
Università degli Studi di Milano-Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione

Dottorato di Ricerca in Informatica – XXII Ciclo

Design Pattern Detection and

Software Architecture Reconstruction:

an Integrated Approach based on Software Micro-structures

Ph.D. Candidate: Stefano Maggioni

Thesis advisor: Prof. Francesca Arcelli Fontana

Thesis tutor: Prof. Francesco Tisato

Academic Year 2008-2009

Table of Contents

Chapter 1 - Introduction.. 6

1.1. The research field ... 6

1.1.1. Design pattern detection (DPD) ... 7

1.1.2. Software architecture reconstruction (SAR) ... 10

1.2. A brief overview on software micro-structures for DPD and SAR ... 12

1.2.1. Elemental design patterns ... 13

1.2.2. Design pattern clues ... 13

1.2.3. Micro patterns ... 13

1.2.4. Usefulness of micro-structures for DPD and SAR ... 14

1.3. Thesis objectives and aims .. 14

1.4. Thesis outline .. 15

Chapter 2 - Related works .. 17

2.1. Related works on design pattern detection .. 17

2.1.1. Categorizations of approaches and methodologies for design pattern detection .. 17

2.1.2. Approaches and tools for design pattern detection .. 19

2.1.3. Comparisons among tools for design pattern detection... 23

2.2. Related works on software architecture reconstruction ... 24

2.2.1. Approaches and tools for software architecture reconstruction .. 24

2.2.2. Taxonomies and comparisons of software architecture reconstruction tools .. 30

2.2.3. A novel comparative framework proposal for SAR tools ... 31

Chapter 3 - Software micro-structures ... 34

3.1. Software micro-structures ... 34

3.1.1. Elemental design patterns ... 35

3.1.2. Design pattern clues ... 35

3.1.3. Micro patterns ... 36

3.2. Towards a unique micro-structures catalogue ... 37

3.2.1. Code atoms definitions .. 40

3.2.2. Elemental design patterns definitions ... 42

3.2.3. Design pattern clues definitions ... 45

3.2.4. Micro patterns definitions ... 50

3.3. The Micro-structures detector .. 52

3.4. Concluding remarks .. 53

Chapter 4 - Micro-structures for design pattern detection ... 54

4.1. Micro-structures for design pattern detection .. 54

4.2. An analysis of micro-structures based on six aspects ... 55

4.2.1. Elemental design patterns ... 55

4.2.2. Design pattern clues ... 56

4.2.3. Micro patterns ... 57

4.3. A comparison among micro-structures ... 58

4.4. The role of micro-structures in the detection of design patterns ... 59

4.4.1. Micro-structures detection in sample design pattern implementations .. 60

4.4.2. Micro-structures relevance evaluation for design pattern detection ... 70

4.4.3. Micro-structures detection in design pattern implementation variants ... 75

4.5. An association among pattern roles and micro-structures for their detection 80

4.6. Concluding remarks .. 83

Chapter 5 - Micro-structures for the validation and refinement of design pattern

detection tools results .. 85

5.1. Detection of design patterns through four design pattern detection tools .. 85

5.2. Refinement rules definition .. 87

5.3. The pattern instances refinement process ... 92

5.4. Application of the rules to the detected instances ... 95

5.5. Refinement results evaluation .. 97

5.6. Concluding remarks .. 100

Chapter 6 - Micro-structures for software architecture reconstruction 102

6.1. Elemental design patterns and micro patterns for SAR purposes ... 102

6.2. Elemental design patterns for SAR .. 106

6.2.1. Views ... 107

6.2.2. Metrics .. 109

6.2.3. Structural antipatterns ... 115

6.3. Micro patterns for SAR .. 118

6.3.1. Micro patterns identifying classes of particular interest .. 118

6.3.2. Object-oriented antipatterns ... 122

6.4. Considerations about the detection of software antipatterns and other defects 123

6.5. Concluding remarks .. 125

Chapter 7 - A novel interpretation of micro patterns .. 126

7.1. Motivation ... 126

7.2. A new interpretation of micro patterns based on NOA and NOM metrics 129

7.3. Experimental results .. 134

7.4. Concluding remarks .. 140

Chapter 8 - Conclusions and future works ... 141

8.1. Conclusions ... 141

8.2. Future works ... 144

6

Chapter 1

Introduction

In this chapter we give an overview of the research field related to our activities. We

provide common definitions of Design Pattern Detection and Software Architecture

Reconstruction, and we introduce the concept of software micro-structure. After an

overview on common micro-structures, we finally introduce the thesis objectives and

aims, which are concerned with the exploitation of micro-structures for Design Pattern

Detection and Software Architecture Reconstruction activities.

1.1. The research field

A software engineering area that has assumed more and more importance during the last

years in the field of software maintenance is reverse engineering. In [Chi90], Chikofsky

defines reverse engineering as “the process of analyzing a subject system to identify the

system’s components and their interrelationships and to create representations of the

system in another form or at a higher level of abstraction”. A principal aim of reverse

engineering is to allow the reconstruction of the structure of target software systems and

to detect their fundamental components and modules, in order to consequently obtain

their forming structures. The retrieval of this kind of information would make the

restructuring and maintenance phases easier, as the system would not be seen as a single

monolithic structure, but as a set of small-sized interacting components that are usually

easier to manage with respect to the overall system.

In the context of reverse engineering, two activities are of particular interest. These are

namely Design Pattern Detection (which, from now on, can also be indicated with the DPD

acronym) and Software Architecture Reconstruction (SAR).

7

1.1.1. Design pattern detection (DPD)

Design patterns (DPs) have been introduced by Gamma, Helm, Johnson and Vlissides

(collectively known as the Gang of Four) in [GHJV94]. A design pattern is a description of a

commonly occurring software design problem, together with a description of a possible

solution to that problem. The proposed solution is applicable whenever the problem is

faced, independently from the particular system to be designed or to the precise context in

which the system is being developed. A design pattern gives therefore general indications

about how to solve a well-defined issue, without deepening into the implementation

details about how the problem is actually solved. Each pattern is presented according to

the following structure:

- Pattern name and classification: a descriptive and unique name that helps in identifying

and referring to the pattern;

- Intent: a description of the goal behind the pattern and the reason for using it;

- Also known as: other possible names for the pattern;

- Motivation (forces): a scenario consisting of a problem and a context in which this

pattern can be used;

- Applicability: the possible situations and cases in which this pattern is usable;

- Structure: a graphical representation of the pattern, usually through an UML class

diagram;

- Participants: a listing of the classes and objects used in the pattern and their roles in the

design; in general, each class plays a well defined role inside the pattern, according to

the pattern description;

- Collaboration: a description of how classes and objects used in the pattern interact with

each other;

- Consequences: a description of the results, side effects, and tradeoffs caused by using

the pattern;

- Implementation: a description of an implementation of the pattern, that is the solution

part of the pattern;

- Sample code: an illustration of how the pattern can be practically used and

implemented;

- Known uses: examples of real usages of the pattern;

- Related patterns: other patterns that have some relationship with the pattern; discussion

of the differences between the pattern and similar patterns.

Twenty three design patterns have been defined, subdivided in three categories. Creational

design patterns deal with object creation mechanisms, trying to create objects in a manner

suitable to the context in which the patterns should be applied. Structural design patterns

8

describe how classes and objects can be combined to form larger structures. Each

structural pattern is then further specified as being based on classes or based on objects.

Structural patterns based on classes describe how inheritance can be used to provide more

useful program interfaces. Object patterns describe how objects can be composed into

larger structures using object composition, or through the inclusion of objects within other

objects. Finally, behavioural design patterns identify common communication ways among

objects and concentrate on the assignment of responsibilities among them.

Design patterns are useful both during a system’s design phases both in forward

engineering (as they are well known and optimal solutions to given design issues and can

be seen as directives to follow in order to solve a problem in a given context), and in

reverse engineering activities (as the identification of design patterns inside a software

system can give hints about the issues faced during its design). In the context of reverse

engineering, they can also be considered as indicators of good system design quality, as

their presence grants the use of structures that are, for their self definition, reusable.

Therefore, the activity of DPD, aimed at identifying design patterns inside a subject

software system, can give useful information about the design of a system, indicating the

logical fundaments of a certain implementation. Moreover, DPD is important during the

re-documentation phases of a system, in particular when the system documentation is

scarce, incomplete or not up-to-date to the current system version. The activity of design

pattern detection may also reveal useful for the specification and development of a design

advisor. Analyzing a subject system may provide information about the existence of

components or modules whose implementation is close to that of some design patterns,

hence suggesting for their refactoring in order to comply with the patterns specifications.

Moreover, the analysis may reveal parts of the system representing design issues that have

not been properly solved, at least not in the optimal way. In this case, the advisor could

suggest for the implementation of a design pattern that is adequate to the detected issue,

in order to obtain an elegant and effective solution to it.

The detection of design patterns is supported by ad-hoc software tools. The main steps a

tool performs in a design pattern detection process are related to information extraction

from the target system, archetypes recognition and presentation of results, as reported in

Figure 1.1. The information extracted from the analyzed systems depends on the elements

searched by the detection algorithm used to identify the design patterns. Usually, the

extracted information is represented in a language-independent form, such as abstract

syntax trees (ASTs) or abstract syntax graphs (ASGs). Besides the extracted information,

the detection algorithm usually receives in input a catalogue of design patterns, in which

patterns are described according to the meta-representation used by the detection

algorithm. This is often based on matching techniques which try to map representations of

design patterns stored in a catalogue to the representation of the information extracted

9

from the analyzed system. Other techniques can exploit rule-based systems, or are related

to the identification of patterns sub-components, or else are based on the computation of

characteristic metrics. The various kinds of approaches will be discussed in Chapter 2.

Figure 1.1 – The main steps of a design pattern detection process

However, the use of design patterns inside software systems introduces a problem that is

troublesome for their detection. In fact, even if the specifications of each pattern are

completely generic so that they can be applied in different ways and in different contexts,

the actual implementations of each pattern can inevitably differ from one another, due to

their intrinsic generality. This problem is known as the variants problem, and it is one of the

biggest obstacles in a design pattern detection process, as design patterns are to be

identified starting from actual implementations, that can be quite different from the

proposed general pattern structure. In this thesis we try to face this problem by

introducing and adopting software micro-structures (that will be briefly presented in Section

1.2) as possible means to distinguish among various realizations of design patterns and to

improve the precision of design pattern detection tools.

10

1.1.2. Software architecture reconstruction (SAR)

Many different definitions of software architecture (SA) actually exist. The Software

Engineering Institute (SEI) at Carnegie Mellon University collected something like two

hundred and twelve software architecture definitions by software engineering experts

[Sei]. Many definitions are also proposed in the literature and in common standards. Here

we report some of the most representative ones.

The ANSI/IEEE Standard 1471-2000 (Recommended Practice for Architectural Description

of Software-Intensive Systems) [IEEE] states that “architecture is defined by the

recommended practice as the fundamental organization of a system, embodied in its

components, their relationships to each other and the environment, and the principles

governing its design and evolution”.

According to the Rational Unified Process, “an architecture is the set of significant

decisions about the organization of a software system, the selection of the structural

elements and their interfaces by which the system is composed, together with their

behavior as specified in the collaborations among those elements, the composition of these

structural and behavioral elements into progressively larger subsystems, and the

architectural style that guides this organization (these elements and their interfaces, their

collaborations, and their composition)” [Kru99].

Bass, Clements and Kazman [BCK03] propose the following clear definition for software

architecture: “the software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them”.

Out of the considered definition, we think that this latter one describes at best and

immediately what software architecture actually is. Bass, Clements and Kazman also point

out that software architecture shall also comprise its documentation [BCK03].

Documentation is indeed a crucial issue, because it shall be the most effective mean to

understand a complex system and its structures. The lack or poor quality of

documentation makes the understanding of a system more difficult and challenging.

Nonetheless, one of the core problems with software system is actually the lack of

documentation. Having tools to generate documentation (that, thanks to Bass’ definition,

can be considered in the set of tools for the reconstruction of software architecture) leads

to the obtainment of an important source of information for the understanding of the

subject systems. For all these reasons, while speaking about software architecture

throughout this thesis, we refer to the definition suggested by Bass, Clements and

Kazman.

Besides software architecture, numerous definitions for software architecture

reconstruction (SAR) have also been proposed.

Van Deursen defines architecture reconstruction as “a reverse engineering activity that

aims at recovering those decisions that either have been lost (because have not been

11

documented or the original developers have left) or are unknown (because they originate

from the system’s evolution)” [DHK+04]. In [DR04] he also states that “software

architecture reconstruction is the process of obtaining a documented architecture for an

existing system. Although such a reconstruction can make use of any possible resource

(such as available documentation, stakeholder interviews, domain knowledge), the most

reliable source of information is the system itself, either via its source code or observations

on its execution”.

Seacord and Plackosh [SP03] state that “architecture reconstruction provides analysis at

the highest level of abstraction. In this process, the as-built architecture of an implemented

system is obtained from the existing system by analyzing it, using tools to extract

information and to build system models at various levels of abstraction. This process

produces a representation of the system architecture and generates views of this

architecture. Architecture reconstruction is a complex task requiring a variety of activities

and skills. Although tool support is usually a requirement for architectural reconstruction,

no single tool or set of tools supports all reconstruction activities”.

A clear definition of software architecture reconstruction is provided by O’Brien et al

[BSV02]: “architecture reconstruction is the process by which the architecture of an

implemented system is obtained from the existing system. The approaches to architecture

reconstruction are aimed to evaluating the conformance of the as-built architecture to the

as-documented architecture, reconstructing architecture descriptions for systems that are

poorly documented or for which documentation is not available, and analyzing and

understanding the architecture of existing systems to enable modification of the

architecture to satisfy new requirements and to eliminate existing software deficiencies”.

Out of the presented definitions, the definition provided by O’Brien is the one that best fits

with our activities. In particular we are interested in the last part of the definition. In fact,

we think that one of the principal aims of architecture reconstruction is providing the

engineers with sufficient understanding helping them to effectively intervene in the

maintenance and evolution of the subject system. Thus, while referring to SAR along the

thesis, we make an implicit reference to the just presented definition.

Figure 1.2 represents the steps pursued by a software architecture reconstruction tool

during the reconstruction process, known as the extract-abstract-present model [TPS96].

First of all, information is extracted from different possible sources. The main source of

information is obviously the subject system itself and its documentation. Important

sources are also the history of the analyzed system, and the expertise of the system

developers and managers. The extracted information can be represented in many different

ways; each reconstruction tool adopts its own conventions and representation

mechanisms.

These representations cannot be directly exploited by the engineers, but they need to be

interpreted and abstracted, in order to be modified and translated in usable artifacts.

12

Figure 1.2 – A three-step process for software architecture reconstruction

Therefore, the abstraction process usually generates views, documentation or other kinds

of media, in order to obtain an abstracted overview of the analyzed system: the aim is to

provide the engineer means to have a global understanding of the system without

minding at the implementation details and at the low-level issues. The generated artifacts

are finally presented to the user, who can interpret and exploit them in order to deal with

the reconstructed software architecture.

1.2. A brief overview on software micro-structures for DPD and SAR

With the term software micro-structure (micro-structure for brevity) we indicate any code

element that can be automatically and univocally detected from the source code of a

software system, and which represents useful basic hints for the understanding of the

structures composing a system. According to our research interests, these elements can be

exploited in two different ways:

- For design pattern detection purposes, as possible hints for the presence of design

patterns inside a system;

- For software architecture reconstruction activities, as they directly or indirectly codify

information about structural relationships among classes.

Different categories of micro-structures have been defined in the literature. In this

dissertation we consider only the three kinds of micro structures that have been exploited

for our activities, namely elemental design patterns (EDPs), design pattern clues (DP clues) and

13

micro patterns, that will be now briefly introduced. EDPs, DP clues and micro patterns will

be considered with more detail in Chapter 3, where we also provide definitions for each

single micro-structure.

1.2.1. Elemental design patterns

Smith and Stotts proposed and introduced elemental design patterns in [SS02]. EDPs are

means to provide solutions to very common programming problems, which are faced in

the everyday programming practice. EDPs address problems of very limited dimensions,

generally involving at most three classes. Sixteen EDPs have been defined so far, and they

face the creation and referencing of objects, the various possible forms of method

invocation, and the inheritance relationships between two classes or interfaces.

1.2.2. Design pattern clues

In [Mag06a] we have discussed about the usefulness of EDPs for design pattern detection.

As we think that EDPs don’t behave well as far as the detection of pattern roles is

concerned, we have defined design pattern clues, as possible hints for the presence of

design patterns inside a software system. During our research activities, we have analyzed

the structures and the roles of the design patterns, focusing also on their possible Java

implementations, in order to deduce which particular code structures and realizations

could be peculiar for each pattern. From these studies, a first set of clues for the creational

design patterns category emerged [Mag06a, Mag06b]. The set of clues has been further

modified and enriched during the Ph.D. course, covering all the pattern categories. The

current set of design pattern clues is constituted by 41 elements, collected in eight

categories that focus on the various constructs related to a class or interface, like its

definition, its attributes, its method signatures and bodies and so on.

1.2.3. Micro patterns

Micro patterns were introduced by Gil and Maman [GM05] in order to capture very

common programming techniques. Currently, there are 27 micro patterns subdivided into

eight categories mainly considering the state of a class or interface (represented by its

attributes) and its behavior (represented by its set of methods).

14

1.2.4. Usefulness of micro-structures for DPD and SAR

The usefulness of micro-structures for DPD and SAR activities is mainly concerned with

the subdivision of such complex problems in simpler tasks, and to make the basic or

particular relationships and constraints among classes explicit. The first identification of

these bricks is to be considered as a starting point for an incremental process devoted to

the identification of more complex structures, like the design patterns or the structural

relationships among a large number of system classes and modules. Moreover, the micro-

structures are univocally and non-ambiguously detectable from a subject system, with

respect for example to design patterns, whose direct identification is made impossible due

to their intrinsic generality and the possible infinite variants they could realize each of

them.

1.3. Thesis objectives and aims

Four main objectives characterize this dissertation. The first main activity that will be

described is concerned with a comparison of the considered micro-structures on the basis

of several core aspects. The comparison allowed us to deeply understand the usefulness of

these elements both for DPD and SAR activities. Next, we will propose a novel approach

to the refinement and validation of the results provided by different design pattern

detection tools. The approach is based on the definition and application of micro-

structure-based refinement rules that demonstrated to be useful for the improvement of

the precision of the results provided by the considered tools. Finally, we will consider the

exploitation of micro-structures for SAR activities, in particular as far as the generation of

static views, the calculation of software metrics, and the detection of object-oriented and

structural antipatterns are concerned. In this context, we will also provide a new

interpretation of micro patterns based on similarity scores. The new interpretation allows

for the detection of classes that are very close realizations of micro patterns, which cannot

be detected by precise matching approaches, but which indeed can give useful indications

about possible antipatterns, about the stability of the analyzed systems, as well as about

the evolution of micro patterns along different software releases.

Two main motivations justify these objectives. First of all, software micro-structures have

generally been considered “as they are” in the literature. The inspection of their usefulness

for DPD and SAR purposes has never really been deeply inspected. Moreover, having a

common base (i.e. the considered micro-structures) for both DPD and SAR activities

allows the design and implementation of a single integrated tool supporting both

15

disciplines, with a common starting point represented by the micro-structures detected

from the analyzed systems.

1.4. Thesis outline

The thesis is structured according to the following chapters.

In Chapter 2 (Related works) we will present an overview to the major approaches to

design pattern detection. We will differentiate among static, dynamic and combined

approaches, and we will also introduce and describe some of the available and analyzed

design pattern detection tools. In this chapter we will also present the main software

architecture reconstruction approaches and tools, introducing some of the available and

tested tools, and proposing a comparative evaluation of them.

Chapter 3 (Software micro-structures) is focused on the description and definition of the

considered micro-structures (EDPs, DP clues and micro patterns). As the micro-structures

have been in general informally introduced, and as we verified that some of them could be

ambiguously interpreted, in this chapter we suggest a more formal definition of micro-

structures aimed at solving these ambiguities and at having a unique common structured

repository of these elements. The redefinition started from the introduction of a new set of

fundamental elements (that we name code atoms), which each single micro-structure can be

defined from, dealing to the obtainment of a unified micro-structures catalogue.

Chapter 4 (Micro-structures for design pattern detection) is devoted to the analysis of the

usefulness of micro-structures for design pattern detection purposes. The micro-structures

have been compared according to six peculiar aspects, namely objectives, detail level,

definition technique, detection technique, categorization, and interdependence among

elements. We will further analyze and detect micro-structures in common design pattern

instances. The study of the obtained results will help us in the definition of sets of micro-

structures that can be seen as necessary and/or useful elements for the detection of the

considered patterns.

Chapter 5 (Micro-structures for the validation and refinement of design pattern detection

tools results) describes the process of validation and refinement of the results provided by

third-pary design pattern detection tools. We will present the results provided by four

tools on the analysis of a well-known and established Java framework. We will compare

the obtained results, showing the strong differences among them, and pointing out the

problem related to the identification of many false positives, due to the different

algorithms and detection strategies adopted by the tools and to the difficult pattern

variants problem. Next, we will define refinement rules based on micro-structures for the

patterns detected by the various tools. We will describe the refinement process, and verify

16

the detected instances according to the defined rules. We will demonstrate how the

refinement process succeeds in the elimination of a good percentage of false positives,

hence improving the precision of each tool.

Chapter 6 (Micro-structures for software architecture reconstruction) analyzes and

compares elemental design patterns and micro patterns as means to support the

identification of architectural information about a software system. We will show how the

EDPs revealed useful to highlight the structural constraints and relationships among the

entities of a system, to calculate common software metrics, and to identify structural

antipatterns like breakable, butterfly and hub classes. On the other side, micro patterns

revealed useful for the detection of interesting peculiar classes and interfaces, in particular

as far as critical classes or object-oriented antipatterns are concerned.

In Chapter 7 (A novel interpretation of micro patterns) we will consider micro patterns

under a different point of view according to two common object-oriented metrics, namely

the number of attributes (NOA) and of methods (NOM) of a certain class or interface. The

new interpretation allows for the detection of classes whose implementation is similar to a

correct micro pattern implementation. We will focus on micro patterns devising critical

classes and we will analyze different Java systems, both through the original precise

matching approach and through the new interpretation. We will compare the obtained

results, and underline how the new interpretation allows for the detection of micro pattern

instances that are very close to a correct micro pattern implementation and hence should

be considered as possible candidates for refactoring or restructuring.

Finally, Chapter 8 will resume our work, discusses the conclusions and the obtained

results, and traces possible future scenarios.

17

Chapter 2

Related works

Abstract

In this chapter we present some of the main works related to the activities of design pattern detection and software

architecture reconstruction, giving also an overview of the major types of approaches.

2.1. Related works on design pattern detection

Many different approaches and tools for design pattern detection (DPD) have been

presented in the literature. The approaches differ in the kind of analysis pursued on the

subject systems, in the algorithms adopted for pattern detection, in the set of patterns they

are able to recognize, and in the analysis results, which may differ from one tool to

another even while considering the same subject system. Section 2.1.1 considers and

discusses different possible approaches and methodologies for DPD, while in Section 2.1.2

we introduce some of the major approaches and tools reported in the literature, giving an

organic overview of them.

2.1.1. Categorizations of approaches and methodologies for design pattern detection

The detection of design patterns in software systems requires the extraction of meaningful

information from these systems and the recognition of patterns starting from this

information. Various classifications for design pattern detection solutions and approaches

have been presented in the literature, considering various points of view. One major

classification consists in categorizing design pattern detection approaches as static, dynamic

18

or hybrid. Usually, the input information required by static extraction and analysis

approaches is the source code of the subject system itself (as for example in [NNZ00,

SS03]). Dynamic approaches may require either the source code or the execution traces of

the analyzed system [SSys02]. Hybrid or combined approaches, like those proposed in

[AB05, Wen03], usually extract dynamic information from the system, to be further

analyzed though static investigations.

Design pattern detection heavily exploits language dependent mechanisms and constructs.

At now, each of the available tools for design pattern detection is suited for the analysis of

a particular programming language: for example FUJABA [NNZ00] and PTIDEJ [Gue05]

have been developed for the analysis of Java systems, Columbus/MAISA [FGMP02] for

C++, KT [Bro97] for Smalltalk and DPVK [WT05] for Eiffel. An attempt to define a

language independent approach to detect object-oriented best practices and design

patterns starting from Smalltalk or Java systems is described in [FM04]. Another example

is provided by the SPQR approach [SS03], which defines a language independent way to

represent the extracted information from the source code and a language independent

algorithm to detect design patterns. However, the information extraction mechanisms in

SPQR are specific to C++ software systems.

In [AMRT05] we proposed the categorization of the available approaches based on the

information used in the detection process. This work resulted in the definition of three

main categories of pattern detection tools:

- The classical solutions considering the entire representation of design patterns (like for

example PTIDEJ [Gue05] or CrocoPat [BL03]). In these cases, the detection algorithm

tries to map at once the entire pattern on the representation of the source code;

usually, this kind of approaches claims for a complete catalogue containing all

possible implementations of design patterns;

- Solutions considering a minimal set of key structures the design patterns consist of

(e.g. JAdept [APRR09], SPOOL [KSRP99]). The detection algorithm tries to individuate

(at once) the core set of structures a pattern is built on; this approach claims for a

further analysis of design patterns leading to the identification of their core elements;

- Solutions considering the sub-components the design patterns are built of (e.g.

FUJABA [NNZ00], MARPLE [Arc06], SPQR [SS03]). The detection algorithm works

incrementally by first individuating the pattern sub-components, then trying to

combine these sub-components into patterns. This last category of approaches is

particularly interesting and challenging, because it implies a further formalization of

design patterns which preserves their flexibility and improves their definition and

understating.

19

We now present the more important approaches to design pattern detection, giving a brief

description of their working principles and adopted detection strategies.

2.1.2. Approaches and tools for design pattern detection

Since their introduction in 1994, design pattern became well established practices in

forward engineering, as we have outlined in the introduction. Interest for design patterns

soon captured the reverse engineering community. The detection of such structures allows

the improvement of software systems understanding, the assessment of software quality,

the identification of relevant structural and reusable information, and the simplification of

systems re-documentation as well. Along the years, many research groups devoted their

activities for the proposal of approaches and the development of tools for the detection of

design patterns. Tools and approaches may consistently vary from one another, in terms

of the adopted detection strategies and algorithms, the detectable patterns, and the quality

of the detection results in terms of precision and recall [BR99] of the identified pattern

instances.

Pree [Pre94, Pre97] describes meta patterns as minimal means to capture reusable object-

oriented design. He introduces seven meta patterns that identify seven possible

class/object composition by means of template and hook methods and of the relationships

between the caller and the called objects. These meta patterns are then related to sample

frameworks in order to illustrate how implemented classes (and their method calls) satisfy

the defined meta patterns.

Information about the architecture of classes composing structural patterns is the

fundament of the Pat system proposed by Kramer and Prechelt [KP96]. Structural patterns

are represented as Prolog rules, while the source code to be analyzed is represented as

Prolog facts. The detection process is therefore performed through the application of

Prolog queries.

Keller et al. proposed SPOOL [KSRP99] to detect design patterns inside C++ systems,

basing on design patterns structural representations. Information needed to detect

patterns and extracted from the analyzed systems is codified in UML/CDIF format, while

the patterns are depicted as abstract design components and stored in a repository.

FUJABA (From UML to Java and Back Again) [NNZ00] defines sub-patterns to categorize

the structural recurring elements of design patterns, trying to build a detection algorithm

based on the recognition of these elements and on their incremental combination towards

design patterns. The formal basis of FUJABA exploits the graph grammar. Sub-patterns

and patterns are expressed as graph transformation rules. The information extracted from

the source code is represented as an AST, further enriched with annotations during the

20

design pattern detection process. These annotations aim to indicate the presence of design

patterns or sub-patterns in the analyzed AST and are added to an AST though

transformation rules. Additional nodes and edges inserted in the AST correspond to the

identified sub-patterns. To address the large number of possible implementation variants,

the FUJABA rules are enhanced with fuzzy values [Nie02] to describe a degree of

uncertainty allowing one rule to match several implementations with a certain degree.

Kim and Boldyreff proposed a metrics-based approach for the detection of design patterns

[KB00]. Three categories of metrics are considered: object-oriented, structural and

procedural metrics. Each design pattern is characterized by a signature, which is derived

by the calculation of the metrics on the design patterns proposed by Gamma. The search

algorithm compares the metrics of each class with the patterns signatures.

In the JBOORET tool [MXY01] Hong Mei, Tao Xie and Fuqing Yang adopt a parser-based

approach to assist the activity of extracting the higher-level design and source models

from system artifacts. A conceptual model is formulated as the knowledge representation.

Multi-perspective design and source models are recovered by JBOORET based on the

comprehensive program information extracted from source code.

Smith and Stotts [SS03] proposed SPQR (System for Pattern Query and Recongnition),

which is based on a first identification of elemental design patterns (EDPs), which are

further analyzed in order to deduce the presence of pattern instances inside the analyzed

systems. EDPs inherit from design patterns their ability to capture design intents, but are

significantly simpler than design patterns. EDPs and their composition rules are formally

expressed in terms of rho-calculus [SS03], which represents a subset of sigma-calculus

properly extended with new reliance operators. Design patterns and their implementation

variants are not statically described, but they are dynamically inferred through the

formalized rules.

Heuzeroth et al. [HHHL03] introduce an approach to design pattern detection that

combines both static and dynamic analysis techniques, where static analysis techniques

based on the exploration of the ASTs of the source code are used first in order to find

pattern candidates, which are to be inspected by a dynamic analysis stage. They further

propose algorithms for the detection of several structural and behavioural patterns,

focusing on the identification of design pattern instances in the Java Swing library.

Birkner [Bir07] presents the Pattern Detection Engine (PDE), which combines static and

dynamic analysis techniques for the detection of a large part of the design patterns defined

in Gamma [GHJV94]. Static analysis is first used in order to create static definitions of

design patterns starting from UML class diagrams. In this phase, design pattern

candidates are extracted from the subject system. Dynamic analysis techniques are then

applied on the candidate instances in order to obtain dynamic definitions from UML

21

sequence diagrams. This process allows for the refinement of the candidate instances and

for the obtainment of the detection results.

In [BF03] Balanyi and Ferenc introduce an automated approach to detect design patterns

in C++ systems through a pattern miner algorithm. The system to be analyzed is

represented as an Abstract Semantic Graph (ASG), while the patterns are stored in an

XML-based language named DPML. The algorithm tries to match the XML tree obtained

from the DPML description to the ASG representing the subject system.

Beyer and Lewrentz developed CrocoPat [BL03, BNL05], a tool which exploits relational

expressions to specify the properties of a system. It adopts a three-step approach. In the

firs one, the data to be analyzed are extracted from source code. In the second step the

patterns to be detected are defined using a pattern specification language making use of

the relations stored in an ad-hoc file. In the final step, the tool translates the relations into

binary decision diagrams [BL03, BNL05].

In [WT04] Wang and Tzerpos introduce DPVK, a reverse engineering tool to detect pattern

instances in Eiffel systems. In order to get better detection results, we analyze many

different patterns and examine Eiffel software in terms of both static structure and

dynamic behaviour.

Fabry and Mens [FM04] introduce a language-independent meta-level interface that can be

used to extract complex information about the structures (and as a consequence, the

patterns) that compose an object-oriented system, providing examples of their techniques

on medium-sized systems implemented in Java and Smalltalk.

In [Gue05] Guéhéneuc introduces PTIDEJ (Pattern Trace, Identification, Detection and

Enhancement in Java), which allows to create a model of a program from its source code

and to identify micro-architectures that are similar to a design pattern. These micro-

architectures are detected by an explanation-based constraint solver [Jus01], and represent

architecures that are comparable with what the author calls design motifs (that are the

solution parts of design pattern definitions [Gue05]). As the identification of these micro-

structures is difficult, due to the huge amount of combination of classes, especially in large

software systems, in [GSZ04] Guéhéneuc, Sahraoui and Zaidi propose a study on classes

playing roles in design motifs using metrics and a machine learning algorithm to calculate

fingerprints (i.e. sets of metrics values that can help in identifying classes playing a given

role in a design pattern) in order to identify design motifs roles. They also show how the

use of fingerprints can help to significantly reduce the search space of micro-architectures,

focusing on the identification of the Composite design pattern [GHJV94] inside the

JHotDraw framework [JHD].

In [GA08] Guéhéneuc and Antoniol propose DeMIMA, an approach to semiautomatically

identify architectures that are similar to design patterns from source code. DeMIMA is

composed by three layers: two layers are devoted to recover an abstract model of the

22

source code, including binary class relationships, while the third layer is actually aimed to

identify pattern instances inside the abstract model.

Tsantalis and Chatzigeorgiou [TC06] have developed Design Pattern Detection Tool, a tool

for design pattern detection that is based on structural similarity scoring between program

graph representations and their vertices. Both the systems under analysis and the patterns

to be recognized are described with set of matrices representing the various aspects of

their static structures. A graph similarity algorithm calculates similarity scores between

the graph representations of the analyzed systems and of the patterns. The approach

claims to recognize also patterns that are slightly different from their basic representation,

allowing the recognition of an important amount of pattern variants.

Philippow et al. [PSRN05] propose a technique for design pattern detection that is based

on minimal key structures, i.e. the minimal class and object structure that has to be present

in order to identify the pattern, and on positive and negative search criteria, the former

collecting criteria that will occur with high probability in the implementation of particular

patterns, the latter identifying those relationships that are not allowed in the context of a

pattern, in order to reduce false positives cases.

In [CDD+05] Costagliola et al. propose an object oriented design pattern recovery

approach which makes use of a design pattern library, expressed in terms of visual

grammars, and based on a visual language parsing technique. They also present a visual

environment which supports the pattern recognition process by automatically retrieving

design patterns from imported UML class diagrams.

De Lucia et al. presented an approach for the identification of structural design patterns

from object oriented systems [DDGR09]. Tha approach follows a two-step detection

process. At first, pattern instances are identified only by considering their structure,

exploiting a parsing technique for visual language recognition. In the second step, the

candidate instances are validated by a source code analysis phase. They developed a tool

named Design Pattern Recovery Environment for the detection of patterns, experimenting

it on six public-domain programs and libraries.

Shi and Olsson [SO06] propose PINOT, a design pattern detection tool that has been

developed around the modification of the Jikes Java compiler [Jikes], with the objective to

achieve better performances and accuracy in the detection of more design patterns with

respect to other tools. Shi and Olsson reclassify the GoF patterns in five categories

(language provided, structure driven, behaviour driven, domain specific and generic

concepts), and defined different detection techniques and algorithms according to each of

the newly defined categories.

In [PL06] Niklas Pettersson and Welf Loewe propose a method to improve the

performance of pattern detection. It is based on the idea of filtering information from the

program representation (graphs), which is unnecessary for detecting a particular pattern.

