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Chapter 1 

 

Introduction 

 

 
 

 

In this chapter we give an overview of the research field related to our activities. We 

provide common definitions of Design Pattern Detection and Software Architecture 

Reconstruction, and we introduce the concept of software micro-structure. After an 

overview on common micro-structures, we finally introduce the thesis objectives and 

aims, which are concerned with the exploitation of micro-structures for Design Pattern 

Detection and Software Architecture Reconstruction activities.  

 

 

1.1. The research field 

 

A software engineering area that has assumed more and more importance during the last 

years in the field of software maintenance is reverse engineering. In [Chi90], Chikofsky 

defines reverse engineering as “the process of analyzing a subject system to identify the 

system’s components and their interrelationships and to create representations of the 

system in another form or at a higher level of abstraction”. A principal aim of reverse 

engineering is to allow the reconstruction of the structure of target software systems and 

to detect their fundamental components and modules, in order to consequently obtain 

their forming structures. The retrieval of this kind of information would make the 

restructuring and maintenance phases easier, as the system would not be seen as a single 

monolithic structure, but as a set of small-sized interacting components that are usually 

easier to manage with respect to the overall system. 

In the context of reverse engineering, two activities are of particular interest. These are 

namely Design Pattern Detection (which, from now on, can also be indicated with the DPD 

acronym) and Software Architecture Reconstruction (SAR). 
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1.1.1. Design pattern detection (DPD) 

 

Design patterns (DPs) have been introduced by Gamma, Helm, Johnson and Vlissides 

(collectively known as the Gang of Four) in [GHJV94]. A design pattern is a description of a 

commonly occurring software design problem, together with a description of a possible 

solution to that problem. The proposed solution is applicable whenever the problem is 

faced, independently from the particular system to be designed or to the precise context in 

which the system is being developed. A design pattern gives therefore general indications 

about how to solve a well-defined issue, without deepening into the implementation 

details about how the problem is actually solved. Each pattern is presented according to 

the following structure: 

 

- Pattern name and classification: a descriptive and unique name that helps in identifying 

and referring to the pattern; 

- Intent: a description of the goal behind the pattern and the reason for using it; 

- Also known as: other possible names for the pattern; 

- Motivation (forces): a scenario consisting of a problem and a context in which this 

pattern can be used; 

- Applicability: the possible situations and cases in which this pattern is usable; 

- Structure: a graphical representation of the pattern, usually through an UML class 

diagram; 

- Participants: a listing of the classes and objects used in the pattern and their roles in the 

design; in general, each class plays a well defined role inside the pattern, according to 

the pattern description; 

- Collaboration: a description of how classes and objects used in the pattern interact with 

each other; 

- Consequences: a description of the results, side effects, and tradeoffs caused by using 

the pattern; 

- Implementation: a description of an implementation of the pattern, that is the solution 

part of the pattern; 

- Sample code: an illustration of how the pattern can be practically used and 

implemented; 

- Known uses: examples of real usages of the pattern; 

- Related patterns: other patterns that have some relationship with the pattern; discussion 

of the differences between the pattern and similar patterns. 

 

Twenty three design patterns have been defined, subdivided in three categories. Creational 

design patterns deal with object creation mechanisms, trying to create objects in a manner 

suitable to the context in which the patterns should be applied. Structural design patterns 
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describe how classes and objects can be combined to form larger structures. Each 

structural pattern is then further specified as being based on classes or based on objects. 

Structural patterns based on classes describe how inheritance can be used to provide more 

useful program interfaces. Object patterns describe how objects can be composed into 

larger structures using object composition, or through the inclusion of objects within other 

objects. Finally, behavioural design patterns identify common communication ways among 

objects and concentrate on the assignment of responsibilities among them. 

Design patterns are useful both during a system’s design phases both in forward 

engineering (as they are well known and optimal solutions to given design issues and can 

be seen as directives to follow in order to solve a problem in a given context), and in 

reverse engineering activities (as the identification of design patterns inside a software 

system can give hints about the issues faced during its design). In the context of reverse 

engineering, they can also be considered as indicators of good system design quality, as 

their presence grants the use of structures that are, for their self definition, reusable. 

Therefore, the activity of DPD, aimed at identifying design patterns inside a subject 

software system, can give useful information about the design of a system, indicating the 

logical fundaments of a certain implementation. Moreover, DPD is important during the 

re-documentation phases of a system, in particular when the system documentation is 

scarce, incomplete or not up-to-date to the current system version. The activity of design 

pattern detection may also reveal useful for the specification and development of a design 

advisor. Analyzing a subject system may provide information about the existence of 

components or modules whose implementation is close to that of some design patterns, 

hence suggesting for their refactoring in order to comply with the patterns specifications. 

Moreover, the analysis may reveal parts of the system representing design issues that have 

not been properly solved, at least not in the optimal way. In this case, the advisor could 

suggest for the implementation of a design pattern that is adequate to the detected issue, 

in order to obtain an elegant and effective solution to it. 

The detection of design patterns is supported by ad-hoc software tools. The main steps a 

tool performs in a design pattern detection process are related to information extraction 

from the target system, archetypes recognition and presentation of results, as reported in 

Figure 1.1. The information extracted from the analyzed systems depends on the elements 

searched by the detection algorithm used to identify the design patterns. Usually, the 

extracted information is represented in a language-independent form, such as abstract 

syntax trees (ASTs) or abstract syntax graphs (ASGs). Besides the extracted information, 

the detection algorithm usually receives in input a catalogue of design patterns, in which 

patterns are described according to the meta-representation used by the detection 

algorithm. This is often based on matching techniques which try to map representations of 

design patterns stored in a catalogue to the representation of the information extracted 
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from the analyzed system. Other techniques can exploit rule-based systems, or are related 

to the identification of patterns sub-components, or else are based on the computation of 

characteristic metrics. The various kinds of approaches will be discussed in Chapter 2. 

 

 

 

Figure 1.1 – The main steps of a design pattern detection process 

 

However, the use of design patterns inside software systems introduces a problem that is 

troublesome for their detection. In fact, even if the specifications of each pattern are 

completely generic so that they can be applied in different ways and in different contexts, 

the actual implementations of each pattern can inevitably differ from one another, due to 

their intrinsic generality. This problem is known as the variants problem, and it is one of the 

biggest obstacles in a design pattern detection process, as design patterns are to be 

identified starting from actual implementations, that can be quite different from the 

proposed general pattern structure. In this thesis we try to face this problem by 

introducing and adopting software micro-structures (that will be briefly presented in Section 

1.2) as possible means to distinguish among various realizations of design patterns and to 

improve the precision of design pattern detection tools. 
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1.1.2. Software architecture reconstruction (SAR) 

 

Many different definitions of software architecture (SA) actually exist. The Software 

Engineering Institute (SEI) at Carnegie Mellon University collected something like two 

hundred and twelve software architecture definitions by software engineering experts 

[Sei]. Many definitions are also proposed in the literature and in common standards. Here 

we report some of the most representative ones. 

The ANSI/IEEE Standard 1471-2000 (Recommended Practice for Architectural Description 

of Software-Intensive Systems) [IEEE] states that “architecture is defined by the 

recommended practice as the fundamental organization of a system, embodied in its 

components, their relationships to each other and the environment, and the principles 

governing its design and evolution”. 

According to the Rational Unified Process, “an architecture is the set of significant 

decisions about the organization of a software system, the selection of the structural 

elements and their interfaces by which the system is composed, together with their 

behavior as specified in the collaborations among those elements, the composition of these 

structural and behavioral elements into progressively larger subsystems, and the 

architectural style that guides this organization (these elements and their interfaces, their 

collaborations, and their composition)” [Kru99]. 

Bass, Clements and Kazman [BCK03] propose the following clear definition for software 

architecture: “the software architecture of a program or computing system is the structure 

or structures of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them”. 

Out of the considered definition, we think that this latter one describes at best and 

immediately what software architecture actually is. Bass, Clements and Kazman also point 

out that software architecture shall also comprise its documentation [BCK03]. 

Documentation is indeed a crucial issue, because it shall be the most effective mean to 

understand a complex system and its structures. The lack or poor quality of 

documentation makes the understanding of a system more difficult and challenging. 

Nonetheless, one of the core problems with software system is actually the lack of 

documentation. Having tools to generate documentation (that, thanks to Bass’ definition, 

can be considered in the set of tools for the reconstruction of software architecture) leads 

to the obtainment of an important source of information for the understanding of the 

subject systems. For all these reasons, while speaking about software architecture 

throughout this thesis, we refer to the definition suggested by Bass, Clements and 

Kazman. 

Besides software architecture, numerous definitions for software architecture 

reconstruction (SAR) have also been proposed. 

Van Deursen defines architecture reconstruction as “a reverse engineering activity that 

aims at recovering those decisions that either have been lost (because have not been 
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documented or the original developers have left) or are unknown (because they originate 

from the system’s evolution)” [DHK+04]. In [DR04] he also states that “software 

architecture reconstruction is the process of obtaining a documented architecture for an 

existing system. Although such a reconstruction can make use of any possible resource 

(such as available documentation, stakeholder interviews, domain knowledge), the most 

reliable source of information is the system itself, either via its source code or observations 

on its execution”. 

Seacord and Plackosh [SP03] state that “architecture reconstruction provides analysis at 

the highest level of abstraction. In this process, the as-built architecture of an implemented 

system is obtained from the existing system by analyzing it, using tools to extract 

information and to build system models at various levels of abstraction. This process 

produces a representation of the system architecture and generates views of this 

architecture. Architecture reconstruction is a complex task requiring a variety of activities 

and skills. Although tool support is usually a requirement for architectural reconstruction, 

no single tool or set of tools supports all reconstruction activities”. 

A clear definition of software architecture reconstruction is provided by O’Brien et al 

[BSV02]: “architecture reconstruction is the process by which the architecture of an 

implemented system is obtained from the existing system. The approaches to architecture 

reconstruction are aimed to evaluating the conformance of the as-built architecture to the 

as-documented architecture, reconstructing architecture descriptions for systems that are 

poorly documented or for which documentation is not available, and analyzing and 

understanding the architecture of existing systems to enable modification of the 

architecture to satisfy new requirements and to eliminate existing software deficiencies”. 

Out of the presented definitions, the definition provided by O’Brien is the one that best fits 

with our activities. In particular we are interested in the last part of the definition. In fact, 

we think that one of the principal aims of architecture reconstruction is providing the 

engineers with sufficient understanding helping them to effectively intervene in the 

maintenance and evolution of the subject system. Thus, while referring to SAR along the 

thesis, we make an implicit reference to the just presented definition.  

Figure 1.2 represents the steps pursued by a software architecture reconstruction tool 

during the reconstruction process, known as the extract-abstract-present model [TPS96]. 

First of all, information is extracted from different possible sources. The main source of 

information is obviously the subject system itself and its documentation. Important 

sources are also the history of the analyzed system, and the expertise of the system 

developers and managers. The extracted information can be represented in many different 

ways; each reconstruction tool adopts its own conventions and representation 

mechanisms.  

These representations cannot be directly exploited by the engineers, but they need to be 

interpreted and abstracted, in order to be modified and translated in usable artifacts. 
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Figure 1.2 – A three-step process for software architecture reconstruction 

 

Therefore, the abstraction process usually generates views, documentation or other kinds 

of media, in order to obtain an abstracted overview of the analyzed system: the aim is to 

provide the engineer means to have a global understanding of the system without 

minding at the implementation details and at the low-level issues. The generated artifacts 

are finally presented to the user, who can interpret and exploit them in order to deal with 

the reconstructed software architecture. 

 

 

1.2. A brief overview on software micro-structures for DPD and SAR 

 

With the term software micro-structure (micro-structure for brevity) we indicate any code 

element that can be automatically and univocally detected from the source code of a 

software system, and which represents useful basic hints for the understanding of the 

structures composing a system. According to our research interests, these elements can be 

exploited in two different ways: 

 

- For design pattern detection purposes, as possible hints for the presence of design 

patterns inside a system; 

- For software architecture reconstruction activities, as they directly or indirectly codify 

information about structural relationships among classes. 

 

Different categories of micro-structures have been defined in the literature. In this 

dissertation we consider only the three kinds of micro structures that have been exploited 

for our activities, namely elemental design patterns (EDPs), design pattern clues (DP clues) and 
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micro patterns, that will be now briefly introduced. EDPs, DP clues and micro patterns will 

be considered with more detail in Chapter 3, where we also provide definitions for each 

single micro-structure. 

 

 

1.2.1. Elemental design patterns 

 

Smith and Stotts proposed and introduced elemental design patterns in [SS02]. EDPs are 

means to provide solutions to very common programming problems, which are faced in 

the everyday programming practice. EDPs address problems of very limited dimensions, 

generally involving at most three classes. Sixteen EDPs have been defined so far, and they 

face the creation and referencing of objects, the various possible forms of method 

invocation, and the inheritance relationships between two classes or interfaces. 

 

 

1.2.2. Design pattern clues 

 

In [Mag06a] we have discussed about the usefulness of EDPs for design pattern detection. 

As we think that EDPs don’t behave well as far as the detection of pattern roles is 

concerned, we have defined design pattern clues, as possible hints for the presence of 

design patterns inside a software system. During our research activities, we have analyzed 

the structures and the roles of the design patterns, focusing also on their possible Java 

implementations, in order to deduce which particular code structures and realizations 

could be peculiar for each pattern. From these studies, a first set of clues for the creational 

design patterns category emerged [Mag06a, Mag06b]. The set of clues has been further 

modified and enriched during the Ph.D. course, covering all the pattern categories. The 

current set of design pattern clues is constituted by 41 elements, collected in eight 

categories that focus on the various constructs related to a class or interface, like its 

definition, its attributes, its method signatures and bodies and so on. 

 

 

1.2.3. Micro patterns 

 

Micro patterns were introduced by Gil and Maman [GM05] in order to capture very 

common programming techniques. Currently, there are 27 micro patterns subdivided into 

eight categories mainly considering the state of a class or interface (represented by its 

attributes) and its behavior (represented by its set of methods). 
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1.2.4. Usefulness of micro-structures for DPD and SAR 

 

The usefulness of micro-structures for DPD and SAR activities is mainly concerned with 

the subdivision of such complex problems in simpler tasks, and to make the basic or 

particular relationships and constraints among classes explicit. The first identification of 

these bricks is to be considered as a starting point for an incremental process devoted to 

the identification of more complex structures, like the design patterns or the structural 

relationships among a large number of system classes and modules. Moreover, the micro-

structures are univocally and non-ambiguously detectable from a subject system, with 

respect for example to design patterns, whose direct identification is made impossible due 

to their intrinsic generality and the possible infinite variants they could realize each of 

them. 

 

 

1.3. Thesis objectives and aims 

 

Four main objectives characterize this dissertation. The first main activity that will be 

described is concerned with a comparison of the considered micro-structures on the basis 

of several core aspects. The comparison allowed us to deeply understand the usefulness of 

these elements both for DPD and SAR activities. Next, we will propose a novel approach 

to the refinement and validation of the results provided by different design pattern 

detection tools. The approach is based on the definition and application of micro-

structure-based refinement rules that demonstrated to be useful for the improvement of 

the precision of the results provided by the considered tools. Finally, we will consider the 

exploitation of micro-structures for SAR activities, in particular as far as the generation of 

static views, the calculation of software metrics, and the detection of object-oriented and 

structural antipatterns are concerned. In this context, we will also provide a new 

interpretation of micro patterns based on similarity scores. The new interpretation allows 

for the detection of classes that are very close realizations of micro patterns, which cannot 

be detected by precise matching approaches, but which indeed can give useful indications 

about possible antipatterns, about the stability of the analyzed systems, as well as about 

the evolution of micro patterns along different software releases. 

Two main motivations justify these objectives. First of all, software micro-structures have 

generally been considered “as they are” in the literature. The inspection of their usefulness 

for DPD and SAR purposes has never really been deeply inspected. Moreover, having a 

common base (i.e. the considered micro-structures) for both DPD and SAR activities 

allows the design and implementation of a single integrated tool supporting both 
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disciplines, with a common starting point represented by the micro-structures detected 

from the analyzed systems. 

 

 

1.4. Thesis outline 

 

The thesis is structured according to the following chapters.  

In Chapter 2 (Related works) we will present an overview to the major approaches to 

design pattern detection. We will differentiate among static, dynamic and combined 

approaches, and we will also introduce and describe some of the available and analyzed 

design pattern detection tools. In this chapter we will also present the main software 

architecture reconstruction approaches and tools, introducing some of the available and 

tested tools, and proposing a comparative evaluation of them. 

Chapter 3 (Software micro-structures) is focused on the description and definition of the 

considered micro-structures (EDPs, DP clues and micro patterns). As the micro-structures 

have been in general informally introduced, and as we verified that some of them could be 

ambiguously interpreted, in this chapter we suggest a more formal definition of micro-

structures aimed at solving these ambiguities and at having a unique common structured 

repository of these elements. The redefinition started from the introduction of a new set of 

fundamental elements (that we name code atoms), which each single micro-structure can be 

defined from, dealing to the obtainment of a unified micro-structures catalogue. 

Chapter 4 (Micro-structures for design pattern detection) is devoted to the analysis of the 

usefulness of micro-structures for design pattern detection purposes. The micro-structures 

have been compared according to six peculiar aspects, namely objectives, detail level, 

definition technique, detection technique, categorization, and interdependence among 

elements. We will further analyze and detect micro-structures in common design pattern 

instances. The study of the obtained results will help us in the definition of sets of micro-

structures that can be seen as necessary and/or useful elements for the detection of the 

considered patterns. 

Chapter 5 (Micro-structures for the validation and refinement of design pattern detection 

tools results) describes the process of validation and refinement of the results provided by 

third-pary design pattern detection tools. We will present the results provided by four 

tools on the analysis of a well-known and established Java framework. We will compare 

the obtained results, showing the strong differences among them, and pointing out the 

problem related to the identification of many false positives, due to the different 

algorithms and detection strategies adopted by the tools and to the difficult pattern 

variants problem. Next, we will define refinement rules based on micro-structures for the 

patterns detected by the various tools. We will describe the refinement process, and verify 
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the detected instances according to the defined rules. We will demonstrate how the 

refinement process succeeds in the elimination of a good percentage of false positives, 

hence improving the precision of each tool. 

Chapter 6 (Micro-structures for software architecture reconstruction) analyzes and 

compares elemental design patterns and micro patterns as means to support the 

identification of architectural information about a software system. We will show how the 

EDPs revealed useful to highlight the structural constraints and relationships among the 

entities of a system, to calculate common software metrics, and to identify structural 

antipatterns like breakable, butterfly and hub classes. On the other side, micro patterns 

revealed useful for the detection of interesting peculiar classes and interfaces, in particular 

as far as critical classes or object-oriented antipatterns are concerned. 

In Chapter 7 (A novel interpretation of micro patterns) we will consider micro patterns 

under a different point of view according to two common object-oriented metrics, namely 

the number of attributes (NOA) and of methods (NOM) of a certain class or interface. The 

new interpretation allows for the detection of classes whose implementation is similar to a 

correct micro pattern implementation. We will focus on micro patterns devising critical 

classes and we will analyze different Java systems, both through the original precise 

matching approach and through the new interpretation. We will compare the obtained 

results, and underline how the new interpretation allows for the detection of micro pattern 

instances that are very close to a correct micro pattern implementation and hence should 

be considered as possible candidates for refactoring or restructuring. 

Finally, Chapter 8 will resume our work, discusses the conclusions and the obtained 

results, and traces possible future scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

 

 

 

Chapter 2 

 

Related works 

 

 
Abstract 

 

In this chapter we present some of the main works related to the activities of design pattern detection and software 

architecture reconstruction, giving also an overview of the major types of approaches. 

 

 

 

2.1. Related works on design pattern detection 

 

Many different approaches and tools for design pattern detection (DPD) have been 

presented in the literature. The approaches differ in the kind of analysis pursued on the 

subject systems, in the algorithms adopted for pattern detection, in the set of patterns they 

are able to recognize, and in the analysis results, which may differ from one tool to 

another even while considering the same subject system. Section 2.1.1 considers and 

discusses different possible approaches and methodologies for DPD, while in Section 2.1.2 

we introduce some of the major approaches and tools reported in the literature, giving an 

organic overview of them. 

 

 

2.1.1. Categorizations of approaches and methodologies for design pattern detection 

 

The detection of design patterns in software systems requires the extraction of meaningful 

information from these systems and the recognition of patterns starting from this 

information. Various classifications for design pattern detection solutions and approaches 

have been presented in the literature, considering various points of view. One major 

classification consists in categorizing design pattern detection approaches as static, dynamic 
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or hybrid. Usually, the input information required by static extraction and analysis 

approaches is the source code of the subject system itself (as for example in [NNZ00, 

SS03]). Dynamic approaches may require either the source code or the execution traces of 

the analyzed system [SSys02]. Hybrid or combined approaches, like those proposed in 

[AB05, Wen03], usually extract dynamic information from the system, to be further 

analyzed though static investigations. 

