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Introduction

Description of the Problems

This thesis is composed of three parts. The first and the second concern the existence of
solutions to a system of conservation laws without assuming the usual hypothesis on the
smallness of the total variation of the initial datum. The third presents a new model for
the movement of granular matter.

These results require entirely different techniques and have different aims. The first
ones are analytical theorems whose relevance consists in relaxing the hypotheses found in
the literature. In the latter one, the original element is the model itself, whose relevance
consists in improving the descriptions provided by previous models.

In the first Chapter (see also [25]) we consider the possibly non conservative strictly
hyperbolic n× n system

∂tu+A(u) ∂xu = 0

where each characteristic field is genuinely nonlinear. Assume moreover that it is a straight
line system i.e., with standard notation, Dri · ri = 0 for i = 1, . . . , n.

When the total variation of the initial data is sufficiently small, systems of this kind
generate an L1 Lipschitz continuous semigroup, see [10, Theorem 2]. When the total vari-
ation of the initial data is large, though finite, well posedness was proved in [4, Theorem 1]
in the case of conservative systems. Stability for L∞ data was proved in [17, Theorem 1].

We consider a perturbation of the system above, say

∂tu+B(u) ∂xu = 0

where ‖B −A‖
C1,1 is sufficiently small. For this perturbed system, the characteristic

families are still genuinely nonlinear, but the straight line condition may well fail. There-
fore, for data with small total variation, the perturbed system above falls in the class for
which well posedness was proved in [11, Theorem 1] by means of the vanishing viscosity
approach. The wave front tracking technique also proved to be effective, see [2].

In the first part of this thesis, we prove the existence of a global solution to the per-
turbed system under the assumption that the initial datum has finite, but not necessarily
small, total variation.

As it is standard in the framework of wave front tracking, the first step is the solution
of Riemann problems. We achieve it through the construction of generalized rarefaction
and generalized shock curves, extending the results in [8, 38, 39] to the case of large total
variation. When B is a Jacobian matrix, these generalized Lax curves coincide with the
classical Lax curves.
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Then, we pass to the Cauchy problem. Inserting careful estimates in the standard
wave front tracking procedure, we are able to prove the convergence of piecewise con-
stant approximate solutions, thus obtaining the existence of generalized solutions. This
construction requires neither the total variation of the initial data to be small, nor the
conservative form, nor that shock and rarefaction curves in the perturbed system coin-
cide. In the conservative case, these solutions are the standard weak entropy solutions,
see [14, 27].

Remark that as soon as the initial datum is allowed to have large total variation and
the system is not of Temple type, blow up in the L∞ or BV norms may well take place,
also in the conservative case, see [35] or [27, Section 9.10].

In the case of conservation laws with L∞ data, the reference result is the classical
Glimm–Lax paper [31]. It refers to a 2 × 2 strictly hyperbolic system with each charac-
teristic field genuinely nonlinear. Under a further assumption on the geometry of the Lax
curves, [31, Theorem 5.1] proves the existence of solutions with data in L∞.

In the second Chapter (see also [13]), we prove the Glimm–Lax result without the
assumption taken therein on the geometry of the shock–rarefaction curves.

More precisely, the assumption [31, (c)] ensures that the interaction of two shocks of
the same family yields a shock of that family and a rarefaction of the other family. In our
construction, no assumption whatsoever of this kind is assumed.

Other attempts towards an extension of Glimm–Lax result are found in the literature.
In the case of systems with coinciding shock and rarefaction curves, the well posedness in
L∞ is proved in [7, Theorem 1.1.], extending the previous results [5, 17].

Our proof relies on the construction of a solution as limit of ε–front tracking approx-
imations vε, defined through a suitable modification of the algorithm in [15]. First, as
in [31], careful decay estimates on a trapezoid allow to bound the positive variation and
the L∞ norm of vε. A further a priori assumption on the L∞ norm of vε allows to induc-
tively extend the definition of the approximate solutions globally in time. A key point is
now to provide estimates so that the a priori assumption is abandoned. This is achieved
through L∞ estimates essentially based on the conservative form of the system and on the
previous results on the trapezoids. It is thanks to these estimates that the result in [31]
can be extended. We remark that also a significant simplification was achieved, for the
original Glimm–Lax paper counts more than 100 pages, while our construction less than
30.

As a byproduct, we also obtain an existence result valid for all initial data having small
L∞ norm and bounded total variation, under the standard Lax condition, i.e. that each
characteristic field is either genuinely non linear or linearly degenerate.

The third Chapter (see also [24]) concerns the dynamics of granular matter. In this
context, two models widely considered in the literature are the Savage–Hutter [42] and the
Hadeler–Kuttler [33] ones. The first reminds of the shallow water equation. It is based on
the conservation of mass and on the balance of linear momentum. However, this model
does not allow any evolution in the a priori fixed bed. The Hadeler–Kuttler model does
consider erosion–deposition effects, but it lacks any energy inequality, possibly giving rise
to somewhat unphysical solutions, as we show through numerical integrations.

We propose the following synthesis of the two models above, which includes both the
physics of the sliding material, as in the Savage–Hutter model, and the exchange of mass
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between the standing material and the sliding one, as in the Hudler–Kuttler model:



















∂th+ ∇ · (h v) = −γh
(

α− ‖∇u‖
)

+H

∂tv + ∇ ·
(

1
2v ⊗ v + gh Id

)

= −g∇u− ν(v, ux) − γ[[α− ‖∇u‖ ]]
−
v + V

∂tu = γh
(

α− ‖∇u‖
)

where [[ · ]]
−

denotes the negative part, i.e. [[ ξ ]]
−

=
(

ξ − |ξ|
)

/2. Here, v defines the velocity

vector field at which matter slides along the slope with profile u, g is gravity and the
function ν reflects the friction between the sliding material and the surface. The constant
α is the angle above which matter erodes the slope whereas below this angle matter tends
to deposit, γ is the speed of this process. The terms H and V allow to describe the effects
of matter being poured, or falling, on all or part of the considered slope.

Among other analytical properties of this system, we prove that the smooth solutions
to the equations above dissipate the physically reasonable energy

E =

∫

R2

(

1

2
h ‖v‖2 +

1

2
g (h+ u)2

)

dx

under realistic assumptions on the friction term ν(v,∇u), as it is explained in this Chapter.

Then, several numerical integrations show the main qualitative differences among the
three systems. We remark that, in many instances, the asymptotic behavior of the three
models is very similar. On the other hand, the transient qualitative features of the Savage–
Hutter and Hadeler–Kuttler model are somewhat surprising, as the figures in Chapter 3
show. On the other hand, the behavior of the solutions to our model appears reasonable
for all times.
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Chapter 1

Solutions with large total variation

to nonconservative hyperbolic

systems

1.1 Introduction

Consider the n× n quasilinear hyperbolic system

∂tu+A(u) ∂xu = 0 . (1.1.1)

Call λA1 (u) < · · · < λAn (u) the n eigenvalues of A(u) and rA1 (u), . . . , rAn (u) the corresponding
right eigenvectors. As in [9, formula (1.12)], we assume throughout that

∇λAi (u) · rAi (u) > 0 and DrAi (u) · rAi (u) = 0 . (1.1.2)

Remark that any genuinely nonlinear Temple system of conservation laws, when written
in the Riemann coordinates, is in the form (1.1.1) and satisfies (1.1.2). With initial data
having sufficiently small TV, it is well known that (1.1.1)–(1.1.2) generates an L1 Lipschitz
continuous semigroup, see [10, Theorem 2]. In the conservative case, the well posedness
of (1.1.1) was proved in [4] for initial data having large total variation, in [17] for L∞ data
and, in [6] for not necessarily genuinely nonlinear characteristic fields.

We consider below a perturbation of (1.1.1), i.e.

∂tu+B(u) ∂xu = 0 (1.1.3)

with B sufficiently near to A. Note that the characteristic families of system (1.1.3) are
genuinely nonlinear, but the latter condition in (1.1.2) may well fail.

When the initial datum has sufficiently small total variation, solutions to (1.1.3) were
defined in [11] by means of the vanishing viscosity method and in [2] using the wave front
tracking technique. In the conservative case, the solutions constructed below coincide with
the standard weak entropy solutions, see [14, 27].

In Section 1.2, we solve the Riemann problem for (1.1.3) through the construction of
the generalized rarefaction and shocks curves, thus extending the results in [8, 38, 39] to
the case of large total variation. When B is a Jacobian matrix, the generalized Lax curves

7
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defined below reduce to the classical Lax curves. Furthermore, Proposition 1.2.4 furnishes
estimates on the dependence of these generalized solutions from B.

Section 1.3 is devoted to the Cauchy problem for (1.1.3). We exhibit its generalized
solutions using an algorithm that generates approximate solutions and we show their
convergence. This construction requires neither the total variation of the initial data to
be small, nor the conservative form, nor that shock and rarefaction curves coincide. In
fact, the results obtained in [4] in the conservative case hold also for system (1.1.1) under
assumption (1.1.2). When B is sufficiently near to A, (1.1.3) inherits similar properties,
without requiring that (1.1.3) is a straight line system.

It is well known that, in general, blow up in the L∞ or BV norms may take place,
also in the conservative case, as soon as the initial datum is allowed to have large total
variation and the system is not of Temple type, see [35] or [27, Section 9.10].

Below we provide estimates on the distance between solutions to (1.1.1) and to (1.1.3),
see 4. in Theorem 1.3.1. Under the stronger assumption that both systems be in conser-
vation form, slightly stronger stability estimates on the dependence of solutions from the
flow are proved in [12, Theorem 2.1].

When (1.1.1) is in conservation form, this algorithm yields the existence of generalized
solutions with large total variation to possibly non-conservative perturbations of Temple
systems. Note that, in particular, if also B is in conservation form, it is not required
that (1.1.3) be a Temple system.

In the case of data with small total variation, this algorithm yields the existence of
vanishing viscosity solutions to perturbations of general quasilinear hyperbolic systems.
Here, “solution” is meant in the sense of [9, 11].

Finally, Section 1.4 is devoted to the technical details.

1.2 The Riemann problem

Throughout, Ω ⊆ R
n is the closure of a nonempty open set. On the n × n matrix A, we

assume the following condition:

(H) Let A belongs to C1,1(Ω; Rn×n). For all u ∈ Ω, the matrix A(u) admits n real eigen-
values λA1 (u), . . . , λAn (u), satisfying supΩ λ

A
i−1 < infΩ λ

A
i , with n linearly independent

right eigenvectors rAi (u), for i = 1, . . . , n. Moreover, the conditions (1.1.2) hold for
all i = 1, . . . , n and all u ∈ Ω.

Temple systems furnish a well known example of systems satisfying (H), when written in
the Riemann coordinates.

The left eigenvectors of A(u) are lAi (u), for i = 1, . . . , n. Here and in what follows, we
choose the following normalization, see also [14, formula (5.4)]:

‖rAi (u)‖ = 1 , lAi (u) · rAi (u) = 1 and lAj (u) · rAi (u) = 0 for i 6= j . (1.2.1)

More precisely, we may also assume that (rA1 , . . . , r
A
n ) is the canonical base in R

n. By
means of a further linear transformation, we assume that Ω := In, with I := [−a/2, a/2]
for a suitable a > 0. Introduce for a positive and sufficiently small η the interval Iη :=
[

−(a− η)/2, (a − η)/2
]

and the set Ωη := Iη
n.
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As it is usual in Temple systems, see [6], we use the following norm and total variation
in Ω:

‖u‖ :=

n
∑

i=1

|ui| and TV(u) :=

n
∑

i=1

TV(ui) .

Concerning the perturbed system (1.1.3), Proposition 1.4.2 below ensures that B(u)
admits eigenvalues λBi , right and left eigenvectors rBi and lBi , normalized as in (1.2.1), for
i = 1, . . . , n. For any η > 0 sufficiently small, on the set C1,1(Ωη; R

n×n) we use the C1,1

norm

‖B‖
C1,1 := max

{

‖B‖
C0, ‖DB‖

C0, sup
u,w∈Ωη , u 6=w

∥

∥DB(u) −DB(w)
∥

∥

‖u− w‖

}

‖B‖
C0 := sup

u∈Ωη

sup
‖v‖

Rn≤1

∥

∥B(u)v
∥

∥ .

We denote by Bη(A, δ) the open sphere centered at A with radius δ with respect to the
C1,1 norm on Ωη. O(1) denotes a real number dependent on Ω and B0(A, δo), for a fixed
δo > 0.

In [9], a Riemann solver for (1.1.1) was defined, its meaning being justified, a posteriori,
by the vanishing viscosity limit, provided the jump in the initial data is sufficiently small.
Here, we extend the construction therein to the perturbation (1.1.3) of (1.1.1). As soon
as (1.1.3) is in conservation form, the construction below yields the standard Lax solutions
to Riemann problems.

We first construct the “rarefaction curves” for (1.1.3) as integral curves of the right
eigenvectors.

Proposition 1.2.1. For all η > 0, there exists a δ > 0 such that for all B ∈ Bη(A, δ), for
all i = 1, . . . , n, all ui ∈ I and all ul ∈ Ωη, there exists a unique curve ui 7→ RBi (ul, ui)
with RBi ∈ C1,1(Ωη × I; Ω) and

RBi (ul, uli) = ul
∂

∂ui
RBi (ul, ui) = rBi (RBi (ul, ui))

∂

∂ui
λBi (RBi (ul, ui)) > 0 .

Moreover, for all B1, B2 ∈ Bη(A, δ),

‖RB1

i −RB2

i ‖C1,1(Ωη×I;Ω) ≤ O(1) ‖B1 −B2‖C1,1 .

The proof relies on the basic theory of ordinary differential equations and is deferred to
Section 1.4.

Passing to the shock curves we extend the procedure based on [14, formula (5.24)].
For ul, u ∈ Ω, introduce the eigenvalue λi(u

l, u) and the left eigenvector lBi (ul, u) of the
averaged matrix

B(ul, u) :=

∫ 1

0
B(ϑu+ (1 − ϑ)ul) dϑ . (1.2.2)

For B in a neighborhood of A, S : Ωη × I → Ω and any i, define the map Gi by

[

(Gi(B,S))(ul, ui)
]

j
:=

{

lBj (ul, S(ul, ui))t(S(ul, ui) − ul) j 6= i

(S(ul, ui))i j = i .
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Proposition 1.2.2. For all η > 0, there exists a δ > 0 such that for all B ∈ Bη(A, δ),
for all i = 1, . . . , n, all ui ∈ I and all ul ∈ Ωη, there exists a unique curve ui 7→ SBi (ul, ui)
with SBi ∈ C1,1(Ωη × I; Ω) and

SBi (ul, uli) = ul
∂

∂ui
SBi (ul, uli) = rBi (ul)

∂

∂ui
λBi (SBi (ul, ui)) > 0

[

(Gi(B,SBi ))(ul, ui)
]

j
=

{

0 j 6= i
ui j = i.

Moreover, for all B1, B2 ∈ Bη(A, δ),
∥

∥

∥
SB1

i − SB2

i

∥

∥

∥

C1,1(Ωη×I;Ω)
≤ O(1) ‖B1 −B2‖C1,1 .

The proof relies on a careful application of the Implicit Function Theorem in C1,1 and
is deferred to Section 1.4.

For i = 1, . . . , n and u ∈ Ω, introduce the generalized i-th Lax curve

LBi (ul, ui) :=

{

RBi (ul, ui) if ui ≥ uli

SBi (ul, ui) if ui < uli
LB(ul, u) := LBn (. . . LB2 (LB1 (ul, u1), u2), . . . , un)

where u = (u1, . . . , un). Note that by propositions 1.2.1 and 1.2.2,

LB ∈ C1,1(Ωη × Ω;Ω) (1.2.3)
∥

∥

∥LB1 − LB2

∥

∥

∥

C1,1(Ωη×Ω;Ω)
≤ O(1) ‖B1 −B2‖C1,1 (1.2.4)

for all B1 and B2 ∈ Bη(A, δ). For later use, we write the Lax curves also as

w = LBi (ul, σBi ) with parameter σBi = LBi (ul, wi) − uli .

Denote σB = (σB1 , . . . , σ
B
n ) and note that, in particular,

σA(ul, ur) =
(

ur1 − ul1, . . . , u
r
n − uln

)

.

We are now ready to globally solve the Riemann Problem for (1.1.3), i.e.















∂tu+B(u) ∂xu = 0

u(0, x) =

{

ul if x < 0
ur if x ≥ 0

(1.2.5)

Proposition 1.2.3. For all η > 0, there exists a positive δ such that for all B ∈ Bη(A, δ),
there exists a map UB ∈ C1,1(Ωη × Ωη; Ω) such that

LB
(

ul, UB(ul, ur)
)

= ur

and, in particular, UA(ul, ur) = ur.
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The proof is deferred to Section 1.4. We may now define the solution to the Riemann
problem (1.2.5) as in [14, formula (5.45)]: letting w0 = ul and wn = ur, this solution is a
sequence of constant states wi = LBi (wi−1, σBi ) separated by a shock traveling with speed
λi(w

i−1, wi) if σBi < 0, or by a rarefaction, if σBi > 0.

Proposition 1.2.4. For all η > 0, there exists δ > 0 such that for all B1, B2 ∈ C1(Ωη; R
n×n),

with ‖B1 −A‖
C1 < δ and ‖B2 −A‖

C1 < δ, the corresponding solutions uB1 , uB2 to (1.2.5)
satisfy

∥

∥

∥
uB1(t) − uB2(t)

∥

∥

∥

L1
≤ O(1) ‖B1 −B2‖C1

∥

∥

∥
ul − ur

∥

∥

∥
t .