23

This makes the remaining program representation graph planar, in many cases, thus

allowing for linear pattern detection.

In DP-Miner tool [JDY07], Dong Jing et al. present a novel approach to discovering design

patterns by defining the structural characteristics of each design pattern in terms of weight

and matrix. Our discovery process includes several analysis phases. Our approach is

based on the XMI standard so that it is compatible with other techniques following such

standard. We also develop a toolkit to support our approach.

Dietrich and Elgar [DE07] present an approach to the formal definition of design patterns

using the OWL web ontology language, and introduce the Web of Patterns prototype for

the detection of the so defined patterns in Java systems.

The D-cube tool [SW08] presented by Krzysztof Stencel and Patrycja Wegrzynowicz is able

to detect nonstandard implementation variants of design patterns. It is customizable

because an analyst can introduce a new pattern retrieval query or modify an existing one

and then repeat the detection using the results of earlier source code analysis stored in a

relational database.

2.1.3. Comparisons among tools for design pattern detection

Although there are so many approaches to design pattern detection, the variants problem

and the differences among the detection techniques often cause differences in the detection

results provided by the various tools, even on the analysis of the same target systems.

Therefore, it looks interesting to compare the various approaches to design pattern

detection, especially focusing on the results they are able to produce. In [AMRT05] we

present a comparison among two different tools for design pattern detection, namely

FUJABA [NNZ00] and SPQR [SS03], which are based upon the decomposition of design

patterns themselves. The comparison considers two main issues: the design pattern

definition method adopted by each tool, and the design pattern detection strategy each

tool adopts, discussing possible pros and cons for both the analyzed approaches.

In [GMW06] a general framework for the comparison of design recovery tools (hence not

only for the comparison of design pattern detection tools) is proposed, illustrating how the

framework can be applied to the comparison of two different tools, namely PTIDEJ

[Gue05] and LiCoR [Licor].

Furthermore, benchmark proposals to provide evaluations about design pattern detection

tools have been recently presented in [ATZ08, FHFG08], even if a standard benchmark

platform is not yet available, and a real and effective comparison among them is very

difficult.

24

2.2. Related works on software architecture reconstruction

While there exist many tools for design pattern detection, but which are basically devoted

to the very same activity (even if pursued with varying strategies), the situation for

software architecture reconstruction (SAR) tools is far more complex. Each tool is heavily

different from one another in several aspects. First of all, each tool has different objectives

and aims from the others, and is devoted to the extraction of a well defined set of

information that make it unique among the other tools. The produced results are

consequently different. The results may differ in their representations (some tools may

adopt graphical views, while others software metrics, or textual representations), in their

meaning (as each tool is focused on particular characteristics of the systems to be

analyzed), and in their interpretation (some results may be of easy interpretation by the

user, while others may need efforts or further analyses in order to be completely

captured). Tools also differ in the formalisms and theoretical bases they adopt, which

strictly depend on each single tool objectives.

In this section we present a set of tools and approaches which we consider of particular

interest, or which we had the possibility to test and experiment. Different exhaustive

taxonomies for SAR tools have been proposed, and frameworks for the comparison of

these tools have also been introduced: both taxonomies and comparative frameworks are

discussed, and the proposal for a new framework for the evaluation of SAR tools is

presented.

Some authors consider some of the tools that we describe in the following as simply tools

for software or structural analysis. As already mentioned in the introduction, in this

dissertation we consider, under the category of SAR tools and approaches, also tools that

revealed useful to support program comprehension, the reconstruction of views about the

subject systems and the evaluation of software metrics, which are all activities helping in

the software evolution and maintenance phases (which are a core aspect of SAR activities).

2.2.1. Approaches and tools for software architecture reconstruction

We now introduce some of the most common and known tools for software architecture

reconstruction. Some of them come from the Academia, others are on the other hand

commercial tools.

Alborz

Alborz [SYS06], developed by Kamran Sartipi, is a toolkit for the recovery and evaluation

of the architecture of a software system, using techniques for pattern-matching, data

25

mining, clustering, and quality evaluation. The result of the recovery is provided to the

user through hypertext pages and graph visualization techniques and tools. The process of

architecture reconstruction consists of two phases. In the first phase, Alborz parses the

source code of the subject system translating it into a graph; then it splits the graph in

cohesive regions through data mining techniques. In the second phase, the user can

specify the architectural views he wants to obtain in terms of patterns. The defined

patterns are then mapped with graph regions built during the first phase using graph

matching and clustering techniques. Finally, the user can iterate the process again, basing

on the partially reconstructed architecture and evaluation information provided by the

tool. In our experience, the usage of this tool revealed very complex, especially due to the

lack of documentation and explanations about how to define patterns and how to extract

them. In our opinion, a tool for software architecture reconstruction shall provide the user

with a set of self-contained functionalities that can report results of immediate

exploitability, and should avoid over complicated tasks to be manually performed by its

users.

Armin

Armin (Architecture Reconstruction and Mining) [KBV03] has been developed by the

Software Engineering Institute at Carnegie Mellon University, in collaboration with Robert

Bosch Corporation. Armin is a modelling and visualization tool, which accepts inputs in

the RSF format [Mül93]. In this format, couples of entities of the system (that can be

classes, interfaces, methods and so on) are textually expressed, specifying the kind of

relationships connecting them. Once the data about a system have been imported, a

scripting engine allows for the manipulation of the entities and relationships, and also for

the execution of user-defined queries, in order to obtain architectural views that are of

particular interests for the users.

Bauhaus

The Bauhaus toolkit [Bau] is an environment composed by a set of tools to extract,

analyze, query and visualize information about existing software, supporting software

architecture reconstruction from source code analysis. To support these activities, it

provides several techniques, like metrics computation, pointer, side-effect and data flow

analyses, program slicing, source code navigation and so on.

CodeCrawler

CodeCrawler [Lan03] is a language independent reverse engineering tool combining

metrics and software visualization. The system to be analyzed must be translated with an

ad-hoc parser into a correspondent FAMIX model [DTD01], which constitutes the actual

input of the tool. The core concept which characterizes CodeCrawler is the polimetric views

[Lan03]: the tool provides the user with a set of views about the analyzed systems that are

26

generated by the calculation of at most five metrics on the entities to be visualized. Each

entity (that can be either a class or interface, or a method, or an attribute, depending on

each single view) is depicted as a rectangle, with five associated parameters: width, height,

horizontal position, vertical position, and colour. Each parameter can be associated to a

metric, and the size of each parameter depends on the value the correspondent metric

assumes for that entity. CodeCrawler distinguishes two sets of views: coarse-grained views

are at a higher level of abstraction, and let the user manage the system in its generality.

The system complexity view, for example, represents the analyzed system in its

constituting hierarchies. Each entity depicts either a class or an interface, edges connecting

them represent the inheritance relationships, and the complexity of each entity is

calculated in terms of their number of attributes (associated with its width), the number of

methods (related to its height), and the number of lines of code (associated with its

colour). On the other hand, fine-grained views are more low level, and let the user focus on

the details of each single class. As an example, the class blueprint views, shows the

attributes and methods for a given class or interface. Attributes and methods are classified

according to their nature with particular colours, and relationships among attributes and

methods are depicted as edges connecting them.

More recently, an open source software visualization plug-in for Eclipse, named X-Ray

[XRay], has been developed. It currently provides the system complexity view and the

class and package dependency view for a given Java project. Being an Eclipse plug-in, it

can directly analyze a selected project without the need for the creation of an external

FAMIX model or other kinds of models, improving therefore the usability and

effectiveness of the approach.

CodeLogic

CodeLogic [CL] is a commercial tool for the analysis of systems written in Java. The

functionalities offered by the tool are restricted to the generation of UML class diagrams,

sequence diagrams and flow charts. The results can be exported in the PNG, Visio .Net

and XMI Rational formats. No further functionalities or analyses are provided by the tool,

which demonstrates to be quite limited, if compared with other available approaches.

Dali

Dali [KC99], proposed by Kazman et al., is a workbench of tools for software architecture

reconstruction. The workbench is based on Rigi [MWT95] for the visualization and

handling of the views generated by Dali. Users can define personal query patterns in order

to generate various views of the system at various levels of abstraction. System

information must be extracted by software analysis tools, or provided by other forms of

27

documentation, and then must be loaded into Dali. The information is stored in a

PostgreSQL database and then visualized in Rigi.

Doxygen

Doxygen [Doxy] is a documentation tool that can be used on systems written in a variety

of programming languages, such as C++, C, Java, Objective C, Python, IDL, Fortran,

VHDL, PHP, C#. Its aim is to provide an organic and exhaustive documentation for those

systems whose documentation is scarce, not up-to-date, incomplete, or lacking at all. The

generation of documentation is performed through source code analysis, thus maintaining

the documentation more consistent with the system. The generation process can be guided

by a wizard, and the output can be exported in several formats, like HTML, PostScript,

RTF, Latex and other kinds of documents. Doxygen can also generate views about the

analyzed system, which are integrated with the documentation. The type graph shows the

classes and interfaces that constitute a package, and the relationships among them

(inheritance, implementation, association). The caller and callee graphs are generated on

methods, and show respectively which methods call the subject method, and which

methods are called by the subject methods, adding a sort of dynamic information to the

generated documentation. Even if the use of views within a system’s documentation is a

promising idea, actually the navigability of such views proved to be quite difficult,

especially while handling large packages with many classes. In fact, as the generated

views are part of the textual documentation, they cannot be modified, extended or

reduced.

JDepend

JDepend [JDepend] is a tool for the generation of design quality metrics about the

packages composing the analyzed systems. The quality of design is measured according to

three main concepts, namely extensibility of the system, reusability and maintainability.

Actually, this tool doesn’t reconstruct any views, documentation or reports about a

system, but can still be used as a complementary mean to SAR activities. The metrics

analysis can help the engineers to understand and to manage the criticalities of the system

in terms of its structure. This evaluation leads to focus precisely on those parts of the

system that reveal more problematic. In this way, the engineers can then use a third-party

tool to apply views and evaluations on those modules and components, without the need

to analyzed the whole system before reaching the critical issues.

Rational Software Architect

Rational Software Architect (Rational, IBM) [RSA] is an industrial tool that can be

exploited both for forward and reverse engineering purposes. One interesting feature of

28

this tool is that it provides consistency mechanisms among the different UML diagrams

and the code with respect to round-trip engineering. It also provides support for a sort of

impact analysis that is very similar to the What-if analysis provided by SA4J. Another

peculiarity is that Rational Software Architect supports dynamic analysis since it is able to

reconstruct sequence diagrams, and it also supports design pattern detection for a small

set of design patterns.

Shrimp-Creole

Shrimp-Creole (Simple Hierarchical Multi-Perspective) [SM95] is an Eclipse [Eclipse] plug-

in which can be used to give a graphical representation of a subject system and explore its

architecture at different detail levels. The tool exploits different layouts to depict the

involved entities, and can show only the entities and relationships of actual interest

through a filtering process. Layouts can be tailored on the user preferences and needs, and

a filmstrip functionality allow to get different pictures of the analyzed system, that can be

analyzed in a second time.

Structural Analysis for Java

Structural Analysis for Java (SA4J) [SA4J] has been developed by IBM, and provides the

user with lots of functionalities, views, metrics, analyses and reports. SA4J is based on the

concept of dependencies and dependents of a given entity, either a package or a class or an

interface. The number of dependencies of an entity is the number of entities the subject

entity depends from. The number of dependents of an entity is the number of entities that

depend on the functionalities provided by the subject entity. The adoption of these

concepts allowed for the introduction of functionalities that reveal very useful in a

software architecture reconstruction and evaluation process. Besides the exploitation of

views that are very similar to UML class diagrams, and which let the user understand the

actual physical structure of the analyzed systems, SA4J allows the detection of structural

antipatterns, like butterflies, breakables, hubs and tangles, the evaluation and the analysis

of a good number of metrics about classes and packages and of the stability of the system,

a skeleton view to determine which components rely on top of the others and

consequently affect the system stability, and a what-if analysis, which dynamically shows

the entities that are involved if a certain part of the system changes.

Swagkit

Swagkit [Swag] is a toolkit developed by the Software Architecture Group at the

University of Waterloo (SWAG), that can be used to extract, abstract and explore software

architectures. Currently, Swagkit supports the extraction from C/C++ code, the abstraction

to the architectural level and the presentation in a landscape form.

29

Swagkit uses the compiler wrapping technique to obtain information about source code. It

consists of substituting the compiler and linker callings with specific commands, that

perform compiling and linking combined with information extraction. The output of the

extraction process is formed by the so-called, graphical layout models of the analyzed

software system and of its subsystems. A landscape is a graph with multiple named types

of nodes and multiple types of edges. At least one type of edges must be named "contain":

it forms either a tree or a forest connecting all the nodes in the graph and denotes the

containment structure of the landscape. The remaining edge types do not have any

restrictions (they can cross containment levels, form loops, etc). Both nodes and edges can

have additional attributes, specifying their names, types, ways to display them, and other

various properties. This kind of extracted models provides the user with a large amount of

information that abstracts from the system’s implementation and eases its understanding.

For example, landscapes help in identifying modules with a huge number of

interrelationships, which are symptoms of a high degree of complexity, leading the

engineer to concentrate on these modules that are supposed to be the main candidates for

system refactoring.

Symphony

Symphony [DHK+04b] is an approach to software architecture reconstruction based on

views. It defines a general reconstruction model based on the concepts of viewpoints and

views as defined by the IEEE 1471 standard [IEEE]. The Symphony approach consists of

two stages. In the first stage, reconstruction design, the reconstruction problem is analyzed,

viewpoints [IEEE] and corresponding views are defined, and mapping rules from source

to target views are formalized. In the second phase, reconstruction execution, the subject

system is analyzed, the source views are extracted and then mapped to populate the target

views through the application of the mapping rules. the two stages may be iterated. The

execution may reveal new reconstruction necessities, leading to a refined understanding of

the problem and a more detailed reconstruction design. The execution phase follows the

well-established extract-abstract-present approach, tailored to the specific needs of

architecture reconstruction.

Understand for Java

Understand for Java [U4J] offers different views that may be generated at different detail

levels, from the whole system to single classes. Therefore, they are useful both to get a

general comprehension of the system and to analyze single components in detail.

Anyway, Understand for Java is mainly focused on the computation of metrics for

software quality and complexity evaluation.

30

Many other tools and approaches for software architecture reconstruction and program

comprehension actually exist, like ART [FATM99], DiscoTect [YGS+04] and QUADSAR

[SRBV06], and those considered for example in [BSV02, PDP+07].

2.2.2. Taxonomies and comparisons of software architecture reconstruction tools

The heterogeneity, the quantity and the variety of SAR tools and approaches currently

available, both coming from the academia and from the industry, stimulated the proposal

of taxonomies of tools and approaches, and led also to the definition of possible

comparative frameworks and benchmarks to evaluate SAR tools.

In [BSV02], Stoermer et al. provide a taxonomy for 13 approaches and tools for software

architecture reconstruction. In the same context, they define six practice patterns which

presented while applying architecture reconstruction techniques in industrial settings, and

which describe recurring situations where problems can be solved by applying well-

known strategies. The presented approaches are collected in four defined categories:

exclusively manual approaches, manual reconstruction approaches with tool support,

strategies based on query languages for reconstruction, and other kinds of approaches,

like the use of clustering and data mining techniques, or the use of architecture description

languages.

Pollet et al. [PDP+07] suggest a process-oriented taxonomy of 35 tools and approaches,

evaluated according to five axes: the planned goals, the kind of processes followed by each

approach (being either top-down, bottom-up, or hybrid), the kind of input received by

each tool, the techniques adopted in the reconstruction process (distinguishing among

quasi-manual, semi-automatic and quasi-automatic), and finally the kind of output

produced by the tools.

As far as comparisons among SAR tools are concerned, several researchers have focused

their attention in defining characteristics that may make such comparison possible. To cite

some examples, Guéhéneuc et al. [GMW06] propose a comparative framework for design

recovery tools, based on eight concerns (context, intent, users, input, technique, output,

implementation and tool); they apply the framework to compare only two design recovery

tools, namely PTIDEJ [Gue05] and LiCoR [Licor]; further validation is required to verify

whether the framework enables an objective comparison of tools, and to allow also the

evaluation of other SAR tools. Bellay and Gall [BG97] propose a comparison of four

reverse engineering tools introducing four functional categories that help in the

assessment of the reverse engineering tools, namely analysis, representation,

editing/browsing and general capabilities. Gorton and Zhu [GZ05] pointed out the

complementariness of reconstruction tools discussing the analysis of a small industrial

31

system (296 classes) through four tools: Understand for Java [U4J], JDepend [JDepend],

SA4J [SA4J], Armin [KBV03] and Enterprise Architect [Ent]. Jha et al. [JMP04] report a

comparison experience about four reconstruction tools by considering their extraction,

abstraction and visualization capabilities, their supported languages and their

completeness with respect to architecture reconstruction purposes. They concentrated

their attention on reconstruction tools supporting C or C++ languages.

2.2.3. A novel comparative framework proposal for SAR tools

In [AM09] we proposed a comparative framework for architecture reconstruction tools. In

our framework, six aspects concerning the tools are to be considered. First of all, we

consider implementation issues like the language the tools have been developed with, the

supported operating systems, the eventual third-party software needed to correctly run

the tool, the latest available release and the occupied space.

All this information is useful in order to get an immediate understanding of the target the

tools refer to. Another important kind of information is related to the input each tool

accepts, i.e. the supported programming languages and the type of information source

needed by the tool (like source code, byte code, or different models). The principal

relevance is given to the output produced by the tool. We inspect if each tool is able to

recover views about the analyzed systems, to calculate metrics on them, to generate

documentation for them, and to eventually detect design patterns or antipatterns from the

subject systems. We next, indicate if the tools are documented, and we give an evaluation

of the documentation quality. In our opinion, usability is a core issue. Having a tool that is

simple to install, to manage and to use will make the users more productive and active in

their tasks. Finally, we report considerations about the carried out experimentations,

tracing the possible problems encountered while using each tool.

As an example of the application of the framework, in [AM09] we discussed seven tools

for architecture reconstruction, and evaluated them according to the six aspects just

described. The results are replicated in Table 2.1, which reports the comparative

evaluation of four out of the seven considered tools. From this table, it can be immediately

noticed how the tools are heavily different from one another both in terms of their

accepted inputs and in terms of the produced artifacts and of their usability. In the paper,

we also described which are the peculiarities that characterize each tool with respect to the

others, in order to better focus on the target users and reconstruction activities each tool

refers to. Actually, providing an effective comparison is difficult, due to the different

nature of each system and the functionalities it provides, and also because the evaluation

of some of the systems’ characteristics is mainly subjective.

32

 CodeCrawler Doxygen SA4J MARPLE SAR

IM
P

L
E

M
E

N
T

A
T

IO
N

Language Smalltalk C++ Java Java

Supported Platforms
Windows, Linux,

MacOS

Windows, Linux,

MacOS
Platform independent Platform independent

Third-party required

software

FAMIX model

generator
GraphViz None

Micro-structures

detector

Latest release

(version/date)

4.5

March 2004

1.5.8

27 December 2008

1.0

March 2004

1.0

July 2008

Occupied space 24 Mb 17 Mb 47 Mb 1 Mb

IN
P

U
T

Supported

programming

languages

Language

independent

Java, C, C++, Python,

Objective-C, IDL,

Fortran, VHDL, PHP,

C#

Java Java

Information source

type
FAMIX model Source code

Source code, byte

code

Software micro-

structures

O
U

T
P

U
T

Architectural views Polymetric views
UML-styled type

diagrams

Package explorer,

Skeleton

Class compact, Class

extended, Package

diagrams

Behavioural views Polymetric views Call graphs What-if None

Metrics Yes No Yes Yes

Documentation

generation
No Yes No No

Design pattern

detection
No No No Yes

Antipattern detection

No, but supported by

the manual analysis of

the generated views

No

Yes (butterflies,

breakable, hubs,

tangles)

Yes (butterflies,

breakable, hubs,

tangles)

Other defects or

micro-structures

detection

No, but supported by

the manual analysis of

the generated views

No No

Micro patterns

[GM05] devising non-

object-oriented

programming

practices

D
O

C
U

M
. Kind of documentation None HTML PDF manual None

Documentation

quality
n/a Good Very good n/a

U
S

A
B

IL
IT

Y
 Installation simplicity Not straightforward Not straightforward Very simple Simple

Use simplicity Not simple Quite simple Simple Simple

Results self

explanation
Not self explaining

Self explaining (even

if views are often too

large)

Self explaining

(even if views can be

too overwhelmed)

Self explaining (even

if views can be too

overwhelmed)

E
X

P
E

R
IM

E
N

T
A

T
IO

N
S

Case studies

JasperReports

Industrial case studies

JHotDraw

Plazma

Sakai

Adempiere

JasperReports

Plazma

Sakai

Adempiere

JasperReports

JHotDraw

Plazma

Sakai

Industrial case studies

JHotDraw

Plazma

Traced problems

Generation and load

of the FAMIX model

not always possible.

Graphical bugs using

CodeCrawler under

Windows

None None

Seldom out of

memory exception in

the case of very large

systems

Table 2.1 – A comparison among four software architecture reconstruction tools

33

Currently, no silver bullet tool exists, but the tools can be considered somehow

complementary to each other. In our work we also tried to identify some of the most

common problems we have to face for re-engineering and reverse engineering activities,

like for example design evaluation, integration, systems refactoring and restructuring,

migration towards SOA and so on, and we suggested the more useful tools and views to

face these problems, according to our experiences on the analysis of systems of different

sizes.

The choice of a reconstruction tool may also be guided by the size of the analyzed systems.

While analyzing small or medium sized systems, we would probably need views that may

expose some details of the architecture and of the nature of the various system

components. On the contrary, these “detailed” views would add too much information to

the comprehension of large systems, for which we are probably interested in obtaining the

highest abstraction level as possible, in order to have a general understanding of the

system, and eventually decide on which components to focus with more detailed views.

Our comparison proposal differs from those introduced in Section 2.2.2 for different points

of view. First of all, we focused on users which should be guided to the choice of a

particular tool according to their main needs, in terms of systems to be analyzed, data to

be extracted and ease of use and exploitation. Therefore, in this comparative framework

we resembled the aspects we think that are of crucial importance while having a first

contact with a SAR tool of interest. Finally, we also tried to be as more objective as

possible: the considerations we carried out on subjective or non-quantifiable aspects are

derived by the general opinion of a pool of people who actually experimented the

considered tools.

34

Chapter 3

Software micro-structures

Abstract

Software micro-structures are the core concept of this thesis. In this chapter we introduce three categories of micro-

structures, namely Elemental Design Patterns (EDPs), design pattern clues (DP clues) and micro patterns, that we

consider as the basic bricks both for design pattern detection activities (as they can be interpreted as hints for the

presence of design patterns inside the analyzed software systems) and for software architecture reconstruction tasks (as

they can be used to identify structural relationships among the classes composing a system). As they have never been

considered as similar elements in the literature, and as their definition is not formal and thus may lead up to

ambiguities, in this chapter we propose a redefinition of the analyzed micro-structures which tries to solve the possible

ambiguities and to give a new interpretation of them basing on common concepts.

3.1. Software micro-structures

Many different kinds of micro-structures currently exist. They have different aims,

different definitions and different detail levels. In this thesis we concentrate on three

different categories of micro-structures, that are Elemental Design Patterns (EDPs) [SS03],

design pattern clues (DP clues) [Mag06b, AMR09a, AMR09b] and micro patterns [GM05].

They have been defined to support different tasks: EDPs represent programming

techniques that are in the everyday practice of each programmer, codifying them in the

form of simple design patterns; DP clues are hints for the presence of design patterns

inside a software system, and have been introduced by analyzing typical DP structures

and implementations; micro patterns devise particular classes with peculiar conditions on

their attributes and methods. Other micro-structures have been defined, like the sub-

patterns exploited by the FUJABA approach [NNZ00] and also considered in [AMR09a],

but have not been taken into account in our thesis work.

35

3.1.1. Elemental design patterns

Elemental design patterns (EDPs) were proposed by Smith and Stotts [SS02]. They provide

solutions to very common programming problems (we can state that these problems occur

in the everyday practice of each programmer). They share the same aim with the design

patterns, but they are applied to more restricted and specific issues. In fact, if design

patterns propose solutions to problems which can involve a certain number of classes,

EDPs address problems of much more limited dimensions, which generally do not involve

more than three classes. There are 16 EDPs subdivided into three categories:

- Object Elements: contains three EDPs related to the creation and the referencing of

objects as well as to the presence of abstract methods inside an abstract class, or

interface methods inside an interface;

- Method Invocation: collects twelve EDPs which represent the various forms of possible

method calls;

- Type Relation: contains a single EDP representing the inheritance relationship between

two classes, as well as the implementation of an interface.

EDPs are defined with the same description structure used in [GHJV94] for the

presentation of design patterns. For a complete description of each EDP refer to [Smi02].

EDPs can be detected inside Java systems through the Micro-structures detector module,

which is part of the MARPLE (Metrics and Architecture REcontruction PLugin for Eclipse)

project [Arc06]. MARPLE has been developed for design pattern detection and software

architecture reconstruction purposes, and it is based on the detection of micro-structures.

The Micro-structures detector module is briefly described in Section 3.3. However, the

definition of EDPs originated by considerations made on C++ source code. Smith and

Stotts developed SPQR [SS03], an approach to design pattern detection based on the

identification of EDPs inside the subject systems.

3.1.2. Design pattern clues

We have introduced design pattern clues (DP clues) [Mag06a, MATZ09] as possible hints

about the presence of design patterns inside the code, by manually analyzing design

pattern architectures and sample implementations identifying basic structures which are

peculiar for each single pattern. Currently, we have defined 41 design pattern clues

subdivided in the following eight categories:

- Class Declaration Information: collects clues which are identifiable at the class declaration

level;

- Multiple Classes Information: collects clues that can be identified by the comparison of at

least two classes and their contents;

36

- Instance Information: contains clues regarding particular instances of a certain class, and

one clue representing the controlled instantiations;

- Method Signature Information: collects clues which are identifiable analysing the

signature of a method;

- Method Body Information: contains those clues that can be identified by only analyzing

the body of any kind of methods;

- Method Set Information: collects clues whose details can be deducted analyzing the

whole set of methods the involved classes declare and implement;

- Return Information: includes those clues regarding various possible return modes from a

method;

- Java Information: collects clues which are strictly bound to the Java language.

A complete description of design pattern clues can be found in [MATZ09].

Clues are detected inside a Java system through the Micro-structures detector module of

MARPLE.

3.1.3. Micro patterns

Micro patterns were introduced by Gil and Maman [GM05] in order to capture some very

common programming techniques. Micro patterns can be thought of as class-level traceable

patterns, i.e. structures similar to design patterns which can be mechanically recognized

and which stand at a class abstraction level. A micro pattern is traceable if it can be

expressed as a simple formal condition on the attributes, types, name and body of a

software module and its components. Currently, there are 27 micro patterns subdivided

into eight categories. Authors do not assert that the set of the identified micro patterns is

complete or exhaustive.

The eight micro pattern categories are:

- Degenerate State and Behaviour: this category includes micro patterns describing

interfaces and classes whose state and behaviour are degenerated. In most cases this

means that the interface or class does not define any variable or method;

- Degenerate Behaviour: these micro patterns are related to classes with no methods or

with very simple ones;

- Degenerate State: this category is related to classes which have no state (i.e. variables), or

their state is shared with other classes or they are immutable;

- Controlled Creation: the micro patterns belonging to this category describe special

protocols for creating objects;

- Wrappers: this category collects micro patterns dealing with classes which have a single

central instance field and methods working on it, so that the main functionalities are

delegated to this field;

- Data Managers: these micro patterns are related to classes whose main purpose is to

manage the data stored in a set of instance variables;

37

- Base Classes: the micro patterns belonging to this category describe different ways in

which a base class makes preparations for its sublcasses;

- Inheritors: the micro patterns in this category correspond to three ways in which a class

can use the definitions of its superclass, i.e. abstract method implementation, method

overriding and interface enrichment.

For a complete discussion about micro patterns refer to [GM05]. Micro patterns are

recognized through a prototype developed by Gil and Maman based on byte code analysis

[GM05], and with MARPLE, adopting source code analysis.

3.2. Towards a unique micro-structures catalogue

Even if these micro-structures are so different in nature and aims, they can all be exploited

(with different degrees of usefulness) both for design pattern detection and software

architecture reconstruction activities. There are two main disadvantages concerned with

the definitions of micro-structures:

- often, their definition is not formal, and may result ambiguous;

- they have never been considered as similar elements, even if they can all be

automatically detected from a static source code analysis process;

To solve these issues, we propose to introduce a unique catalogue of micro-structures that

resembles EDPs, clues and micro patterns redefining them in terms of concepts that are

common to all the categories of micro-structures we consider, and that will be exploited in

their definitions. We call these common concepts code atoms (or atoms for brevity). Code

atoms are simple code elements (more than the micro-structures) that will be used to

provide a new and more formal definition of micro-structures. In the new definition of

micro-structures, we will use these atoms, and eventually any micro-structure the element

to be defined depends on. The new definition will provide an unambiguous meaning to

each micro-structure, and will generate a unique catalogue of micro-structures based only

on common concepts.

The elements and concepts that will be used in the definition of the atoms and of the

micro-structures will now be defined. These concepts are strictly related with the object-

oriented paradigm. As we focused in particular on Java systems, we will consider this

language as our target.

Any object-oriented system is based on the key concept of type. We will use T to denote a

type. A type can itself be either a class (denoted by C) or an interface (denoted by I). If we

38

deal with a set of types, classes or interfaces, each of them will be specified by an index: Ti

will be therefore the i-th type out of a set of n types T1, …, Tn. The same considerations

reflect on classes and interfaces.

Given a type T, we can obtain information about it through the following statements:

- name(T): it represents the qualified name of the type, i.e. the name of the class or

interface denoting it, preceded by its package name;

- attributes(T): it represents the set of attributes that have been defined by T;

- methods(T): it represents the set of methods that have been defined by T;

- inst(T): it represents a generic instance of T, that can have been created either within T

(therefore it can be handled as an attribute of T) or within another type.

Given an attribute a ∈ attributes(T), the following statements are defined:

- name(a): it represents the name of attribute a;

- typeOf(a): it represent the type of a, which can be either a simple type, a type T, or a list

of n attributes list(a1, …, an);

Given a method m ∈ methods(T), the following statements are defined:

- name(m): it represents the name of method m;

- constructor(m): it represents the fact that method m is a constructor;

- returnType(m): it represents the return type of the method m, that can be either a type T,

a simple type, or void;

- params(m): it represents the set of formal parameters received in input by method m;

- body(m): it represents the body of method m, i.e. all the statements and operations

defined by the method. The body could also be empty: this aspect is represented by the

“is empty” clause. The body can itself contain instances of atoms or micro-structures, or

other kinds of statements: this containment aspect is specified by the “contains”

relationship;

- returnedValue(m): it represents a single returned value of the method;

- returnStatements(m): it represents the set of return statements or return points specified

by the method implementation;

- typeOf(m): it represents the type that defined method m. As m ∈ methods(T), therefore

typeOf(m) = T.

Given two methods m1 and m2, m1 = m2 will indicate that the two methods have the same

signature.

39

Within the body of a method we can find two special elements, that we call containers: they

are controlStatement, which represents all the control structures that are available in the

reference programming language (e.g. in Java, if and switch blocks), and loop, which

represents all kind of loops available in the reference programming language (e.g. for,

while, do-while, enhanced for). Both controlStatement and loop may operate on a set of

parameters:

- param(controlStatement), param(loop): it represents the set of attributes handled by the

control statement or loop structure.

Another kind of statement that needs to be considered in order to correctly define the sets

of atoms and micro-structures is the method invocation between two methods:

- methodInvocation(m1, m2): it represents the invocation of method m2 occurring within

the body of method m1;

Given a method invocation, the following properties can be obtained:

- source(methodInvocation): the actual object invoking m2, that is an instance of typeOf(m1);

- target(methodInvocation): the actual object on which m2 is invoked, that is an instance of

typeOf(m2);

- params(methodInvocation): it represents the set of actual parameters passed to the method

invocation.

On both types, attributes and methods we can use the logical operators ∧, ∨, ¬, ∀, ∃, ∃!,

according to their usual meaning. Moreover, we use the cardinality operator || to obtain

the number of elements composing a specific set (e.g. |methods(T)| will return the number

of methods defined in T). Finally the operator “is” will be used to declare that a type, an

attribute or a method must satisfy a particular modifier (e.g. “a is private” means that the

attribute a must be defined private).

Now that we have introduced the notions and concepts that will guide us in the definition

and specification of micro-structures, each of them can be defined (according to its

definition) on a type, on an attribute, or on a method:

- micro_structure_name(T): the micro-structure is defined on type T;

- micro_structure_name(a): the micro-structure is defined on attribute a;

- micro_structure_name(m): the micro-structure is defined on method m.

40

However, the largest part of micro-structures represents information relating two entities;

in this case, both the source of the micro-structure (i.e. the entity that actually represents it)

and its destination (i.e. the entity the micro-structure depends on) must be specified (for

example, micro_structure_name(T1, T2) represents a micro-structure that is implemented in

T1, but whose existence is strictly related to T2).

With these definitions and concepts, we now provide the precise definition of atoms and

micro-structures (collected in tables from Table 3.1 to Table 3.13).

3.2.1. Code atoms definitions

Atom

category
Atom name Atom definition Explanation

T
y

p
e

a
to

m
s Final class Final class(C) iff C is final The class is declared final.

Abstract class Abstract class(C) iff C is abstract The class is declared abstract.

Interface Interface(T) iff T is interface The considered type is an interface.

M
et

h
o

d
 a

to
m

s

Controlled

parameter

Controlled parameter(m, ai), i = 1, …, n, iff ai ∈

param(m) ∧ body(m) contains controlStatement: ai ∈

param(controlStatement)

A method of a certain class receives

as input a parameter used inside it

to make some controls (i.e. the

parameter is used in the condition

of some if or switch block). If a

method controls more than one of

its input parameters, each one of

these parameters will be an

instance of this clue.

Inheritance this

parameter

Inheritance this parameter(methodInvocation) iff ∃ p

∈ params(methodInvocation): p = this

A method receives the same caller

object as a parameter.

Private

constructor

Private constructor(m) iff constructor(m) ∧ m is

private
A constructor is declared private.

Protected

constructor

Protected constructor(m) iff constructor(m) ∧ m is

protected
A constructor is declared protected.

Interface

method

Interface method(m) iff ∃ T: m ∈ methods(T) ∧ T is

interface

The considered method belongs to

an interface.

Abstract

method
Abstract method(m) iff m is abstract

The considered method belongs to

an abstract class.