Design pattern detection heavily exploits language dependent mechanisms and constructs. 

At now, each of the available tools for design pattern detection is suited for the analysis of 

a particular programming language: for example FUJABA [NNZ00] and PTIDEJ [Gue05] 

have been developed for the analysis of Java systems, Columbus/MAISA [FGMP02] for 

C++, KT [Bro97] for Smalltalk and DPVK [WT05] for Eiffel. An attempt to define a 

language independent approach to detect object-oriented best practices and design 

patterns starting from Smalltalk or Java systems is described in [FM04]. Another example 

is provided by the SPQR approach [SS03], which defines a language independent way to 

represent the extracted information from the source code and a language independent 

algorithm to detect design patterns. However, the information extraction mechanisms in 

SPQR are specific to C++ software systems. 

In [AMRT05] we proposed the categorization of the available approaches based on the 

information used in the detection process. This work resulted in the definition of three 

main categories of pattern detection tools: 

 

- The classical solutions considering the entire representation of design patterns (like for 

example PTIDEJ [Gue05] or CrocoPat [BL03]). In these cases, the detection algorithm 

tries to map at once the entire pattern on the representation of the source code; 

usually, this kind of approaches claims for a complete catalogue containing all 

possible implementations of design patterns; 

- Solutions considering a minimal set of key structures the design patterns consist of 

(e.g. JAdept [APRR09], SPOOL [KSRP99]). The detection algorithm tries to individuate 

(at once) the core set of structures a pattern is built on; this approach claims for a 

further analysis of design patterns leading to the identification of their core elements; 

- Solutions considering the sub-components the design patterns are built of (e.g. 

FUJABA [NNZ00], MARPLE [Arc06], SPQR [SS03]). The detection algorithm works 

incrementally by first individuating the pattern sub-components, then trying to 

combine these sub-components into patterns. This last category of approaches is 

particularly interesting and challenging, because it implies a further formalization of 

design patterns which preserves their flexibility and improves their definition and 

understating. 

 



 

19 

 

We now present the more important approaches to design pattern detection, giving a brief 

description of their working principles and adopted detection strategies. 

 

 

2.1.2. Approaches and tools for design pattern detection 

 

Since their introduction in 1994, design pattern became well established practices in 

forward engineering, as we have outlined in the introduction. Interest for design patterns 

soon captured the reverse engineering community. The detection of such structures allows 

the improvement of software systems understanding, the assessment of software quality, 

the identification of relevant structural and reusable information, and the simplification of 

systems re-documentation as well. Along the years, many research groups devoted their 

activities for the proposal of approaches and the development of tools for the detection of 

design patterns. Tools and approaches may consistently vary from one another, in terms 

of the adopted detection strategies and algorithms, the detectable patterns, and the quality 

of the detection results in terms of precision and recall [BR99] of the identified pattern 

instances.  

Pree [Pre94, Pre97] describes meta patterns as minimal means to capture reusable object-

oriented design. He introduces seven meta patterns that identify seven possible 

class/object composition by means of template and hook methods and of the relationships 

between the caller and the called objects. These meta patterns are then related to sample 

frameworks in order to illustrate how implemented classes (and their method calls) satisfy 

the defined meta patterns. 

Information about the architecture of classes composing structural patterns is the 

fundament of the Pat system proposed by Kramer and Prechelt [KP96]. Structural patterns 

are represented as Prolog rules, while the source code to be analyzed is represented as 

Prolog facts. The detection process is therefore performed through the application of 

Prolog queries. 

Keller et al. proposed SPOOL [KSRP99] to detect design patterns inside C++ systems, 

basing on design patterns structural representations. Information needed to detect 

patterns and extracted from the analyzed systems is codified in UML/CDIF format, while 

the patterns are depicted as abstract design components and stored in a repository. 

FUJABA (From UML to Java and Back Again) [NNZ00] defines sub-patterns to categorize 

the structural recurring elements of design patterns, trying to build a detection algorithm 

based on the recognition of these elements and on their incremental combination towards 

design patterns. The formal basis of FUJABA exploits the graph grammar. Sub-patterns 

and patterns are expressed as graph transformation rules. The information extracted from 

the source code is represented as an AST, further enriched with annotations during the 
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design pattern detection process. These annotations aim to indicate the presence of design 

patterns or sub-patterns in the analyzed AST and are added to an AST though 

transformation rules. Additional nodes and edges inserted in the AST correspond to the 

identified sub-patterns. To address the large number of possible implementation variants, 

the FUJABA rules are enhanced with fuzzy values [Nie02] to describe a degree of 

uncertainty allowing one rule to match several implementations with a certain degree. 

Kim and Boldyreff proposed a metrics-based approach for the detection of design patterns 

[KB00]. Three categories of metrics are considered: object-oriented, structural and 

procedural metrics. Each design pattern is characterized by a signature, which is derived 

by the calculation of the metrics on the design patterns proposed by Gamma. The search 

algorithm compares the metrics of each class with the patterns signatures. 

In the JBOORET tool [MXY01] Hong Mei, Tao Xie and Fuqing Yang adopt a parser-based 

approach to assist the activity of extracting the higher-level design and source models 

from system artifacts. A conceptual model is formulated as the knowledge representation. 

Multi-perspective design and source models are recovered by JBOORET based on the 

comprehensive program information extracted from source code. 

Smith and Stotts [SS03] proposed SPQR (System for Pattern Query and Recongnition), 

which is based on a first identification of elemental design patterns (EDPs), which are 

further analyzed in order to deduce the presence of pattern instances inside the analyzed 

systems. EDPs inherit from design patterns their ability to capture design intents, but are 

significantly simpler than design patterns. EDPs and their composition rules are formally 

expressed in terms of rho-calculus [SS03], which represents a subset of sigma-calculus 

properly extended with new reliance operators. Design patterns and their implementation 

variants are not statically described, but they are dynamically inferred through the 

formalized rules. 

Heuzeroth et al. [HHHL03] introduce an approach to design pattern detection that 

combines both static and dynamic analysis techniques, where static analysis techniques 

based on the exploration of the ASTs of the source code are used first in order to find 

pattern candidates, which are to be inspected by a dynamic analysis stage. They further 

propose algorithms for the detection of several structural and behavioural patterns, 

focusing on the identification of design pattern instances in the Java Swing library. 

Birkner [Bir07] presents the Pattern Detection Engine (PDE), which combines static and 

dynamic analysis techniques for the detection of a large part of the design patterns defined 

in Gamma [GHJV94]. Static analysis is first used in order to create static definitions of 

design patterns starting from UML class diagrams. In this phase, design pattern 

candidates are extracted from the subject system. Dynamic analysis techniques are then 

applied on the candidate instances in order to obtain dynamic definitions from UML 
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sequence diagrams. This process allows for the refinement of the candidate instances and 

for the obtainment of the detection results. 

In [BF03] Balanyi and Ferenc introduce an automated approach to detect design patterns 

in C++ systems through a pattern miner algorithm. The system to be analyzed is 

represented as an Abstract Semantic Graph (ASG), while the patterns are stored in an 

XML-based language named DPML. The algorithm tries to match the XML tree obtained 

from the DPML description to the ASG representing the subject system. 

Beyer and Lewrentz developed CrocoPat [BL03, BNL05], a tool which exploits relational 

expressions to specify the properties of a system. It adopts a three-step approach. In the 

firs one, the data to be analyzed are extracted from source code. In the second step the 

patterns to be detected are defined using a pattern specification language making use of 

the relations stored in an ad-hoc file. In the final step, the tool translates the relations into 

binary decision diagrams [BL03, BNL05]. 

In [WT04] Wang and Tzerpos introduce DPVK, a reverse engineering tool to detect pattern 

instances in Eiffel systems. In order to get better detection results, we analyze many 

different patterns and examine Eiffel software in terms of both static structure and 

dynamic behaviour. 

Fabry and Mens [FM04] introduce a language-independent meta-level interface that can be 

used to extract complex information about the structures (and as a consequence, the 

patterns) that compose an object-oriented system, providing examples of their techniques 

on medium-sized systems implemented in Java and Smalltalk. 

In [Gue05] Guéhéneuc introduces PTIDEJ (Pattern Trace, Identification, Detection and 

Enhancement in Java), which allows to create a model of a program from its source code 

and to identify micro-architectures that are similar to a design pattern. These micro-

architectures are detected by an explanation-based constraint solver [Jus01], and represent 

architecures that are comparable with what the author calls design motifs (that are the 

solution parts of design pattern definitions [Gue05]). As the identification of these micro-

structures is difficult, due to the huge amount of combination of classes, especially in large 

software systems, in [GSZ04] Guéhéneuc, Sahraoui and Zaidi propose a study on classes 

playing roles in design motifs using metrics and a machine learning algorithm to calculate 

fingerprints (i.e. sets of metrics values that can help in identifying classes playing a given 

role in a design pattern) in order to identify design motifs roles. They also show how the 

use of fingerprints can help to significantly reduce the search space of micro-architectures, 

focusing on the identification of the Composite design pattern [GHJV94] inside the 

JHotDraw framework [JHD]. 

In [GA08] Guéhéneuc and Antoniol propose DeMIMA, an approach to semiautomatically 

identify architectures that are similar to design patterns from source code. DeMIMA is 

composed by three layers: two layers are devoted to recover an abstract model of the 
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source code, including binary class relationships, while the third layer is actually aimed to 

identify pattern instances inside the abstract model. 

Tsantalis and Chatzigeorgiou [TC06] have developed Design Pattern Detection Tool, a tool 

for design pattern detection that is based on structural similarity scoring between program 

graph representations and their vertices. Both the systems under analysis and the patterns 

to be recognized are described with set of matrices representing the various aspects of 

their static structures. A graph similarity algorithm calculates similarity scores between 

the graph representations of the analyzed systems and of the patterns. The approach 

claims to recognize also patterns that are slightly different from their basic representation, 

allowing the recognition of an important amount of pattern variants. 

Philippow et al. [PSRN05] propose a technique for design pattern detection that is based 

on minimal key structures, i.e. the minimal class and object structure that has to be present 

in order to identify the pattern, and on positive and negative search criteria, the former 

collecting criteria that will occur with high probability in the implementation of particular 

patterns, the latter identifying those relationships that are not allowed in the context of a 

pattern, in order to reduce false positives cases. 

In [CDD+05] Costagliola et al. propose an object oriented design pattern recovery 

approach which makes use of a design pattern library, expressed in terms of visual 

grammars, and based on a visual language parsing technique. They also present a visual 

environment which supports the pattern recognition process by automatically retrieving 

design patterns from imported UML class diagrams. 

De Lucia et al. presented an approach for the identification of structural design patterns 

from object oriented systems [DDGR09]. Tha approach follows a two-step detection 

process. At first, pattern instances are identified only by considering their structure, 

exploiting a parsing technique for visual language recognition. In the second step, the 

candidate instances are validated by a source code analysis phase. They developed a tool 

named Design Pattern Recovery Environment for the detection of patterns, experimenting 

it on six public-domain programs and libraries. 

Shi and Olsson [SO06] propose PINOT, a design pattern detection tool that has been 

developed around the modification of the Jikes Java compiler [Jikes], with the objective to 

achieve better performances and accuracy in the detection of more design patterns with 

respect to other tools. Shi and Olsson reclassify the GoF patterns in five categories 

(language provided, structure driven, behaviour driven, domain specific and generic 

concepts), and defined different detection techniques and algorithms according to each of 

the newly defined categories. 

In [PL06] Niklas Pettersson and Welf  Loewe propose a method to improve the 

performance of pattern detection. It is based on the idea of filtering information from the 

program representation (graphs), which is unnecessary for detecting a particular pattern. 
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This makes the remaining program representation graph planar, in many cases, thus 

allowing for linear pattern detection. 

In DP-Miner tool [JDY07], Dong Jing et al. present a novel approach to discovering design 

patterns by defining the structural characteristics of each design pattern in terms of weight 

and matrix. Our discovery process includes several analysis phases. Our approach is 

based on the XMI standard so that it is compatible with other techniques following such 

standard. We also develop a toolkit to support our approach. 

Dietrich and Elgar [DE07] present an approach to the formal definition of design patterns 

using the OWL web ontology language, and introduce the Web of Patterns prototype for 

the detection of the so defined patterns in Java systems. 

The D-cube tool [SW08] presented by Krzysztof Stencel and Patrycja Wegrzynowicz is able 

to detect nonstandard implementation variants of design patterns. It is customizable 

because an analyst can introduce a new pattern retrieval query or modify an existing one 

and then repeat the detection using the results of earlier source code analysis stored in a 

relational database. 

 

 

2.1.3. Comparisons among tools for design pattern detection 

 

Although there are so many approaches to design pattern detection, the variants problem 

and the differences among the detection techniques often cause differences in the detection 

results provided by the various tools, even on the analysis of the same target systems. 

Therefore, it looks interesting to compare the various approaches to design pattern 

detection, especially focusing on the results they are able to produce. In [AMRT05] we 

present a comparison among two different tools for design pattern detection, namely 

FUJABA [NNZ00] and SPQR [SS03], which are based upon the decomposition of design 

patterns themselves. The comparison considers two main issues: the design pattern 

definition method adopted by each tool, and the design pattern detection strategy each 

tool adopts, discussing possible pros and cons for both the analyzed approaches. 

In [GMW06] a general framework for the comparison of design recovery tools (hence not 

only for the comparison of design pattern detection tools) is proposed, illustrating how the 

framework can be applied to the comparison of two different tools, namely PTIDEJ 

[Gue05] and LiCoR [Licor]. 

Furthermore, benchmark proposals to provide evaluations about design pattern detection 

tools have been recently presented in [ATZ08, FHFG08], even if a standard benchmark 

platform is not yet available, and a real and effective comparison among them is very 

difficult. 
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2.2. Related works on software architecture reconstruction 

 

While there exist many tools for design pattern detection, but which are basically devoted 

to the very same activity (even if pursued with varying strategies), the situation for 

software architecture reconstruction (SAR) tools is far more complex. Each tool is heavily 

different from one another in several aspects. First of all, each tool has different objectives 

and aims from the others, and is devoted to the extraction of a well defined set of 

information that make it unique among the other tools. The produced results are 

consequently different. The results may differ in their representations (some tools may 

adopt graphical views, while others software metrics, or textual representations), in their 

meaning (as each tool is focused on particular characteristics of the systems to be 

analyzed), and in their interpretation (some results may be of easy interpretation by the 

user, while others may need efforts or further analyses in order to be completely 

captured). Tools also differ in the formalisms and theoretical bases they adopt, which 

strictly depend on each single tool objectives. 

In this section we present a set of tools and approaches which we consider of particular 

interest, or which we had the possibility to test and experiment. Different exhaustive 

taxonomies for SAR tools have been proposed, and frameworks for the comparison of 

these tools have also been introduced: both taxonomies and comparative frameworks are 

discussed, and the proposal for a new framework for the evaluation of SAR tools is 

presented.  

Some authors consider some of the tools that we describe in the following as simply tools 

for software or structural analysis. As already mentioned in the introduction, in this 

dissertation we consider, under the category of SAR tools and approaches, also tools that 

revealed useful to support program comprehension, the reconstruction of views about the 

subject systems and the evaluation of software metrics, which are all activities helping in 

the software evolution and maintenance phases (which are a core aspect of SAR activities). 

 

 

2.2.1. Approaches and tools for software architecture reconstruction 

 

We now introduce some of the most common and known tools for software architecture 

reconstruction. Some of them come from the Academia, others are on the other hand 

commercial tools. 

 

Alborz 

Alborz [SYS06], developed by Kamran Sartipi, is a toolkit for the recovery and evaluation 

of the architecture of a software system, using techniques for pattern-matching, data 
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mining, clustering, and quality evaluation. The result of the recovery is provided to the 

user through hypertext pages and graph visualization techniques and tools. The process of 

architecture reconstruction consists of two phases. In the first phase, Alborz parses the 

source code of the subject system translating it into a graph; then it splits the graph in 

cohesive regions through data mining techniques. In the second phase, the user can 

specify the architectural views he wants to obtain in terms of patterns. The defined 

patterns are then mapped with graph regions built during the first phase using graph 

matching and clustering techniques. Finally, the user can iterate the process again, basing 

on the partially reconstructed architecture and evaluation information provided by the 

tool. In our experience, the usage of this tool revealed very complex, especially due to the 

lack of documentation and explanations about how to define patterns and how to extract 

them. In our opinion, a tool for software architecture reconstruction shall provide the user 

with a set of self-contained functionalities that can report results of immediate 

exploitability, and should avoid over complicated tasks to be manually performed by its 

users. 

 

Armin 

Armin (Architecture Reconstruction and Mining) [KBV03] has been developed by the 

Software Engineering Institute at Carnegie Mellon University, in collaboration with Robert 

Bosch Corporation. Armin is a modelling and visualization tool, which accepts inputs in 

the RSF format [Mül93]. In this format, couples of entities of the system (that can be 

classes, interfaces, methods and so on) are textually expressed, specifying the kind of 

relationships connecting them. Once the data about a system have been imported, a 

scripting engine allows for the manipulation of the entities and relationships, and also for 

the execution of user-defined queries, in order to obtain architectural views that are of 

particular interests for the users. 

 

Bauhaus 

The Bauhaus toolkit [Bau] is an environment composed by a set of tools to extract, 

analyze, query and visualize information about existing software, supporting software 

architecture reconstruction from source code analysis. To support these activities, it 

provides several techniques, like metrics computation, pointer, side-effect and data flow 

analyses, program slicing, source code navigation and so on. 

 

CodeCrawler 

CodeCrawler [Lan03] is a language independent reverse engineering tool combining 

metrics and software visualization. The system to be analyzed must be translated with an 

ad-hoc parser into a correspondent FAMIX model [DTD01], which constitutes the actual 

input of the tool. The core concept which characterizes CodeCrawler is the polimetric views 

[Lan03]: the tool provides the user with a set of views about the analyzed systems that are 
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generated by the calculation of at most five metrics on the entities to be visualized. Each 

entity (that can be either a class or interface, or a method, or an attribute, depending on 

each single view) is depicted as a rectangle, with five associated parameters: width, height, 

horizontal position, vertical position, and colour. Each parameter can be associated to a 

metric, and the size of each parameter depends on the value the correspondent metric 

assumes for that entity. CodeCrawler distinguishes two sets of views: coarse-grained views 

are at a higher level of abstraction, and let the user manage the system in its generality. 

The system complexity view, for example, represents the analyzed system in its 

constituting hierarchies. Each entity depicts either a class or an interface, edges connecting 

them represent the inheritance relationships, and the complexity of each entity is 

calculated in terms of their number of attributes (associated with its width), the number of 

methods (related to its height), and the number of lines of code (associated with its 

colour). On the other hand, fine-grained views are more low level, and let the user focus on 

the details of each single class. As an example, the class blueprint views, shows the 

attributes and methods for a given class or interface. Attributes and methods are classified 

according to their nature with particular colours, and relationships among attributes and 

methods are depicted as edges connecting them. 

More recently, an open source software visualization plug-in for Eclipse, named X-Ray 

[XRay], has been developed. It currently provides the system complexity view and the 

class and package dependency view for a given Java project. Being an Eclipse plug-in, it 

can directly analyze a selected project without the need for the creation of an external 

FAMIX model or other kinds of models, improving therefore the usability and 

effectiveness of the approach. 

 

CodeLogic 

CodeLogic [CL] is a commercial tool for the analysis of systems written in Java. The 

functionalities offered by the tool are restricted to the generation of UML class diagrams, 

sequence diagrams and flow charts. The results can be exported in the PNG, Visio .Net 

and XMI Rational formats. No further functionalities or analyses are provided by the tool, 

which demonstrates to be quite limited, if compared with other available approaches. 

 

Dali 

Dali [KC99], proposed by Kazman et al., is a workbench of tools for software architecture 

reconstruction. The workbench is based on Rigi [MWT95] for the visualization and 

handling of the views generated by Dali. Users can define personal query patterns in order 

to generate various views of the system at various levels of abstraction. System 

information must be extracted by software analysis tools, or provided by other forms of 
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documentation, and then must be loaded into Dali. The information is stored in a 

PostgreSQL database and then visualized in Rigi. 

 

Doxygen 

Doxygen [Doxy] is a documentation tool that can be used on systems written in a variety 

of programming languages, such as C++, C, Java, Objective C, Python, IDL, Fortran, 

VHDL, PHP, C#. Its aim is to provide an organic and exhaustive documentation for those 

systems whose documentation is scarce, not up-to-date, incomplete, or lacking at all. The 

generation of documentation is performed through source code analysis, thus maintaining 

the documentation more consistent with the system. The generation process can be guided 

by a wizard, and the output can be exported in several formats, like HTML, PostScript, 

RTF, Latex and other kinds of documents. Doxygen can also generate views about the 

analyzed system, which are integrated with the documentation. The type graph shows the 

classes and interfaces that constitute a package, and the relationships among them 

(inheritance, implementation, association). The caller and callee graphs are generated on 

methods, and show respectively which methods call the subject method, and which 

methods are called by the subject methods, adding a sort of dynamic information to the 

generated documentation. Even if the use of views within a system’s documentation is a 

promising idea, actually the navigability of such views proved to be quite difficult, 

especially while handling large packages with many classes. In fact, as the generated 

views are part of the textual documentation, they cannot be modified, extended or 

reduced. 

