψ] , (4.5.6a)Φ− =ρ v ∧ exp[iωψ] , (4.5.6b)where
Jψ ≡

1cos(ψ) j + i2 tan2(ψ)v ∧ v̄ , ωψ ≡
1sin(ψ)

(Reω + icos(ψ) Imω
)
,(4.5.7)for some (varying) angle ψ, real function ρ, one-form v and two-forms

ω, j satisfying
j ∧ ω = 0 , ω2 = 0 , ω ∧ ω̄ = 2j2. (4.5.8)(4.5.8) can be seen as the 2-dimensional version of (4.5.2), which meansthat ω, j define an SU(2) structure.7 These can also be rewritten moresymmetrically as
j ∧ Reω = Reω ∧ Imω = Imω ∧ j = 0 , (4.5.9a)
j2 = (Reω)2 = (Imω)2 ; (4.5.9b)

6Of course, our modifications do not change the physical contents of the theory.7Actually, from the fact that the norm of pure spinors never vanishes, one wouldget (4.5.8) wedged with v ∧ v̄, but one can show [32, Sec. 3.2] that these can be droppedwithout any loss of generality.
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these equations are reminiscent of the defining relations of the quater-nions i, j, k, which is ultimately because SU(2)∼=Sp(1). Finally, the non van-ishing of the norm of the pure spinors implies that the top-form v ∧v̄ ∧ j2should be non-zero everywhere.
We will now detail the map to the metric and other usual geometricquantities for this case. This can be inferred by comparing (4.5.6) to itsderivation in [30, 31, 32] from spinor bilinears. For example, [32, Eq. (3.19)]can be connected to (4.5.6) by a b-transform; from this, we see that the
bΦ± defined by the pure spinors is non-zero:

bΦ± = tan(ψ)Imω . (4.5.10)
The metric can be found by relating the forms j , ω and v in (4.5.6) to thespinor bilinears of an SU(3) structure. In [32] one finds J = j+ i2z∧ z̄, Ω =
ω ∧ z, where z ≡ 1tan(ψ)v. This tells us that the metric is the direct sum ofa two-by-two block zz̄ = 1tan2(ψ)vv̄, and of a four-by-four block determinedby the SU(2) structure j , ω. In other words, we have two orthogonaldistributions (namely, subbundles of T): D2 and D4. The explicit formof the four-by-four block in the metric is g4 = jI4, where I4 is an almostcomplex structure along D4. This means that I4 squares to -1 along D4:

I24 = −Π4 , (4.5.11)
where (Π4)mn = δmn−RevmRevn− ImvmImvn is the projector on D4. Weshould now compute I4. This can be done by writing I4 = (Reω)−1Imω(which can be derived in holomorphic indices). Since ω only spans fourdirections, Reω has rank 4; so writing (Reω)−1 is an abuse of notation. Itshould be understood as an inverse along the distribution D4. In practice,it can be computed as a matrix of minors:

[(Reω)−1]mn = −2(dxm ∧ dxn ∧ Reω ∧ v ∧ v̄)(Reω)2 ∧ v ∧ v̄ . (4.5.12)
Putting all together, we have

ds2 = jI4 + 1tan2(ψ)vv̄ , I4 = (Reω)−1Imω . (4.5.13)
Finally, the dilaton φ is determined by

eφ = e3A
ρ cos(ψ). (4.5.14)

We also give the form of the operator J+ · that appears in (4.4.2) is similarto the one in (4.5.5):
J+ · = Jψ ∧ −J−1

ψ x . (4.5.15)
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Chapter 5

Localized O6 in massive IIA

5.1 Introduction
In the previous section we organized all tools needed to find solutions tosupersymmetric vacua models. Converting the whole spinorial informa-tion to differential form, it is possible to analyse supersymmetry equationsas differential conditions over the differential forms defined over

T ⊕ T∗. (5.1.1)
A part from simplifying calculations, the generalized geometry formalismfor the analysis of supersymmetry equations provide a natural geometri-cal frame for the interpretation of the solution found.
We can apply this method to the main subject of this thesis, i.e the mas-sive deformation of the metric in the nearby of the O6 plane. In order tounderstand how these deformations should appear in supergravity, let usanalyse first the massless case, i.e. when F0 = 0, and then the smearedmassive solution proposed by [8]. These two have SU(3)−structure.
In the following sections we will show the explicit form of supersym-metry equation in generalized geometry formalism for the most general
SU(3)× SU(3) case and we proposed a deformation due to the presenceof a non zero Romans mass. In the end of this chapter we will showthe numerical result to the first order in the perturbation due to Romansmass and to full order.
In order to spoil the suspense, let us introduce the final results: thepresence of the Romans mass prevents the O6 to experience singularities.The metric in the transverse space is locally R×S2 and the S2 has finitedimension even in the origin, i.e. where the O6 lies; the dimension ofthe transverse S2 in the origin depends on the value of the F0. This canbe interpreted as the presence of an O6 “bubble”, instead of O6 plane,
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in the massive case. Moreover, the absence of singularities permits toanalytically continue the theory for negative radii.
5.2 O6 solution
In this brief section, we will review how the O6 solution in flat space,whose metric was given in (1.0.2), solves the system (4.4.2) in the Minkowskicase.
The internal space M6 is in this case nothing but R6, with coordinates xiand yi (to be thought of respectively as parallel and orthogonal to theO6). The O6 solution is of SU(3)-structure type (4.5.1). For cosmologicalconstant Λ = 0, and hence µ = √−Λ/3 = 0, the equations in (4.4.2) read

ρ = e3A−φ = const , dJ = 0 = H ; d(e−AReΩ) = 0 (5.2.1)
F2 = −J−1xd(e−φImΩ) , dF2 = δ . (5.2.2)

Notice that, in this case, θ is constant, but otherwise undetermined.
In general, in (5.2.1) δ is a delta-like current supported on the sourcespresent. For the O6 solution, it reads

δ = δO6 = −4πlsδ(y1)δ(y2)δ(y3)dy1 ∧ dy2 ∧ dy3 ; (5.2.3)
an SU(3) structure that solves (5.2.1) can then be given as

J =dxi ∧ dyi ,Ω = i(Z−1/4dx1 + iZ1/4dy1) ∧ (Z−1/4dx2 + iZ1/4dy2) ∧ (Z−1/4dx3 + iZ1/4dy3)(5.2.4)
with Z the Green function for the flat Laplacian in R3:

Z = 1− r0
r , r ≡

√
yiyi , r0 = gsls , (5.2.5)

as we already saw in (1.0.2).1 We also have
F2 = − ls2r3εijkyidy j∧dyk , eA = Z−1/4 , eφ = gsZ−3/4 (

ρ = 1
gs

) ;(5.2.6)
gs is a constant that we can think of as the value of eφ at infinity.
The SU(3) structure in (5.2.4) is one possible solution to (5.2.1), and byitself it only describes four supercharges; there are other solutions, re-lated to the one in (5.2.4) by flipping some signs, which describe the othersupercharges. In this paper, we will focus on (5.2.4): for this reason, our

1If we had had N D6-branes instead of an O6-plane, the function Z would have read1 + r0
r , with r0 = Nlsgs/2.

42



massive solutions will have N = 1 supersymmetry.
Finally, notice that, since the solution stops making sense before we canget to r → 0, the equation dF2 = δ has to be understood as a Gauss’ law:namely, ∫

S2 F2 = −4πls , (5.2.7)
for any S2 that surrounds the origin, where the O6-plane is located.
5.3 Smeared O6 with Romans mass
Our aim is to find a O6 solution in the presence of Romans mass. Asrecalled in the introduction 1, a solution of this type can be found easilyif one “smears” the O6 source; this was done in [8] in the language ofeffective field theory, and lifted to ten dimensions in [9].
We take a spacetime of the form (1.0.3): the four-dimensional part hasnon-zero cosmological constant. This means that µ 6= 0, and thus wehave to use the AdS version of the supersymmetry conditions (4.4.2). Ifwe also take

θ = 0 , (5.3.1)we get2
dJ = 0 , dΩ = −igsF2 ∧ J , H = 2µReΩ , ρ = const , A = 0 ;
gsF0 = 5µ , dF2 −HF0 = δ , gsF4 = 32µJ2 , F6 = 0 . (5.3.2)From (4.5.4), it also follows that the dilaton is constant; gs ≡ eφ.
So far, the source δ was unspecified. To find the solution in [8], take
F2 = 0. Then we see that the Bianchi identity for F2 implies

δ = −2µF0ReΩ . (5.3.3)This is the “smearing” proposed in [9].
To get a sense of the physics of this compactification, let us moreoverassume as in [8] that F0 is of order one, that the periods of F4 are of order
N , and that the internal space has volume ∼ R6. We know already that
δ ∝ ReΩ; it makes sense to fix the proportionality constant as

δ ∼ − 1
R3 ReΩ , (5.3.4)

2The first two equations in (4.4.2), which are the ones that are equivalent to theconditions of unbroken supersymmetry, do not by themselves imply that A = 0. For theRomans mass they would give gsF0 = 5µe4A; if one now also adds the Bianchi condition
dF0 = 0, one gets that A is constant. In (5.3.2) we set it to zero, because a non-zero valuecan always be reabsorbed in the definition of µ.
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so that integrating δ along a 3-cycle gives an order one number. TheBianchi identity then says F0µ ∼ R−3; moreover, from (5.3.2) we see that
F0 ∼ µ/gs and F4 ∼ F0R4. We thus find that the parameters scale as

R ∼ N1/4 , gs ∼ µ ∼ R−3 ∼ N−3/4 . (5.3.5)
We have seen that it is easy to find a supersymmetric solution includingO6 planes and Romans mass, if one is willing to smear the O6 source δas in (5.3.4). As stressed in the introduction 1, smearing an O6 is not re-ally meaningful in string theory, but solutions obtained with this trick areoften precursors to “localized” solutions, namely ones where the sourceis delta-like as it should be (as in (5.2.4)). So we can take the solution re-viewed in this section as an inspiration for the solution we are looking for.
The most natural course of action might seem to solve the equations(5.3.2) without assuming F2 = 0, and with an unsmeared source, unlike in(5.3.4). However, we immediately face a problem: (5.3.2) imposes A = 0.This does not seem possible for a solution with a source: in particular,the solution with F0 = 0 has a non-constant A, as we can check from(5.2.6).
So unfortunately we cannot use SU(3) structure solutions. We are leftwith the second and third cases in section 4.5. If we think of adding asmall amount of F0 to the massless solution, which is SU(3), it seems morenatural to select second case, which is generic and can be continuouslyconnected to the SU(3) structure case, rather than third one, which isisolated. This is the reason we did not study the third case in section4.5. In section 4.5.2 we reviewed the solution (4.5.6) of the algebraicconstraints (4.3.13, 4.3.14) for SU(3)×SU(3) structure; we will now analyzethe corresponding differential equations.

5.4 SU(3)× SU(3) structure compactifications

As we just saw, a localized O6 with Romans mass cannot be an SU(3)structure solution; this motivates us to look for an SU(3) × SU(3) struc-ture solution. For that class, the algebraic constraints have been reviewedin section 4.5.2; we will now use those results (in particular (4.5.6)) in thesystem (4.4.2). This section contains both a review of old results, andsome new ones — most importantly, the expressions for the fluxes.
For reasons explained in the introduction 1, we will first look at the AdScase, which we divide in two sections, 5.4.1 and 5.4.2. We will then alsoanalyze the Minkowski case, in section 5.4.3.
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5.4.1 AdS: generic case
GeometryWe will start by the first equation in (4.4.2), dHΦ+ = −2µe−AReΦ−. Using(4.5.6), the one-form part says that

d(ρ sin(θ)) = 0 , (5.4.1)
Rev = eA2µ sin(θ)dθ . (5.4.2)

In deriving (5.4.2), we have solved (5.4.1) by taking
ρ = ρ0sin(θ) , (5.4.3)

where ρ0 is a constant. This means that we have assumed
θ 6= 0 (5.4.4)everywhere. In this subsection, we will continue our analysis in thisassumption. The case θ = 0 is quite different, and will be described insection 5.4.2.Coming back to dHΦ+ = −2µe−AReΦ−, its three-form part now gives

H = −d(cot(θ)Jψ) , (5.4.5)
d
( 1sin(θ)Jψ

) = 2µe−AIm(v ∧ ωψ) . (5.4.6)
Finally, the five-form part can be shown to follow from the one- andthree-form parts, (5.4.2) and (5.4.6).
FluxWe will now look at the second equation in (4.4.2). We have seen that
H is determined by (5.4.5). We can then use (4.4.5) with the choice
δb = − cot(θ)Jψ , so that we end up with H = 0 in (4.4.2).
However, there is a price to pay. Once we transform Φ+ → e−δb∧Φ+, wealso have to transform the associated operator J+ · :

J+ · → e−δb∧J+ · eδb∧ . (5.4.7)For the choice δb = − cot(θ)Jψ , remembering (4.5.15), we get that the new
J+ operator is

J+ · = ecot(θ)Jψ∧(−J−1
ψ x+Jψ∧)e− cot(θ)Jψ∧ . (5.4.8)This can be computed in two ways. The first is to compute the associatedaction on T ⊕ T∗, where eb∧ is represented by ( 1 0

−b 1 ). The second is tojust use the formula e−ABeA = B+ [B,A] + 12 [B, [B,A]] + . . ., and
[J−1
ψ x, Jψ∧] = h , hωk ≡ (3− k)ωk , (5.4.9)

45



as an example of the usual Lefschetz representation of Sl(2,R) on forms(see for example [33, Ch. 0.7]). Either way, we get
J+ · = −J−1

ψ x+ cot(θ)h + 1sin2(θ)Jψ ∧ . (5.4.10)
We can now compute the fluxes from the second equation in (4.4.2):
F0 = −J−1

ψ xd(ρe−3AImv) + 5µρe−4A cos(θ) ; (5.4.11a)
F2 = F0 cot(θ)Jψ − J−1

ψ xdRe(ρe−3Av ∧ ωψ) (5.4.11b)+ µρe−4A [(5 + 2 tan2(ψ)) sin(θ)Jψ + 2 sin(θ)Rev ∧ Imv − 2 cos(θ) tan2(ψ)Imωψ
] ;

F4 = F0 J2ψ2 sin2(θ) + d
[
ρ e−3A(Jψ ∧ Imv − cot(θ)Re(v ∧ ωψ))] ; (5.4.11c)

F6 = − 1cos2(ψ)vol6(F0 cos(θ)sin3(θ) + 3ρµe−4Asin(θ)
)
. (5.4.11d)

Recall that ρ is related to the dilaton by (4.5.14). The expression for F0already appeared in [4]. The expressions for F2 and F4 are new; theirexpressions appear much simpler than in earlier computations, thanksin part to the δb transformation we performed earlier.
Notice that the Bianchi identities for (5.4.11) are now dFk = 0, away fromsources. The one for F0 just says F0 is constant, as usual. If we nowconsider dF4, we see that the term not multiplying F0 is exact, so it dropsout. On the other hand, the form J2ψ/ sin2(θ) that multiplies F0 is easilyseen to be closed as a consequence of (5.4.6). So we conclude

dF0 = 0 Ñ dF4 = 0 . (5.4.12)
In other words, the Bianchi identity for F4 is redundant. This fact will bevery important for the rest of this paper.
We should stress once again that the Fk given in (5.4.11) are the oneswhich are closed under d — and which are locally given by Fk = dCk−1.The physical NSNS three-form is given by combining (4.4.6), (4.5.10) and(5.4.5):