Getter Getter(m, a) iff body(m) = return a

The method is a getter method,

consisting of a single statement

returning a value.

Setter Setter(m, a) iff body(m) = assignment(a, value)

The method is a setter method,

consisting of a single statement

setting a value.

Table 3.1 – Type and Method atoms definitions

41

Atom

category
Atom name Atom definition Explanation

A
tt

ri
b

u
te

 A
to

m
s

Same class

object

Same class object(T, o) iff ∃ T: o ∈ attributes(T) ∧

typeOf(o) = T

The considered object is an

instance of the same class in

which it is declared.

Different class

object

Same class object(T, o) iff ∃ T: o ∈ attributes(T) ∧

typeOf(o) ≠ T

The considered object belongs to

a different class from the

declaring one.

Same hierarchy

object

Same hierarchy object(T1, o) iff ∃ T1, T2, T3: o ∈

attributes(T1) ∧ typeOf(o) = T2 ∧ ancestor(T1, T3)

∧ ancestor(T2, T3) ∧ name(T3) ≠ java.lang.Object

The considered object is an

instance of a class T1 belonging to

the same hierarchy of another

considered class T2.

Different

hierarchy object

Different hierarchy object(T1, o) iff ∃ T1, T2: o ∈

attributes(T1) ∧ typeOf(o) = T2 ∧ ¬∃ T3:

ancestor(T1, T3) ∧ ancestor(T2, T3) ∧ name(T3) ≠

java.lang.Object

The considered object is an

instance of a class T1 belonging to

a different hierarchy from that of

another considered class T2.

Private flag Private flag(a) iff a is private The attribute is private.

Static flag Static flag(a) iff a is static The attribute is static.

Private object Private object(o) iff o is private The considered object is private.

Static object Static object(o) iff o is static The considered object is static.

Single object
Single object(o) iff o ∈ attributes(T) ∧ typeOf(o) =

To ∧ ∃! o ∈ attributes(T): typeOf(o) = To

The considered object is the only

instance of a certain class

declared in another class.

R
et

u
rn

 T
y

p
e

A
to

m
s

Same object

returned

Same object returned(m) iff m ∈ methods(T) ∧

returnType(m) = T

The method returns a reference to

the same type in which it is

declared.

Different object

returned

Different object returned(m) iff m ∈ methods(T) ∧

returnType(m) ≠ T

The method returns a reference to

a different type from that in

which it is declared.

Simple type

returned

Simple type returned(m) iff m ∈ methods(T) ∧

returnType(m) = boolean, char, int, double, long

The method returns a simple

type.

Void returned
Void returned(m) iff m ∈ methods(T) ∧

returnType(m) = void
The method returns void.

R
et

u
rn

ed
 E

le
m

en
t

A
to

m

Same hierarchy

object returned

Same hierarchy object returned(m) iff ∃ T1, T2, T3:

m ∈ methods(T1) ∧ typeOf(returnedValue(m)) = T2

∧ ancestor(T1, T3) ∧ ancestor(T2, T3) ∧ name(T3)

≠ java.lang.Object

A method returns an object

belonging to the same hierarchy

of its declaring class.

Different

hierarchy object

returned

Same hierarchy object returned(m) iff ∃ T1, T2: m ∈

methods(T1) ∧ typeOf(returnedValue(m)) = T2 ∧

¬∃ T3: ancestor(T1, T3) ∧ ancestor(T2, T3) ∧

name(T3) ≠ java.lang.Object

A method returns an object

belonging to a different hierarchy

from that of its declaring class.

Table 3.2 – Attribute, Return Type and Returned Elements atoms definitions

42

Atom

category
Atom name Atom definition Explanation

In
st

a
n

ti
a

ti
o

n
 a

n
d

A
ss

ig
n

m
en

t
a

to
m

s

Object creation
Object creation(T, o) iff o is defined and created

by T

An instance of a certain class is

created in type T.

(Attribute)

assignment

Assignment(a, value) iff it exists an assignment a =

value. Value can be either a simple value or the

return value of a method invocation.

The considered statement is an

assignment of an attribute.

(Object)

assignment

Assignment(o, value) iff it exists an assignment a =

value. Value can be either an object creation, a

reference to another object, or the returned

object from a method invocation.

The considered statement is an

assignment of an object.

C
la

ss
 R

el
a

ti
o

n
sh

ip
 a

to
m

s

Interface

inherited

Interface inherited(T, I) if type T implements or

extends interface I

The considered type implements

or extends and interface.

Class inherited Class inherited(C1, C2) if class C1 extends class C2
The considered class extends

another class.

Abstract

method invoked

Abstract method invoked(m1, m2) iff ∃

methodInvocation(m1, m2) ∧ m2 is abstract

A method invokes an abstract

method.

Ancestor
Ancestor(T1, T2) iff T2 is a parent for T1, either

direct or indirect, ∧ typeOf(T2) ≠ java.lang.Object

Type T2 is an ancestor of type T1,

i.e. it comes before in the

hierarchy of T1, and it is not the

java.lang.Object class.

Table 3.3 – Instantiation and Assignment and Class Relationship atoms definitions

3.2.2. Elemental design patterns definitions

EDP

category
EDP name Definition Explanation [Smi02]

O
b

je
ct

 E
le

m
en

ts

Abstract

interface

AbstractInterface(m) iff interface(typeOf(m)) ∨

(abstract class(typeOf(m)) ∧ abstract method(m))

It provides a common interface

for operating on an object type

family, but delaying definition of

the actual operations to a later

time.

Retrieve

Retrieve(o) iff o ∈ attributes(C) ∧ ∃ assignment(o,

value): value = returnedValue(m) ∨ value = o2 ∈

attributes(C2) ∧ typeOf(o) = typeOf(o2)

To use an object from another

non-local source in the local

scope, thereby creating a

relationship

and tie between the local object

and the remote one.

T
y

p
e

R
el

a
ti

o
n

Inheritance
Inheritance(T1, T2) iff interface inherited(T1, T2) ∨

class inherited(T1, T2)

To use all of another classes’

interface, and all or some of its

implementation.

Table 3.4 – Object Elements and Type Relation EDPs definitions

43

EDP

category
EDP name Definition Explanation [Smi02]

M
et

h
o

d
 C

a
ll

Recursion

Recursion(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) = signature(m2)

To accomplish a larger task by

performing many smaller similar

tasks, using the same object

state.

Conglomeration

Conglomeration(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) ≠ signature(m2)

To bring together, or

conglomerate, diverse operations

and behaviours to complete a

more complex task within a single

object.

Extend method

Extend method(m1, m2) iff ∃ method invocation(m1,

m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

Add to, not replace, behaviour in

a method of a superclass while

reusing existing code.

Revert method

Revert method(m1, m2) iff ∃ method invocation(m1,

m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

Bypass the current class’

implementation of a method, and

instead use the superclass’

implementation, reverting to an

’earlier’ method body.

Redirect

Redirect(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) ≠ typeOf(m2) ∧

signature(m1) = signature(m2)

To request that another object

perform a tightly related subtask

to the task at hand, perhaps

performing the basic work.

Delegate

Delegate(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) ≠ typeOf(m2) ∧

signature(m1) ≠ signature(m2)

To parcel out, or delegate, a

portion of the current work to

another method in another object.

Table 3.5 – The first six Method Call EDPs definitions

44

EDP

category
EDP name Definition Explanation [Smi02]

M
et

h
o

d
 C

a
ll

Redirected

recursion

Redirected recursion(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) = signature(m2)

To perform a recursive method,

but one that requires interacting

with multiple objects of the same

type.

Delegated

conglomeration

Delegated conglomeration(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) ≠ signature(m2)

A Conglomeration pattern is

appropriate, but we need to work

with a distinct instance of our

object type, resulting in a need for

the Delegate pattern to be used.

Redirect in

family

Redirect in family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

Redirect some portion of a

method’s implementation to a

possible cluster of classes, of

which the current class is a

member.

Delegate in

family

Delegate in family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

Related classes are often defined

as such to perform tasks

collectively. In such cases,

multiple objects of related types

can interact in generalized ways

to delegate tasks to one another.

Redirect in

limited family

Redirect in limited family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2),

T) ∧ ¬Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

When Redirect in family is too

generalized, and it is necessary to

pre-select a sub-tree of the class

hierarchy for polymorphism.

Delegate in

limited family

Delegate in limited family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2),

T) ∧ ¬Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

When Delegate in family is too

generalized, and it is necessary to

pre-select a sub-tree of the class

hierarchy for polymorphism.

Table 3.6 – The second six Method Call EDPs definitions

45

3.2.3. Design pattern clues definitions

DP clues

category
DP clue name Definition Explanation [MATZ09]

C
la

ss
 D

ec
la

ra
ti

o
n

 I
n

fo
rm

a
ti

o
n

Interface and

class inherited

Interface and class inherited(C1, I, C2) iff interface

inherited(C1, I) ∧ class inherited(C1, C2)

A class implements an interface

and extends a class, providing

therefore a mechanism to simulate

multiple inheritance languages

not supporting it.

Multiple

interfaces

inherited

Multiple interfaces inherited(C, I1, …, In) iff

interface inherited(C, Ii), ∀ i = 1, …, n

A class implements n interfaces,

with n > 1.

Object structure

child

Object structure child(C, T) iff (interface(T) ∨

abstract class(T)) ∧ ancestor(C, T)

The class belongs to an object

structure, i.e. it has at least an

ancestor which is either an

interface or an abstract class.

Template

implementor

Template implementor(C1, C2) iff template

method(C2) ∧ class inherited(C1, C2)

A class extends another class

implementing a Template

method.

M
u

lt
ip

le
 C

la
ss

es
 I

n
fo

rm
a

ti
o

n

Façade method

Façade method(m, m1, …, mn) iff body(m) contains

(object creation(typeOf(m), oi), typeOf(oi) =

typeOf(mi), ∀ i = 1, …, n) ∨ (method invocation(m,

mi) ∧ ∀ i = 1, …, n typeOf(m) ≠ typeOf(mi))

The body of a method consists

uniquely of method calls to

classes which are not related with

it, i.e. which are not a superclass,

an implemented interface or the

class itself. A facade method

could also contain some object

creations, but no other statements

besides object creations or method

calls.

Proxy class

Proxy class(C1, C2, T) iff

(((interface(T) ∧ interface inherited(C1, T) ∧ interface

inherited(C2, T)) ∨

(abstract class(T) ∧ class inherited(C1, T) ∧ class

inherited(C2, T))) ∧

∃ o = inst(C1) ∈ attributes(C1): typeOf(o) = C2

A class implements an interface or

extends an (abstract) class,

referring to a class that

implements the same interface or

extends the same (abstract) class.

Table 3.7 – Class Declaration and Multiple Classes Information design pattern clues definitions

46

DP clues

category
DP clue name Definition Explanation [MATZ09]

In
st

a
n

ce
 I

n
fo

rm
a

ti
o

n

Controlled self

instantiation

Controlled self instantiation(C, o) iff ∃ m ∈

methods(C), ∃ controlStatement ∈ body(m): object

creation(C, o) ∈ controlStatement ∧ same class

object(C, o) ∧ o ∈ attributes(C)

The instantiation of an object

occurs inside an if (or a switch)

block, therefore under a condition.

Private self

instance

Private self instance(C, o) iff private object(o) ∧ same

class object(C, o) ∧ o ∈ attributes(C)

A class has a private instance of

itself. Access to this instance can

occur only from within the same

class.

Static self

instance

Static self instance(C, o) iff static object(o) ∧ same

class object(C, o) ∧ o ∈ attributes(C)

A class has a static instance of

itself. Therefore this instance is

unique inside the system.

Single self

instance

Single self instance(C, o) iff ∃! o ∈ attributes(C):

same class object(C, o)

A class maintains a unique

instance of itself, no matter it is

static or not.

Instance in

abstract class

Instance in abstract class(C, o) iff abstract class(C) ∧

o ∈ attributes(C) ∧ different class object(C, o)

An abstract class has a reference to

another class.

Reference to

abstract class

Reference to abstract class(C, o) iff o ∈ attributes(C)

∧ abstract class(typeOf(o))

A class attribute is a reference to

an abstract class.

Same interface

instance

Same interface instance(C, o) iff o ∈ attributes(C) ∧

different class object(C, o) ∧ same hierarchy object(C,

o)

A class contains a reference to an

object whose type is compatible

with the same interface of the

declaring class.

Same interface

container

Same interface container(C, list(o1, …, on)) iff

list(o1, …, on) ∈ attributes(C) ∧ ∀ oi ∈ list(o1, …,

on), different class object(C, oi) ∧ same hierarchy

object(C, oi)

A class contains a set or a list of

elements that are compatible with

the same interface of the declaring

class.

Table 3.8 – Instance Information design pattern clues definitions

47

DP clues

category
DP clue name Definition Explanation [MATZ09]

M
et

h
o

d
 S

ig
n

a
tu

re
 I

n
fo

rm
a

ti
o

n

Factory

parameter

Factory parameter(p) iff ∃ m ∈ methods(C): p ∈

param(m) ∧ concrete product getter(typeOf(p))

A method of a certain class

receives as an input parameter an

object that belongs to a class

defining some Concrete product

getter methods.

Protected

instantiation

Protected instantiation(C) iff ∀ constructor constr

∈ methods(C), private constructor(constr)

All the constructors within a given

class are declared private.

Adapter method

Adapter method(m, C, T1, T2) iff

(m ∈ methods(C) ∧ interface method(m, T1) ∧

ancestor(C, T2) ∧ ∃ m2 ∈ methods(T2): delegate(m,

m2)) ∨

(m ∈ methods(C) ∧ overriding method(m, C, T1) ∧

body(m) contains methodInvocation(m, m’):

typeOf(m’) = T2 ∧ different hierarchy

object(typeOf(m), target(methodInvocation(m, m’)))

Two types of Adapter method

exist. It can be a method which is

an implementation of an interface

method calling a method

belonging to the parent class. Or it

can be an overridden method

from the parent which calls a

method

belonging to a class that does not

share common parents with the

adapter method declaring class.

Interface

method

implemented

Interface method implemented(m, C, I) iff interface

inherited(C, I) ∧ interface method(m, I) ∧ m ∈

methods(C)

A class implements a method

declared inside an interface.

Overriding

method

Overriding method(m1, m2) iff ∃ C1, C2:

ancestor(C1, C2) ∧ m1 ∈ methods(C1) ∧ m2 ∈

methods(C2) ∧ m1 = m2

A class overrides, i.e. redefines a

method belonging to its

superclass.

Component

method

Component method(m, C) iff ∃ p ∈ param(m): same

class object(C, p)

A class declares a method that

takes an object of the same class as

its single parameter.

Cross

relationship

Cross relationship(C1, C2) iff ∃ m1 ∈ methods(C1):

∃ p2 ∈ param(m1): typeOf(p2) = C2 ∧ ∃ m2 ∈

methods(C2): ∃ p1 ∈ param(m2): typeOf(p1) = C1

Given two classes C1 and C2, C1

declares a method which accepts a

reference to C2 as one of its

parameters, vice versa C2 declares

a method which accepts a

reference to C1 as one of its

parameters.

Abstract cyclic

call

Abstract cyclic call(m1, m2) ∃ loop ∈ m1: loop

contains abstract method invoked(m1, m2)

A method invokes an abstract

method within a cycle.

Factory method

Factory method(m, C1, T) iff m ∈ methods(C1) ∧

body(m) contains object creation(C1, o): typeOf(o) =

T ∧ (∃ mt ∈ methods(T): overriding method(m, mt) ∨

(interface(T) ∧ interface method(m, T)))

A method contains a class

instance creation statement and

overrides a method belonging to

the superclass or to one of the

superinterfaces of the subject

class.

Table 3.9 – Method Signature Information design pattern clues definitions

48

DP clues

category
DP clue name Definition Explanation [MATZ09]

M
et

h
o

d
 B

o
d

y
 I

n
fo

rm
a

ti
o

n

Instance in

abstract referred

Instance in abstract referred(C, o) iff instance in

abstract class(C, o) ∧ ∃ m ∈ methods(C), ∃ mo ∈

methods(typeOf(o)): method invocation(m, mo)

A method of a class implementing

Instance in abstract class invokes a

method on the declared instance.

Multiple

redirections in

family

Multiple redirections in family(m1, m2) iff redirect in

family(m1, m2) ∧ body(m1) contains loop: redirect in

family(m1, m2)∈ loop

A method contains a Redirect in

family method invocation EDP

that is contained within a cycle.

Proxy method

invoked

Proxy method invoked(m1, m2) iff Proxy class(C1,

C2, T), m1 ∈ methods(C1) ∧ m2 ∈ methods(C2) ∧

redirect in limited family(m1, m2)

A proxy class invokes a method on

the referred subject by a Rediriect

in limited family method call EDP.

Template

method

Template method(C1) iff ∃ T, ∃ m1 ∈ methods(C1) ∧

m2∈ methods(T): abstract method invoked(m1, m2)

A method calls at least an abstract

method within its body.

M
et

h
o

d
 S

et
 I

n
fo

rm
a

ti
o

n

All methods

invoked

All methods invoked(C1, C2) iff ∀ m2 ∈ methods(C2)

∃ methodInvocation(m, m2): m ∈ C1

A class invokes all of the public

methods declared in a target class.

Leaf class

Leaf class(C1, C2) iff ancestor(C1, C2) ∧ ∀ mi ∈

methods(C2): component method(mi, C2) ¬∃ m’ ∈

methods(C1): overriding method(m’, mi)

A class extends another class

without implementing or

redefining the methods that are

concerned with the handling of

classes that are compatible with

the same interface, or giving an

empty implementation for such

methods.

Node class

Node class(C1, C2) iff ancestor(C1, C2) ∧ ∃ m ∈

methods(C2): component method(m, C2) ∃ m’ ∈

methods(C1): overriding method(m’, m)

A class extends another class

implementing or redefining the

methods that are concerned with

the handling of classes that are

compatible with the same

interface.

Table 3.10 – Method Body and Method Set Information design pattern clues definitions

49

DP clues

category
DP clue name Definition Explanation [MATZ09]

R
et

u
rn

 I
n

fo
rm

a
ti

o
n

Concrete

product getter

Concrete product getter(C) iff ∃ m ∈ methods(C):

different object returned(m)

A class declares one or more

methods that return objects

belonging to some other classes.

Concrete

product returned

Concrete product returned(m) iff same hierarchy

object returned(m) ∧ (different object returned(m) ∨

same object returned(m))

A method returns objects that

belong to subclasses extending

the class that represents the

declared method return type.

Abstract product

returned

Abstract product returned(m) iff abstract

class(typeOf(returnedValue(m)))

A method returns a reference to

an abstract class.

Parent product

returned

Parent product returned(m) iff m ∈ methods(T1) ∧ ∃

T2: (class inherited(T1, T2) ∨ interface inherited(T1,

T2)) ∧ typeOf(returnedValue(m)) = T2

A method returns a reference to

the parent class of its declaring

class.

Empty concrete

product getter

Empty concrete product getter(m) iff different object

returned(m) ∧ body(m) is empty

A class declares one or more

methods that return

objects belonging to some other

classes, but the

implementation of these methods

is empty, i.e. it

consists only of a default return

statement (as, for

example, return null).

Empty method
Empty method(m) iff simple type returned(m) ∧

body(m) is empty

A class declares one or more

methods that return simple types,

but their implementation is

empty,

i.e. it is only formed by a default

return statement (for example,

return false for the Boolean

data type).

Multiple returns Multiple returns(m) iff |returnStatements(m)| > 1
A method provides several

possible return points.

Void return

Void return(m) iff void returned(m) ∧ body(m)

contains object creation(typeOf(m), o), typeOf(o) ≠

typeOf(m)

A class defines a method that

instantiates an object without

returning it.

Cross hierarchy

return

Cross hierarchy returned(m) iff different hierarchy

object returned(m)

A method returns an object of a

class belonging to a different

hierarchy.

Ja
v

a
 I

n
fo

rm
a

ti
o

n
 Cloneable

implemented

Cloneable implemented(T) iff interface inherited(T, I)

∧ name(I) = java.lang.Cloneable

A class implements the

java.lang.Cloneable interface.

Prototyping

constructor

Prototyping constructor(m, C) iff constructor(m, C) ∃

p ∈ param(m): cloneable implemented(typeOf(p))

A method defines a constructor

which receives objects that can be

cloned, that is that belong to

classes implementing the

java.lang.Cloneable interface.

Table 3.11 – Return and Java Information design pattern clues definitions

50

3.2.4. Micro patterns definitions

Micro pattern

category

Micro pattern

name
Definition Explanation [GM05]

D
eg

en
er

a
te

 S
ta

te
 a

n
d

 B
eh

a
v

io
u

r Designator Designator(I) iff |attributes(I)| = 0 ∧ |methods(I)| = 0
An interface with absolutely no

members.

Taxonomy
Taxonomy(I) iff | attributes (I)| = 0 ∧ |methods(I)| = 0

∧ ∃ I1: interface inherited(I, I1)

An empty interface extending

another interface.

Joiner

Joiner(I) iff |attributes (I)| = 0 ∧ |methods(I)| = 0 ∧ ∃

I1, I2: interface inherited(I, I1) ∧ interface inherited(I,

I2)

An empty interface joining two

or more superinterfaces.

Pool
Pool(C) iff |methods(C)| = 0 ∧ ∀ a ∈ attributes (C) a is

static

A class which declares only

static final fields, but no

methods.

D
eg

en
er

a
te

 B
eh

a
v

io
u

r

Function

pointer

Function pointer(C) iff | attributes(C)| = 0 ∧

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is public

A class with a single public

instance method, but with no

fields.

Function

object

Function pointer(C) iff | attributes(C)| ≥ 1 ∧

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is public

A class with a single public

instance method, and at least

one instance field.

Cobol like
Cobol like(C) iff ∀ a ∈ attributes(C) a is static ∧

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is static

A class with a single static

method, but no instance

members.

D
eg

en
er

a
te

 S
ta

te

Stateless
Stateless(C) iff ∀ a ∈ attributes(C) a is static ∧ a is

final

A class with no fields, other

than static final ones.

Common state Stateless(C) iff ∀ a ∈ attributes(C) a is static
A class in which all fields are

static.

Immutable

Immutable(C) iff ∀ a ∈ attributes(C) ∃! assignment(a,

value) ∧ ∃ constructor(m) ∈methods(C): assignment(a,

value) ∈ body(constructor(m))

A class with several instance

fields, which are assigned

exactly

once, during instance

construction.

C
o

n
tr

o
ll

ed
 C

re
a

ti
o

n
 Restricted

creation

Restricted creation(C) iff (∀ constructor(m) ∈

methods(C), constructor(m) is private ∨

constructor(m) is protected) ∧

∃ a ∈ attributes(C): a is static ∧ typeOf(a) = C

A class with no public

onstructors, and at least one

static field of

the same type as the class.

Sampler

Sampler(C) iff ∃ constructor(m) ∈ methods(C):

constructor(m) is public ∧ ∃ a ∈ attributes(C): a is

static ∧ typeOf(a) = C

A class with one or more public

constructors, and at least one

static

field of the same type as the

class.

Table 3.12 – The first set of micro patterns definitions

51

Micro pattern

category

Micro pattern

name
Definition Explanation [GM05]

W
ra

p
p

er
s

Box
Box(C) iff |attributes(C)| = 1 ∧ ∃ m ∈ methods(C): ∃

assignment(a, value) ∈ body(m), a ∈ attributes(C)

A class which has exactly one,

mutable, instance field.

Compound box
Compound box(C) iff ∃ a ∈ attributes(C): typeOf(a) =

C ∨ typeOf(a) = T ≠ C ∨ typeOf(a) = list(a1, …, an)

A class with exactly one non

primitive instance field.

Canopy

Canopy(C) iff |attributes(C)| = 1 ∧ a ∈ attributes(C)

∧ ∀ assignment(a, value), assignment(a, value) ∈

constructor(m) ∈ methods(C)

A class with exactly one instance

field that it assigned exactly

once,

during instance construction.

D
a

ta
 M

an
a

g
er

s

Record
Record(C) iff |methods(C)| = 0 ∧ ∀ a ∈ attributes(C) a

is public

A class in which all fields are

public, no declared methods.

Data manager
Data manager(C) iff ∀ m ∈ methods(C), setter(m, a) ∨

getter(m, a)

A class where all methods are

either setters or getters.

Sink
Sink(C) iff ∀ m1 ∈ methods(C) ¬∃ method

invocation(m1, m2): typeOf(m2) ≠ C

A class whose methods do not

propagate calls to any other

class.

B
a

se
 C

la
ss

es

Outline
Outline(C) iff ∃ m1 ∈ methods(C): ∃ method

invocation(m1, m2): m2 is abstract

A class where at least a method

invokes an abstract method

belonging to the same class.

Trait
Trait(C) iff abstract class(C) ∧ |attributes(C)| = 0 ∧ ∃

m ∈ methods(C): abstract method(m)

An abstract class which has no

state.

State machine
State machine(I) iff ∀ m ∈ methods(I) |params(m)| =

0

An interface whose methods

accept no parameters.

Pure type

Pure type(C) iff ∀ m ∈ methods(C) abstract method(m)

∧ ¬∃ m ∈ methods(C): m is static ∧ |attributes(C)| =

0

A class with only abstract

methods, and no static

members, and no fields.

Augmented

type

Augmented type(C) iff ∀ m ∈ methods(C) abstract

method(m) ∧ ¬∃ m ∈ methods(C): m is static ∧ |

attributes(C)| ≥ 3 ∧ ∀ a ∈ attributes(C) a is static ∧ a

is final

A class with only abstract

methods and three or more

static final fields of the same

type.

Pseudo class

Pseudo class(C) iff abstract class(C) ∧ ∀ m ∈

methods(C), abstract method(m) ∧ ∀ a ∈ params(C) a

is static

A class which can be rewritten

as an interface: no concrete

methods, only static fields.

In
h

er
it

o
rs

Implementor

Implementor(C) iff ∀ m1 ∈ methods(C) ∃ m2:

overriding method(m1, m2) ∧ (abstract method(m2) ∨

interface method(m2))

A concrete class, where all the

methods override inherited

abstract methods.

Overrider

Overrider(C) iff ∀ m1 ∈ methods(C) ∃ m2: overriding

method(m1, m2) ∧ ¬(abstract method(m2) ∨ interface

method(m2))

A class in which all methods

override inherited non-abstract

methods.

Extender

Extender(C1) iff ∃ C2: class inherited(C, C2) ∧ ¬∃ m1

∈ methods(C1), m2 ∈ methods(C2): overriding

method(m1, m2)

A class which extends the

inherited protocol, without

overriding any methods.

Table 3.13 – The second set of micro patterns definitions

52

3.3. The Micro-structures detector

We have developed a plug-in for the Eclipse platform [Eclipse], called Micro-structures

detector, which is part of the MARPLE project [ATZM08] and is devoted to the

identification of EDPs, clues and micro patterns inside subject systems. Figure 3.1 depicts

the plug-in architecture.

As it can be noticed, the Micro-structures detector is laid on the functionalities provided

by the Eclipse framework. In order to be analyzed, the source code of the subject system

needs to be translated into an Abstract Syntax Tree (AST) representation. The tree data

structure is inspected by visitors [GHJV94], which have the aim to detect realizations of

micro-patterns inside the system. For each single micro-structure, a visitor has been

implemented. The AST representation and the basic classes to implement the visitor

functionalities are provided by the Eclipse Java DOM/AST library, which contains those

classes that model the source code of a Java program as a structured document.

Figure 3.2 – The architecture of the Micro-structures detector

The micro-structures instances detected by the visitors are then stored in a model

[ATZ+09], built on top of the Eclipse Modeling Framework (EMF), which organically

represents all the system classes and interfaces, reporting for each of them the micro-

structures that have been detected within it. The model is generated in order to allow an

easy recovery of the stored information that is to be used for the DPD and SAR activities.

Finally, the micro-structures instances can be shown to the user. The visualization module

is laid on the Eclipse Standard Widget Toolkit (SWT), and basically provides a comfortable

tree view in which all the micro-structures instances are collected according to their

categories.

53

3.4. Concluding remarks

In this chapter we have proposed a new definition of the considered micro-structures. The

redefinition is based on the use of concepts that are common to each category of micro-

structures, named code atoms. Through the use of atoms we succeeded in grouping and

giving a common interpretation to structures that are to be considered in some sense

similar. In fact, they can all be detected by the source code of a subject system by analyzing

the characteristics of the classes, attributes and methods composing it, and they can all be

defined through the atoms introduced in section 3.2.1. The principal aim of this

redefinition is giving a more formal definition to those micro-structures that may result

ambiguous. Just as an example, the Data manager micro pattern is now clearer, as the

concepts of getter and setter methods are now treated as code atoms and have been more

strictly specified. This more strict definition allows for a more precise identification of

these structures inside a subject system.

54

Chapter 4

Micro-structures for

design pattern detection

Abstract

This chapter is devoted to the comparison of the considered micro-structures and to the analysis of their usefulness for

design pattern detection activities. The comparison will consider six aspects: the objectives of each category of micro-

structures, how they have been defined, their detail level, the source for their detection from the analyzed systems, their

categorization, and their eventual interdependence. The micro-structures will be detected from sample design pattern

implementations, and their relevance for both pattern structure and pattern role detection will be investigated. Finally,

for each design pattern a set of possible hints for the identification of its characteristics will be suggested.

4.1. Micro-structures for design pattern detection

In the introduction we have discussed about the relevance of design pattern detection for

reverse engineering activities, that is strongly apparent in the scientific literature, as we

have outlined in the related works. Many research groups have proposed several

approaches and tools for design pattern detection with different results. A promising

approach for design pattern recognition consists in the search for different types of

elements, that we generally call micro-structures, which resembled can give strong

indications for the presence of design patterns.

In Chapter 3 we have introduced EDPs, DP clues and micro patterns, and provided a

definition for each single micro-structure. We now aim to explain which are the

similarities and differences among these sub-components, how these sub-components can

be described and exploited especially in the reverse engineering process and also as object-

oriented best practices. We also want to explore which are the components design patterns

can be decomposed in. This is fundamental to better understand what design patterns

effectively are and how can they be described in order to be efficiently exploited both in

forward and reverse engineering contexts.

55

4.2. An analysis of micro-structures based on six aspects

The main goal of this chapter is to describe the similarities and differences among the

categories of micro-structures we take into account. To achieve this goal we have

identified six aspects that we consider relevant for the comparison. Hence, before

performing the comparison we present the micro-structures introduced in Chapter 3

according to these aspects.

The six aspects are:

- Objectives: why a particular type of micro-structure has been introduced?

- Definition technique: how is each category identified and consequently defined?

- Detail level: which is the particular code structure which each single micro-structure

relates to?

- Source for the detection: where the micro-structures are identified from? Are they

detected from the source code of the subject system, or from its byte code, or from

other forms of code representations?

- Type of subdivision: how are the elements of a particular category grouped?

- Self dependence: do the micro-structures belong to a certain category independently

from each other? Or else is there any element in a category whose presence is strictly

related to the presence of some other elements?

The rest of this chapter describes the three categories of micro-structures through these six

aspects. This presentation is fundamental for the purpose of the comparison because it

enables us to focus on those features which are relevant for their definition and detection,

and which are not always clearly presented while focusing on a single type of micro-

structures. Discussing about each of these aspects makes the comparison among micro-

structures straightforward.

4.2.1. Elemental design patterns

Objectives

EDPs aim to propose solutions to programming issues that are faced in the everyday

practice, and that are also exploited in the design pattern detection process, as described in

the SPQR approach [SS03].

Definition technique

EDPs were identified by analyzing the design patterns proposed in [GHJV94]. Primarily,

eight key concepts were identified for the entire set of design patterns. From these first

common concepts, a search for further elements and a better specification of the existing

ones were started leading to the definition of the current 16 EDPs.

56

Detail level

EDPs represent details regarding instances creation, extensions of classes and

implementations of interfaces, and method invocations. They do not provide any

information about a whole class or about a set of classes.

Source for the detection

In the SPQR approach, EDPs are identified by an inspection of a POML (Pattern Object

Markup Language) file [SS03], an XML data format representation of the analyzed source

code, thus their detection is language-independent as far as translation tools from

programming languages to the POML format are implemented. With the Micro-structures

detector, EDPs are identified by analyzing AST representations of the source code.

Type of subdivision

EDPs are divided into three main disjoint categories: Object Elements, Method Call, Type

Relation.

Self dependence

EDPs are completely independent from each other. The identification of each of them does

not rely on the presence of other EDPs inside the code.

4.2.2. Design pattern clues

Objectives

Design pattern clues have been proposed and defined only in the perspective of design

pattern detection and have been introduced to capture further information not expressed

by EDPs and more related to the identification of design pattern roles characteristics.

Definition technique

The definition of clues derived by the analysis of design pattern architectures. Their

specification and definition was improved by the analysis of several possible variants of

design patterns (for example, those proposed in [Coo98, GHJV94]). These variants were

implemented in Java and were manually analyzed searching for particular programming

details which may provide indications on the presence of a design pattern instance, even

according to the preliminary hints defined only on the design pattern structures.

Detail level

Design pattern clues provide information related to single code structures, but at different

detail levels (e.g. classes, methods, variables). Each clue belongs to a single class, method

or any other code structure, thus given a clue instance a corresponding code structure can

be associated to it. However, the identification of some of the clues can depend on

characteristics which are found in couples of classes, but this remark does not preclude the

belonging of a clue instance to a single structure.

57

Source for the detection

All the clues can be automatically detected from the source code, as they are

representations of implementation issues which can be easily understood through an

analysis of the source code. Clues are identified by parsing AST representations of the

analyzed Java project. A set of visitors in the Micro-structures detector, one for each clue,

is responsible for the traversal of the trees to catch instances of these elements.

Type of subdivision

Design pattern clues are subdivided into eight categories which focus on low level

information related to implementation details such as class definition, object instantiation,

variables features, methods signature, return information and Java specific features.

Self dependence

Some clues rely on the presence of other clues previously identified inside source code.

For example (see Chapter 3) the Factory parameter clue can occur only when a method

input parameter is an instance of a factory class, meaning that the factory class must

declare methods which are instances of the Concrete product getter clue. Therefore, we

can assert that the factory parameter clue can exist only in dependence of the presence of

concrete product getter instances in another class.

4.2.3. Micro patterns

Objectives

The objective of micro patterns is the identification of common programming techniques

in general.

Definition technique

Micro patterns were identified with a manual inspection of code with further refinements

during their definition.

Detail level

Micro patterns are defined at a class level. Each of them depicts a characteristic which can

be identified inside a class. In particular, each of them establishes constraints about the

characteristics of methods and/or attributes of a class.

Source for the detection

Micro patterns are the only category of micro-structures that are identified starting from

Java byte code analysis. Actually it seems sensible to assert that the technique can also be

based on the inspection of ASTs, as the definition and the characteristics of micro patterns

can let them be discovered by a static analysis of such structures. The Micro-structures

detector can identify the whole set of micro patterns using this kind of analysis.