 

JDepend 

JDepend [JDepend] is a tool for the generation of design quality metrics about the 

packages composing the analyzed systems. The quality of design is measured according to 

three main concepts, namely extensibility of the system, reusability and maintainability. 

Actually, this tool doesn’t reconstruct any views, documentation or reports about a 

system, but can still be used as a complementary mean to SAR activities. The metrics 

analysis can help the engineers to understand and to manage the criticalities of the system 

in terms of its structure. This evaluation leads to focus precisely on those parts of the 

system that reveal more problematic. In this way, the engineers can then use a third-party 

tool to apply views and evaluations on those modules and components, without the need 

to analyzed the whole system before reaching the critical issues. 

 

Rational Software Architect 

Rational Software Architect (Rational, IBM) [RSA] is an industrial tool that can be 

exploited both for forward and reverse engineering purposes. One interesting feature of 



 

28 

 

this tool is that it provides consistency mechanisms among the different UML diagrams 

and the code with respect to round-trip engineering. It also provides support for a sort of 

impact analysis that is very similar to the What-if analysis provided by SA4J. Another 

peculiarity is that Rational Software Architect supports dynamic analysis since it is able to 

reconstruct sequence diagrams, and it also supports design pattern detection for a small 

set of design patterns. 

 

Shrimp-Creole 

Shrimp-Creole (Simple Hierarchical Multi-Perspective) [SM95] is an Eclipse [Eclipse] plug-

in which can be used to give a graphical representation of a subject system and explore its 

architecture at different detail levels. The tool exploits different layouts to depict the 

involved entities, and can show only the entities and relationships of actual interest 

through a filtering process. Layouts can be tailored on the user preferences and needs, and 

a filmstrip functionality allow to get different pictures of the analyzed system, that can be 

analyzed in a second time. 

 

Structural Analysis for Java 

Structural Analysis for Java (SA4J) [SA4J] has been developed by IBM, and provides the 

user with lots of functionalities, views, metrics, analyses and reports. SA4J is based on the 

concept of dependencies and dependents of a given entity, either a package or a class or an 

interface. The number of dependencies of an entity is the number of entities the subject 

entity depends from. The number of dependents of an entity is the number of entities that 

depend on the functionalities provided by the subject entity. The adoption of these 

concepts allowed for the introduction of functionalities that reveal very useful in a 

software architecture reconstruction and evaluation process. Besides the exploitation of 

views that are very similar to UML class diagrams, and which let the user understand the 

actual physical structure of the analyzed systems, SA4J allows the detection of structural 

antipatterns, like butterflies, breakables, hubs and tangles, the evaluation and the analysis 

of a good number of metrics about classes and packages and of the stability of the system, 

a skeleton view to determine which components rely on top of the others and 

consequently affect the system stability, and a what-if analysis, which dynamically shows 

the entities that are involved if a certain part of the system changes. 

 

Swagkit 

Swagkit [Swag] is a toolkit developed by the Software Architecture Group at the 

University of Waterloo (SWAG), that can be used to extract, abstract and explore software 

architectures. Currently, Swagkit supports the extraction from C/C++ code, the abstraction 

to the architectural level and the presentation in a landscape form. 
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Swagkit uses the compiler wrapping technique to obtain information about source code. It 

consists of substituting the compiler and linker callings with specific commands, that 

perform compiling and linking combined with information extraction. The output of the 

extraction process is formed by the so-called, graphical layout models of the analyzed 

software system and of its subsystems. A landscape is a graph with multiple named types 

of nodes and multiple types of edges. At least one type of edges must be named "contain": 

it forms either a tree or a forest connecting all the nodes in the graph and denotes the 

containment structure of the landscape. The remaining edge types do not have any 

restrictions (they can cross containment levels, form loops, etc). Both nodes and edges can 

have additional attributes, specifying their names, types, ways to display them, and other 

various properties. This kind of extracted models provides the user with a large amount of 

information that abstracts from the system’s implementation and eases its understanding. 

For example, landscapes help in identifying modules with a huge number of 

interrelationships, which are symptoms of a high degree of complexity, leading the 

engineer to concentrate on these modules that are supposed to be the main candidates for 

system refactoring. 

 

Symphony 

Symphony [DHK+04b] is an approach to software architecture reconstruction based on 

views. It defines a general reconstruction model based on the concepts of viewpoints and 

views as defined by the IEEE 1471 standard [IEEE]. The Symphony approach consists of 

two stages. In the first stage, reconstruction design, the reconstruction problem is analyzed, 

viewpoints [IEEE] and corresponding views are defined, and mapping rules from source 

to target views are formalized. In the second phase, reconstruction execution, the subject 

system is analyzed, the source views are extracted and then mapped to populate the target 

views through the application of the mapping rules. the two stages may be iterated. The 

execution may reveal new reconstruction necessities, leading to a refined understanding of 

the problem and a more detailed reconstruction design. The execution phase follows the 

well-established extract-abstract-present approach, tailored to the specific needs of 

architecture reconstruction. 

 

Understand for Java 

Understand for Java [U4J] offers different views that may be generated at different detail 

levels, from the whole system to single classes. Therefore, they are useful both to get a 

general comprehension of the system and to analyze single components in detail. 

Anyway, Understand for Java is mainly focused on the computation of metrics for 

software quality and complexity evaluation. 
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Many other tools and approaches for software architecture reconstruction and program 

comprehension actually exist, like ART [FATM99], DiscoTect [YGS+04] and QUADSAR 

[SRBV06], and those considered for example in [BSV02, PDP+07]. 

 

 

2.2.2. Taxonomies and comparisons of software architecture reconstruction tools 

 

The heterogeneity, the quantity and the variety of SAR tools and approaches currently 

available, both coming from the academia and from the industry, stimulated the proposal 

of taxonomies of tools and approaches, and led also to the definition of possible 

comparative frameworks and benchmarks to evaluate SAR tools. 

In [BSV02], Stoermer et al. provide a taxonomy for 13 approaches and tools for software 

architecture reconstruction. In the same context, they define six practice patterns which 

presented while applying architecture reconstruction techniques in industrial settings, and 

which describe recurring situations where problems can be solved by applying well-

known strategies. The presented approaches are collected in four defined categories: 

exclusively manual approaches, manual reconstruction approaches with tool support, 

strategies based on query languages for reconstruction, and other kinds of approaches, 

like the use of clustering and data mining techniques, or the use of architecture description 

languages. 

Pollet et al. [PDP+07] suggest a process-oriented taxonomy of 35 tools and approaches, 

evaluated according to five axes: the planned goals, the kind of processes followed by each 

approach (being either top-down, bottom-up, or hybrid), the kind of input received by 

each tool, the techniques adopted in the reconstruction process (distinguishing among 

quasi-manual, semi-automatic and quasi-automatic), and finally the kind of output 

produced by the tools. 

As far as comparisons among SAR tools are concerned, several researchers have focused 

their attention in defining characteristics that may make such comparison possible. To cite 

some examples, Guéhéneuc et al. [GMW06] propose a comparative framework for design 

recovery tools, based on eight concerns (context, intent, users, input, technique, output, 

implementation and tool); they apply the framework to compare only two design recovery 

tools, namely PTIDEJ [Gue05] and LiCoR [Licor]; further validation is required to verify 

whether the framework enables an objective comparison of tools, and to allow also the 

evaluation of other SAR tools. Bellay and Gall [BG97] propose a comparison of four 

reverse engineering tools introducing four functional categories that help in the 

assessment of the reverse engineering tools, namely analysis, representation, 

editing/browsing and general capabilities. Gorton and Zhu [GZ05] pointed out the 

complementariness of reconstruction tools discussing the analysis of a small industrial 
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system (296 classes) through four tools: Understand for Java [U4J], JDepend [JDepend], 

SA4J [SA4J], Armin [KBV03] and Enterprise Architect [Ent]. Jha et al. [JMP04] report a 

comparison experience about four reconstruction tools by considering their extraction, 

abstraction and visualization capabilities, their supported languages and their 

completeness with respect to architecture reconstruction purposes. They concentrated 

their attention on reconstruction tools supporting C or C++ languages. 

 

 

2.2.3. A novel comparative framework proposal for SAR tools 

 

In [AM09] we proposed a comparative framework for architecture reconstruction tools. In 

our framework, six aspects concerning the tools are to be considered. First of all, we 

consider implementation issues like the language the tools have been developed with, the 

supported operating systems, the eventual third-party software needed to correctly run 

the tool, the latest available release and the occupied space. 

All this information is useful in order to get an immediate understanding of the target the 

tools refer to. Another important kind of information is related to the input each tool 

accepts, i.e. the supported programming languages and the type of information source 

needed by the tool (like source code, byte code, or different models). The principal 

relevance is given to the output produced by the tool. We inspect if each tool is able to 

recover views about the analyzed systems, to calculate metrics on them, to generate 

documentation for them, and to eventually detect design patterns or antipatterns from the 

subject systems. We next, indicate if the tools are documented, and we give an evaluation 

of the documentation quality. In our opinion, usability is a core issue. Having a tool that is 

simple to install, to manage and to use will make the users more productive and active in 

their tasks. Finally, we report considerations about the carried out experimentations, 

tracing the possible problems encountered while using each tool. 

As an example of the application of the framework, in [AM09] we discussed seven tools 

for architecture reconstruction, and evaluated them according to the six aspects just 

described. The results are replicated in Table 2.1, which reports the comparative 

evaluation of four out of the seven considered tools. From this table, it can be immediately 

noticed how the tools are heavily different from one another both in terms of their 

accepted inputs and in terms of the produced artifacts and of their usability. In the paper, 

we also described which are the peculiarities that characterize each tool with respect to the 

others, in order to better focus on the target users and reconstruction activities each tool 

refers to. Actually, providing an effective comparison is difficult, due to the different 

nature of each system and the functionalities it provides, and also because the evaluation 

of some of the systems’ characteristics is mainly subjective. 
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  CodeCrawler Doxygen SA4J MARPLE SAR 

IM
P

L
E

M
E

N
T

A
T

IO
N

 

Language Smalltalk C++ Java Java 

Supported Platforms 
Windows, Linux, 

MacOS 

Windows, Linux, 

MacOS 
Platform independent Platform independent 

Third-party required 

software 

FAMIX model 

generator 
GraphViz None 

Micro-structures 

detector 

Latest release 

(version/date) 

4.5 

March 2004 

1.5.8 

27 December 2008 

1.0 

March 2004 

1.0 

July 2008 

Occupied space 24 Mb 17 Mb 47 Mb 1 Mb 

IN
P

U
T

 

Supported 

programming 

languages 

Language 

independent 

Java, C, C++, Python, 

Objective-C, IDL, 

Fortran, VHDL, PHP, 

C# 

Java Java 

Information source 

type 
FAMIX model Source code 

Source code, byte 

code 

Software micro-

structures 

O
U

T
P

U
T

 

Architectural views Polymetric views 
UML-styled type 

diagrams 

Package explorer, 

Skeleton 

Class compact, Class 

extended, Package 

diagrams 

Behavioural views Polymetric views Call graphs What-if None 

Metrics Yes No Yes Yes 

Documentation 

generation 
No Yes No No 

Design pattern 

detection 
No No No Yes  

Antipattern detection 

No, but supported by 

the manual analysis of 

the generated views 

No 

Yes (butterflies, 

breakable, hubs, 

tangles) 

Yes (butterflies, 

breakable, hubs, 

tangles) 

Other defects or 

micro-structures 

detection 

No, but supported by 

the manual analysis of 

the generated views 

No No 

Micro patterns 

[GM05] devising non-

object-oriented 

programming 

practices 

D
O

C
U

M
. Kind of documentation None HTML PDF manual None 

Documentation 

quality 
n/a Good Very good n/a 

U
S

A
B

IL
IT

Y
 Installation simplicity Not straightforward Not straightforward Very simple Simple 

Use simplicity Not simple Quite simple Simple Simple 

Results self 

explanation 
Not self explaining 

Self explaining (even 

if views are often too 

large) 

Self explaining 

(even if views can be 

too overwhelmed) 

Self explaining (even 

if views can be too 

overwhelmed) 

E
X

P
E

R
IM

E
N

T
A

T
IO

N
S

 

Case studies 

JasperReports 

Industrial case studies 

JHotDraw 

Plazma 

Sakai 

Adempiere 

JasperReports 

Plazma 

Sakai 

Adempiere 

JasperReports 

JHotDraw 

Plazma 

Sakai 

Industrial case studies 

JHotDraw 

Plazma 

Traced problems 

Generation and load 

of the FAMIX model 

not always possible. 

Graphical bugs using 

CodeCrawler under 

Windows 

None None 

Seldom out of 

memory exception in 

the case of very large 

systems 

 

Table 2.1 – A comparison among four software architecture reconstruction tools 
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Currently, no silver bullet tool exists, but the tools can be considered somehow 

complementary to each other. In our work we also tried to identify some of the most 

common problems we have to face for re-engineering and reverse engineering activities, 

like for example design evaluation, integration, systems refactoring and restructuring, 

migration towards SOA and so on, and we suggested the more useful tools and views to 

face these problems, according to our experiences on the analysis of systems of different 

sizes.   

The choice of a reconstruction tool may also be guided by the size of the analyzed systems. 

While analyzing small or medium sized systems, we would probably need views that may 

expose some details of the architecture and of the nature of the various system 

components. On the contrary, these “detailed” views would add too much information to 

the comprehension of large systems, for which we are probably interested in obtaining the 

highest abstraction level as possible, in order to have a general understanding of the 

system, and eventually decide on which components to focus with more detailed views. 

Our comparison proposal differs from those introduced in Section 2.2.2 for different points 

of view. First of all, we focused on users which should be guided to the choice of a 

particular tool according to their main needs, in terms of systems to be analyzed, data to 

be extracted and ease of use and exploitation. Therefore, in this comparative framework 

we resembled the aspects we think that are of crucial importance while having a first 

contact with a SAR tool of interest. Finally, we also tried to be as more objective as 

possible: the considerations we carried out on subjective or non-quantifiable aspects are 

derived by the general opinion of a pool of people who actually experimented the 

considered tools. 
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Chapter 3 

 

Software micro-structures 

 

 
Abstract 

 

Software micro-structures are the core concept of this thesis. In this chapter we introduce three categories of micro-

structures, namely Elemental Design Patterns (EDPs), design pattern clues (DP clues) and micro patterns, that we 

consider as the basic bricks both for design pattern detection activities (as they can be interpreted as hints for the 

presence of design patterns inside the analyzed software systems) and for software architecture reconstruction tasks (as 

they can be used to identify structural relationships among the classes composing a system). As they have never been 

considered as similar elements in the literature, and as their definition is not formal and thus may lead up to 

ambiguities, in this chapter we propose a redefinition of the analyzed micro-structures which tries to solve the possible 

ambiguities and to give a new interpretation of them basing on common concepts. 

 

 

 

3.1. Software micro-structures 

 
Many different kinds of micro-structures currently exist. They have different aims, 

different definitions and different detail levels. In this thesis we concentrate on three 

different categories of micro-structures, that are Elemental Design Patterns (EDPs) [SS03], 

design pattern clues (DP clues) [Mag06b, AMR09a, AMR09b] and micro patterns [GM05]. 

They have been defined to support different tasks: EDPs represent programming 

techniques that are in the everyday practice of each programmer, codifying them in the 

form of simple design patterns; DP clues are hints for the presence of design patterns 

inside a software system, and have been introduced by analyzing typical DP structures 

and implementations; micro patterns devise particular classes with peculiar conditions on 

their attributes and methods. Other micro-structures have been defined, like the sub-

patterns exploited by the FUJABA approach [NNZ00] and also considered in [AMR09a], 

but have not been taken into account in our thesis work. 
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3.1.1. Elemental design patterns 

 

Elemental design patterns (EDPs) were proposed by Smith and Stotts [SS02]. They provide 

solutions to very common programming problems (we can state that these problems occur 

in the everyday practice of each programmer). They share the same aim with the design 

patterns, but they are applied to more restricted and specific issues. In fact, if design 

patterns propose solutions to problems which can involve a certain number of classes, 

EDPs address problems of much more limited dimensions, which generally do not involve 

more than three classes. There are 16 EDPs subdivided into three categories: 

  

- Object Elements: contains three EDPs related to the creation and the referencing of 

objects as well as to the presence of abstract methods inside an abstract class, or 

interface methods inside an interface; 

- Method Invocation: collects twelve EDPs which represent the various forms of possible 

method calls; 

- Type Relation: contains a single EDP representing the inheritance relationship between 

two classes, as well as the implementation of an interface.  

 

EDPs are defined with the same description structure used in [GHJV94] for the 

presentation of design patterns. For a complete description of each EDP refer to [Smi02]. 

EDPs can be detected inside Java systems through the Micro-structures detector module, 

which is part of the MARPLE (Metrics and Architecture REcontruction PLugin for Eclipse) 

project [Arc06]. MARPLE has been developed for design pattern detection and software 

architecture reconstruction purposes, and it is based on the detection of micro-structures. 

The Micro-structures detector module is briefly described in Section 3.3. However, the 

definition of EDPs originated by considerations made on C++ source code. Smith and 

Stotts developed SPQR [SS03], an approach to design pattern detection based on the 

identification of EDPs inside the subject systems. 

 

 

3.1.2. Design pattern clues 

 

We have introduced design pattern clues (DP clues) [Mag06a, MATZ09] as possible hints 

about the presence of design patterns inside the code, by manually analyzing design 

pattern architectures and sample implementations identifying basic structures which are 

peculiar for each single pattern. Currently, we have defined 41 design pattern clues 

subdivided in the following eight categories: 

 

- Class Declaration Information: collects clues which are identifiable at the class declaration 

level; 

- Multiple Classes Information: collects clues that can be identified by the comparison of at 

least two classes and their contents; 
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- Instance Information: contains clues regarding particular instances of a certain class, and 

one clue representing the controlled instantiations; 

- Method Signature Information: collects clues which are identifiable analysing the 

signature of a method; 

- Method Body Information: contains those clues that can be identified by only analyzing 

the body of any kind of methods; 

- Method Set Information: collects clues whose details can be deducted analyzing the 

whole set of methods the involved classes declare and implement; 

- Return Information: includes those clues regarding various possible return modes from a 

method; 

- Java Information: collects clues which are strictly bound to the Java language. 

 

A complete description of design pattern clues can be found in [MATZ09]. 

Clues are detected inside a Java system through the Micro-structures detector module of 

MARPLE. 

 

 

3.1.3. Micro patterns 

 

Micro patterns were introduced by Gil and Maman [GM05] in order to capture some very 

common programming techniques. Micro patterns can be thought of as class-level traceable 

patterns, i.e. structures similar to design patterns which can be mechanically recognized 

and which stand at a class abstraction level. A micro pattern is traceable if it can be 

expressed as a simple formal condition on the attributes, types, name and body of a 

software module and its components. Currently, there are 27 micro patterns subdivided 

into eight categories. Authors do not assert that the set of the identified micro patterns is 

complete or exhaustive. 

The eight micro pattern categories are: 

 

- Degenerate State and Behaviour: this category includes micro patterns describing 

interfaces and classes whose state and behaviour are degenerated. In most cases this 

means that the interface or class does not define any variable or method; 

- Degenerate Behaviour: these micro patterns are related to classes with no methods or 

with very simple ones; 

- Degenerate State: this category is related to classes which have no state (i.e. variables), or 

their state is shared with other classes or they are immutable; 

- Controlled Creation: the micro patterns belonging to this category describe special 

protocols for creating objects; 

- Wrappers: this category collects micro patterns dealing with classes which have a single 

central instance field and methods working on it, so that the main functionalities are 

delegated to this field; 

- Data Managers: these micro patterns are related to classes whose main purpose is to 

manage the data stored in a set of instance variables; 
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- Base Classes: the micro patterns belonging to this category describe different ways in 

which a base class makes preparations for its sublcasses; 

- Inheritors: the micro patterns in this category correspond to three ways in which a class 

can use the definitions of its superclass, i.e. abstract method implementation, method 

overriding and interface enrichment.  

 

For a complete discussion about micro patterns refer to [GM05]. Micro patterns are 

recognized through a prototype developed by Gil and Maman based on byte code analysis 

[GM05], and with MARPLE, adopting source code analysis. 