The proof is an immediate consequence of Lemma 1.4.3 in Section 1.4.
Whenever B = Dg for a suitable smooth flow g, the above construction yields the

standard Lax solution to Riemann problems.

When the jump
∥

∥

∥ul − ur
∥

∥

∥ is sufficiently small, we recover the construction in [8, Sec-

tion 4.1], see also [39, Section 5] and [38].

1.3 The Cauchy problem

In this section we prove the existence of solutions to the Cauchy problem
{

∂tu+B(u) ∂xu = 0
u(0, x) = u(x)

(1.3.1)

In the conservative case, the results in [4, 6, 17] ensure that the unperturbed system (1.1.1)
generates a Standard Riemann Semigroup, as defined in [14, Chapter 8], defined on all
functions with uniformly bounded total variation.

Theorem 1.3.1. Let A satisfy assumption (H). For all η ∈ ]0, a[, there exists a positive
δ such that for all B ∈ Bη(A, δ) and for all

u ∈ L1(R; Ω) with TV(u) < a− 2η (1.3.2)

the Cauchy problem (1.3.1) admits a generalized solution u = u(t, x) defined for every
t ≥ 0. Moreover,

1. u(t,R) ⊆ Ωη for all t ≥ 0.

2. TV
(

u(t)
)

≤ a− η for all t ≥ 0.

3. There exists a positive H such that for all t, s ≥ 0
∥

∥u(t) − u(s)
∥

∥

L1(R;Ωη)
≤ H |t− s| .

4. If A = Df for a smooth f , then there exists a constant H such that
∥

∥u(t) − Stu
∥

∥

L1 ≤ H · ‖B −A‖
C1 · TV(u) · t

where S is the Standard Riemann Semigroup generated by f . If w satisfies (1.3.2)
and w is the corresponding solution to (1.3.1), then

∥

∥u(t) − w(t)
∥

∥

L1 ≤ H ·
(

‖u− w‖
L1 +

(

TV(u) + TV(w)
)

‖B −A‖
C1t
)

.
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5. If TV(u) is sufficiently small, then the solution u coincides with the vanishing vis-
cosity solution constructed in [2, 9, 11].

6. If B = Dg for a suitable flow g, then the solution u is a weak entropy solution
to (1.3.1).

We now describe the wave front tracking algorithm that generates approximate solu-
tions to (1.3.1) and on which the proof of Theorem 1.3.1 is based.

Fix a positive η. For all ν ∈ N, at t = 0 we consider a piecewise constant approximation
uν of u, i.e. a function uν(x) =

∑Nν

α=1 uαχ[xα,xα+1[
(x) such that: uα ∈ Ωη, ∀α = 1, . . . , Nν ;

TV(uν) ≤ TV(u) and ‖uν − u‖
L1 < 1/ν. By Proposition 1.2.3, every Riemann prob-

lem (1.2.5) with ul = uα−1 and ur = uα admits a solution, provided B is sufficiently near
to A. We do not approximate the shocks in uν(x, t). On the contrary, rarefaction waves
are substituted by rarefaction fans as in [14, formula (7.25)], each wavelet having size at
most 1/ν.

Then, uν(x, t), defined as gluing of these approximate solutions to the Riemann prob-
lems above, is a piecewise function well defined up to the first time t when the first set of
interactions occurs.

By slightly perturbing the speed of waves, we can assume that every collision involves
only two incoming fronts, as in [14, Chapter 7].

Beyond an interaction time, the solution uν is extended by means of the Accurate Rie-
mann Solver or the Simplified Riemann Solver, see [14, Paragraph 7.2], possibly obtaining
non-physical waves. More precisely, following [5], we fix a parameter ρν > 0 and use the
latter solver whenever the product of the sizes of the interacting waves is smaller than
ρν , or when one of the interacting waves is non-physical. In the other cases we use the
Accurate solver.

This algorithm allows to extend u beyond time t provided

• uν(t−, ·) ∈ Ωη, so that the Riemann problems generated by wave-front interactions
are solvable, and

• the number of wave fronts in uν(t−, ·) is finite.

Following the classical strategy by Glimm, we seek a functional equivalent to the total
variation and non increasing along approximate solutions. The starting point is a set of
estimates for the change in the wave sizes at interactions.

At time t > 0, for B ∈ Bη(A, δ), consider the piecewise constant approximate solution
u =

∑

α uα χ[xα,xα+1[
. Define σBα = (σB1,α, . . . , σ

B
n,α) as the size of the wave at xα as

σBα = σB(uα−1, uα). Non-physical waves are assigned to a fictitious (n+ 1)-th family and
we set σn+1,α :=

∥

∥u(t, xα+) − u(t, xα−)
∥

∥.
The next proposition provides the key estimates used in the sequel.

Proposition 1.3.2. Fix a positive η. Then, there exist positive δ and C such that for all
B ∈ Bη(A, δ), the following estimates hold.

1. Let σ−i , respectively σ−j , be the size of the incoming i-wave, respectively j-wave, with

j > i. Let σ+
1 , . . . , σ

+
n the sizes of the outgoing waves. Then,

∣

∣

∣σ+
i − σ−i

∣

∣

∣+
∣

∣

∣σ+
j − σ−j

∣

∣

∣+
∑

k 6=i,j

∣

∣

∣σ+
k

∣

∣

∣ ≤ C ‖B −A‖
C1,1

∣

∣

∣σ−i σ
−
j

∣

∣

∣
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σ−j
σ−i

σ+
jσ+

i

σ+
k

2. Let σ′i and σ′′i be the sizes of the two incoming waves, both belonging to the i-family.
Let σ+

1 , . . . , σ
+
n the sizes of the outgoing waves. Then,

∣

∣

∣
σ+
i − σ′i − σ′′i

∣

∣

∣
+
∑

k 6=i

∣

∣

∣
σ+
k

∣

∣

∣
≤ C ‖B −A‖

C1,1

∣

∣σ′iσ
′′
i

∣

∣

σ′i σ′′i

σ+
i

σ+
k

3. Let σ−i , σ−j be the sizes of the two incoming waves. Their interaction produces one

or two outgoing physical waves and a non-physical wave of size σ+
n+1. Then,

σ+
n+1 ≤ C ‖B −A‖

C1,1

∣

∣

∣σ−i σ
−
j

∣

∣

∣

σ+
j

σ−j

σ+
i

σ−i

σ+
n+1

4. Let a non-physical wave of size σ−n+1, connecting the states ul and um, interact with
a physical wave of size σ−i . Their interaction produces a non-physical wave of size
σ+
n+1 that connects the states ũr and ur. Then,

∣

∣

∣σ+
n+1 − σ−n+1

∣

∣

∣ ≤ C ‖B −A‖
C1,1

∣

∣

∣σ−i σ
−
n+1

∣

∣

∣



14 CHAPTER 1. SOLUTIONS WITH LARGE TOTAL VARIATION

σ−n+1

σ−i

σ+
i

σ+
n+1

um

ul

ur

ũr

The proof is deferred to Section 1.4.
Define the total strength of waves, the wave interaction potential and the Glimm func-

tional respectively by

V B(u) :=
∑

α

∥

∥

∥
σBα

∥

∥

∥
, QB(u) :=

∑

(σB
i,α,σ

B
j,β

)∈AB

∣

∣

∣
σBi,ασ

B
j,β

∣

∣

∣

ΥB(u) := V B(u) +K ‖B −A‖
C1,1 QB(u)

(1.3.3)

where AB is the natural extension to the present case of the set of all couples of approaching
wave-fronts, see [14, Paragraph 3, Section 7.3]. Indeed, (σBi,α, σ

B
j,β) ∈ AB if and only if

either i > j and xα < xβ, or i = j ≤ n and min{σBi,α, σBj,β} < 0. The constant K is defined
in (1.3.5) below.

Consider a time t when two fronts σ′ and σ′′ interact. Using Proposition 1.3.2, in any
of the possible interactions, we have

∆V B(t) ≤ C ‖B −A‖
C1,1

∣

∣σ′σ′′
∣

∣

∆QB(t) ≤
(

C ‖B −A‖
C1,1 V B(t−) − 1

)

∣

∣σ′σ′′
∣

∣

∆ΥB(t) ≤
(

C + CKV B(t−)‖B −A‖
C1,1 −K

)

‖B −A‖
C1,1

∣

∣σ′σ′′
∣

∣

(1.3.4)

where ∆V B(t) := V B(u(t+)) − V B(u(t−)). Then, it is easy to see that ∆ΥB(t) ≤ 0 as
soon as

δ < 1/(2C ΥB(0)) and K ≥ 2C . (1.3.5)

The above construction ensures that ΥB is a non increasing function of time along any
approximate solution.

The following proposition provides a bound on the total number of waves, in order to
avoid the generation of cluster points of interactions.

Proposition 1.3.3. Let uν(t, x) be an approximate solution. Then, the number of wave
fronts is finite.

The proof is deferred to Section 1.4.
Now, we have a sequence of well defined approximate solutions uν such that uν(t, ·) ∈

Ωη for every t. In fact, using (1.4.2), the properties of the Glimm functional and possibly
reducing the choice of δ,

TV
(

uν(t)
)

≤
(

1 + O(1) ‖B −A‖
C1,1

)

ΥB(uν(t)) by (1.3.3)
≤

(

1 + O(1) ‖B −A‖
C1,1

)

ΥB(uν(0)) by (1.3.4) and (1.3.5)

≤
(

1 + O(1) ‖B −A‖
C1,1

)2
V B(uν(0)) by (1.3.3)

≤
(

1 + O(1) ‖B −A‖
C1,1

)

TV(uν(0)) by (1.3.3)
≤

(

1 + O(1) ‖B −A‖
C1,1

)

(a− 2η) by (1.3.2)
≤ a− η
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provided ‖B −A‖
C1,1 < δ and δ is sufficiently small.

Proceeding as in [14, Paragraph 7.4], we prove the uniform Lipschitz continuity of the
approximate solution with respect to time. Then, by the refinement [14, Theorem 2.4] of
Helly Compactness Theorem, we can extract a subsequence of approximate solutions, say
uν , that converges to a limit function u in L1

loc
with u(t,R) ⊂ Ωη and TV

(

u(t)
)

≤ a− η
for all t ≥ 0, proving 1., 2. and 3. in Theorem 1.3.1. We define this function u as the
generalized solution to the Cauchy problem (1.3.1).

To prove the first estimate in 4., we use [14, Theorem 2.9]. Indeed,
∥

∥u(t) − Stu
∥

∥

L1 = lim
ν→+∞

∥

∥uν(t) − Stu
ν
∥

∥

L1

≤ lim
ν→+∞

H

∫ t

0
lim inf
h→0

1

h

∥

∥uν(τ + h) − Shu
ν(τ)

∥

∥

L1 dτ .
(1.3.6)

We localize the computation of the L1-norm above in a suitable neighborhood Iα =
]xα − ε, xα + ε[ of a point of jump xα in uν(τ). Let uBα be the solution to the Riemann
problem (1.2.5) with ul = uν(τ, xα−) and ur = uν(τ, xα+). Then, summing up over all
points of jump in uν(τ), by Proposition 1.2.4 we have

∥

∥uν(τ + h) − Shu
ν(τ)

∥

∥

L1

=
∑

α

∥

∥uν(τ + h) − Shu
ν(τ)

∥

∥

L1(Iα)

≤
∑

α

∥

∥

∥uν(τ + h) − uBα (τ + h)
∥

∥

∥

L1(Iα)
+
∥

∥

∥uBα (τ + h) − Shu
ν(τ)

∥

∥

∥

L1(Iα)

≤
∑

xα rarefaction or non-physical

∥

∥

∥
uν(τ + h) − uBα (τ + h)

∥

∥

∥

L1(Iα)

+O(1) ‖B −A‖
C1





∑

α

∥

∥uν(τ, xα+) − uν(τ, xα−)
∥

∥



h

≤ O(1)
(

1 + ‖B −A‖
C1,1

) 1

ν
h+ O(1) ‖B −A‖

C1 TV
(

uν(τ)
)

h (1.3.7)

Here, we used the estimates

∑

xα rarefaction

∥

∥

∥
uν(τ + h) − uBα (τ + h)

∥

∥

∥

L1(Iα)
≤

∑

xα rarefaction

O(1)
1

ν2
h

≤ O(1)
1

ν
h

∑

xα non-physical

∥

∥

∥
uν(τ + h) − uBα (τ + h)

∥

∥

∥

L1(Iα)
≤ O(1) ‖B −A‖

C1,1

1

ν
h

that are proved exactly as in [14, steps 5 and 6 in Paragraph 7.3]. Inserting (1.3.7)
in (1.3.6), using the fact that Υ is non increasing and passing to the limit ν → +∞, the
former estimate in 4. is proved.

The latter estimate in 4. then follows by the triangle inequality.
To prove 5., assume that the total variation of the initial data u is sufficiently small.

Then, the vanishing-viscosity solution coincides with the unique limit of front tracking
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approximations [11, Theorem 1]. Hence, the solution u defined in the previous section can
be regarded as the limit of solutions to the parabolic problems

{

∂tu+B(u) ∂xu = ε ∂xxu
u(0, x) = u(x)

as ε → 0. Recall that if TV(u) is sufficiently small, the results in [2, 11] ensure the
convergence of the above limit and the existence of a solution to (1.3.1) without requiring
condition (1.1.2).

Finally, to prove 6., assume that B = Dg, for a suitable smooth flow g. The standard
limiting procedure, shows that the solution constructed above satisfies the integral equality
in the definition of weak solution and the integral inequality in the definition of entropy
admissible solution.

1.4 Technical proofs

For the sake of completeness, we state without proof, the Implicit Function Theorem in
the form that is used below.

Theorem 1.4.1. Let X,Y be Banach spaces and F : X × Y −→ Y be a continuous func-
tion, with X ⊂ X and Y ⊂ Y . Let x ∈ X̊ and y ∈ Y̊ be such that F (x, y) = 0, DyF (x, y)
exists and is continuous in (x, y), DyF (x, y) is invertible. Then, there exist neighborhoods
X̃ of x, Ỹ of y and a continuous function ϕ : X̃ −→ Ỹ such that:

y = ϕ(x) ⇐⇒ x ∈ X̃ , y ∈ Ỹ and F (x, y) = 0

Moreover, if F is Lipschitz continuous in x, then ϕ is Lipschitz continuous.

The next proposition is referred to the averaged matrix (1.2.2). To simplify the nota-
tion, we let λBi (u) = λBi (u, u), rBi (u) = rBi (u, u) and lBi (u) = lBi (u, u).

Proposition 1.4.2. Fix η > 0. Let A satisfy (H). Then, there exists a positive δ such
that for all B ∈ Bη(A, δ), the averaged matrix (1.2.2) satisfies:

1. for all ul, u ∈ Ω, B(ul, u) admits the n uniformly strictly separated real eigenvalues
λB1 (ul, u), . . . , λBn (ul, u) with the corresponding right, respectively left, eigenvectors
rBi (ul, u), respectively lBi (ul, u), for i = 1 . . . , n and normalized as in (1.2.1);

2. for i = 1, . . . , n, the i-th characteristic field is genuinely non linear, i.e. for all u ∈ Ω,
∇λBi (u) · rBi (u) > 0;

3. for i = 1, . . . , n and for all B1, B2 ∈ Bη(A, δ),
∥

∥

∥λB1

i − λB2

i

∥

∥

∥

C1,1
≤ O(1) ‖B1 −B2‖C1,1

∥

∥

∥rB1

i − rB2

i

∥

∥

∥

C1,1
≤ O(1) ‖B1 −B2‖C1,1 .



1.4. TECHNICAL PROOFS 17

Proof. Denote by ∆ the determinant function. LetX := C1,1(Ω×Ω; Rn×n), Y := C1,1(Ω×
Ω; R) and define F : X × Y 7→ Y by F (B,λ) := ∆(B − λ Id). Clearly, F ∈ C0(X × Y ;Y ).
Moreover, F is Fréchet differentiable with respect to λ, DλF (B,λ) : v 7→ ∆′(B − λ Id)v is
linear and, by the compactness of Ω, bounded. The map (B,λ) 7→ DλF (B,λ) is continuous
with respect to the operator norm by the compactness of Ω and the regularity of ∆.

For any index i in {1, . . . , n}, F (A,λAi ) = 0. Moreover, since λAi is a simple eigenvalue,

DλF (A,λAi ) = ∆′
(

A− λAi Id
)

6= 0. Furthermore, by the compactness of Ω, there exists

c > 0 such that for ul, u ∈ Ω, 1/c <
∣

∣

∣
∆′(A(ul, u) − λAi (ul, u)

∣

∣

∣
< c. Hence, the map

DλF (A,λAi ) is invertible and its inverse is continuous.
An application of Theorem 1.4.1 yields the existence of a positive δi and, for any

B ∈ Bη(A, δi), of a map λi such that λBi (ul, u) is an eigenvalue of B(ul, u), for all ul, u ∈ Ω.
Define δ := mini δi. Possibly reducing δ, we also have the inequalities:

supλBi−1 < inf λBi .
For B ∈ Bη(A, δ) and i = 1, . . . , n, let Hi(B) = B−λBi Id. The matrix Hi(A) has rank

n− 1. Hence, there exist n− 1 row vectors linearly independent, say hi1(A), · · · , hin−1(A).
Possibly reducing the choice of δ, also hi1(B), · · · , hin−1(B) are linearly independent. In a
neighborhood of (A, rAi ), apply the Implicit Function Theorem to the map

(B, r) →
[

(r · r − 1), (hi1(B) · r), · · · , (hin−1(B) · r)
]

and obtain the existence of a positive δi such that for all B ∈ Bη(A, δi), rBi (ul, u) is the
normalized right eigenvector of B(ul, u) corresponding to λBi (ul, u), for all ul, u ∈ Ω.