Hphys = dBphys = d(− cot(θ)Jψ + tan(ψ)Imω) ; (5.4.13)the RR fluxes which are closed under (d −Hphys∧) are then given by
F̃ = eBphys∧F . (5.4.14)

5.4.2 AdS: special caseWe will again start by the first equation in (4.4.2), dHΦ+ = −2µe−AReΦ−.Our generic analysis in section 5.4.1 relied on the assumption that θ 6= 0;in this section we will consider the case
θ = 0 . (5.4.15)
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This obviously solves (5.4.1). The remaining one-form equation now says
Rev = −eAdρ2µρ , (5.4.16)

which replaces (5.4.2).
The three-form part of dHΦ+ = −2µe−AReΦ− now gives

d(ρJψ) = 0 , H = 2µe−ARe(iv ∧ ωψ) . (5.4.17)Finally, the five-form part can be shown to follow from the one- andthree-form parts, (5.4.16) and (5.4.17).
We now turn to the RR fluxes. Unlike in section 5.4.1, this time thereis no natural b-transform to perform, because H given in (5.4.17) is notnecessarily exact. So we will give the expressions of the fluxes which areclosed under dH , rather than under d:

F0 = −J−1
ψ xd(ρe−3AImv) + 5µρe−4A ; (5.4.18a)

F2 = −J−1
ψ xd Im(iρe−3Av ∧ ωψ)− 2µρe−4A tan2(ψ)Imωψ ; (5.4.18b)

F4 = Jψ
[12F0 − µρe−4A] + Jψ ∧ d Im(ρe−3Av) ; (5.4.18c)

F6 = 0 . (5.4.18d)Unlike in section 5.4.1, this time the flux equations for F4 are not obvi-ously following from the ones for F0, or from any other combination ofequations.
5.4.3 MinkowskiThe first equation in the Minkowski version (4.4.2), dHΦ+ = 0, simplygives

ρ = const , θ = const , dJψ = 0 , H = 0 . (5.4.19)The second equation in the Minkowski (4.4.2), dHReΦ− = 0,
d(e−ARev) = 0 , dRe(ie−Av ∧ ωψ) = 0 . (5.4.20)(The five-form part of dHReΦ− = 0 can be shown to be redundant.)The RR fluxes can now easily be computed from the third equation in

F0 = −J−1
ψ xd(ρe−3AImv) ; (5.4.21)

F2 = −J−1
ψ xdIm(iρe−3Av ∧ ωψ) ; (5.4.22)

F4 = 12F0 J2ψ + d(Imρe−3Av ∧ Jψ) ; (5.4.23)
F6 = 0 . (5.4.24)Once again, the Bianchi identity for F4 follows from the one for F0, as in(5.4.11c), (5.4.12).
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5.5 A general massive deformation
Using the results of section 5.4, we will now point out the existence ofa first-order AdS deformation of any SU(3) Minkowski solution in IIA.As we saw in the introduction, this includes any solution obtained asback-reaction of O6–D6 systems in IIA — although in section 5.6 we willspecialize it to the case of a single O6 in R6. The expansion parameter is
µ = √−Λ/3. This deformation should not be taken as a modulus: as wewill see below, the fluxes we will introduce contain µ, and flux quantizationwill in general discretize it. Rather, our expansion is to be understood asa formal device to establish the existence of a solution at finite µ.
We will start by determining how θ should be deformed. As we re-marked after (5.2.2), this parameter is an undetermined constant for theO6 solution we want to deform. However, we would like our solution tohave something to do with the DGKT solution we reviewed in section 5.3.More specifically, we would expect our solution to approach the DGKTsolution far from the source. Remembering (5.3.1), we will take θ to besmall. Since our deformation parameter is µ, we might then take θ to beof order µ.
This decision seems to run into trouble, however, as soon as we consider(5.4.2). If θ is of order µ, v seems to diverge as µ → 0, whereas we needit to go to zero.
To cure this potential disaster, we need at least two more factors of µ inthe numerator of (5.4.2). One can try to postulate that these extra factorsare somehow supplemented by the derivative. This leads us to

θ ∼ µ + µ3τ + . . . . (5.5.1)As in [4], we also suppose that everything is either odd or even in µ, so thatwhatever function or form is already non-zero before the deformationwill be unchanged at first order. This means, in particular, that we donot change the dilaton, internal metric and warping given in section 5.2.This gives Rev = µ2eAdτ +O(µ2) . (5.5.2)Also, since now v is introduced at first order, we can mimic the procedurein [4, Sec. 4.1] and use it to deform an SU(3) structure into an SU(3)×SU(3)structure. The conclusions reached in that reference can be summarizedas follows. The function ψ and the one-form v start at first order:
ψ = µψ1 +O(µ2) , v = µ v1 +O(µ2) ; (5.5.3)the pure spinors have the formΦ+ = (1 + iθ)e−iJ +O(µ2) , (5.5.4)

Φ− = ( iψv ∧ ω
)+ v ∧

(1 + 12 j2
)+O(µ2) . (5.5.5)
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Comparing the order µ0 part of Φ− with (4.5.1), we get
Ω = i

ψ 1v1 ∧ ω , (5.5.6)
which means, in particular, that v1 is a (1, 0) form with respect to thealmost complex structure defined by the three-form Ω of the SU(3) struc-ture solution. This can be used to derive the imaginary part of v1:

Imv1 = 12eAI · dτ , v = 12eA∂τ +O(µ2) , (5.5.7)
where I · is the action of the almost complex structure determined by Ω,and ∂ is the corresponding Dolbeault operator. Finally, notice that (5.5.6)can be inverted by writing

ω = − i2ψ1 v̄1 xΩ . (5.5.8)
So far we have only looked at equation (5.4.2) and to the algebraic con-straints on the pure spinors Φ±. We now turn to the other differentialequations, starting with the ones that constrain the geometry.
The first equation we consider is (5.4.1), that at first order simply reads
dρ = 0. In view of (4.5.14), this is consistent with our postulate that A and
φ should not be deformed at first order. Comparing with (5.4.3), we seethat ρ0 is an odd function of µ:

ρ0 = 1
gs
µ +O(µ3) . (5.5.9)

We have called the first coefficient in the expansion 1/gs, so as to con-form with the value of ρ in the particular solution (5.2.6).
Equation (5.4.6) is more problematic, because of the sin(θ) in the denomi-nator that makes the perturbation series start at order µ−1 in the left-handside. Enforcing again our policy that all our power series in µ be eithereven or odd function of µ, we can expand Jψ up to second order:

Jψ = J + µ2J(2) +O(µ2) . (5.5.10)
Equation (5.4.6) is then, at order µ−1,

dJ = 0 . (5.5.11)
This is one of the equations in the system we are deforming, as we cansee from (5.2.1). At order µ, (5.4.6) then gives

d
[
J(2) +(16 − τ

)
J
] = 2e−AReΩ . (5.5.12)

As we will see, this equation is the only one we will encounter in which
J(2) appears at all, so at this order J(2) has nothing else to satisfy. The
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right hand side is automatically closed, because of (5.2.2); but saying thatit should be exact is a possible obstruction to deforming a given SU(3)structure Minkowski solution.
We will now look at the fluxes. Our formula for H , (5.4.5), has a sin(θ) inthe denominator, just like (5.4.6). That would again force us to start ourperturbation theory with negative powers of µ. In this case, however, wecan actually use (5.4.6) to rewrite H so that it starts at first order:

Hphys = µh +O(µ2) , h = 2ReΩ + d(ψ1Imω) . (5.5.13)
Notice that the first term in h is the same as the one for H in the SU(3)structure solution given in (5.3.2), and the second term vanishes wher-ever ψ1 tends to a constant.
As for the RR fluxes, only F0 and F4 will be generated at first order; F2will keep the same expression it had at zeroth order, (5.2.2). F0 is givenby

F0 = µf0 +O(µ3) , gsf0 = −J−1xd(e−φImv1) + 5e−A−φ . (5.5.14)
We have expanded (5.4.11a) at first order in µ, and used (4.5.14). Asremarked after (5.4.12), that the Bianchi identity for F4 follows from theone for F0. So the only Bianchi identity we have to impose at first orderis that

df0 = 0 . (5.5.15)
For completeness, however, we also give here the expression for F4.Actually, the Laurent series for F4 in (5.4.11c) starts with a term ∼ F0J2/µ2,which diverges like µ−1. So F4 only becomes finite once one considers afinite µ. This is not terribly worrying: as we anticipated at the beginningof this section, the expansion in µ is simply a formal device to establishthe existence of a solution at finite µ. In any case, the µ−1 terms disappearif we go back to the F̃k, which are closed under (d −Hphys∧). We get
F̃4 =µf̃4 +O(µ3),

gsf̃4 =(12gsf0 − e−4A) J2 + J ∧ d(e−3AImv1)− ψ1Imω ∧ J−1xd(e−3AImΩ) .(5.5.16)
Let us now summarize this section. We found a first-order perturbationof an SU(3) Minkowski solution which turns it into an AdS solution ofSU(3)× SU(3) type. The perturbation parameter is µ = √−Λ/3. The onlyinput is the function τ in (5.5.1), which has to satisfy (5.5.15). One alsohas to solve (5.5.12), but this simply requires to invert d.
We are now going to apply this first-order deformation to O6 solutions.
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5.6 Massive O6 solution
In section 5.5, we have found a procedure to deform any SU(3)-structureMinkowski solution at first order in µ = √−Λ3 . In this section, we will tryto promote this deformation to a fully-fledged supergravity solution.
Although the first-order deformation procedure can potentially be ap-plied to any O6–D6 system, we will focus on the region around a singleO6. This means that we will take the internal manifold to be R6, with asingle localized source as in (5.2.3). By doing this, we gain more symme-tries than would be available for a general O6–D6 system; that will helpus solve the system.
However, as we anticipated in the introduction, this should not be under-stood too literally as a massive O6 “in flat space”. Unlike for (1.0.2), in themassive case the metric will not approach flat space far away from thesource, simply because flat space is not a solution in the massive case.There are two new length scales associated with the massive problem,1
µ and 1

gsF0 , and the deviations from flat space asymptotics will becomeapparent at distances of the order of the smallest of these two lengthscales. The solution of this section should be thought of as a “close-up”around an O6 source in an AdS4 ×M6 geometry where M6 is compact— so the large r-behaviour will not too important.
After some preliminaries in section 5.6.1, in section 5.6.2 we will special-ize the general procedure of section 5.5 to a single O6. In section 5.6.3we will then promote it to a finite deformation; this will culminate in thenumerical study of section 5.6.3, where we will find numerical solutionsand describe their physical features, some of which were described inthe introduction. We will also study the system at higher order in pertur-bation theory, in section 5.6.4. In section 5.6.5 we will show that choosing
θ = 0 in the pure spinors (4.5.6) does not lead to a solution. Finally, insection 5.6.6 we will look briefly at the system for the Minkowski case;we also found numerical solutions in this case, but they do not seem tosatisfy flux quantization. Moreover, we do not know of any Minkowskicompactification that uses this ingredient. We will not describe thesesolutions in as much detail as the AdS ones.
5.6.1 Symmetries
As in section 5.2, we will denote by xi the coordinates parallel to the O6,and by yi the coordinates transverse to it.
The massless O6 solution is symmetric under rotations of the three yi,rotations of the three xi, and translations in the xi:

ISO(3)× SO(3) . (5.6.1)
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It is already clear that the massive solution will not be symmetric underthe whole group (5.6.1). As we have argued in section 5.3, we need toconsider an SU(3) × SU(3) solution. One of the data in its definition is acomplex one-form v; as we saw in section 4.5.2, the algebraic constraintsin (4.3.13, 4.3.14) demand in particular that v ∧ v̄ ∧ j2 6= 0 everywhere. Sothe real and imaginary part of v are two linearly independent one-forms.However, the only linearly indepedent one-form which does not breakany of the symmetries in (5.6.1) is
dr = 1

ry
idyi . (5.6.2)

Thus, in the massive solution the symmetry group (5.6.1) will be broken.In section 5.6.2, we will see that a natural subgroup emerges when oneapplies the general first-order procedure of section 5.5 to the O6 solutionof section 5.2.
5.6.2 First order deformationWe will still demand that translation along the three internal coordinates
xi parallel to the O6 should remain a symmetry. This will not be valid fora solution where there are several O6 sources, such as the one reviewedin section 5.3. However, this invariance will be restored when we getcloser to an individual O6, which is the focus of the present paper.
Since everything can only depend on the transverse coordinates yi, fromnow on we will use the notation

∂i ≡ ∂yi . (5.6.3)
Using (5.5.2) and (5.5.7), we then have

v = − i2µZ−1/2∂iτ(Z−1/4dxi + iZ1/4dyi) . (5.6.4)
Since τ depends on r only, we have ∂i = yi

r ∂r , and Imv is proportional to
yidxi , (5.6.5)

which breaks the symmetries (5.6.1) of the massless O6 solution, as an-ticipated in section 5.6.1. Indeed, the one-form (5.6.5) is neither invariantunder either the SO(3) that rotates the transverse yi, nor under the SO(3)that rotates the parallel xi. It is still invariant, however, under the diag-onal SO(3) that rotates both the xi and the yi simultaneously. Also, itis still invariant under translations along the xi, as we stipulated at thebeginning of this section. So (5.6.4) breaks (5.6.1) to
ISO(3) . (5.6.6)

It is not hard to list all the possible forms invariant under (5.6.6); we havedone so in appendix C. We will see that the rest of the solution respects
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this smaller symmetry group.
Let us now go back to applying the first order procedure of section 5.5to the O6 solution.3 The next step is to impose (5.5.15), namely that F0,calculated at first order, is constant:

df0 = 0 , gsf0 = −12∆τ + 5Z = const. , (5.6.7)
where ∆ ≡ ∂i∂i, and gs is the value of eφ at infinity in the unperturbedsolution (5.2.6). Explicitly, using (5.2.5), we get

τ = 13 (5− gsf0) r2 − 5r0r , (5.6.8)
setting to zero an inconsequential integration constant.
The other equation to be solved is (5.5.12). This can be inverted to give
J(2) = −2(13 − r02r + p

r3
)
ω2,1 + 2ω2,2 − α′

r ω2,3 +(τ − 16 + α
)
ω2,4 (5.6.9)

where a prime denotes ∂r . We have used the two-forms defined in (C.0.2);those forms are invariant under (5.6.6), as promised. The constant p andthe function α = α(r) are as yet undetermined.
At this point, we have already demonstrated the existence of a solutionat first order. For completeness, however, let us also give the physicalfluxes explicitly. First of all, we can determine ψ1 from imposing that
Jψ → J . Looking at the expression of Jψ in (4.5.7), this can be done bychecking that J−1x( i2ψ21 v1 ∧ v̄1) = 1; we get

ψ1 = τ ′2√Z . (5.6.10)
Now we can compute the first-order fluxes f̃4 and h from (5.5.13), (5.5.16):

gsf̃4 = 1
r3
(
−52r0 + Z−1)ω4,1 +( r02r − 13(4 + gsf0))ω4,4 ; (5.6.11)

h = d
[(
−τ

′ + 2r02r + 23
)
ω2,1 +( τ ′2rZ − 2)ω2,2 + 12ω2,4

]
.