 

 

3.2. Towards a unique micro-structures catalogue 

 

Even if these micro-structures are so different in nature and aims, they can all be exploited 

(with different degrees of usefulness) both for design pattern detection and software 

architecture reconstruction activities. There are two main disadvantages concerned with 

the definitions of micro-structures: 

 

- often, their definition is not formal, and may result ambiguous; 

- they have never been considered as similar elements, even if they can all be 

automatically detected from a static source code analysis process; 

 

To solve these issues, we propose to introduce a unique catalogue of micro-structures that 

resembles EDPs, clues and micro patterns redefining them in terms of concepts that are 

common to all the categories of micro-structures we consider, and that will be exploited in 

their definitions. We call these common concepts code atoms (or atoms for brevity). Code 

atoms are simple code elements (more than the micro-structures) that will be used to 

provide a new and more formal definition of micro-structures. In the new definition of 

micro-structures, we will use these atoms, and eventually any micro-structure the element 

to be defined depends on. The new definition will provide an unambiguous meaning to 

each micro-structure, and will generate a unique catalogue of micro-structures based only 

on common concepts. 

The elements and concepts that will be used in the definition of the atoms and of the 

micro-structures will now be defined. These concepts are strictly related with the object-

oriented paradigm. As we focused in particular on Java systems, we will consider this 

language as our target. 

Any object-oriented system is based on the key concept of type. We will use T to denote a 

type. A type can itself be either a class (denoted by C) or an interface (denoted by I). If we 
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deal with a set of types, classes or interfaces, each of them will be specified by an index: Ti 

will be therefore the i-th type out of a set of n types T1, …, Tn. The same considerations 

reflect on classes and interfaces. 

Given a type T, we can obtain information about it through the following statements:  

 

- name(T): it represents the qualified name of the type, i.e. the name of the class or 

interface denoting it, preceded by its package name; 

- attributes(T): it represents the set of attributes that have been defined by T; 

- methods(T): it represents the set of methods that have been defined by T; 

- inst(T): it represents a generic instance of T, that can have been created either within T 

(therefore it can be handled as an attribute of T) or within another type. 
 

Given an attribute a ∈ attributes(T), the following statements are defined: 

 

- name(a): it represents the name of attribute a; 

- typeOf(a): it represent the type of a, which can be either a simple type, a type T, or a list 

of n attributes list(a1, …, an); 

 

Given a method m ∈ methods(T), the following statements are defined: 

 

- name(m): it represents the name of method m; 

- constructor(m): it represents the fact that method m is a constructor; 

- returnType(m): it represents the return type of the method m, that can be either a type T, 

a simple type, or void; 

- params(m): it represents the set of formal parameters received in input by method m; 

- body(m): it represents the body of method m, i.e. all the statements and operations 

defined by the method. The body could also be empty: this aspect is represented by the 

“is empty” clause. The body can itself contain instances of atoms or micro-structures, or 

other kinds of statements: this containment aspect is specified by the “contains” 

relationship; 

- returnedValue(m): it represents a single returned value of the method; 

- returnStatements(m): it represents the set of return statements or return points specified 

by the method implementation; 

- typeOf(m): it represents the type that defined method m. As m ∈ methods(T), therefore 

typeOf(m) = T. 

 

Given two methods m1 and m2, m1 = m2 will indicate that the two methods have the same 

signature. 
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Within the body of a method we can find two special elements, that we call containers: they 

are controlStatement, which represents all the control structures that are available in the 

reference programming language (e.g. in Java, if and switch blocks), and loop, which 

represents all kind of loops available in the reference programming language (e.g. for, 

while, do-while, enhanced for). Both controlStatement and loop may operate on a set of 

parameters: 

 

- param(controlStatement), param(loop): it represents the set of attributes handled by the 

control statement or loop structure. 

 

Another kind of statement that needs to be considered in order to correctly define the sets 

of atoms and micro-structures is the method invocation between two methods: 

 

- methodInvocation(m1, m2): it represents the invocation of method m2 occurring within 

the body of method m1; 

 

Given a method invocation, the following properties can be obtained: 

 

- source(methodInvocation): the actual object invoking m2, that is an instance of typeOf(m1); 

- target(methodInvocation): the actual object on which m2 is invoked, that is an instance of 

typeOf(m2); 

- params(methodInvocation): it represents the set of actual parameters passed to the method 

invocation. 

 

On both types, attributes and methods we can use the logical operators ∧, ∨, ¬, ∀, ∃, ∃!, 

according to their usual meaning. Moreover, we use the cardinality operator || to obtain 

the number of elements composing a specific set (e.g. |methods(T)| will return the number 

of methods defined in T). Finally the operator “is” will be used to declare that a type, an 

attribute or a method must satisfy a particular modifier (e.g. “a is private” means that the 

attribute a must be defined private). 

Now that we have introduced the notions and concepts that will guide us in the definition 

and specification of micro-structures, each of them can be defined (according to its 

definition) on a type, on an attribute, or on a method: 

 

- micro_structure_name(T): the micro-structure is defined on type T; 

- micro_structure_name(a): the micro-structure is defined on attribute a; 

- micro_structure_name(m): the micro-structure is defined on method m. 
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However, the largest part of micro-structures represents information relating two entities; 

in this case, both the source of the micro-structure (i.e. the entity that actually represents it) 

and its destination (i.e. the entity the micro-structure depends on) must be specified (for 

example, micro_structure_name(T1, T2) represents a micro-structure that is implemented in 

T1, but whose existence is strictly related to T2). 

With these definitions and concepts, we now provide the precise definition of atoms and 

micro-structures (collected in tables from Table 3.1 to Table 3.13). 

 

 

3.2.1. Code atoms definitions 

 

Atom 

category 
Atom name Atom definition Explanation 

T
y

p
e 

a
to

m
s Final class Final class(C) iff C is final The class is declared final. 

Abstract class Abstract class(C) iff C is abstract The class is declared abstract. 

Interface Interface(T) iff T is interface The considered type is an interface. 

M
et

h
o

d
 a

to
m

s 

Controlled 

parameter 

Controlled parameter(m, ai), i = 1, …, n, iff ai ∈ 

param(m) ∧ body(m) contains controlStatement: ai ∈ 

param(controlStatement) 

A method of a certain class receives 

as input a parameter used inside it 

to make some controls (i.e. the 

parameter is used in the condition 

of some if or switch block). If a 

method controls more than one of 

its input parameters, each one of 

these parameters will be an 

instance of this clue. 

Inheritance this 

parameter 

Inheritance this parameter(methodInvocation) iff ∃ p 

∈ params(methodInvocation): p = this 

A method receives the same caller 

object as a parameter. 

Private 

constructor 

Private constructor(m) iff constructor(m) ∧ m is 

private 
A constructor is declared private. 

Protected 

constructor 

Protected constructor(m) iff constructor(m) ∧ m is 

protected 
A constructor is declared protected. 

Interface 

method 

Interface method(m) iff ∃ T: m ∈ methods(T) ∧ T is 

interface 

The considered method belongs to 

an interface. 

Abstract 

method 
Abstract method(m) iff m is abstract 

The considered method belongs to 

an abstract class. 

Getter Getter(m, a) iff body(m) = return a 

The method is a getter method, 

consisting of a single statement 

returning a value. 

Setter Setter(m, a) iff body(m) = assignment(a, value) 

The method is a setter method, 

consisting of a single statement 

setting a value. 

 

Table 3.1 – Type and Method atoms definitions 
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Atom 

category 
Atom name Atom definition Explanation 

A
tt

ri
b

u
te

 A
to

m
s 

Same class 

object 

Same class object(T, o) iff ∃ T: o ∈ attributes(T) ∧ 

typeOf(o) = T 

The considered object is an 

instance of the same class in 

which it is declared. 

Different class 

object 

Same class object(T, o) iff ∃ T: o ∈ attributes(T) ∧ 

typeOf(o) ≠ T 

The considered object belongs to 

a different class from the 

declaring one. 

Same hierarchy 

object 

Same hierarchy object(T1, o) iff ∃ T1, T2, T3: o ∈ 

attributes(T1) ∧ typeOf(o) = T2 ∧ ancestor(T1, T3) 

∧  ancestor(T2, T3) ∧ name(T3) ≠ java.lang.Object 

The considered object is an 

instance of a class T1 belonging to 

the same hierarchy of another 

considered class T2. 

Different 

hierarchy object 

Different hierarchy object(T1, o) iff ∃ T1, T2: o ∈ 

attributes(T1) ∧ typeOf(o) = T2 ∧  ¬∃ T3: 

ancestor(T1, T3) ∧  ancestor(T2, T3) ∧ name(T3) ≠ 

java.lang.Object 

The considered object is an 

instance of a class T1 belonging to 

a different hierarchy from that of 

another considered class T2. 

Private flag Private flag(a) iff a is private The attribute is private. 

Static flag Static flag(a) iff a is static The attribute is static. 

Private object Private object(o) iff o is private The considered object is private. 

Static object Static object(o) iff o is static The considered object is static. 

Single object 
Single object(o) iff o ∈ attributes(T) ∧ typeOf(o) = 

To ∧ ∃! o ∈ attributes(T): typeOf(o) = To 

The considered object is the only 

instance of a certain class 

declared in another class. 

R
et

u
rn

 T
y

p
e 

A
to

m
s 

Same object 

returned 

Same object returned(m) iff m ∈ methods(T) ∧ 

returnType(m) = T 

The method returns a reference to 

the same type in which it is 

declared. 

Different object 

returned 

Different object returned(m) iff m ∈ methods(T) ∧ 

returnType(m) ≠  T 

The method returns a reference to 

a different type from that in 

which it is declared. 

Simple type 

returned 

Simple type returned(m) iff m ∈ methods(T) ∧ 

returnType(m) = boolean, char, int, double, long 

The method returns a simple 

type. 

Void returned 
Void returned(m) iff m ∈ methods(T) ∧ 

returnType(m) = void 
The method returns void. 

R
et

u
rn

ed
 E

le
m

en
t 

A
to

m
 

Same hierarchy 

object returned 

Same hierarchy object returned(m) iff ∃ T1, T2, T3: 

m ∈ methods(T1) ∧  typeOf(returnedValue(m)) = T2 

∧ ancestor(T1, T3) ∧  ancestor(T2, T3) ∧ name(T3) 

≠ java.lang.Object 

A method returns an object 

belonging to the same hierarchy 

of its declaring class. 

Different 

hierarchy object 

returned 

Same hierarchy object returned(m) iff ∃ T1, T2: m ∈ 

methods(T1) ∧  typeOf(returnedValue(m)) = T2 ∧ 

¬∃ T3: ancestor(T1, T3) ∧  ancestor(T2, T3) ∧ 

name(T3) ≠ java.lang.Object 

A method returns an object 

belonging to a different hierarchy 

from that of its declaring class. 

 

Table 3.2 – Attribute, Return Type and Returned Elements atoms definitions 
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Atom 

category 
Atom name Atom definition Explanation 

In
st

a
n

ti
a

ti
o

n
 a

n
d

 

A
ss

ig
n

m
en

t 
a

to
m

s 

Object creation 
Object creation(T, o) iff o is defined and created 

by T 

An instance of a certain class is 

created in type T. 

(Attribute) 

assignment 

Assignment(a, value) iff it exists an assignment a = 

value. Value can be either a simple value or the 

return value of a method invocation. 

The considered statement is an 

assignment of an attribute. 

(Object) 

assignment 

Assignment(o, value) iff it exists an assignment a = 

value. Value can be either an object creation, a 

reference to another object, or the returned 

object from a method invocation. 

The considered statement is an 

assignment of an object. 

C
la

ss
 R

el
a

ti
o

n
sh

ip
 a

to
m

s 

Interface 

inherited 

Interface inherited(T, I) if type T implements or 

extends interface I 

The considered type implements 

or extends and interface. 

Class inherited Class inherited(C1, C2) if class C1 extends class C2 
The considered class extends 

another class. 

Abstract 

method invoked 

Abstract method invoked(m1, m2) iff ∃ 

methodInvocation(m1, m2) ∧ m2 is abstract 

A method invokes an abstract 

method. 

Ancestor 
Ancestor(T1, T2) iff T2 is a parent for T1, either 

direct or indirect, ∧ typeOf(T2) ≠ java.lang.Object 

Type T2 is an ancestor of type T1, 

i.e. it comes before in the 

hierarchy of T1, and it is not the 

java.lang.Object class. 

 

Table 3.3 – Instantiation and Assignment and Class Relationship atoms definitions 

 

 

3.2.2. Elemental design patterns definitions 

 

EDP 

category 
EDP name Definition Explanation [Smi02] 

O
b

je
ct

 E
le

m
en

ts
 

Abstract 

interface 

AbstractInterface(m) iff interface(typeOf(m)) ∨ 

(abstract class(typeOf(m)) ∧ abstract method(m)) 

It provides a common interface 

for operating on an object type 

family, but delaying definition of 

the actual operations to a later 

time. 

Retrieve 

Retrieve(o) iff o ∈ attributes(C) ∧ ∃ assignment(o, 

value): value = returnedValue(m) ∨ value = o2 ∈ 

attributes(C2) ∧ typeOf(o) = typeOf(o2) 

To use an object from another 

non-local source in the local 

scope, thereby creating a 

relationship 

and tie between the local object 

and the remote one. 

T
y

p
e 

R
el

a
ti

o
n

 

Inheritance 
Inheritance(T1, T2) iff interface inherited(T1, T2) ∨ 

class inherited(T1, T2) 

To use all of another classes’ 

interface, and all or some of its 

implementation. 

 

Table 3.4 – Object Elements and Type Relation EDPs definitions 
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EDP 

category 
EDP name Definition Explanation [Smi02] 

M
et

h
o

d
 C

a
ll

 

Recursion 

Recursion(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To accomplish a larger task by 

performing many smaller similar 

tasks, using the same object 

state. 

Conglomeration 

Conglomeration(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

To bring together, or 

conglomerate, diverse operations 

and behaviours to complete a 

more complex task within a single 

object. 

Extend method 

Extend method(m1, m2) iff ∃ method invocation(m1, 

m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

Add to, not replace, behaviour in 

a method of a superclass while 

reusing existing code. 

Revert method 

Revert method(m1, m2) iff ∃ method invocation(m1, 

m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠  signature(m2) 

Bypass the current class’ 

implementation of a method, and 

instead use the superclass’ 

implementation, reverting to an 

’earlier’ method body. 

Redirect 

Redirect(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) ≠ typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To request that another object 

perform a tightly related subtask 

to the task at hand, perhaps 

performing the basic work. 

Delegate 

Delegate(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) ≠ typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

To parcel out, or delegate, a 

portion of the current work to 

another method in another object. 

 

Table 3.5 – The first six Method Call EDPs definitions 
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EDP 

category 
EDP name Definition Explanation [Smi02] 

M
et

h
o

d
 C

a
ll

 

Redirected 

recursion 

Redirected recursion(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To perform a recursive method, 

but one that requires interacting 

with multiple objects of the same 

type. 

Delegated 

conglomeration 

Delegated conglomeration(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

A Conglomeration pattern is 

appropriate, but we need to work 

with a distinct instance of our 

object type, resulting in a need for 

the Delegate pattern to be used. 

Redirect in 

family 

Redirect in family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

Redirect some portion of a 

method’s implementation to a 

possible cluster of classes, of 

which the current class is a 

member. 

Delegate in 

family 

Delegate in family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠ signature(m2) 

Related classes are often defined 

as such to perform tasks 

collectively. In such cases, 

multiple objects of related types 

can interact in generalized ways 

to delegate tasks to one another. 

Redirect in 

limited family 

Redirect in limited family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2), 

T) ∧ ¬Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

When Redirect in family is too 

generalized, and it is necessary to 

pre-select a sub-tree of the class 

hierarchy for polymorphism. 

Delegate in 

limited family 

Delegate in limited family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2), 

T) ∧ ¬Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠  signature(m2) 

When Delegate in family is too 

generalized, and it is necessary to 

pre-select a sub-tree of the class 

hierarchy for polymorphism. 

 

Table 3.6 – The second six Method Call EDPs definitions 
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3.2.3. Design pattern clues definitions 

 
DP clues 

category 
DP clue name Definition Explanation [MATZ09] 

C
la

ss
 D

ec
la

ra
ti

o
n

 I
n

fo
rm

a
ti

o
n

 

Interface and 

class inherited 

Interface and class inherited(C1, I, C2) iff interface 

inherited(C1, I) ∧ class inherited(C1, C2) 

A class implements an interface 

and extends a class, providing 

therefore a mechanism to simulate 

multiple inheritance languages 

not supporting it. 

Multiple 

interfaces 

inherited 

Multiple interfaces inherited(C, I1, …, In) iff 

interface inherited(C, Ii), ∀ i = 1, …, n 

A class implements n interfaces, 

with n > 1. 

Object structure 

child 

Object structure child(C, T) iff (interface(T) ∨ 

abstract class(T)) ∧ ancestor(C, T) 

The class belongs to an object 

structure, i.e. it has at least an 

ancestor which is either an 

interface or an abstract class. 

Template 

implementor 

Template implementor(C1, C2) iff template 

method(C2) ∧ class inherited(C1, C2) 

A class extends another class 

implementing a Template 

method. 

M
u

lt
ip

le
 C

la
ss

es
 I

n
fo

rm
a

ti
o

n
 

Façade method 

Façade method(m, m1, …, mn) iff body(m) contains 

(object creation(typeOf(m), oi), typeOf(oi) = 

typeOf(mi), ∀ i = 1, …, n)  ∨ (method invocation(m, 

mi) ∧ ∀ i = 1, …, n typeOf(m) ≠ typeOf(mi)) 

The body of a method consists 

uniquely of method calls to 

classes which are not related with 

it, i.e. which are not a superclass, 

an implemented interface or the 

class itself. A facade method 

could also contain some object 

creations, but no other statements 

besides object creations or method 

calls. 

Proxy class 

Proxy class(C1, C2, T) iff  

(((interface(T) ∧ interface inherited(C1, T) ∧ interface 

inherited(C2, T)) ∨  

(abstract class(T) ∧ class inherited(C1, T) ∧ class 

inherited(C2, T))) ∧  

∃ o = inst(C1) ∈ attributes(C1): typeOf(o) = C2 

A class implements an interface or 

extends an (abstract) class, 

referring to a class that 

implements the same interface or 

extends the same (abstract) class. 

 

Table 3.7 – Class Declaration and Multiple Classes Information design pattern clues definitions 
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DP clues 

category 
DP clue name Definition Explanation [MATZ09] 

In
st

a
n

ce
 I

n
fo

rm
a

ti
o

n
 

Controlled self 

instantiation 

Controlled self instantiation(C, o) iff ∃ m ∈ 

methods(C),  ∃ controlStatement ∈ body(m): object 

creation(C, o) ∈ controlStatement ∧ same class 

object(C, o) ∧ o ∈ attributes(C) 

The instantiation of an object 

occurs inside an if (or a switch) 

block, therefore under a condition. 

Private self 

instance 

Private self instance(C, o) iff private object(o) ∧ same 

class object(C, o) ∧ o ∈ attributes(C) 

A class has a private instance of 

itself. Access to this instance can 

occur only from within the same 

class. 

Static self 

instance 

Static self instance(C, o) iff static object(o) ∧ same 

class object(C, o) ∧ o ∈ attributes(C) 

A class has a static instance of 

itself. Therefore this instance is 

unique inside the system. 

Single self 

instance 

Single self instance(C, o) iff ∃! o ∈ attributes(C): 

same class object(C, o) 

A class maintains a unique 

instance of itself, no matter it is 

static or not. 

Instance in 

abstract class 

Instance in abstract class(C, o) iff abstract class(C) ∧ 

o ∈ attributes(C) ∧ different class object(C, o) 

An abstract class has a reference to 

another class. 

Reference to 

abstract class 

Reference to abstract class(C, o) iff o ∈ attributes(C) 

∧ abstract class(typeOf(o)) 

A class attribute is a reference to 

an abstract class. 

Same interface 

instance 

Same interface instance(C, o) iff o ∈ attributes(C) ∧ 

different class object(C, o) ∧ same hierarchy object(C, 

o) 

A class contains a reference to an 

object whose type is compatible 

with the same interface of the 

declaring class. 

Same interface 

container 

Same interface container(C, list(o1, …, on)) iff 

list(o1, …, on) ∈ attributes(C) ∧ ∀ oi ∈ list(o1, …, 

on), different class object(C, oi) ∧ same hierarchy 

object(C, oi) 

A class contains a set or a list of 

elements that are compatible with 

the same interface of the declaring 

class. 

 

Table 3.8 – Instance Information design pattern clues definitions 
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DP clues 

category 
DP clue name Definition Explanation [MATZ09] 

M
et

h
o

d
 S

ig
n

a
tu

re
 I

n
fo

rm
a

ti
o

n
 

Factory 

parameter 

Factory parameter(p) iff ∃ m ∈ methods(C): p ∈ 

param(m) ∧ concrete product getter(typeOf(p)) 

A method of a certain class 

receives as an input parameter an 

object that belongs to a class 

defining some Concrete product 

getter methods. 

Protected 

instantiation 

Protected instantiation(C) iff ∀ constructor constr 

∈ methods(C), private constructor(constr) 

All the constructors within a given 

class are declared private. 