58

Type of subdivision

The 27 micro patterns have been subdivided into eight categories. These categories focus

on degenerated classes (i.e., classes with no members or empty interfaces), containment

aspects (i.e., classes with all public fields or exactly one non primitive instance field), and

inheritance related features (i.e., classes where all methods override inherited abstract

methods or classes in which all methods override inherited non-abstract methods). These

categories, differently from all other micro-structures, are overlapped, thus some elements

may belong to two categories.

Self dependence

No dependencies among micro patterns have been identified. The fact that some micro

patterns can contemporarily belong to more than one category does not imply that some of

them exist only if others are identified.

4.3. A comparison among micro-structures

The comparison among the micro-structures is performed based on the description we

have just presented. A summary of the aspects we have considered for the four micro-

structures is shown in Table 4.1. The rows correspond to the micro-structures, while the

columns to the six aspects considered for their analysis. This table provides a comparison

among micro-structures.

As far as the objective is concerned, EDPs have more objectives, closer to the objectives of

design patterns and aim to represent both common design and programming techniques.

Regarding the definition technique aspect, clues and micro patterns have been defined

starting from source code, but considering different detail levels. Each micro pattern

depicts a characteristic of a single class [GM05], and some of them can be decomposed in

complementary clues.

We noticed that EDPs and clues provide different types of information which can be

successfully used together for design pattern detection. The joint exploitation of these two

categories enables us to understand, for example, which are the relationships pointed out

by EDPs among the classes implementing some clues. We can generally assert that if clues

help us in understanding which roles a certain class can play inside a design pattern, EDPs

let us understand which kind of relationships these roles may have with the other

potential roles identified by clues. In this way, EDPs may identify the structures of design

patterns, rather than their single roles, which are supported by design pattern clues

detection.

As far as the detail level is concerned, clues represent generally fine-grained detail levels

regarding instance creations, class extensions, and method invocations, and also provide

information on single classes and on set of classes. Micro patterns are all defined only at

class level, each of them describing a peculiar characteristic of a single class.

59

Considering the type of subdivision aspect, only micro patterns can belong to more than one

category, but we cannot anyway assert that the presence of some of them strictly depends

on the existence of some other micro pattern.

Finally, as far as self dependence is concerned, clues collect dependent elements: the

existence of certain clues is possible only if some other clues have been previously

identified. EDPs and micro patterns are not self-dependent, i.e. they can be detected

independently from one another.

Category Objectives
Definition

technique
Detail level

Source for the

detection

Type of

subdivision

Self

dependence

D
P

 r
ec

o
g

n
ti

o
n

S
im

il
a

r
to

 D
P

P
ro

g
ra

m
m

in
g

 p
ra

ct
ic

es

d
es

cr
ip

ti
o

n

F
ro

m
 s

o
u

rc
e

co
d

e

Id
en

ti
fi

ca
ti

o
n

 o
f

co
n

ce
p

ts

co
m

m
o

n
 t

o
 v

a
ri

o
u

s
D

P
s

S
et

 o
f

cl
a

ss
es

S
in

g
le

 c
la

ss

M
et

h
o

d

In
st

a
n

ti
a

ti
o

n

In
h

er
it

a
n

ce

A
b

st
ra

ct
 S

y
n

ta
x

 T
re

e

B
y

te
 c

o
d

e

X
M

L
 d

a
ta

 f
o

rm
a

t

re
p

re
se

n
ta

ti
o

n

D
is

jo
in

t
ca

te
g

o
ri

es

O
v

er
la

p
p

in
g

 c
a

te
g

o
ri

es

In
d

ep
en

d
en

t
el

em
en

ts

D
ep

en
d

en
t

el
em

en
ts

DP clues � � � � � � � � � �

EDPs � � � � � � � � � � �

Micro

patterns
 � � � � � �

Table 4.2 – Micro-structures revisited according to six core aspects

4.4. The role of micro-structures in the detection of design patterns

At now we have considered micro-structures as they are. Micro-structures are strictly

related to source code and are useful and exploitable in a design pattern detection process.

Their exploitation and usefulness is to be validated on three steps:

- Micro-structures detection in sample design pattern implementations;

- Micro-structures relevance evaluation for design pattern detection;

- Micro-structures detection in design pattern implementation variants.

We discuss these three steps on six sample patterns, two for each category. For space

reasons, we cannot provide examples for the detection of all the micro-structures for all

the design patterns.

60

4.4.1. Micro-structures detection in sample design pattern implementations

In order to emphasize the role micro-structures have for design pattern detection, in this

section we provide six examples of different design patterns implementations (two

patterns for each of the three categories: creational, behavioural and structural), and we

describe the micro-structures that can be identified within them. The detailed descriptions

of all the micro structures can be found in Chapter 3 as well as in the references provided

in the same chapter.

1) Micro-structures detection in the Singleton design pattern

We first focus our attention on the Singleton design pattern: even if its structure is very

simple, we can make interesting considerations on it because its presence is not trivial to

identify.

In [GHJV94] the following implementation of the Singleton creational design pattern is

proposed:

public class Singleton {

private static Singleton instance;

private Singleton(){}

public static Singleton instance(){
if (instance == null)

 instance = new Singleton();
return instance;

}
}

The Singleton() constructor is private, so that it cannot be accessed by external classes.

In this way, external classes may access the Singleton class only through the static method

instance() . This method returns an instance of the Singleton class, represented by the

static object instance, which is granted to be unique as it is created if and only if it is null.

Otherwise, the method returns the already existing instance.

Design pattern clues

In this implementation of the Singleton design pattern six different design pattern clues

are detected:

- Protected instantiation: the constructors of the class Singleton are all declared private

(see the Singleton() constructor). This means that the class cannot be instantiated by

external classes, avoiding the creation of un-controlled instances;

- Private self instance: the class maintains a private instance of itself (see the instance

object declaration). This instance cannot be directly accessed by external classes;

- Static self instance: the class maintains a static instance of itself (see the instance object

declaration). This instance is therefore unique in the system;

61

- Single self instance: the class maintains only one instance of itself (see the instance

object declaration); this hint is useful while dealing with self instances that are not

declared static, and therefore may be more than one inside the system;

- Controlled self instantiation: the creation of an object of a certain class is under control of

an if or switch statement (see the if statement in the instance() method);

- Concrete product getter: a method returns a concrete object of the identical type declared

by the method return type (see the return instance statement of the instance()

method).

As we can observe, even by the analysis of the above few lines of code useful information

can be derived. The presence of one of these elements or their combination is a strong

indicator of the presence of Singleton design pattern, and will be further discussed in the

next subsection.

Elemental design patterns

In this implementation of the Singleton only one EDP can be found: Create object,

represented by the “ instance = new Singleton() ” instruction. This EDP does not

capture the basic characteristic of the Singleton design pattern, i.e. the uniqueness of its

instance during execution. Therefore we cannot detect this design pattern relying only on

the information provided by the presence of the Create object EDP.

Micro patterns

Analyzing this particular implementation, five micro patterns can be detected:

- Function object: the class has a single public instance method, and at least one instance

field (see the instance() method and the instance field);

- Common state: all the fields belonging to the class are declared static (see the
instance field);

- Restricted creation: the class does not have any public constructor, and have at least one

static field of the same type as the class (see the Singleton() constructor and the

instance field);

- Data manager: the methods declared by the class are either setters or getters (see the

instance() method);

- Sink: the methods of the class do not propagate calls to any other class (see the

instance() method).

The most peculiar micro pattern for the detection of the Singleton design pattern is

Restricted creation. This micro pattern can be seen as the combination of the Static self

instance and of the Controlled self instantiation clues. For this reason, we can assert that

clues are more detailed than micro patterns: analyzing the micro patterns catalogue

[GM05], it is possible to see that each of these elements is related to characteristics

belonging to a single class. On the other hand, clues collect characteristics that are

positioned at different detail levels (for example, Static self instance is related to a single

instance, Controlled self instantiation regards a method implementation).

62

2) Micro-structures detection in the Abstract factory design pattern

We now propose another example of micro-structures detection inside another broadly

used design pattern, that surely has a more complex structure with respect to the

Singleton design pattern previously analyzed: the Abstract factory.

Starting from the class diagram provided by [GHJV94], we consider the following basic

implementation of the Abstract factory design pattern. Each concrete implementation

should be however constrained to the concepts and relationships that characterize this

basic implementation.

public abstract class AbstractFactory {

public abstract AbstractProductA createProductA();
 public abstract AbstractProductB createProductB();
}

public class ConcreteFactory1 extends AbstractFacto ry {
 public AbstractProductA createProductA(){

return new ProductA1(); }
 public AbstractProductB createProductB(){

return new ProductB1(); }
}

public class ConcreteFactory2 extends AbstractFacto ry {
 public AbstractProductA createProductA(){

return new ProductA2(); }
 public AbstractProductB createProductB(){

return new ProductB2(); }
}

public abstract class AbstractProductA {}
public class ProductA1 extends AbstractProductA {}
public class ProductA2 extends AbstractProductA {}

public abstract class AbstractProductB {}
public class ProductB1 extends AbstractProductB {}
public class ProductB2 extends AbstractProductB {}

Design pattern clues

The design pattern clues that can be identified in this implementation are the following:

- Concrete product returned: each of the four getter methods implemented in the concrete

factories returns an object which belongs to a subclass extending the class that

represents the declared method return type; for example, the method
ConcreteFactory1.createProductA() returns an instance of the ProductA1 class,
which extends the declared return type AbstractProductA .

- Abstract product returned: the two abstract methods declared by the abstract factory both

return a reference to an abstract class, identifying the connection between the factory

and the abstract products;

- Parent product returned: the two references returned by the concrete factory methods are

both related to classes that are parent classes inside a certain hierarchy;

63

Elemental design patterns

In this basic implementation of the Abstract factory design pattern we can find the

following EDPs:

- Create object: the two concrete factories both contain two Create object EDPs, when

returning instances of the concrete products related to them;

- Abstract interface: the methods declared by the abstract factory are examples of the

Abstract interface EDP, which represents abstract methods or methods belonging to an

interface;

- Inheritance: in this example we can see three inheritance hierarchies; the first one

involving the abstract factory as the parent class and the two concrete factories as its

children; the second and the third ones regard the two abstract products and their

concrete sub-classes. We have therefore a total of six inheritance EDP instances, one for

each child class.

These EDPs don’t let us assert that this implementation is an instance of the Abstract

factory design pattern. The real problem is enclosed in the nature of EDPs, as they don’t

seem to capture the rationale behind each design pattern.

Micro patterns

We can find six micro patterns in this implementation of the Abstract factory design

pattern:

- Data manager: a class implements only getter or setter methods, according to the

meaning of getter and setter methods agreed in Chapter 3. In this interpretation, classes
ConcreteFactory1 and ConcreteFactory2 could be considered instances of the Data

Manager micro pattern;

- Sink: a Sink class implements methods which do not propagate calls to any other

classes. Therefore the two concrete factories, as implemented in the sample instance, are

to be considered as Sinks;

- Trait: a Trait class is a class that doesn’t have any state, i.e. that doesn’t declare any

instance field; each of the classes belonging to the sample pattern instance is therefore a

Trait;

- Pure type: a Pure type class has only abstract methods, doesn’t have any static member,

and doesn’t declare any field; the class AbstractFactory can be considered as a Pure

type;

- Pseudo class: a Pseudo class is a class that could be rewritten as an interface: it doesn’t

have any concrete method, and its fields (if it has some) are all static; classes
AbstractFactory , AbstractProductA and AbstractProductB are all Pseudo classes;

- Implementor: an Implementor class is a class which overrides the inherited abstract

methods; ConcreteFactory1 and ConcreteFactory2 are two Implementors.

We should remark two points about the detection of these micro patterns. First of all, as

we have seen for the Data manager micro pattern, some micro patterns lend themselves to

64

different interpretations, so some more formalization about their concrete meaning seems

to be needed. The unified micro-structures catalogue proposed in Chapter 3 aimed at

solving also these ambiguities. Second, all the micro patterns identify characteristics that

are placed at the class granularity level. For example, the Sink regards classes whose

methods don’t propagate calls to other classes. But what if a refactoring of a previous Sink

class would have a method that makes some calls to another class? The new

implementation will not be a Sink anymore. This problem is particularly relevant in a

design pattern detection perspective. In fact, the micro patterns described so far are related

to this basic implementation of the Abstract factory design pattern. But as it is known,

each design pattern could have potentially infinite variants, so that if we compare different

implementations of the same pattern they could present even completely different micro

patterns. This is due to the fact that micro patterns identify only class-level characteristics,

and do not pinpoint more fine-grained characteristics, as design pattern clues for example

do. In order to solve this issue, we propose the detection of micro patterns basing on the

rate of methods and attributes that satisfy a particular micro pattern condition. This aspect

will be deeply discussed in Chapter 7.

3) Micro-structures detection in the Template method design pattern

A broadly exploited behavioural design pattern is the Template method. This pattern

defines the general structure of an algorithm in terms of abstract methods representing its

general operations, letting the subclasses of the template abstract class implement the

actual behavior.

The basic implementation of the Template method design pattern is the following:

public class AbstractClass {

 public void templateMethod(){

operation1();
operation2();

 }

 abstract void operation1();
 abstract void operation2();

}
public class ConcreteClass extends AbstractClass {

 public void operation1(){
 …
 }

public void operation2(){
 …
 }

}

65

The templateMethod() method only calls the two abstract methods operation1() and

operation2() , that represent the general behavior of the algorithm represented by

templateMethod() . The actual behavior is therefore to be specified by the concrete classes

extending the class declaring the template method.

Design pattern clues

In this implementation of the Template method two design pattern clues are detected:

- Template method: an abstract method is called within the body of a concrete method.

Both caller and callee methods belong to the same class;

- Template implementor: a class extends a class containing an instance of the Template

method clue.

As we can see, the two clues perfectly fit to the definition of the Template method, and let

the identification of both pattern roles possible.

Elemental design patterns

In this implementation of the Template method three EDPs can be found: 2 Abstract

interface EDPs, one for each abstract method defined in the AbstractClass , and one

Inheritance EDP, that defines the inheritance relationship between ConcreteClass and
AbstractClass .

Micro patterns

One micro pattern could be detected in this implementation:

- Outline: a class where at least two methods invoke an abstract method on “this”.

As we can see, the Outline micro pattern requires two methods invoking abstract methods.

This is too restrictive for our scopes, as only one method (the template method) calling

abstract methods is sufficient to grant the presence of the abstract class role. In Chapter 3

we proposed a relaxed definition for this micro pattern, granting its validity even if only

one abstract method is invoked.

4) Micro-structures detection in the State design pattern

The basic implementation of the State design pattern is the following:
public abstract class State{

public abstract void handle();
}

public class ConcreteStateA extends State{

public void handle() {
 …
}

66

}

public class ConcreteStateB extends State{
public void handle() {
 …
}

}

public class Context{

private State state;

public void request(){
 …
 state.handle();
}

}

Design pattern clues

No design pattern clues can be found for this pattern. This is because no peculiarities for

this pattern can be identified statically. We experienced, by analyzing different instances

of the State pattern, that no hint for its detection or for the detection of one of its roles

seems to be pointed out by some code detail. Hence, the identification of this pattern

through the use of clues (and, in general, the use of any micro-structure in a static way) is

a hard task.

Elemental design patterns

In this basic implementation of the State design pattern three EDPs can be found: two

Inheritance EDPs, one for ConcreteStateA and the other for ConcreteStateB , that assert

that these classes extend the State class, and one Delegate EDP, represented by the
state.handle() method invocation between the Context class and the State class. The

Delegate EDP is detected as the caller and callee class aren’t in the same hierarchy and the

caller and target methods have different signatures.

Micro patterns

Four micro patterns can be detected, three regarding the State class, the other regarding

the Context class. The three micro patterns for the State class are:

- Function poiner: the class has a single public instance method, but no fields;

- Trait: the class is abstract and has no state (i.e. no variables);

- Pure type: the class declares only abstract methods, no static members, and no fields;

For the Context class we have the following micro pattern:

67

- Function object: the class has a single public instance method, and at least one instance

field;

It seems clear that no micro pattern, as any other micro-structure, is able to capture the

essence of this pattern, residing behind its behavior. The detected micro pattern can only

give information from a structural point of view.

5) Micro-structures detection in the Composite design pattern

Considering the structural design patterns category, we propose the basic implementation

of the Composite and we discuss the micro-structures that can be identified in it.

public abstract class Component{

public abstract void operation();
public void add(Component c){}
public void remove(Component c){}

}

public class Composite extends Component{

private List<Component> components = new Vector<Com ponent>();

public void operation(){

 for (Component c : components)
 c.operation();

}

public void add(Component c){
 components.add(c);
}

public void remove(Component c){
 components.remove(c);
}

}

public class Leaf extends Component{
 public void operation(){
 …
 }
}

Design pattern clues

Six design pattern clues can be found in this basic implementation of the Composite:

- Abstract cyclic call: the Composite.operation() method invokes the abstract method
Component.operation() from within an enhanced for cycle;

68

- Component method: the two methods Component.add() and Component.remove() are

instances of this clue, as they receive an object belonging to the same class as an input

parameter;

- Node class: Composite is a Node class, as it extends a class declaring component

methods, overriding them;

- Leaf class: Leaf is a Leaf class, as it extends a class declaring component methods

without overriding them;

- Same interface container: Composite contains a list of Component s, that are objects that

share the same interface with the Composite class;

- Multiple redirections in family: the Redirect in family EDP is detected inside a cycle,

therefore it is supposed to work on a set of elements, like in this case, where the
operation() method is invoked on each Component object belonging to the
Components list.

Elemental design patterns

In this implementation of the Composite the following EDPs have been detected. One

Abstract interface EDP states that the Component class declares an abstract method, and

consequently is an abstract class. Two Inheritance EDPs connect the Composite and Leaf

class through an extension relationship. A Create object EDP can be found in Composite ,
where a List of Component s is instantiated. Finally a Redirect in family EDP is detected in

the Composite.operation() method. This method invokes a method with the same

signature belonging to Composite ’s superclass.

Micro patterns

The micro patterns for the Component class are:

- Trait: Component is an abstract class with no state;

- Sink: its methods do not invoke methods on any other class.

The Composite class is characterized by the following micro-patterns:

- Function object: it has only one public instance method and one instance field;

- Box: the only instance field is mutable;

- Implementor: it overrides the inherited abstract methods;

- Overrider: Composite also overrides the inherited non-abstract methods;

Finally, for the Leaf class we have:

- Implementor: it overrides the inherited abstract methods;

- Stateless: Leaf is a concrete class which has no fields.

69

6) Micro-structures detection in the Decorator design pattern

Let’s now analyze the Decorator. Its structure is very similar to that of the Composite, so it

is interesting to see if the micro-structure detection process can help in distinguishing

these two patterns.

public abstract class Component {
 abstract void operation();
}

public class ConcreteComponent extends Component{
 public void operation(){
 …

}
}

public abstract class Decorator extends Component {

 private Component component;

 public void operation(){
 component.operation();
 }
}

public class ConcreteDecorator extends Decorator {
 public void operation(){
 super.operation();
 addedBehaviour();
 }

 public void addedBehaviour(){
 …

}
}

Design pattern clues

The following design pattern clues can be found in this basic implementation of the

Decorator design pattern:

- Instance in abstract class: the abstract class Decorator maintains an instance to a

different class (namely the Component class);

- Instance in abstract referred: the method Decorator.operation() invokes a method on

the Component ’s instance;
- Reference to abstract class: the instance declared by the Decorator class belongs to an

abstract class;

- Same interface instance: the Component instance declared by the Decorator class is

compatible with the same interface; in this case, differently from what happens for the

70

Composite, we do not deal with a set of objects compatible with the same interface, but

only one is considered;

Elemental design patterns

In the basic implementation of the Decorator the following EDPs have been detected. As

for the Composite design pattern, an identical Abstract interface EDP has been detected

for the Component class. Three Inheritance EDPs connect ConcreteComponent , Decorator
and ConcreteDectorator to the corresponding superclasses. A Redirect in family EDP

has been detected in the Decorator class, similarly to that found in the Composite class in

the Composite design pattern. Finally, the super method invocation in
ConcreteDecorator.operation() is an instance of the Extend method EDP, where a

method belonging to the superclass is enriched with some added behavior.

Micro patterns

In this implementation of the Decorator, the following micro patterns can be identified.

For the Component class we have:

- Trait: Component is an abstract class with no state;

- Sink: its methods do not invoke methods on any other class;

For the Decorator class we can identify the following micro patterns:

- Function object: the class has only one public instance method and one instance field;

- Box: the only instance field is mutable;

- Overrider: Decorator also overrides the inherited non-abstract methods;

The ConcreteComponent class is characterized by the following micro patterns:

- Implementor: it overrides the inherited abstract methods;

- Stateless: ConcreteComponent is a concrete class which has no fields.

Finally, the ConcreteDecorator class has the following micro patterns:

- Stateless: as the ConcreteComponent , ConcreteDecorator has no fields;

- Overrider: it overrides the non-abstract methods inherited by Decorator .

4.4.2. Micro-structures relevance evaluation for design pattern detection

The examples of micro-structures detection in the six different design patterns lead to

meaningful considerations about their exploitation in a design pattern detection activity.

As it results clear from the examples, the various categories of micro-structures identify

very different peculiarities that can be found in the design pattern instances.

71

Without minding at this heterogeneity of elements (that is obviously unavoidable, due to

the different characteristics and detail levels of each kind of micro-structures), the real

questions are: how can these elements help us in the detection of design patterns? Which

are the most relevant elements? Do they provide enough information for design patterns

detection? Trying to give an answer to these questions is the main scope of this section.

To go further into discussion, we shall remind that design patterns are at a first glance a

composition of roles based on a well defined structure. Each role is usually played by a

single class in the design pattern, with the aim to perform a well-defined task inside the

pattern (like the singleton role in the Singleton design pattern, where its instance has to be

unique at run-time). Or else, they can provide basic functionalities that are to be used by

the other design pattern roles: for example, the Concrete products in the Abstract factory

design pattern aren’t designed to perform particular functionalities, but they are just

classes to be instantiated by the factories. The first kind of roles can be defined as active

roles, as they actually contribute to the behaviour of the pattern. The other roles can be said

to be passive roles, as they are exploited by the active roles in order to perform their

operations, and they don’t provide any other functionality to the pattern itself.

Therefore, the activity of design pattern detection in a software system through static

analysis should be supported by two intermediate steps:

- a first identification of the basic structure of the pattern, i.e. the extraction of classes

whose relationships with each other in terms of referencing and inheritance are

compatible with those specified for the pattern to be detected;

- the identification of each role played inside a pattern, analyzing the structures

extracted in the first step in order to understand if the classes that compose it are

actually playing the supposed roles.

Hence, micro-structures are to be considered useful for design pattern detection if they

help us in identifying both the pattern architectures and those characteristics that are

proper of each single role of design patterns.

In the following, we analyze whether the detected micro-structures are to be considered

relevant for the identification of both pattern structures and roles, according to the

constraints asserted by each pattern definition.

First of all, we define some fundamental characteristics that cannot be missed while

implementing each single role of the various design patterns. These characteristics (that

are necessarily informally introduced, due to the informal nature of design patterns) can

be derived both by the design pattern catalogue [GHJV94] and by personal experiences,

capturing all the fundamental commonalities that can be found inside different

implementations of each single design pattern role.

72

For the Singleton design pattern we have only the Singleton role:

Singleton

- It must grant the presence of a unique instance of itself during execution.

This is the only request for the Singleton role, and therefore for the Singleton design

pattern. In the design pattern catalogue nothing is specified about how to grant this

request, as many different implementations of this design pattern (as obviously for all the

other patterns) may exist.

For the Abstract factory design pattern, four different roles have been identified (we don’t

consider the presence of the client, as we aim at the identification of the roles of the core

structure of the pattern), that should have these peculiarities:

Abstract factory

- it must provide getter methods to obtain references to the abstract products.

Concrete factories

- they must extend the Abstract factory;

- they must redefine the methods provided by the Abstract factory in order to allow the

return of the correct concrete products.

Abstract products

- They must be realized by abstract classes.

Concrete products

- They must be realized by concrete classes that extend their abstractions.

For the Template method, two different roles with the following characteristics are

specified:

Abstract class

- It must define a concrete method invoking at least one abstract method defined in the

same class;

Concrete class

- It must extend the abstract class, thus implementing the abstract methods defined by it.

For the State design pattern we can define the following characteristics that cannot be

currently represented with micro-structures, but that we report for completeness:

73

Context

- It must maintain a reference to the abstract state;

- It must invoke the handle() method on the abstract state;

State

- It must provide an interface for the concrete states;

Concrete states

- They must extend the abstract state;

- They must provide mechanisms to switch from one state to another through the

interface method provided by the abstract state.

The last characteristic cannot be captured by any of the currently available micro-

structures, as it is strictly related with the behavioural and dynamic nature of the pattern.

For the Composite design pattern we have the following characteristics:

Component

- It must provide methods to handle objects of the same type;

- It must implement an operational method as well.

Composite

- It must extend the component;

- It must maintain a list of components;

- It must implement the abstract handling methods defined by the component;

- It must invoke the operational method on all the components belonging to the list.

Leaf

- It must extend the component;

- It must not deal with objects compatible with its same interface, as the composite does;

- It should override the operational method provided by the component.

For the Decorator design pattern we can define the following peculiarities:

Component

- It must be an abstract class;

- It must define an operational method.

Decorator

- It must extend the component;

74

- It must maintain an instance of the component;

- It must override the operational method invoking it on the declared component

instance.

Concrete components

- They must extend the component;

- They should extend the operational method.

Concrete decorators

- They must extend the decorator;

- They must enrich the operational methods with some other behavior.

The relevance of micro-structures is to be evaluated for the analyzed patterns, considering

both the extraction of pattern structures and the identification of each single role. Basing

on our experience, on the characteristics defined for the various roles and on the examples

provided before, for each design pattern role and for each micro-structure we indicate if

each of them is:

- Relevant: it helps in identifying the relationships that subsist among the various pattern

roles, as well as the peculiarities that characterize each role; hence it points out some of

the constraints we have just introduced;

- Irrelevant: it is not useful for the extraction of any kind of meaningful information about

the pattern.

In order to avoid excessive information, the considerations about the relevance of each

micro-structure will be reported in the next sub-section, where actual implementations of

design patterns are analyzed. Here we only provide some general considerations about the

micro-structures relevance, which can be easily verified considering the results provided

in the next part. As we will notice from the results tables, only the design pattern clues are

to be considered in any case relevant for the detection of the roles of each of the studied

pattern. This observation is directly related with the nature of design pattern clues, which

have been introduced for design pattern detection purposes. Micro patterns revealed

themselves useful only in few cases, while EDPs are always useful for the extraction of

pattern architectures. Anyhow, by tagging some micro-structures as relevant for the

detection of particular roles inside a design pattern, we cannot assert that the identification

of the design patterns is automatically granted. In fact, a design pattern is something more

than an aggregation of roles characterized by the simple properties we have defined: these

roles must be interconnected, they may reveal non-trivial interactions, and they surely

present behavioural characteristics which are not yet revealed by any micro-structure, as

they actually capture static aspects of a design pattern implementation. Hence the micro-

75

structures currently assert that the analyzed code structure or architecture may represent a

potential instance of a design pattern rather than a precise one. The information they point

out (if meaningful) catches some fundamental characteristics that usually need for further

inspection to identify the more complex properties the design pattern is characterized by.

4.4.3. Micro-structures detection in design pattern implementation variants

The third step for the validation of the usefulness of micro-structures for design pattern

detection consists in analyzing actual design pattern implementations that are correct

variants of the standard implementations presented before. For each pattern we

considered a set of instances (12 Singletons, 16 Abstract factories, 12 Template methods, 15

Composites and 9 Decorators) that have been analyzed role by role.

Role name

Micro-

structure

category

Micro-

structure

No. of instances

presenting the

micro-structure

% of

instances

presenting

the micro-

structure

Relevance of the

micro-structure

for the design

pattern structure

Relevance of the

micro-structure for

the design pattern

role

Singleton

EDPs Create object 12 100% Relevant Irrelevant

DP Clues

Protected

instantiation
12 100% Relevant Relevant

Private self

instance
7 58% Relevant Relevant

Static self

instance
8 67% Relevant Relevant

Single self

instance
11 92% Relevant Relevant

Controlled

self

instatiation

8 67% Relevant Relevant

Concrete

product

getter

12 100% Relevant Irrelevant

Micro

patterns

Function

object
12 100% Relevant Irrelevant

Common

state
10 83% Relevant Irrelevant

Restricted

creation
11 92% Relevant Relevant

Data

manager
1 8% Irrelevant Irrelevant

Sink 2 17% Irrelevant Irrelevant

Table 4.2 – Results for the Singleton instances

76

The State design pattern is not considered in the rest of the chapter because there are not

relevant micro-structures for the detection of its roles. For each role, only the micro-

structures that should characterize it (and that have been detected in the sample

implementations, as explained in Section 4.4.1) have been considered.

Table 4.2 resumes the results of micro-structures detection for the Singleton design pattern

instances. For this pattern the results are encouraging. Considering both its architecture

and its single role, many relevant elements can be detected in the majority of the analyzed

instances. In particular, the Create object EDP, which is relevant for the Singleton

structure, and the Protected instantiation clue and the Function object micro pattern, that

are important for the existence of the Singleton role, are found in all of the 12 instances.

The two relevant elements that are found in fewer instances are the Private and Static self

instance clues, that can be detected in around the 60% of instances.

Role name

Micro-

structure

category

Micro-

structure

No. of instances

presenting the

micro-structure

% of

instances

presenting

the micro-

structure

Relevance of the

micro-structure for

the design pattern

structure

Relevance of the

micro-structure for

the design pattern

role

Abstract

factory

EDPs
Abstract

interface
13 81% Relevant Irrelevant

DP Clues

Abstract

product

returned

13 81% Relevant Relevant

Parent

product

returned

13 81% Relevant Relevant

Micro

patterns

Trait 5 31% Irrelevant Irrelevant

Pure type 3 18% Irrelevant Irrelevant

Pseudo class 3 18% Irrelevant Irrelevant

Concrete

factories

EDPs
Create object 15 94% Relevant Irrelevant

inheritance 15 94% Relevant Irrelevant

DP Clues

Concrete

products

returned

0 0% Relevant Relevant

Micro

patterns

Data manager 0 0% Relevant Irrelevant

Sink 1 6% Irrelevant Irrelevant

Trait 0 0% Irrelevant Irrelevant

Implementor 11 69% Relevant Irrelevant

Abstract

products

Micro

patterns

Trait 1 6% Irrelevant Irrelevant

Pseudo class 10 63% Irrelevant Irrelevant

Concrete

products

EDPs Inheritance 13 81% Relevant Irrelevant

Micro

patterns
Trait 0 0% Irrelevant Irrelevant

Table 4.3 – Results for the Abstract factory instances

77

Table 4.3 collects the results of micro-structures detection for the Abstract factory design

pattern instances. For this pattern, EDPs behave well for the extraction of its architecture.

Between 81% and 94% of instances implement EDPs that help in identifying the general

architecture of the pattern. As far as the single roles are concerned, the 81% of the Abstract

factory roles implement the clues detected for this role in Section 4.4.1. Other micro-

structures categories are in general irrelevant for the detection of any particular role in this

pattern.

Table 4.4 resumes the results of micro-structures detection for the Template method

instances. This behavioural pattern is well detected by the use of micro-structures, both in

terms of elements useful for the extraction of its structure and for the detection of the two

roles belonging to it. The elements that have been defined for this pattern and that are

fundamental for its detection have been detected in the 100% of the considered instances.

Role name

Micro-

structure

category

Micro-structure

No. of instances

presenting the

micro-structure

% of

instances

presenting

the micro-

structure

Relevance of the

micro-structure

for the design

pattern structure

Relevance of the

micro-structure for

the design pattern

role

Abstract

class

EDPs

Abstract

interface
12 100% Relevant Irrelevant

Conglomeration 12 100% Relevant Irrelevant

DP Clues
Template

method
12 100% Relevant Relevant

Micro

patterns
Outline 12 100% Relevant Relevant

Concrete

class

EDPs Inheritance 12 100% Relevant Irrelevant

DP Clues
Template

implementor
12 100% Relevant Relevant

Table 4.4 – Results for the Template method instances

This is the only case we currently know of a design pattern automatically detectable

through the only identification of micro-structures inside the code. In particular, this is

quite odd, considering that the Template method is a behavioural design pattern. In fact,

this category of patterns is generally characterized by a small set of micro-structures, that

often don’t characterize their roles very well, but they rather lay on dynamic

characteristics that cannot be formalized in elements that are detectable from source code

by static analysis techniques (the State design pattern is probably the best representative of

this group of patterns).

Table 4.5 resumes the results about the analysis of the Composite design pattern instances.

As we can notice, EDPs behave well as far as the identification of the Composite’s

architecture is concerned. The fundamental inheritance relationship between the

78

Composite and the Component role is identified in the 93% of the analyzed instances. A

73% rate of inheritance between the Leaf and the Component is due to the fact that 4

instances do not provide any class playing the Leaf role. Analyzing the micro-structures

relevant for each single role, we notice that 13 Composite roles have at least a fundamental

Redirect in family, and for 12 of these instances this EDP is identified within a cycle, which

lets us assume that this method invocation is repeated for the elements of a certain

collection. This is also supported by the presence of 13 Same interface container clues, that

have been detected in the same instances presenting the Multiple redirections in family

clue. Only eight Component roles declare actual component methods, and consequently

only eight Composite roles can be considered Node classes.

Role name

Micro-

structure

category

Micro-

structure

No. of instances

presenting the

micro-structure

% of

instances

presenting

the micro-

structure

Relevance of the

micro-structure

for the design

pattern structure

Relevance of the

micro-structure

for the design

pattern role

Component

EDPs
Abstract

interface
12 80% Relevant Irrelevant

DP Clues
Component

method
8 53% Irrelevant Relevant

Micro

patterns

Trait 4 27% Irrelevant Irrelevant

Sink 4 27% Irrelevant Irrelevant

Composite

EDPs

Inheritance 14 93% Relevant Relevant

Create object 1 7% Relevant Relevant

Redirect in

family
13 87% Relevant Relevant

DP Clues

Abstract cyclic

call
10 67% Relevant Relevant

Node class 8 53% Relevant Relevant

Same interface

container
13 87% Relevant Relevant

Multiple

redirections in

family

13 87% Relevant Relevant

Micro

patterns

Function object 0 0% Irrelevant Irrelevant

Box 6 40% Irrelevant Irrelevant

Implementor 9 60% Relevant Irrelevant

Overrider 1 7% Relevant Irrelevant

Leaf

EDPs Inheritance 11 73% Relevant Irrelevant

DP Clues Leaf class 4 27% Relevant Relevant

Micro

patterns

Implementor 11 73% Relevant Irrelevant

Stateless 7 47% Relevant Irrelevant

Table 4.5 – Results for the Composite instances

79

Table 4.6 collects the results obtained during the analysis of the Decorator instances. As it

appears clear in [GHJV94], the architectures of the Composite and the Decorator design

patterns in terms of classes and static relationships among them is very similar. An

abstract component class is on top of the pattern hierarchy in both cases, and both the

composite and the decorator classes extend their corresponding component class also

maintaining a reference to it. The distinction between these two patterns is therefore to be

searched inside the essence of each role. While the structures of these patterns can be well

detected through the identification of EDPs, the micro-structures characterizing the

various roles must necessarily be different and specific for each pattern, in order to

distinguish Composite from Decorator instances.