The proof of 1. is thus completed. By continuity, 2. immediately follows. The estimates
in 3. follow from the Lipschitz continuity of the implicit function, see Theorem 1.4.1.

Proof of Proposition 1.2.1. By Proposition 1.4.2, if B ∈ Bη(A, δ), the Cauchy problem






∂

∂ui
RBi (ul, ui) = rBi (RBi (ul, ui))

RBi (ul, uli) = ul
(1.4.1)

where ul ∈ Ωη and ui ∈ I, satisfies the classical well posedness theorems on o.d.e.s.
Hence, it admits a unique global solution RBi ∈ C1,1. Straightforward computations show
that its first and second derivative satisfy the equalities in the statement. Apply 3. in
Proposition 1.4.2 and use (1.2.1) to obtain:

∥

∥

∥RAi (ul, ui) −RBi (ul, ui)
∥

∥

∥

≤
∫ ui

ul
i

∥

∥

∥
rAi (RAi (ul, wi)) − rAi (RBi (ul, wi))

∥

∥

∥
dwi

+

∫ ui

ul
i

∥

∥

∥rAi (RBi (ul, wi)) − rBi (RBi (ul, wi))
∥

∥

∥ dwi

≤
∥

∥

∥
rAi

∥

∥

∥

C1

∫ ui

ul
i

∥

∥

∥
RAi (ul, wi)) −RBi (ul, wi))

∥

∥

∥
dwi + 2a

∥

∥

∥
rAi − rBi

∥

∥

∥

C0

≤ O(1) ‖B −A‖
C0 +

∫ ui

ul
i

∥

∥

∥
RAi (ul, wi)) −RBi (ul, wi))

∥

∥

∥
dwi
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By Grönwall lemma
∥

∥

∥
RAi −RBi

∥

∥

∥

C0

≤ O(1) ‖B −A‖
C0e

2a‖rA
i ‖C1 ≤ O(1) ‖B −A‖

C0 .

If ‖B −A‖
C0 is sufficiently small, then the latter estimate ensures that RBi is defined on all

Ωη × I, attains values in Ω and that genuinely non-linearity holds. Similar computations
allow to prove also that

∥

∥

∥RB1

i −RB2

i

∥

∥

∥

C0
≤ O(1) ‖B1 −B2‖C0 .

whenever B1, B2 ∈ Bη(A, δ).
Moreover since the first derivatives of rarefaction curves with respect to ul and ui

depend on the right eigenvectors and on their derivatives, using 3. in Proposition 1.4.2,
we have

∥

∥

∥
RB1

i −RB2

i

∥

∥

∥

C1,1(Ωη×I;Ω)
≤ O(1) ‖B1 −B2‖C1,1 .

By possibly reducing δ, we have that the map R : Bη(A, δ) 7→ C0,1(Ωη × I,R) defined by

(R(B)(ul, ui)) :=
∂

∂ui
λBi

(

RBi (ul, ui)
)

is in C0
(

Bη(A, δ);C0,1(Ωη × I,R)
)

.
Hence, the set defined by A := {h ∈ C0,1(Ωη× I,R) : ‖h‖

C0 > 0} is open. Then, R−1 (A)
is open and using (1.1.2) we can assume Bη(A, δ) ⊂ R−1 (A). �

Proof of Proposition 1.2.2. Let X := C1,1(Ω; Rn×n), X := Bη(A; δ), Y := C1,1(Ωη ×
I; Rn) and Y := C1,1(Ωη × I; Ω). Since Gi(B, ·) ∈ C1,1(Ω; Rn) and Ω is a compact set,
there exists a linear bounded operator DSG

i(B,S) such that Gi(B,S+hV ) = Gi(B,S)+
hDSG

i(B,S)V + o(h) uniformly in Ω, for h→ 0. Moreover
∥

∥

∥
DSG

i(B,S) −DSG
i(A,SAi )

∥

∥

∥

C0
≤ O(1) (‖B −A‖

C0 +
∥

∥

∥
S − SAi

∥

∥

∥

C0
)

It is easy to prove that DSG
i(A,SAi ) is invertible in fact DSG

i(A,SAi ) is the identity n×n
matrix. Then, by an application of the Implicit Function Theorem, for every η > 0 there
exists δ and a function

Si : Bη(A, δ) 7→ C1,1(Ωη × I; Ω)

(with a possibly smaller δ) such that

[

(Gi(B,SBi ))(ul, ui)
]

j
=

{

0 if j 6= i
ui if j = i

∥

∥

∥
SB1

i − SB2

i

∥

∥

∥

C1,1(Ωη×I;Ω)
≤ O(1) ‖B1 −B2‖C1,1 .

for B1 and B2 ∈ Bη(A, δ).
The evaluation of the first derivatives of the shock curve is exactly as in [14, (5.17)

in Theorem 5.1]. The latter inequality is proved as the analogous estimate in Proposi-
tion 1.2.1. �
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Proof of Proposition 1.2.3. Fix η > 0. Then, there exists a positive δ such that the
map F (B,u, ul, ur) := LB(ul, u) − ur is well defined on Bη(A, δ) × Ω × Ωη × Ωη.

Clearly, F (A,ur, ul, ur) = 0 and DuF (B,u, ul, ur) exists and is continuous in (A,ur)
for every (ul, ur) ∈ Ωη × Ωη. Moreover DuF (A,ur, ul, ur) is invertible, in fact the matrix

DuF
(

A,ur, ul, ur
)

=
[

rA1 rA2 . . . rAn

]

is constant and has non zero determinant by (H). The Implicit Function Theorem, applied
with X := C1,1(Ω; Rn×n) × R

n × R
n, X := Bη(A, δ) × Ωη × Ωη, Y := C1,1(X ; Rn), Y :=

C1,1(X ; Ω), yields the existence of a map UB(ul, ur) such that LB
(

ul, UB(ul, ur)
)

= ur.

�

Moreover, the following estimates hold.

Lemma 1.4.3. For all η > 0, there exist δ > 0 and C such that for all B1, B2 ∈
C1(Ωη; R

n×n) with ‖B1 −B2‖C1 < δ,

∥

∥

∥UB1 − UB2

∥

∥

∥

C1(Ωη×Ωη ;Ω)
≤ C ‖B1 −B2‖C1

∥

∥

∥σB2 − σB1

∥

∥

∥

C1
≤ C ‖B1 −B2‖C1

∥

∥

∥UB1(ul, ur) − UB2(ul, ur)
∥

∥

∥ ≤ C ‖B1 −B2‖C1

∥

∥

∥ul − ur
∥

∥

∥

∥

∥

∥
σB2(ul, ur) − σB1(ul, ur)

∥

∥

∥
≤ C ‖B1 −B2‖C1

∥

∥

∥
ul − ur

∥

∥

∥
. (1.4.2)

If moreover B1, B2 ∈ Bη(A, δ), then

∥

∥

∥UB1 − UB2

∥

∥

∥

C1,1(Ωη×Ωη;Ω)
≤ C ‖B1 −B2‖C1,1

∥

∥

∥σB2 − σB1

∥

∥

∥

C1,1
≤ C ‖B1 −B2‖C1,1 . (1.4.3)

Proof. The first two estimates follow from Theorem 1.4.1 applied in C1. To obtain the
second and third bounds, apply again Theorem 1.4.1 with X := C1(Ω; Rn×n) × R

n × R
n,

X := Bη(A, δ) × Ωη × Ωη, Y := C1(X ; Rn), Y := C1(X ; Ω). Letting v := ur − ul and
U(v) := UB1(ul, v + ul) − UB2(ul, v + ul), we have

∥

∥U(v)
∥

∥ ≤
∥

∥

∥

∥

∥

∂UB1

∂ur
− ∂UB1

∂ur

∥

∥

∥

∥

∥

C0

‖v‖ ≤ C ‖B1 −B2‖C1

∥

∥

∥
ul − ur

∥

∥

∥
.

The latter two estimates are proved applying Theorem 1.4.1 in C1,1, as used in the proof
of Proposition 1.2.3.

The next lemma is a slight extension of [14, Lemma 2.5] to the case of C1,1 functions.

Lemma 1.4.4. Let f ∈ C1,1(R2; R) be such that f(x, 0) = f(0, y) = 0 for all x, y. Then,

∣

∣f(x, y)
∣

∣ ≤ C0,1(Df) · |xy| .



20 CHAPTER 1. SOLUTIONS WITH LARGE TOTAL VARIATION

Proof. Simply compute

∣

∣f(x, y)
∣

∣ =
∣

∣f(x, y) − f(x, 0)
∣

∣ ≤
∣

∣

∣

∣

∫ y
0

∣

∣

∣

∂f
∂y (x, s)

∣

∣

∣ ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y
0

∣

∣

∣

∂f
∂y (x, s) −

∂f
∂y (0, s)

∣

∣

∣
ds

∣

∣

∣

∣

≤ C0,1(Df) |xy|

completing the proof.

Proof of Proposition 1.3.2. Consider the different interactions separately.

1. We observe that σ+
k = σB(ul, ur) = σB(ul,LBi (LBj (ul, σ−j , σ

−
i )).

For k = i, j define ΣB
k (σ−i , σ

−
j ) := σ+

k − σ−k . Otherwise, let ΣB
k (σ−i , σ

−
j ) := σ+

k . Then, for

all k = 1, . . . , n we have that ΣB
k (σ−i , 0) = 0 and ΣB

k (0, σ−j ) = 0. Moreover, ΣB
k is in C1,1,

so that we may apply Lemma 1.4.4 using the bound

C0,1(DΣB
k ) ≤

∥

∥

∥
ΣB
k

∥

∥

∥

C1,1
=
∥

∥

∥
ΣB
k − ΣA

k

∥

∥

∥

C1,1
≤ C ‖B −A‖

where the latter estimate follows from (1.2.4) and (1.4.3).

2. Set σ+
k := σBk (ul, ur) = σBk (ul,LBi (LBi (ul, σ′′i ), σ

′
i)) and ΣB

i (σ′i, σ
′′
i ) := σ+

i − σ′i − σ′′i
otherwise ΣB

k (σ′i, σ
′′
i ) := σ+

k , for k = 1, . . . , n. As above, we have that ΣB
k (σ′i, 0) = 0 and

ΣB
k (0, σ′′i ) = 0. Moreover

C0,1(DΣB
k ) ≤ C‖B −A‖

C1,1 .

Then, by Lemma 1.4.4

∣

∣

∣ΣB
k (σ′i, σ

′′
i )
∣

∣

∣ ≤ C‖B −A‖
C1,1

∣

∣σ′iσ
′′
i

∣

∣ .

3. In the case j > i we have:

Σ+
n+1(σ

−
i , σ

−
j ) := σ+

n+1(u
l, ur) = σ+

n+1(u
l,LBi (LBj (ul, σ−j ), σ−i ))

It holds: Σ+
n+1(σ

−
i , 0) = 0 and Σ+

n+1(0, σ
−
j ) = 0. Using (1.2.4), (1.4.3) and the compactness

of Ωη

C0,1(DΣ+
n+1) ≤ C‖B −A‖

C1,1

and an application of Lemma 1.4.4 completes the proof of this bound. In the case i = j
the proof is the same.

4. Define TB(v, σ−i ) := LBi (ul, σ−i )−LBi (ul+v, σ−i )−v with v := (um−ul) ∈ R
n. Clearly:

TB(0, σ) = 0 and TB(v, 0) = 0. Being TA = 0, we have also that:

C0,1(TB) ≤ C‖B −A‖
C1,1 .

Then, using the previous arguments,

‖ur − ũr‖ −
∥

∥

∥
um − ul

∥

∥

∥
≤
∥

∥

∥
TB(v, σ−i )

∥

∥

∥
≤ C‖B −A‖

C1,1

∥

∥

∥
um − ul

∥

∥

∥

∣

∣

∣
σ−i

∣

∣

∣

completing the proof. �
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Proof of Proposition 1.3.3. In fact, formula (1.3.5) implies that also Q is non-
increasing along approximate solutions. Then, following [14, Paragraph 7.3, Section 4],
the Accurate Riemann Solver can be used only finitely many times (more precisely not
more than 2Q(0)/ρν), hence the total number of physical fronts is finite. A non-physical
wave is generated only by the interaction between two physical fronts, so that also the
number of non-physical waves is bounded. �
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Chapter 2

2 × 2 Systems of Conservation

Laws with L∞ Data

2.1 Introduction

Consider the following non-linear 2 × 2 system of conservation laws

∂tu+ ∂x
[

f(u)
]

= 0 (2.1.1)

and the Cauchy problem
{

∂tu+ ∂x
[

f(u)
]

= 0
u(0, x) = ū(x) .

(2.1.2)

Our aim is to extend the classical result [31, Theorem 5.1] relaxing the assumptions taken
therein on the geometry of the shock–rarefaction curves. More precisely, as is well known,
the assumptions in [31] ensure that the interaction of two shocks of the same family yields a
shock of that family and a rarefaction of the other family. Here, no assumption whatsoever
of this kind is assumed. Nevertheless, the result of Theorem 2.1.1 is the same of that in [31,
Theorem 5.1], namely the existence of a weak entropy solution to (2.1.2) for all initial data
with sufficiently small L∞ norm.

On the flow f in (2.1.1) we assume the following Glimm-Lax condition, analogously
to [31, formula (1.4)]:

(GL) f : B(0, r) → R
2, for a suitable r > 0, is smooth with Df(0) strictly hyperbolic and

with both characteristic fields genuinely non linear

where B(0, r) is the ball of R
2 with center 0 and radius r. The main result of this chapter

is the following:

Theorem 2.1.1. Under the assumption (GL), there exists a sufficiently small η > 0 such
that for every initial condition v̄ ∈ L1

loc
(R; R2) with:

‖v̄‖∞ ≤ η (2.1.3)

the Cauchy problem (2.1.2) admits a weak entropy solution for all t ≥ 0.

23
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The solution is constructed as limit of the ε–approximations vε constructed through
the front tracking algorithm used in [15], suitably adapted to the present situation. First,
as in [31], careful decay estimates on a trapezoid (see Figure 2.2) allow to bound the
positive variation and the L∞ norm of vε on the upper side of the trapezoid. Under
the further assumption that a suitable L∞ estimate on vε holds, see condition (A) , a
technique based on the hyperbolic rescaling allows to extend the previous bound to any
positive time. The approximate solutions can hence be defined globally in time.

A key point is now to provide estimates that allow to abandon condition (A). This
is achieved through L∞ estimates essentially based on the conservation form of (2.1.1)
and on the previous results on the trapezoids. It is here that the integral estimates in
Section 2.6 allow us to extend the result in [31].

As a byproduct, we also obtain Theorem 2.3.12, under the standard Lax condition

(L) f : B(0, r) → R
2, for a suitable r > 0, is smooth with Df(0) strictly hyperbolic and

each characteristic field is either genuinely non linear or linearly degenerate.

Indeed, Theorem 2.3.12 is an existence result valid for all initial data having small L∞

norm and bounded, not necessarily small, total variation.

In this connection, we recall that in the case of systems with coinciding shock and
rarefaction waves, the well posedness of (2.1.2) in L∞ was proved in [7] under condi-
tion (GL), extending the previous results [5, 17]. Another attempt towards an extension
of Glimm–Lax result is in [21].

This chapter is organized as follows. Section 2.2 is devoted to introduce the notation.
Then, ε–approximate solutions are defined in Section 2.3 and suitable bounds are proved,
in the case of bounded total variation. Section 2.4 uses the previous results to construct
the ε–approximate solutions globally in time under the further assumption (A). This
latter assumption is abandoned in Section 2.5, which relies on the integral estimates in
Section 2.6. The more technical details are collected in the final Section 2.7.

2.2 Notations

As a general reference on the theory of conservation laws, we refer to [14, 27]. Throughout,
we let B(u, r) be the open sphere in R

2 centered at u with radius r.

Denote by A(u) the 2 × 2 hyperbolic matrix Df(u), by λ1, λ2 its eigenvalues and by
l1, l2 (resp. r1, r2) its left (resp. right) eigenvectors, normalized so that

∥

∥ri(u)
∥

∥ = 1, 〈lj(u), ri(u)〉 =

{

1 j = i
0 j 6= i

i, j = 1, 2 .

If the i–th characteristic field is genuinely nonlinear, we choose ri oriented so that

Dλi(u) ri(u) ≥ c > 0 for i = 1, 2 and u ∈ B(0, r) (2.2.1)

for a suitable c. In the linearly degenerate case, we do not need to specify this orientation.
By (L), supB(0,r) λ1 < infB(0,r) λ2.
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By a linear change of coordinates, we can assume that f(0) = 0, A(0) = diag
(

λ1(0), λ2(0)
)

and that λ1(0) = −1, λ2(0) = 1. We are thus led to assume that f can be written as
follows:

f1(u) = −u1 +
1

2
α11 u

2
1 + α12 u1 u2 +

1

2
α22 u

2
2 + O(1) ‖u‖3

f2(u) = u2 +
1

2
β11 u

2
1 + β12 u1 u2 +

1

2
β22 u

2
2 + O(1) ‖u‖3

(2.2.2)

with αij :=
∂2f1

∂ui ∂uj
(0) and βij :=

∂2f2

∂ui ∂uj
(0).