As already stressed, the flux F2 will not get deformed at first order in µ.
3As remarked in section 5.2, we will deform one particular SU(3) structure whichsolves (5.2.1); for this reason, our massive solution will have only four supercharges,or N = 1 in four dimensions, just like the solutions in [8, 9]. Incidentally, it is easy toshow that any supersymmetric SU(3) structure solution with Romans mass has onlyfour supercharges.
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Let us now pause to consider the properties of the first-order solution wehave just obtained. First of all, we note that we have a certain freedom:we have left undetermined a function α(r) in (5.6.9), which does not enterin the fluxes, and a constant f0, defined in (5.5.14) as the ratio betweenthe deformation of F0 and µ. Let us see what happens if we set
f0 = 5

gs
, (5.6.12)

inspired by (5.3.2), which is valid for SU(3) structures. We see that wecancel the r2 term in (5.6.8), which now goes linearly. One can thencheck that
r → ∞ Ñ f4 → 32J2 , h → 2ReΩ ; (5.6.13)in other words, far from the O6 source the solution approaches the SU(3)solution in (5.3.2).

The perturbative procedure, however, can only work in an appropriateregime. We have already determined J(2) in (5.6.9). Since τ actually growswith r, J(2) seems to grow large at large r, thus invalidating the first-orderprocedure. If f0 = 5/gs, for example, we see from (5.6.8) that τ growslinearly; if α = 0, since Jψ = J +µ2J(2) + . . ., and recalling that r0 = gsls, wehave that the perturbation procedure is valid only if
r � 1

gslsµ2 . (5.6.14)
We are not necessarily interested, however, in what happens outside thisregion, because eventually we want to compactify the six “internal” direc-tions, and in particular the three directions yi. In the smeared solutionwe reviewed in section 5.3, we see from (5.3.5) that the compactificationradius in string units goes like R ∼ µ−1/3, whereas 1/(gsµ2) ∼ µ−3. Inother words, the perturbative procedure breaks down for distances oforder µ−3, which are much larger than the compactification radius µ−1/3.
In any case, we are now going to set up the study of the system of dif-ferential equations at all orders, guided by the results of this section. Wewill come back to perturbation theory in µ in section 5.6.4.
5.6.3 Full solutionWe now want to check whether the solution we just found at first orderin µ survives beyond first order. We are not going to use perturbationtheory in this section; we will go back to using it in section 5.6.4.
VariablesAt first order, the whole solution was determined by a single piece ofdata, the function τ in (5.5.1), which then has to solve (5.5.15).
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Beyond first order, however, the input data are many more: the functions
ψ, θ and the forms v, j , ω, in (4.5.6), as well as the warping function A in(2.1.10). At first order, the continuous symmetry (5.6.6) emerged, and weare going to assume that it is not broken in the full solution. This meansthat we should expand v in terms of the one-forms (C.0.1), and j , ω interms of the two-forms (C.0.2).
There is also a discrete symmetry that we can use to our advantage.The solution we are looking for contains an O6, which is defined byquotienting the theory by the symmetry Ω(−)FLIy , where Ω is the world-sheet parity, FL is the fermionic number for left-movers, and

Iy : { xi → xi
yi → −yi (5.6.15)

is the inversion in the three yi directions. The pure spinors φ± shouldthen transform as [34]
I∗yφ+ = λ(φ+) , I∗yφ− = λ(φ̄−) , (5.6.16)

where λ is the sign operator defined in (2.1.13). This implies
I∗yv = v̄ , I∗y j = −j , I∗yω = −ω̄ . (5.6.17)

All the invariant forms in appendix C transform by simply picking up asign, as detailed in table C.1. Using that table, (5.6.17) implies
v = vr ω1,0 + i vi ω1,1 , j = 4∑

i=1 ji ω2,i , ω = a0 ω2,0 + i
4∑
i=1 ai ω2,i ;

(5.6.18)the coefficients vr , vi, ji, ai are now all real.
Algebraic equationsWith this parameterization in hand, we can now proceed to imposing thealgebraic equations (4.5.8). These give:

j4 = j3r2 , a4 = a3r2 , a2j1 + a1j2 = 2a3j3r2 , (5.6.19a)
a23r2 − a1a2 = a20 = j23r2 − j1j2 . (5.6.19b)

Specifically, (5.6.19a) comes from (4.5.9a), whereas (5.6.19b) comes from(4.5.9b). Moreover, the requirement in (4.3.13) that (Φ−, Φ̄−) 6= 0 demands4
a0 6= 0 . (5.6.20)Given a solution to the algebraic constraints (5.6.19), one can also computethe internal, six-dimensional metric associated to the pure spinors. This

4In fact, the first two equations in (5.6.19a) are linear precisely because we dividedby a common factor a0, since it cannot vanish.
55



is not really needed in finding a solution, except for one important check:that its signature should be Euclidean. Applying (4.5.13), we find
ds2 = (α1δij + α2yiy j)dxidxj + (α3δij + α4yiy j)dyidy j + α5εijkyidxjdyk ,(5.6.21)where the αi = αi(r) are given by
α1 = −a2j3 + a3j2

a0 r2 , α2 = a2j3 − a3j2
a0 + v2

itan2(ψ) ,
α3 = a1j3 − a3j1

a0 r2 , α4 = −a1j3 + a3j1
a0 + v2

rtan2(ψ)
α5 = a2j1 − a1j2

a0 .

(5.6.22)
The metric (5.6.21) is symmetric under ISO(3), as we argued above (5.6.6).If we go to polar coordinates for the yi, by defining r = √yiyi as in (5.2.5),and

ŷi ≡ yi
r , (5.6.23)

we can write (5.6.21) as
ds2 = (α1δij + r2α2ŷiŷ j)DxiDxj + (α3 + r2α4)dr2 + r2(α3 − r2α254α1

)
ds2

S2 ,

Dxi = dxi − r2α52α1 εijkŷ jdŷk , (5.6.24)
where ds2

S2 is the round metric of unit radius on the S2 in the yi directions(which is the one that surrounds the O6). This exhibits the metric asa fibration of the R3 spanned by the xi (along which the O6-plane iswrapped) over the R3 spanned by the yi, or by r and the ŷi. Since theconnection is a globally defined one-form, this fibration is topologicallytrivial. Notice that the function multiplying dr2 simplifies to
α3 + r2α4 = ( r vrtan(ψ)

)2
, (5.6.25)

using (5.6.22).
Differential equationsThe differential equations we have to impose are (5.4.2), (5.4.6), dF0 = 0,and dF2 = δO6, where F0 and F2 are given by (5.4.11a) and (5.4.11b), and
δO6 is given by (5.2.3). Recall that dF4 = 0 follows from dF0 = 0, aspointed out before (5.4.12).
First of all, (5.4.2) gives

vr = − eA2µr θ′sin(θ) . (5.6.26)
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(5.4.6) is clearly odd under Iy . From table C.1, we see that there are fourodd three-forms; so (5.4.6) has four non-trivial components. One of theseturns out to be algebraic:
vi = eA2µr2 j2a0

tan(ψ)sin(θ) . (5.6.27)
So v is completely determined algebraically, at all orders. The otherthree components in (5.4.6) are

∂r log( j1r3sin(θ) cos(ψ)
) = a1

j1
θ′sin(ψ) ,

∂r log( j2rsin(θ) cos(ψ)
) = a2

j2
θ′sin(ψ) ,

∂r log( j3r3sin(θ) cos(ψ)
) = (a3 − j2e2A4a0r4µ2 cos2(ψ)sin2(θ)

)
θ′

j3 sin(ψ) .
(5.6.28)

We now turn to the Bianchi identities. We have one first-order equationthat reads F0 = const. After some manipulation we write it as an equationlinear in the derivatives of the variables:
∂r log(vire−3Asin(θ)

) = θ′ cot2(ψ) (52 cot(θ)− F0e−4A2µρ0 + j3vi cos(ψ)eA
a20µ sin(θ)

)
.(5.6.29)We also have dF2 = δO6. A priori, this would seem to have four compo-nents, since F2 is odd under Iy . However, closer inspection reveals thatonly three components are non-trivial:

F2 = 4∑
i=1 f2,iω2,i , dF2 = (3f2,1+rf ′2,1)ω3,1+f2,2ω3,3−

(
f2,3 + 1

r f
′2,4
)
ω3,5+1

r f
′2,2ω3,7 .(5.6.30)The component of dF2 along ω3,1 can be set to zero by taking f2,1 propor-tional to r−3; the proportionality constant can be fixed by requiring thatit reproduces the correct factor in δO6. This can be read off (5.2.6). Thusthe non-trivial equations are three:

f2,1 = − lsr3 , f2,2 = 0 , f ′2,4 = −rf2,3 . (5.6.31)
These f2,i are determined by (5.4.11b) in terms of the data ji, ai, ψ, θ, A andtheir first derivatives. The equations for f2,1 and f2,2 give two equations
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which are again linear in the derivatives of the variables:
∂r log( a1vir4e−3Asin2(θ) sin(2ψ)

) = θ′2a1
[
j1
(
− 5sin(ψ) + 3 sin(ψ))

+cos3(ψ)sin(ψ)
(
− lse

4A
ρ0µr3 cos(ψ)− 4a20

j2 −
F0e4Aj1 cot(θ)

ρ0µ + a3j1j2e2A
a20µ2r2 sin2(θ)

)]
,(5.6.32a)

∂r log( a2vir2e−3Asin2(θ) sin(2ψ)
) =

j2θ′2a2
[
−2 sin(ψ) + cos3(ψ)sin(ψ)

(
−5− F0e4A cot(θ)

ρ0µ + a3j22e2A
a20r2µ2 sin2(θ)

)]
.(5.6.32b)

Remarkably, by using these two equations and (5.6.28), one can show thatthe last equation in (5.6.31) is actually automatically satisfied.
All in all, we have three differential equations from (5.6.28) (coming from(5.4.6)), one from (5.6.29) (coming from F0 =const), and two from (5.6.32)(coming from dF2 = δO6), for a total of six. All of these are first-order,and linear in the first derivatives.
Having counted our equations, let us now count our variables. We canuse (5.6.26) and (5.6.27) to eliminate vr and vi from the system; moreover,we can use the first two in (5.6.19a) to eliminate j4 and a4. It is less clearhow to use the remaining three equations in (5.6.19); one possibility is toderive a1, j1 and j3. This leaves us with the variables

a0 , a2 , a3 ; j2 ; A , θ , ψ , (5.6.33)
for a total of seven variables. We should also notice, however, that wehave not yet fixed the gauge invariance coming from reparameterizationsof the radial direction:

r → r̃(r) . (5.6.34)Under these reparameterizations, the coefficients of j and ω a priori couldmix. It turns out, however, that only the coefficients of ω3 and ω4 mix; ifwe impose the algebraic equations in (5.6.19), even the coefficients alongthose two are proportional. So, in particular we have
a0 → (r

r̃

)2
a0 , (a2, j2)→ (r

r̃

) (a2, j2) , a3 → (r
r̃

)3
a3 , (5.6.35)

whereas of course A, θ, ψ transform as functions.
Thus, out of the seven variables in (5.6.33), one is redundant because ofthe gauge invariance (5.6.34). This effectively leaves us with six variables,which is as many as the differential equations (5.6.28), (5.6.29), (5.6.32). Sowe have as many equations as variables, and we expect a solution to exist.We will now study the system numerically.
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NumericsThe system we found in section 5.6.3 is first-order, and linear in thederivatives of our variables. We found it useful to fix the gauge invariance(5.6.34) by demanding θ to be exact at order µ3; namely,
θgf = µ + µ3τ , (5.6.36)

with τ given (5.6.8). In other words, the . . . terms in (5.5.1) are absent.This gauge makes it easier to compare the massless limit of our numer-ical solutions with the solution in section 5.2.
Also, we imposed boundary conditions at an r much larger than r0 = gsls,but much smaller than the scales (gsF0)−1 and µ−1, where deviations fromthe massless asymptotics become apparent. Using the first-order solutionin section 5.6.2 as a clue, we identified a family of boundary conditions(depending on F0 and µ) such that, when one takes the limit F0 → 0and µ → 0 (thus forgetting for a moment about flux quantization), onerecovers the massless solution5. This works quite well, especially if onetakes the limit by keeping gsF0

µ = 5, as in the special choice (5.6.12) forthe first-order solution. We take all this as a check that our numericalanalysis is sound.
We then increased F0 until it satisfied the flux quantization condition
F0 = n02π , n0 ∈ Z. The behavior of the solutions for n0 6= 0 is qualita-tively different from the massless solution: notably, it does not displaythe divergence at r0 = gsls that plagues the massless solution (1.0.2) —see figure 5.1. We checked that the eigenvalues of the metric (5.6.21)remain positive in our numerical solutions.
Let us now focus on the asymptotic behavior of our solutions at r → 0.In our gauge, θ tends to a constant at r → 0; numerically, one can see ψand A also tend to constants ψ0 and A0. We can then use the differentialequations (5.6.28), (5.6.29), (5.6.32) to find the asymptotic behavior of thecoefficients ai, ji:

a0 ∼ a00r−2 , a1 ∼ a10r−3 , a2 ∼ a20r−1 , a3 ∼ a30r−3 ;
j1 ∼ j10r−3 , j2 ∼ j20r−1 , j3 ∼ j30r−3 , (5.6.37)

where the ai0 and ji0 are constants. These are also in agreement with thealgebraic constraints (5.6.19).From (5.6.37) it follows that the αi in (5.6.21) behave as
α1 → α10 , α2 ∼ α20r−2 , α3 ∼ α30r−2 , α4 ∼ α40r−4 , α5 ∼ α50r−2 ,(5.6.38)

5The family is obtained with the help of the perturbative expansion we will considerin section 5.6.4; actually, besides F0 and µ, the family also depends on an integrationconstant in a3. This constant has no influence on the massless limit.
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(a) The massless O6 solution.
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(b) A O6 solution with Romans mass.
Figure 5.1: Comparison between the massless O6 solution and a solution withRomans mass. The solid line is eA; the dotted line is eφ; the dashed lines are
j3 (positive) and a0 (negative). On the left we plot these coefficients (in stringunits, for gs = 0.1) for the solution with F0 = 0: from (1.0.2) and (5.2.4) we get
eA = (1 − r0/r)−1/4, j3 = 1/r2, a0 = −1/r. In particular, the solution diverges at
r = r0 = 0.1 ls. On the right, we plot the same coefficients for a supersymmetricsolution with localized O6 source, for µ ∼ .055, F0 = 42πls . j3 and a0 retain apower-law behavior, while eA no longer diverges at r0 = 0.1. At larger distances,one can see deviations from the flat-space behavior, due to the fact that flat spaceis not a solution for F0 6= 0, as observed earlier.
where αi0 are non-zero constants. For the crucial combination α3 + r2α4,however, which multiplies dr2 in (5.6.24), from (5.6.25) and (5.6.26) we seethat