Role name

Micro-

structure

category

Micro-

structure

No. of instances

presenting the

micro-structure

% of

instances

presenting

the micro-

structure

Relevance of the

micro-structure

for the design

pattern structure

Relevance of the

micro-structure for

the design pattern

role

Component

EDPs
Abstract

interface
9 100% Relevant Irrelevant

Micro

patterns

Trait 1 11% Irrelevant Irrelevant

Sink 4 44% Irrelevant Irrelevant

Decorator

EDPs

Inheritance 6 67% Relevant Irrelevant

Redirect in

family
5 56% Relevant Irrelevant

DP Clues

Instance in

abstract class
6 67% Relevant Relevant

Instance in

abstract

referred

5 56% Relevant Relevant

Reference to

abstract class
6 67% Relevant Relevant

Same interface

instance
6 67% Relevant Relevant

Micro

patterns

Function object 3 33% Irrelevant Irrelevant

Box 5 56% Irrelevant Irrelevant

Overrider 0 0% Irrelevant Irrelevant

Concrete

components

EDPs Inheritance 9 100% Relevant Irrelevant

Micro

patterns

Stateless 6 67% Relevant Irrelevant

Implementor 7 78% Relevant Irrelevant

Concrete

decorators

EDPs

Inheritance 9 100% Relevant Relevant

Extend method 4 44% Relevant Relevant

Redirect in

famlily
6 67% Relevant Relevant

Micro

patterns

Stateless 4 44% Irrelevant Irrelevant

Overrider 1 11% Irrelevant Irrelevant

Table 4.6 – Results for the Decorator instances

80

The distinction between the Composite and the Decorator role is to be searched in the kind

of reference to the Component that they maintain. While for the Composite design pattern

we had a Same interface container clue, in the Decorator we only need one single instance

of the Component class, represented by the Same interface instance clue. The method

invocation to the Component is again a Redirect in family, but in this case enriched with

the presence of an Extend method, which helps us in understanding that a certain method

has been added new behavior.

4.5. An association among pattern roles and micro-structures for their

detection

Basing on the pattern roles characteristics defined before, on the relevance of the various

micro-structures discussed so far and on the results obtained in the identification of micro-

structures inside real pattern instances, we collect in the next tables the micro-structures

that are useful to identify each particular pattern characteristic.

The micro-structures useful for the identification of the Singleton design pattern belong to

the design pattern clues and to the micro patterns (Table 4.7). As this pattern is constituted

by a single class, without any particular method invocation, no fundamental EDPs for it

have been detected.

Singleton

Role name Characteristic EDPs DP Clues Micro patterns

Singleton

It must grant the presence of

a unique instance of itself

during execution

Single self instance,

Private self

instance, Static self

instance, Protected

instantiation

Function object,

Restricted creation

Table 4.7 – Micro-structures usefulness in the Singleton

The issues that characterize the various roles belonging to the Abstract factory can be

revealed by a good set of micro-structures belonging to all the categories considered in

this comparison (Table 4.8). The structural constraints of this pattern are pointed out

mainly by EDPs (micro patterns reveal possibly useful only in the detection of the

Concrete factory class). The essence of this pattern is enclosed in the Abstract factory role.

This role can be identified with the use of design pattern clues, which helps in identifying

the role characteristics, besides its structural constraints.

81

For the identification of the Template Method pattern (Table 4.9) we can rely on the

detection of only two clues, which represent both necessary and sufficient conditions for

the existence of both the Abstract class and the Concrete class roles. EDPs can be used only

in the detection of the pattern structure, while the Outline micro pattern can be used to

detect the Abstract class role.

Abstract factory

Role name Characteristic EDPs DP Clues Micro patterns

Abstract factory

It must provide getter

methods for the obtainment

of references to the abstract

products

Abstract interface

Abstract products

returned,

Parent products

returned

Concrete factories

They must extend the

Abstract factory
Inheritance

They must redefine the

methods provided by the

Abstract factory in order to

allow the return of the

correct concrete products

Concrete products

returned
Implementor

Abstract products
They must be realized by

abstract classes
Abstract interface

Concrete products

They must be realized by

concrete classes that extend

their abstractions

Inheritance

Table 4.8 – Micro-structures usefulness in the Abstract factory

Template method

Role name Characteristic EDPs DP Clues Micro patterns

Abstract class

It must define a concrete

method calling at least one

abstract method defined in

the same class

Abstract interface,

Conglomeration
Template method Outline

Concrete class

It must extend the abstract

class, thus implementing the

abstract methods defined by

it

Inheritance
Template

implementor

Table 4.9 – Micro-structures usefulness in the Template method

82

For the Composite design pattern (Table 4.10) it is evident how the detection of its

structure can be pursued exploiting EDPs. The issues related to each single role apart from

their architecture are detectable through the use of clues.

Composite

Role name Characteristic EDPs DP Clues Micro patterns

Component

It must provide methods to

handle objects of the same

type

Abstract interface
Component

method

It must implement an

operational method

Multiple

redirections in

family

Composite

It must extend the

component
Inheritance

It must maintain a list of

components

Same interface

container

It must implement the

abstract handling methods

defined by the component

 Node class

It must invoke the

operational method on all

the components belonging to

the list

Redirect in family

Multiple

redirections in

family

Leaf

It must extend the

component
Inheritance

It must not deal with objects

of the same interface, as the

composite does

 Leaf class

It should override the

operational method

provided by the component

 Leaf class Implementor

Table 4.10 – Micro-structures usefulness in the Composite

As for the Composite, also for the detection of the Decorator pattern structure EDPs are

useful (Table 4.11). The design pattern clues are useful to identify the fundamental

Decorator role, which is different from the Composite role of the homonym pattern as the

Decorator maintains a single instance of the class with the same interface, instead of a

collection of elements.

As it appears clear from the previous tables, and considering the discussion about micro-

structures detection inside the real examples we provided, the main micro-structures

involved in the identification of pattern roles characteristics are the EDPs, and the design

pattern clues. EDPs are to be used mainly for the identification of architectural constraints

83

on the patterns (which specify the abstract roles, the inheritance hierarchies and the

references among the various classes).

Decorator

Role name Characteristic EDPs DP Clues Micro patterns

Component

It must be an abstract class Abstract interface

It must define an operational

method
Redirect in family

Decorator

It must extend the

component
Inheritance

It must maintain an instance

of the component

Reference to

abstract class, Same

interface instance

It must override the

operational method invoking

it on the declared component

instance

Redirect in family

Concrete

components

They must extend the

component
Inheritance

They should extend the

operational method
Extend method

Concrete

decorators

They must extend the

decorator
Inheritance

They must enrich the

operational methods with

some other behaviour

Redirect in family,

Extend method

Table 4.11 – Micro-structures usefulness in the Decorator

Design pattern clues are especially useful and suited to identify the main characteristics of

each single design pattern role, aside from design patterns architectures. Finally, as it

appears clear from the tables, micro patterns did not prove in general very useful for the

detection of the discussed patterns.

4.6. Concluding remarks

In this chapter we have presented the considered micro-structures under six aspects that

allowed us to provide a comparative evaluation among them.

The main contribution of this chapter is related to a deep comprehension of the building

blocks composing design patterns. This understanding can reveal particularly useful for a

better application of design patterns, for the improvement of program comprehension and

for the evaluation of design quality. Micro-structures for design pattern detection have

84

then been analyzed according to two main aspects, namely their usefulness for the

detection of pattern structures and for the identification of single pattern roles. In this

context, the micro-structures which are particularly relevant for the identification of

pattern structures are mainly EDPs. On the other hand, DP clues revealed more suitable

for the detection of the roles played within the patterns. Micro patterns have revealed

themselves useful only in particular cases (e.g., for the recognition of the Template

method). These findings were also confirmed by an analysis of the micro-structures

implemented in sample sets of design pattern instances, letting us specify those micro-

structures that are crucial for the presence of each of the considered patterns inside the

analyzed systems.

As it also appeared from the comparison and from the pursued experimentations, the

considered micro-structures are of various types and capture different aspects at different

abstraction levels. For example, EDPs capture object-oriented best practices and are

independent from any programming language; clues aim to identify basic structures that

are peculiar to each design pattern; micro-patterns express common programming

techniques. Moreover, these micro-structures have been defined with different purposes.

Essentially, EDPs and DP clues have among their main objectives the recognition of design

patterns, while micro patterns focus on the description of programming techniques.

The heterogeneity of the considered micro-structures may lead to two conclusions. The

first one is related to the fact that there is little agreement in what design patterns are built

of and what kind of techniques or artifacts should be used for their detection. The second

remark testifies the interest in understanding design patterns, and the worth of the effort

necessary for their recognition in the context of reverse engineering, due to the meaning

behind them which enables us to understand also the “why” of a design, not only the

“how” of an implementation detail.

The micro-structures detection process is the core concept residing behind the detection of

design patterns within MARPLE [ATZM08], for the refinement of design pattern detection

results obtained by different tools as described in the next chapter, and for software

architecture reconstruction activities as described in Chapter 6.

85

Chapter 5

Micro-structures for the validation and

refinement of design pattern detection

tools results

Abstract

In this chapter we present the results provided by four different design pattern detection tools on the analysis of

JHotDraw 6.0b1, a well known Java GUI framework. We show that the tools generally provide different results, even

while evaluating the same subject system. From this observation, we introduce an approach based on micro-structures

that is aimed to discard the false positives from the detected results, hence improving the precision of the analyzed tools.

5.1. Detection of design patterns through four design pattern detection

tools

Several tools for design pattern detection exist. Each of them is based on a different

approach, adopts different strategies to detect patterns, and in general can identify only a

subset of the defined patterns.

The work described in this chapter is focused on the experimentation of four well-known

tools, namely Design Pattern Detection Tool [TC06], PINOT [SO06], FUJABA [NNZ00] and

Web of Patterns [DE07]. In this section we report the results obtained by these tools on the

analysis of the JHotDraw 6.0b1 framework [JHD]. We will focus our attention on this

system as one of the reasons behind the development of JHotDraw is the demonstration of

the practical application of design patterns in a software project. For each class of the

system, the documentation indicates if it eventually belongs to a certain pattern or set of

patterns, and which role it plays within the patterns it takes part to. In this way, we have a

86

precise indicator about what patterns have been implemented, how many instances of a

certain pattern can be found in the system, and which classes take part to which patterns.

Table 5.1 resumes the results produced by the four considered tools on JHotDraw 6.0b1, in

terms of the number of instances they are able to detect for each pattern.

Pattern

category
Pattern name

Design Pattern

Detection Tool
PINOT FUJABA2 Web of Patterns

C
re

a
ti

o
n

al

Abstract factory n/a n/a 2 14

Builder n/a n/a n/a n/a

Factory method 2 34 2 n/a

Singleton 2 0 0 1

Prototype 3 n/a n/a n/a

B
eh

a
v

io
u

ra
l

Chain of responsibility n/a n/a 0 n/a

Command 231 n/a n/a n/a

Iterator n/a n/a 10 n/a

Mediator n/a n/a n/a n/a

Memento n/a n/a 11 n/a

Observer 3 n/a n/a n/a

State 291 3 0 n/a

Strategy 291 51 0 n/a

Template method 5 2 31 1

Visitor 1 1 0 0

S
tr

u
ct

u
ra

l

Adapter 231 5 26 1

Bridge n/a n/a 0 n/a

Composite 1 4 0 1

Decorator 3 5 0 n/a

Façade n/a n/a 8 n/a

Flyweight n/a n/a 0 n/a

Proxy n/a n/a n/a n/a

Table 5.1 – Results of the design pattern detection process obtained by four tools on the analysis of JHotDraw 6.0b1

1 Design Pattern Detection Tool identifies the Adapter and the Command as being the same pattern. This is due to the fact that the two

patterns, actually present an identical structure. The 23 results are to be considered comprising both Adapter and Command instances.

The same considerations are applicable to the State and Strategy patterns, which the tool recognizes as being the same pattern.

2 The instances detected by FUJABA are expressed in terms of similarity to the actual correct implementation of the pattern. For each

instance, a percentage value is given, which represents the grade of similarity of the instance to the actual pattern. For brevity, we don’t

report here the similarity values. Anyway, each of the identified instances is at least 80% close to the real pattern.

87

From the analysis of the above table, different considerations shall be done. First of all, at

now no tool is able to detect or provide techniques for the identification of the whole set of

design patterns defined by Gamma. This may be due to the difficulty in the definition of a

detection strategy for some design patterns (especially for the behavioural ones), or to the

lack of structural or programming hints that can help for the detection, as well as to the

lack of formalization of the patterns themselves, or to the different detection approaches

adopted by the various tools. A second (and more important) consideration is related to

the different results obtained by the tools in the detection of the same pattern. As it can be

noticed, it doesn’t exist a pattern for which the tools return the same number of instances.

And, even if this would have been the case, it could have been possible that the detected

instances differed from one tool to another in terms of classes realizing each single

instance. This is once again due to the fact that the tools adopt different detection

strategies (hence some instances that do not strictly comply with the constraints adopted

by each single tool will not be detected by it), and especially to the presence of different

design pattern variants inside the code.

As the different tools identify a considerable number of false positives, hence worsening

the precision rates, in this chapter we present a methodology aimed at discarding false

positive instances through the help of micro-structure-based refinement rules.

Our approach reveals useful as it aims at improving the precision of design pattern

detection tools, therefore obtaining results that are more close to the actual design pattern

instances implemented in the analyzed systems. As we are only focused on the refinement

of results obtained by third-party tools, in this chapter we do not describe any new

approach for design pattern detection. We consequently do not face or propose a possible

solution to the variants problem, as we just analyze the instances provided by other tools

as they are. For the same reasons, the refinement approach described here (which is not a

detection approach) doesn’t aim to maximize recall values, but only to improve the

precision rates of common design pattern detection tools.

5.2. Refinement rules definition

The main problem concerned with design pattern detection is the variants problem. Due

to the mainly informal nature of design patterns, tools for design pattern detection

generally adopt different detection algorithms and produce different results, even while

analyzing the same target systems. Therefore, the average precision and recall [BR99]

values generally differ among the various tools and the various design patterns they are

able to detect. Given a subject system S, we indicate with tp the number of real design

pattern instances implmentend in S and identified by the pattern detection tools (true

88

positives); fp indicates the number of instances which have been detected by the tool on S

but which are not correct realizations of the subject pattern (false positives), while fn

indicates the number of pattern instances implemented in S which cannot be identified by

the detection tool (false negatives). The precision P of a design pattern detection tool is

computed as P = tp / (tp + fp), and indicates how much of the detected instances are actual

and correct pattern implementations. The more P is close to 1, the more the tool is precise

and the less false positives the tool detects. The recall R is defined as R = tp / (tp + fn), and

indicates how many of the actually implemented pattern instances the tool is able to

recover.

In order to increase the accuracy of the results provided by available tools, we propose to

analyze the pattern instances identified by them with the use of refinement rules that are

based on the micro-structures that can be detected in each pattern. First of all, we must

recall that every design pattern is constituted by one or more roles, according to [GHJV94],

each one played by a single class. Micro-structures do not place themselves on the general

design pattern level of abstraction, but, due to their nature and definition, each of them

can be assigned to a single role inside the pattern it is a hint for. We have analyzed the

structures and typical implementations of design patterns, in order to assign to each role

the micro-structures that characterize them, in a similar way to what discussed in Chapter

4, Section 4.5.

The rules will be based on two micro-structures: the EDPs, that are useful to recover and

define the structures of the patterns, and the design pattern clues, which are more useful

to characterize the single pattern roles, as also seen in Chapter 4. Micro patterns are now

not considered, as they have little relevance for the identification of characteristics related

to the patterns that are detected by the majority of the considered tools (and as also

generally underlined in the previous chapter).

Each refinement rule for a given design pattern is represented as a graph G = (V, E), where

V represents the set of classes that constitute the pattern, i.e. the pattern roles, and E

represents the set of clues and EDPs that connect the various roles and that are peculiar for

the pattern. In this context, each clue or EDP can be seen as a relationship between two

roles (therefore it is depicted as an edge between two nodes of the rule graph), or as a

relationship between a role and itself (hence depicted as a kink on the role node). This is

also evident from the micro-structures definitions provided in Chapter 3.

Clues and EDPs aren’t to be considered sufficient conditions for the correctness of pattern

instances. Some of them are on the other hand necessary conditions, while the remaining

ones are used to further enrich and characterize the analyzed instances. The evaluation of

the necessary conditions will reveal especially useful in the refinement process, as

ambiguous instances will be discarded or accepted basing on the verification of these

conditions.

89

We now describe the rules for the validation of the patterns that are recognizable by the

majority of the considered tools. Necessary clues and EDPs are reported underlined.

For each role we indicate all the clues that may be identified inside it. This does not mean

that they all have to be detected inside a class in order to assert that the class plays the

specific role. Each role may present only a subset of these elements and still be a correct

role for the corresponding pattern.

We will define the rules and discuss the refinement process for the following patterns: the

Abstract factory, Factory method and Singleton creational patterns, the Adapter,

Composite and Decorator structural patterns, and the Template method and Visitor

behavioural patterns. This choice is due to the fact that these patterns are recognizable by

the majority of tools. Moreover, defining rules for those patterns that cannot be detected

by the tools, or for which no instances have been identified, would be of scarce interest, as

no refinement process can be pursued on them.

Even if three out of the four considered tools assert to be able to detect instances of the

State and Strategy patterns, we will not provide refinement rules for them, as we do not

have identified any peculiar micro-structure which could help in their validation, as also

discussed in Chapter 4. This is due to the strictly behavioural nature of these patterns,

which cannot be represented in the form of elements that can be statically detected from

source code analysis.

90

Table 5.2 reports and explains the refinement rules for the considered creational patterns.

Pattern

name
Refinement rule Explanation

A
b

st
ra

ct
 f

a
ct

o
ry

The Abstract factory pattern is

composed by four core roles.

The necessary clue for this

pattern is the Concrete product

getter, which grants that the

Concrete factory implements at

least one method which returns

an instance of the Concrete

product.

F
a

ct
o

ry
 m

et
h

o
d

Factory method is very similar

in structure to the Abstract

factory. In this pattern the

Factory method clue is

necessary. It assures the

existence of a method which

creates instances of the

Concrete product within the

Concrete creator.

S
in

g
le

to
n

The Singleton design pattern is

constituted by a single role. The

necessary clues for this pattern

are Protected instantiation

(which avoids the creation of

instances from external classes),

and the Single self instance

(which grants the presence of

only one instance for the

Singleton class).

Table 5.2 – Refinement rules for the considered creational design patterns

91

Table 5.3 describes the refinement rules for the considered structural design patterns.

Pattern

name
Refinement rule Explanation

A
d

a
p

te
r

The Adapter design pattern is constituted by

three roles: Target, Adaptee and Adapter. The

Adapter role overrides the methods provided by

the Target in order to be able to invoke the

methods declared by the Adaptee, letting

therefore the Target interface be compatible with

the Adaptee. This property is granted by the

necessary Adapter method clue.

C
o

m
p

o
si

te

The Composite pattern is formed by two core

roles, Component and Composite, and one

additional role, Leaf, which identifies child

component elements with no more children.

Component must define component methods

(Component method clue). The Composite must

have a collection of Component elements (Same

interface container clue), and override the

component methods defined by the component

(Node class). The component methods are to be

invoked on all the components belonging to the

collection (Multiple redirections in family).

D
ec

o
ra

to
r

The Decorator pattern is structurally similar to

the Composite. Three core roles constitute this

pattern, namely Component, Decorator and

Concrete decorator. The Decorator must maintain

a single reference to the Component (Same

interface instance clue), while the concerete

decorators must enrich the methods defined by

the Decorator the new behavior (Extend method

EDP).

Table 5.3 – Refinement rules for the considered structural design patterns

92

Table 5.4 introduces the refinement rules for the considered behavioural patterns, namely

the Template method and the Visitor.

Pattern

name
Refinement rule Explanation

T
em

p
la

te
 m

et
h

o
d

The Template method pattern is

formed by two roles. The Abstract

class is characterized by the

necessary Template method clue,

which grants that a concrete method

invokes abstract methods inside its

body. The Concrete class is

characterized by the Template

implementor clue, as it gives an

implementation to the abstract

methods invoked by the template

method defined in the Abstract

class.

V
is

it
o

r

The Visitor design pattern is formed

by four roles. The Concrete elements

to be visited must belong to a well

defined object structure (Object

structure child clue), like trees. They

must also provide methods to accept

visitor classes in order to be

inspected (Visitable class clue).

Table 5.4 – Refinement rules for the considered behavioural design patterns

Now that we have introduced the refinement rules for the considered patterns, we give a

description of the refinement process, and provide some refinement examples in order to

gain confidence with it. Providing a detailed description of the refinement of each of the

detected instances would take too much space and would be of scarce interest.

5.3. The pattern instances refinement process

Figure 5.1 resumes the adopted refinement process, which is mainly divided in four

consecutive phases. In the figure, the grey rectangles represent the tools involved in the

process. Rounded rectangles are related to the needed artifacts and representations, while

normal rectangles represent the pursued activities and operations.

93

First of all, design pattern instances are identified from the system through the different

detection tools; then they manually evaluated, in order to understand which of them are

correct instances, and which are on the other hand false positives. The manual evaluation

is based both on the system documentation (in the case it traces the existence of patterns

within the system), and on personal experience and knowledge about patterns.

Figure 5.1 – An overview of the refinement process

Manual evaluation is a necessary operation, as it currently is the only way to verify the

actual correctness of a pattern. For the future, the evaluation step could be supported by

an automated comparison with a repository of valid instances (a work in progress with

[ATZ08]).

94

The results obtained by the detection tools are represented in different forms, depending

on the used tool. In general, the tools provide graphical or textual representations, where

each role is associated with a particular class.

In order to be refined by the corresponding micro-structure-based rule, each instance must

be defined in a graph form, where each node represents a role and each edge represents

the set of micro-structures relating two roles. In the second phase of the refinement

process we define the roles for each detected instance: each role identified by the tool is

translated in a graph node. The graph structures are defined in appropriate XML

templates (one for each kind of pattern). Each element of the template corresponds to a

role, and is to be completed with the actual class or classes playing that specific role. This

is currently supported by a manual process, but we are working on the development of

scripts that help in automating this process, at least for the most common tools for design

pattern detection.

Considering the third phase, the defined graph nodes constitute the first input for the

Design pattern refiner, a graphical front end devoted to the validation of pattern instances.

For each instance, starting from the graph nodes and from the micro-structures identified

by the Micro-structures detector on the subject system, the refiner generates the actual

micro-structure-based pattern instance: the roles in the graph are associated according to

the micro-structures detected in the classes composing the instance under analysis. The DP

refiner then applies the adequate refinement rule on each micro-structure-based instance,

in order to check which of the micro-structures defined by the rule are actually

implemented in the analyzed instance. Basing on this application, on the micro-structures

peculiar for the pattern, and on the necessary pattern micro-structures, as defined in

Section 5.2, in the validation step each instance is automatically accepted as a true pattern

instance, or classified as a false positive and hence discarded.

In the fourth and final phase, the results are compared to the manual evaluation of the

detected instances, in order to verify whether the refinement process provides the same

results or not. At now, the comparison is manually performed. We plan to automate this

phase in a future integration of the refinement process just described to the benchmark

platform for design pattern detection evaluation we are currently developing [ATZ08].

As with our approach we actually “restrict” the set of patterns identified by each tool, one

could argue that this is somehow equivalent to intersect the results provided by two

different detection tools. However, this is not the case. In fact, the two tools may identify

the same sets of false positives instances, that won’t obviously be discarded by the

intersection of the tools’ results. On the other hand, our approach doesn’t make such

intersections, but considers the results of each tool singularly, trying to discard the false

positives, which may not be avoided while matching the results provided by two different

tools.

95

5.4. Application of the rules to the detected instances

Each of the instances detected by the four considered tools has been analyzed according to

the rules defined in Section 5.2 and according to the process just presented, in order to

check both their validity and the usefulness of the rules to validate the patterns.

Pattern

name
Detected instance

Refinement result and

considerations

F
a

ct
o

ry
 m

et
h

o
d

In this instance, only the Creator

role is present. The application of

the Factory method rule to this

instance does not validate it, as it

lacks the remaining pattern roles

and the fundamental micro-

structures defined by the rule.

In this instance, AbstractFigure is

the Creator, PolyLineFigure the

Concrete creator, while

PolyLineConnector is the Concrete

product. This instance is validated

by the rule, as the structural

relationships among the role exist,

and the necessary micro-structures

for this pattern are implemented

(the Factory method clue).

S
in

g
le

to
n

The Clipboard class has a single

instance of itself and protected

instantiation mechanisms to prevent

the creation of Clipboard instances

from other classes. Hence,

Clipboard is a correct instance of

the Singleton pattern and is

validated by the rule.

Iconkit only presents the Single

self instance clue, which is a

necessary condition for the existence

of the pattern. Anyway, no

protected instantiation mechanism

is provided, therefore Iconkit is not

to be considered a correct Singleton

instance, as the Single self instance

alone is not enough to grant the

instance uniqueness property of this

pattern.

Table 5.5 – Application and results of the refinement process on sample creational design patterns instances

96

We now provide some examples of the results obtained with the refinement process. For

each instance, we indicate the corresponding design pattern, the graph representing the

instance after the application of the refinement rule, and the consequent considerations

about the validity of the analyzed instance. Table 5.5 reports some examples of the

application of the refinement process on some instances of creational design patterns.

Table 5.6 describes examples of the application of the refinement process on instances of

structural design patterns.

Pattern

name
Detected instance

Refinement result and

considerations

C
o

m
p

o
si

te

The two main roles for the

Composite pattern have been

identified: Figure is the

Component (this is also verified by

the presence of the Component

method clue), and

CompositeFigure is the the

Composite class. The presence of

the necessary Multiple redirections

in family and Same interface

container clues grant us that this is

a valid instance of the pattern,

correctly accepted by the

refinement rule.

D
ec

o
ra

to
r

In this instance of the Decorator

pattern, Locator is the Component

and OffsetLocator is the

Decorator. These roles constitute

the skeleton for the Decorator

pattern according to the refinement

rule, as no concrete roles have been

detected. These two roles satisfy the

constraints defined for them. This

instance is a valid instance of the

pattern, and the rule validate it.

Table 5.6 – Application and results of the refinement process on sample structural design patterns instances

97

Table 5.7 introduces examples of the application of the refinement process on instances of

behavioural design patterns.

Pattern

name
Detected instance

Refinement result and

considerations

T
em

p
la

te
 m

et
h

o
d

In this instance of Template

method, AbstractFigure is a

correct Abstract class, as it presents

all the elements that characterize

this role, and especially the

Template method clue. The tool

wasn’t able to detect a Concrete

class for this instance, from a

further analysis we identified class

PolyLineFigure as a correct

Concrete class, implementing the

Template implementor clue. This

instance is correct, and is validated

by the rule.

V
is

it
o

r

In this instance of Visitor, Storable

is the abstract Visitor class, while

StorableOutput should be a

Concrete element. This instance is

not correct. The StorableOutput

does not present the necessary

Object structure child clue. The

concrete elements of the pattern

must belong to a hierarchy of

objects, whose ancestor is the

abstract element. As the Object

structure child is not present, this

implies that the abstract element

(i.e. the root of the object structure)

is not present too. Therefore, this

instance cannot be considered

correct, and the refinement rule

refuses it.

Table 5.7 – Application and results of the refinement process on sample behavioural design patterns instances

5.5. Refinement results evaluation

The results of the refinement process applied to the instances detected by the four

analyzed tools are reported in Tables 5.8 to 5.11. For each of the considered patterns, the

98

number of identified instances is reported. The number of correct instances column

indicates how many of them are correct implementations, according to the manual

evaluation process. The number of validated instances is then reported, i.e. the number of

instances that have been confirmed as correct implementations by the refinement rule. The

two precision values (the first one referring to the instances detected by each single tool,

the second one referring to the refined instances considering the actual correct detected

instances) are then reported. If no instances for a certain pattern have been detected by the

tool, the precision before refinement value (which considers the number of correct instances

with respect to the detected instances) cannot be computed; hence a “not available” (n/a)

value is indicated. Similarly, if no instances for a certain pattern have been validated by

the refinement process, the precision after refinement (which considers the number of correct

instances with respect to the validated instances) cannot be computed, and a “not

available” (n/a) value is reported. Table 5.8 describes the refinement results on the

instances detected by Design Pattern Detection Tool.

Design Pattern Detection Tool

Pattern

category
Pattern name

Detected

instances

Correct

instances
Validated

Precision before

refinement

Precision after

refinement

Creational

Factory

method
2 1 1 50% 100%

Singleton 2 1 1 50% 100%

Behavioural

Command 23 11 23 48% 48%

Template

method
5 5 5 100% 100%

Visitor 1 0 0 0% n/a

Structural

Adapter 23 11 23 48% 48%

Composite 1 1 1 100% 100%

Decorator 3 3 3 100% 100%

Table 5.8 – Results of the refinement process on the instances detected by Design Pattern Detection Tool

Good results have been achieved in the refinement of the Factory method, the Singleton

and the Visitor instances, where the corresponding rules succeeded in discarding all the

detected false positives. As far as the Template method, the Composite and the Decorator

patterns are concerned, the detected instances are all correct, and the refinement

succeeded in validating them. Some problems are related to the Adapter/Command

instances: all of them are accepted as true positives by the refinement rule, even if only 11

of them actually are. We believe that the detection and consequent validation of instances

of these patterns is difficult due to their generality. The only kind of information that

characterizes them (i.e. overriding a superclass or interface method, then calling a method

99

belonging to another class through a Delegate EDP [Smi02]) is already captured by the

rule. Table 5.9 reports the results obtained for PINOT.

PINOT

Pattern

category
Pattern name

Detected

instances

Correct

instances
Validated

Precision before

refinement

Precision after

refinement

Creational

Factory

method
34 17 17 31% 100%

Singleton 0 0 0 n/a n/a

Behavioural

Template

method
2 2 2 100% 100%

Visitor 1 0 0 0% n/a

Structural

Adapter 5 5 5 100% 100%

Composite 4 0 0 0% n/a

Decorator 5 2 2 40% 100%

Table 5.9 – Results of the refinement process on the instances detected by PINOT

In this case, the Factory method and Decorator instances have been correctly refined, and

the process succeeded in discriminating all the true positives from the false ones. Visitor

and Composite instances have also been correctly discarded, as they revealed to be only

false positives. Finally, Template method and Adapter instances (which are constituted

only by true positives) have all been correctly accepted by the corresponding rules.

Table 5.10 reports the results obtained for FUJABA. The Factory method instances have

been correctly refined, and the Abstract factory ones have all been discarded being false

positives. Template method instances have all correctly been accepted, while for the

Adapter pattern we can make the same considerations as for Design Pattern Detection

tool: the pattern is too generic to be correctly refined by the rule.

FUJABA

Pattern

category
Pattern name

Detected

instances

Correct

instances
Validated

Precision before

refinement

Precision after

refinement

Creational

Abstract

factory
2 0 0 0% n/a

Factory

method
2 1 1 50% 100%

Singleton 0 0 0 n/a n/a

Behavioural

Template

method
31 31 31 100% 100%

Visitor 0 0 0 n/a n/a

Structural
Adapter 26 5 26 19% 19%

Composite 0 0 0 n/a n/a

Decorator 0 0 0 n/a n/a

Table 5.10 – Results of the refinement process on the instances detected by FUJABA

100

Finally, Table 5.11 indicates the results obtained for Web of Patterns.

Web of Patterns

Pattern

category
Pattern name

Detected

instances

Correct

instances
Validated

Precision before

refinement

Precision after

refinement

Creational

Abstract

factory
14 3 0 21% 0%

Singleton 1 1 1 100% 100%

Behavioural

Template

method
1 1 1 100% 100%

Visitor 0 0 0 n/a n/a

Structural
Adapter 1 0 0 0% n/a

Composite 1 0 0 0% n/a

Table 5.11 – Results of the refinement process on the instances detected by Web of Patterns

In this case, the rule didn’t succeed in accepting the correct Abstract factory instances,

hence the precision rate decreased to 0%. The Template method instance has been

correctly accepted, and the Adapter and Composite instances correctly discarded as false

positives.

5.6. Concluding remarks

In this chapter we have presented an innovative approach to the refinement and

validation of the results provided by the experimentation of common design pattern

detection tools. The approach is based on the application of rules defined in terms of the

roles constituting each pattern, and of the micro-structures that characterize them. As

different tools generally provide different results even while analyzing the same target

systems (and the results are generally affected by a considerable number of false

positives), this approach is intended to discard the identified false positives, hence

improving the precision of each single tool. From our experimentations, out of the

considered design patterns, it emerged that the refinement rules behave well for the

Factory method, the Singleton, the Template method, the Visitor, the Composite and the

Decorator patterns. For these patterns, false positives have been correctly eliminated, and

real instances have been confirmed. The Adapter pattern revealed to be problematic, as the

hints for its detection are too much general due to the actual pattern definition and

purpose. For this pattern, the false positives have not been recognized by the rule,

therefore they have been accepted as real pattern instances.

The refinement approach is obviously not intended to improve the recall of each single

tool, as it is devoted uniquely to the analysis of already detected instances, and it doesn’t

101

allow for the detection of further pattern instances in the subject systems. Moreover, at our

knowledge no similar approach currently exists in the literature, confirming the novelty

and originality of our work; therefore any comparisons with other works can’t be made.

In this chapter we have described and refined the results provided by four design pattern

detection tools on the analysis of a single system (JHotDraw 6.0b1), in order to provide an

exhaustive example and explanation of the refinement process.

For the future, we plan to extend our experimentations on the analysis of more systems, as

well as on the analysis of repositories of design pattern instances. In this way, it will be

interesting to integrate the refinement approach within the benchmark platform for design

pattern detection evaluation [ATZ08]. In this way, the approach will be extendedly used

on the results provided by more tools on the analysis of more systems, and will be useful

to improve the comparisons among the instances detected by the different tools.