Adapter method 

Adapter method(m, C, T1, T2) iff  

(m ∈ methods(C) ∧ interface method(m, T1) ∧ 

ancestor(C, T2) ∧ ∃ m2 ∈ methods(T2): delegate(m, 

m2)) ∨ 

(m ∈ methods(C) ∧ overriding method(m, C, T1) ∧ 

body(m) contains methodInvocation(m, m’): 

typeOf(m’) = T2 ∧ different hierarchy 

object(typeOf(m), target(methodInvocation(m, m’))) 

Two types of Adapter method 

exist. It can be a method which is 

an implementation of an interface 

method calling a method 

belonging to the parent class. Or it 

can be an overridden method 

from the parent which calls a 

method 

belonging to a class that does not 

share common parents with the 

adapter method declaring class. 

Interface 

method 

implemented 

Interface method implemented(m, C, I) iff interface 

inherited(C, I) ∧ interface method(m, I) ∧ m ∈ 

methods(C)  

A class implements a method 

declared inside an interface. 

Overriding 

method 

Overriding method(m1, m2) iff ∃ C1, C2: 

ancestor(C1, C2) ∧ m1 ∈ methods(C1) ∧ m2 ∈ 

methods(C2) ∧ m1 = m2 

A class overrides, i.e. redefines a 

method belonging to its 

superclass. 

Component 

method 

Component method(m, C) iff ∃ p ∈ param(m): same 

class object(C, p) 

A class declares a method that 

takes an object of the same class as 

its single parameter. 

Cross 

relationship 

Cross relationship(C1, C2) iff ∃ m1 ∈ methods(C1): 

∃ p2 ∈ param(m1): typeOf(p2) = C2 ∧ ∃ m2 ∈ 

methods(C2): ∃ p1 ∈ param(m2): typeOf(p1) = C1 

Given two classes C1 and C2, C1 

declares a method which accepts a 

reference to C2 as one of its 

parameters, vice versa C2 declares 

a method which accepts a 

reference to C1 as one of its 

parameters. 

Abstract cyclic 

call 

Abstract cyclic call(m1, m2) ∃ loop ∈ m1: loop 

contains abstract method invoked(m1, m2) 

A method invokes an abstract 

method within a cycle. 

Factory method 

Factory method(m, C1, T) iff m ∈ methods(C1) ∧ 

body(m) contains object creation(C1, o): typeOf(o) = 

T ∧ (∃ mt ∈ methods(T): overriding method(m, mt) ∨ 

(interface(T) ∧ interface method(m, T))) 

A method contains a class 

instance creation statement and 

overrides a method belonging to 

the superclass or to one of the 

superinterfaces of the subject 

class. 

 

Table 3.9 – Method Signature Information design pattern clues definitions 
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DP clues 

category 
DP clue name Definition Explanation [MATZ09] 

M
et

h
o

d
 B

o
d

y
 I

n
fo

rm
a

ti
o

n
 

Instance in 

abstract referred 

Instance in abstract referred(C, o) iff instance in 

abstract class(C, o) ∧ ∃ m ∈ methods(C), ∃ mo ∈ 

methods(typeOf(o)): method invocation(m, mo) 

A method of a class implementing 

Instance in abstract class invokes a 

method on the declared instance. 

Multiple 

redirections in 

family 

Multiple redirections in family(m1, m2) iff redirect in 

family(m1, m2) ∧ body(m1) contains loop: redirect in 

family(m1, m2)∈ loop 

A method contains a Redirect in 

family method invocation EDP 

that is contained within a cycle. 

Proxy method 

invoked 

Proxy method invoked(m1, m2) iff Proxy class(C1, 

C2, T), m1 ∈ methods(C1) ∧ m2 ∈ methods(C2) ∧ 

redirect in limited family(m1, m2) 

A proxy class invokes a method on 

the referred subject by a Rediriect 

in limited family method call EDP. 

Template 

method 

Template method(C1) iff ∃ T, ∃ m1 ∈ methods(C1) ∧ 

m2∈ methods(T): abstract method invoked(m1, m2) 

A method calls at least an abstract 

method within its body. 

M
et

h
o

d
 S

et
 I

n
fo

rm
a

ti
o

n
 

All methods 

invoked 

All methods invoked(C1, C2) iff ∀ m2 ∈ methods(C2) 

∃ methodInvocation(m, m2): m ∈ C1 

A class invokes all of the public 

methods declared in a target class. 

Leaf class 

Leaf class(C1, C2) iff ancestor(C1, C2) ∧ ∀ mi ∈ 

methods(C2): component method(mi, C2) ¬∃ m’ ∈ 

methods(C1): overriding method(m’, mi) 

A class extends another class 

without implementing or 

redefining the methods that are 

concerned with the handling of 

classes that are compatible with 

the same interface, or giving an 

empty implementation for such 

methods. 

Node class 

Node class(C1, C2) iff ancestor(C1, C2) ∧ ∃ m ∈ 

methods(C2): component method(m, C2) ∃ m’ ∈ 

methods(C1): overriding method(m’, m) 

A class extends another class 

implementing or redefining the 

methods that are concerned with 

the handling of classes that are 

compatible with the same 

interface. 

 

Table 3.10 – Method Body and Method Set Information design pattern clues definitions 
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DP clues 

category 
DP clue name Definition Explanation [MATZ09] 

R
et

u
rn

 I
n

fo
rm

a
ti

o
n

 

Concrete 

product getter 

Concrete product getter(C) iff ∃ m ∈ methods(C): 

different object returned(m) 

A class declares one or more 

methods that return objects 

belonging to some other classes. 

Concrete 

product returned 

Concrete product returned(m) iff same hierarchy 

object returned(m) ∧ (different object returned(m) ∨ 

same object returned(m)) 

A method returns objects that 

belong to subclasses extending 

the class that represents the 

declared method return type. 

Abstract product 

returned 

Abstract product returned(m) iff abstract 

class(typeOf(returnedValue(m))) 

A method returns a reference to 

an abstract class. 

Parent product 

returned 

Parent product returned(m) iff m ∈ methods(T1) ∧ ∃ 

T2: (class inherited(T1, T2) ∨ interface inherited(T1, 

T2)) ∧ typeOf(returnedValue(m)) = T2 

A method returns a reference to 

the parent class of its declaring 

class. 

Empty concrete 

product getter 

Empty concrete product getter(m) iff different object 

returned(m) ∧ body(m) is empty 

A class declares one or more 

methods that return 

objects belonging to some other 

classes, but the 

implementation of these methods 

is empty, i.e. it 

consists only of a default return 

statement (as, for 

example, return null). 

Empty method 
Empty method(m) iff simple type returned(m) ∧ 

body(m) is empty 

A class declares one or more 

methods that return simple types, 

but their implementation is 

empty, 

i.e. it is only formed by a default 

return statement (for example, 

return false for the Boolean 

data type). 

Multiple returns Multiple returns(m) iff |returnStatements(m)| > 1 
A method provides several 

possible return points. 

Void return 

Void return(m) iff void returned(m) ∧ body(m) 

contains object creation(typeOf(m), o), typeOf(o) ≠ 

typeOf(m) 

A class defines a method that 

instantiates an object without 

returning it. 

Cross hierarchy 

return 

Cross hierarchy returned(m) iff different hierarchy 

object returned(m) 

A method returns an object of a 

class belonging to a different 

hierarchy. 

Ja
v

a
 I

n
fo

rm
a

ti
o

n
 Cloneable 

implemented 

Cloneable implemented(T) iff interface inherited(T, I) 

∧ name(I) = java.lang.Cloneable  

A class implements the 

java.lang.Cloneable  interface. 

Prototyping 

constructor 

Prototyping constructor(m, C) iff constructor(m, C) ∃ 

p ∈ param(m): cloneable implemented(typeOf(p)) 

A method defines a constructor 

which receives objects that can be 

cloned, that is that belong to 

classes implementing the 

java.lang.Cloneable  interface. 

 

Table 3.11 – Return and Java Information design pattern clues definitions 
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3.2.4. Micro patterns definitions 

 

Micro pattern 

category 

Micro pattern 

name 
Definition Explanation [GM05] 

D
eg

en
er

a
te

 S
ta

te
 a

n
d

 B
eh

a
v

io
u

r Designator Designator(I) iff |attributes(I)| = 0 ∧ |methods(I)| = 0 
An interface with absolutely no 

members. 

Taxonomy 
Taxonomy(I) iff | attributes (I)| = 0 ∧ |methods(I)| = 0 

∧ ∃ I1: interface inherited(I, I1) 

An empty interface extending 

another interface. 

Joiner 

Joiner(I) iff |attributes (I)| = 0 ∧ |methods(I)| = 0 ∧ ∃ 

I1, I2: interface inherited(I, I1) ∧ interface inherited(I, 

I2) 

An empty interface joining two 

or more superinterfaces. 

Pool 
Pool(C) iff |methods(C)| = 0 ∧ ∀ a ∈ attributes (C) a is 

static 

A class which declares only 

static final fields, but no 

methods. 

D
eg

en
er

a
te

 B
eh

a
v

io
u

r 

Function 

pointer 

Function pointer(C) iff | attributes(C)| = 0 ∧ 

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is public 

A class with a single public 

instance method, but with no 

fields. 

Function 

object 

Function pointer(C) iff | attributes(C)| ≥ 1 ∧ 

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is public 

A class with a single public 

instance method, and at least 

one instance field. 

Cobol like 
Cobol like(C) iff ∀ a ∈ attributes(C) a is static ∧ 

|methods(C)| = 1 ∧ ∃ m ∈ methods(C): m is static 

A class with a single static 

method, but no instance 

members. 

D
eg

en
er

a
te

 S
ta

te
 

Stateless 
Stateless(C) iff ∀ a ∈ attributes(C) a is static ∧ a is 

final 

A class with no fields, other 

than static final ones. 

Common state Stateless(C) iff ∀ a ∈ attributes(C) a is static 
A class in which all fields are 

static. 

Immutable 

Immutable(C) iff ∀ a ∈ attributes(C) ∃! assignment(a, 

value) ∧ ∃ constructor(m) ∈methods(C): assignment(a, 

value) ∈ body(constructor(m)) 

A class with several instance 

fields, which are assigned 

exactly 

once, during instance 

construction. 

C
o

n
tr

o
ll

ed
 C

re
a

ti
o

n
 Restricted 

creation 

Restricted creation(C) iff (∀ constructor(m) ∈ 

methods(C), constructor(m) is private ∨ 

constructor(m) is protected) ∧ 

∃ a ∈ attributes(C): a is static ∧ typeOf(a) = C 

A class with no public 

onstructors, and at least one 

static field of 

the same type as the class. 

Sampler 

Sampler(C) iff ∃ constructor(m) ∈ methods(C): 

constructor(m) is public ∧ ∃ a ∈ attributes(C): a is 

static ∧ typeOf(a) = C 

A class with one or more public 

constructors, and at least one 

static 

field of the same type as the 

class. 

 

Table 3.12 – The first set of micro patterns definitions 
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Micro pattern 

category 

Micro pattern 

name 
Definition Explanation [GM05] 

W
ra

p
p

er
s 

Box 
Box(C) iff |attributes(C)| = 1 ∧ ∃ m ∈ methods(C): ∃ 

assignment(a, value) ∈ body(m), a ∈ attributes(C) 

A class which has exactly one, 

mutable, instance field. 

Compound box 
Compound box(C) iff ∃ a ∈ attributes(C): typeOf(a) = 

C ∨ typeOf(a) = T ≠ C ∨ typeOf(a) = list(a1, …, an) 

A class with exactly one non 

primitive instance field. 

Canopy 

Canopy(C) iff |attributes(C)| = 1 ∧ a ∈ attributes(C) 

∧ ∀ assignment(a, value), assignment(a, value) ∈ 

constructor(m) ∈ methods(C) 

A class with exactly one instance 

field that it assigned exactly 

once, 

during instance construction. 

D
a

ta
 M

an
a

g
er

s 

Record 
Record(C) iff |methods(C)| = 0 ∧ ∀ a ∈ attributes(C) a 

is public 

A class in which all fields are 

public, no declared methods. 

Data manager 
Data manager(C) iff ∀ m ∈ methods(C), setter(m, a) ∨ 

getter(m, a) 

A class where all methods are 

either setters or getters. 

Sink 
Sink(C) iff ∀ m1 ∈ methods(C) ¬∃ method 

invocation(m1, m2): typeOf(m2) ≠ C 

A class whose methods do not 

propagate calls to any other 

class. 

B
a

se
 C

la
ss

es
 

Outline 
Outline(C) iff ∃ m1 ∈ methods(C): ∃ method 

invocation(m1, m2): m2 is abstract 

A class where at least a method 

invokes an abstract method 

belonging to the same class. 

Trait 
Trait(C) iff abstract class(C) ∧ |attributes(C)| = 0 ∧ ∃ 

m ∈ methods(C): abstract method(m) 

An abstract class which has no 

state. 

State machine 
State machine(I) iff ∀ m ∈ methods(I) |params(m)| = 

0 

An interface whose methods 

accept no parameters. 

Pure type 

Pure type(C) iff ∀ m ∈ methods(C) abstract method(m) 

∧ ¬∃ m ∈ methods(C): m is static ∧ |attributes(C)| = 

0 

A class with only abstract 

methods, and no static 

members, and no fields. 

Augmented 

type 

Augmented type(C) iff ∀ m ∈ methods(C) abstract 

method(m) ∧ ¬∃ m ∈ methods(C): m is static ∧ | 

attributes(C)| ≥ 3 ∧ ∀ a ∈ attributes(C) a is static ∧ a 

is final 

A class with only abstract 

methods and three or more 

static final fields of the same 

type. 

Pseudo class 

Pseudo class(C) iff abstract class(C) ∧ ∀ m ∈ 

methods(C), abstract method(m) ∧ ∀ a ∈ params(C) a 

is static 

A class which can be rewritten 

as an interface: no concrete 

methods, only static fields. 

In
h

er
it

o
rs

 

Implementor 

Implementor(C) iff ∀ m1 ∈ methods(C) ∃ m2: 

overriding method(m1, m2) ∧ (abstract method(m2) ∨ 

interface method(m2)) 

A concrete class, where all the 

methods override inherited 

abstract methods. 

Overrider 

Overrider(C) iff ∀ m1 ∈ methods(C) ∃ m2: overriding 

method(m1, m2) ∧ ¬(abstract method(m2) ∨ interface 

method(m2)) 

A class in which all methods 

override inherited non-abstract 

methods. 

Extender 

Extender(C1) iff ∃ C2: class inherited(C, C2) ∧ ¬∃ m1 

∈ methods(C1), m2 ∈ methods(C2): overriding 

method(m1, m2) 

A class which extends the 

inherited protocol, without 

overriding any methods. 

 

Table 3.13 – The second set of micro patterns definitions 
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3.3. The Micro-structures detector 

 

We have developed a plug-in for the Eclipse platform [Eclipse], called Micro-structures 

detector, which is part of the MARPLE project [ATZM08] and is devoted to the 

identification of EDPs, clues and micro patterns inside subject systems. Figure 3.1 depicts 

the plug-in architecture. 

As it can be noticed, the Micro-structures detector is laid on the functionalities provided 

by the Eclipse framework. In order to be analyzed, the source code of the subject system 

needs to be translated into an Abstract Syntax Tree (AST) representation. The tree data 

structure is inspected by visitors [GHJV94], which have the aim to detect realizations of 

micro-patterns inside the system. For each single micro-structure, a visitor has been 

implemented. The AST representation and the basic classes to implement the visitor 

functionalities are provided by the Eclipse Java DOM/AST library, which contains those 

classes that model the source code of a Java program as a structured document. 

 

 

 

Figure 3.2 – The architecture of the Micro-structures detector 

 

The micro-structures instances detected by the visitors are then stored in a model 

[ATZ+09], built on top of the Eclipse Modeling Framework (EMF), which organically 

represents all the system classes and interfaces, reporting for each of them the micro-

structures that have been detected within it. The model is generated in order to allow an 

easy recovery of the stored information that is to be used for the DPD and SAR activities. 

Finally, the micro-structures instances can be shown to the user. The visualization module 

is laid on the Eclipse Standard Widget Toolkit (SWT), and basically provides a comfortable 

tree view in which all the micro-structures instances are collected according to their 

categories. 
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3.4. Concluding remarks 

 

In this chapter we have proposed a new definition of the considered micro-structures. The 

redefinition is based on the use of concepts that are common to each category of micro-

structures, named code atoms. Through the use of atoms we succeeded in grouping and 

giving a common interpretation to structures that are to be considered in some sense 

similar. In fact, they can all be detected by the source code of a subject system by analyzing 

the characteristics of the classes, attributes and methods composing it, and they can all be 

defined through the atoms introduced in section 3.2.1. The principal aim of this 

redefinition is giving a more formal definition to those micro-structures that may result 

ambiguous. Just as an example, the Data manager micro pattern is now clearer, as the 

concepts of getter and setter methods are now treated as code atoms and have been more 

strictly specified. This more strict definition allows for a more precise identification of 

these structures inside a subject system. 
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Chapter 4 

 

Micro-structures for  

design pattern detection 

 

 
Abstract 

 

This chapter is devoted to the comparison of the considered micro-structures and to the analysis of their usefulness for 

design pattern detection activities. The comparison will consider six aspects: the objectives of each category of micro-

structures, how they have been defined, their detail level, the source for their detection from the analyzed systems, their 

categorization, and their eventual interdependence. The micro-structures will be detected from sample design pattern 

implementations, and their relevance for both pattern structure and pattern role detection will be investigated. Finally, 

for each design pattern a set of possible hints for the identification of its characteristics will be suggested. 

 

 

 

4.1. Micro-structures for design pattern detection 

 

In the introduction we have discussed about the relevance of design pattern detection for 

reverse engineering activities, that is strongly apparent in the scientific literature, as we 

have outlined in the related works. Many research groups have proposed several 

approaches and tools for design pattern detection with different results. A promising 

approach for design pattern recognition consists in the search for different types of 

elements, that we generally call micro-structures, which resembled can give strong 

indications for the presence of design patterns. 

In Chapter 3 we have introduced EDPs, DP clues and micro patterns, and provided a 

definition for each single micro-structure. We now aim to explain which are the 

similarities and differences among these sub-components, how these sub-components can 

be described and exploited especially in the reverse engineering process and also as object-

oriented best practices. We also want to explore which are the components design patterns 

can be decomposed in. This is fundamental to better understand what design patterns 

effectively are and how can they be described in order to be efficiently exploited both in 

forward and reverse engineering contexts. 
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4.2. An analysis of micro-structures based on six aspects 

 
The main goal of this chapter is to describe the similarities and differences among the 

categories of micro-structures we take into account. To achieve this goal we have 

identified six aspects that we consider relevant for the comparison. Hence, before 

performing the comparison we present the micro-structures introduced in Chapter 3 

according to these aspects.  

The six aspects are: 

 

- Objectives: why a particular type of micro-structure has been introduced? 

- Definition technique: how is each category identified and consequently defined? 

- Detail level: which is the particular code structure which each single micro-structure 

relates to? 

- Source for the detection: where the micro-structures are identified from? Are they 

detected from the source code of the subject system, or from its byte code, or from 

other forms of code representations?  

- Type of subdivision: how are the elements of a particular category grouped? 

- Self dependence: do the micro-structures belong to a certain category independently 

from each other? Or else is there any element in a category whose presence is strictly 

related to the presence of some other elements? 

 

The rest of this chapter describes the three categories of micro-structures through these six 

aspects. This presentation is fundamental for the purpose of the comparison because it 

enables us to focus on those features which are relevant for their definition and detection, 

and which are not always clearly presented while focusing on a single type of micro-

structures. Discussing about each of these aspects makes the comparison among micro-

structures straightforward. 

 

 

4.2.1. Elemental design patterns 

 

Objectives 

EDPs aim to propose solutions to programming issues that are faced in the everyday 

practice, and that are also exploited in the design pattern detection process, as described in 

the SPQR approach [SS03]. 

 

Definition technique 

EDPs were identified by analyzing the design patterns proposed in [GHJV94]. Primarily, 

eight key concepts were identified for the entire set of design patterns. From these first 

common concepts, a search for further elements and a better specification of the existing 

ones were started leading to the definition of the current 16 EDPs. 
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Detail level 

EDPs represent details regarding instances creation, extensions of classes and 

implementations of interfaces, and method invocations. They do not provide any 

information about a whole class or about a set of classes. 

 

Source for the detection  

In the SPQR approach, EDPs are identified by an inspection of a POML (Pattern Object 

Markup Language) file [SS03], an XML data format representation of the analyzed source 

code, thus their detection is language-independent as far as translation tools from 

programming languages to the POML format are implemented. With the Micro-structures 

detector, EDPs are identified by analyzing AST representations of the source code. 

 

Type of subdivision 

EDPs are divided into three main disjoint categories: Object Elements, Method Call, Type 

Relation. 