α3 + r2α4 →
(52gsµ

)2 ; (5.6.39)
thus, the r−2 divergencies cancel out, and this coefficient goes to a con-stant.
As r → 0, the metric (5.6.24) then tends to
ds2 = (α10δij + α20ŷiŷ j)D0xiD0xj +(52gsµ

)2
dr2 +(α30 − α2504α10

)
ds2

S2 ,
D0xi = dxi − α502α10εijkŷ jdŷk . (5.6.40)
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This metric factorizes in a factor dr2, and a five-dimensional R3 fibrationover S2. Thus, asymptotically we have R×M5.
For most values of µ, the curvature of M5 is small, and we can trust thesupergravity approximation. However, the size of the S2 remains finite,and the metric is no longer geodesically complete. Fortunately, it is pos-sible to perform an analytic continuation by going to polar coordinatesfor the yi. One can then see that, in the system described in sections 5.6.3and 5.6.3, all explicit dependence on r drops out; the only dependence isintroduced by the way we fix the gauge freedom (5.6.34). One can thencontinue r to negative values. With our gauge choice (5.6.36), one cansee that for r < 0 the metric gets continued essentially to a mirror copyof itself.
One might feel unsatisfied by the fact that the S2 that surrounds the orien-tifold never shrinks to a zero size; so the O6-plane locus does not reallyexist in these metrics, even though all fields transform as they shouldunder the antipodal map ŷi → −ŷi of an O6 projection. Even in themassless case, however, the transverse S2 does not shrink in the smoothAtiyah–Hitchin metric (see for example the discussion in [35, Sec. 3]).
For special choices of µ, the curvature of M5 gets large; in that case, thesupergravity approximation breaks down. It is possible that α′ correc-tions make the size of the S2 shrink, but this is of course speculation.
5.6.4 Back to perturbation theory in µIn section 5.6.2 we considered our equations to order µ, and found an ex-plicit solution. In section 5.6.3 we analyzed the conditions for unbrokensupersymmetry in the setup suggested by the first-order solution, culmi-nating in the numerical analysis in 5.6.3. In this section we will go backto perturbation theory in µ = √

−Λ3 , to see how explicit can the solutionbe made.
First, a bit of notation: we are going to expand the various coefficientsand functions as a power series in µ, keeping the same assumptions insection 5.5 about which expansions contain even or odd powers:

ji = ji,0 + µ2ji,2 + µ4ji,4 +O(µ4) , ψ = µψ1 + µ3ψ3 +O(µ5) ,
ai = ai,0 + µ2ai,2 + µ4ai,4 +O(µ4) , A = A0 + µ2A2 +O(µ4) ,

θ = µ + µ3τ + µ5θ5 +O(µ7) . (5.6.41)
As it turns out, the equations at order µ2 and µ3 mix quite a bit. Using thealgebraic equations, we found it convenient to use the variables

A2 , θ5 , ψ3 ; j1,4 , j2,4 , j3,2 , a2,2 . (5.6.42)
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For example, even if we have already solved J(2) at second order in (5.6.9),we did so only up to an unknown function α(r). This means that one com-ponent was actually undetermined; in terms of the expansion (5.6.41), thisremaining equation can be written in terms of the variables (5.6.42). Atthe same time, of the equations in (5.4.6) only two contain the variables in(5.6.42); the third involves variables at higher order, and we can ignore itat this level. We then have one equation F0 = const. and three equationsfrom dF2 = δO6, just like in our discussion at all orders in section 5.6.3.
In section 5.6.3, the system of differential equations was first-order andlinear in the derivatives of the variables. The perturbative system weare considering in this subsection, once we use the solution found atfirst order in section 5.6.2, is also linear (inhomogenous) in the variablesthemselves. This means that we can write it as

v ′ = Mv + b , v = (θ5, ψ3, j1,4, j2,4, j3,2, a2,2)t . (5.6.43)The matrix M is particularly simple in the gauge A = A0 = log(Z−3/4), andwith the simplifying assumption f0 = 5:

M =


0 −2√Z 0 0 10r0r2 τZ0 12
( 3
r −

Z
r0
) 0 0 − τ

Z −52r00 0 3
r 0 8rZ −4Z3/20 0 0 1

r −4r 00 0 0 − 12r3 2
r

√
Z
r20 0 0 − 1

r2√Z 2√
Z

12
( 3
r −

Z
r0
)


. (5.6.44)

The expression for the vector b is more complicated, and we see no rea-son to inflict it on the reader. The first three columns of (5.6.44) showthree obvious eigenvalues; the variables θ5, ψ3, j1,4 are determined oncethe other three are. So the crucial part of M is the lower-right 3×3 block,concerning the variables j2,4, j3,2, a2,2. The eigenvalues of this block canbe found by the Cardano–Tartaglia formula, and so in principle the sys-tem at this order can be solved analytically.
5.6.5 The special case θ = 0In section 5.4 we have divided the analysis of SU(3)× SU(3) structure so-lutions in three cases: AdS for θ 6= 0 (the “generic” case of section 5.4.1),AdS for θ = 0 (the “special” case of section 5.4.2), and the Minkowski case(in section 5.4.3). So far, in this section we have analyzed the system indetail in the generic AdS case θ 6= 0. We now want to go back to theother two cases. We will begin in this subsection by the special AdS case,
θ = 0.
We will again work with the symmetry group (5.6.6), for the same rea-sons explained in section 5.6.1 and 5.6.2. The parameterization of the
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forms v, j , ω is still the same as in section 5.6.3. The algebraic equationssatisfied by them can still be written as in (5.6.19).
Since in this case H in (5.4.17) is not already exact (as for (5.5.13)), wehave to impose by hand that dH = 0. Since H is odd, the only non-zerocomponent of this equation is the one along ω4,0:

a2 vr µ = 0 . (5.6.45)
vr cannot be zero because of the requirement (Φ−, Φ̄−) = 0 in (4.3.13).Also, µ 6= 0 by assumption; so we get a2 = 0.
We then look at d(ρJψ) = 0, again from (5.4.17). This has four non-zerocomponents, but in particular the one along ω3,3 tells us that

j2 = 0 . (5.6.46)We can now go back to the algebraic system (5.6.19), and use that a2 =
j2 = 0. The last equation of (5.6.19a) tells us that a3j3 = 0. But, both if
a3 = 0 and if j3 = 0, (5.6.19b) now tells us a0 = 0. This means that Reω = 0,which is not possible, again because of the requirement (Φ−, Φ̄−) = 0 in(4.3.13).
Thus, in this section we have quickly disposed of the case θ = 0. Thiscase cannot lead to massive O6 solutions with the symmetry (5.6.6).
5.6.6 MinkowskiFinally, in this section we will look at the Minkowski case.
Once again, we can use the parameterization of the forms v, j , ω in sec-tion 5.6.3, whose coefficients have to satisfy the algebraic equations in(5.6.19).
The relevant differential equations were given in 5.4.3. We start with(5.4.19). This says

j2 = 0 , r3j1cos(ψ) = const. , ∂r log( r3j3cos(ψ)
) = −vrvirj3

cos3(ψ)sin2(ψ) .(5.6.47)We then turn to (5.4.20). The first is trivially satisfied, using the symme-tries of our setup. The second gives
∂r log(a0vir3e−Asin(ψ)

) = a2
a0

vr
vi cos(ψ) . (5.6.48)

We now turn to the Bianchi identities. They can be discussed along thelines of the AdS case in section 5.6.3. One consists in imposing that F0 isconstant, and can be written as
∂r log(vire−3A) = vrrtan2(ψ)

(2j3vi cos(ψ)
a20 − F0e3A) . (5.6.49)
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As in (5.6.31), F2 would seem to give three equations. The ones for f2,1and f2,2 read:
∂r log(a1vir4e−3Asin(2ψ)

) = vr
a1 cos(ψ) (−2a0

vir
+ 2a3j1vir
a20 tan2(ψ) − ls cos2(ψ)e3Asin(ψ)r2

)
(5.6.50a)

∂r log(a2vir2e−3Asin(2ψ)
) = 2cos3(ψ)sin2(ψ) a3j2vrvir

a2a20 (5.6.50b)
Once again, the third equation in (5.6.31) can be shown to be automati-cally implied by (5.6.50) and by (5.6.47), (5.6.48).
So we have one differential equation from (5.6.47), one from (5.6.48), onefrom (5.6.49), and two from (5.6.50). This gives a total of five differentialequations, which are all first order, and linear in the derivatives.
Let us now count our variables. Unlike in the AdS case, vr and vi are nowindependent variables. On the other hand, (5.6.47) allows us to eliminate
j2 (which vanishes) and j1 (which is a function of other variables). All inall, we can take as independent variables

a3 , j3 , vr , vi , A , ψ . (5.6.51)
Just as in section 5.6.3, we still have the gauge freedom (5.6.34). Thismeans that one of these six variables is actually redundant, and we effec-tively have five variables.
So we again have as many variables as equations. We have studied thesystem numerically. The solutions share some qualitative features withthe ones for the AdS case (see figure 5.1(b)); for example, the warping
A stays flat rather than diverging. However, they only survive for smallvalues of F0, which do not satisfy the flux quantization condition F0 = n02πls .For values of F0 that do satisfy flux quantization, the system seems tocrash in a singularity before it gets to r = 0.
It is also possible to set up a perturbative study. Since Λ = 0 in this case,we cannot perturb in µ. We introduce a new perturbation parameter ν,such that v → 0 as ν → 0. This can be achieved by taking the coefficients
vr and vi to be odd functions of ν, while the other coefficients ai, ji willbe even functions of ν. We solved the resulting system at first order in
ν, similarly to section 5.6.2.
Finally, it would presumably also be possible to deform the Minkowskisolutions discussed in this section into an AdS solution, by generalizingthe procedure in section 5.5.
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Part II

Topological resolution of
Coulomb-branch singularities
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Chapter 6

N = 4 Super Yang Mills in 3d

6.1 Introduction and motivations
In the previous chapter we saw that Romans mass can patch up the sin-gularity of the O6 plane. Summarizing, in the presence of an O6 planein the IIA supergravity with zero Romans mass, there is a singularityin the O6. Anyway, the behaviour of the dilaton next to the singularityshows that supergravity is no longer reliable, since it starts growing. Thetheory has to be uplifted to 11 dimensions and the metric gets quantumand instantons corrections. After this treatment, the metric transverse tothe O6 is smooth and there is no more a singularity, but just a minimalradius that can be accessible.
When a non zero Romans mass is added, it is no longer possible to upliftto M-theory, so the same procedure cannot be used. The fact is that,without uplifting, the O6 plane is able to protect itself from singularity,due to the presence of a non zero F0. Moreover, there is no longer aminimal radius and the metric can be continued even for negative radii.
Let us go back to the massless case and give more details. Atiyah andHitchin calculated the metric of 2 BPS monopoles in the center of masssystem. It is a family of 4 dimensional hyper-Kähler manifold with a
SO(3) action that rotates the three inequivalent complex structures.
Seiberg and Witten in [6] considered the theory dimensional reduced tothree dimensions of the model proposed in [36]. It is a N = 4 theorywith gauge group SU(2), in which the Coulomb branch is studied. Afterconsidering quantum and instantonic corrections, the moduli space ofthe effective theory has been proposed to be the Atiyah-Hitchin one. Tocheck their proposal, Seiberg and Witten compared the weak couplingbehaviour from supersymmetry with the limit of large spatial separationbetween the monopoles for the Atiyah-Hitchin metric and there is perfectagreement.
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The relation between the three dimensional supersymmetric gauge the-ory and the geometry defined by two BPS monopoles was explained by[7, 37]: the theory is the one defined on a D2 probe next to the O6 planein M-theory. The 4 dimensional effective theory describes the metric inthe direction that are orthogonal both to the O6 and the D2. After quan-tum correction, instantons corrections are the exchange of D0 betweenthe D2 and its own image from the O6.
That was the massless case, i.e. when there is a vanishing Romans mass.What happens when F0 is non zero?
My supervisor Alessandro, our collaborator Gonzalo Torroba from SLACand Stanford University, and I are still working on this subject and wecan present some results.
The idea is that the theory on the D2 probe should be modified by aChern Simons interaction, since it is the natural coupling (from the Wess-Zumino interaction) with the Romans mass. Moreover [4] showed thatChern Simons and Romans mass are deeply related even in the contextof ABJM theory [3]: in the usual formulation of this AdS4/CFT3 corre-spondence, the supergravity side did not enjoy a non zero Romans mass,while the conformal field theory side has Chern Simons terms with lev-els (k,−k). Once F0 is given a non zero value, the Chern Simons levelsare no longer symmetric, but they become (k, F0 − k).
So it appears natural to expect the Chern Simons term should be themodification needed in order to describe the gauge theory side of theresolution of the O6 singularity via Romans mass. In fact we were ableto show that this is the case: in a N = 2 simplified model1, the one-loopcorrections does not show the singularity any more (for the moment ourresult is restricted to the IR regime, the calculations in full generality arestill under study).
Work in progress is about the presence of instantons and the explicitcalculation of the metric.
In this chapter we are going to introduce the originalN = 4 theory, thenwe will focus to its CS deformation in the next chapter. In this chapterwe will present first the gauge theory of [6], introducing first symmetriesand the Lagrangian, then considering the low energy effective theory;when the action in the low energy regime is computed, we will compare

1As it can be seen just from counting the number of supercharges, this model cannotbe really the field theory on a D2 probing the solution found in the previous chapter.However, it is similar enough that it should capture the relevant physics. The N = 1Chern Simons deformation is going to be the subject of future research. Details of themodel studied can be found in future chapter.
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the metric of the moduli space with the celebrated Atiyah-Hitchin metricand study some of its properties.
6.1.1 SymmetriesThe original model by Seiberg and Witten [6] is a N = 4 supersymmet-ric theory in 3 dimensions, obtained as a dimensional reduction of the
N = 2 theory in 4 dimensions [36] defined over R3×S1. It is an exampleof extended supersymmetry, where all fields are in the adjoint represen-tations of the gauge group.
Let us focus on the structure of this system. The Lagrangian, as we aregoing to see in the next section, exhibits three scalars. From the stringtheory point of view, they represent directions that are transverse bothto the D2 and the O6. The Lagrangian is symmetric under rotations inthe three scalar fields: it can be seen as the invariance under rotation inthe space transverse to the O6 and because of this intuition we will callit SU(2)N2, where N means “normal”.
There is also the usual SU(2)R symmetry, acting just on the fermions. Ourtheory can be obtained even as dimensional reduction of an N = 1 Su-per Yang Mills in 6 dimensions; in the original theory there is this SU(2)Rthat goes through the dimensional reduction: fermions, then transformas a doublet under SU(2)R
Moreover there is the Lorentz group, which in the Euclidean is SO(3)E ;we will take the double cover of this group, SU(2)E . So, the total structureis SU(2)N × SU(2)R × SU(2)E ×G, where G is the gauge group.
We are in the context of extended supersymmetry, so scalar fields are inthe same supermultiplet as gauge bosons and thus transform under theadjoint representation of the gauge group. If the scalars are given a nonzero vacuum expectation value, we fall in the part of the moduli spacecalled Coulomb branch. This name has been given because the vacuumexpectation value of the scalar leaves one of the gauge boson massless, sogenerating a long distance electromagnetic-like forces. From the gaugegroup point of view, this happens because the gauge group is reduced byspontaneous symmetry breaking to U(1) factors.
6.1.2 Three-dimensional supersymmetric theoriesLet us start by reviewing the structure of 3 dimensional theories with
N = 2 supersymmetry (4 supercharges).
The vector superfield contains the gauge field Aa

µ and gaugino λa, a realscalar σa (the extra component of the gauge field in reducing from 4 to
2Instead of the original SO(3) we took its double cover SU(2).
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3 dimensions) and an auxiliary D-term Da. Their Lagrangian is3

Lgauge = 1
g2
[
−14FaµνFaµν + 12DµσaDµσa + iλ̄a 6Dλa − λ̄σλ + 12DaDa

]
.(6.1.1)The gaugino is a 3 dimensional Dirac fermion.