102

Chapter 6

Micro-structures for

software architecture reconstruction

Abstract

In this chapter we investigate the usefulness of micro-structures for software architecture reconstruction activities. In

particular, we focus on elemental design patterns and micro patterns as possible sources for the reconstruction of

architectural information out of the analyzed systems. We indicate which are the artifacts that we want to generate, and

we provide an evaluation between elemental design patterns and micro patterns, in order to understand which of them

are more suitable for the generation of each artifact. Moreover, we introduce some structural and object-oriented

antipatterns that can be detected inside a software system by analyzing the considered micro-structures.

6.1. Elemental design patterns and micro patterns for SAR purposes

One of the aims of this thesis is investigating the possibility to recover architectural

information from the micro-structures that are identified within a subject system. To our

knowledge, micro-structures have never been considered before for SAR activities in the

literature. Indeed, they are able to capture structural relationships among the classes and

modules composing a software system, and can be exploited to extract relevant structural

information out of it. An example of this capability has been discussed in Chapter 4, where

we underlined how EDPs are suitable to recover the structural relationships existing

among pattern roles.

In this context, we are focused on the extraction of structural information basing on the

analysis of the micro-structures detected in a target system. The type of information we

consider is exclusively static. In fact, micro-structures are detected from source code

analysis, and the behavior of the system is not considered while detecting these elements.

Moreover, at now micro-structures don’t codify any behavioural information, so that

103

dynamic or behavioural system views or artifacts cannot be currently recovered with the

adopted approach.

We are interested in recovering the following kind of information:

- System views: graphical views are considered as one of the best means to cope with the

analysis of system complexity and to have a global understanding of it, without

minding at its details, as also underlined by many experts in the SAR field (some of

the definitions presented in Chapter 1 focused on this aspect). As discussed in Chapter

3, some micro-structures actually represent relationships between the entities

composing a system. Therefore, they can be exploited in this sense, as they can be

matched on the relationships that exist among classes, and can be consequently

translated to graphical forms. The exploitation of micro-structures for the generation

of views is introduced in Section 6.2.1;

- Software metrics: metrics are exploited both to understand the complexity of the

analyzed systems and their overall quality and stability. We are interested in the

computation of a set of metrics (discussed in Section 6.2.2) that can be derived from

the analysis of the micro-structures detected in the analyzed systems;

- Software antipatterns: an antipattern is a software structure that, on the contrary of

design patterns, seems to be an adequate solution to a certain design or programming

issue, but it is actually far from the optimal practice. The presence of antipatterns

inside an object-oriented system reflects in a system being not modular, far from the

object-oriented best practices, and difficult to maintain and reuse. Hence, the

identification of these structures inside a system helps in the detection of important

critical components composing it, that can be seen by the engineers as the main

candidates for possible refactoring or restructuring activities. The detection of a set of

antipatterns is supported by both metrics analysis (discussed in Section 6.2.3), and by

micro pattern analysis (discussed in Section 6.3.2);

- Classes of particular interest: there may be classes and modules inside a system that,

besides their architectural and structural context, may present particular qualities that

are relevant to be indicated. These entities are presented in Section 6.3.3.

These different kinds of information can all be obtained by the analysis and exploitation of

the micro-structures detected in the subject systems by the Micro-structures detector

module introduced in Chapter 3. In this way, a common source of information for both

design pattern detection and refinement and for SAR activities is adopted. As a

consequence, according to our approach it is not necessary to further inspect or analyze

the target system, as all the necessary information for SAR is enclosed in the detected

104

micro-structures. This is a first step to have an integrated tool supporting both DPD and

SAR activities.

Table 6.1 outlines the sets of EDPs and micro patterns that are used for the recovery of the

architectural information, the computation of metrics and the detection of antipatterns and

particular classes we are interested in. The motivations for the reported choices will be

further detailed in the subsequent sections. In this process, DP clues are not considered, as

they represent useful hints only for design pattern detection and refinement, and do not

devise particular structural constraints besides those already derivable by the analysis of

EDPs and micro patterns.

As we can notice from the table, only subsets of EDPs and of micro patterns are actually

used to recover system architectural information. The elements that are not considered in

these sets have been discarded either because the information they convey and that we

consider useful is already embodied in some other element we actually consider, or else

because in our opinion they do not represent any useful architectural or structural

information at all. For example, even if we are able to detect the whole set of micro

patterns from the source code of a system, indicating all of them in the output of the

reconstruction process would obviously result in an excessive amount of information that

is not granted to be relevant for the purposes of the reconstruction activity.

Artifact Exploited EDPs Exploited micro patterns

System views

Create object, retrieve, inheritance,

delegate, redirect, revert method, extend

method, delegate in family, redirect in

family, delegate in limited family, redirect

in limited family.

Software metrics

Create object, retrieve, inheritance,

delegate, redirect, revert method, extend

method, delegate in family, redirect in

family, delegate in limited family, redirect

in limited family.

Software antipatterns

Create object, retrieve, delegate, redirect,

delegate in family, delegate in limited

family, redirect in limited family.

Cobol like, pool, pseudo class, record.

Classes of particular interest

Function pointer, function object,

immutable, canopy, data manager, sink,

outline.

Table 6.1 – EDPs and micro patterns for the obtainment of architectural and structural system information

105

We have developed a module for software architecture reconstruction activities, that is

devoted to the generation of views about the analyzed systems, the computation of

metrics and the detection of antipatterns and of particularly interesting classes. The

module is structured according to Figure 6.1.

Figure 6.1 – The architecture of the SAR module

As many other tools for software architecture reconstruction and program understanding,

our module presents a canonical three-layer architecture, which follows the extract-

abstract-present model presented in Chapter 1 and described in Tilley [TPS96]. The input

layer is formed by two kinds of input, represented by corresponding XML files, which are

provided by the Micro-structures detector module described in Chapter 3. The System

structure information input collects the whole set of packages and types, i.e. the classes and

interfaces composing the subject system. For each type, the set of the defined methods and

attributes is also specified. No information about the relationships among the various

entities is reported in this input. Indeed, neither the second input contains this kind of

information. In fact, the Micro-structures information just collects the whole set of micro-

structures that have been detected in a system: for each type, it reports which DP clues,

which EDPs and which micro patterns are implemented within it.

106

The structural relationships among classes and all the other functionalities resumed in

Table 6.1 are all derived and computed by the elaboration layer, basing on the information

provided by the two XML files just described (the analysis of the XML inputs is performed

using the Apache XMLBeans technology [XML]). This layer is composed by four sub-

modules. The class structure parser is devoted to the generation of an abstracted

representation of the types (classes and interfaces, with their corresponding methods and

attributes) and packages composing the system, basing on the information provided by

the input layer. The class core parser analyzes the micro-structures detected from source

code and consequently maps them on the relationships among classes. Recall that in this

process only EDPs and micro patterns are considered.

The metrics computation sub-module computes common object oriented metrics basing on

the relationships generated by the class core parser. The metrics that are currently computed

will be introduced in Section 6.2.2. The visualization sub-module organizes the whole

abstracted information generated by the elaboration layer in order to be exploitable by the

end users. As far as the entities composing the analyzed system are concerned, packages

and types will be represented in package or class views (introduced in Section 6.2.1) as

graph nodes, while the relationships among them identified by the class core parser will be

depicted as edges connecting them. The generated views are produced exploiting the

functionalities provided by the JGraph libraries [JGraph]. The results are finally presented

by the output layer, which provides the users with the set of generated structural views, the

metrics computed on the system, and tags related to the identified antipatterns and other

eventual interesting classes, in terms of the micro patterns representing them and shown

in Table 6.1.

We now go further into details, explaining how the EDPs and the micro patterns are

actually exploited to achieve the presented functionalities.

6.2. Elemental design patterns for SAR

Elemental design patterns are exploited for the generation of views about the analyzed

systems, the computation of metrics and the detection of structural antipatterns. In the

following sub-sections we present the views, the metrics and the antipatterns that it is

possible to generate and calculate with the SAR module, and how the EDPs are exploited

for their obtainment.

107

6.2.1. Views

The core concepts residing behind the views currently provided by the SAR module are

the entities composing the system (i.e. packages, classes and interfaces), and the

relationships connecting them with one another. While packages, classes and interfaces are

derived by the class structure parser sub-module, analyzing the system structure

information, the relationships among them are identified by the class core parser, analyzing

the micro-structures information input. Through the analysis of the EDPs given as input it

is possible to generate visual representations of the association, generalization and

implementation relationships. Table 6.2 indicates the EDPs that are exploited in the

generation of the available relationships.

Relationship Object elements EDPs Type relation EDPs Method invocation EDPs

Association Create object, Retrieve

Delegate, redirect, delegate

in family, delegate in

limited family, redirect in

limited family

Generalization Inheritance
Revert method, extend

method

Implementation Inheritance

Table 6.2 – The EDPs exploited for the generation of the relationships among packages and classes

The main way to generate an association relationship is through a Create object EDP.

Every time a realization of this EDP is encountered (i.e. in correspondence of every

“Object obj = new… ” statement), the class creating the instance establishes a connection

to the class an instance of which is being created; hence, the source class is physically

associating itself with the destination class. In the same way, the method invocation EDPs

used for the generation of association relationships are those that imply the existence of a

reference to another class. As far as the generalization and implementation relationships

are concerned, they are obviously derived from the Inheritance EDP. Actually, this EDP

doesn’t specify whether the extended entity is a class (therefore a generalization

relationship must be created) or an interface (leading to the creation of an implementation

relationship). This distinction is obtained by analyzing the system structure information

input, in which classes and interfaces are distinguished. Generalization relationships can

also be generated by the analysis of the Revert method and Extend method EDPs, which

imply the presence of a parent class for the class performing these kinds of method

invocations. Also the Retrieve EDP is used to generate association relationships, as it

108

actually establishes a connection between two classes, where the first one retrieves a

reference to a certain declared object from the second class.

Three different views are currently available. They are the package view, the class compact

view and the class extended view.

The package view represents the packages composing a system and the relationships among

them. It is used in order to obtain an immediate understanding of the dependencies

among the various parts composing the subject system. Figure 6.2 reports the package

view of JHotDraw 6.0b1.

Figure 6.2 – The package view of JHotDraw 6.0b1

Between two related packages, only one relationship is graphically depicted. Anyway,

many different actual relationships may subsist between them. A possible improvement

will regard tagging each single relationship arrow with the number of actual relationships

it resumes. Or else, it will be possible to color the arrows according to the number of

relationships they enclose (for example assigning brighter colors to those arrows that

represent a larger number of relationships). The user can also filter the shown

relationships allowing the tool to display only associations, generalizations,

implementations or a combination of them.

The class compact view reports a class diagram about a particular package, with all the

classes and interfaces composing it and the relationships among them. A sample view is

reported in Figure 6.3, showing the classes composing the org.jhotdraw.figures

package of JHotDraw 6.0b1.

109

Figure 6.3 – The class compact view for package org.jhotdraw.figures

The user can choose the package to be inspected selecting the corresponding tab panel.

Actually, this view can be quite overwhelmed, while dealing with packages having a high

number of classes and relationships among them. As for the package view, the users may

filter the relationships through the Filter menu, in order to show only associations,

generalizations, implementations or a combination of them. Anyhow, in order to provide a

more effective navigation through the classes composing a package, the class extended view

(shown in Figure 6.4) has been introduced. In this view, each class is shown detached from

the other ones. Hence, the software engineer can focus on single classes, managing only

the relationships it has with the other classes, without minding globally at the rest of the

package and consequently avoiding the confusion that may arise from the presence of a

huge number of classes and interrelationships.

6.2.2. Metrics

Four main metrics are computed in the SAR module. They are:

- Local dependencies: given a type (either a class or interface), the local dependencies of

this type is the number of types this type depends on, within the same package. It is

obtained by counting the number of associations going out from the subject type to

types belonging to the same package;

- Local dependents: given a type, the local dependents of this type is the number of types

that depend on the functionalities provided by the subject type, within the same

110

package. It is obtained by counting the number of associations coming in the

considered type from types belonging to the same package;

- External dependencies: given a type, the external dependencies of this type is the

number of types this class depends on, considering the overall system and not the

package the subject type is contained in. It is derived by counting the number of

associations going out from the type to types belonging to different packages;

- External dependents: given a type, the external dependents of this type is the number of

types that depend on the functionalities provided by the subject type, but not

belonging to the same package. It is computed by counting the number of associations

coming in the considered type from types belonging to packages different from the

package the subject type is contained in.

Dependencies and dependents can be related to packages as well. In this case, only the

global case is considered, as a package can only expose relationships with other (external)

packages. Therefore the dependencies of a package are the number of packages the subject

package depends on, while the dependents of a package are the number of packages that

depend on the functionalities provided by the subject package.

Figure 6.4 – The class extended view for package org.jhotdraw.figures

111

These metrics are used in different approaches and tools for software architecture

reconstruction as for example [SA4J, JDepend]. Further analyzed (as we will see later on),

they are well established means to assert the quality of a system in terms of its stability,

cohesion, and ease of reuse. As these metrics consider the number of associations related

to each single class, and as associations are derived by analyzing the EDPs characterizing

each class, we can state that these metrics are derived by EDPs as well, without further

reasoning about the subject system.

Dependencies and dependents can be considered as a first mean to understand the

complexity of a system. A high quality system must pursue the “high cohesion – low

coupling” principle [Lar04]. The number of dependencies of a class is to be considered as

an indication of the level of coupling of each single class. Classes with a high number of

dependencies consequently augment the coupling of the system, worsening its overall

quality. In the same way, the number of dependencies of a package can be seen as an

indication of the cohesion of the same package. The fewer dependencies the package has

with the rest of the system, the more cohesive the package is, consequently improving the

quality of the system. On the other hand, the number of dependents of a class gives an

overview of how many classes in the system are affected if the subject class is changed.

Dependencies and dependents are also strictly related to the identification of structural

antipatterns, as discussed in Section 6.2.3.

We shall make an important clarification. The meaning of “local” and “external” within

MARPLE SAR is different from that adopted for example by SA4J. In MARPLE SAR, the

local relationships of a type are all those relationships that involve the type itself and only

types belonging to the same package. On the other hand, external relationships regard the

types declared in other packages which are related with the subject type.

SA4J considers local and global relationships. The local relationships of a type involve all

the immediate dependencies and/or dependents of the type itself, no matter the package

they belong to. The global relationships of a type are related to all the non-immediate

entities related to the subject type. Figure 6.5 depicts two sample packages and possible

relationships among their classes. Table 6.3 indicates which are the local, external or global

dependencies and dependents detected by MARPLE SAR and SA4J for each of the

considered types. As it can be noticed from the table, the relationships identified by SA4J

are more complex than those considered by MARPLE SAR. As an example, class 4 of

Package_1 doesn’t have any external dependents according to MARPLE SAR, while it has

five global dependents belonging to both packages according to SA4J.

112

Figure 6.5 - Two sample packages

 MARPLE SAR Structural Analysis for Java

Class
Loc.

D.cies

Loc.

D.ents

Ext.

D.cies

Ext.

D.ents

Loc.

D.cies

Loc.

D.ents

Glob.

D.cies

Glob.

D.ents

1 3, 5 2 / / 3, 5 2 4, b /

2 1, 3 / / / 1, 3 / 3, 4 /

3 4 1, 2 / a 4 1, 2, a / 2, c, d

4 / 3 / / / 3 /
1, 2, a,

c, d

5 / 1 b / b 1 / 2

a / c 3 / 3 c 4 d

b / c / 5 / 5 / d, 1, 2

c a, b d / / a, b d 3, 4 /

d c / / / c / a, 3, 4 /

Table 6.3- The local, external and global dependencies and dependents

according to MARPLE SAR and SA4J

Due to the adopted interpretation of the “local” and “global” concepts, SA4J doesn’t allow

the user to distinguish immediately intra-package from inter-package relationships, which

is on the contrary possible with MARPLE SAR. Having a strong and clear distinction

between these two kinds of relationships lets the users evaluate the cohesion and coupling

within single packages, as well as about the overall system.

Another fundamental metric that can be computed is abstractness [Mar95], i.e. the amount

of abstract classes and interfaces inside a package with respect to the total number of types

composing it. It can be evaluated by considering the Abstract interface EDP, which

indicates that inside a given class an abstract class method or an interface method is

declared, hence the declaring type is consequently an abstract class or an interface.

Packages with high abstractness values are easily extensible and reusable by other parts or

modules of the system.

Starting from these basic five metrics (local and external dependencies, local and external

dependents, and abstractness), five other metrics (for a total of ten metrics) can be

computed and derived, both on classes and on packages.

The metric that can be calculated on classes is:

- Belonging [SA4J]: it represents how much a class is being used by its package, dividing

the number of local dependencies and dependents by the overall number of

dependencies and dependents of the class, considered both at the local and at the

113

external level. If it equals to 1, the class is completely used and referenced within its

package, as it doesn’t have any external dependencies or dependents;

The metrics that can be obtained on packages are:

- Instability [Mar95]: it indicates how much the classes are linked to their package, and it

is obtained by dividing the number of external dependencies by the number of

external dependencies and external dependents.

This metric is an indicator of the package's resilience to change. A value of zero

indicates a completely stable package (as its classes don’t refer to classes belonging to

other packages, therefore the package is completely self-contained) and a value of one

indicates a completely instable package (as its classes only refer to external types);

- Distance from the main sequence [Mar95]: abstractness (A) and instability (I) are strictly

related metrics. Given the graph depicted in Figure 6.6, two core categories of

packages can be identified: those being totally composed by abstract entities and

stable (represented by the (0, 1) point in the diagram), and those that contain only

concrete entities and are completely instable (represented by the (1, 0) point in the

diagram).

Figure 6.6 – The relationship between abstractness and instability: the main sequence

Obviously, not all of the packages of a system can belong to one of these two positions,

as they generally have different degrees of abstractness and instability values.

For example, a package with A = 0 and I = 0 is highly stable and totally concrete. Such

packages are not desirable, as they are rigid, hence they cannot be extended as they

are not abstract. They are also difficult to change, due to their stability.

Packages with A = 1 and I = 1 are not desirable as well, as they are totally abstract, but

with no dependents, hence the abstractions are impossible to be extended.

A package with A = 0.5 and I = 0.5 is partially extensible and partially stable, so that

the extensions are not subject to maximal instability. Martin states that the package

114

stability is in balance with its abstractness. In Figure 6.5, the line connecting the (0, 1)

and (1, 0) points represents those packages whose abstractness is balanced with

stability. This line is called the main sequence. As it is desirable for packages being as

close as possible to the main sequence, Martin defines the (normalized) distance from

the main sequence as D = |Abstractness + Instability – 1|. Values for this metric range in

the interval [0, 1]. The more a package has a D value close to zero, the more it is near

to the main sequence and hence well balanced. The engineers can therefore focus on

those packages with a D value not near to zero, as they are the first candidates to be

reanalyzed and restructured.

- Bonding [SA4J]: it indicates how well the classes within the package are connected with

one another, and can be obtained by dividing the number of local dependencies by the

total number of dependencies, both local and external.

This metric gives an idea of how much a certain class exploits the functionalities

provided by the other classes belonging to the same package: if it equals to 1, the class

lends itself only on classes of the same package.

- Link density [SA4J]: it indicates the mean number of relationships among classes within

the package, giving an indication of how strong these relationships are; it is obtained

dividing the number of local dependencies and dependents by the total number of

types contained in the package.

Figure 6.7 reports a sample of the metrics computed through MARPLE SAR on the classes

belonging to JHotDraw’s org.jhotdraw.figures package. For a focused exploitation,

users may right click on a package or a type and evaluate the metrics only for that entity.

Figure 6.7 – The metrics computed on the classes of a JHotDraw package

115

Many other metrics could actually be calculated following our approach based on micro-

structures. Anyway, we decided to focus on this set of metrics for different reasons. First

of all, we are interested in pursuing activities related to the architecture of a system. Basic

object-oriented metrics, like for example the number of attributes (NOA) or methods

(NOM) of a class [LK94], if considered stand-alone, don’t provide very interesting

information about the architecture of a system and its modules. This because these metrics

are generally focused in evaluating the characteristics of single classes, and don’t consider

the system (or part of it) in its overall structure. To obtain some usable information about

the structure of a system they need to be combined with other metrics, and adequately

analyzed and interpreted [KB04].

On the other hand, the metrics we consider (the dependencies, dependents and their

derived metrics) are in their nature focused on the structure of a system, as they are

computed on single types or packages, but depending on the entities connected to these

types or packages. They automatically provide a sort of structured information that can be

more easily exploitable and can be more useful during the evaluation of the architecture of

a software system.

6.2.3. Structural antipatterns

Given the number of local and external dependencies and dependents, six structural

antipatterns [SA4J] can be identified:

- Local breakable: a local breakable is a class with many local dependencies. Local

breakables have excessive responsibility within the system, and can be typically

recognized by the presence of many long methods (even if the local dependencies

metric can be used as well). The presence of breakables makes the code very difficult

to understand, to maintain, and to reuse;

- Global breakable: a global breakable is a type that is often affected when any other entity

within the system is changed, due to the high number of external dependencies it has.

Global breakables are to be avoided, as they indicate fragility and lack of modularity

in the system;

- Local butterfly: local butterfly is a type that has many local dependents. If a local

butterfly is changed, these changes often have an important impact on the rest of the

package. Hence, local butterflies are allowed only for either basic system interfaces or

utility classes;

- Global butterfly: a global butterfly is a type with many global dependents. If a global

butterfly is changed, this produces heavy consequences on the rest of the system.

116

Therefore, as in the local case, global butterflies should only be either basic system

interfaces or utility classes;

- Local hub: a local hub is a type that has many immediate dependencies and many

immediate dependents. Therefore, it is both a local breakable and a local butterfly at

the same time. Local hubs have too many responsibilities within the system, and also

serve as utility components. Hubs make the code difficult to understand, to maintain,

and to reuse, and they also make the code itself unstable;

- Global hub: a global hub is a type with many global dependencies and many global

dependents. Therefore, it is both a global breakable and a global butterfly. If a

modification within a system occurs, a global hub is often consequently affected. Being

a global butterfly, it also affects a significant part of the system if it changes. Global

hubs indicate fragility and lack of modularity in the system.

A class is considered a breakable (resp. butterfly or hub) if it has at least ten dependencies

(resp. dependents or both) with other classes. A further improvement will consider the

number of dependencies and dependents with respect to the number of types composing

the single package or the global system. In fact, it seems sensible to assert that a class

belonging to a package containing, for example, ten classes, which presents ten local

dependencies is far more critical than a class having the same ten local dependencies, but

spread in a larger package, with for example a hundred or more classes.

Just as an example, Figure 6.8 reports a sample global breakable class, identified in

JHotDraw 6.0b1. The detection of these structural antipatterns helps the engineers to

identify the components of a system that are critical in terms of their structure, i.e. in terms

of their number of outgoing and incoming relationships with the rest of the system.

Figure 6.8 – A global breakable class, detected in JHotDraw 6.0b1

These complex components are to be considered as the first candidates for a structural

refactoring. Re-engineering these entities results in having a more stable and self

117

contained system. Currently, the tool doesn’t provide a functionality to get all the detected

structural antipatterns at a glance. Anyway, the user may refer to the metrics tables related

to classes, individuate those classes presenting a high number of dependents and

dependencies, and consequently focus on them. As an example, Figure 6.9 report the

metrics computed on some classes belonging to the org.jhotdraw.standard package.

Figure 6.9 – Metrics computed on some classes belonging to the org.jhotdraw.standard package

Consider the AbstractCommand and StandardDrawingView classes. According to the

antipatterns definitions provided before and to the dependencies and dependents values

obtained on them, they respectively should be a local and global butterfly, and a local and

global breakable. This can be verified by analyzing the Class extended view, where these

classes are correctly tagged with the corresponding antipatterns (Figures 6.10 and 6.11).

Figure 6.10 – The AbstractCommand class, instance of the local and global butterfly antipatterns

Figure 6.11 – The StandardDrawingView class, instance of the local and global breakable antipatterns

118

6.3. Micro patterns for SAR

In the context of software architecture reconstruction, micro patterns cannot be used to

identify structural relationships among the classes or entities composing a system. As we

have described in Chapter 3, micro patterns are focused on the characteristics and

properties of single classes, with particular emphasis on the properties of their attributes

and methods. As breakables, butterflies and hubs identify single classes needing

restructuring, in the same way the detection of micro patterns can be exploited to identify

classes of particular interest within the system, and classes representing possible class-

level antipatterns. In the following sub-sections we will discuss the micro patterns that are

considered in the SAR module, motivating for their detection and their importance for

SAR activities.

6.3.1. Micro patterns identifying classes of particular interest

Through the use of the Micro-structures detector, we are able to detect the whole set of

micro patterns by analyzing the source code of the subject systems. For SAR purposes, we

consider only a subset of the micro patterns that let the identification of types of particular

interest possible. The considered micro patterns are Function pointer, Function object,

Immutable, Canopy, Data manager, Sink and Outline. We now motivate for their

consideration and for their importance for the reconstruction of software architectures. For

some micro patterns, a direct correspondence with the values assumed by the

dependencies and dependents of classes has been noticed. We will indicate and motivate

the results on the experimentations pursued on JHotDraw 6.0b1.

Function pointer

Definition: Function pointer classes are those classes presenting only one public instance

method, and no fields. They represent the equivalent of a function pointer in a procedural

programming language, and can therefore be used to make an indirect polymorphic call to

that method.

Relevance for the detection: we can state that these classes play a limited role in the

architecture as classes themselves, as they are not characterized by any state, due to the

lack of fields. They can be considered as a filter on the set of classes composing a system:

as they don’t play any particular role within the architecture, the engineers can

concentrate on other parts of the system.

119

Function object

Definition: Function object classes have a single public instance method, but, differently

from the function pointers, they actually have a state, represented by a set of fields.

Therefore, instances of the Function object micro pattern can store parameters to the main

method of the class.

Relevance for the detection: it has been experimented [GM05] that this micro pattern matches

many classes that are event handlers, passed as callback hooks in, for example, the AWT

and Swing libraries. The identification of instances of this micro pattern helps the engineer

to identify these peculiar classes, allowing to deal with the event-handling classes of the

system.

Immutable

Definition: an Immutable class is a class whose fields are only changed by its constructors,

therefore only once.

Relevance for the detection: this micro pattern is considered relevant as it establishes a strong

condition on the fields assignment: as they can only be changed by the constructors, the

declaring classes have a limited impact with the rest of the system. However, no direct

correlation with the dependencies and dependents of Immutable classes has been noticed,

as also demonstrated by the sample results provided in Table 6.4. Values for dependencies

and dependents vary among the Immutable classes detected in the considered package,

not differently from what happens while considering another set of classes not

implementing the Immutable micro pattern.

Class Local dependencies Local dependents
External

dependencies

External

dependents

GroupFigure 1 1 8 1

ElbowConnection 4 0 10 5

PolyLineHandle 2 2 4 1

InsertImageCommand 1 0 2 2

NumberTextFigure 1 0 1 2

LineFigure 1 0 0 7

Table 6.4 – Relationships between sample instances of the Immutable micro pattern

and the dependencies/dependents values

Canopy

Definition: a Canopy is a class with one instance field that can be changed only by the class

constructors.

120

Relevance for the detection: the same considerations traced for the Immutable micro pattern

can be applied also to the Canopy micro pattern, also as far as dependencies and

dependents metrics are concerned.

Data manager

Definition: a Data manager class is a class whose methods are all setters or getters.

Relevance for the detection: the detection of these classes allows for the identification of

classes whose objective is exclusively being a repository for data and managing these data.

The detected Data manager instances are characterized by a low number of dependencies,

as shown in Table 6.5. This indicates that these classes are generally self-contained,

without the need of making references to other classes.

Class
Local

dependencies

Local

dependents

External

dependencies

External

dependents

FastBufferedUpdateStrategy 0 0 7 1

JHotDrawException 0 0 1 0

JHotDrawRuntimeException 0 1 1 10

Clipboard 0 0 0 3

WindowMenu.ChildMenuItem 0 2 1 0

CTXWindowMenu.ChildMenuItem 0 2 1 0

CommandCheckBox 1 1 2 1

DesktopEvent 0 1 1 1

Table 6.5 – Relationships between sample instances of the Data manager micro pattern

and the dependencies/dependents values

Sink

Definition: a Sink is a class whose methods do not propagate any call to any other method.

Relevance for the detection: the ambit of these classes is limited, they usually have a low

number of dependencies, but may have a large number of dependents.

Class
Local

dependencies

Local

dependents

External

dependencies

External

dependents

NullTool 1 0 0 2

AWTCursor 0 5 2 1

NullPainter 0 0 1 0

FigureChangeAdapter 0 0 1 2

ColorEntry 0 1 0 0

PaletteIcon 0 0 1 2

ResourceManagerNotSetException 0 1 1 0

Table 6.6 – Relationships between sample instances of the Sink micro pattern

and the dependencies/dependents values

121

The low number of dependencies has also been demonstrated in practice, as it can be

noticed by the results provided in Table 6.6. As it can be noticed, the maximum number of

local dependencies detected on a Sink class is 1. This occurred only for one class, while for

the remaining instances the number of local dependencies is zero.

Outline

Definition: an Outline class is a class for which at least one method invokes an abstract

method declared in the same class.

Relevance for the detection: as the name suggests, their aim is to give an outline to a

particular algorithm, specifying its main operations without going in the details of their

implementation. This is also the aim of the Template method design pattern [GHJV94]: the

Outline micro pattern can be considered a hint for its detection. The existence of Outline

classes let assume that there exist subclasses extending it, and therefore better specifying

the algorithm implementation by overriding the abstract method. This has been practically

demonstrated on JHotDraw 6.0b1, as reported in Table 6.7, where we can notice that each

Outline instance presents at least one local or external dependent.

Class
Local

dependencies

Local

dependents

External

dependencies

External

dependents

AbstractLineDecoration 2 1 6 0

ActionTool 1 0 3 1

AbstractFigure 4 3 9 24

ChangeConnectionHandle 3 2 9 0

ChangeConnectionHandle.UndoActivity 0 3 4 0

AutoscrollHelper 0 0 0 2

DNDHelper 2 2 2 1

Table 6.7 – Relationships between sample instances of the Outline micro pattern

and the dependencies/dependents values

The existence of dependents for classes implementing the Outline micro pattern allows us

to make an interesting consideration. Outline classes are necessarily abstract classes, by the

same definition of the Outline micro pattern. Having dependents for such classes grants

that an implementation of the abstract method is provided, consequently also obtaining a

correct implementation of the template method pattern. The consideration could be

extended to abstract classes and interfaces in general. It is desirable that these types

present at least one dependent type. This would grant us that abstract classes and

interfaces are actually used within the system, providing a mean for their extension.

122

There are two reasons for which the remaining micro patterns are not considered for SAR.

First of all, they may capture information that is already captured (even if in different

forms) by EDPs. Or else, they represent types that are of scarce interest from a structural

point of view, with no very peculiar characteristics.

6.3.2. Object-oriented antipatterns

Four of the defined micro patterns are devoted to the identification of classes whose

implementation is far from the object-oriented paradigm. We can define them as a sort of

object-oriented antipatterns, and, even if it has been demonstrated that their presence

inside real systems is generally scarce [GM05], their identification lets the engineers focus

on these classes in order to solve the issues and problems they present. The four micro

patterns representing antipatterns are the following.

Cobol like

Definition: Cobol like classes are classes with a single static method, one or more static

variables, but no instance methods or fields.

Relevance for the detection: the programming style represented by this micro pattern is far

away from object orientation. This micro pattern can be mainly detected in those main

classes developed by beginner programmers, even if also well established systems and

libraries may present instances of it.

Pool

Definition: a Pool is a class which declares only static final fields, but no methods.

Relevance for the detection: Pool classes are considered antipatterns as they can be generally

implemented as interfaces. In [Blo01] it is known as the “constant interface antipattern”.

Pseudo class

Definition: a Pseudo class is a class with no instance fields, and no concrete methods.

Within it, only static fields and abstract methods are allowed.

Relevance for the detection: this kind of classes constitutes an antipattern as they can be

rewritten as interfaces, therefore they are good candidates for an easy refactoring.

Record

Definition: a Record is a class in which all fields are public, and no methods are declared

(other than constructors and those methods inherited from java.lang.Object).

123

Relevance for the detection: instances of the Record micro pattern look very similar to Pascal

record types. Such classes run against the encapsulation principle of object orientation,

according to which fields should be declared private (or protected) and accessed by

appropriate getter and setter methods (as it happens, for example, with data manager

classes).

The detection of these micro patterns has two main advantages. First of all, if detected,

they can be refactored according to the object-oriented paradigm, in order to fully comply

with the rest of the system. On the other hand, their absence can be considered as an

indication of good system quality, as it demonstrates that the system has been designed

and implemented correctly following the object-oriented directives.

6.4. Considerations about the detection of software antipatterns and other

defects

As we have outlined, in our approach for the reconstruction of software architectures we

are also interested in the identification of some antipatterns (namely structural and object-

oriented antipatterns) in the analyzed system.

We think that the identification of antipatterns or other kinds of design or programming

defects is useful in the context of SAR activities for different reasons. First of all, their

detection allows the engineers having an immediate understanding of the critical points of

the systems, leading them to a focused and precise intervention on the identified problems

in order to solve them in the most effective way. Detecting and consequently solving these

issues will therefore improve the quality of the analyzed system and its maintenance.

Besides the structural and object-oriented antipatterns considered in our approach, several

other categories of antipatterns have been presented in the literature. The most prominent

categorization of antipatterns is proposed by Brown [BMMM98], who distinguishes

among development, architecture and management antipatterns. These antipatterns cover

various aspects of software development, like issues related to the development and

management team to problems more strictly related to the implementation and to the

modules composing a software system. To our current knowledge, few tools for the

detection of some of these antipatterns currently exist. One of them is Analyst4j [A4J], a

commercial tool devoted to the identification of the Blob, Spaghetti code and Swiss army

knife antipatterns (refer to [BMMM98] for their definition). With respect to Brown’s or

other kinds of antipatterns, a set of elements representing simpler design or programming

defects is constituted by code smells [Fow99]. A code smell is any symptom in the source

124

code of a system that possibly indicates a deeper issue, and can be seen as ineffective

solutions to reccuring implementation problems. Even if they may look similar to software

antipatterns, they actually differ from them for different aspects. First of all smells

generally have a limited impact in the context of single classes, while antipatterns may

involve also groups of classes. They are focused on the identification of bad programming

practices, while antipatterns may also consider design or management issues. Smells seem

to have a direct correlation to particular values of software metrics, which make them

somehow more easily detectable from subject systems with respect to software

antipatterns.