Following [14, formula (5.38)], introduce the Lax curves as the gluing of the shock and
rarefaction curves:

Li(u, σ) :=

{

Si(u, σ) σ < 0 ,
Ri(u, σ) σ ≥ 0 .

(2.2.3)

As in [14, formula (7.36)], call E = E(u−, u+) the map giving the sizes of the waves in the
solution to the Riemann problem for (2.1.1) with data u− and u+:

(σ1, σ2) = E(u−, u+) if and only if u+ = L2

(

L1(u
−, σ1), σ2

)

.

Recall now the continuous version of the Glimm potentials, see [16, (1.14) and (1.15)]
or [23, (4.2)–(4.4)]. Throughout, we assume that any u ∈ BV

(

R;B(0, r)
)

is right contin-
uous. For a Borel Ω ⊆ R, define the wave measures µi for i = 1, 2, as

µi(Ω) :=

∫

Ω
〈li(u), dµc〉 +

∑

x∈Ω

Ei
(

u(x−), u(x+)
)

where by µc we mean the continuous part of the weak derivative of u and 〈li(u), dµc〉 :=
∑n

j=1 l
j
i (u)dµ

j
c.

Below, we consider also the positive part of the signed measure µi, denoted by µ+
i , and

the positive total variation of the i–th component of u, denoted by TV+(ui). Then, let

ρ := |µ2| ⊗ |µ1| +
2
∑

i=1

(

µ−i ⊗ µ−i + µ+
i ⊗ µ−i + µ−i ⊗ µ+

i

)

(2.2.4)

and, as in [4, 14, 16, 23], set

Q(u) := ρ

(

{

(x, y) ∈ R
2 : x < y

}

)

V (u, I) := |µ1|(I) + |µ2|(I) I ⊆ R interval

Υ(u) := V (u,R) +Q(u)

where |µi| is the total variation of measure µ, V (u,R) is the total strength of waves in u
and Q(u) is the interaction potential of u. For a u ∈ L1

loc
(R; R2), define its total variation

by:

TV(u) := sup







2
∑

i=1

N
∑

l=1

∣

∣ui(xl) − ui(xl−1)
∣

∣ :
x1, . . . , xN ∈ R with
x1 < · · · < xN







. (2.2.5)
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Obviously, the total variation and the functional V (·,R) are equivalent. In the following,
for L > 0, it will be useful also the notation:

TV(u;L) := sup
x∈R

TV

(

u|[x,x+L]

)

where u|[x,x+L] is the restriction of u to the interval [x, x+ L].

For a function u : R → B(0, r), we use below the L∞ norm

‖u‖∞ := supess
x∈R

∣

∣u1(x)
∣

∣+ supess
x∈R

∣

∣u2(x)
∣

∣ .

Below, λ̂ denotes an upper bound for the moduli of the characteristic speeds in B(0, r),
i.e.

λ̂ > sup
i=1,2; ‖u‖≤r

∣

∣λi(u)
∣

∣ . (2.2.6)

2.3 Bounded Total Variation and Small L∞ Norm

In this section, we modify the wave front tracking algorithm in [15, Section 2] to construct a
solution to (2.1.2) under the assumption that the initial datum has bounded total variation
and small L∞ norm. More precisely, let ū belong to

D(η, K̄) :=
{

u ∈ L1

loc

(

R;B(0, η)
)

: TV(u) ≤ K̄
}

, (2.3.1)

where K̄, η are positive constants.
Moreover, in the first two paragraphs below, it is not necessary to assume that both

characteristic fields be genuinely nonlinear. The standard Lax [37, Section 9] condition (L)
is sufficient.

2.3.1 The Algorithm

Fix ε > 0. Denote by v the Riemann coordinates of (2.1.1), see [27, Definition 7.3.2],
and call Li, Ri and Si the Lax, the rarefaction and the shock curves in the Riemann
coordinates:

Li(v, σ) :=

{

Si(v, σ) σ < 0 ,
Ri(v, σ) σ ≥ 0 .

(2.3.2)

In these variables, as in [15], we parametrize the rarefaction and the shock curves as
follows:

R1(v, σ) = (v1 + σ, v2), S1(v, σ) =
(

v1 + σ, v2 + ψ̂2(v, σ)σ3
)

R2(v, σ) = (v1, v2 + σ), S2(v, σ) =
(

v1 + ψ̂1(v, σ)σ3, v2 + σ
) (2.3.3)

where ψ̂1 and ψ̂2 are suitable smooth functions of their arguments. First, the initial datum
v̄ is substituted by a piecewise constant v̄ε such that:

lim
ε→0+

‖v̄ε − v̄‖
L1 = 0 , TV(v̄ε) ≤ TV(v̄) ≤ K̄ , ‖v̄ε‖∞ ≤ η .
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At each point of jump in v̄ε, the resulting Riemann problem is solved as in [15, Section 2].
Let ϕ ∈ C∞(R; R) be such that

ϕ(σ) = 1 for σ ≤ −2
ϕ(σ) = 0 for σ ≥ −1
ϕ′(σ) ∈ [−2, 0] for σ ∈ [−2,−1]

and introduce the ε-approximate Lax curves

Lεi (v, σ) = ϕ(σ/
√
ε)Si(v, σ) +

(

1 − ϕ(σ/
√
ε)
)

Ri(v, σ) for i = 1, 2 .

An ε–solution to the Riemann problem for (2.1.1) with data v−, v+ is obtained gluing
ε–rarefactions and ε–shocks. ε–rarefactions of the first, respectively second, family are
substituted by rarefaction fans attaining values in εZ × R, respectively R × εZ, traveling
with the characteristic speed of the state on the right of each wave. More precisely,
similarly to [15, formulæ (2.13)–(2.16)], in the case i = 1 of the first family, define h, k ∈ Z

such that
hε ≤ v−1 < (h+ 1)ε and kε ≤ R1(v

−, σ1) < (k + 1)ε .

Introducing ωj1 = (jε, v−2 ) for j = h, . . . , k, define

v(t, x) :=



















v− x < λ1(ω
h+1
i ) · t

ωj1 λ1(ω
j
1)t ≤ x < λ1(ω

j+1
1 )t for h+ 1 ≤ j ≤ k − 1

ωk1 λ1(ω
k
1 )t ≤ x < λ1

(

R1(v
−, σ1)

)

t
R1(v

−, σ1) λ1

(

R1(v
−, σ1)

)

t ≤ x .

(2.3.4)

The case of rarefaction waves of the second family is entirely similar.
A 1–shock with left state v− and size σ1, such that σ1 < −2

√
ε, travels with the exact

Rankine–Hugoniot speed λs1(v
−, σ1). When σ1 > −2

√
ε, we assign to this jump an interpo-

lated speed λϕ1 defined as an average between the exact Rankine-Hugoniot speed λϕ1 (v, σ)
and an approximate characteristic speed, see [15, formulæ (2.17), (2.18) and (2.19)]

λϕ1 (v−, σ1) := ϕ(σ1/
√
ε)λs1(v

−, σ1) +
(

1 − ϕ(σ1/
√
ε)
)

λr1(v
−, σ1)

λr1(v
−, σ1) :=

∑

j

meas
„

[jε,(j+1)ε]∩
h

(S1(v−,σ1))
1
,v−

1

i

«

|σ1|
λ1(ω

j+1
1 ) .

(2.3.5)

For every σi < 0, it holds

λi

(

Si(v−, σi)
)

< λϕi (v−, σi) < λi(v
−) . (2.3.6)

2-shocks are treated similarly, we refer to [15, Section 2] for further details.
If the i–th characteristic family is linearly degenerate, the shock, the rarefaction and

the ε–approximate Lax curves coincide. Moreover, the characteristic speed is constant
along these curves, so that the interpolation (2.3.5) is trivial. Gluing the solutions to the
Riemann problems at the points of jump in v̄ε we obtain an ε–solution defined on a non
trivial time interval [0, t1], t1 being the first time at which two or more waves interact.
Any interaction yields a new Riemann problem, so that a piecewise constant ε–solution of
the form

vε =
∑

α

vαχ
[xα,xα+1[

with vα+1 = Lε2
(

Lε1(vα, σ1,α), σ2,α

)

(2.3.7)
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is recursively extended in time. Hence, we obtain a sequence of ε–approximate solutions.
Here, the meaning of by ε–approximate solutions is slightly different from that in [15,
Definition 1], namely:

Definition 2.3.1. A piecewise constant function vε = vε(t, x) is an ε–approximate solu-
tion if all its lines of discontinuities are ε–admissible wave fronts.

By an ε–admissible wavefront of the first family we mean a line x = x(t) across which
a function vε has a jump, say with v− = (v−1 , v

−
2 ), v+ = (v+

1 , v
+
2 ), satisfying the following

conditions:

• If v+
1 ≥ v−1 , then v+

2 = v−2 and

v+
1 ≤ v−1 + ε, ẋ = λ1(v

+) . (2.3.8)

• If v+
1 ≤ v−1 , then v+ = Lε1(v−, σ1) for some σ1 < 0, ẋ coincides with the speed λϕ1

defined in [15, formula (2.19)] and satisfies

λ1(v
+) < ẋ < λ1(v

−). (2.3.9)

The ε–admissible wave fronts of the second family are defined in an entirely similar way.

It may happen that three or more fronts interact at the same point. Due to the above
algorithm, at least one of the interacting waves needs to be a shock. Then, similarly to [14,
Remark 7.1] it is sufficient to slightly modify the speed of this incoming shock to avoid the
multiple interaction. If this perturbation is small enough, the bound (2.3.9) is still true.

Above, we modified the wave propagation speed adopted in [15, Section 2]. The speeds
defined therein have an essential role in the proof of the uniform Lipschitz dependence of
the approximate solution from the initial datum. The present choice (2.3.4)–(2.3.5) is
sufficient for [14, propositions 2 and 3] to hold and allows for simpler proofs in the sequel.

2.3.2 Existence and Properties of the Approximate Solutions

In this paragraph we show that the ε–approximate solutions constructed by the previous
algorithm are well defined, see Theorem 2.3.10.

Throughout, by C we denote a positive constant dependent only on f and r as in (L).
The following Lemma provides the standard interaction estimates.

Lemma 2.3.2. There exists a positive C such that for any interaction resulting in the
waves σ+

1 and σ+
2 , the following estimates hold.

1. If the interacting waves are σ−1 of the first family and σ−2 of the second family,

∣

∣

∣σ+
1 − σ−1

∣

∣

∣+
∣

∣

∣σ+
2 − σ−2

∣

∣

∣ = C
∣

∣

∣σ−1 σ
−
2

∣

∣

∣

(

∣

∣

∣σ−1

∣

∣

∣+
∣

∣

∣σ−2

∣

∣

∣

)

.

2. If the interacting waves σ′ and σ′′ both belong to the first family, we have

∣

∣

∣
σ+

1 − (σ′ + σ′′)
∣

∣

∣
+
∣

∣

∣
σ+

2

∣

∣

∣
= C

∣

∣σ′σ′′
∣

∣

(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

.
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3. If the interacting waves σ′ and σ′′ both belong to the second family, we have

∣

∣

∣σ+
1

∣

∣

∣+
∣

∣

∣σ+
2 − (σ′ + σ′′)

∣

∣

∣ = C
∣

∣σ′σ′′
∣

∣

(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

.

The proof is in [15, Lemma 2. and Lemma 3.].
Assume now that the ε–approximate solution vε is defined up to time T > 0. For

i = 1, 2, t ∈ [0, T ] and x ∈ R, introduce the quantities

λ̌i(t, x) := min
{

λi
(

vε(t, x−)
)

, λi
(

vε(t, x+)
)

}

λ̂i(t, x) := max
{

λi
(

vε(t, x−)
)

, λi
(

vε(t, x+)
)

}

.

For any X ∈ R, the generalized i-th characteristic through (T,X) is an absolutely contin-
uous solution x(t) to the differential inclusion







ẋ ∈
[

λ̌i(t, x) , λ̂i(t, x)
]

x(T ) = X .

The minimal backward i-th characteristic through (T,X) is the generalized i-th charac-
teristic such that, for t ∈ [0, T ],

yi(t) := min
{

x(t) : x is a generalized i-th characteristic through (T,X)
}

,

where we omit the dependence of yi(t) from (T,X). It is clear that yi(t) is well defined,
for vε piecewise constant, see [3, Theorem 2, Chapter 2, § 1].

As a reference about minimal backward characteristics on exact solutions, see [27,
Paragraph 10.3]. Backward characteristics on wave front tracking solutions were used, for
instance, in [16, Section 4].

To estimate the norm
∥

∥vε(T )
∥

∥

∞
, for T > 0, we follow backward the i–coordinate vεi

along the minimal characteristic yi(t) through (T,X), for all X ∈ R. Using the Lax in-
equality (2.3.6) and the choice adopted for the speed of rarefaction waves, we can conclude
that yi does not interact with any i–shock with size σ < −√

ε, it can coincide on a non-
trivial time interval with an i–wave with size σ ≥ −√

ε, it can cross a wave of the other
family or pass through an interaction point where a rarefaction of its family arises, see
Figure 2.1.

In the lemma below, we denote v
(

t±, yi(t
±)
)

:= limτ→t± v
(

τ, yi(τ)
)

.

Lemma 2.3.3. Let t > 0 be such that v1
(

t+, y1(t
+)
)

6= v1
(

t−, y1(t
−)
)

. Then, either y1

crosses a 2–wave σ2, and

∣

∣

∣

∣

vε1

(

t+, y1(t
+)
)

∣

∣

∣

∣

−
∣

∣

∣

∣

vε1

(

t−, y1(t
−)
)

∣

∣

∣

∣

≤ C |σ2|3 , (2.3.10)

or y1 passes through an interaction point between two waves σ′, σ′′ of the second family
and

∣

∣

∣

∣

vε1

(

t+, y1(t
+)
)

∣

∣

∣

∣

−
∣

∣

∣

∣

vε1

(

t−, y1(t
−)
)

∣

∣

∣

∣

≤ C
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)3
. (2.3.11)
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y2

σ′

σ′′

σ+
1

σ+
2

(T,X)

Figure 2.1: Two 1-shock σ′ and σ′′ interact resulting in a 1-shock σ+
1 and a 2-rarefaction

σ+
2 . A 2-characteristic y2 (thick line) is superimposed to the 2-rarefaction and passes

through the interaction point.

The proof directly follows from (2.3.3) and 3. in Lemma 2.3.2. An entirely analogous
result holds along 2-characteristics.

The total size of the j-waves, with j 6= i, which may potentially interact with yi(t)
after time t is given by the functionals

Q̃1(t) :=
∑

α : xα<y1(t)

∣

∣σ2,α

∣

∣ and Q̃2(t) :=
∑

α : xα>y2(t)

∣

∣σ1,α

∣

∣ (2.3.12)

where we referred to the form (2.3.7) of vε. To estimate ∆Q̃i(t), we analyze all the cases:

Lemma 2.3.4. Let i, j = 1, 2 and i 6= j. Fix t > 0. If at time t there is

1. no interaction and yi(t) does not cross any wave, then ∆Q̃i(t) = 0;

2. no interaction and yi(t) crosses a j–wave σj, then ∆Q̃i(t) = −
∣

∣σj
∣

∣;

3. an interaction between σ′ and σ′′, and yi(t) does not cross any wave, then ∆Q̃i(t) ≤
C
∣

∣σ′σ′′
∣

∣

(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

;

4. an interaction between the waves σ′ and σ′′, and yi(t) crosses a j–wave σj , then

∆Q̃i(t) ≤ C
∣

∣σ′σ′′
∣

∣

(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

−
∣

∣σj
∣

∣;

5. an interaction between the j-waves σ′ and σ′′, and yi(t) crosses the interaction point,
then ∆Q̃i(t) ≤ −

∣

∣σ′
∣

∣−
∣

∣σ′′
∣

∣.

Proof. Points 1., 2. and 5. directly follow from the definition (2.3.12).
Points 3. and 4. follow from Lemma 2.3.2 and (2.3.12).

Now we also define, as usual, the total strength of waves and the interaction potential :

V (vε) :=
∑

i,α

∣

∣σi,α
∣

∣ , Q(vε) :=
∑

(σi,α,σj,β)∈A

∣

∣σi,ασj,β
∣

∣ , (2.3.13)
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where A is the set of all couples of approaching wave-fronts, see [14, Paragraph 3, Sec-
tion 7.3].

Proposition 2.3.5. Fix a positive M ′. Let the ε–approximate solution vε = vε(t, x) be
defined up to time t > 0. At time t an interaction between two waves σ′ and σ′′ takes
place. If TV

(

vε(t−)
)

< M ′ and
∥

∥vε(t−)
∥

∥

∞
is sufficiently small, then vε can be defined

beyond time t and

∆Q(vε(t)) ≤ −
∣

∣σ′σ′′
∣

∣

2
.