Moving to the matter sector, a chiral superfield contains a complex scalar
φ, a Dirac fermion ψ and an auxiliary field F . The Lagrangian reads
Lmatter =(Dµφi)†Dµφi + iψ̄i 6Dψi − φ†σ2φ + φ†Dφ − ψ̄σψ + i

√2φ†λ̄ψ − i√2ψ̄λφ
+ F †i Fi + Fi

∂W
∂φi

+ F †i
(
∂W
∂φi

)†
− 12 ∂2W

∂φi∂φj
ψiψj −

12
(
∂2W
∂φi∂φj

)†
ψ̄iψ̄j .(6.1.2)

The fields from the vector superfield act on the matter ones as matrices.For instance, φ†Dφ ≡ φ†i (TaDa)ijφj . Similarly,
φ†σ2φ ≡ φ†i (σaTa

ij )(σbTb
jk)φk .

This term can be understood as coming from gABDAφ†DBφ and the ex-tra 4 dimensional component of the gauge field, in the four dimensionaltheory.
Note that integrating out the D-term setsDa = −g2φ†Taφ, and the relevantpart of the Lagrangian becomes

12g2DaDa + φ†Dφ → −g
22 (φ†Taφ)(φ†Taφ) . (6.1.3)

6.1.3 The N = 4 theory without flavors

Now we specialize to the simplest case in which singularities in the Coulombbranch can be studied, namely a 3 dimensionalN = 4 theory with gaugegroup SU(N) and no flavors. In the notation of 6.1.2, this arises for thespecial case of an N = 2 theory with a single matter superfield in theadjoint representation, and vanishing superpotential, W = 0.
In theN = 4 theory, the normalization of the kinetic terms of the vectorand matter superfields are related by supersymmetry. It is simplest tochoose the normalization to be 1/g2. The Lagrangian of the 3d N = 4

3See the appendix D.1 for the notation.
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theory is then given by4
L = 1

g2
[
−14FaµνFaµν + 12DµσaDµσa + (Dµφa)†Dµφa + iλ̄a /Dλa + iψ̄a /Dψa

− λ̄σλ − ψ̄σψ − φ†σ2φ + i
√2φ†λ̄ψ − i√2 ψ̄λφ − 12(φ†Taφ)(φ†Taφ)] .

(6.1.4)
For our purposes, it will be enough to consider an SU(2) gauge group.In the string theory side, this arises from a D2 probe near an O6 plane.
For SU(2), fabc = εabc, and the adjoint representation is three dimen-sional. Explicitly, the different terms in the action are as follows. Usingthe expression for the covariant derivative

Dµφa = ∂µφa + εabcAµ bφc ,one obtains a scalar kinetic term
(Dµφ)†Dµφ =∂µφ†a∂µφa − εabcAµ

a(∂µφ†b φc + ∂µφb φ†c)+ (Aµ aAµ
a)(φ†bφb)− (Aµ aφa)(Aµ

bφ
†
b) . (6.1.5)

For the potential term φ†σ2φ we find
φ†σ2φ = (φ†aφa)(σbσb)− (φ†aσa)(φbσb) . (6.1.6)

Similarly, (φ†Taφ)2 = (φ†aφa)(φ†bφb)− (φ†aφ†a)(φbφb) . (6.1.7)Let us make a few comments before approaching the Coulomb branch:in the theory the three scalars representing directions transverse to theO6 are the complex field φ (which contains two fields, its real and imag-inary part) and σ . Giving non zero vacuum expectation value to one ofthem can be seen, from the string theory point of view, as moving the D2probe out of the O6 in that direction: the non zero vacuum expectationvalue can be related to the distance respect to the O6.
Anyway, remember that we do expect that the effective action modulispace should be 4 dimensional, i.e. that the massless boson field of theeffective Lagrangian should be four. As we saw, we considered just threescalars, so it seems that we are missing something. The answer is thatalso one of the SU(2) gauge components of the gauge vector boson re-mains massless. In three dimensions the photon is dual to a scalar andso, the net result is of 4 scalars, 3 from the original scalars of the theoryand one from the dual to the photon (the massless gauge vector boson).In section 6.2 we will see some details about the arising of this scalar.

4Notice that compared to [38], the action (6.1.4) has extra factors of √2. These area consequence of the normalization of the gaugino kinetic term, which is chosen to bethe same as that of ψ.
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6.1.4 Gauge fixing Lagrangian in Rξ-gaugeNow, let us give an expectation constant value just for the third componentof the real part of φ, so breaking gauge symmetry,
φ3 ≡ v + χ, (6.1.8)

where v ∈ R is a constant and χ is the complex Higgs field. As it usuallyhappens, the non zero vacuum expectation value generates an interactionbetween the gauge vector boson and the scalar in the kinetic term:
|Dφ|2 =(∂φ)2 + (∂φ̃)22 −

√2vεαβAµ
β∂µφβ

− εαβAµ
β

[(∂µφ†β)χ + (∂µφβ)χ† − (∂µχ)φ†β − (∂µχ†)φβ]
+ (Aµ

α)2(v2 +√2vφ3 + φ23 + φ̃232 ) + . . .

(6.1.9)
where we defined

χ ≡ φ3 + i φ̃3√2 and φα ≡
φα + i φ̃α√2 , (6.1.10)

where φ, φ̃ are real fields, α = 1, 2 and “. . . ” are terms that are not goingto be interesting in the one-loop calculations.
The annoying term √2vεαβAµ

β∂µφβ can be canceled, as usual, using thegauge fixing Lagrangian,
Lgf = − (Ga)22g2ξ , (6.1.11)

where
Ga ≡ ∂µAµ

a + δaαξεαβ
(
φ†βφ3 + φβφ†3). (6.1.12)Respect to the usual gauge fixing, i.e. the one present in the most com-mon quantum field theory books like [39], (6.1.11) has been chosen to bequadratic in the scalar fields.

The previous Lagrangian (6.1.11) has been proven to be well-defined, i.e.BRST exact, and the quadratic contribution has been use to simplify the
p−dependent interaction between the scalar and the vector boson gaugedue to the kinetic term of the scalar.
Once the spontaneous symmetry breaking is performed, every field witha gauge index a = α = 1, 2 has been given a mass

m = √2v, (6.1.13)
while all 3-components remain massless.
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Plugging the information obtained so far, the interacting Lagrangian in-volved in the one-loop corrections for the scalar φ3 is
Lint =−m[φ̃2

α + σ2
α −

(
Aµ
α
)2]φ3 + 2εαβAµ

α
(
φβ∂µφ3 + φ̃β∂µφ̃3)+ εαβ

[
φ3(ψ̄αλβ − λ̄αψβ) + i φ̃3(ψ̄αλβ + λ̄αψβ

)]
−
[
φ̃2
α + σ2

α −
(
Aµ
α
)2]φ232 − [φ2

α + σ2
α −

(
Aµ
α
)2] φ̃232

− ξm
[
φ3(φ2

α + 2c̄αcα)] + (1− ξ)mφαφ̃αφ̃3
− ξφ

232 (φ2
α + 2c̄αcα)− ξ φ̃232 (φ̃2

α + 2c̄αcα) + . . .

(6.1.14)

In the following we will work in the Landau-Lorentz gauge (ξ = 0). Thischoice is useful in order to the decouple the ghost for the physical fieldsand it give a natural geometrical interpretation of the propagator for thevector boson field in terms of projectors.
6.2 The low energy theory
A useful reference for the material covered in this section can be foundin [40]; we will borrow some of their arguments. At the classical level,after breaking SU(2)N , the bosonic sector of the effective action is simplythe action of all massless fields:
SB, classeff = 1

g2
∫ d3q(2π)3 (12∂µφ3∂µφ3 + 12∂µφ̃3∂µφ̃3 + 12∂µσ3∂µσ3 + 14F3

µνF
µν3 )(6.2.1)Before focusing on the quantum corrections, let us remember that thetheory we are studying comes from the celebrated [36], one of whosemost peculiar features is the presence of monopoles. Here we havesomething analogous to a θ− term, that can be written, in the low energytheory as

Ssurface = i8π σ̃3 ∫ d3q(2π)3d3x εµνρ∂µF3
νρ. (6.2.2)

This surface term can be seen as a constraint on the Bianchi identityfor F3
µν. One can obtain an alternative description of our system justpromoting σ̃3 to a dynamical field, so considering σ̃3 as a Lagrangianmultiplier for the Bianchi identity: Naively5 using the equations of motionfor F3
µν ,

F3
µν = i4πg2εµνρ∂ρσ̃3;

∂ρσ̃3 =− 2πiεµνρFµνg2 ,
(6.2.3)

5We should use the equations of motion for A3
µ , since F3

µν is a field strength, not afield. Anyway, the result is the same. We do prefer this naive formulation here since itappears much more intuitive.
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we can substitute in the low energy effective lagrangian for F3
µν:

SA3
µ = 1

g2
∫ d3q(2π)3(14F3

µνF
µν3 + i8π σ̃3εµνρ∂µF3

νρ

)
= g2(4π)2

∫ d3q(2π)3∂µσ̃3∂µσ̃3.
(6.2.4)

We said that we can think of σ̃3 as a Lagrangian multiplier for the Bianchiidentity, but we did not use so far the Dirac quantization of the charge:that gives
k = i8π

∫ d3q(2π)3d3x εµνρ∂µF3
νρ ∈ Z. (6.2.5)

Since the surface term enters in the path integral as ei kσ̃3 and the kineticterm for σ̃3 involves (as always) just derivatives, we see that the systemis invariant under
σ̃3 Ï σ̃3 + 2π, (6.2.6)

so, locally the system looks like R3×S1. It will be useful, in the following,to define
Y ≡

 φ3
φ̃3
σ3
 , (6.2.7)

which transforms as 3 of SO(3)N . Using Y the classical bosonic effectivetheory can be written as
SB, classeff = 1

g2
∫ d3q(2π)3 (12∂µY i∂µY i + g416π2∂µσ̃3∂µσ̃3). (6.2.8)

In order to simplify the notation, we can define
X ≡


φ3
φ̃3
σ3
g22√2π σ̃3

 , (6.2.9)
such that

SB, classeff = 1
g2
∫ d3q(2π)3 12∂µXi∂µXi. (6.2.10)

On the other hand, the fermion sector of the low energy Lagrangian ismuch less exotic,
SF, classeff = 1

g2
∫ d3q(2π)3(iλ̄3 /∂λ3 + iψ̄3 /∂ψ3). (6.2.11)
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6.2.1 Quantum corrections to the effective action

Consider the one loop correction to 〈φ3φ3〉: after (quite boring) calcula-tions, it can been shown that, using dimensional regularization,

�
p p

φ3 φ31-loop = i p22mπ +O(p4). (6.2.12)

Since the corrections are finite, it is possible to reinterpret them as arenormalization of the gauge coupling,
1
g2 Ï 1

g2 − 12mπ, (6.2.13)
such that the effective action, quantum corrected, looks like

SB, one−loopeff = ( 1
g2 − 12mπ )

∫ d3q(2π)3 (12∂µXi∂µXi). (6.2.14)
Before going on, let us comment briefly the situation so far. As we saidpreviously, the scalars in the theory are directions that are orthogonal toboth the O6 and the D2: giving a non-zero vacuum expectations value toone of them can be seen as taking the D2 away from the O6 by a distancethat is proportional to v. In terms of the metric in the moduli space v isgoing to be our radial variable, up to some constant.
Moreover, notice that one-loop corrections introduced a singularity. Theclassical theory moduli space was just flat, as obvious, but quantum cor-rections go like ∼ v−1, meaning that the metric should go as ∼ r−1, soit has a singularity in the origin. We will see that instantons correctionssave the theory from singularities.
We avoid the discussion about the fermion sector: at the end of the daythe one-loop corrections are the same.
6.2.2 Instantons corrections

Let us briefly discuss the role and the shape of the instanton correctionsin [6].
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Using the usual Bogomol’ny approach for the euclidean bosonic action:
SEucB = 1

g2
∫ d3q(2π)3 [FaµνFµνa4 + DµσaDµσa2 + |Dφa|2 + φ†σ2φ + (φ†Taφ)22 ]

= 1
g2
∫ d3q(2π)3 [Ba

µBµ
a2 + DµσaDµσa2 + |Dφa|2 + φ†σ2φ + (φ†Taφ)22 ]

≥ 12g2
∫ d3q(2π)3 [Ba

µBµ
a +DµφaDµφa

]
= 12g2

∫ d3q(2π)3 [(Ba
µ +Dµφa)2 − 2Ba

µDµφa
]

≥− 1
g2
∫ d3q(2π)3Ba

µDµφa, (6.2.15)
where Ba

µ = εµνρFaνρ2 . The chain of inequalities is saturated once
Ba
µ = Dµφa; σa = φ̃a = 0. (6.2.16)Using the same ansatz of Polyakov, [41],

φa(x) ≡ f (x)xax2
Aµ
a(x) ≡ a(x)εaµνxνx2 ,

(6.2.17)
it is possible to check that

f (x) = m|x| coth(m|x|)− 1
a(x) = 1− m|x|sinh(m|x|) (6.2.18)

(m is the mass defined in (6.1.13)) is a classical solution with boundaryconditions at |x| Ï ∞ for the non vanishing fields
φa

|x|Ï∞−−−Ï mxa
x ; Ba

µ
|x|Ï∞−−−Ï −x

µxa
x4 . (6.2.19)

Integrating, we can see that the action of the instanton is, [40]
S0 = 4π

g2 m. (6.2.20)
As always, the contribution from the instanton is going to appear in theLagrangian as e−S0 . This is not the only contribution: as we alreadysaw, in the spectrum of the bosonic low energy theory we also have thescalar dual to the photon σ̃ , which should contribute to the action, [6, 41],incorporating the long distance interaction of the photon. So, the netcontribution from the instanton should be