Even if antipatterns and smells are actually different elements, strict correlations have

been pointed out by some researchers. In [MGD+09a, MGD+09b], Moha et al. provide a

taxonomy in which some development antipatterns are related to the code smells which

are exploited for their identification. They proposed an approach (DECOR) and a related

technique (DETEX) for the identification of code smells and related antipatterns, basing on

the computation of ad-hoc metrics. Through their approach, they identify the Blob,

Functional decomposition, Spaghetti code and Swiss army knife antipatterns [BMMM98]

and they provide experimental results about their detection on 11 open source Java

systems.

Different other approaches and tools for smell detection have been implemented. We now

cite some examples which are not exhaustive of the current literature, but which give an

overall idea of the current approaches and available tools for the detection of these

elements. Marinescu [Mar04] defined detection strategies for the identification of ten

common design flaws. These strategies are based on combinations of metrics whose values

can be indicators of the presence of flaws in the analyzed systems. Chatzigeorgiou and

Tsantalis implemented JDeodorant [JDeo], an Eclipse plugin which is able to detect (and

also solve) the Feature envy [TC09a, TC09c] and the Type checking [TC09b] smells, by

respectively applying Move method refactoring and polymorphism exploitation. Other

tools concerned with smell identification are for example FindBugs [FindBugs], which is

devoted to the detection of bugs related to the correctness and the performances of Java

systems, and PMD [PMD], which allows for the identification of bugs (like empty try-catch

or switch statements), dead code, complicated expressions as well as duplicate code in

Java systems.

These are only a sample of the available approaches. As it can be noticed, research in this

field is lively active. Many tools for smell identification have been implemented, but (as

we have seen) the same cannot be stated as far as antipatterns are concerned.

We shall observe that none of these tools is currently integrated in any SAR framework.

For the future, it is hopefully expected that SAR tools will provide antipatterns and/or

125

smell identification capabilities, as they are of great support for the reengineering and

maintenance processes.

6.5. Concluding remarks

In this chapter we have described how the micro-structures (and in particular the EDPs

and micro patterns) are currently exploited for architecture reconstruction and software

analysis capabilities. EDPs have been exploited in order to generate views on the analyzed

systems, both on packages (through the Package view) and on classes (through the Class

compact and Class extended view). Through the analysis of EDPs, it is possible to

compute a set of common object oriented and quality metrics, which help the engineers in

analyzing the complexity of the subject systems and consequently focusing on those

components and modules that expose criticalities. This process is also supported by the

detection of structural antipatterns, which are represented by types with a high number of

dependencies and/or dependents with other entities. A set of object-oriented antipatterns

is also detectable through micro patterns. In this case, the engineer can analyze those

classes whose implementation is not compliant with the object-oriented principles,

violating encapsulation and limiting the possibility of extension or reuse of the affected

classes. Several other micro patterns can be detected through our SAR module, that depict

peculiar classes which the engineers can be interested in. For some of them, correlations

with particular metrics values have been underlined and inspected along the chapter.

126

Chapter 7

A novel interpretation

of micro patterns

Abstract

In this chapter we reconsider micro patterns and we suggest a novel approach to their detection aimed to identify classes

that are very close and similar to a correct micro pattern implementation, even if some of the methods and/or attributes

of the class do not comply with the constraints defined by the micro pattern. The new interpretation is based on two

common object oriented metrics, namely the number of attributes (NOA) and the number of methods (NOM) of a class.

Among the various advantages of this approach, the identification of classes or interfaces similar to micro patterns

allows for example the analysis of software systems along various releases (checking if and how the nature of the

attributes and/or methods of a class has changed), as well as the identification of possible critical classes that can’t be

detected with a precise matching approach.

7.1. Motivation

We now recall some concepts related to micro patterns that have already been presented,

but that are useful in order to understand the motivations behind a new interpretation of

these micro-structures. We let the reader refer to [GM05] to have a complete description of

micro patterns.

Micro patterns have been defined as a set of class-level traceable patterns. Three concepts

are related to this definition:

- being class-level: each micro pattern stands at the class abstraction level, i.e. it captures

characteristics about single classes, which can be derived exclusively from the analysis

of their methods and attributes;

127

- being traceable: a code structure is said to be traceable if it is mechanically recognizable

from the analyzed systems, or, more formally, “it can be expressed as a simple formal

condition on the attributes, types, name and body of a software module and its

components” [GM05];

- being patterns: their aim is to capture some programming techniques that are very

common in particular among Java developers.

Although the definition of the 27 micro patterns (as proposed by Gil and Maman)

followed a rigorous and well established process, in our opinion these elements may

encounter some drawbacks.

First of all, the definition of some micro patterns is ambiguous. For example, consider the

Data manager micro pattern, which belongs to the Data managers micro pattern category.

This elements has been defined as:

- Data manager: a class where all methods are either getters or setters;

A question arises here: what kind of methods should be considered as getters or setters?

Are setter methods only those methods which contain only one statement that assigns an

input parameter to a variable of the class? Or may they contain other statements and

operations? In the same way, are getter methods only those methods which contain only

one statement returning a field of the class, or may they contain other statements? This

kind of ambiguity is not resolved in the original catalogue. We tried to solve this problem

in Chapter 3, where getter and setter methods are considered as code atoms, and they are

constituted only by one statement, which sets or correspondently returns a field of a

certain class.

A second issue related to micro patterns is that all of them are placed at the class

abstraction level. Each micro pattern definition begins with “A class/interface that…”: this

characteristic make it compulsory to analyze each class in general, considering the whole

set of attributes and methods, in order to understand if the constraints expressed on each

micro pattern are satisfied. As we have seen, other kinds of micro-structures are placed at

lower abstraction levels, like single attributes or methods. Hypothetically considering

micro patterns defined not on classes, but on the attributes and/or methods of a class, we

may have more precise and focused definitions. For example, the Data manager micro

pattern could be placed at the method detail level, hence it would not be defined as “a

class where all methods are either getters or setters”, but could be seen as “a method

which is either a getter or a setter”.

A third problem of micro patterns is strictly related to the previous one: micro patterns are

in our opinion too much restrictive. In general, given a type (i.e. either a class or interface)

128

T, T is an instance of the micro pattern MP if and only if the whole set of methods and/or

attributes of T satisfies the constraints specified for MP. This means that, if a type that is a

correct realization of a micro pattern MP is even slightly modified introducing some code

elements that don’t comply with the specifications for MP, the type won’t be considered

an instance of MP anymore. For example, consider again the Data manager micro pattern.

Its definition states that all methods are either getters or setters. Given a class implementing

the Data manager micro pattern, and adding to it a method that is neither a setter nor a

getter, the class is not to be considered a correct instance of the micro pattern. In the same

way, there may exist in a system many classes whose largest part of methods is formed by

setters and/or getters. These observations can obviously be extended to all the other micro

patterns. Hence, we assert that inside a software system there are potentially numerous

types presenting micro pattern flavours, i.e. types that look very similar to some micro

patterns, except for a restricted set of attributes and/or methods that place them at a very

little distance from the correct micro pattern implementation [AM09b].

In this context, our aim is finding types that present micro pattern flavours, with the help

of the number of attributes (NOA) and number of methods (NOM) metrics [LK94]. These

metrics generally take into account both static and non-static members of a given type. It is

worth notice that these two metrics considered stand alone don’t give really important

information about the complexity or quality of a system. Indeed, they are focused on

single classes, whose complexity or quality cannot be objectively evaluated only through

the use of these (or other) simple metrics. Generally, such basic metrics have to be

combined and contextualized, in order to achieve a better general understanding of single

classes or of the overall analyzed system as well [KB04].

The detection of micro pattern flavours has two main advantages. First of all, the

identification of types presenting micro pattern flavours will obviously lead to the

detection of much more instances with respect to the exact ones. It will be noticed, thank

to the definition of ad-hoc similarity measures, that many of the newly detected instances

are similar to the desired micro patterns with rates often larger than 80%. The detection of

these instances helps to identify a larger number of system parts that may need to be

changed in order to solve design or programming issues (as for example in the case of the

antipatterns already considered in Chapter 6, Section 6.3.2), or simply improved (for

example by making them exactly compliant to a micro pattern definition, in the case the

micro patterns they implement represent good programming practices). Moreover, the

identification of types which present micro pattern flavours allows the analysis of

software systems along various releases; the engineers can check if and how the nature of

the attributes and/or methods of a class has changed between two different releases of the

analyzed systems, making considerations about the eventual improvement of the system

stability and quality.

129

7.2. A new interpretation of micro patterns based on NOA and NOM

metrics

In order to allow the detection of types presenting micro pattern flavours through a

similarity-based approach, we first propose a different categorization of micro patterns in

three groups. If we consider the definitions provided for the micro patterns, we notice that

each of them is based on one of the following three aspects:

- The analysis of the attributes belonging to a type;

- The analysis of the methods declared within a type;

- The analysis of both attributes and methods that characterize a type;

We define the set A as the set of micro patterns that can be identified by only analyzing the

attributes of a type. Starting from [GM05] and from the definitions provided in Chapter 3,

this set is clearly defined as A = {Stateless, Common state, Immutable, Box, Compound

box, Canopy, Trait}.

We define the set M as the set of micro patterns that can be identified by analyzing only

the methods declared within a type. Therefore, M = {Data manager, Sink, Outline, State

machine, Implementor, Overrider, Extender}.

Finally, the set AM is the set containing those micro patterns that are identified by

analyzing both the attributes and methods belonging to a certain type. Hence, AM =

{Designator, Taxonomy, Joiner, Pool, Function pointer, Function object, Cobol like,

Restricted creation, Sampler, Record, Pure type, Augmented type, Pseudo class}.

These categories contain all the micro patterns, as |M| + |A| + |AM| = 7 + 7 + 13 = 27.

Table 7.1 reports the number of elements of each of the eight categories defined by Gil and

Maman which belong to each of the three new categories we have just defined.

The distribution of the micro patterns inside the new three categories is not surprising,

and is a direct consequence of the definition of each single micro pattern.

The Degenerate state and behavior, Degenerate behavior and Controlled creation

categories are all completely mapped in the AM set. Degenerate state and Wrappers are

mapped in the A category, as they deal completely with a class state, which is represented

by its attributes. Only the Inheritors set of micro patterns is completely mapped in the M

category, the other categories whose elements belong to M have also elements that belong

to at least another category out of A and AM.

130

Micro pattern category A M AM

Degenerate state and behavior 0 0 4

Degenerate behavior 0 0 3

Degenerate state 3 0 0

Controlled creation 0 0 2

Wrappers 3 0 0

Data managers 0 2 1

Base classes 1 2 3

Inheritors 0 3 0

Total 7 7 13

Table 7.1 – Relationships between the orginal micro pattern categories defined

by Gil and Maman, and those based on attributes and methods

As we have outlined, we want to revisit the micro patterns according to the NOA and

NOM metrics, in order to support the detection of types presenting micro pattern flavours.

To do so, we introduce three values: the attributes similarity ratio (ASR), the methods

similarity ratio (MSR), and the global similarity ratio (GSR).

For each micro pattern belonging to the A category, ASR measures the amount of

attributes of a given type which satisfy the attributes conditions specified for that micro

pattern, with respect to the total number of attributes declared within the type.

For each micro pattern in M, MSR calculates the amount of methods of a given type which

satisfy the methods conditions specified for that micro pattern, with respect to the total

number of methods declared within the type.

Finally, for each micro pattern in AM, GSR considers both attributes and methods as being

homogeneous entities of a type. Therefore, GSR measures the amount of attributes and

methods (considered altogether) of a given type which satisfy the attributes and methods

conditions specified for the micro pattern, with respect to the total number of attributes

and methods declared within the type.

ASR, MSR and GSR are calculated considering the NOA and NOM of each given type,

hence taking into account the whole set of attributes and methods that characterize each of

them. These similarity ratios are percentage rates, and are calculated in a different way

depending on the micro pattern of interest. Moreover, they are to be intended as an

indication of how much a given type is similar to a certain micro pattern. The higher the

value of these measures, the more the type is close to a correct and complete micro pattern

realization. If a type has a similarity ratio of 100% to a certain micro pattern, the whole set

of its attributes and/or methods satisfy the constraints specified by the micro pattern, and

hence it is a precise instance of it. Instances with a 100% similarity ratio are therefore those

131

that can also be identified by the precise matching approach proposed by Gil and Maman

[GM05]. For some micro patterns (Designator, Taxonomy, Joiner, Trait, Pure type, Pool

and Record) we specify an upper bound of 3 or 5 methods and/or attributes defined by a

type. This because we think it is too restrictive to consider only those types that do not

define any attributes and/or methods at all. Moreover, we verified that specifying a higher

upper bound would result in detecting a larger number of instances presenting flavours of

these patterns, but that are of scarce interest if we consider the purpose and the

specifications of these micro patterns.

Micro pattern Conditions on attributes ASR

Stateless

NOA == 0

NOA > 0

1

(static fileds + final fields) / NOA

Common state

NOA == 0

NOA > 0

0

static fields / NOA

Immutable

NOA > 1

Else

Number of fields modified by constructor / NOA

0

Box

NOA = 0

NOA = 1

Non-final fields == 1

NOA > 1

0

1

0

Compound box

NOA >= 1

Non-primitive fields == 1

NOA > 1

Non-primitive fields > 1

1

1 – (Non-primitive fileds / NOA)

Canopy

NOA == 1

Else

Number of fields modified by constructor / NOA

0

Trait

NOA > 5

Else

0

1 – NOA / 5

Table 7.2 – Attribute similarity ratios for the micro patterns based on attributes analysis

Table 7.2 reports the 7 micro patterns based on attributes, and indicates how the

correspondent ASR must be calculated in order to identify types presenting flavours of

these micro patterns. Given the definitions of these micro patterns in [GM05], the new

interpretation and the meaning of the similarity ratios should be straightforward.

132

Table 7.3 reports the 7 micro patterns based on methods, and indicates how the MSR is

calculated in order to identify types presenting flavours of these micro patterns.

Micro pattern Conditions on methods MSR

Data manager

NOM = 0

NOM > 0

0

(Getter methods + setter methods) / NOM

Sink

NOM = 0

NOM > 0

0

Propagating methods1 / NOM

Outline

Methods invoking an abstract

method of the same class >= 1

Else

1

0

State machine

NOM = 0

NOM > 0

0

1 – parameterized methods 2/ NOM

Implementor

NOM = 0

NOM > 0

0

Implementing methods3 / NOM

Overrider

NOM = 0

NOM > 0

0

Overriding methods4 / NOM

Extender

NOM = 0

NOM > 0

1

1 – overriding methods / NOM

Table 7.3 – Method similarity ratios for the micro patterns based on methods analysis

1 A propagating method is a method which invokes at least another method within its body, either defined in

the same class or in another type. In Table 7.3, Propagating methods represents therefore the total number of

propagating methods detected in a class.

2 A parameterized method is a method which defines at least one formal parameter. In Table 7.3, Parameterized

methods is therefore the number of methods with parameters identified in a type.

3 An implementing method is a method which overrides an inherited abstract method. In Table 7.3,

Implementing methods represents the number of implementing methods of a class.

4 An overriding method is a method which overrides an inherited non-abstract method. In Table 7.3, Overriding

methods represents the number of overriding methods detected in a class.

133

Table 7.4 reports the 13 micro patterns based on both attributes and methods, and reports

how the GSR similarity value is to be calculated for each of them.

Micro pattern Conditions on attributes Conditions on methods GSR

Designator

NOA > 3

In any case

Else

In any case

NOM > 3

Else

0

0

((1 - NOA / 3) + (1 – NOM /

3)) / 2

Taxonomy

NOA > 3

In any case

Else

In any case

NOM > 3

Else

0

0

((1 - NOA / 3) + (1 – NOM /

3)) / 2

Joiner

NOA > 3

In any case

Else

In any case

NOM > 3

Else

0

0

((1 - NOA / 3) + (1 – NOM /

3)) / 2

Pool In any case

NOM > 5

Else

0

((1 – NOM / 5) + (static final

fields / NOA)) / 2

Function pointer

NOA == 0

Else

NOM >= 1

Public methods == 1

Else

1

0

Function object

NOA >= 1

Else

NOM >= 1

Public methods == 1

Else

1

0

Cobol like In any case

Static methods == 1

NOM == 1

Static methods == 1

NOM > 1

Else

(static methods + static

fields) / (NOM + NOA)

0

(static methods + static

fields) / (NOM + NOA)

Restricted creation

Static same class fields >= 1

Else

In any case

Private constructors /

constructors

0

Sampler

Static same class fields >= 1

Else

Public constructors >= 1

Else

1

0

134

Record In any case

NOM > 5

Else

0

((1 – NOM / 5) + (public

fields /NOA)) / 2

Pure type

NOA > 5

NOA <= 5

Non static fields == NOA

Else

In any case

0

((1 – Non static fields /5) +

(abstract methods / NOM)) /

2

0

Augmented type

Static final same class fields

>= 3

Else
In any case

(1 + abstract methods /

NOM) / 2

((Static final same class

fields / 3) + (abstract

methods / NOM)) / 2

Pseudo class In any case In any case

(abstract methods + static

methods + static fields) /

(NOM + NOA)

Table 7.4 – Global similarity ratios for the micro patterns based on both attributes and methods analysis

7.3. Experimental results

To prove the importance of detecting not only classes that exactly match the micro

patterns definitions, but also those containing relevant micro pattern flavours, we

identified instances of micro patterns and micro pattern flavours on the Java systems

reported in Table 7.5.

System and version Description Number of packages Number of types

Ant 1.5.2

Java-based build tool

56 724

Ant 1.6.2 67 951

Ant 1.7.1 72 1130

JHotDraw 5.1

GUI framework

11 172

JHotDraw 6.0b1 30 544

JHotDraw 7.1 44 718

Apache Lucene 1.4.3
Text search engine

library

24 294

Apache Lucene 1.9 25 459

Apache Lucene 2.0 24 399

Total 437 5391

Table 7.5 – An overview of the analyzed systems

135

For each system, we considered three different releases in order to let a comparison about

the evolution of micro patterns throughout different releases be possible.

The following tables report the results of the micro patterns detection on the analyzed

systems. Besides reporting the name of each micro pattern, the tables are divided into two

main sections. The first half indicates the precise matching results: i.e. for each micro

pattern and for each system release, it reports the number of exact detected instances, as

well as the percentage of types implementing the micro pattern with respect to the total

number of types constituting the subject system release. The second part reports the

number of types (and their percentage with respect to the overall system) whose similarity

ratio (i.e. ASR, MSR or GSR, depending on the considered kind of micro pattern) with the

correspondent micro pattern is at least 80%. We consider 80% as an acceptable lower-

bound threshold, as it allows the detection of those instances that are mostly closed to the

correct micro patterns implementation.

Table 7.6 to 7.8 report the results obtained on the analysis of Ant, respectively about the

micro patterns based on attributes, those based on methods, and those based on both

attributes and methods.

As far as the micro patterns based on attributes are concerned, their distribution in the

three releases remains quite constant, both for the precise matching instances and for the

classes presenting micro pattern flavours. A considerable number of classes (around 30%)

are Stateless classes, i.e. their attributes are uniquely both static and final.

Precise matching Similarity matching (at least 80%)

Micro pattern
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1

No. % No. % No. % No. % No. % No. %

Box 130 18,0% 157 16,5% 177 15,7% 5 0,7% 4 0,4% 7 0,7%

Canopy 13 1,8% 12 1,3% 16 1,4% 0 0,0% 0 0,0% 0 0,0%

Common state 39 5,4% 57 6,0% 104 9,2% 9 1,2% 11 1,2% 16 1,7%

Compound box 140 19,3% 162 17,0% 195 17,3% 7 1,0% 7 0,7% 11 1,2%

Immutable 20 2,8% 18 1,9% 16 1,4% 1 0,1% 2 0,2% 1 0,1%

Stateless 206 28,5% 285 30,0% 356 31,5% 8 1,1% 9 0,9% 16 1,7%

Trait 2 0,3% 5 0,5% 6 0,5% 9 1,2% 13 1,4% 18 1,9%

Table 7.6 – Micro patterns based on attributes: detection results on three releases of Ant

Also the micro patterns based on methods (Table 7.7) don’t undergo any particular

evolution. In this case, it is relevant the presence of many classes presenting flavours of the

Extender micro pattern, while fewer are precise implementations of it. This means that

there is a considerable number of classes (around 20%) within Ant which override only a

small part of the inherited methods, while an exact implementation of the Extender micro

pattern would not override any inherited method.

136

Precise matching Similarity matching (at least 80%)

Micro pattern
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1

No. % No. % No. % No. % No. % No. %

Data manager 34 4,7% 45 4,7% 49 4,0% 16 2,2% 21 2,2% 22 1,9%

Extender 60 8,3% 85 8,9% 108 7,5% 143 19,8% 188 19,8% 211 18,7%

Implementor 46 6,4% 59 6,2% 50 5,2% 0 0,0% 0 0,0% 1 0,1%

Outline 10 1,4% 14 1,5% 20 1,2% 0 0,0% 0 0,0% 0 0,0%

Overrider 17 2,3% 28 2,9% 41 2,5% 1 0,1% 3 0,3% 5 0,4%

Sink 39 5,4% 53 5,6% 55 4,7% 9 1,2% 10 1,1% 9 0,8%

State machine 3 0,4% 3 0,3% 7 0,3% 1 0,1% 1 0,1% 1 0,1%

Table 7.7 – Micro patterns based on methods: detection results on three releases of Ant

As far as the third category of micro patterns is concerned (those based on both attributes

and methods, reported in Table 7.8), we can notice how the number of Function objects

increases as well as the Function pointer instances decrease.

No other particular evolutions are to be noticed. There are very few instances of the four

micro patterns devising antipatterns (i.e. Cobol like, Pool, Pseudo class and Record), hence

the system seems to be well implemented according to the object-oriented paradigm.

Anyway, there are also some classes presenting considerable flavours of the Pool and

Record micro patterns, that will probably need to be further inspected.

Precise matching Similarity matching (at least 80%)

Micro pattern
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1

No. % No. % No. % No. % No. % No. %

Augmented type 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Cobol like 10 1,4% 13 1,4% 17 1,5% 2 0,3% 3 0,3% 9 0,8%

Designator 1 0,1% 4 0,4% 4 0,4% 17 2,3% 23 2,4% 31 2,7%

Function object 40 5,5% 54 5,7% 86 7,6% 0 0,0% 0 0,0% 0 0,0%

Function pointer 76 10,5% 93 9,8% 74 6,5% 0 0,0% 0 0,0% 0 0,0%

Joiner 1 0,1% 3 0,3% 3 0,3% 0 0,0% 0 0,0% 0 0,0%

Pool 1 0,1% 2 0,2% 5 0,4% 15 2,1% 25 2,6% 50 4,4%

Pseudo class 0 0,0% 1 0,1% 1 0,1% 0 0,0% 0 0,0% 0 0,0%

Pure type 34 4,7% 46 4,8% 59 5,2% 2 0,3% 2 0,2% 3 0,3%

Record 8 1,1% 10 1,1% 10 0,9% 9 1,2% 16 1,7% 25 2,2%

Restricted creation 1 0,1% 1 0,1% 2 0,2% 0 0,0% 0 0,0% 0 0,0%

Sampler 0 0,0% 0 0,0% 5 0,4% 0 0,0% 0 0,0% 0 0,0%

Taxonomy 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Table 7.8 – Micro patterns based on both attributes and methods: detection results on three releases of Ant

Table 7.9 to 7.11 report the results obtained on the analysis of three different releases of

JHotDraw.

137

A considerable amount of Box, Compound box and Stateless instances are found in all the

releases. It should be noticed that there are very few classes which are similar to micro

patterns, most of the found instances precisely match with the specifications. On one hand,

this can be an indication of a well-structured and implemented system, where each single

class seems to be designed to fully comply with the micro pattern specifications. On the

other hand, we can assert that the definition of micro patterns is actually able to well

capture programming practices, codifying classes whose structure is commonly present in

well developed systems.

Precise matching Similarity matching (at least 80%)

Micro pattern
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1

No. % No. % No. % No. % No. % No. %

Box 35 20,3% 70 12,9% 91 12,7% 0 0,0% 1 0,2% 0 0,0%

Canopy 13 7,6% 22 4,0% 6 0,8% 0 0,0% 0 0,0% 0 0,0%

Common state 11 6,4% 22 4,0% 92 12,8% 0 0,0% 2 0,4% 1 0,1%

Compound box 51 29,7% 258 47,4% 100 13,9% 0 0,0% 0 0,0% 0 0,0%

Immutable 15 8,7% 24 4,4% 20 2,8% 0 0,0% 1 0,2% 1 0,1%

Stateless 57 33,1% 160 29,4% 235 32,7% 0 0,0% 2 0,4% 1 0,1%

Trait 2 1,2% 6 1,1% 8 1,1% 3 1,7% 3 0,6% 8 1,1%

Table 7.9 – Micro patterns based on attributes: detection results on three releases of JHotDraw

Differently from what happened with Ant, the three releases actually underwent

important evolutions and modifications, as proved by the changes in the micro pattern

percentages along the releases. This is also demonstrated by the heavily different number

of types that constitute each release, and by the different structure of packages and kind of

types each of them is composed of.

Precise matching Similarity matching (at least 80%)

Micro pattern
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1

No. % No. % No. % No. % No. % No. %

Data manager 3 1,7% 8 1,5% 3 0,4% 0 0,0% 0 0,0% 3 0,4%

Extender 7 4,1% 22 4,0% 49 6,8% 1 0,6% 20 3,7% 12 1,7%

Implementor 0 0,0% 0 0,0% 0 0,0% 0 0,0% 3 0,6% 2 0,3%

Outline 5 2,9% 7 1,3% 15 2,1% 0 0,0% 0 0,0% 0 0,0%

Overrider 10 5,8% 32 5,9% 39 5,4% 5 2,9% 6 1,1% 12 1,7%

Sink 25 14,5% 34 6,3% 61 8,5% 1 0,6% 3 0,6% 17 2,4%

State machine 2 1,2% 7 1,3% 4 0,6% 0 0,0% 1 0,2% 1 0,1%

Table 7.10 – Micro patterns based on methods: detection results on three releases of JHotDraw

138

Similar considerations can be made while analyzing the other two categories of micro

patterns. Once again, we can notice how very few instances present micro pattern

flavours, being a hint for a well-designed system. This is also evident by the scarce

presence of the Cobol like, Pool, Pseudo class and Record micro patterns: their absence

justify for a system which is strictly developed according to the object-oriented principles.

Precise matching Similarity matching (at least 80%)

Micro pattern
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1

No. % No. % No. % No. % No. % No. %

Augmented type 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Cobol like 2 1,2% 4 0,7% 12 1,7% 0 0,0% 1 0,2% 1 0,1%

Designator 0 0,0% 3 0,6% 1 0,1% 5 2,9% 8 1,5% 6 0,8%

Function object 10 5,8% 16 2,9% 64 8,9% 0 0,0% 0 0,0% 0 0,0%

Function pointer 15 8,7% 29 5,3% 21 2,9% 0 0,0% 0 0,0% 0 0,0%

Joiner 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Pool 0 0,0% 0 0,0% 17 2,4% 6 3,5% 9 1,7% 20 2,8%

Pseudo class 0 0,0% 2 0,4% 1 0,1% 0 0,0% 0 0,0% 0 0,0%

Pure type 18 10,5% 41 7,5% 45 6,3% 0 0,0% 0 0,0% 0 0,0%

Record 1 0,6% 1 0,2% 15 2,1% 0 0,0% 1 0,2% 22 3,1%

Restricted creation 1 0,6% 2 0,4% 2 0,3% 0 0,0% 0 0,0% 0 0,0%

Sampler 1 0,6% 5 0,9% 4 0,6% 0 0,0% 0 0,0% 0 0,0%

Taxonomy 0 0,0% 1 0,2% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Table 7.11 – Micro patterns based on both attributes and methods: detection results on three releases of JHotDraw

Finally, Tables 7.12 to 7.14 indicate the results obtained on the analysis of Lucene. As it

happened with Ant and JHotDraw, the majority of the micro patterns based on attributes

are instances of the Box, Compound box or Stateless micro pattern.

Precise matching Similarity matching (at least 80%)

Micro pattern
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0

No. % No. % No. % No. % No. % No. %

Box 88 29,9% 142 30,9% 142 35,6% 2 0,7% 0 0,0% 0 0,0%

Canopy 3 1,0% 2 0,4% 2 0,5% 0 0,0% 0 0,0% 0 0,0%

Common state 18 6,1% 20 4,4% 20 5,0% 6 2,0% 6 1,3% 6 1,5%

Compound box 60 20,4% 83 18,1% 82 20,6% 3 1,0% 3 0,7% 3 0,8%

Immutable 8 2,7% 6 1,3% 6 1,5% 1 0,3% 1 0,2% 1 0,3%

Stateless 61 20,7% 77 16,8% 77 19,3% 5 1,7% 6 1,3% 6 1,5%

Trait 11 3,7% 13 2,8% 12 3,0% 8 2,7% 10 2,2% 9 2,3%

Table 7.12 – Micro patterns based on attributes: detection results on three releases of Lucene

139

No particular evolution in terms of micro patterns has been registered along the three

releases. For some micro patterns (like Trait, Implementor and State machine), the number

of classes presenting flavours is considerable if compared with the exact instances. This

suggests us to check for those classes and see if it is possible to make them fully compliant

with the micro pattern specifications.

Precise matching Similarity matching (at least 80%)

Micro pattern
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0

No. % No. % No. % No. % No. % No. %

Data manager 9 3,1% 10 2,2% 9 2,3% 2 0,7% 1 0,2% 1 0,3%

Extender 14 4,8% 17 3,7% 16 4,0% 0 0,0% 3 0,7% 2 0,5%

Implementor 1 0,3% 1 0,2% 4 1,0% 4 1,4% 10 2,2% 9 2,3%

Outline 13 4,4% 16 3,5% 16 4,0% 0 0,0% 0 0,0% 0 0,0%

Overrider 4 1,4% 6 1,3% 3 0,8% 2 0,7% 2 0,4% 2 0,5%

Sink 4 1,4% 8 1,7% 8 2,0% 0 0,0% 0 0,0% 0 0,0%

State machine 1 0,3% 1 0,2% 1 0,3% 3 1,0% 3 0,7% 3 0,8%

Table 7.13 – Micro patterns based on methods: detection results on three releases of Lucene

This is even more relevant with three of the micro patterns codifying antipatterns, namely

Pool, Pseudo class, and Record.

Precise matching Similarity matching (at least 80%)

Micro pattern
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0

No. % No. % No. % No. % No. % No. %

Augmented type 0 0,0% 0 0,0% 0 0,0% 1 0,3% 1 0,2% 1 0,3%

Cobol like 7 2,4% 9 2,0% 9 2,3% 1 0,3% 1 0,2% 1 0,3%

Designator 1 0,3% 2 0,4% 2 0,5% 2 0,7% 3 0,7% 3 0,8%

Function object 48 16,3% 60 13,1% 60 15,0% 0 0,0% 0 0,0% 0 0,0%

Function pointer 12 4,1% 15 3,3% 15 3,8% 0 0,0% 0 0,0% 0 0,0%

Joiner 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Pool 3 1,0% 3 0,7% 3 0,8% 3 1,0% 13 2,8% 12 3,0%

Pseudo class 4 1,4% 3 0,7% 4 1,0% 3 1,0% 3 0,7% 3 0,8%

Pure type 12 4,1% 13 2,8% 14 3,5% 2 0,7% 3 0,7% 2 0,5%

Record 16 5,4% 15 3,3% 15 3,8% 3 1,0% 8 1,7% 7 1,8%

Restricted creation 0 0,0% 7 1,5% 7 1,8% 0 0,0% 0 0,0% 0 0,0%

Sampler 1 0,3% 1 0,2% 1 0,3% 0 0,0% 0 0,0% 0 0,0%

Taxonomy 1 0,3% 1 0,2% 1 0,3% 0 0,0% 0 0,0% 0 0,0%

Table 7.14 – Micro patterns based on both attributes and methods: detection results on three releases of Lucene

As these elements represent critical classes inside a system, those classes presenting

flavours of these patterns are possible candidates for refactoring. Anyway, the number of

instances of these micro patterns is low if compared with the size of the system. Like for

140

JHotDraw, this is an indicator of a system that is well developed according to the

principles of object-orientation.

7.4. Concluding remarks

From the above experimentations, some interesting conclusions can be drawn. First of all,

Box, Compound box and Stateless are the more frequent micro patterns in all the systems

and in all the considered releases. These results can be also compared with [GM05], Table

4, which demonstrates how these micro patterns are quite frequent, independently from

the analyzed system. They seem therefore to codify types that are very recurrent in the

programming practices.

Another observation comes from the occurrences of the Trait micro pattern. Trait identifies

abstract classes which have no state. To some extent, this micro pattern can therefore be

considered as an indication of the abstractness of the considered system. The relaxation of

the constraint of this micro pattern to allow the existence of some state succeeded in

identifying a good number of classes presenting Trait flavours. In some cases, classes

closely similar to Trait are more than those that exactly match the micro pattern. These

classes could be further inspected in order to make them fully compliant with the

specifications.

Instances of the Extender, Implementor and Overrider micro patterns give indications

about how the systems organize class hierarchies. JHotDraw mainly overrides non-

abstract methods, hence redefining already established operations. Many classes are

similar to the Extender micro pattern, hence they extend a class overriding only a little set

of methods. Many precise instances of the Extender micro pattern have also been detected

on Lucene and Ant (the latter providing also an interesting rate of Extender flavours). In

these systems, a good percentage of classes overriding abstract methods of the

superclasses can also be found. The detection of classes presenting micro pattern flavours

allowed for the identification of a good number of inheritors micro patterns, that surely

add more information to that provided uniquely by the precise instances, and gives an

overview of the inheritance mechanisms adopted by the various systems.

Moreover, the identification of micro pattern flavours is especially useful in two cases.

First of all, identifying flavours of micro patterns devising good programming practices in

some classes can suggest to modify those classes in order to make them fully compliant

with the specifications. On the other side, it is useful to identify flavours of micro patterns

codifying bad programming practices, like Cobol like, Pool, Pseudo class and Record, that

would not be detected by any precise matching approach. The detection of these instances

suggests to refactor them in order to solve the issues they present.

141

Chapter 8

Conclusions and future works

8.1. Conclusions

The main contributions and results of this thesis are placed in the vast field of reverse

engineering. In particular, the focus was concentrated on exploring and analyzing three

categories of software micro-structures (elemental design patterns, design pattern clues

and micro patterns), inspecting their relevance and role in design pattern detection and

software architecture reconstruction activities.