Proof. Using Lemma 2.3.2 and (2.3.13), we have

∆Q(vε(t)) ≤ −
∣

∣σ′σ′′
∣

∣+ C TV
(

vε(t−)
)

∣

∣σ′σ′′
∣

∣

(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

≤
∣

∣σ′σ′′
∣

∣

(

−1 + CM ′
∥

∥

∥
vε(t−)

∥

∥

∥

∞

)

Choosing
∥

∥vε(t−)
∥

∥

∞
< 1/(2CM ′), we obtain

∆Q(vε(t)) ≤ −
∣

∣σ′σ′′
∣

∣

2
.

We introduce now the following two functionals:

Υε(t) := V (vε(t)) +K Q(vε(t)) (2.3.14)

Θε
i (t) :=

(

∣

∣

∣
vεi
(

t, yi(t)
)

∣

∣

∣
+ ‖v̄ε‖∞

)

eH̃ Q̃i(t)+H Q(vε(t)) (2.3.15)

where i = 1, 2, H̃,H and K are positive constants to be precisely defined below.

Proposition 2.3.6. Fix positive M,M ′. Choose an initial datum v̄ε such that ‖v̄ε‖∞ < η.
Assume that the ε-approximate solution vε = vε(t, x) is defined up to time t > 0. If η is
sufficiently small, TV

(

vε(t−)
)

< M ′ and
∥

∥vε(t−)
∥

∥

∞
< M‖v̄ε‖, then, there exist positive

H̃,H and K such that

∆Υε(t) ≤ 0 (2.3.16)

∆Θε
i (t) ≤ 0 for i = 1, 2. (2.3.17)

Proof. First, we suppose that at time t there is no interaction and that yi crosses the wave
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σj . Obviously, ∆Υε = 0 and
∥

∥vε(t+)
∥

∥

∞
=
∥

∥vε(t−)
∥

∥

∞
. Moreover:

∆Θε
i (t)

=

(

∣

∣

∣

∣

vεi

(

t+, yi(t
+)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

eH̃Q̃i(t
+)+H Q(vε(t+))

−
(

∣

∣

∣

∣

vεi

(

t−, yi(t)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

eH̃Q̃i(t
−)+H Q(vε(t−))

=

(

∣

∣

∣

∣

vεi

(

t+, yi(t
+)
)

∣

∣

∣

∣

−
∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

)

eH̃Q̃i(t+)+H Q(vε(t+))

+

(

∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

(

eH̃Q̃i(t+)+H Q(vε(t+)) − eH̃Q̃i(t−)+H Q(vε(t−))
)

≤ C
∣

∣σj
∣

∣

3
eH̃Q̃i(t+)+H Q(vε(t+)) − H̃ ‖v̄ε‖∞

∣

∣σj
∣

∣ eH̃Q̃i(t+)+H Q(vε(t+))

≤ 0 ,

provided H̃ ≥ CM2 ‖v̄ε‖∞.

Suppose now that at time t the waves σ′ and σ′′ interact and yi does not pass through
the interaction point. Hence, using Lemma 2.3.2 and the estimate of Proposition 2.3.5,

∆Υε(t) ≤ C
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

∣

∣σ′σ′′
∣

∣− K

2

∣

∣σ′σ′′
∣

∣ ≤ 0 (2.3.18)

if K ≥ 2C
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

. For the functional Θε
i , we consider separately two cases. If yi(t)

does not cross any wave at time t, we get:

∆Θε
i (t)

≤
(

∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

(

eH̃Q̃i(t+)+H Q(vε(t+)) − eH̃Q̃i(t−)+H Q(vε(t−))
)

≤ ‖v̄ε‖∞
(

H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

− H

2

)

∣

∣σ′σ′′
∣

∣ eH̃Q̃i(t+)+H Q(vε(t+))

≤ 0 ,
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provided H ≥ 2H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

. If yi(t) crosses a j–wave:

∆Θε
i (t)

≤
(

∣

∣

∣

∣

vεi

(

t+, yi(t
+)
)

∣

∣

∣

∣

−
∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

)

eH̃Q̃i(t+)+H Q(vε(t+))

+

(

∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

(

eH̃Q̃i(t
+)+H Q(vε(t+)) − eH̃Q̃i(t

−)+H Q(vε(t−))
)

≤ C
∣

∣σj
∣

∣

3
eH̃Q̃i(t

+)+H Q(vε(t+))

+‖v̄ε‖∞
(

−H̃
∣

∣σj
∣

∣+ H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

∣

∣σ′σ′′
∣

∣− H

2

∣

∣σ′σ′′
∣

∣

)

eH̃Q̃i(t+)+H Q(vε(t+))

≤ 0

provided H̃ > CM2 ‖v̄ε‖∞ and H ≥ 2H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

.

Finally, we consider the case in which yi(t) is an interaction point where an

i-rarefaction arises. Then, ∆Υ(t) ≤ 0, as in (2.3.18), provided K ≥ 2C
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

.

Concerning ∆Θε
i (t), call σ′, σ′′ the sizes of the interacting j-waves.

∆Θε
i (t)

≤
(

∣

∣

∣

∣

vεi

(

t+, yi(t
+)
)

∣

∣

∣

∣

−
∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

)

eH̃Q̃i(t+)+H Q(vε(t+))

+

(

∣

∣

∣

∣

vεi

(

t−, yi(t
−)
)

∣

∣

∣

∣

+ ‖v̄ε‖∞

)

(

eH̃Q̃i(t
+)+H Q(vε(t+)) − eH̃Q̃i(t

−)+H Q(vε(t−))
)

≤ C
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)3
eH̃Q̃i(t+)+H Q(vε(t+))

+‖v̄ε‖∞
(

−H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

+ H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

∣

∣σ′σ′′
∣

∣− H

2

∣

∣σ′σ′′
∣

∣

)

eH̃Q̃i(t
+)+H Q(vε(t+))

≤ 0

provided H̃ > 4CM2 ‖v̄ε‖∞ and H ≥ 2H̃
(

∣

∣σ′
∣

∣+
∣

∣σ′′
∣

∣

)

.

Proposition 2.3.7. There exist positive M and C2 such that, for all η, ε sufficiently small,
if the ε-approximate solution vε = vε(t, x) corresponding to the initial datum v̄ε ∈ D(η, K̄)
is defined up to time T , then, for all t ∈ [0, T ],

TV
(

vε(t)
)

≤ C2K̄ and
∥

∥vε(t)
∥

∥

∞
≤M‖v̄ε‖∞ .
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Proof. Let t ∈ [0, T ]. To bound the L∞ norm, for any x ∈ R, first choose H̃ = CM2η and
H = 4CM3η2, as in Proposition 2.3.6. Then, recursively,

∥

∥vεi (t)
∥

∥ ≤ Θε
i (t) by (2.3.15)

≤ Θε
i (0) by Proposition 2.3.6

≤ 2ηeCM
2η(Q̃(0)+4MηQ(0)) by (2.3.15).

≤ 2ηeCM
2η (1+Mη) for a suitably large C

≤ Mη for M = 2e2 and η < 1/(CM2)

for i = 1, 2. Taking the supremum with respect to x, we obtain the desired bound.
Similarly, to bound the total variation, apply recursively the previous results:

TV(vε(t)) ≤ C1 Υε(t) by (2.3.14)
≤ C1Υ

ε(0) by Proposition 2.3.6
≤ C2 TV(v̄ε) by (2.3.14)
≤ C2K̄ by (2.3.1)

completing the proof.

Hence, by the Proposition 2.3.7, if v̄ε ∈ D(η, K̄) and if the approximate solution vε can
be constructed on some initial interval [0, T ], then vε(t, ·) ∈ D(Mη,C2K̄) for all t ∈ [0, T ].
In order to prove that vε can actually be defined for all t > 0, it remains to show that the
total number of wave fronts and of points of interaction remains finite. For this aim, we
use the next two propositions.

Proposition 2.3.8. [15, Proposition 2] Let vε = vε(t, x) be an ε–approximate solution
constructed by the previous algorithm, with vε(t, ·) ∈ D(Mη,C2K̄) for all t > 0. Then, all
of the shocks with size σ < −√

ε are located along a finite number of polygonal lines.

Proposition 2.3.9. [15, Proposition 3] Let vε = vε(t, x) be an ε–approximate solution
constructed by the previous algorithm, with vε(t, ·) ∈ D(Mη, K̄) for all t > 0. Then, the
set of all points where two fronts interact has no limit point in the (t, x)–plane.

These two propositions are proved exactly as in [15]. The above results complete the
proof of the following Theorem.

Theorem 2.3.10. Let (L) hold. Fix a positive K̄. Then, there exist positive η and M
such that for every initial condition v̄ ∈ D(η, K̄) and for every sufficiently small ε > 0,
the Cauchy problem (2.1.2) admits an ε–approximate solution vε = vε(t, x) such that

∥

∥vε(t)
∥

∥

∞
≤M ‖v̄‖∞ . (2.3.19)

Under condition (GL), we also have the following decay estimate.

Theorem 2.3.11. Let (GL) hold. Fix a positive K̄. Then, there exist positive η and M
such that for every initial condition v̄ ∈ D(η, K̄) and for every sufficiently small ε > 0,
the ε–approximate solution vε = vε(t, x) to the Cauchy problem (2.1.2) constructed in
Theorem 2.3.10 satisfies for all t > 0, for all a, b ∈ R and for i = 1, 2:

TV+
(

vεi (t); [a, b]
)

≤ b− a

c t
+ M

(

‖v̄‖∞ TV
(

v̄; [a− λ̂t, b+ λ̂t]
)

+ ε

)

(2.3.20)

with c as in (2.2.1) and λ̂ as in (2.2.6).
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Proof. Under the present hypotheses, we use the usual decay estimate, see [14, Theo-
rem 10.3] or [16, Theorem 1]:

TV+
(

vεi (t); [a, b]
)

≤ b− a

ct
+ C



Q

(

v̄˛

˛

˛
[a−λ̂t,b+λ̂t]

)

−Q

(

vε(t)|[a,b]
)

+ ε





≤ b− a

ct
+ C Q

(

v̄˛

˛

˛[a−λ̂t,b+λ̂t]

)

+ Cε

≤ b− a

ct
+ M

(

‖v̄‖∞ TV
(

v̄; [a− λ̂t, b+ λ̂t]
)

+ ε

)

completing the proof.

2.3.3 Existence of Solutions

For the sake of completeness, we pass the ε–approximate solutions to the limit ε → 0.
This standard application of Helly compactness Theorem yields a slight extension of the
wave front tracking construction exhibited in [15]. Indeed, the mere existence of solutions
to (2.1.2) is here obtained under the assumptions that the total variation of the initial
datum be bounded.

Theorem 2.3.12. Let (L) hold. Fix a positive K̄. Then, there exist positive η,M such
that for all ū ∈ D(η, K̄), the Cauchy problem (2.1.2) admits a weak entropy solution,
which is the limit of the wave front tracking approximate solutions constructed above and
satisfying

∥

∥v(t)
∥

∥

∞
≤M ‖v̄‖∞ .

Moreover, if also (GL) holds, then there exists a positive M such that for all t > 0, for
all a, b ∈ R and for i = 1, 2,

TV+
(

vi(t); [a, b]
)

≤ b− a

c t
+ M‖v̄‖∞ TV

(

v̄; [a− λ̂t, b+ λ̂t]
)

with c as in (2.2.1) and λ̂ as in (2.2.6).

Thanks to the estimates proved above, the proof is standard and, hence, omitted.

2.4 Construction of a Solution with small L∞ norm

We now prove Theorem 2.1.1 in the case of initial data satisfying the stronger conditions

v̄ ∈ C1
(

R;B(0, η)
)

with

∥

∥

∥

∥

dv̄

dx

∥

∥

∥

∥

∞

≤ L , (2.4.1)

see [31, i), ii) and iii) in Section 5].
We are going to use an inductive method. Define, for m = 0, 1, 2, . . . and for every

L > 0, the m-trapezoid by

△m :=

{

(t, x) ∈ [0,+∞[ × R :
t ∈ [tm, tm + ∆tm] and

x ∈ [−2mL+ λ̂t, 2mL− λ̂t]

}

(2.4.2)
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see Figure 2.2, where:

tm = (2m − 1)L/2λ̂ and ∆tm = 2m−1L/λ̂ . (2.4.3)

The upper side of △m measures 2mL and the lower one 2m+1L. The upper bases of 4

x

t

△0

△m

2mL

2mL

tm

tm+1

Figure 2.2: Construction of the trapezoids.

trapezoids △m−1 cover the lower basis of △m. We denote by △m(x) the translation of the
m–trapezoid: △m(x) := (0, x) + △m. Correspondingly, we introduce the domains

Dm(δ, 20
λ̂

c
) :=

{

v ∈ L1

loc

(

R;B(0, δ)
)

: TV(v; 2m+1L) ≤ 20
λ̂

c

}

. (2.4.4)

2.4.1 Construction in the 0–Trapezoid

In this paragraph we show that we are able to construct a solution in △0(x), for all x ∈ R.
In fact, since the initial datum satisfies (2.4.1), we can always choose L > 0 such that

TV(v̄, 2L) ≤ 20λ̂/c . (2.4.5)

Then, with reference to (2.4.4), we prove the following result.

Proposition 2.4.1. Let (GL) and (2.4.1) hold. Then, there exist a sufficiently small
η > 0 and M,M > 0 such that for every initial condition v̄ ∈ D0(η, 20λ̂/c), the Cauchy
problem (2.1.2) admits a weak entropy solution v = v(t, x) defined for all t ∈ [0, L/2λ̂] and

∥

∥v(t)
∥

∥

∞
≤M ‖v̄‖∞

TV+
(

vi(t); 2(L − λ̂t)
)

≤ 2

c

L− λ̂t

t
+ M‖v̄‖∞ TV(v̄; 2L) .

The proof follows directly from Theorem 2.3.12.

2.4.2 Construction in the m–Trapezoid

Now we prove that, if a solution v to (2.1.2) satisfies suitable conditions at time t = tm,
then this solution can be extended on all the interval [tm, tm+1]. We also provide suitable
estimates for later use.
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Proposition 2.4.2. Let (GL) hold. Then, there exists a sufficiently small η > 0 and
positive M,M such that if v(tm) ∈ Dm(K

√
η, 20λ̂/c), then the problem (2.1.1) with datum

v(tm) admits a weak entropy solution v = v(t, x) defined for t ∈ [tm, tm+1] satisfying

∥

∥v(t)
∥

∥

∞
≤M

∥

∥v(tm)
∥

∥

∞
(2.4.6)

TV+
(

vi(t); 2(2
mL− λ̂t)

)

≤ 2

c

2mL− λ̂t

t− tm
+ M

∥

∥v(tm)
∥

∥

∞
TV(v̄; 2m+1L). (2.4.7)

Above, Dm(K
√
η, 20λ̂/c) is defined in (2.4.4). The proof is entirely similar to that of

Proposition 2.4.1.

2.4.3 Existence of a Global Solution

In this paragraph we assume the following a priory bound:

(A) Whenever it is possible to define up to time tm a solution v to (2.1.2) with an
initial datum satisfying (2.4.1), then there exists K > 0 such that, for all m ∈ N,
∥

∥v(tm)
∥

∥

∞
≤ K

√
η, where η is an upper bound for ‖v̄‖∞.

It is motivated by the recursive proof of Theorem 2.1.1 and by the following Proposition.

Proposition 2.4.3. Suppose there exists up to time tm a weak entropy solution v = v(t, x)
to (2.1.2) with an initial datum satisfying (2.4.1). Let (GL), (2.4.5) and (A) hold. Then,
for all sufficiently small η > 0, if ‖v̄‖∞ ≤ η, for all m ∈ N we have the estimate

TV
(

v(tm); 2m+1L
)

≤ 20
λ̂

c
.

Proof. Condition (2.4.5) immediately implies the desired bound for m = 0.

Let m ≥ 1 and proceed by induction. Using the definition (2.4.2) of △m(x) and the
estimate (2.4.7), we get:

TV+
(

vi(tm); 2m+1L
)

≤ 4TV+
(

vi(tm); 2m−1L
)

≤ 2m+1L

c(tm − tm−1)
+ 4M

∥

∥v(tm−1)
∥

∥

∞
TV

(

v(tm−1); 2
mL
)

≤ 8
λ̂

c
+ 4M

∥

∥v(tm−1)
∥

∥

∞
TV

(

v(tm−1); 2
mL
)

.

Since TV(v) ≤
(

TV+(v1) + TV+(v2)
)

+ 2‖v‖∞, we obtain:

TV
(

v(tm); 2m+1L
)

≤ 16
λ̂

c
+ 8M

∥

∥v(tm−1)
∥

∥

∞
TV

(

v(tm−1); 2
mL
)

+ 2
∥

∥v(tm)
∥

∥

∞
.

By (A) and choosing η small enough we get the thesis.
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Proof of Theorem 2.1.1 under condition (A).

Assume first that the initial data satisfies (2.4.1). By an application of Proposi-
tion 2.4.1, we are able to construct a solution for all t ∈ [0, L/2λ̂]. Now, assume that
a solution exists up to time tm, with m ≥ 1. Then, by (A), we may apply Proposi-
tion 2.4.3 to obtain the TV bound at time tm. Therefore, again thanks to (A), we apply
Proposition 2.4.2 to extend the solution up to time tm+1. The proof is thus obtained
inductively.