Linst ∼ e−S0−iσ̃ . (6.2.21)
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What are modifications induced by this term? We should know if thereare zero modes in the theory. It is possible to show [40] that there are 4bosonic and 4 fermionic zero modes for every instanton. The net modifi-cation from the boson zero modes affects directly the metric, modifyingthe measure of the path integral; the fermionic one gives contribution tothe metric too, but it introduces also a new term in the low energy effec-tive action. Since, as shown by [40], just the k = 0, ±1 charged instantonscontribute to the low energy effective Lagrangian, we will focus on thiscase.
As we said at the beginning of this section, instantons in the 3 dimen-sional theory are solutions of the broken phase. So, if the superchargestransform as (2, 2, 2) under SU(2)R × SU(2)N × SU(2)N , once a real nonzero 〈φ3〉 breaks SU(2)N down to U(1)N , in the broken phase the super-charge should transform as (2,2)1/2 ⊕ (2,2)−1/2, where the exponent arethe U(1)N charge (they are half integers since the supercharges trans-forms as 12 spin of SU(2)N). Considered that at the end of the day thereare just 4 fermion zero modes for one instanton, the interaction we ex-pect should be in the form

∼ ψ4e−S0−iσ̃ (6.2.22)
which at first sight, seems to generate an anomaly, since the total chargecarried by the four fermions is 2(= 4 · 12 ). However, we did not fix thecharge of σ̃ under U(1)N : if the transformation induced by U(1)N acts as

σ̃ Ï σ̃ + 2α (6.2.23)
the symmetry of the system is restored, [6].
At the end of the day, the instanton corrections enter into the metricof the low energy effective theory, making it smooth and introduce aterm involving 4 fermions. The effective theory can be shown to be anon linear supersymmetric σ−model and the potential for the 4 fermionmodes due to the instanton can be read as the Riemann tensor of themoduli space:
Seff = k

∫ d3q(2π)3gij(X)∂mXi∂mXi −Ωi /DΩj2 − Rijkl(X)(Ωi ·Ωj)(Ωk ·Ωl)12 ,(6.2.24)where X has already been introduced, while Ω is a linear composition ψ3and λ3.
6.3 The metric of the moduli space
After a plethora of different corrections, in the previous section we wereable to find the low energy effective action (6.2.24): it is a supersymmetricnon linear σ−model where the target space is 4 dimensional. The aim
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of this section is to work out the metric of the moduli space.
What kind of metric do we expect? First, let us consider the holonomy ofour system: for every d−dimensional Riemann manifold, the holonomygroup H ⊂ SO(d). InN = 4 the commutativity relation of the supersym-metry generators with H generators implies that d should be divisible byfour and H ⊂ Sp(d/4). By definition, a manifold with symplectic holon-omy is a hyper-Kähler.
Atiyah and Hitchin calculated the metric of the moduli space of two BPSmonopoles, just using the fact that it is a hyper-Kähler manifolds with a
SU(2) isometry . It is exactly what we have on both side: a 4 dimensionalhyper-Kähler as the moduli space of a 3 dimensionalN = 4 Super YangMills theory with gauge group SU(2)6. Moreover, Atiyah and Hitchinshowed that the only one without singularities was the one that then gottheir names. This metric is known to be complete, i.e. any curve of finitelength has a limiting point.
Seiberg and Witten, [6], proposed that the metric of the effective theorycould be the Atiyah-Hitchin one, based on the geometrical properties andthe fact that the absence of singularities could be related to the strongcoupling behaviour of the supersymmetric gauge theory.
Following [35], we parametrize orbits of SO(3)N (whose double cover is
SU(2)N) by Euler angle (θ, φ, ψ) (θ ∈ [0, π], φ, ψ ∈ [0, 2π]). In terms ofthem we can define a new coordinate system (σ1, σ2, σ3)7:

σ1 = − sin(ψ)dθ + cos(ψ) sin(θ)dφ
σ2 = cos(ψ)dθ + sin(ψ) sin(θ)dφ
σ3 = dψ + cos(θ)dφ

(6.3.1)
Let us label the direction transverse to SO(3)N with r: with SO(3) isometrythe most general metric can be written in the form

ds2 = f2(r)d2r + a2(r)σ21 + b2(r)σ22 + c2(r)σ23 . (6.3.2)Before analysing the properties of (6.3.2), let us focus on the correspon-dence with the boson fields in our Lagrangian (6.2.24): let us define anew set of coordinates, Cartesian ones:
x = r cos(φ) sin(θ)
y = r sin(φ) sin(θ)
z = r cos(θ)

(6.3.3)
6The isometry SU(2) is the SU(2)N in the moduli space.7The choice of the name of the coordinate may cause confusion respect to the field

σa; we chose to agree with the notation of [35].
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By definition they do transform as 3 of SO(3), as Y defined in (6.2.7), so,up to some constant,  x
y
z

 = const. φ3
φ̃3
σ3
 (6.3.4)

The constant can be found looking at the classical bosonic effective ac-tion: in order to have just gij = δij as the metric for the target space, thefield should be renormalized taking the constant in (6.3.4) to be equal to
S0/m, meaning that r = S0.
The angle ψ remained out of the previous definitions; under rotation ofan angle α around the axis (x, y, z), ψ change as

ψ Ï ψ + α. (6.3.5)
The only field out of the game is σ̃3, which transforms under the unbro-ken U(1)N as

σ̃3 Ï σ̃3 + 2α, (6.3.6)so it appears sufficiently natural to set
ψ = σ̃32 . (6.3.7)

Let us focus on the metric (6.2.24): it can be shown, [40], that introducingone-loop effects
a2 =b2 = S0(S0 − 2) +O(S−10 );
c2 =4 + 8

S0 +O(S−20 );
f2 =1− 2

S0 +O(S−20 ).
(6.3.8)

Two loops or higher give contributions that are suppressed by powers of
S−10 .
At this point the hyper-Kähler condition can be rephrased as a system ofdifferential equations,

2bc
f
da
dr = (b − c)2 − a2

(cyclic permutation of a, b, c) (6.3.9)
In order to find a solution to the previous equations we should make anansatz on f . In any case, consider that, because of the role that it has inthe metric, the function f just controls the definition of the radial coordi-nate r. In order to check our correspondence, we should use (6.3.8), but,
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pay attention since (6.3.8) is not defined to every order.
Anyway, in order to have a look to the whole solution and simplify cal-culations, let us use f = −b/r, the same used by [35]: in this case

r = 2K( sin (β2)), (6.3.10)
where

K(k) ≡ ∫ π2
0

dτ√1− k2 sin2(τ) (6.3.11)
is the elliptic integral. With this choice r ∈ [π,∞) as β ∈ [0, π] andintegrating numerically (6.3.9) one can find the behaviour of the functions
a, b, c shown in Figure 6.1.

Figure 6.1: The Atiyah-Hitchin metric defining functions with the choice
f = −b/r, from [35]. Note that in this choice r ∈ [π,∞).
With the choice f = −br the asymptotic expansions of functions a, b, cis 

a = r
√1− 2

r − 4r2(1− 12r2 )e−r + . . .

b = r
√1− 2

r + 4r2(1− 2
r −

12r2 )e−r + . . .

c = − 2√1− 2
r

(6.3.12)

where all term decaying faster than e−r has been neglected. Note thatterms e−r has to be related to instantons, since, even with the choice from[35], r ∼ S0.
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Chapter 7

Chern Simons deformation

As we already said in the introduction to the previous chapter 6.1, the aimof my present research, in collaboration with my supervisor Alessandroand Gonzalo Torroba from SLAC and Stanford University, is to find theproperties of the system described in [6], deformed by the presence ofa non zero Romans mass. The idea is that, if the massless system cor-respond to the 3 dimensional theory on a D2 probe next to an O6, onceyou add a non vanishing F0, the theory on the D2 should be deformedby a Chern Simons term.
We recall why we expect the deformation to be Chern Simons. First, thenatural coupling due to Wess Zumino interaction for the Romans masswith the D2 is

F0
∫
D2CS(a), (7.0.1)

where a is the gauge field over the brane, and CS(a) is the Chern SimonsLagrangian for a. There are other hints that Chern Simons should be theright deformation: in [3], a correspondence from AdS4/CFT3, the con-formal 3 dimensional theory is a Chern Simons one with levels (k,−k),while the AdS4 side has a vanishing F0. Following [4], once the super-gravity side enjoys a non zero Romans mass, what happens is that thetwo Chern Simons levels are shifted to (k, F0 − k).
We are going to add to the system studied in the previous section a ChernSimons terms, breaking supersymmetry down toN = 21, so having 4 su-percharges. In this way we do expect to find something similar, but notequal to the system studied from the supergravity side. Why?
Let us consider the number of supercharges. At first sight, one mayexpect that a non zero Romans mass should not break any supersym-

1The Lagrangian in (6.1.4) was obtained somehow “gluing” together Lagrangians(6.1.1) and (6.1.2), using supersymmetry. Since the Chern Simons term involves just thegauge fields, it is natural to expect to break one half of the supersymmetry.
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metries, so the total amount of supercharges should be exactly the sameof the massless case. But in order to have a non vanishing F0, thereshould be a source for it, i.e. a D8, and so we do expect to break somesupersymmetries. When consider a couple of D-branes, say Dp and Dp’,with p > p′, the condition in order to have a supersymmetric solution, ifDp’ lies completely on Dp, is
p − p′ = 0 (mod 4); (7.0.2)

then the total amount of supercharges is reduced by a factor 1/4, [42].This description fits with the previous system: we have an O6 and a D2,so p − p′ = 0 (mod 4) and the original 32 supercharges of type IIA arereduced to 8, as in N = 4 in 3 dimensions.
For the couple O6-D8, p − p′ = 2 and one should have broken all super-symmetries. How to build a supersymmetric solution, in this case?
The (7.0.2) condition is valid just when the Dp’ brane lies completelyon the Dp: the difference between the dimensions of the two sourcesis not really important, but transverse directions to them is. In fact,the condition comes from directions not in common between the twobranes. If one chooses the system to have, for example, the configuration7.1, there is an extra 1/4 for the total amount of supercharges, suchthat the final number of supercharges is 2, which means N = 1 in 3dimensions. There are still conditions about the compatibility of the D2with the D8: they imply constraints on the B–fields, [43]. According to theconfiguration described in the table 7.1, compatibility constraints read asconditions on B45, B67 and B89.
Table 7.1: Configuration of branes in the massive theory (B–fields haveto be switched on in direction 45, 67, 89).

0 1 2 3 4 5 6 7 8 9D2 • • •O6 • • • • • • •D8 • • • • • • • • •

In this chapter we are going to study a system with more supersymme-try than the one studied in 5, say N = 2 in 3 dimensions, in order tosimplify the problem of the effect of a Chern Simons term. The study ofdeformed N = 1 is going to be the subject of the future research.
But what result do we expect? We think that the Chern Simons termin the Lagrangian will act like a patch on the singularity, as we saw theRomans mass does in the chapter 5. Moreover, in 5 we saw that the “size”of the patch depends on the value of the F0: this result has been obtainednumerically and we saw just a dependence, whose analytical form we did
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not calculate. So, somehow the patch even in the field theory side shoulddepend on the Chern Simons level; in section 7.1.1 we will give moredetails to strengthen this expectations.
Moreover, is the metric of the moduli space for the deformed case ex-pected to be hyper-Kähler? No, it is not: since we are going to breaksupersymmetry down to N = 2, there is no way to expect the hyper-Kähler condition to be valid. Moreover, in the previous case the expectedmoduli space was made by the direction transverse to both the O6 andthe D2 probe in M-theory, so 4 dimensional. What is the dimensionalitywe expect for N = 2?
We are already in the position of saying which are the fields that arenot going to participate to the new low energy effective Lagrangian. Oneis σ3, since it is the one in both the Chern Simons and Yang Mills La-grangian, so it has a mass coming from the topological term.
In the previous chapter we saw that σ̃ was the dual to the photon andin the moduli space it appears as an angular coordinate on a S1; in fact
σ̃ is the coordinate which has opened up because of the strong couplinglimit. Since we are not going to experience M-theory, σ̃ is not going toappear.
So, the moduli space is two dimensional. How can it be? As we explained,the fact is that there is a stringy interpretation for theN = 1 system, butnot for the N = 2.
We have some intermediate result that confirm this idea for the IR regimethat we are enlarging to the entire system.
7.1 Yang-Mills-Chern-Simons theory
In order to have a protected moduli space, we consider anN = 2 ChernSimons deformation. This is given by2

LCS = k8π
(
εµνρ(Aa

µ∂νAa
ρ −

16fabcAa
µAb

νAc
ρ)− 2λ̄aλa + 2Daσa

)
. (7.1.1)

The full theory is now Yang-Mills-Chern-Simons with matter,
L = Lgauge + Lmatter + LCS (7.1.2)

where Lgauge and Lmatter were defined in (6.1.1) and (6.1.2), respectively.As in 6 the matter content is taken to be a single chiral superfield in the
2Our gaugino kinetic term has a Dirac normalization, and this is the reason for theextra factor of 2 in the gaugino mass in (7.1.1), as compared to [38]. This is verified byshowing that all the vector supermultiplet gets the same supersymmetric mass (7.1.5) .
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adjoint, with no superpotential. This theory has N = 2 supersymmetry.
The final form for the Lagrangian is obtained by integrating out theauxiliary D-term,

Da = −g2k4π σa − g2φ†iTa
ijφj .We then arrive at

L = 1
g2
[
−14FaµνFaµν + 12(Dµσa)2 + iλ̄a 6Dλa − λ̄σλ

]
+ k8π

[
εµνρ(Aa

µ∂νAa
ρ −

16fabcAa
µAb

νAc
ρ)− 2λ̄aλa]− 12g2( k4πσa + φ†iTa

ijφj
)2

+ (Dµφi)†(Dµφi) + iψ̄i 6Dψi − φ†σ2φ − ψ̄σψ +√2i(φ†λ̄ψ − ψ̄λφ) . (7.1.3)
We will also be interested in the IR limit g2 →∞, where the kinetic termsfor the vector supermultiplet are set to zero, and L = LCS + Lmatter . Now
σ , D and λ are all auxiliary, and integrating them out sets

λa = 4π
k
√2i(φ†Taψ) , σa = −4π

k (φ†Taφ)
where (φ†Taφ) = φ†iTa

ijφj . Therefore, the Lagrangian becomes
L = (Dµφi)†Dµφi + iψ̄i 6Dψi + k8π εµνρ(Aa

µ∂νAa
ρ −

16fabcAa
µAb

νAc
ρ) (7.1.4)

− 16π2
k2 (φ†TaTbφ)(φ†Taφ)(φ†Tbφ) + 4π

k (ψ̄Taψ)(φ†Taφ) + 8π
k (ψ̄Taφ)(φ†Taψ) .

7.1.1 Coulomb branch of the Chern-Simons- deformed
theory in IR regimeLet us begin by analyzing the IR limit g2 → ∞, described by (7.1.4), foran SU(2) gauge group. As in 6, the theory is studied around the Coulombbranch point 〈φa〉 = δa3v. Note that now the dimension of φ, and henceof v, is 1/2, because the kinetic term is no longer multiplied by 1/g2.