From a first in-depth analysis of micro-structures, we provided a comparison aiming at

underlining the characteristics and peculiarities of each category, and at tracing the

possible similarities and differences among them. An important outcome of this

comparative evaluation is related to the disadvantages exposed by the considered micro-

structures. Two main drawbacks can be pointed out. First of all, the definition of micro-

structures is generally not formal, and may result ambiguous in some cases. Secondly,

each category has always been considered as a stand-alone, and never compared with

other micro-structures categories. Indeed, we think that micro-structures, independently

from their purposes and definitions, can actually be considered as similar elements, in that

they can all be automatically identified from source code and exploited for DPD and/or

SAR purposes, as discussed in this thesis. For these reasons, we provided a novel

definition of the considered micro-structures that is based on common core concepts. The

redefinition process aimed at solving the possible ambiguities presented by the micro-

structures, and at giving them a common categorization and meaning. We implemented a

module for the identification of all the considered micro-structures inside Java systems,

which has been developed as an Eclipse plugin.

The first introduction of micro-structures was supported by a practical task. Elemental

design patterns were exploited for design pattern detection purposes, supported by the

SPQR approach. Design pattern clues as well have been introduced and exploited for

142

design pattern detection, while micro patterns have been defined to identify common

programming techniques, and their relevance and presence in existing systems has been

analyzed. Anyhow, each micro-structures category has never been considered with respect

to the already defined ones, in order to verify if the joint exploitation of different kinds of

micro-structures would have provided advantages in the activities of interest. We faced

this issue by considering the whole set of EDPs, clues and micro patterns and inspect their

global usefulness for both DPD and SAR purposes.

As far as DPD is concerned, we inspected the role and relevance of micro-structures in the

identification of pattern roles and pattern structures. From our experimentations on

different sets of pattern instances, we verified how EDPs reveal useful for the extraction of

structural information related to the pattern instances, while clues are more suited to

identify pattern roles. On the other hand, in general micro patterns didn’t provide useful

information, neither for the recovery of structural information about a pattern, nor for the

identification of their roles. Some exceptions shall be made, like for the Template method

pattern, whose abstract class role can be correctly identified by the Outline micro pattern.

Starting from our experimentations, for each pattern we defined the set of micro-structures

that are useful in the detection process. Through our work we pointed out how

considering only one single category of micro-structures would not be sufficient in order

to detect all the peculiarities related to a design patterns. On the contrary, this seems

possible while extending the considerations to at least two micro-structures categories.

An innovative research task we have introduced is related to the refinement of the design

pattern detection results provided by various detection tools. It is well known and

experimented that design pattern detection tools generally identify different design

patterns and detect different instances, even while analyzing the same systems. This is

mainly due to the heterogeneous strategies adopted in the detection process, and also to

the lack of formalization for design patterns, which is one of the causes of the well known

variants problem. As the detection results vary among tools, this implies that the tools

necessarily identify many false positive instances, which badly affect the precision of the

results. The refinement process we proposed is aimed to improve the precision of the

detection tools by trying to eliminate false positive instances. The approach is based on the

application of micro-structure-based rules on the detected instances, which allow to

discard those instances that do not implement the necessary micro-structures which

characterize the corresponding pattern. From our experimentations, it emerged that, out of

the considered patterns, the refinement rules behave well for the Factory method,

Singleton, Template method, Visitor, Composite and Decorator design patterns, while

some problems were encountered in the refinement of the Adapter pattern, due to its

generality.

143

Focusing on micro patterns, we gave a novel interpretation of them, basing on the NOM

and NOA metrics, which allowed us to identify classes that are very close and similar to a

micro pattern implementation, but couldn’t be detected by the original precise matching

approach. The adopted similarity-based approach allowed us to compare different

releases of a same subject system, inspecting and analyzing the evolution of the

implemented micro patterns throughout the various releases. In the case the considered

micro pattern represents a well established and valid programming practice, identifying

classes that are very similar to this micro pattern lets the engineers concentrate on it in

order to make it fully compliant with the micro pattern specifications. On the other hand,

in the case of micro patterns representing design or programming issues, it allows to solve

the issues they present, and that would have been not considered by the precise matching

detection approach.

As far as software architecture reconstruction is concerned, we shall remind that, to our

current knowledge, the exploitation of micro-structures for this activity has never been

inspected. We moved the first steps towards this research direction, developing a module

for software architecture reconstruction based on micro-structures detection which is

devoted to the generation of package and class views on the subject systems, as well as to

the computation of object-oriented and quality metrics, and to the detection of structural

and object-oriented antipatterns, or of classes of particular interest. In this context, we

experimented that EDPs can be exploited in order to recover the relationships among the

packages and classes composing a system. Consequently, they are also suitable to compute

the dependencies and dependents of each single software entity. Dependencies and

dependents are the core values which other quality metrics can be calculated from, as we

discussed in chapter 6. We also provided considerations about classes with a high number

of dependencies and/or dependents, which are to be considered as structural antipatterns

and hence need particular consideration by the software engineers. In fact, these

components are the most critical, as they negatively influence the maintainability and

evolution of the system itself. In the context of SAR, we also considered micro patterns as

means to identify classes of particular interest and some object-oriented antipatterns. For

some micro patterns, we noticed possible correlations with the dependencies and

dependents metrics, and discussed about them and their relevance. Micro patterns were

also exploited to detect four antipatterns representing classes whose implementation is far

from the object-oriented best practices. For SAR purposes, we didn’t consider design

pattern clues, as they didn’t reveal useful for the identification of structural relationships

among system components. In fact, for their own definition, they are focused on the

identification of hints for the presence of design patterns inside the system, which are

generally intra-class peculiarities and don’t devise any particular constraint about the

relationships among different classes.

144

The exploitation of micro-structures for SAR as well as for DPD allowed us to have a

common source of information for both activities, without the need to further inspect and

analyze the subject systems in order to achieve the desired functionalities. At now, only

few tools support both functionalities, and in general they are able to detect a little set of

patterns, as far as DPD is concerned. We think that SAR and DPD are strictly related

activities. In fact, DPD can be exploited to assert the quality of a system and the presence

of well designed and reusable system modules, whose presence is important in order to

have an easily maintainable and evolvable system. Having a common source of

information for both DPD and SAR is the first step towards the complete development of

an integrated approach and tool supporting both activities.

8.2. Future works

As the exploitation of micro-structures for both DPD and SAR purposes is an innovative

research field, many future activities can be devised. Focusing on our work, the refinement

process described in Chapter 5 seems very promising. We will extend our

experimentations by considering the results provided by more design pattern detection

tools on a larger set of subject systems. Moreover, we are planning to extend the set of

patterns we will be able to refine, by defining appropriate validation rules for them. We

have also planned to integrate the refinement approach within the benchmark platform for

design pattern detection proposed in [ATZ08]. The integration will hopefully result in an

extended application of the refinement process on the results provided by more detection

tools on the analysis of a wide set of systems. The exploitation of the approach will reveal

useful also to improve the comparisons among the instances detected by the various tools.

As far as SAR activities are concerned, we have implemented a first module for

architecture reconstruction, metrics computation and antipattern detection. We are

currently planning to extend our work with new views and with the computation of other

metrics. Furthermore, we are working on the detection of the antipatterns defined in

[BMMM98], as at our knowledge no tool for the detection of these entities currently exists

(except for Analyst4J [A4J], a commercial tool which is able to detect three of the defined

antipatterns, namely Blob, Spaghetti code and Swiss army knife). We think that the

detection of antipatterns is crucial in order to assess the quality of a system and to possibly

identify its critical components.

It will also be interesting to analyze the smells presented in [Fow99] and the approaches

for their detection, in order to understand if our SAR approach could actually benefit from

the identification of these elements. In this context it will be of particular interest trying to

integrate or exploit the approaches presented for example in [MGD+09a, MGD+09b,

145

TC09a, TC09b, TC09c] with our tool, as well as start possible collaborations with

researchers working in this field.

In the last years, the migration of legacy systems towards SOA architectures is achieving

more and more importance [BSL05, LMSB05]. We think that the detection of design

patterns and antipatterns, supported by an integrated tool, can be of great usefulness for

this process. The core concept behind the migration process resides in the identification of

system components that can be externally exposed as services. Some design patterns, like

the Façade [GHJV94], are well suited for the identification of candidate classes to be

migrated to services, as they completely hide the real implementation of a system,

providing a single integrated interface to access it. Some preliminary work in this direction

and discussion on these topics can be found in [ATZ08b].

On the other hand, the identification of classes implementing other kinds of design

patterns or antipatterns as described in this thesis will reveal the impossibility to migrate

them to services. For example, classes or modules that are highly globally coupled with

the overall system are not good candidates for this migration, as they do not expose a

uniform interface that can be effectively exploited and accessed from outside the system.

Another research direction we would like to investigate is related to the dynamic analysis

of software systems. In this context, a survey of dynamic analysis techniques to support

program comprehension can be found in [CZD+09]. At now, we only focused on static

analysis because the considered micro-structures, as they are directly extracted from the

source code of the analyzed systems, currently codify static information. Moving towards

dynamic analysis we will be able to generate behavioural views and reports about the

subject systems, as well as to provide hints for the detection of behavioural design

patterns, whose identification through micro-structures (and through standard static

analysis approaches) revealed troublesome.

All these considerations suggest us that having an integrated approach for DPD and SAR

based on software micro-structures will allow us to support software evolution through

design quality evaluation. As it is well established, design quality is strictly related to the

computation of quality metrics, as well as to the presence or absence of design patterns or

antipatterns. The integration of DPD and SAR functionalities in a single tool will ease and

improve these kinds of evaluations.

146

List of publications

S. Maggioni, Design Pattern Clues for Creational Design Patterns, Proceedings of the 1st

International Workshop on Design Pattern Detection for Reverse Engineering (DPD4RE

2006), Benevento, Italy, October 2006.

F. Arcelli et al., MARPLE: Metrics and Architecture Recovery Plug-in for Eclipse,

Technical Report, Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)-

12-02-06, University of Milano-Bicocca, 2006.

S. Maggioni, Exploiting Application Portfolio Management Techniques to Understand

Reverse Engineering Activities, 1st International Working Session on Reverse

Engineering techniques for Application Portfolio Management (RE4APM 2007), co-

located event with ICSM 2007, Paris, France, October 2007.

F. Arcelli, C. Tosi, M. Zanoni, and S. Maggioni, The MARPLE project - A Tool for Design

Pattern Detection and Software Architecture Reconstruction. International Workshop

on Advanced Software Development Tools and Techniques (WASDeTT 2008), co-

located event with ECOOP 2008, Paphos, Cyprus, July 2008.

F. Arcelli, S. Maggioni, C. Tosi, M. Zanoni, Refining Design Pattern Detection through

Design Pattern Clues, submitted to the 15th Working Conference on Reverse

Engineering (WCRE 2008), Antwerp, Belgium, October 2008.

S. Maggioni, Redefining Micro Patterns to Support the Analysis of Software Evolution,

submitted to LNCS Transactions on Pattern Languages of Programming (TPLoP),

January 2009.

F. Arcelli, C. Tosi, M. Zanoni, R. Porrini, M. Vivanti, S. Maggioni, A Model Driven

Approach for Program Comprehension to Support Software Evolution, Technical

147

Report, Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)-20-03-09,

University of Milano-Bicocca, 2009.

S. Maggioni, F. Arcelli, Metrics-Based Detection of Micro Patterns to Improve the

Assessment of Software Quality, 1st International Symposium on Emerging Trends in

Software Metrics (ETSM 2009), Pula, Italy, May 2009.

S. Maggioni, F. Arcelli, C. Tosi, M. Zanoni, Refining Design Pattern Detection through

Design Pattern Clues, submitted to the Journal of Systems and Software, July 2009.

S. Maggioni, C. Tosi, M. Zanoni, A Design Pattern Detection Plugin for Eclipse, 4th Italian

Workshop on Eclipse Technologies (Eclipse-IT 2009), Bergamo, Italy, September 2009.

F. Arcelli, S. Maggioni, C. Raibulet, Towards the Detection of Design Patterns through

Micro-Structures: an Achievable Task?, submitted to the ACM Transactions on Software

Engineering and Methodologies (TOSEM), September 2009.

F. Arcelli, S. Maggioni, C. Raibulet, Tasting Design Patterns: a Survey on Their

Ingredients, submitted to the Journal of Software Maintenance and Evolution (JSME),

October 2009.

S. Maggioni, F. Arcelli, An Experience Report on Using Software Analysis Tools for Java

Systems, submitted to the 14th European Conference on Software Maintenance and

Reengineering (CSMR 2010), October 2009.

S. Maggioni, F. Arcelli, Supporting Software Evolution through Design Quality

Evaluation, submitted to IEEE EVOOL 2010, October 2009.

148

References

[AB05] C. Artho, A. Biere, Combined Static and Dynamic Analysis, Technical Report 466, AIOOL,

2005.

[AM09] F. Arcelli, S. Maggioni, An Experience Report on Using Software Analysis Tools for Java

Systems, submitted to the 14th European Conference on Software Maintenance and

Reengineering (CSMR 2010), October 2009.

[AM09b] S. Maggioni, F. Arcelli, Metrics-Based Detection of Micro Patterns to Improve the

Assessment of Software Quality, 1st International Symposium on Emerging Trends in

Software Metrics (ETSM 2009), Pula, Italy, May 2009.

[AMR09a] F. Arcelli, S. Maggioni, C. Raibulet, Tasting Design Patterns: a Survey on Their Ingredients,

submitted to the Journal of Software Maintenance and Evolution (JSME), October 2009.

[AMR09b] F. Arcelli, S. Maggioni, C. Raibulet, Towards the Detection of Design Patterns through

Micro-Structures: an Achievable Task?, submitted to the ACM Transactions on Software

Engineering and Methodologies (TOSEM), September 2009.

[AMRT05] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, A Comparison of Reverse Engineering Tools

based on Design Pattern Decomposition, in Proceedings of the Australian Software

Engineering Conference, Brisbane, Australia, March 28th-31st 2005, pp. 262-269.

[APRR09] F. Arcelli, F. Perin, C. Raibulet, S. Ravani, JAdept: Behavioural Design Pattern Detection

through Dynamic Analysis, in Proceedings of the 4th International Conference on Evaluation

of Novel Approaches to Software Engineering (ENASE’09), Milan, Italy, 2009, pp. 95-106.

[Arc06] F. Arcelli et al., MARPLE: Metrics and Architecture Recovery Plug-in for Eclipse, Technical

Report, Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)-12-02-06,

University of Milano-Bicocca, 2006.

[ATZ08] F. Arcelli, C. Tosi, M. Zanoni, A Benchmark Proposal for Design Pattern Detection Tools, in

Proceedings of the FAMOOS 2008 Workshop, co-located event with IEEE WCRE 2008,

Antwerp, Belgium, Ocotber 2008.

[ATZ08b] F. Arcelli, C. Tosi, M. Zanoni, Can Design Pattern Detection be Useful for Legacy Systems

Migration towards SOA?, in Proceedings of the 2nd international workshop on Systems

development in SOA environments (SDSOA 2008), Leipzig, Germany, May 2008.

[ATZM08] F. Arcelli, C. Tosi, M. Zanoni, and S. Maggioni, The MARPLE project - A Tool for Design

Pattern Detection and Software Architecture Reconstruction. International Workshop on

Advanced Software Development Tools and Techniques (WASDeTT 2008), co-located event

with ECOOP 2008, Cyprus, 2008.

[ATZ+09] F. Arcelli, C. Tosi, M. Zanoni, R. Porrini, M. Vivanti, S. Maggioni, A Model Driven Approach

for Program Comprehension to Support Software Evolution, Technical Report, Dipartimento

149

di Informatica, Sistemistica e Comunicazione (DISCo)-20-03-09, University of Milano-

Bicocca, 2009.

[A4J] Codeswat Analyst4j,

 http://www.codeswat.com/cswat/index.php?option=com_content&task=view&id=43&Itemid

=63

[Bau] Bauhaus, http://www.Bauhaus-stuttgart.de/demo/index.html

[BCK03] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd edition, Addison-

Wesley, 2003.

[BF03] Z. Balanyi, R. Ferenc, Mining Design Patterns from C++ Source Code, in Proceedings of the

International Conference on Software Maintenance (ICSM’03), Amsterdam, The

Netherlands, 2003, pp. 305-314.

[BG97] B. Bellay, H. Gall, A Comparison of four Reverse Engineering Tools, in Proceedings of the

Fourth Working Conference on Reverse Engineering (WCRE’97), 1997.

[Bir07] M. Birkner, Object-Oriented Design Pattern Detection using Static and Dynamic Analysis in

Java Software, M.Sc. Thesis, University of Applied Sciences Bonn-Rhein-Sieg, Sankt

Augustin, Germany, August 2007.

[BL03] D. Beyer, C. Lewrentz, CrocoPat: Efficient Pattern Analysis in Object-Oriented Programs, in

Proceedings of the 11th IEEE International Workshop on Program Comprehension, Los

Alamitos, USA, 2003, pp. 294-295.

[Blo01] J. Bloch, Effective Java Programming Language Guide. Addison-Wesley, 1st edition, June

2001.

[BMMM98] W. J. Brown, R. C. Malveau, H. W. McCormick, T. J. Mowbray, AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis, 1st edition, Wiley, 1998.

[BNL05] D. Beyer, A. Noack, C. Lewrentz, Efficient Relational Calculation for Software Analysis,

Transactions on Software Engineering, 31(2), 2005, pp. 137-149.

[BR99] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, 1999.

[Bro97] K. Brown, Design Reverse Engineering and Automated Design Pattern Detection in

Smalltalk, M. Sc. Thesis, University of Illinois at Urbana-Campaign, 1997.

[BSL05] L. O’Brien, D. Smith, G. Lewis, Supporting Migration to Services using Software

Architecture Reconstruction, in Proceedings of the 13th IEEE International Workshop on

Software Technology and Engineering in Practice (STEP’05), Washington, DC, USA,

September 2005, pp. 222-229.

[BSV02] L. O'Brien, C. Stoermer, C. Verhoef, Software Architecture Reconstruction: Practice, Needs

and Current Approaches, Technical Report CMU/SEI-2002-TR-024, Carnegie Mellon

University, 2002.

[CDD+05] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Design Pattern Recovery by

Visual Language Parsing, 9th European Conference on Software Maintenance and

Reengineering (CSMR'05), 2005.

[Chi90] E. J. Chikofsky, J. H. Cross II, Reverse Engineering and Design Recovery: a Taxonomy, IEEE

Software, 7(1), January 1990, pp. 13-17.

[CL] CodeLogic for Java, http://www.logicexplorers.com/CodeLogicJava.html

[Coo98] J. W. Cooper, The Design Patterns Java Companion, Addison-Wesley Design Patterns Series,

October 1998.

[CZD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A Systematic Survey of

Program Comprehension through Dynamic Analysis, IEEE Transactions on Software

Engineering, 35(5), September 2009, pp. 684-702.

150

[DDGR09] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Design Pattern Recovery through Visual

Language Parsing and Source Code Analysis, The Journal of Systems and Software, 82,

Elsevier, February 2009, pp. 1177-1193.

[DE07] J. Dietrich, C. Elgar, Towards a Web of Patterns, in Web Semantics: Science, Services and

Agents on the World Wide Web, 5(2), Elsevier Science Publishers B. V., June 2007, pp. 108-

116.

[DHK+04] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, C. Riva, Viewpoints in Software

Architecture Reconstruction, in Proceedings of the 6th Workshop on Software Reengineering

(WSR04), 2004.

[DHK+04b] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, C. Riva, Symphony: View-driven

Software Architecture Reconstruction, in Proceedings of the 4th Working IEEE/IFIP

Conference on Software Architecture (WICSA 2004), 2004.

[Doxy] Doxygen, http://www.stack.nl/~dimitri/doxygen/

[DR04] A. van Deursen, C. Riva, Software Architecture Reconstruction, in Proceedings of the 26th

International Conference on Software Engineering (ICSE), 2004.

[DTD01] S. Demeyer, S. Tichelaar, and S. Ducasse, FAMIX 2.1— The FAMOOS Information Exchange

Model, Technical report, University of Bern, 2001.

[Eclipse] Eclipse framework, http://www.eclipse.org/

[Ent] Sparx Systems Enterprise Architect, http://www.sparxsystems.com.au/

[FATM99] R. Fiutem, G. Antoniol, P. Tonella, E. Merlo, ART: an Architectural Reverse Engineering

Environment, Journal of Software Maintenance: Research and Practice, 11(5), 1999.

[FGMP02] R. Ferenc, J. Gustafsson, L. Mueller, J. Paakki, Recognizing Design Patterns in C++ Programs

with the Integration of Columbus and MAISA, in Acta Cybernetica, 15(4), 2002, pp. 669-682.

[FHFG08] L. J. Fülöp, P. Hegedűs, R. Ferenc, T. Gyimóthy, Towards a Benchmark for Evaluating

Reverse Engineering Tools, in Proceedings of the 15th IEEE Working Conference on Reverse

Engineering (WCRE 2008), Antwerp, Belgium, October 2008.

[FindBugs] FindBugs, http://findbugs.sourceforge.net/

[FM04] J. Fabry, T. Mens, Language-Independent Detection of Object-Oriented Design Patterns,

Elsevier International Journal on Computer Languages, Systems & Structures - Proceedings

of the ESUG 2004 Conference, 30(1-2), 2004, pp. 21-33.

[Fow99] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st edition, Addison-

Wesley, June 1999.

[GA08] Y. G. Guéhéneuc, G. Antoniol, DeMIMA: A Multilayered Approach for Design Pattern

Identification, IEEE Transactions on Software Engineering, 34(5), September/October 2008,

pp. 667-684.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley, 1994.

[GM05] Y. Gil, I. Maman, Micro Patterns in Java Code, in Proceedings of the 20th annual ACM

SIGPLAN conference on Object oriented programming, systems, languages, and

applications (OOPSLA ’05), October 2005, pp. 97-116.
[GMW06] Y. G. Guéhéneuc, K. Mens, R. Wuyts, A Comparative Framework for Design Recovery Tools,

in Proceedings of the Conference on Software Maintenance and Reengineering (CSMR 2006),
2006, pp. 123 – 134.

[GSZ04] Y. G. Guéhéneuc, H. Sahraoui, F. Zaidi, Fingerprinting Design Patterns, in Proceedings of
the 11th Working Conference on Reverse Engineering, IEEE CS Press, November 2004, pp.
172-181.

[Gue05] Y. G. Guéhéneuc, PTIDEJ: Promoting Patterns with Patterns, in Proceedings of the 1st
ECOOP Workshop on Building Systems using Patterns, Springer-Verlag, July 2005.

[GZ05] I. Gorton, L. Zhu, Tool Support for Just-in-Time Architecture Reconstruction and Evaluation:

an Experience Report, in Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005), St. Louis, Missouri, USA, May 2005.

151

[HHHL03] D. Heuzeroth, T. Holl, G. Högström, W. Löwe, Automatic Design Pattern Detection, 11th

IEEE International Workshop on Program Comprehension, May 2003, pp. 94 – 103.

[IEEE] IEEE Std 1471-2000, IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems - Description,

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

[JDeo] JDeodorant, http://java.uom.gr/~jdeodorant/

[JDepend] JDepend, http://clarkware.com/software/JDepend.html

[JDY07] D. Jing, L. Dushyant, Z. Yajing, DP-Miner: Design Pattern Discovery Using Matrix, 14th

Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, 2007 (ECBS '07), March 2007.

[JGraph] JGraph, http://www.jgraph.com/

[JHD] JHotDraw, http://www.jhotdraw.org/

[Jikes] Jikes Java compiler, http://jikes.sourceforge.net/

[JMP04] M. Jha, P. Maheshwari, T. K. A. Phan, A Comparison of Four Software Architecture

Reconstruction Toolkits, Technical Report UNSW-CSE-TR-0435, The University of New

South Wales, Sydney, Australia, 2004.

[Jus01] N. Jussien, e-Constraints: Explanation-based constraint programming, In Barry O'Sullivan

and Eugene Freuder (Eds.), 1st CP workshop on User-Interaction in Constraint Satisfaction,

Paphos, Cyprus, December 2001.

[KB04] C. Kaner, P. Bond, Software Engineering Metrics: What Do They Measure and How Do We

Know?, 10th International Software Metrics Symposium (METRICS 2004), 2004.

[KBV03] R. Kazman, L. O’Brien, C. Verhoef, Architecture reconstruction guidelines, third edition,

CMU/SEI-2002-TR-034, Carnegie Mellon University, Software Engineering Institute, 2003.

[KC99] R. Kazman, S. J. Carriere, Playing detective: Reconstructing Software Architecture from

Available Evidence, Automated Software Engineering, 1999.

[KP96] C. Kramer, L. Prechelt, Design Recovery by Automated Search for Structural Design Patterns

in Object Oriented Software, in Proceedings of Working Conference on Reverse Engineering

(WCRE’96), Monterey, USA, 1996, pp. 208-215.

[Kru99] P. Kruchten, The Rational Unified Process: an Introduction, Addison-Wesley, 1999.

[KSRP99] R. K. Keller, R. Schaur, S. Robitaille, P. Paige Pattern-Based Reverse Engineering of Design

Components, in Proceedings of the 21st IEEE International Conference on Software

Engineering (ICSE), Los Angeles, USA, 226-235, 1999.

[Lan03] M. Lanza, Polymetric Views – A Lightweight Visual Approach to Reverse Engineering, IEEE

Transactions on Software Engineering, September 2003.

[Lar04] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development (3rd Edition), October 2004.

[Licor] LiCoR, http://prog.vub.ac.be/research/DMP/soul/soul2.html

[LK94] M. Lorenz, J. Kidd, Object-oriented software metrics: a practical guide. Prentice-Hall, Inc.

1994.

[LMSB05] G. Lewis, E. Morris, D. Smith, L. O’Brien, Service-Oriented Migration and Reuse Technique

(SMART), in Proceedings of the 13th IEEE International Workshop on Software Technology

and Engineering Practice, (STEP’05), Washington, DC, USA, Spetember 2005, pp. 222-239.

[Lucene] Apache Lucene, http://lucene.apache.org/

[Mag06a] S. Maggioni, A New Approach to Design Pattern through the Use of Design Pattern Clues,

M. Sc. Thesis, University of Milano-Bicocca, Milan, Italy, February 2006.

[Mag06b] S. Maggioni, Design Pattern Clues for Creational Design Patterns, Proceedings of the 1st

International Workshop on Design Pattern Detection for Reverse Engineering (DPD4RE

2006), Benevento, Italy, October 2006.

[Mar95] R. C. Martin, OO Design Quality Metrics, An Analysis of Dependencies, ROAD Vol. 2 No. 3,

1995.

152

[Mar04] R. Marinescu, Detection Strategies: Metrics-based Rules for Detecting Design Flaws, in

Proceedings of the 20th International Conference on Software Maintenance (ICSM ’04), IEEE

Computer Society Press, 2004, pp. 350-359.

[MATZ09] S. Maggioni, F. Arcelli, C. Tosi, M. Zanoni, Refining Design Pattern Detection through

Design Pattern Clues, submitted to the Journal of Systems and Software, July 2009.

[McC90] W. McCune, Otter 2.0 (theorem prover), in Proceedings of the 10th International Conference

on Automated Deduction, Kaiserslautern, July 1990, pp. 663-664.

[MGD+09a] N. Moha, Y. G. Guéhéneuc, L. Duchien, A. F. Le Meur, DECOR: A Method for the

Specification and Detection of Code and Design Smells, IEEE Transactions on Software

Engineering (TSE), 2009.

[MGD+09b] N. Moha, Y. G. Guéhéneuc, L. Duchien, A. F. Le Meur, A. Tiberghien, From a Domain

Analysis to the Specification and Detection of Code and Design Smells, in Formal Aspects of

Computing (FAC), 2009.

[MJS+00] H. A. Mueller, J. H. Jahnke, M. A. Storey, D. B. Smith, S. R. Tilley, K. Wong, Reverse

Engineering: a Roadmap, in Proceedings of the 22nd International Conference on Software

Engineering, Limerick, Ireland, ACM Press, 2000, pp. 47-60.

[Mül93] H. A. Müller, O. A. Mehmet, S. R. Tilley, J. S. Uhl, A Reverse Engineering Approach to

System Identification, in Journal of Software Maintenance: Research and Practice 5, 4

December 1993, pp. 181-204.

[MWT95] H. Müller, K. Wong, and S. Tilley, Understanding Software Systems Using Reverse

Engineering Technology, Object-Oriented Technology for Database and Software Systems,

World Scientific, 1995.

[MXY01] H. Mei, T. Xie, F. Yang, JBOORET: an Automated Tool to Recover OO Design and Source

Models, 25th Annual International Computer Software and Applications Conference

(COMPSAC'01), 2001.

[Nie02] J. Niere, Fuzzy Logic Based Interactive Recovery of Software Design, in Proceedings of the

24th IEEE International Conference on Software Engineering (ICSE), Florida, USA, 2002, pp.

726-728.

[NNZ00] U. Nickel, J. Niere, and A. Zündorf, The FUJABA Environment, in Proceedings of the 22nd

International Conference on Software Engineering, Limerick, Ireland, 2000, pp. 742-745.

[NSW+02] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh, Towards Pattern-Based

Design Recovery, in Proceedings of the 24th International Conference on Software

Engineering, Orlando, Florida, USA, 2002, pp. 338-348.

[PDP+07] D. Pollet, S. Ducasse, L. Poyet, I. Allaoui, S. Cimpan, H. Verjus, Towards a Process-Oriented

Software Architecture Reconstruction Taxonomy, in Proceedings of the 11th European

Conference on Software Maintenance and Reengineering (CSMR07), Amsterdam, The

Netherlands, March 2007.
[PL06] N. Pettersson, W. Loewe, Efficient and Accurate Software Pattern Detection, 13th Asia-Pacific

Software Engineering Conference (APSEC 2006), December 2006.
[PMD] PMD, http://pmd.sourceforge.net/

[Pre94] Wolfgang Pree, Meta Patterns - A Means For Capturing the Essentials of Reusable Object-

Oriented Design, in Proceedings of the European Conference on Object-Oriented

Programming, Springer-Verlag, 1994, pp. 150-162.

[Pre97] Wolfgang Pree, Essential Framework Design Patterns, Object Magazine, 1997.

[PSRN05] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, An Approach for Reverse

Engineering of Design Patterns, Software and Systems Modeling, 4(1), Springer Verlag, April

2005, pp. 55-70.

[RSA] Rational Software Architect,

http://www-01.ibm.com/software/awdtools/architect/swarchitect/

[SA4J] Structural Analysis for Java, http://www.alphaworks.ibm.com/tech/sa4j

[Sei] Software Engineering Institute (SEI), Community Software Architecture Definitions,

http://www.sei.cmu.edu/architecture/start/community.cfm

153

[SJ98] J. Seemann, J.W. von Gudenberg, Pattern-Based Design Recovery of Java Software, ACM

SIGSOFT Software Engineering Notes, 23(6), ACM Press, November 1998, pp. 10-16.

[SM95] M. D. Storey, H. Müller, Manipulating and Documenting Software Structures using SHriMP

Views, in Proceedings of the 11th International Conference on Software Maintenance

(ICSM'95), 1995.

[Smi02] J. McC. Smith, An Elemental Design Patterns Catalog, Tech. Rep. 02-040, Computer Science

Department, University of North Carolina at Chapel Hill, December 2002.

[SO06] N. Shi, R. A. Olsson, Reverse Engineering of Design Patterns from Java Source Code, 21st

IEEE/ACM International Conference on Automated Software Engineering (ASE'06), Tokyo,

Japan, September 2006, pp. 123-132.

[SP03] R. Seacord, D. Plakosh, Modernizing Legacy Systems: Software Technologies, Engineering

Processes, and Business Practices (SEI Series in Software Engineering), 2003.

[SRBV06] C. Stoermer, A. Rowe, L. O’Brien, C. Verhoef, Model-centric Software Architecture

Reconstruction, Software – Practice and Experience, 36(4), 2006.

[SS02] J. McC. Smith, D. Stotts, Elemental Design Patterns: A Formal Semantics for Composition of

OO Software Architecture, in Proceedings of the 27th Annual IEEE/NASA Software

Engineering Laboratory Workshop, Greenbelt, MD, 2002, pp. 183-190.

[SS03] J. McC. Smith, D. Stotts, SPQR: Flexible Automated Design Pattern Extraction From Source

Code, in Proceedings of the 2003 IEEE International Conference on Automated Software

Engineering, Montreal QC, Canada, October, 2003, pp. 215-224.

[SSys02] E. Stroulia, T. Systä, Dynamic Analysis for Reverse Engineering and Program

Understanding, in Applied Computing Review, 10(1), pp. 8-17, 2002.

[SW08] K. Stencel, P. Wegrzynowicz, Detection of Diverse Design Pattern Variants, 15th Asia-Pacific

Software Engineering Conference (APSEC 2008), Dcember 2008.

[Swag] Swagkit, http://www.swag.uwaterloo.ca/swagkit/

[SYS06] K. Sartipi, L. Ye, H. Safyallah, Alborz: an Interactive Toolkit to Extract Static and Dynamic

Views of a Software System, in Proceedings of the IEEE International Conference on

Program Comprehension (ICPC06), Athens, Greece, 2006, pp. 256-259.

[TC06] N. Tsantalis, A. Chatzigeorgiou, Design Pattern Detection using Similarity Scoring, in IEEE

Transactions on Software Engineering, 32(11), November 2006, pp. 896-909.

[TC09a] N. Tsantalis, A. Chatzigeorgiou, Identification of Move Methods Refactoring Opportunities,

in IEEE transactions on Software Engineering 35(3), May/June 2009, pp. 347-367.

[TC09b] N. Tsantalis, A. Chatzigeorgiou, Identification of Refactoring Opportunities Introducing

Polymorphism, accepted in the Journal of Systems and Software (JSS), September 2009.

[TC09c] N. Tsantalis, A. Chatzigeorgiou, Identification of Extract Method Refactoring Opportunities,

in Proceedings of the 13th European Conference on Software Maintenance and Reengineering

(CSMR 2009), Kaiserslautern, Germany, March 2009.

[TPS96] S. R. Tilley, S. Paul, D. B. Smith. Towards a framework for program understanding. In IWPC,

1996.

[U4J] Understand for Java, http://www.softpedia.com/get/Programming/File-Editors/Understand-

for-Java.shtml

[Wen03] L. Wendehals, Improving Design Pattern Instance Recognition by Dynamic Analysis, in

Proceedings of the ICSE Workshop on Dynamic Analysis, Portland, USA, 2003, pp. 29-32.

[WT04] W. Wang, V. Tzerpos, DPVK - An Eclipse Plug-in to Detect Design Patterns in Eiffel Systems,

in Proceedings of the Second Eclipse Technology Exchange: eTX and the Eclipse

Phenomenon (eTX 2004).

[XML] Apache XMLBeans, http://xmlbeans.apache.org/

[XRay] X-Ray Eclipse plugin, http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-

cid-1147.html

154

[YGS+04] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, R. Kazman, DiscoTect: a System for Discovering

Architectures from Running Systems, in Proceedings of the 26th International Conference on

Software Engineering (ICSE’04), Edinburgh, United Kingdom, May 2004.