 

Self dependence 

EDPs are completely independent from each other. The identification of each of them does 

not rely on the presence of other EDPs inside the code. 

 

 

4.2.2. Design pattern clues 

 

Objectives 

Design pattern clues have been proposed and defined only in the perspective of design 

pattern detection and have been introduced to capture further information not expressed 

by EDPs and more related to the identification of design pattern roles characteristics. 

 

Definition technique 

The definition of clues derived by the analysis of design pattern architectures. Their 

specification and definition was improved by the analysis of several possible variants of 

design patterns (for example, those proposed in [Coo98, GHJV94]). These variants were 

implemented in Java and were manually analyzed searching for particular programming 

details which may provide indications on the presence of a design pattern instance, even 

according to the preliminary hints defined only on the design pattern structures. 

  

Detail level 

Design pattern clues provide information related to single code structures, but at different 

detail levels (e.g. classes, methods, variables). Each clue belongs to a single class, method 

or any other code structure, thus given a clue instance a corresponding code structure can 

be associated to it. However, the identification of some of the clues can depend on 

characteristics which are found in couples of classes, but this remark does not preclude the 

belonging of a clue instance to a single structure. 



 

57 

 

Source for the detection  

All the clues can be automatically detected from the source code, as they are 

representations of implementation issues which can be easily understood through an 

analysis of the source code. Clues are identified by parsing AST representations of the 

analyzed Java project. A set of visitors in the Micro-structures detector, one for each clue, 

is responsible for the traversal of the trees to catch instances of these elements. 

 

Type of subdivision 

Design pattern clues are subdivided into eight categories which focus on low level 

information related to implementation details such as class definition, object instantiation, 

variables features, methods signature, return information and Java specific features.   

 

Self dependence 

Some clues rely on the presence of other clues previously identified inside source code. 

For example (see Chapter 3) the Factory parameter clue can occur only when a method 

input parameter is an instance of a factory class, meaning that the factory class must 

declare methods which are instances of the Concrete product getter clue. Therefore, we 

can assert that the factory parameter clue can exist only in dependence of the presence of 

concrete product getter instances in another class. 

 

 

4.2.3. Micro patterns 

 

Objectives 

The objective of micro patterns is the identification of common programming techniques 

in general. 

 

Definition technique 

Micro patterns were identified with a manual inspection of code with further refinements 

during their definition. 

 

Detail level 

Micro patterns are defined at a class level. Each of them depicts a characteristic which can 

be identified inside a class. In particular, each of them establishes constraints about the 

characteristics of methods and/or attributes of a class. 

 

Source for the detection  

Micro patterns are the only category of micro-structures that are identified starting from 

Java byte code analysis. Actually it seems sensible to assert that the technique can also be 

based on the inspection of ASTs, as the definition and the characteristics of micro patterns 

can let them be discovered by a static analysis of such structures. The Micro-structures 

detector can identify the whole set of micro patterns using this kind of analysis. 

 



 

58 

 

Type of subdivision 

The 27 micro patterns have been subdivided into eight categories. These categories focus 

on degenerated classes (i.e., classes with no members or empty interfaces), containment 

aspects (i.e., classes with all public fields or exactly one non primitive instance field), and 

inheritance related features (i.e., classes where all methods override inherited abstract 

methods or classes  in which all methods override inherited non-abstract methods). These 

categories, differently from all other micro-structures, are overlapped, thus some elements 

may belong to two categories.  

 

Self dependence 

No dependencies among micro patterns have been identified. The fact that some micro 

patterns can contemporarily belong to more than one category does not imply that some of 

them exist only if others are identified. 

 

 

4.3. A comparison among micro-structures 

 
The comparison among the micro-structures is performed based on the description we 

have just presented. A summary of the aspects we have considered for the four micro-

structures is shown in Table 4.1. The rows correspond to the micro-structures, while the 

columns to the six aspects considered for their analysis. This table provides a comparison 

among micro-structures. 

As far as the objective is concerned, EDPs have more objectives, closer to the objectives of 

design patterns and aim to represent both common design and programming techniques. 

Regarding the definition technique aspect, clues and micro patterns have been defined 

starting from source code, but considering different detail levels. Each micro pattern 

depicts a characteristic of a single class [GM05], and some of them can be decomposed in 

complementary clues.  

We noticed that EDPs and clues provide different types of information which can be 

successfully used together for design pattern detection. The joint exploitation of these two 

categories enables us to understand, for example, which are the relationships pointed out 

by EDPs among the classes implementing some clues. We can generally assert that if clues 

help us in understanding which roles a certain class can play inside a design pattern, EDPs 

let us understand which kind of relationships these roles may have with the other 

potential roles identified by clues. In this way, EDPs may identify the structures of design 

patterns, rather than their single roles, which are supported by design pattern clues 

detection. 

As far as the detail level is concerned, clues represent generally fine-grained detail levels 

regarding instance creations, class extensions, and method invocations, and also provide 

information on single classes and on set of classes. Micro patterns are all defined only at 

class level, each of them describing a peculiar characteristic of a single class. 
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Considering the type of subdivision aspect, only micro patterns can belong to more than one 

category, but we cannot anyway assert that the presence of some of them strictly depends 

on the existence of some other micro pattern.  

Finally, as far as self dependence is concerned, clues collect dependent elements: the 

existence of certain clues is possible only if some other clues have been previously 

identified. EDPs and micro patterns are not self-dependent, i.e. they can be detected 

independently from one another. 
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DP clues �   �  � � � � � �   �   � 

EDPs � � �  �   � � � �  � �  �  

Micro 

patterns 
  � �   �     �   � �  

 

Table 4.2 – Micro-structures revisited according to six core aspects 

 

 

4.4. The role of micro-structures in the detection of design patterns 

 

At now we have considered micro-structures as they are. Micro-structures are strictly 

related to source code and are useful and exploitable in a design pattern detection process. 

Their exploitation and usefulness is to be validated on three steps: 

 

- Micro-structures detection in sample design pattern implementations; 

- Micro-structures relevance evaluation for design pattern detection; 

- Micro-structures detection in design pattern implementation variants. 

 

We discuss these three steps on six sample patterns, two for each category. For space 

reasons, we cannot provide examples for the detection of all the micro-structures for all 

the design patterns. 
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4.4.1. Micro-structures detection in sample design pattern implementations 

 

In order to emphasize the role micro-structures have for design pattern detection, in this 

section we provide six examples of different design patterns implementations (two 

patterns for each of the three categories: creational, behavioural and structural), and we 

describe the micro-structures that can be identified within them. The detailed descriptions 

of all the micro structures can be found in Chapter 3 as well as in the references provided 

in the same chapter. 

 

1) Micro-structures detection in the Singleton design pattern 

We first focus our attention on the Singleton design pattern: even if its structure is very 

simple, we can make interesting considerations on it because its presence is not trivial to 

identify. 

In [GHJV94] the following implementation of the Singleton creational design pattern is 

proposed: 

 
public class Singleton { 

private static Singleton instance; 
 

private Singleton(){} 
  

public static Singleton instance(){ 
if (instance == null) 

   instance = new Singleton(); 
return instance; 

} 
} 
 

The Singleton() constructor is private, so that it cannot be accessed by external classes. 

In this way, external classes may access the Singleton class only through the static method  

instance() . This method returns an instance of the Singleton class, represented by the 

static object instance, which is granted to be unique as it is created if and only if it is null. 

Otherwise, the method returns the already existing instance. 

 

Design pattern clues 

In this implementation of the Singleton design pattern six different design pattern clues 

are detected: 

- Protected instantiation: the constructors of the class Singleton  are all declared private 

(see the Singleton()  constructor). This means that the class cannot be instantiated by 

external classes, avoiding the creation of un-controlled instances; 

- Private self instance: the class maintains a private instance of itself (see the instance  

object declaration). This instance cannot be directly accessed by external classes; 

- Static self instance: the class maintains a static instance of itself (see the instance  object 

declaration). This instance is therefore unique in the system; 



 

61 

 

- Single self instance: the class maintains only one instance of itself (see the instance  

object declaration); this hint is useful while dealing with self instances that are not 

declared static, and therefore may be more than one inside the system; 

- Controlled self instantiation: the creation of an object of a certain class is under control of 

an if or switch statement (see the if statement in the instance()  method); 

- Concrete product getter: a method returns a concrete object of the identical type declared 

by the method return type (see the return instance  statement of the instance()  

method). 

 

As we can observe, even by the analysis of the above few lines of code useful information 

can be derived. The presence of one of these elements or their combination is a strong 

indicator of the presence of Singleton design pattern, and will be further discussed in the 

next subsection. 
 

Elemental design patterns 

In this implementation of the Singleton only one EDP can be found: Create object, 

represented by the “ instance = new Singleton() ” instruction. This EDP does not 

capture the basic characteristic of the Singleton design pattern, i.e. the uniqueness of its 

instance during execution. Therefore we cannot detect this design pattern relying only on 

the information provided by the presence of the Create object EDP. 

 

Micro patterns 

Analyzing this particular implementation, five micro patterns can be detected: 

 

- Function object: the class has a single public instance method, and at least one instance 

field (see the instance()  method and the instance  field);  

- Common state: all the fields belonging to the class are declared static  (see the 
instance  field); 

- Restricted creation: the class does not have any public constructor, and have at least one 

static field of the same type as the class (see the Singleton()  constructor and the 

instance  field); 

- Data manager: the methods declared by the class are either setters or getters (see the 

instance()  method); 

- Sink: the methods of the class do not propagate calls to any other class (see the 

instance()  method). 

 

The most peculiar micro pattern for the detection of the Singleton design pattern is 

Restricted creation. This micro pattern can be seen as the combination of the Static self 

instance and of the Controlled self instantiation clues. For this reason, we can assert that 

clues are more detailed than micro patterns: analyzing the micro patterns catalogue 

[GM05], it is possible to see that each of these elements is related to characteristics 

belonging to a single class. On the other hand, clues collect characteristics that are 

positioned at different detail levels (for example, Static self instance is related to a single 

instance, Controlled self instantiation regards a method implementation). 
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2) Micro-structures detection in the Abstract factory design pattern 

We now propose another example of micro-structures detection inside another broadly 

used design pattern, that surely has a more complex structure with respect to the 

Singleton design pattern previously analyzed: the Abstract factory. 

Starting from the class diagram provided by [GHJV94], we consider the following basic 

implementation of the Abstract factory design pattern. Each concrete implementation 

should be however constrained to the concepts and relationships that characterize this 

basic implementation. 

 
public abstract class AbstractFactory { 

public abstract AbstractProductA createProductA(); 
 public abstract AbstractProductB createProductB();  
} 
 
public class ConcreteFactory1 extends AbstractFacto ry { 
 public AbstractProductA createProductA(){  

return new ProductA1(); } 
 public AbstractProductB createProductB(){  

return new ProductB1(); } 
} 
 
public class ConcreteFactory2 extends AbstractFacto ry { 
 public AbstractProductA createProductA(){  

return new ProductA2(); } 
 public AbstractProductB createProductB(){  

return new ProductB2(); } 
} 
 
public abstract class AbstractProductA {} 
public class ProductA1 extends AbstractProductA {} 
public class ProductA2 extends AbstractProductA {} 
 
public abstract class AbstractProductB {} 
public class ProductB1 extends AbstractProductB {} 
public class ProductB2 extends AbstractProductB {} 

 
 

Design pattern clues 

The design pattern clues that can be identified in this implementation are the following: 

 

- Concrete product returned: each of the four getter methods implemented in the concrete 

factories returns an object which belongs to a subclass extending the class that 

represents the declared method return type; for example, the method 
ConcreteFactory1.createProductA()  returns an instance of the ProductA1  class, 
which extends the declared return type AbstractProductA . 

- Abstract product returned: the two abstract methods declared by the abstract factory both 

return a reference to an abstract class, identifying the connection between the factory 

and the abstract products; 

- Parent product returned: the two references returned by the concrete factory methods are 

both related to classes that are parent classes inside a certain hierarchy; 
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Elemental design patterns 

In this basic implementation of the Abstract factory design pattern we can find the 

following EDPs: 

 

- Create object: the two concrete factories both contain two Create object EDPs, when 

returning instances of the concrete products related to them; 

- Abstract interface: the methods declared by the abstract factory are examples of the 

Abstract interface EDP, which represents abstract methods or methods belonging to an 

interface; 

- Inheritance: in this example we can see three inheritance hierarchies; the first one 

involving the abstract factory as the parent class and the two concrete factories as its 

children; the second and the third ones regard the two abstract products and their 

concrete sub-classes. We have therefore a total of six inheritance EDP instances, one for 

each child class. 

 

These EDPs don’t let us assert that this implementation is an instance of the Abstract 

factory design pattern. The real problem is enclosed in the nature of EDPs, as they don’t 

seem to capture the rationale behind each design pattern. 
 
Micro patterns 

We can find six micro patterns in this implementation of the Abstract factory design 

pattern: 

 

- Data manager: a class implements only getter or setter methods, according to the 

meaning of getter and setter methods agreed in Chapter 3. In this interpretation, classes 
ConcreteFactory1  and ConcreteFactory2  could be considered instances of the Data 

Manager micro pattern; 

- Sink: a Sink class implements methods which do not propagate calls to any other 

classes. Therefore the two concrete factories, as implemented in the sample instance, are 

to be considered as Sinks; 

- Trait: a Trait class is a class that doesn’t have any state, i.e. that doesn’t declare any 

instance field; each of the classes belonging to the sample pattern instance is therefore a 

Trait; 

- Pure type: a Pure type class has only abstract methods, doesn’t have any static member, 

and doesn’t declare any field; the class AbstractFactory  can be considered as a Pure 

type; 

- Pseudo class: a Pseudo class is a class that could be rewritten as an interface: it doesn’t 

have any concrete method, and its fields (if it has some) are all static; classes 
AbstractFactory , AbstractProductA  and AbstractProductB  are all Pseudo classes; 

- Implementor: an Implementor class is a class which overrides the inherited abstract 

methods; ConcreteFactory1  and ConcreteFactory2  are two Implementors. 
 
We should remark two points about the detection of these micro patterns. First of all, as 

we have seen for the Data manager micro pattern, some micro patterns lend themselves to 
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different interpretations, so some more formalization about their concrete meaning seems 

to be needed. The unified micro-structures catalogue proposed in Chapter 3 aimed at 

solving also these ambiguities. Second, all the micro patterns identify characteristics that 

are placed at the class granularity level. For example, the Sink regards classes whose 

methods don’t propagate calls to other classes. But what if a refactoring of a previous Sink 

class would have a method that makes some calls to another class? The new 

implementation will not be a Sink anymore. This problem is particularly relevant in a 

design pattern detection perspective. In fact, the micro patterns described so far are related 

to this basic implementation of the Abstract factory design pattern. But as it is known, 

each design pattern could have potentially infinite variants, so that if we compare different 

implementations of the same pattern they could present even completely different micro 

patterns. This is due to the fact that micro patterns identify only class-level characteristics, 

and do not pinpoint more fine-grained characteristics, as design pattern clues for example 

do. In order to solve this issue, we propose the detection of micro patterns basing on the 

rate of methods and attributes that satisfy a particular micro pattern condition. This aspect 

will be deeply discussed in Chapter 7. 
 

3) Micro-structures detection in the Template method design pattern 

A broadly exploited behavioural design pattern is the Template method. This pattern 

defines the general structure of an algorithm in terms of abstract methods representing its 

general operations, letting the subclasses of the template abstract class implement the 

actual behavior. 

The basic implementation of the Template method design pattern is the following: 
 
public class AbstractClass { 

 
 public void templateMethod(){ 

operation1(); 
operation2(); 

 } 
 
 abstract void operation1(); 
 abstract void operation2(); 

} 
public class ConcreteClass extends AbstractClass { 

 
 public void operation1(){ 
  … 
 } 
    

public void operation2(){ 
  … 
 } 

} 
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The templateMethod() method only calls the two abstract methods operation1()  and 

operation2() , that represent the general behavior of the algorithm represented by 

templateMethod() . The actual behavior is therefore to be specified by the concrete classes 

extending the class declaring the template method. 

 

Design pattern clues 

In this implementation of the Template method two design pattern clues are detected: 

 

- Template method: an abstract method is called within the body of a concrete method. 

Both caller and callee methods belong to the same class; 

- Template implementor: a class extends a class containing an instance of the Template 

method clue. 

 

As we can see, the two clues perfectly fit to the definition of the Template method, and let 

the identification of both pattern roles possible. 
 

Elemental design patterns 

In this implementation of the Template method three EDPs can be found: 2 Abstract 

interface EDPs, one for each abstract method defined in the AbstractClass , and one 

Inheritance EDP, that defines the inheritance relationship between ConcreteClass  and 
AbstractClass . 
 

Micro patterns 

One micro pattern could be detected in this implementation: 

 

- Outline: a class where at least two methods invoke an abstract method on “this”. 

 

As we can see, the Outline micro pattern requires two methods invoking abstract methods. 

This is too restrictive for our scopes, as only one method (the template method) calling 

abstract methods is sufficient to grant the presence of the abstract class role. In Chapter 3 

we proposed a relaxed definition for this micro pattern, granting its validity even if only 

one abstract method is invoked. 

 

4) Micro-structures detection in the State design pattern 

The basic implementation of the State design pattern is the following: 
public abstract class State{ 

public abstract void handle(); 
} 
 
public class ConcreteStateA extends State{ 

public void handle() { 
  … 
} 
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} 
 

public class ConcreteStateB extends State{ 
public void handle() { 
  … 
} 

} 
 
public class Context{ 

private State state; 
 
public void request(){ 
  … 
  state.handle(); 
} 

} 
 
 

Design pattern clues 

No design pattern clues can be found for this pattern. This is because no peculiarities for 

this pattern can be identified statically. We experienced, by analyzing different instances 

of the State pattern, that no hint for its detection or for the detection of one of its roles 

seems to be pointed out by some code detail. Hence, the identification of this pattern 

through the use of clues (and, in general, the use of any micro-structure in a static way) is 

a hard task. 

 

Elemental design patterns 

In this basic implementation of the State design pattern three EDPs can be found: two 

Inheritance EDPs, one for ConcreteStateA  and the other for ConcreteStateB , that assert 

that these classes extend the State class, and one Delegate EDP, represented by the 
state.handle()  method invocation between the Context  class and the State  class. The 

Delegate EDP is detected as the caller and callee class aren’t in the same hierarchy and the 

caller and target methods have different signatures. 
 

Micro patterns 

Four micro patterns can be detected, three regarding the State  class, the other regarding 

the Context  class. The three micro patterns for the State  class are: 

 

- Function poiner: the class has a single public instance method, but no fields;  

- Trait: the class is abstract and has no state (i.e. no variables); 

- Pure type: the class declares only abstract methods, no static members, and no fields; 

 

For the Context  class we have the following micro pattern: 
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- Function object: the class has a single public instance method, and at least one instance 

field; 

 

It seems clear that no micro pattern, as any other micro-structure, is able to capture the 

essence of this pattern, residing behind its behavior. The detected micro pattern can only 

give information from a structural point of view. 

 

5) Micro-structures detection in the Composite design pattern 

Considering the structural design patterns category, we propose the basic implementation 

of the Composite and we discuss the micro-structures that can be identified in it. 
 
public abstract class Component{ 

public abstract void operation(); 
public void add(Component c){} 
public void remove(Component c){} 

} 
 
public class Composite extends Component{ 

private List<Component> components = new Vector<Com ponent>(); 
 
public void operation(){ 

       for (Component c : components) 
   c.operation(); 

} 
 
public void add(Component c){ 
  components.add(c); 
} 
 
public void remove(Component c){ 
  components.remove(c); 
} 

} 
 
public class Leaf extends Component{ 
 public void operation(){ 
  … 
 } 
} 

 
 

Design pattern clues 

Six design pattern clues can be found in this basic implementation of the Composite: 

 

- Abstract cyclic call: the Composite.operation()  method invokes the abstract method 
Component.operation()  from within an enhanced for cycle; 
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- Component method: the two methods Component.add()  and Component.remove()  are 

instances of this clue, as they receive an object belonging to the same class as an input 

parameter; 

- Node class: Composite  is a Node class, as it extends a class declaring component 

methods, overriding them; 

- Leaf class: Leaf  is a Leaf class, as it extends a class declaring component methods 

without overriding them; 

- Same interface container: Composite  contains a list of Component s, that are objects that 

share the same interface with the Composite  class; 

- Multiple redirections in family: the Redirect in family EDP is detected inside a cycle, 

therefore it is supposed to work on a set of elements, like in this case, where the 
operation()  method is invoked on each Component  object belonging to the 
Components  list. 

 

Elemental design patterns 

In this implementation of the Composite the following EDPs have been detected. One 

Abstract interface EDP states that the Component  class declares an abstract method, and 

consequently is an abstract class. Two Inheritance EDPs connect the Composite  and Leaf  

class through an extension relationship. A Create object EDP can be found in Composite , 
where a List of Component s is instantiated. Finally a Redirect in family EDP is detected in 

the Composite.operation()  method. This method invokes a method with the same 

signature belonging to Composite ’s superclass. 
 