Before proceeding, it is useful to understand what kind of corrections canappear along the Coulomb branch. The crucial difference between theChern Simons matter theory (7.1.4) and the previous case with nonzerogauge coupling is that, at least in perturbation theory, there is no dimen-sionful parameter. The Chern Simons level k, which is dimensionless andquantized, determines all the interactions. Next, turning on a Coulombbranch expectation value v, this will be the only dimensionful parameter,and hence it cannot appear in the loop corrected kinetic term for φ3. Inthe Yang-Mills case there was a dimensionless parameter v/g2 that wasappearing in loop corrections, but this is no longer possible in the pureChern Simons-matter case. We thus conclude that, if there are quantumcorrections to the Coulomb branch metric, they have to be independent
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of v. As a consequence, this guarantees the absence of singularities alongthe Coulomb branch.
Let us calculate the Coulomb branch of the IR limit, (7.1.4): first, considerthe massless boson fields. Using the definition w = √2v = √2〈φ〉 and
µ ≡ k8π , it is possible to define

mCS ≡
w22µ . (7.1.5)

As happened in the previous chapter, even in this case just the compo-nents 3 of the fields remain massless, but the great difference with respectto chapter 6 is that in (7.1.4) the field σa has been cancelled, since it actslike an auxiliary field.
We use the gauge fixing lagrangian,
Lgf = Aµ

a
∂µ∂ν2ξ Aν

a + εαβAµ
α ∂µ

(
φ†βφ3 + φ†3φβ)− ξ2 (φ†αφ3 + φ†3φα)2, (7.1.6)

that is similar to the one used in the previous chapter (6.1.11) but for thefact that, since the dimension of the field is [φ] = 1/2 and we no longerhave the constant g2 ([g2] = 1), the gauge fixing parameter has dimension[ξ] = 1.
Even in this case we will use Landau gauge, since it automatically decou-ples ghosts from other fields, as already seen in the previous chapter.
At the end of the day, the interaction terms involved in the one-loopcalculations in Landau gauge are
Lint
one−loop =ψ̄α2wφ3 + φ23 + φ̃232µ ψα + 2εαβAµ

α
(
φβ∂µφ3 + φ̃β∂µφ̃3)

+ φ3(w(Aα
µ
)2 − w32µ2 φ̃2

α

) + w34µ2 φ̃3φαφ̃α
+ φ232 (− 3w22µ2 φ̃2

α + (Aα
µ
)2) + φ̃232 (− w24µ2 (φ2

α + φ̃2
α
) + (Aα

µ
)2)

(7.1.7)Let us calculate one-loop corrections to 〈φ3φ3〉; as predicted, they dependjust on µ,

�
p p

φ3 φ31-loop = − i p24πµ +O(p4) (7.1.8)
So, modifying the bosonic effective action through

SB, one−loopeff = ∫ d3x(1 + 14πµ)∂µXi
CS∂µXi

CS, (7.1.9)
85



where
XCS = ( φ3

φ̃3
)
, (7.1.10)

we have cancelled the singularity.
In the previous chapter we saw that there are corrections coming frominstantons too. Are there instantons in our theory? The subject is dis-cussed at the moment in the team, but we may say that they are not.
We said that the instantons in the original model described in 6, can beseen from the stringy point of view as D0 exchanged by the D2 probewith its own image from the O6. In fact, similarly to (7.0.1), there areeven interactions of the type ∫

D0 F0 a, (7.1.11)
where again a is the gauge field over the D0. This contribution gives atadpole in the massive case, so there is no classical solution and so noinstanton solution can be added. This proposal is being checked at themoment.
7.1.2 Coulomb branch of the Chern-Simons

deformed theory for finite gLet us take the full lagrangian, LCS + Lmatter + Lgauge, with finite g :
L = 1

g2
[
−14FaµνFaµν + 12(Dµσa)2 + iλ̄a 6Dλa − λ̄σλ

]
+ k8π

[
εµνρ(Aa

µ∂νAa
ρ −

16fabcAa
µAb

νAc
ρ)− 2λ̄aλa]− 12g2( k4πσa + φ†iTa

ijφj
)2

+ (Dµφi)†(Dµφi) + iψ̄i 6Dψi − φ†σ2φ − ψ̄σψ +√2i(φ†λ̄ψ − ψ̄λφ) . (7.1.12)
At first sight one can think that σ3 could remain massless, so taking themoduli space to be 3 dimensional. Because of the non zero vacuumexpectation value for φ3, this is not the case; in fact, due to the interactionterm

−12g2( k4πσa + φ†iTa
ijφj
)2
, (7.1.13)

σa is given a mass M = 2µg2. This term is not exactly beautiful: if wetake 〈φ3〉 = w√2 , among other term, we have
2g2µw εαβ σαφ̃β, (7.1.14)

that implies the presence of a two particles vertex, or mixed propagator.
Except for the term (7.1.13), the interaction terms are exactly those fromthe original theory (6.1.4), so vertices should be similar (once you pay
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attention to g2 factors).
At the end of the day, there are two masses, M and m. The formeris the mass of every gauge fields and depends just on µ and g , so it’snot related to the non zero vacuum expectation value of φ3; the latter isgenerated by the spontaneous symmetry breaking (it depends on w). Inthe original non deformed theory, we had a 4 dimensional moduli space,given by the fact that there are 3 scalars in the theory and the dual to thephoton, related to the opening of the new direction of M-theory. One ofthe “original” scalars in the game there was σ3.
The deformed theory has masses for all gauge fields given by the in-teraction terms in Chern Simons. Moreover, the spontaneous symmetrybreaking gives an extra mass to all directions but the Higgs one of SU(2)N .So, σ3 is not given an extra mass by symmetry breaking, but it has alreadya mass due to Chern Simons. Moreover, we are not going to be upliftedto M-theory, so even the dual to the photon is not going to appear inthe effective Lagrangian, i.e appear as a coordinate of the moduli space.So, the moduli space should be still 2 dimensional (as in the IR regime,where g2 Ï∞).
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Appendix A

General definition: signature,
indices and so on...

In the present thesis the signature of the metric has been chosen tobe (−,+,+, . . . ,+). M, N indices are ten dimensional, µ, ν are used forthe external spacetime, while m, n indicates quantities defined over theinternal space. In dimension d the Hodge star ∗ action over a k−form isdefined as
∗d ea1 ∧ · · · ∧ eak ≡ 1(d − k)!εak+1···ada1···ak+1eak+1 ∧ · · · ∧ ead . (A.0.1)

If we choose a coordinates basis x on M , the derivatives ∂
∂xm can be usedto define contractions ι’s: ιm = ι ∂

∂xm
acts on differential forms as

ιm(dxi1 ∧ · · · ∧ dxin) ≡ p δ[i1
m dxi2 ∧ · · · ∧ dxin]. (A.0.2)

Let us suppose that the k−form ω can be written as
ω = ωm dxm = ωm1···mkdxm1 ∧ · · · ∧ dxmk , (A.0.3)

where dxm is the basis dual to ∂
∂xm and ωm are components. The exteriorderivative in terms of local coordinates is d ≡ dxm∂m, such that

dω = dx[m ∧ ∂mωm1···mkdxm1 ∧ · · · ∧ dxmk . (A.0.4)
By definition, d2 = 0.
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Appendix B

Equations of motion for the dS
proposal of 2.2.2

In the next formulas the ′ is going to be used to indicate derivation respectto θ. The following equations of motion are valid outside the sources. Forthe source corrections, look at the modifications in 2.2.
Because of the symmetry of the system, the non equivalent equations ofmotion from the internal graviton are three, one from I ,

2a′′a + 3b′′b + 4A′′ + 4A′2 − 2A′φ′ = e2φ4 (f20 + f22
a2 + f24

b6 + κ26e−8A), (B.0.1)
one coming from the S2 components,
1
a2 −

(a′
a

)2
−3a′a b′b − a′′a + a′

a (−4A′+2φ′) = e2φ4 (−f20 + f22
a2 − f24

b6 +κ26e−8A),(B.0.2)and one from S3’s,
2
b2 −2(b′b )2

−2a′a b′b − b′′b + b′
b (−4A′+2φ′) = e2φ4 (−f20 − f22

a2 + f24
b6 +κ26e−8A).(B.0.3)The external graviton equation of motion,

Λe−2A = A′′+(2a′a + 3b′b )A′+ 4A′2− 2A′φ′− e2φ4 (f20 + f22
a2 + f24

b6 + κ26e−8A),(B.0.4)is the one involving the internal cosmological constant Λ.
The dilaton evolution is given by
2φ′′+2(2a′a +3b′b )φ′−4φ′2+8A′φ′+h21

a4 +e2φ2 (−5f20−3 f22
a4− f

24
b6 +κ26e−8A) = 0.(B.0.5)
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Appendix C

Forms used in chapter 5

In this appendix, we will give a basis of forms symmetric under the sym-metry ISO(3) we identified in section 5.6.2. This consists of translations inthe directions xi parallel to the O6-plane, and of simultaneous rotationsof both the xi and of the yi, transverse to the O6-plane. In the main text,we have used this basis to expand both our pure spinors and fluxes.The one-forms are:
ω1,0 = yi dyi ≡ r dr , (C.0.1a)
ω1,1 = yi dxi . (C.0.1b)A 2-form basis compatible with the symmetry is:

ω2,0 = εijk yi dy j ∧ dxk , (C.0.2a)
ω2,1 = εijk yi dy j ∧ dyk , (C.0.2b)
ω2,2 = εijk yi dxj ∧ dxk , (C.0.2c)
ω2,3 = yi dyi ∧ y j dxj = ω1,0 ∧ ω1,1 , (C.0.2d)
ω2,4 = dxi ∧ dyi = J ; (C.0.2e)we recalled here that the last form is nothing but the two-form J of themassless O6 solution, (5.2.4).The 3-forms can be written in terms of:

ω3,0 = 16εijk dxi ∧ dxj ∧ dxk ≡ vol‖ , (C.0.3a)
ω3,1 = 16εijk dyi ∧ dy j ∧ dyk ≡ vol⊥ , (C.0.3b)
ω3,2 = εijk dxi ∧ dy j ∧ dyk , (C.0.3c)
ω3,3 = εijk dxi ∧ dxj ∧ dyk , (C.0.3d)
ω3,4 = εijkyi ym dxm ∧ dy j ∧ dyk = ω1,1 ∧ ω2,2 , (C.0.3e)
ω3,5 = yi dxj ∧ dyi ∧ dy j = ω1,1 ∧ ω2,4 , (C.0.3f)
ω3,6 = yi dxj ∧ dxi ∧ dy j = ω1,0 ∧ ω2,4 , (C.0.3g)
ω3,7 = εijk yi r dr ∧ dxj ∧ dxk = εijk yi ym dym ∧ dxj ∧ dxk , (C.0.3h)
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4-forms and 5-forms can then be obtained as wedge products from theprevious definitions:
ω4,0 = εijkyi dxm ∧ dxj ∧ dym ∧ dyk = ω2,0 ∧ ω2,4 , (C.0.4a)
ω4,1 = εijkεlmn yi yl dxj ∧ dxm ∧ dyk ∧ dyn = ω2,1 ∧ ω2,2 , (C.0.4b)
ω4,2 = yi dxi ∧ vol⊥ = ω1,1 ∧ vol⊥ , (C.0.4c)
ω4,3 = vol‖ ∧ yi dyi = vol‖ ∧ ω1,0 , (C.0.4d)
ω4,4 = dxi ∧ dxj ∧ dyi ∧ dy j = −J2 ; (C.0.4e)

ω5,0 = ω2,2 ∧ vol⊥ , (C.0.5a)
ω5,1 = ω2,1 ∧ vol‖ . (C.0.5b)

Crucially, this basis is closed under exterior derivative d wedge product.One can then express both in terms of appropriate tensors: for example,the wedge product between the 2-form Ψ = Ψiω2,i , (i = 0, . . . , 4) and the3-form Ω = ΩIω3,I , (I = 0, . . . , 7) can be written in terms of a tensor W23:
Ψ ∧Ω = Ψi ΩI ω2,i ∧ ω3,I ≡ Ψi ΩI (W23)i,I,αω5,α = (Ψ ∧Ω)αω5,α , (C.0.6)

where α = 0, 1. The same idea can be applied to the exterior derivative.For example:
dΨ = d(Ψi ω2,i) = Ψ′i

r ω1,0 ∧ ω2,i + Ψid(ω2,i) ≡ [Ψ′i
r (W12)0,i,I + ΨiDi,I

]
ω3,I ,(C.0.7)with Di,I an appropriate tensor. Working out all these tensors speeds upcomputations significantly.Under the a parity transformation

σ : yi Ï −yi (C.0.8)
in the directions perpendicular to the O6-plane, the forms defined abovetransform by picking up signs. These signs are summarized in table C.1.

Table C.1: Parity properties of our form basis under Iy in (5.6.15).
Even Odd1-forms ω1,0 ω1,12-forms ω2,0 ω2,1, ω2,2, ω2,3, ω2,43-forms ω3,0, ω3,2, ω3,4, ω3,6 ω3,1, ω3,3, ω3,5, ω3,74-forms ω4,1, ω4,2, ω4,3, ω4,4 ω4,05-forms ω5,0 ω5,1
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Appendix D

Formalism used in part II

D.1 Notations
Even if it can generate confusion, we decide to use the metric with sig-nature (+−−) in the last chapter, since it is the one traditionally used in[6, 40] and it makes the comparison with other results in the literatureeasier. The covariant derivative is given by

Dµφi = ∂µφi + iAa
µTa

ijφj . (D.1.1)
where Ta

ij are the generators of the gauge group. Consider the gaugegroup SU(N) and recall that for a field in the adjoint representation, thegenerators are given in terms of the structure constants by
Ta
ij = −ifaij .These generators are normalized according to

tr(TaTb) = N δab .

Also, in this case the covariant derivative is given by
Dµφc = ∂µφc + facbAa

µφb .