Consider now a general initial datum satisfying only (2.1.3). As in [31, Section 5],
we approximate the initial datum v̄ by a sequence of mollified data v̄n such that each v̄n
satisfies (2.4.1). So, we are able to construct a sequence of solutions vn to (2.1.1) related
to the initial data v̄n. Then by [27, Theorem 1.7.3] we can select a subsequence that
converges to a limit v, which is a weak entropy solution to (2.1.2). �

2.5 The L∞ Estimate

The next step consists in proving that the a priori bound (A) is in fact a consequence of
the other assumptions in Theorem 2.1.1 when the initial datum satisfies (2.4.1).

Proposition 2.5.1. There exists a positive K such that for all initial datum v̄ in (2.1.2),
satisfying (2.1.3) and for all m ∈ N, on the solution v = v(t, x) to (2.1.2) the following
estimate holds:

∥

∥v(tm)
∥

∥

∞
≤ K

√
η ,

where tm is defined in (2.4.3).

Proof. For m = 0 the thesis holds, provided K >
√
η. Now, by induction, suppose that

the theorem holds true up to m− 1.

The lower basis of △m is covered exactly by the upper basis of 4 (m− 1)–trapezoids.
Denote by Tm−1 the union of these trapezoids. Then, divide Tm−1 by horizontal segments
b0m−1, . . . , b

N
m−1 into N sub-trapezoids, say T 1

m−1, . . . , T
N
m−1. Each sub-trapezoid T jm−1 has

height hN = 2m−2L/(Nλ̂), upper basis bjm−1 and lower basis bj−1
m−1, for j = 1, . . . , N .

Obviously, b0m−1 and bNm−1 are the lower and upper basis of Tm−1.

At least one of these trapezoids, call it T nm−1, is such that

Q

(

v
(

tm−1 + (n− 1)hN
)

˛

˛

˛bn−1

m−1

)

−Q

(

v (tm−1 + nhN )|bnm−1

)

≤ 1

N

[

Q

(

v(tm−1)|b0m−1

)

−Q

(

v(tm)|bNm−1

)

]

≤ 1

N
Q

(

v(tm−1)|b0m−1

)

≤ 1

N

∥

∥v(tm−1)
∥

∥

∞
TV(v(tm−1))

≤ 1

N

∥

∥v(tm−1)
∥

∥

∞

20λ̂

c
(2.5.1)
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by Proposition 2.4.3. Now, fix (t, x) and (t, y) on bnm−1 with x < y. Then, using together
the usual decay estimate [14, Theorem 10.3] or [16, Theorem 1] on the region T nm−1,
together with (2.5.1), we have:

vi(t, y) ≤ vi(t, x) +
N

L

y − x

2m−2

λ̂

c
+

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞
.

Integrate in y to obtain

1

l

∫ x+l

x
vi(t, y) dy ≤ vi(t, x) +

N

L

l

2m−1

λ̂

c
+

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞
. (2.5.2)

Similarly, integrating in x, we get

vi(t, y) ≤
1

l

∫ y

y−l
vi(t, x) dx+

N

L

l

2m−1

λ̂

c
+

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞
. (2.5.3)

Using together (2.5.2) and (2.5.3), we obtain

∣

∣vi(t, x)
∣

∣ ≤ 1

l

∣

∣

∣

∣

∣

∫ y

y−l
vi(t, x) dx

∣

∣

∣

∣

∣

+
N

L

l

2m−1

λ̂

c
+

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞
. (2.5.4)

At this point we consider three different cases, depending on which coefficients in (2.2.2)
vanish. We defer the proofs of the corresponding integral estimates to Section 2.6.

1.
∂2f1

∂u2
2

(0) 6= 0 and
∂2f2

∂u2
1

(0) 6= 0. Hence by Proposition 2.6.2,

∣

∣

∣

∣

∫

l
vi(t, x)dx

∣

∣

∣

∣

≤ C ′η(l + C ′′t) for i = 1, 2 . (2.5.5)

(Note that it is this case that covers the situation considered in [31]).

2.
∂2f1

∂u2
2

(0) = 0 and
∂2f2

∂u2
1

(0) = 0. Then, using Proposition 2.6.3

∣

∣

∣

∣

∫

l
vi(t, x)dx

∣

∣

∣

∣

≤ C ′η(l + C ′′t) + C
∥

∥v(t)
∥

∥

3

∞
t for i = 1, 2 .

3.
∂2f1

∂u2
2

(0) 6= 0 and
∂2f2

∂u2
1

(0) = 0 (or
∂2f1

∂u2
2

(0) = 0 and
∂2f2

∂u2
1

(0) 6= 0). Hence, by an

application of Proposition 2.6.4:
∣

∣

∣

∣

∫

l
vi(t, x)dx

∣

∣

∣

∣

≤ C ′η(l + C ′′t) + C
∥

∥v(t)
∥

∥

3

∞
t for i = 1, 2 .

Using the (worst) estimate of cases 2. and 3., we have

∣

∣vi(t, x)
∣

∣ ≤ C ′η

(

1 + C ′′ t

l

)

+ C
∥

∥v(t)
∥

∥

3

∞

t

l
+
N

L

l

2m−1

λ̂

c
+

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞
.
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Setting l/t =
√

η +
∥

∥v(t)
∥

∥

3

∞
, using the fact that t ≤ tm and the inductive assumption

∥

∥v(t)
∥

∥

∞
≤MK

√
η, we have

∥

∥v(t)
∥

∥

∞
≤ C

(

η +
√
η
)

+ C
∥

∥v(t)
∥

∥

3/2

∞
+
N

c

√

η +
∥

∥v(t)
∥

∥

3

∞

2m−1

λ̂

L
t

+
M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞

≤ C
√
η +

CN

c

√
η +

M
N

20λ̂

c

∥

∥v(tm−1)
∥

∥

∞

≤ CN
√
η +

C

N

∥

∥v(tm−1)
∥

∥

∞
.

Choosing N = 4CM and K = 4MNC, by the inductive hypothesis, we get
∥

∥v(t)
∥

∥

∞
≤

K
2M

√
η. So, we can conclude:

∥

∥v(tm)
∥

∥

∞
≤ 2M

∥

∥v(t)
∥

∥

∞
≤ K

√
η

completing the proof. Obviously, the proof is exactly the same if, instead of △m, we
consider a generic trapezoid △m(x) for some x ∈ R.

Remark that in the previous proof, case 1 covers the situation treated in [31]. Indeed,
in (2.5.5) the optimal choice for l/t is l/t =

√
η, exactly as in [31].

2.6 The Integral Estimate

Lemma 2.6.1. Let u = u(t, x) be the solution to (2.1.2) constructed in the previous
sections, such that

∥

∥u(t)
∥

∥

∞
≤ C

√
η, with an initial data satisfying (2.1.3) and (2.4.1).

If
∂2f1

∂u2
2

(0) 6= 0 (respectively
∂2f2

∂u2
1

(0) 6= 0), then there exists an invariant region for the

variable u1 (respectively u2). More precisely, there exists a positive constant K such that,
for all (t, x) ∈ R

+ × R, it holds:

u1(t, x) ≥ −Kη , respectively u2(t, x) ≥ −Kη .

Proof. At first we consider the ε–approximate solutions constructed above. Let v1 and
v2 be the corresponding Riemann coordinates. The map T : v = (v1, v2) 7→ u = (u1, u2)

is smooth and maps the origin into the origin. So, using the hypothesis
∂2f1

∂u2
2

(0) 6= 0,

Lemma 2.7.2 implies that

[ ...
S2(v, σ) −

...
R2(v, σ)

]

1
=
[ ...
S2(v, σ)

]

1
6= 0 (2.6.1)

for v sufficiently small.
Let u− and u+ denote the left and the right states in a Riemann initial value problem,

and let u∗ denote the intermediate state, connected to u− by a 1-wave and to u+ by a
2-wave.
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If
[ ...
S2(v, σ)

]

1
≥ 0 then we have that the Riemann invariant vε1 doesn’t change along a

right rarefaction and increases along a right shock, i.e.

vε1(u
∗) ≤ vε1(u

+). (2.6.2)

Obviously, this inequality holds also whenever the right shock has strength less then 2
√
ε,

in fact in this case we interpolate a rarefaction and an entropic shock. Using (2.6.2) and
the fact that vε1(0, x) = v̄ε1(x) ≤ η, we obtain vε1(t, x) ≤ η for any t > 0. By a liner change of

coordinates, we can assume that T1(0, 0) = 0,
∂T1

∂v2
(0, 0) = 0

∂T1

∂v1
(0, 0) = −K1, with K1 > 0.

By this choice, it holds that uε1(t, x) = T1(v
ε
1(t, x), v

ε
2(t, x)) = −K1 v

ε
1(t, x)+K2

(

vε1(t, x)
)2

+

K3 v
ε
1(t, x) v

ε
2(t, x) + K4

(

vε2(t, x)
)2

, where K2, K3 and K4 are the second derivatives of T1

computed in an intermediate point. Since vε1(t, x) < η and
∥

∥v(t)
∥

∥

∞
≤ C

√
η, we have

uε1(t, x) ≥ −C̃K1 η − |K4|η, for a suitable C̃ > 0. Now, choosing K = C̃K1 + |K4|, we
obtain

uε1(t, x) ≥ −Kη.

Similarly, if
[ ...
S2(v, σ)

]

1
≤ 0, vε1 doesn’t change along a right rarefaction and decreases

along a right shock, i.e.

vε1(u
∗) ≥ vε1(u

+). (2.6.3)

Now, using the fact that vε1(0, x) = v̄ε1(x) ≥ −η and (2.6.3), we get: vε1(t, x) ≥ −η for any
t > 0. As above, we can suppose that the map T1 is such that:

uε1(t, x) ≥ −Kη.

Clearly, the result still holds when we pass to the limit.

Similarly, if
∂2f2

∂u2
1

(0) 6= 0, it holds u2(t, x) ≥ −Kη.

Proposition 2.6.2. Let v = v(t, x) be the solution to (2.1.2) constructed in the previous

sections, with an initial data satisfying (2.1.3) and (2.4.1). If
∂2f1

∂u2
2

(0) 6= 0 and
∂2f2

∂u2
1

(0) 6=
0, then, for all segment l and for all t̄ ≥ 0:

∣

∣

∣

∣

∫

l
vi(t̄, x)dx

∣

∣

∣

∣

≤ C ′η
(

l + C ′′t̄
)

. (2.6.4)

Proof. By an application of Lemma 2.6.1, we get:

|u1| ≤ u1 + 2Kη , |u2| ≤ u2 + 2Kη. (2.6.5)

Then, let us consider in the t, x plain the trapezoid with the lower basis l0 equals to
[(0, xl), (0, xr)] and the upper basis l equals to [(t̄, xl+ϑt̄), (t̄, xr−ϑt̄)], where ϑ is positive.
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Then, using the Divergence Theorem
∫

l
[u1(t̄, x) + u2(t̄, x)]dx =

∫

l0

[u1(0, x) + u2(0, x)]dx

−
∫ xl+ϑt̄

xl

{

[u1(
x− xl

ϑ
, x) + u2(

x− xl

ϑ
, x)] − 1

ϑ
[f1(u(

x− xl

ϑ
, x)) + f2(u(

x− xl

ϑ
, x))]

}

dx

−
∫ xr

xr−ϑt̄

{

[u1(
xr − x

ϑ
, x) + u2(

xr − x

ϑ
, x)] +

1

ϑ
[f1((

xr − x

ϑ
, x)) + f2((

xr − x

ϑ
, x))]

}

dx .

(2.6.6)
Since f1 and f2 depend smoothly on u1 and u2 it holds that |f1| + |f2| ≤ C (|u1| + |u2|).
Then, using this last estimate and (2.6.5) we get

[u1(
x− xl

ϑ
, x) + u2(

x− xl

ϑ
, x)] − 1

ϑ
[f1(u(

x− xl

ϑ
, x)) + f2(u((

x− xl

ϑ
, x)]

≥





∣

∣

∣

∣

∣

u1(
x− xl

ϑ
, x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

u2(
x− xl

ϑ
, x)

∣

∣

∣

∣

∣



 (1 − C

ϑ
) − 2Kη

(2.6.7)

and

[u1(
xr − x

ϑ
, x) + u2(

xr − x

ϑ
, x)] +

1

ϑ
[f1(u(

xr − x

ϑ
, x)) + f2(u(

xr − x

ϑ
, x))]

≥ [u1(
xr − x

ϑ
, x) + u2(

xr − x

ϑ
, x)] − 1

ϑ

[

∣

∣

∣

∣

f1(u(
xr − x

ϑ
, x))

∣

∣

∣

∣

+

∣

∣

∣

∣

f2(u((
xr − x

ϑ
, x))

∣

∣

∣

∣

]

≥
(

∣

∣

∣

∣

u1(
xr − x

ϑ
, x)

∣

∣

∣

∣

+

∣

∣

∣

∣

u2(
xr − x

ϑ
, x)

∣

∣

∣

∣

)

(1 − C

ϑ
) − 2Kη

(2.6.8)
We can choose ϑ = C; now using (2.6.7) and (2.6.8) in the two last integrals on the right
in (2.6.6) and (2.6.5) on the left, we get

∫

l

[

∣

∣u1(t̄, x)
∣

∣ +
∣

∣u2(t̄, x)
∣

∣− 2Kη
]

dx =

∫

l0

[

∣

∣u1(0, x)
∣

∣ +
∣

∣u2(0, x)
∣

∣

]

dx+ 4KCt̄η

then
∫

l

[

∣

∣u1(t̄, x)
∣

∣+
∣

∣u2(t̄, x)
∣

∣

]

dx ≤ C ′η(l + C ′′t̄)

Since v1 and v2 are smooth functions of u1 and u2 also the inequality (2.6.4) is proved.

Proposition 2.6.3. Let v = v(t, x) be the solution to (2.1.2) constructed in the previous

sections, with an initial data satisfying (2.1.3) and (2.4.1). If
∂2f1

∂u2
2

(0) = 0 and
∂2f2

∂u2
1

(0) =

0, then, for all segment l and for all t̄ ≥ 0:
∣

∣

∣

∣

∫

l
vi(t̄, x)dx

∣

∣

∣

∣

≤ C ′η
(

l + C ′′t̄
)

+ C
∥

∥v(t̄)
∥

∥

3

∞
t̄. (2.6.9)
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Proof. Let us call l− and l+ the initial and the terminal point of l. For any curves x−(t)
and x+(t) such that x−(t̄) = l− and x+(t̄) = l+, by the Divergence Theorem, we get:

∫

l
ui(t̄, x)dx =

∫ x+(0)

x−(0)
ui(0, x)dx +

∫ t̄

0
[fi(u(t, x

−(t))) − ẋ−(t)ui(t, x
−(t))]dt

+

∫ t̄

0
[−fi(u(t, x+(t))) + ẋ+(t)ui(t, x

+(t))]dt

for i = 1, 2. Hence, to obtain
∣

∣

∣

∣

∫

l
ui(t̄, x)dx

∣

∣

∣

∣

≤ C ′η(l + C ′′t̄) + C
∥

∥u(t̄)
∥

∥

3

∞
t̄ (2.6.10)

it is sufficiently to solve on [0, t̄] and out of shocks, up to terms of the order of
∥

∥u(t)
∥

∥

2

∞
,

the ordinary differential equations:

ẋ−(t) =
fi(u(t, x

−(t)))

ui(t, x−(t))
, ẋ+(t) =

fi(u(t, x
+(t)))

ui(t, x+(t))
, (2.6.11)

with the initial conditions x±(t̄) = l±. By the hypothesis
∂2fi
∂u2

j

(0) = 0, (2.6.11) admit gen-

eralized solutions x−i (t) and x+
i (t) in the sense of Filippov (see [30, Chapter 2, Section 4]).

It may happen that their graph coincides with the support of shocks of the function u on
sets of positive H1–measure. By Proposition 2.7.3, there exist two Lipschitz functions x̃±i
with x̃±i (t̄) = l± and

∥

∥

∥ẋ−i − ˙̃x−i

∥

∥

∥

∞
≤ ‖u‖2

∞ ,
∥

∥

∥ẋ+
i − ˙̃x+

i

∥

∥

∥

∞
≤ ‖u‖2

∞

such that their graphs coincide with the shock of u on sets of zero H1–measure. Then, we
have that (2.6.10) holds and, by the smoothness of v1 and v2, also the inequality (2.6.9)
is proved.

Proposition 2.6.4. Let v = v(t, x) be the solution to (2.1.2) constructed in the previous

sections, with an initial data satisfying (2.1.3) and (2.4.1). If
∂2f1

∂u2
2

(0) 6= 0 and
∂2f2

∂u2
1

(0) = 0

(or
∂2f1

∂u2
2

(0) = 0 and
∂2f2

∂u2
1

(0) 6= 0), then, for all segment l and for all t̄ ≥ 0:

∣

∣

∣

∣

∫

l
vi(t̄, x)dx

∣

∣

∣

∣

≤ C ′η
(

l + C ′′t̄
)

+ C
∥

∥v(t̄)
∥

∥

3

∞
t̄. (2.6.12)

Proof. Let us consider
∂2f1

∂u2
2

(0) 6= 0 and
∂2f2

∂u2
1

(0) = 0, in fact in the opposite case the proof

is exactly the same. By an application of Lemma 2.6.1, we get:

|u1| ≤ u1 + 2Kη. (2.6.13)

Proceeding as in Proposition 2.6.2, we get:
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∫

l

[

∣

∣u1(t̄, x)
∣

∣ − 2Kη
]

dx =

∫

l0

∣

∣u1(0, x)
∣

∣dx+ 4KCt̄η

then:
∣

∣

∣

∣

∫

l
u1(t̄, x)dx

∣

∣

∣

∣

≤
∫

l

∣

∣u1(t̄, x)
∣

∣dx ≤ C ′η(l +C ′′t̄). (2.6.14)

For the variable u2 we follow exactly the same strategy used in the Proposition 2.6.3,
so that we obtain:

∫

l

∣

∣u2(t̄, x)
∣

∣dx ≤ C ′η(l + C ′′t̄) + C
∥

∥u(t̄)
∥

∥

3

∞
t̄. (2.6.15)

Now, using together (2.6.14) and (2.6.15) and the fact that v1 and v2 are smooth functions
of u1 and u2 also the inequality (2.6.12) is proved.