Micro patterns 

The micro patterns for the Component  class are: 
 
- Trait: Component  is an abstract class with no state; 

- Sink: its methods do not invoke methods on any other class. 

 

The Composite  class is characterized by the following micro-patterns: 

 

- Function object: it has only one public instance method and one instance field; 

- Box: the only instance field is mutable; 

- Implementor: it overrides the inherited abstract methods; 

- Overrider: Composite  also overrides the inherited non-abstract methods; 

 

Finally, for the Leaf  class we have: 

 

- Implementor: it overrides the inherited abstract methods; 

- Stateless: Leaf  is a concrete class which has no fields. 
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6) Micro-structures detection in the Decorator design pattern 

Let’s now analyze the Decorator. Its structure is very similar to that of the Composite, so it 

is interesting to see if the micro-structure detection process can help in distinguishing 

these two patterns. 
 
public abstract class Component { 
 abstract void operation(); 
} 
 
public class ConcreteComponent extends Component{ 
 public void operation(){ 
  … 

} 
} 
 
public abstract class Decorator extends Component {  
 
 private Component component; 
  
 public void operation(){ 
  component.operation(); 
 } 
} 
 
public class ConcreteDecorator extends Decorator { 
 public void operation(){ 
  super.operation(); 
  addedBehaviour(); 
 } 
  
 public void addedBehaviour(){ 
  … 

} 
} 

 
Design pattern clues 

The following design pattern clues can be found in this basic implementation of the 

Decorator design pattern: 

 

- Instance in abstract class: the abstract class Decorator  maintains an instance to a 

different class (namely the Component  class); 

- Instance in abstract referred: the method Decorator.operation()  invokes a method on 

the Component ’s instance; 
- Reference to abstract class: the instance declared by the Decorator  class belongs to an 

abstract class; 

- Same interface instance: the Component  instance declared by the Decorator  class is 

compatible with the same interface; in this case, differently from what happens for the 
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Composite, we do not deal with a set of objects compatible with the same interface, but 

only one is considered; 

 

Elemental design patterns 

In the basic implementation of the Decorator the following EDPs have been detected. As 

for the Composite design pattern, an identical Abstract interface EDP has been detected 

for the Component  class. Three Inheritance EDPs connect ConcreteComponent , Decorator  
and ConcreteDectorator  to the corresponding superclasses. A Redirect in family EDP 

has been detected in the Decorator  class, similarly to that found in the Composite  class in 

the Composite design pattern. Finally, the super method invocation in 
ConcreteDecorator.operation()  is an instance of the Extend method EDP, where a 

method belonging to the superclass is enriched with some added behavior. 
 

Micro patterns 

In this implementation of the Decorator, the following micro patterns can be identified. 

For the Component  class we have: 
 
- Trait: Component  is an abstract class with no state; 

- Sink: its methods do not invoke methods on any other class; 

 

For the Decorator  class we can identify the following micro patterns: 

 

- Function object: the class has only one public instance method and one instance field; 

- Box: the only instance field is mutable; 

- Overrider: Decorator  also overrides the inherited non-abstract methods; 

 

The ConcreteComponent  class is characterized by the following micro patterns: 

 

- Implementor: it overrides the inherited abstract methods; 

- Stateless: ConcreteComponent  is a concrete class which has no fields. 

 

Finally, the ConcreteDecorator  class has the following micro patterns: 

 

- Stateless: as the ConcreteComponent , ConcreteDecorator  has no fields; 

- Overrider: it overrides the non-abstract methods inherited by Decorator . 
 
 

4.4.2. Micro-structures relevance evaluation for design pattern detection 

 

The examples of micro-structures detection in the six different design patterns lead to 

meaningful considerations about their exploitation in a design pattern detection activity. 

As it results clear from the examples, the various categories of micro-structures identify 

very different peculiarities that can be found in the design pattern instances. 
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Without minding at this heterogeneity of elements (that is obviously unavoidable, due to 

the different characteristics and detail levels of each kind of micro-structures), the real 

questions are: how can these elements help us in the detection of design patterns? Which 

are the most relevant elements? Do they provide enough information for design patterns 

detection? Trying to give an answer to these questions is the main scope of this section. 

To go further into discussion, we shall remind that design patterns are at a first glance a 

composition of roles based on a well defined structure. Each role is usually played by a 

single class in the design pattern, with the aim to perform a well-defined task inside the 

pattern (like the singleton role in the Singleton design pattern, where its instance has to be 

unique at run-time). Or else, they can provide basic functionalities that are to be used by 

the other design pattern roles: for example, the Concrete products in the Abstract factory 

design pattern aren’t designed to perform particular functionalities, but they are just 

classes to be instantiated by the factories. The first kind of roles can be defined as active 

roles, as they actually contribute to the behaviour of the pattern. The other roles can be said 

to be passive roles, as they are exploited by the active roles in order to perform their 

operations, and they don’t provide any other functionality to the pattern itself. 

Therefore, the activity of design pattern detection in a software system through static 

analysis should be supported by two intermediate steps: 

 

- a first identification of the basic structure of the pattern, i.e. the extraction of classes 

whose relationships with each other in terms of referencing and inheritance are 

compatible with those specified for the pattern to be detected; 

- the identification of each role played inside a pattern, analyzing the structures 

extracted in the first step in order to understand if the classes that compose it are 

actually playing the supposed roles.  

 

Hence, micro-structures are to be considered useful for design pattern detection if they 

help us in identifying both the pattern architectures and those characteristics that are 

proper of each single role of design patterns.  

In the following, we analyze whether the detected micro-structures are to be considered 

relevant for the identification of both pattern structures and roles, according to the 

constraints asserted by each pattern definition. 

First of all, we define some fundamental characteristics that cannot be missed while 

implementing each single role of the various design patterns. These characteristics (that 

are necessarily informally introduced, due to the informal nature of design patterns)  can 

be derived both by the design pattern catalogue [GHJV94] and by personal experiences, 

capturing all the fundamental commonalities that can be found inside different 

implementations of each single design pattern role. 
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For the Singleton design pattern we have only the Singleton role: 

 

Singleton 

- It must grant the presence of a unique instance of itself during execution. 

 

This is the only request for the Singleton role, and therefore for the Singleton design 

pattern. In the design pattern catalogue nothing is specified about how to grant this 

request, as many different implementations of this design pattern (as obviously for all the 

other patterns) may exist. 

 

For the Abstract factory design pattern, four different roles have been identified (we don’t 

consider the presence of the client, as we aim at the identification of the roles of the core 

structure of the pattern), that should have these peculiarities: 

 

Abstract factory 

- it must provide getter methods to obtain references to the abstract products. 

 

Concrete factories 

- they must extend the Abstract factory; 

- they must redefine the methods provided by the Abstract factory in order to allow the 

return of the correct concrete products. 

 

Abstract products 

- They must be realized by abstract classes. 

 

Concrete products 

- They must be realized by concrete classes that extend their abstractions. 

 

For the Template method, two different roles with the following characteristics are 

specified: 

 

Abstract class 

- It must define a concrete method invoking at least one abstract method defined in the 

same class; 

 

Concrete class 

- It must extend the abstract class, thus implementing the abstract methods defined by it. 

 

For the State design pattern we can define the following characteristics that cannot be 

currently represented with micro-structures, but that we report for completeness: 
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Context 

- It must maintain a reference to the abstract state; 

- It must invoke the handle()  method on the abstract state; 

 

State 

- It must provide an interface for the concrete states; 

 

Concrete states 

- They must extend the abstract state; 

- They must provide mechanisms to switch from one state to another through the 

interface method provided by the abstract state. 

 

The last characteristic cannot be captured by any of the currently available micro-

structures, as it is strictly related with the behavioural and dynamic nature of the pattern. 

 

For the Composite design pattern we have the following characteristics: 

 

Component 

- It must provide methods to handle objects of the same type; 

- It must implement an operational method as well. 

 

Composite 

- It must extend the component; 

- It must maintain a list of components; 

- It must implement the abstract handling methods defined by the component; 

- It must invoke the operational method on all the components belonging to the list. 

 

Leaf 

- It  must extend the component; 

- It must not deal with objects compatible with its same interface, as the composite does; 

- It should override the operational method provided by the component. 

 

For the Decorator design pattern we can define the following peculiarities: 

 

Component 

- It must be an abstract class; 

- It must define an operational method. 

 

Decorator 

- It must extend the component; 
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- It must maintain an instance of the component; 

- It must override the operational method invoking it on the declared component 

instance. 

 

Concrete components 

- They must extend the component; 

- They should extend the operational method. 

 

Concrete decorators 

- They must extend the decorator; 

- They must enrich the operational methods with some other behavior. 

 

The relevance of micro-structures is to be evaluated for the analyzed patterns, considering 

both the extraction of pattern structures and the identification of each single role. Basing 

on our experience, on the characteristics defined for the various roles and on the examples 

provided before, for each design pattern role and for each micro-structure we indicate if 

each of them is: 

 

- Relevant:  it helps in identifying the relationships that subsist among the various pattern 

roles, as well as the peculiarities that characterize each role; hence it points out some of 

the constraints we have just introduced; 

- Irrelevant: it is not useful for the extraction of any kind of meaningful information about 

the pattern. 

 

In order to avoid excessive information, the considerations about the relevance of each 

micro-structure will be reported in the next sub-section, where actual implementations of 

design patterns are analyzed. Here we only provide some general considerations about the 

micro-structures relevance, which can be easily verified considering the results provided 

in the next part. As we will notice from the results tables, only the design pattern clues are 

to be considered in any case relevant for the detection of the roles of each of the studied 

pattern. This observation is directly related with the nature of design pattern clues, which 

have been introduced for design pattern detection purposes. Micro patterns revealed 

themselves useful only in few cases, while EDPs are always useful for the extraction of 

pattern architectures. Anyhow, by tagging some micro-structures as relevant for the 

detection of particular roles inside a design pattern, we cannot assert that the identification 

of the design patterns is automatically granted. In fact, a design pattern is something more 

than an aggregation of roles characterized by the simple properties we have defined: these 

roles must be interconnected, they may reveal non-trivial interactions, and they surely 

present behavioural characteristics which are not yet revealed by any micro-structure, as 

they actually capture static aspects of a design pattern implementation. Hence the micro-
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structures currently assert that the analyzed code structure or architecture may represent a 

potential instance of a design pattern rather than a precise one. The information they point 

out (if meaningful) catches some fundamental characteristics that usually need for further 

inspection to identify the more complex properties the design pattern is characterized by. 

 

 

4.4.3. Micro-structures detection in design pattern implementation variants 

 

The third step for the validation of the usefulness of micro-structures for design pattern 

detection consists in analyzing actual design pattern implementations that are correct 

variants of the standard implementations presented before. For each pattern we 

considered a set of instances (12 Singletons, 16 Abstract factories, 12 Template methods, 15 

Composites and 9 Decorators) that have been analyzed role by role. 

 

Role name 

Micro-

structure 

category 

Micro-

structure 

No. of instances 

presenting the 

micro-structure 

% of 

instances 

presenting 

the micro-

structure 

Relevance of the 

micro-structure 

for the design 

pattern structure 

Relevance of the 

micro-structure for 

the design pattern 

role 

Singleton 

EDPs Create object 12 100% Relevant Irrelevant 

DP Clues 

Protected 

instantiation 
12 100% Relevant Relevant 

Private self 

instance 
7 58% Relevant Relevant 

Static self 

instance 
8 67% Relevant Relevant 

Single self 

instance 
11 92% Relevant Relevant 

Controlled 

self 

instatiation 

8 67% Relevant Relevant 

Concrete 

product 

getter 

12 100% Relevant Irrelevant 

Micro 

patterns 

Function 

object 
12 100% Relevant Irrelevant 

Common 

state 
10 83% Relevant Irrelevant 

Restricted 

creation 
11 92% Relevant Relevant 

Data 

manager 
1 8% Irrelevant Irrelevant 

Sink 2 17% Irrelevant Irrelevant 

 

Table 4.2 – Results for the Singleton instances 



 

76 

 

The State design pattern is not considered in the rest of the chapter because there are not 

relevant micro-structures for the detection of its roles. For each role, only the micro-

structures that should characterize it (and that have been detected in the sample 

implementations, as explained in Section 4.4.1) have been considered. 

Table 4.2 resumes the results of micro-structures detection for the Singleton design pattern 

instances. For this pattern the results are encouraging. Considering both its architecture 

and its single role, many relevant elements can be detected in the majority of the analyzed 

instances. In particular, the Create object EDP, which is relevant for the Singleton 

structure, and the Protected instantiation clue and the Function object micro pattern, that 

are important for the existence of the Singleton role, are found in all of the 12 instances. 

The two relevant elements that are found in fewer instances are the Private and Static self 

instance clues, that can be detected in around the 60% of instances. 

 

Role name 

Micro-

structure 

category 

Micro-

structure 

No. of instances 

presenting the 

micro-structure 

% of 

instances 

presenting 

the micro-

structure 

Relevance of the 

micro-structure for 

the design pattern 

structure 

Relevance of the 

micro-structure for 

the design pattern 

role 

Abstract 

factory 

EDPs 
Abstract 

interface 
13 81% Relevant Irrelevant 

DP Clues 

Abstract 

product 

returned 

13 81% Relevant Relevant 

Parent 

product 

returned 

13 81% Relevant Relevant 

Micro 

patterns 

Trait 5 31% Irrelevant Irrelevant 

Pure type 3 18% Irrelevant Irrelevant 

Pseudo class 3 18% Irrelevant Irrelevant 

Concrete 

factories 

EDPs 
Create object 15 94% Relevant Irrelevant 

inheritance 15 94% Relevant Irrelevant 

DP Clues 

Concrete 

products 

returned 

0 0% Relevant Relevant 

Micro 

patterns 

Data manager 0 0% Relevant Irrelevant 

Sink 1 6% Irrelevant Irrelevant 

Trait 0 0% Irrelevant Irrelevant 

Implementor 11 69% Relevant Irrelevant 

Abstract 

products 

Micro 

patterns 

Trait 1 6% Irrelevant Irrelevant 

Pseudo class 10 63% Irrelevant Irrelevant 

Concrete 

products 

EDPs Inheritance 13 81% Relevant Irrelevant 

Micro 

patterns 
Trait 0 0% Irrelevant Irrelevant 

 

Table 4.3 – Results for the Abstract factory instances 
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Table 4.3 collects the results of micro-structures detection for the Abstract factory design 

pattern instances. For this pattern, EDPs behave well for the extraction of its architecture. 

Between 81% and 94% of instances implement EDPs that help in identifying the general 

architecture of the pattern. As far as the single roles are concerned, the 81% of the Abstract 

factory roles implement the clues detected for this role in Section 4.4.1. Other micro-

structures categories are in general irrelevant for the detection of any particular role in this 

pattern. 

Table 4.4 resumes the results of micro-structures detection for the Template method 

instances. This behavioural pattern is well detected by the use of micro-structures, both in 

terms of elements useful for the extraction of its structure and for the detection of the two 

roles belonging to it. The elements that have been defined for this pattern and that are 

fundamental for its detection have been detected in the 100% of the considered instances. 

 

Role name 

Micro-

structure 

category 

Micro-structure 

No. of instances 

presenting the 

micro-structure 

% of 

instances 

presenting 

the micro-

structure 

Relevance of the 

micro-structure 

for the design 

pattern structure 

Relevance of the 

micro-structure for 

the design pattern 

role 

Abstract 

class 

EDPs 

Abstract 

interface 
12 100% Relevant Irrelevant 

Conglomeration 12 100% Relevant Irrelevant 

DP Clues 
Template 

method 
12 100% Relevant Relevant 

Micro 

patterns 
Outline 12 100% Relevant Relevant 

Concrete 

class 

EDPs Inheritance 12 100% Relevant Irrelevant 

DP Clues 
Template 

implementor 
12 100% Relevant Relevant 

 

Table 4.4 – Results for the Template method instances 

 

This is the only case we currently know of a design pattern automatically detectable 

through the only identification of micro-structures inside the code. In particular, this is 

quite odd, considering that the Template method is a behavioural design pattern. In fact, 

this category of patterns is generally characterized by a small set of micro-structures, that 

often don’t characterize their roles very well, but they rather lay on dynamic 

characteristics that cannot be formalized in elements that are detectable from source code 

by static analysis techniques (the State design pattern is probably the best representative of 

this group of patterns). 

Table 4.5 resumes the results about the analysis of the Composite design pattern instances. 

As we can notice, EDPs behave well as far as the identification of the Composite’s 

architecture is concerned. The fundamental inheritance relationship between the 
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Composite and the Component role is identified in the 93% of the analyzed instances. A 

73% rate of inheritance between the Leaf and the Component is due to the fact that 4 

instances do not provide any class playing the Leaf role. Analyzing the micro-structures 

relevant for each single role, we notice that 13 Composite roles have at least a fundamental 

Redirect in family, and for 12 of these instances this EDP is identified within a cycle, which 

lets us assume that this method invocation is repeated for the elements of a certain 

collection. This is also supported by the presence of 13 Same interface container clues, that 

have been detected in the same instances presenting the Multiple redirections in family 

clue. Only eight Component roles declare actual component methods, and consequently 

only eight Composite roles can be considered Node classes. 

 

Role name 

Micro-

structure 

category 

Micro-

structure 

No. of instances 

presenting the 

micro-structure 

% of 

instances 

presenting 

the micro-

structure 

Relevance of the 

micro-structure 

for the design 

pattern structure 

Relevance of the 

micro-structure 

for the design 

pattern role 

Component 

EDPs 
Abstract 

interface 
12 80% Relevant Irrelevant 

DP Clues 
Component 

method 
8 53% Irrelevant Relevant 

Micro 

patterns 

Trait 4 27% Irrelevant Irrelevant 

Sink 4 27% Irrelevant Irrelevant 

Composite 

EDPs 

Inheritance 14 93% Relevant Relevant 

Create object 1 7% Relevant Relevant 

Redirect in 

family 
13 87% Relevant Relevant 

DP Clues 

Abstract cyclic 

call 
10 67% Relevant Relevant 

Node class 8 53% Relevant Relevant 

Same interface 

container 
13 87% Relevant Relevant 

Multiple 

redirections in 

family 

13 87% Relevant Relevant 

Micro 

patterns 

Function object 0 0% Irrelevant Irrelevant 

Box 6 40% Irrelevant Irrelevant 

Implementor 9 60% Relevant Irrelevant 

Overrider 1 7% Relevant Irrelevant 

Leaf 

EDPs Inheritance 11 73% Relevant Irrelevant 

DP Clues Leaf class 4 27% Relevant Relevant 

Micro 

patterns 

Implementor 11 73% Relevant Irrelevant 

Stateless 7 47% Relevant Irrelevant 

 

Table 4.5 – Results for the Composite instances 
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Table 4.6 collects the results obtained during the analysis of the Decorator instances. As it 

appears clear in [GHJV94], the architectures of the Composite and the Decorator design 

patterns in terms of classes and static relationships among them is very similar. An 

abstract component class is on top of the pattern hierarchy in both cases, and both the 

composite and the decorator classes extend their corresponding component class also 

maintaining a reference to it. The distinction between these two patterns is therefore to be 

searched inside the essence of each role. While the structures of these patterns can be well 

detected through the identification of EDPs, the micro-structures characterizing the 

various roles must necessarily be different and specific for each pattern, in order to 

distinguish Composite from Decorator instances.  

 

Role name 

Micro-

structure 

category 

Micro-

structure 

No. of instances 

presenting the 

micro-structure 

% of 

instances 

presenting 

the micro-

structure 

Relevance of the 

micro-structure 

for the design 

pattern structure 

Relevance of the 

micro-structure for 

the design pattern 

role 

Component 

EDPs 
Abstract 

interface 
9 100% Relevant Irrelevant 

Micro 

patterns 

Trait 1 11% Irrelevant Irrelevant 

Sink 4 44% Irrelevant Irrelevant 

Decorator 

EDPs 

Inheritance 6 67% Relevant Irrelevant 

Redirect in 

family 
5 56% Relevant Irrelevant 

DP Clues 

Instance in 

abstract class 
6 67% Relevant Relevant 

Instance in 

abstract 

referred 

5 56% Relevant Relevant 

Reference to 

abstract class 
6 67% Relevant Relevant 

Same interface 

instance 
6 67% Relevant Relevant 

Micro 

patterns 

Function object 3 33% Irrelevant Irrelevant 

Box 5 56% Irrelevant Irrelevant 

Overrider 0 0% Irrelevant Irrelevant 

Concrete 

components 

EDPs Inheritance 9 100% Relevant Irrelevant 

Micro 

patterns 

Stateless 6 67% Relevant Irrelevant 

Implementor 7 78% Relevant Irrelevant 

Concrete 

decorators 

EDPs 

Inheritance 9 100% Relevant Relevant 

Extend method 4 44% Relevant Relevant 

Redirect in 

famlily 
6 67% Relevant Relevant 

Micro 

patterns 

Stateless 4 44% Irrelevant Irrelevant 

Overrider 1 11% Irrelevant Irrelevant 

 

Table 4.6 – Results for the Decorator instances 
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The distinction between the Composite and the Decorator role is to be searched in the kind 

of reference to the Component that they maintain. While for the Composite design pattern 

we had a Same interface container clue, in the Decorator we only need one single instance 

of the Component class, represented by the Same interface instance clue. The method 

invocation to the Component is again a Redirect in family, but in this case enriched with 

the presence of an Extend method, which helps us in understanding that a certain method 

has been added new behavior. 