When specializing to SU(2) gauge group (fabc = εabc), our convention forthe generators becomes
Ta
bc = −iεabc, (D.1.2)so, such that tr[Ta, Tb] = 2δab (D.1.3)and

Dµφa = ∂µφa + εabcAµ bφc . (D.1.4)3d fermions are Dirac, with ψ̄ = ψ†γ0. We choose the representation ofgamma matrices with γ0 = σ2, γ1 = iσ3, γ2 = iσ1.
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Appendix E

Towards a family of
(non-)supersymmetric solutions

We saw how is possible to convert supersymmetry equations in terms ofdifferential conditions on forms. In the case of SU(3) structure, the wholeinformation is encoded into the simplectic form J and the holomorphicvolume Ω, while in the SU(3)× SU(3) case we have a sort of generaliza-tion of it, involving some Jψ and Ωψ.
We saw Jψ and Ωψ can be expressed in term of j and ω, defining an SU(2)structure. It is possible to apply this decomposition to an SU(3) structuretoo, since SU(3) ⊂ SU(3)× SU(3).
Once a supersymmetric solution with structure SU(3) is found, is it possi-ble to deform its SU(2) structure in order to find a new supersymmetricsolution, again with SU(3) structure? In this way it would be possible tobuild families of supersymmetric solutions from an original forefather.Moreover, note that in the previous proposal there is not the necessityof starting from, or finishing to, a certain curvature in the internal space,so it seems to be possible to pass from an AdS to a Minkowski solution,or viceversa.
There is a second consideration to analyse: as we said in the secondchapter, supersymmetry equations are differential equations of the firstorder, while the equations of motion are of the second. Suppose weknow how to write equations of motion in terms of pure spinors: then,the same algorithm of the SU(2) deformation could be applied in orderto find non supersymmetric solution. In fact, it could be possible to usea supersymmetric solution, i.e. a solution of a first degree differentialsystem of equations, in order to reduce the degree of the equations ofmotion.
At the end of the day, the main target of this construction is to check
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if there is the possibility to build non-supersymmetric solutions startingfrom supersymmetric ones in terms of pure spinors. In order to do that,one has to write the equations of motion in terms of pure spinors. Someattempts to go in that direction are known in the literature, [44, 45, 46], butat the moment of the writing of this thesis none had done completely ina satisfying way. This project is (slowly...) evolving with the collaborationof Stefano Massai, a colleague from Saclay.
Anyway, at the moment, the SU(2) deformation has been studied only forthe first simple step from AdS to AdS (the result is not so exciting, but itis the first step).
In the whole chapter we will use the following notation: “unhatted” quan-tities are the known one (the original supersymmetric solution), “hatted”quantities are the one “deformed” (the output). If Φ± and Φ̂± are purespinors satisfying the previous notations, the main idea can be rephrasedas: Φ̂± = Φ̂±(Φ±,parameters). (E.0.1)
E.1 SU(3) structure for every pure spinor
Let us ask all pure spinors to have a SU(3)-structure:

Φ̂+ = ρ̂ eiθ̂ e−iĴ ; Φ̂− = ρ̂Ω̂;Φ+ = ρ eiθ e−iJ ; Φ− = ρΩ.
and express the forms in the game in terms of SU(2) structure:

J = j + Re(v) ∧ Im(v); Ω = iv ∧ ω, (E.1.1)
where

j ∧ ω = 0; Re(ω) ∧ Im(ω) =0;
j2 = Re(ω)2 = Im(ω)2; ω pure (E.1.2)

(the meaning of “pure” will be explained later).
In principle there is no way to know what the shape of Ĵ , Ω̂ should be.In the game there are just 3 real 2-forms:

j, Re(ω), Im(ω) (E.1.3)
and 2 real 1-forms: Re(v), Im(v). (E.1.4)Is it possible to decompose Ĵ and Ω̂ in terms of these forms? At firstsight one would say that there is no so much freedom to built a new (1,1)and a new (3,0) from the forms in the game. Anyway, remember that
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modifying Ω, somehow the concept of (1, 1) is changed . In other words,what decide what is a (1,1) form, for instance, is the new Ω.
So, if Ω̂ is pure, it will be enough.
Before going on, note that in the most general case, the warping tooshould be modified:

Â ≡ Aζ + A (E.1.5)
The shape of the deformation is due to Bianchi identities for the Romansmass in AdS1.
E.2 From AdS

In the following we will focus on supersymmetric solutions obtained start-ing from AdS and going to AdS. The result is not so exciting, just a specificclass of known solutions can be built from an AdS supersymmetric solu-tion. Anyway, the same idea could be used in order to build Minkowskisolutions (quite rare) from AdS one.
The presentation of this living project is the occasion of presenting indetails supersymmetry equations in terms of pure spinors in the specialcase of SU(3) structure.

dH(Re(Φ)+) = −2µe−ARe(Φ)−; (E.2.1a)
dH(Im(Φ)+) = 0; (E.2.1b)
F
ρ = J ∧ d

(
e−3AIm(Ω))− J−1x[d(e−3AIm(Ω))−H ∧ (e−3AIm(Ω))]

+ 5µe−4A Re(eiθe−iJ) (E.2.1c)
E.2.1 Supersymmetry equations non involving fluxes

First, let us focus on (E.2.1a) and (E.2.1b). The 1-form contributions saythat
dρ = dθ = 0. (E.2.2)

Instead, the next degree is much more interesting: from (E.2.1a) and(E.2.1b)
dJ =− tan θ H = −2µ e−A sin θRe(Ω);
H =2µ e−A cos θRe(Ω). (E.2.3)

1In Minkowski with SU(3) structure the Romans mass is identically zero.
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Implications on torsion classesNote that the non zero value for dJ turns on the W1 torsion class: in fact,
0 = d(J ∧Ω) =dJ ∧Ω + J ∧ dΩ

=− 43 i µe−A sin θ J3 +W1 J3 (E.2.4)
so W1 = 43 i µ e−A sin(θ). Let us look at the Ω side: the most general caseis

dΩ = W1 J2 +W2 ∧ J + W̄5 ∧Ω, (E.2.5)with W2 ∧ J2 = 0. We are asking W5 to be (1,0) and W2 to be a (1,1)-form.Since we have only a 1-form that is (1,0) (and it is v),
W5 = w5 v, (E.2.6)and analogously

W2 = w2,j j +w2,v Re(v) ∧ Im(v). (E.2.7)On (E.2.7) let us impose the primitivity condition:
W2 ∧ J2 =(2w2,j +w2,v)j2 ∧ Re(v) ∧ Im(v) = 0, (E.2.8)

implying w2,v = −2w2,j ≡ −2w2. So,
W2 = w2(j − 2 Re(v) ∧ Im(v)). (E.2.9)

Bianchi identities on H implies
d(e−ARe(Ω)) = 0, (E.2.10)which means 

Re(w2) = 0Im(w5) = −Ȧ2Re(w5) = −τ0 Ȧ2 = τ0 Im(w5)
(E.2.11)

(since W1 is purely imaginary, it has no contribution from the previouscalculations).
E.2.2 Supersymmetry equations non involving fluxes

In order to avoid useless constant factors, let us renormalize fluxes: Fkρ Ï
Fk2.From (E.2.1c), one can calculate the Romans mass:

F0 = 5µe−4A cos θ (E.2.12)
2Note that it is just a renormalization respect to a constant, see (E.2.2)
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Now you can see why we changed the warping factor as in (E.1.5): inAdS, the Bianchi identity for the Romans mass,
dF0 = 0 (E.2.13)is equivalent to
dA = 0, (E.2.14)which implies that W5 = 0. This is not true for Minkowski, so going toa space with different external curvature would imply a variation in thewarping as (E.1.5).

Let us calculate F2:
F2 =− J−1xd(e−3AIm(Ω)) + 5µe−4A sin θ J

=e−3A3 [
− (3w + µe−A sin θ)j + (6w − µe−A sin θ)Re(v) ∧ Im(v)](E.2.15)Before going on, let us notice that since j ∧Ω = Re(v) ∧ Im(v) ∧Ω = 0,

H ∧ F2 = 0. (E.2.16)For the calculation of F4, it has been used J−1x J3 = 3J2:
F4 =32µe−4A cos θJ2 = 310F0 J2. (E.2.17)

Last, for completeness, F6:
F6 =µe−4A sin θ2 J3 = −3µe−4A sin θ vol6. (E.2.18)

Non trivial Bianchi identitiesLet us start with F4: these are quite straighforward since dF0 = 0 and
J ∧ dJ = 0 imply dF4 = 0. Moreover, thanks to (E.2.16), we see that

dHF4 = 0 (E.2.19)and no source for F4 (D4 or O4) is allowed.
Let us look to the remaining F2: with lots of patience, the result is
dHF2 =e−3A{− ẇ j ∧ dx − 3w dj + µe−A

[
− 4w sin θ + µe−A

(23 sin2 θ + 10 cos2 θ)]
·
(Re(v) ∧ Im(ω) + Im(v) ∧ Re(ω))}=(source)AdS. (E.2.20)As it is easy to imagine, the problem is going to be fixing sources: this canbe easily done once the beginning and the ending space have the samecurvature in the external manifold, but it is not so clear what to imposewhen the external spacetimes enjoy different curvature. The subject isunder study, at the moment.
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E.2.3 Exterior derivativesIn what follows, just the forms already presented are going to be used, i.e.all forms defining the SU(3)-structure are the only forms in the game. Inorder to have a complete control over them, we should know the exteriorderivative over them in full generality. Because the differential forms inthe game satisfy different conditions according to the curvature of theexternal space, we proposed the most general expansion of the exteriorderivative of our forms; the expansion depends on the curvature of theexternal spacetime.
We will not present here how the exterior derivative expansion looks likein its whole ugliness. Anyway, we just say that in passing from AdS toAdS lots of simplifications occur and the system give a readable answer(even if not really interesting...).
E.3 Deformations
Now, let us go to the most (hopefully) interesting part of this chapter, thatis the way the system is deformed.
E.3.1 Conditions for SU(3) structure for Φ̂±In full generality, it is possible to write
Ĵ = a j+bRe(ω)+c Im(ω)+Re(v) ∧ Im(v)

e2 ; Ω̂ = iv∧(α j+βRe(ω)+γ Im(ω)),(E.3.1)where latin letters are real coefficient, while greek ones are complex (thecoefficient to Re(v)∧Im(v) may look odd, but the shape chosen will clarifyits geometrical interpretation in the following). j and ω satisfy (E.1.2), asalready said.
Let us apply all conditions that define an SU(3) structure: asking that

Ĵ3 = 32Re(Ω) ∧ Im(Ω) (E.3.2)
implies

a2 + b2 + c2 = e2; (E.3.3a)
|α|2 + |β|2 + |γ|2 = 2. (E.3.3b)

Instead, Ĵ ∧ Ω̂ = 0 gives (αa + βb + γc) = 0, (E.3.4)that can be separated into the real and the imaginary part:Re(α)a + Re(β)b + Re(γ)c =0;Im(α)a + Im(β)b + Im(γ)c =0. (E.3.5)
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Now, purity on Ω̂ means just that, if Ω̂ ≡ i v ∧ ω̂, then ω̂2 = 0, so
ω̂2 = 0 = (α2 + β2 + γ2)j2 = 0, (E.3.6)which impliesRe(α)2 + Re(β)2 + Re(γ)2 = 1 = Im(α)2 + Im(β)2 + Im(γ)2 (E.3.7)and, together (E.3.3b),

α2 + β2 + γ2 = 0
|α|2 + |β|2 + |γ|2 = 2. (E.3.8)

Note that the case Ĵ = J and Ω̂ = Ω automatically satisfies all our condi-tions.
E.3.2 Geometrical interpretation

Note that, just considering the parameters for Ω̂ defines a special surfacethrough (E.3.8), i.e. a locus in R3 in which the vector of the real partis orthogonal to the vector of the imaginary part and both have unitarymodulus. It can be easily seen in formulae. Let us define:
α =  α

β
γ

 , (E.3.9)
Eqts (E.3.8) can be rewritten asRe(α) ·Re(α) = Im(α) · Im(α) = 1; Re(α) · Im(α) = 0. (E.3.10)First condition implies that Re(α) define an S2. Anyway, for every Re(α)there is an orthogonal Im(α), which fix a S1. So the solutions live over
S2 × S1 = S3, that is the famous Hopf fibrations.
Anyway, since equations (E.3.10) are quadratic, we have an invariancefor the change of sign, so at the end of the day, the parameters for thedefinition of Ω̂ is

S3/Z2. (E.3.11)If we now add the condition from (E.3.4), the result is quite interesting:define a vector
a =  a

b
c

 , (E.3.12)
which, because of (E.3.3a), has modulus e (in principle e is allowed tovary as it prefers). The condition (E.3.4) (and following) implies, in termsof 3 dimensional vectors,

a ·Re(α) = a · Im(α) = 0. (E.3.13)So, the main difference of the vector a respect to Re(α) and Im(α) is thefact that the modulus is not fixed to 1, but it is controlled by the valueof the coefficient e. The conditions for the deformed SU(2) just define asystem of orthonormal three vectors, so it is like choosing a coordinatebasis in R3 to define a point.
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E.4 To AdS
Obviously, AdS supersymmetry equations are the same that we alreadysaw in E.2, but with “hatted” quantities:

dĤ(Re(Φ̂)+) = −2µ̂e−ÂRe(Φ̂)−; (E.4.1a)
dĤ(Im(Φ̂)+) = 0; (E.4.1b)
F̂ = Ĵ ∧ d

(
e−3ÂIm(Ω̂))− Ĵ−1x[d(e−3ÂIm(Ω̂))Ĥ ∧ (e−3ÂIm(Ω̂))]+ 5µ̂e−4Â Re(eiθ̂e−iĴ) (E.4.1c)

As we did in E.2, we normalized the fluxes as F̂ρ̂ Ï F̂ .
Of course, there is no need to calculate again everything, we can just“hat” quantities already calculated:
dρ̂ = dθ̂ = 0 (E.4.2a)
dĴ = −2µ̂e−Â sin θ̂Re(Ω̂) (E.4.2b)
dRe(Ω̂) = 0 (E.4.2c)
dIm(Ω̂) = (Im(Ŵ1) + ŵ

)
ĵ2 + (2Im(Ŵ1)− ŵ)ĵ ∧ Re(v) ∧ Im(v) (E.4.2d)

dĤF̂2 = e−3Â{− ˙̂w ĵ ∧ dx − 3ŵ dĵ

+ µ̂e−Â
[
− 4ŵ sin θ̂ + µ̂e−Â

(23 sin2 θ̂ + 10 cos2 θ̂)]
·
(Re(ω̂) ∧ Im(v) + Im(ω̂) ∧ Re(v))} (E.4.2e)

where ĵ ≡ Ĵ − Re(v) ∧ Im(v).
E.4.1 From AdS to AdS: final commentsPlugging all ingredients together is hard, but not so complicated (just ahuge amount of algebra) and some interesting (maybe) results can beobtained. First, consistency of the algorithm fixes

θ = θ̂ = 0. (E.4.3)
Moreover, there are some differential constraints on a, b, c and α, β, γcurrently under study. Anyway, the result is that if there are solutions(and the system does not have any big evidences of fighting constraints),there should send a nearly Kähler to another nearly Kähler. This shouldnot come as a surprise: the building blocks are defined over a nearlyKähler manifold and it seems strange that the system could go to some-thing completely different than a from a nearly Kähler.
Much more interesting results should come from changing the curvaturein the external manifold, i.e. going from AdS to Minkowski, since in this
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case the system is different and there should be enough freedom to finda solution.
So, at the end of the day, the idea is to check if there is the possibilityfor going from and to spacetime with different external curvature. Thesituation, anyway, has a difficulty: how should I work out the shape ofsources? In the system analysed the only possible sources are D6 or O6,but how to relate the ones in input to the output ones? The easiest ideashould be to ask them to be equal in form3, but the subject is still understudy.

3With “equal in form” we mean that if in the original theory, for instance, the sourceis f (Ω), the source contribution of the theory in output should be f (Ω̂).
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