2.7 Technical Details

Lemma 2.7.1. If f is as in (2.2.2), then

(Dr2 r2) (0) = [−α22, 0]
T and (Dr1 r1) (0) = [−β11, 0]

T (2.7.1)

Proof. Recall the definition of the resolvent: R(ξ, u) := (A(u)− ξI)−1 (see [36]). We have:

R(ξ, u) =
(

A(0) +
(

A(u) −A(0)
)

− ξI
)−1

=
(

A(0) − ξI
)−1

(

I +
(

A(u) −A(0)
) (

A(0) − ξI
)−1
)−1

= (A(0) − ξI)−1 − (A(0) − ξI)−1
(

A(u) −A(0)
)

(A(0) − ξI)−1 +

+O
(

u2
)

.

Choose a closed curve Γ such that λ2(u) is the unique eigenvalue inside it. The projection
P2 can then be computed as:

P2(u) = − 1

2πi

∮

Γ
R(ξ, u)dξ = − 1

2πi

∮

Γ

[

− 1
ξ+1 0

0 1
1−ξ

]

dξ

+
1

2πi

∮

Γ

[

− 1
ξ+1 0

0 1
1−ξ

][

∂f1
∂u1

(u) + 1 ∂f1
∂u2

(u)
∂f2
∂u1

(u) ∂f2
∂u2

(u) − 1

][

− 1
ξ+1 0

0 1
1−ξ

]

dξ + O
(

u2
)

=

[

0 0
0 1

]

+
1

2πi

∮

Γ







0 −
∂f1
∂u2

(u)

(ξ+1)(1−ξ)

−
∂f2
∂u1

(u)

(ξ+1)(1−ξ) 0







+O
(

1
(1−ξ)2

)

+ O
(

1
(ξ+1)2

)

+ O(u2)

=







0 −α12u1 − α22u2

−β11u1 − β12u2 1






+ O

(

u2
)
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Since P2(u) = r2(u) ⊗ l2(u),

r2(u) = [−α12u1 − α22u2, 1]
T + O(1) ‖u‖2. (2.7.2)

and
l2(u) = [−β11u1 − β12u2, 1]

T + O(1) ‖u‖2. (2.7.3)

Finally Dr2(0) =

[

−α12 −α22

0 0

]

and (Dr2 r2) (0) = [−α22, 0]
T .

To prove the second equation it is sufficient to repeat the previous arguments.

Lemma 2.7.2. If
∂2f1

∂u2
2

(0) = α22 6= 0,
∂2f2

∂u2
1

(0) = β11 6= 0 and condition (GL) holds, then

[ ...
S2 (0, 0) −

...
R2 (0, 0)

]

1
=

1

2

〈(Dλ2 r2)(Dr2 r2), r1〉
λ2 − λ1

6= 0 ,

[ ...
S1 (0, 0) −

...
R1 (0, 0)

]

2
=

1

2

〈(Dλ1 r1)(Dr1 r1), r2〉
λ1 − λ2

6= 0 .

Proof. Let us denote by S2(σ) and R2(σ) the shock and the rarefaction curve of the second
family with starting point 0, by A(σ) the Jacobian matrix Df(S2(σ)), by ri(σ) (li(σ)) the
right (left) eigenvector ri(S2(σ)) (li(S2(σ))) and by Λ the Rankine–Hugoniot speed.

Differentiating three times the Rankine-Hugoniot conditions w.r.t. σ we obtain:

ÄṠ2 + 2ȦS̈2 +A
...
S2 =

...
ΛS2 + 3Λ̇S̈2 + 3Λ̈Ṡ2 + Λ

...
S2.

At σ = 0 it becomes

Är2 + 2Ȧ(Dr2 r2) =
3

2
(Dλ2 r2)(Dr2 r2) −A

...
S2 + 3Λ̈r2 + λ2

...
S2 . (2.7.4)

Differentiating twice w.r.t. σ the identity Ar2 = λ2r2 at σ = 0 we find

Är2 + 2Ȧ(Dr2 r2) +A(D2r2 r2)r2 +ADr2(Dr2 r2)

= 〈D2λ2 r2, r2〉r2 + 〈Dλ2Dr2, r2〉r2 + 2(Dλ2 r2)(Dr2 r2)

+λ2(D
2r2 r2)r2 + λ2Dr2(Dr2 r2).

Using (2.7.4) in the last equation:

(A− λ2 Id)(D2r2 r2)r2 + (A− λ2 Id)Dr2(Dr2 r2) − (A− λ2 Id)
...
S2 + 3Λ̈r2

= 〈D2λ2 r2, r2〉r2 +Dλ2 (Dr2 r2)r2 +
1

2
(Dλ2 r2)(Dr2 r2).

(2.7.5)

Then, multiplying on the left by l2(0), it holds:

Λ̈ =
1

3
D(Dλ2 r2) r2. (2.7.6)

We can now substitute (2.7.6) in (2.7.5) and obtain

(λ2 Id −A)
...
S2 = 1

2(Dλ2 r2)(Dr2 r2) + (λ2 Id −A)(D2r2 r2)r2

+(λ2 Id −A)Dr2(Dr2 r2).
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Hence, multiplying on the left by l1(0) = [1, 0] = rT1 (0), we have that

〈
...
S2, r1〉 =

1

2

〈(Dλ2 r2)(Dr2 r2), r1〉
λ2 − λ1

+ 〈(D2r2 r2)r2, r1〉 + 〈Dr2(Dr2 r2), r1〉 .

Now, since 〈
...
R2, r

1〉 = 〈(D2r2 r2)r2, r1〉 + 〈Dr2(Dr2 r2), r1〉, using (2.7.1) and the genuine
non linearity, we can conclude that:

〈
...
S2, r1〉 − 〈

...
R2, r

1〉 =
1

2

〈(Dλ2 r2)(Dr2 r2), r1〉
λ2 − λ1

6= 0.

The second part of the statement is proved repeating the same arguments.

Proposition 2.7.3. Let u = u(t, x) be a weak entropy solution to (2.1.2) and denote by
{ym(t)}m∈N the countable family of its shocks (see [14, Section 10.3]). Setting L(T,X) :=
{ϕ ∈W 1,∞[0, T ] : ϕ(T ) = X} and J :=

⋃

m graph(ym), we have that the set

F := {ϕ ∈ L : H1(graph(ϕ) ∩ J) = 0}

is dense in L(T,X) endowed with the usual norm of W 1,∞ (i.e. ‖ϕ‖W 1,∞ := ‖ϕ‖∞ +
∥

∥ϕ′
∥

∥

∞
).

Proof. L is complete, being a closed subset of a complete metric space. Observe that
F =

⋂

m,n Fn,m, where:

Fn,m :=
{

ϕ ∈ L(T ;X) : H1(graph(ϕ) ∩ graph(ym)) < 1/n
}

.

By Baire Theorem, see [46, Proposition 3.5.4], it is sufficient to prove that each Fn,m is
an open and dense subset of L(T,X).

Fn,m is open: Fix ϕ ∈ Fn,m and define

Dϕ :=
{

(t, ym(t)) ∈ [0, T ] × R : ϕ(t) = ym(t)
}

Dd
ϕ :=

{

(t, ym(t)) ∈ [0, T ] × R :
∣

∣ϕ(t) − ym(t)
∣

∣ ≤ d
}

.

For every ε ∈
]

0, 1/n −H1(Dϕ)
[

, there exists a positive δ such that H1(Dδ
ϕ) = 1/n − ε.

Now, consider the open ball B(ϕ, δ) in the space (L(T,X), ‖·‖W 1,∞). For every ψ ∈ B(ϕ, δ),
we have that ψ(t) 6= ym(t) whenever (t, ym(t)) ∈ R

2 \ Dδ
ϕ. In fact, if ψ(t) = ym(t) with

(t, ym(t)) ∈ R
2 \Dδ

ϕ, then
∣

∣ϕ(t) − ψ(t)
∣

∣ > δ which is impossible since ψ ∈ B(ϕ, δ). Hence,

we obtain that Dψ ⊆ Dδ
ϕ, for all ψ ∈ B(ϕ, δ), i.e. B(ϕ, δ) ⊂ Fn,m. By the arbitrariness of

ϕ, we conclude that Fn,m is open.
Fn,m is dense: Choose a ϕ ∈ L. We show that ϕ can be arbitrarily approximated by

functions in Fn,m, hence we can assume that H1(graph(ϕ) ∩ graph(ym)) ≥ 1/n. By [14,
Theorem 10.4]), ϕ − ym is Lipschitz on [0, T ]. Then, call C =

{

t ∈ [0, T ] : ϕ(t) = ym(t)
}

.

C is closed and can be represented as C ⊆ ⋃N
k=1[ak, bk], for a suitable N ≥ 1. Define, for

instance, ψ as

ψ(t) :=ϕ(t) + δ2
N
∑

k=1

e−1/((t−ak)2(bk−t)
2)χ

[ak ,bk]
(t) (2.7.7)

Clearly, ψ ∈ Fn,m. Moreover ‖ϕ− ψ‖W 1,∞ ≤ δ, for δ small. Hence, ψ ∈ B(ϕ, δ), proving
the density of Fn,m in L(T,X).



Chapter 3

Modeling the Dynamics of

Granular Matter

3.1 Introduction

Consider a slope with profile u = u(t, x), where x ∈ R
2 and t ≥ 0. On this bed, some

kind of material with thickness h = h(t, x) is free to slide, subject to gravity. The sliding
matter may well erode or deposit, thus modifying the slope as well as its distribution over
it. This explains why both functions u and h are also time dependent. We describe the
complex dynamics that arises through the following equations:



















∂th+ ∇ · (h v) = −γ
(

α− ‖∇u‖
)

h+H

∂tv + ∇ ·
(

1
2v ⊗ v + gh Id

)

= −g∇u+ ν(v,∇u) − γ[[α− ‖∇u‖ ]]
−
v + V

∂tu = γ
(

α− ‖∇u‖
)

h

(3.1.1)

Here, v defines the velocity vector field at which matter slides over the bed. g is gravity
and α is the critical angle: at slopes higher than α, the sliding matter erodes the bed
while falling, whereas at lower slopes it deposits over the bed. The constant γ is the speed
at which erosion–deposition takes place. More precisely, in the first equation, the term
−γh(α − ‖∇u‖) corresponds to the quantity of matter that deposits, when ‖∇u‖ < α,
or that is eroded, when ‖∇u‖ > α. Conservation of mass requires that the same term
appears, with the opposite sign, in the third equation. The right hand side of the second
equation contains a first term −g∇u, describing the component of gravity parallel to the
slope. The vector ν(v,∇u) describes the friction between the sliding matter and the slope.
Therefore, we require the following physically obvious conditions:

v · ν(v,∇u) ≤ 0 and ν(0,∇u) = 0 (3.1.2)

for all v and u. The term −[[ γ(α− ‖∇u‖) ]]
−
v in the second equation is due to the eroded

material that starts moving and affects the speed of the sliding matter. Finally, H and
V are functions of (t, x), presumably known, modeling sources such as material falling or
being poured over the bed.

47
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A priori, the first two equations in (3.1.1) can be justified through the balance of mass
and of linear momentum, see [28], the third equation by the erosion–deposition dynamics.
Part of these terms, in fact, are found also in the Hadeler–Kuttler model introduced in [33,
formula (5)]:

(HK)

{

∂th−∇ · (β h∇u) = −γ
(

α− ‖∇u‖
)

h+H
∂tu = γ

(

α− ‖∇u‖
)

h

where we used the same notations as above. β is the rate that connects the velocity of
the rolling layer to the gradient of u, see [34]. This model has been widely considered in
the literature, both from the point of view of stationary asymptotic solutions and from
that of evolution problems, see for instance [1, 18, 19, 20, 26, 29, 45]. Some of the above
studies are purely analytical, others are of a more numerical nature.

On the other hand, the convective part in the first two equations of (3.1.1) reminds
of that of the Savage–Hutter model, see [42, 47], which, for smooth solutions, can be
rewritten as

(SH)







∂th+ ∇ · (h v) = 0

∂tv + ∇ ·
(

1
2v ⊗ v + hG

)

= s .

Here, the vector s and the 2 × 2 diagonal matrix G are functions of the unknowns and
of the space variables, see [47, formulæ (1)–(10)], whose role is to accurately describe the
given fixed geometry of the slope and the effect of gravity. Remark that (SH) is essentially
equivalent to the shallow water equations with a bed having a given fixed geometry and
a drift term in the moment equation, see [28]. Several papers consider the model (SH)
from various points of view, see for instance [32, 41, 43, 44].

Below, we study (3.1.1) and compare it with (HK) and (SH). To this aim, we first
scale out the various constant parameters in (3.1.1) and (HK), obtaining



















∂th+ ∇ · (hv) = −
(

1 − ‖∇u‖
)

h+H

∂tv + ∇ · (1
2v ⊗ v + h Id) = −∇u+ ν(v,∇u) − [[ 1 − ‖∇u‖ ]]

−
v + V

∂tu =
(

1 − ‖∇u‖
)

h

(3.1.3)

in the case of model (3.1.1), see Lemma 3.5.2. In the case of (HK), Lemma 3.5.1 yields
the rescaling

{

∂th−∇ · (h∇u) = −
(

1 − ‖∇u‖
)

h+H
∂tu =

(

1 − ‖∇u‖
)

h .
(3.1.4)

A first key difference between (3.1.1) and (HK) is the energy balance. Indeed, smooth
solutions to (3.1.1) dissipate the energy

E =

∫

R2

(

1

2
h ‖v‖2 +

1

2
(h+ u)2

)

dx , (3.1.5)

see Proposition 3.2.1. On the other hand, the oscillations arising in the solutions to (HK),
see Paragraph 3.3.1, show that (HK) can hardly be energy dissipating.
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An obvious difference between (3.1.1) and (SH) is that the latter model does not
take into account the erosion–deposition phenomena. Therefore, below, we compare the
qualitative behaviour of the uppermost moving profile u + h in (3.1.1) with its analog h
in (SH).

Then, we pass to the 1D case. After the standard preliminary study, we consider some
numerical integrations of the different models and compare the corresponding solutions.
It is immediate to see that as soon as a change in the slope of the bed is present, the
two models (HK) and (SH) may display a somewhat surprising behavior. In particular,
in the case of the former model, unphysical oscillations may arise in the short term and
then disappear for large times, see Section 3.3.1. In the case of the latter model, when
the slope changes sign, the sliding matter may accumulate creating unexpected peaks,
see Section 3.3.2. This somewhat unphysical behaviour has to be expected, for the (SH)
system is suited to bed whose slope has small variations.

The present model (3.1.1) and (HK) may differ also in the asymptotic behaviour, as
shown in Section 3.3.3. There, the final profiles given by (3.1.1) and (HK) left from the
fall of some granular material over a flat bed have in fact different concavities.

The paper is organized as follows. First, in Section 3.2, we consider the main analytical
properties of (3.1.1). Secondly, in Section 3.3, several numerical integrations show the main
differences between the three models. The technical details are collected in Section 3.5.

3.2 Analytical Preliminaries

This section is devoted to the analytical properties of the models. First, it is immediate to
note that all systems are invariant with respect to the symmetry x → −x, t → t, h → h,
v → −v and u→ u, as it is physically necessary.

In the case of (3.1.3), we have the following energy dissipation property.

Proposition 3.2.1. Let H = 0 and V = 0. Choose smooth (ho, vo, uo) such that (3.1.3)
with initial datum (ho, vo, uo) admits a smooth solution with compact support up to time
T > 0. Consider the energy (3.1.5). If (3.1.2) holds, then E

(

h, v, u)(t)
)

≤ E(ho, vo, uo)
for all t ∈ [0, T [, more precisely,

d

dt
E =

∫

R2

hv · ν(v, p) dx−
∫

R2

h‖v‖2

(

∣

∣1 − ‖∇u‖
∣

∣− 1

2

(

1 − ‖∇u‖
)

)

dx

≤ 0 .

The proof is immediate and, hence, omitted. Note that the energy decay has to terms:
the former one is due to friction and the latter one to erosion–deposition.

Above, by smooth solution we mean that (h, v, u) ∈ C1(I × R
2; R+ × R

2 × R). How-
ever, as is well known, the smoothness of solutions does not persist, for singularities may
arise. Therefore, we define a measurable map (h, v, u) : R

+ × R
2 7→ R

+ × R
2 × R to be a

distributional solution to (3.1.3) if (h, v, u) satisfies (3.1.3) in the sense of distributions.
We now pass to the 1D case, so that (3.1.3) simplifies to



















∂th+ ∂x(hv) = −
(

1 − |∂xu|
)

h+H

∂tv + ∂x(
1
2v

2 + h) = −∂xu+ ν(v, ∂xu) − [[ 1 − |∂xu| ]]
−
v + V

∂tu =
(

1 − |∂xu|
)

h

(3.2.1)
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and (3.1.4) to
{

∂th− ∂x(h∂xu) = −
(

1 − |∂xu|
)

h+H
∂tu =

(

1 − |∂xu|
)

h .
(3.2.2)

To study (3.2.1) and (3.2.2) as 1D systems of balance laws, it is useful to introduce the
variable p = ∂xu, obtaining























∂th+ ∂x(hv) = −
(

1 − |p|
)

h+H

∂tv + ∂x

(

1
2v

2 + h
)

= −p+ ν(v, p) − [[ 1 − |p| ]]
−
v + V

∂tp− ∂x

(

(

1 − |p|
)

h
)

= 0

(3.2.3)

and, in the case of the Hadeler-Kuttler model,

{

∂th+ ∂x(hp) = −
(

1 − |p|
)

h+H
∂tp− ∂x

(

(1 − |p|)h
)

= 0
(3.2.4)

Both these systems fall within the class of 3 × 3 systems of balance laws, see [27, Chap-
ter VII] as a general reference on this subject.

In the case of distributional solutions, the equivalence between the two systems (3.2.1)
and (3.2.3) is proved by the following lemma.

Lemma 3.2.2. Let I = [0, T ] for a T > 0. If (h, v, u) is a distributional solution to (3.2.1)
satisfying

(h, v, u) ∈ L∞(I × R; R+ × R × R),
with h(t) and ∂xu(t) ∈ (L1 ∩ BV)(R; R) for a.e. t ∈ I

and ∂xu ∈ L∞(I × R; R)

then, setting p = ∂xu,

(h, v, p) ∈ L∞(I × R; R+ × R × R),
with h(t) and p(t) ∈ (L1 ∩BV)(R; R) for a.e. t ∈ I

is a distributional solution to (3.2.3). And viceversa.

The proof is deferred to Section 3.5. The equivalence of (3.1.4) and (3.2.4) is stated and
proved similarly.

The first step in the analytical study of (3.2.3) is the computation of eigenvalues and
eigenvectors of the Jacobian of the flow, which is the content of the next lemma.

Lemma 3.2.3. The Jacobian of the flow of system (3.2.3) is the matrix







v h 0
1 v 0

|p| − 1 0 h sgn p
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its eigenvalues and eigenvectors are

λ1 = v −
√
h λ2 = v +

√
h λ3 =h sgn p

r1 =

















−1

+
1√
h

1 − |p|
v − h sgn p−

√
h

















r2 =

















1

1√
h

|p| − 1

v − h sgn p+
√
h

















r3 =







0
0
1






.

If p 6= 0, h > 0 and v 6= h±
√
h then system (3.2.3) is strictly hyperbolic. Moreover,

∇λ1 · r1 =
3

2
√
h
, ∇λ2 · r2 =

3

2
√
h
, ∇λ3 · r3 = 0 .

so that the first two fields are genuinely nonlinear while the third one is linearly degenerate.
For p > 0, the ordering of the eigenvalues is as follows:

λ3 < λ1 < λ2 ⇐⇒ v > h+
√
h

λ1 < λ3 < λ2 ⇐⇒ h−
√
h < v < h+

√
h

λ1 < λ2 < λ3 ⇐⇒ v < h−
√
h

and symmetric relations hold for p < 0.

The proof is straightforward and hence omitted. Remark that when v = h+
√
h then, not

only λ1 = λ3, but also the corresponding eigenspaces coincide, therefore hyperbolicity is
lost. The same happens when v = h−

√
h. It is remarkable that, due to the loss of hyper-

bolicity at h = 0 and to the form of the source term in (3.2.3), the well posedness of this
system does not follow from the standard results on systems of balance laws. Indeed, fix
any state (ho, vo, uo) where (3.2.3) is strictly hyperbolic. Then, (ho, vo, uo)+L1(R; R) is not
invariant with respect to the ordinary differential equation defined by the right hand side
in (3.2.3). Nevertheless, given a positive L, there exists a T > 0 such that the construction

in [22] can be localized to any trapezoid of the type
{

(t, x) ∈ [0, T ] × R : |x| < L+ λ̂t
}

.

This procedure ensures the local well posedness of (3.2.3).
For analytical results about (3.2.4) we refer to [1, 45]. Recall that it is a 2× 2 system

of balance laws with a Lipschitz flow, hyperbolic for p 6= 0. In 1D, the Savage–Hutter
model has the simpler form, see [42, formulæ (2.25)–(2.26)]:







∂th+ ∂x(hv) = 0

∂tv + ∂x

(

1
2v

2 + δ cos ζ h
)

= sin ζ − δ cos ζ ∂xb+ ν sgn v cos ζ
(3.2.5)

where ζ is a constant slope angle, ν sgn(v) cos ζ describes the friction of the sliding material
with respect to the bed and b describes the deviation of the bed from the constant angle
ζ, see Figure 3.2. In other words, the relation between the slope u in (3.2.1) and the
functions b and ζ in (3.2.5) is

u(x) cos ζ + x sin ζ = b
(

x cos ζ − u(x) sin ζ
)

.

But, as already remarked, due to the absence of the erosion–deposition phenomena,
in (3.2.5) b and ζ are time independent, whereas u is time dependent in (3.2.1).
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Figure 3.1: Left: notation for the 1D Savage–Hutter model (3.2.5). Right, notation for
the 1D model (3.2.1).

3.3 Qualitative Behavior of the Solutions

This section is devoted to various comparisons among the solutions to the systems (3.2.3),
(3.2.4) and (3.2.5), setting ν(v, ∂xu) = −νv. In all the numerical integrations, we use the
standard Lax–Friedrichs method, see [40, § 12.5] coupled with Euler polygonals to deal
with the source term, through the operator splitting method, see [40, § 17.1] or [22].

3.3.1 Evolution of a Horizontal Profile

As a first example, we consider the initial datum
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(3.3.1)

which represents a hole filled with snow at rest. Choose H = 0 and V = 0.

Independently from the choice of ν, the solution to (3.2.3)–(3.3.1) is stationary, which
is physically reasonable. Indeed, where h = 0 nothing may move. Where h 6= 0, the initial
slope satisfies |p| = 1 so that neither erosion nor deposition may take place. Besides, the
effects of gravity disappear due to the fact that the profile is horizontal.

More formally, we prove the following lemma.

Lemma 3.3.1. Let H = 0, V = 0 and choose ν satisfying (3.1.2). Then, (h, v, p) =
(ho, vo, po) is a distributional stationary solution to (3.2.3)–(3.3.1).

The proof is in Section 3.5.

On the contrary, the solution to (3.2.4)–(3.3.1) is not stationary and displays a some-
what unexpected behavior, depicted in Figure 3.2. Indeed, the change in the slope at x = 0
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Figure 3.2: Integration of (3.2.4)–(3.3.1). The change in the slope at x = 0 leads to the
immediate formation of two large shocks which are eventually smeared out by the right
hand side in (3.2.4).

leads to the creation of two large shocks. These discontinuities are due to the convective
part of (3.2.4), which dominates the source term at the small time scale. Consider the
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Figure 3.3: Shock curves, or Hugoniot loci, for to the solution of the Riemann prob-
lem (3.3.2), corresponding to the homogeneous part of (3.2.4) with the initial data (3.3.1).
The solution to (3.3.2) governs that of (3.2.4)– (3.3.1) over the short time scale.

following Riemann problem for the convective part of (3.2.4):























∂th+ ∂x(hp) = 0
∂tp− ∂x

(

(1 − |p|)h
)

= 0

(h, p)(0, x) =

{

(1,−1) x < 0 ,
(1, 1) x > 0 .

(3.3.2)

Its solution consists of two (relatively) large shocks: see Figure 3.3 for the location of the
Hugoniot loci displaying the solution to (3.3.2) and Figure 3.2, left, for the corresponding
oscillations in the solution to (3.2.4)–(3.3.1). These shocks are eventually smeared out by
the source terms and the solution to (3.2.4)–(3.3.1) approaches asymptotically the constant
solution h = 0, p = 0.

We remark that the unphysical oscillations displayed in Figure 3.2 by the solutions
to (3.2.4) are thus analytically justified consequences of the equations and are not due to
numerical problems.

In this example, the asymptotic state reached by the solution to (3.2.3) differs from
that of (3.2.4). However, in the case of the initial datum (3.3.1), this appears to be a non
generic situation. Indeed, generically, small perturbations of the initial datum (3.3.1) lead
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to solutions of (3.2.3) that eventually tend to the asymptotic solution h(x) = 0, v = 0,
p = 0.

The rise of large shocks due to changes in the slope of the bed does not depend on the
smoothness of this change. Indeed, consider the initial datum
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representing a (smooth) hole filled with snow. We set ν = 1, H = 0 and V = 0. Then,
the uppermost profile u+ h in the solution to (3.2.3)–(3.3.3) is again stationary, although
deposition now takes place since p attains values in ]−1, 1[: h diminishes to 0 and the
sliding matter becomes part of the bed, see Figure 3.4.
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Figure 3.4: Above, the solution to (3.2.3)–(3.3.3): note that deposit takes place faster
where the slope of the bed is lower. Below, the solution to (3.2.4)–(3.3.3): note the
formation of unexpected peaks near to x = 0 where the slope smoothly changes sign.

On the other hand, in the case of (3.2.4), once more we have the shocks due to the
convective part are present and lead to the formation of a sort of hill. The sliding matter
accumulates at the center of the hole and its level gets higher than the initial one, see
Figure 3.4.

Remark that asymptotically, the solutions to both models tend to h = 0, p = 0.

The solution to (3.2.5)–(3.3.3) is stationary and hence it is not displayed in Figure 3.4.
Note that this behavior is physically acceptable, in spite of the fact that the Savage–Hutter
model is adapted to describe only small variations in the average slope of the bed.

3.3.2 Falling Matter

Consider now an avalanche or a landslide falling along a bed with varying slope. In other
words we consider the initial datum:
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with H = 0, V = 0 and ν = 0.1. In (3.2.5) we also set δ = 0.1, ζ = 0 and ∂xb = po.
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Figure 3.5: Above, integration of (3.2.3)–(3.3.4): first, the sliding matter erodes the bed
while falling, then it deposits while slowing down. Below, integration of (3.2.5)–(3.3.4):
neither erosion nor deposit may take place. Besides, the slower deceleration in the middle
part causes the formation of a peak.

As long as the avalanche does not reach the change in the slope, the solution to (3.2.3)
displays a bunch of matter moving downwards along the slope and, at the same time,
eroding the steepest part of the bed. In the case of the Savage–Hutter model, the profile
of the bed does not change, while that of the solution is quickly deeply modified, see
Figure 3.5.

Where the bed’s slope is small, the sliding matter in the solution to (3.2.3) slows down
and starts depositing. In the solution to (3.2.5), by the absence of erosion–deposition term
the sliding matter goes down faster than in the previous case, hence it concentrates and
creates a peak, see Figure 3.5.

3.3.3 On the Role of H

We now compare the three models (3.2.3), (3.2.4) and (3.2.5) in the case of a flat horizontal
bed on which a material is being poured. Thus, assume that

ho(x) = 0
vo(x) = 0
po(x) = 0

with

H(t, x) = 1.5χ
[−0.1,0.1]

(x) · χ
[0,0.5]

(t)

V (t, x) = 0
ν = 0.1 .

(3.3.5)

The results of the corresponding numerical integrations are collected in Figure 3.6. We
remark that, initially, the uppermost profiles y = h(x) + u(x), in the case of (3.2.3)
and (3.2.4), y = h(x), in the case of (3.2.5), are similar, see the first column in Figure 3.6.
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Figure 3.6: First row, solution to (3.2.3)–(3.3.5); second row, solution to (3.2.4)–(3.3.5);
third row, solution to (3.2.5)–(3.3.5). Note

As soon as the lower deposited part takes a shape with a significant change in its slope,
the solution to (3.2.4) displays the behaviour already noted above. Two symmetric shocks
start moving off from the vertex of the deposited part, see the second and third columns
in Figure 3.6.

Eventually, the solution to (3.2.5) spread all over the real line, for the (SH) model does
not account for any deposit. However, as long as h in (3.2.3) is positive, the qualitative
aspects of the uppermost profiles in (3.2.3) and in (3.2.5) are analogous. Note that the
asymptotic shape of the profile in the solutions to (3.2.3) and (3.2.4), rightmost column
in Figure 3.6, are rather different.

3.4 Conclusions

We presented a new model for the movement of granular matter. It is a synthesis of the
Hadeler–Kuttler and of the Savage–Hutter models. The result is the 3× 3 system (3.1.1),
which we proved to be compliant with energy dissipation, similarly to the Savage-Hutter
model, but able to describe the erosion–deposition dynamics, which is not considered in
the (SH) model.

Moreover, (3.1.1) seems to describe better than the Hadeler-Kuttler model the evo-
lution of the falling matter, in particular in case of changes in the bed slope. Indeed,
the solutions to (3.1.1) do not display the sudden oscillations due to the convective part
of (HK). Furthermore, we believe it is relevant that an initial horizontal profile evolves
remaining horizontal, as in the cases examined in Paragraph 3.3.1.
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3.5 Technical Details

We omit the proofs of the next two lemmas, since they are straightforward.

Lemma 3.5.1. [33, Appendix A] With the rescaling x→ β
γ x, t → 1

αγ t, u→ αβ
γ u, h→ αβ

γ h

and f → 1
α2β f , system (HK) reduces to (3.1.4).

Similarly, in the case of (3.1.1), we have the following lemma.

Lemma 3.5.2. With the rescaling x → g
αγ2x, t → 1

αγ t, u → g
γ2u, h → g

γ2h, v → g
γ v,

H → γ
αgH, V → γ2

αgV and ν → γ2

αgν system (3.1.1) reduces to (3.1.3).

Proof of Lemma 3.2.2. Let (h, v, u) be a distributional solution to (3.2.1) and set
p := ∂xu. It is straightforward to show that the first two equations of (3.2.3) are satisfied
in the sense of distributions. Moreover, for every test function ϕ ∈ C∞

c (R+ × R; R),
∫

R+

∫

R

[

∂tϕp+ ∂xϕ
(

1 − |p|
)

h
]

dx dt

=

∫

R+

∫

R

[

∂tϕ∂xu+ ∂xϕ
(

1 − |∂xu|
)

h
]

dx dt

=

∫

R+

∫

R

[

−∂t∂xϕu+ ∂xϕ
(

1 − |∂xu|
)

h
]

dx dt .

Now, using the fact that ∂xϕ belongs to C∞
c (R+ ×R; R) and the hypothesis that (h, v, u)

satisfies the latter equation of (3.2.1), we get
∫

R+

∫

R

[

∂tϕp + ∂xϕ
(

1 − |p|
)

h
]

dx dt = 0 ,

i.e. also the third equation of (3.2.3) holds in the distributional sense.
Let (h, v, p) be a distributional solution to (3.2.3) and define the function: u(t, x) :=

∫ x
−∞ p(t, ξ) dξ. As above, the proof for the first two equations is trivial. Moreover, us-

ing (3.2.3) and [27, Theorem 4.3.1]:
∫ x

a
p(t, ξ) dξ −

∫ x

a
p(0, ξ) dξ

=

∫ t

0

(

1 −
∣

∣p(ϑ, x−)
∣

∣

)

h(ϑ, x−) dϑ −
∫ t

0

(

1 −
∣

∣p(ϑ, a+)
∣

∣

)

h(ϑ, a+)dϑ .

Since h(t) and p(t) belong to (L1 ∩ BV)(R; R) for a.e. t ∈ I, when a→ −∞ we get:

u(t, x) =

∫ x

−∞
p(t, ξ) dξ =

∫ x

−∞
p(0, ξ) dξ +

∫ t

0

(

1 −
∣

∣p(ϑ, x)
∣

∣

)

h(ϑ, x) dϑ .

Introduce, for simplicity, the quantities g(x) :=
∫ x
−∞ p(0, ξ) dξ and l(t, x) :=

∫ t
0

(

1 −
∣

∣p(ϑ, x)
∣

∣

)

h(ϑ, x) dϑ.

Then, for every test function ϕ ∈ C∞
c (R+ × R; R),

∫

R+

∫

R

[

∂tϕu+ ϕ
(

1 − |∂xu|
)

h
]

dx dt

=

∫

R+

∫

R

[

∂tϕg + ∂tϕ l + ϕ
(

1 − |p|
)

h
]

dx dt .
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Now, integrating by parts and using the fact that ∂tg = 0 and ∂tl =
(

1 − |p|
)

h, we obtain:

∫

R+

∫

R

[

∂tϕu+ ϕ
(

1 − |∂xu|
)

h
]

dx dt = 0 .

Hence, also the third equation in (3.2.1) is satisfied in distributional sense and the proof
is completed. �

Proof of Lemma 3.3.1. Let h, v, p be the stationary functions h(t, x) = ho(x), v(t, x) =
0, p(t, x) = po(x). Separately, in each of the regions R

+ ×
]

−∞,−1/2
[

, R
+ ×

]

−1/2, 0
[

,
R

+ ×
]

0, 1/2
[

and R
+ ×

]

1/2,+∞
[

, (h, v, p) is a smooth solution to (3.2.3). On the
other hand, the traces of (h, v, p) along the three boundaries R

+ ×{−1/2}, R
+ ×{0} and

R
+ × {1/2}, satisfy the Rankine–Hugoniot conditions with zero speed. Hence (h, v, p) is

a stationary solution. �
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