 
 

4.5. An association among pattern roles and micro-structures for their 

detection 

 

Basing on the pattern roles characteristics defined before, on the relevance of the various 

micro-structures discussed so far and on the results obtained in the identification of micro-

structures inside real pattern instances, we collect in the next tables the micro-structures 

that are useful to identify each particular pattern characteristic. 

The micro-structures useful for the identification of the Singleton design pattern belong to 

the design pattern clues and to the micro patterns (Table 4.7). As this pattern is constituted 

by a single class, without any particular method invocation, no fundamental EDPs for it 

have been detected. 

 

Singleton 

Role name Characteristic EDPs DP Clues Micro patterns 

Singleton 

It must grant the presence of 

a unique instance of itself 

during execution 

 

Single self instance, 

Private self 

instance, Static self 

instance, Protected 

instantiation 

Function object, 

Restricted creation 

 

Table 4.7 – Micro-structures usefulness in the Singleton 

 

The issues that characterize the various roles belonging to the Abstract factory can be 

revealed by a good set of micro-structures belonging to all the categories considered in 

this comparison (Table 4.8). The structural constraints of this pattern are pointed out 

mainly by EDPs (micro patterns reveal possibly useful only in the detection of the 

Concrete factory class). The essence of this pattern is enclosed in the Abstract factory role. 

This role can be identified with the use of design pattern clues, which helps in identifying 

the role characteristics, besides its structural constraints.   
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For the identification of the Template Method pattern (Table 4.9) we can rely on the 

detection of only two clues, which represent both necessary and sufficient conditions for 

the existence of both the Abstract class and the Concrete class roles. EDPs can be used only 

in the detection of the pattern structure, while the Outline micro pattern can be used to 

detect the Abstract class role. 

 

Abstract factory 

Role name Characteristic EDPs DP Clues Micro patterns 

Abstract factory 

It must provide getter 

methods for the obtainment 

of references to the abstract 

products 

Abstract interface 

Abstract products 

returned,  

Parent products 

returned 

 

   
 

Concrete factories 

They must extend the 

Abstract factory 
Inheritance   

They must redefine the 

methods provided by the 

Abstract factory in order to 

allow the return of the 

correct concrete products 

 
Concrete products 

returned 
Implementor 

Abstract products 
They must be realized by 

abstract classes 
Abstract interface   

Concrete products 

They must be realized by 

concrete classes that extend 

their abstractions 

Inheritance   

 

Table 4.8 – Micro-structures usefulness in the Abstract factory 

 

Template method 

Role name Characteristic EDPs DP Clues Micro patterns 

Abstract class 

It must define a concrete 

method calling at least one 

abstract method defined in 

the same class 

Abstract interface, 

Conglomeration 
Template method Outline 

Concrete class 

It must extend the abstract 

class, thus implementing the 

abstract methods defined by 

it 

Inheritance 
Template 

implementor 
 

 

Table 4.9 – Micro-structures usefulness in the Template method 
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For the Composite design pattern (Table 4.10) it is evident how the detection of its 

structure can be pursued exploiting EDPs. The issues related to each single role apart from 

their architecture are detectable through the use of clues. 

 

Composite 

Role name Characteristic EDPs DP Clues Micro patterns 

Component 

It must provide methods to 

handle objects of the same 

type 

Abstract interface 
Component 

method 
 

It must implement an 

operational method 
 

Multiple 

redirections in 

family 

 

Composite 

It must extend the 

component 
Inheritance   

It must maintain a list of 

components 
 

Same interface 

container 
 

It must implement the 

abstract handling methods 

defined by the component 

 Node class  

It must invoke the 

operational method on all 

the components belonging to 

the list 

Redirect in family 

Multiple 

redirections in 

family 

 

Leaf 

It must extend the 

component 
Inheritance   

It must not deal with objects 

of the same interface, as the 

composite does 

 Leaf class  

It should override the 

operational method 

provided by the component 

 Leaf class Implementor 

 

Table 4.10 – Micro-structures usefulness in the Composite 

 

As for the Composite, also for the detection of the Decorator pattern structure EDPs are 

useful (Table 4.11). The design pattern clues are useful to identify the fundamental 

Decorator role, which is different from the Composite role of the homonym pattern as the 

Decorator maintains a single instance of the class with the same interface, instead of a 

collection of elements. 

As it appears clear from the previous tables, and considering the discussion about micro-

structures detection inside the real examples we provided, the main micro-structures 

involved in the identification of pattern roles characteristics are the EDPs, and the design 

pattern clues. EDPs are to be used mainly for the identification of architectural constraints 
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on the patterns (which specify the abstract roles, the inheritance hierarchies and the 

references among the various classes). 

 

Decorator 

Role name Characteristic EDPs DP Clues Micro patterns 

Component 

It must be an abstract class Abstract interface   

It must define an operational 

method 
Redirect in family   

Decorator 

It must extend the 

component 
Inheritance   

It must maintain an instance 

of the component 
 

Reference to 

abstract class, Same 

interface instance 

 

It must override the 

operational method invoking 

it on the declared component 

instance 

Redirect in family   

Concrete 

components 

They must extend the 

component 
Inheritance   

They should extend the 

operational method 
Extend method   

Concrete 

decorators 

They must extend the 

decorator 
Inheritance   

They must enrich the 

operational methods with 

some other behaviour 

Redirect in family, 

Extend method 
  

 

Table 4.11 – Micro-structures usefulness in the Decorator 

 

Design pattern clues are especially useful and suited to identify the main characteristics of 

each single design pattern role, aside from design patterns architectures. Finally, as it 

appears clear from the tables, micro patterns did not prove in general very useful for the 

detection of the discussed patterns. 

 

 

4.6. Concluding remarks 

 

In this chapter we have presented the considered micro-structures under six aspects that 

allowed us to provide a comparative evaluation among them. 

The main contribution of this chapter is related to a deep comprehension of the building 

blocks composing design patterns. This understanding can reveal particularly useful for a 

better application of design patterns, for the improvement of program comprehension and 

for the evaluation of design quality. Micro-structures for design pattern detection have 
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then been analyzed according to two main aspects, namely their usefulness for the 

detection of pattern structures and for the identification of single pattern roles. In this 

context, the micro-structures which are particularly relevant for the identification of 

pattern structures are mainly EDPs. On the other hand, DP clues revealed more suitable 

for the detection of the roles played within the patterns. Micro patterns have revealed 

themselves useful only in particular cases (e.g., for the recognition of the Template 

method). These findings were also confirmed by an analysis of the micro-structures 

implemented in sample sets of design pattern instances, letting us specify those micro-

structures that are crucial for the presence of each of the considered patterns inside the 

analyzed systems. 

As it also appeared from the comparison and from the pursued experimentations, the 

considered micro-structures are of various types and capture different aspects at different 

abstraction levels. For example, EDPs capture object-oriented best practices and are 

independent from any programming language; clues aim to identify basic structures that 

are peculiar to each design pattern; micro-patterns express common programming 

techniques. Moreover, these micro-structures have been defined with different purposes. 

Essentially, EDPs and DP clues have among their main objectives the recognition of design 

patterns, while micro patterns focus on the description of programming techniques.  

The heterogeneity of the considered micro-structures may lead to two conclusions. The 

first one is related to the fact that there is little agreement in what design patterns are built 

of and what kind of techniques or artifacts should be used for their detection. The second 

remark testifies the interest in understanding design patterns, and the worth of the effort 

necessary for their recognition in the context of reverse engineering, due to the meaning 

behind them which enables us to understand also the “why” of a design, not only the 

“how” of an implementation detail. 

The micro-structures detection process is the core concept residing behind the detection of 

design patterns within MARPLE [ATZM08], for the refinement of design pattern detection 

results obtained by different tools as described in the next chapter, and for software 

architecture reconstruction activities as described in Chapter 6. 
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Chapter 5 

 

Micro-structures for the validation and 

refinement of design pattern detection 

tools results 

 

 
Abstract 

 

In this chapter we present the results provided by four different design pattern detection tools on the analysis of 

JHotDraw 6.0b1, a well known Java GUI framework. We show that the tools generally provide different results, even 

while evaluating the same subject system. From this observation, we introduce an approach based on micro-structures 

that is aimed to discard the false positives from the detected results, hence improving the precision of the analyzed tools. 

 

 

 

5.1. Detection of design patterns through four design pattern detection 

tools  

 

Several tools for design pattern detection exist. Each of them is based on a different 

approach, adopts different strategies to detect patterns, and in general can identify only a 

subset of the defined patterns. 

The work described in this chapter is focused on the experimentation of four well-known 

tools, namely Design Pattern Detection Tool [TC06], PINOT [SO06], FUJABA [NNZ00] and 

Web of Patterns [DE07]. In this section we report the results obtained by these tools on the 

analysis of the JHotDraw 6.0b1 framework [JHD]. We will focus our attention on this 

system as one of the reasons behind the development of JHotDraw is the demonstration of 

the practical application of design patterns in a software project. For each class of the 

system, the documentation indicates if it eventually belongs to a certain pattern or set of 

patterns, and which role it plays within the patterns it takes part to. In this way, we have a 



 

86 

 

precise indicator about what patterns have been implemented, how many instances of a 

certain pattern can be found in the system, and which classes take part to which patterns. 

Table 5.1 resumes the results produced by the four considered tools on JHotDraw 6.0b1, in 

terms of the number of instances they are able to detect for each pattern. 

 

Pattern 

category 
Pattern name 

Design Pattern 

Detection Tool 
PINOT FUJABA2 Web of Patterns 

C
re

a
ti

o
n

al
 

Abstract factory n/a n/a 2 14 

Builder n/a n/a n/a n/a 

Factory method 2 34 2 n/a 

Singleton 2 0 0 1 

Prototype 3 n/a n/a n/a 

B
eh

a
v

io
u

ra
l 

Chain of responsibility n/a n/a 0 n/a 

Command 231 n/a n/a n/a 

Iterator n/a n/a 10 n/a 

Mediator n/a n/a n/a n/a 

Memento n/a n/a 11 n/a 

Observer 3 n/a n/a n/a 

State 291 3 0 n/a 

Strategy 291 51 0 n/a 

Template method 5 2 31 1 

Visitor 1 1 0 0 

S
tr

u
ct

u
ra

l 

Adapter 231 5 26 1 

Bridge n/a n/a 0 n/a 

Composite 1 4 0 1 

Decorator 3 5 0 n/a 

Façade n/a n/a 8 n/a 

Flyweight n/a n/a 0 n/a 

Proxy n/a n/a n/a n/a 

 

Table 5.1 – Results of the design pattern detection process obtained by four tools on the analysis of JHotDraw 6.0b1 

 

                                                           

1 Design Pattern Detection Tool identifies the Adapter and the Command as being the same pattern. This is due to the fact that the two 

patterns, actually present an identical structure. The 23 results are to be considered comprising both Adapter and Command instances. 

The same considerations are applicable to the State and Strategy patterns, which the tool recognizes as being the same pattern. 

2 The instances detected by FUJABA are expressed in terms of similarity to the actual correct implementation of the pattern. For each 

instance, a percentage value is given, which represents the grade of similarity of the instance to the actual pattern. For brevity, we don’t 

report here the similarity values. Anyway, each of the identified instances is at least 80% close to the real pattern. 

 



 

87 

 

From the analysis of the above table, different considerations shall be done. First of all, at 

now no tool is able to detect or provide techniques for the identification of the whole set of 

design patterns defined by Gamma. This may be due to the difficulty in the definition of a 

detection strategy for some design patterns (especially for the behavioural ones), or to the 

lack of structural or programming hints that can help for the detection, as well as to the 

lack of formalization of the patterns themselves, or to the different detection approaches 

adopted by the various tools. A second (and more important) consideration is related to 

the different results obtained by the tools in the detection of the same pattern. As it can be 

noticed, it doesn’t exist a pattern for which the tools return the same number of instances. 

And, even if this would have been the case, it could have been possible that the detected 

instances differed from one tool to another in terms of classes realizing each single 

instance. This is once again due to the fact that the tools adopt different detection 

strategies (hence some instances that do not strictly comply with the constraints adopted 

by each single tool will not be detected by it), and especially to the presence of different 

design pattern variants inside the code. 

As the different tools identify a considerable number of false positives, hence worsening 

the precision rates, in this chapter we present a methodology aimed at discarding false 

positive instances through the help of micro-structure-based refinement rules.  

Our approach reveals useful as it aims at improving the precision of design pattern 

detection tools, therefore obtaining results that are more close to the actual design pattern 

instances implemented in the analyzed systems. As we are only focused on the refinement 

of results obtained by third-party tools, in this chapter we do not describe any new 

approach for design pattern detection. We consequently do not face or propose a possible 

solution to the variants problem, as we just analyze the instances provided by other tools 

as they are. For the same reasons, the refinement approach described here (which is not a 

detection approach) doesn’t aim to maximize recall values, but only to improve the 

precision rates of common design pattern detection tools. 

 

 

5.2. Refinement rules definition 

 

The main problem concerned with design pattern detection is the variants problem. Due 

to the mainly informal nature of design patterns, tools for design pattern detection 

generally adopt different detection algorithms and produce different results, even while 

analyzing the same target systems. Therefore, the average precision and recall [BR99] 

values generally differ among the various tools and the various design patterns they are 

able to detect. Given a subject system S, we indicate with tp the number of real design 

pattern instances implmentend in S and identified by the pattern detection tools (true 
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positives); fp indicates the number of instances which have been detected by the tool on S 

but which are not correct realizations of the subject pattern (false positives), while fn 

indicates the number of pattern instances implemented in S which cannot be identified by 

the detection tool (false negatives). The precision P of a design pattern detection tool is 

computed as P = tp / (tp + fp), and indicates how much of the detected instances are actual 

and correct pattern implementations. The more P is close to 1, the more the tool is precise 

and the less false positives the tool detects. The recall R is defined as R = tp / (tp + fn), and 

indicates how many of the actually implemented pattern instances the tool is able to 

recover. 

In order to increase the accuracy of the results provided by available tools, we propose to 

analyze the pattern instances identified by them with the use of refinement rules that are 

based on the micro-structures that can be detected in each pattern. First of all, we must 

recall that every design pattern is constituted by one or more roles, according to [GHJV94], 

each one played by a single class. Micro-structures do not place themselves on the general 

design pattern level of abstraction, but, due to their nature and definition, each of them 

can be assigned to a single role inside the pattern it is a hint for. We have analyzed the 

structures and typical implementations of design patterns, in order to assign to each role 

the micro-structures that characterize them, in a similar way to what discussed in Chapter 

4, Section 4.5. 

The rules will be based on two micro-structures: the EDPs, that are useful to recover and 

define the structures of the patterns, and the design pattern clues, which are more useful 

to characterize the single pattern roles, as also seen in Chapter 4. Micro patterns are now 

not considered, as they have little relevance for the identification of characteristics related 

to the patterns that are detected by the majority of the considered tools (and as also 

generally underlined in the previous chapter). 

Each refinement rule for a given design pattern is represented as a graph G = (V, E), where 

V represents the set of classes that constitute the pattern, i.e. the pattern roles, and E 

represents the set of clues and EDPs that connect the various roles and that are peculiar for 

the pattern. In this context, each clue or EDP can be seen as a relationship between two 

roles (therefore it is depicted as an edge between two nodes of the rule graph), or as a 

relationship between a role and itself (hence depicted as a kink on the role node). This is 

also evident from the micro-structures definitions provided in Chapter 3. 

Clues and EDPs aren’t to be considered sufficient conditions for the correctness of pattern 

instances. Some of them are on the other hand necessary conditions, while the remaining 

ones are used to further enrich and characterize the analyzed instances. The evaluation of 

the necessary conditions will reveal especially useful in the refinement process, as 

ambiguous instances will be discarded or accepted basing on the verification of these 

conditions.  
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We now describe the rules for the validation of the patterns that are recognizable by the 

majority of the considered tools. Necessary clues and EDPs are reported underlined. 

For each role we indicate all the clues that may be identified inside it. This does not mean 

that they all have to be detected inside a class in order to assert that the class plays the 

specific role. Each role may present only a subset of these elements and still be a correct 

role for the corresponding pattern. 

We will define the rules and discuss the refinement process for the following patterns: the 

Abstract factory, Factory method and Singleton creational patterns, the Adapter, 

Composite and Decorator structural patterns, and the Template method and Visitor 

behavioural patterns. This choice is due to the fact that these patterns are recognizable by 

the majority of tools. Moreover, defining rules for those patterns that cannot be detected 

by the tools, or for which no instances have been identified, would be of scarce interest, as 

no refinement process can be pursued on them. 

Even if three out of the four considered tools assert to be able to detect instances of the 

State and Strategy patterns, we will not provide refinement rules for them, as we do not 

have identified any peculiar micro-structure which could help in their validation, as also 

discussed in Chapter 4. This is due to the strictly behavioural nature of these patterns, 

which cannot be represented in the form of elements that can be statically detected from 

source code analysis.  
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Table 5.2 reports and explains the refinement rules for the considered creational patterns. 

 

Pattern 

name 
Refinement rule Explanation 

A
b

st
ra

ct
 f

a
ct

o
ry

 

 

The Abstract factory pattern is 

composed by four core roles. 

The necessary clue for this 

pattern is the Concrete product 

getter, which grants that the 

Concrete factory implements at 

least one method which returns 

an instance of the Concrete 

product. 

F
a

ct
o

ry
 m

et
h

o
d

 

 

Factory method is very similar 

in structure to the Abstract 

factory. In this pattern the 

Factory method clue is 

necessary. It assures the 

existence of a method which 

creates instances of the 

Concrete product within the 

Concrete creator. 

S
in

g
le

to
n

 

 

The Singleton design pattern is 

constituted by a single role. The 

necessary clues for this pattern 

are Protected instantiation 

(which avoids the creation of 

instances from external classes), 

and the Single self instance 

(which grants the presence of 

only one instance for the 

Singleton class). 

 

Table 5.2 – Refinement rules for the considered creational design patterns 
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Table 5.3 describes the refinement rules for the considered structural design patterns. 

 

Pattern 

name 
Refinement rule Explanation 

A
d

a
p

te
r 

 

The Adapter design pattern is constituted by 

three roles: Target, Adaptee and Adapter. The 

Adapter role overrides the methods provided by 

the Target in order to be able to invoke the 

methods declared by the Adaptee, letting 

therefore the Target interface be compatible with 

the Adaptee. This property is granted by the 

necessary Adapter method clue. 

C
o

m
p

o
si

te
 

 

The Composite pattern is formed by two core 

roles, Component and Composite, and one 

additional role, Leaf, which identifies child 

component elements with no more children. 

Component must define component methods 

(Component method clue). The Composite must 

have a collection of Component elements (Same 

interface container clue), and override the 

component methods defined by the component 

(Node class). The component methods are to be 

invoked on all the components belonging to the 

collection (Multiple redirections in family). 

D
ec

o
ra

to
r 

 

The Decorator pattern is structurally similar to 

the Composite. Three core roles constitute this 

pattern, namely Component, Decorator and 

Concrete decorator. The Decorator must maintain 

a single reference to the Component (Same 

interface instance clue), while the concerete 

decorators must enrich the methods defined by 

the Decorator the new behavior (Extend method 

EDP). 

 

Table 5.3 – Refinement rules for the considered structural design patterns 
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Table 5.4 introduces the refinement rules for the considered behavioural patterns, namely 

the Template method and the Visitor. 

 

Pattern 

name 
Refinement rule Explanation 

T
em

p
la

te
 m

et
h

o
d

 

 

The Template method pattern is 

formed by two roles. The Abstract 

class is characterized by the 

necessary Template method clue, 

which grants that a concrete method 

invokes abstract methods inside its 

body. The Concrete class is 

characterized by the Template 

implementor clue, as it gives an 

implementation to the abstract 

methods invoked by the template 

method defined in the Abstract 

class. 

V
is

it
o

r 

 

The Visitor design pattern is formed 

by four roles. The Concrete elements 

to be visited must belong to a well 

defined object structure (Object 

structure child clue), like trees. They 

must also provide methods to accept 

visitor classes in order to be 

inspected (Visitable class clue). 

 

Table 5.4 – Refinement rules for the considered behavioural design patterns 

 

Now that we have introduced the refinement rules for the considered patterns, we give a 

description of the refinement process, and provide some refinement examples in order to 

gain confidence with it. Providing a detailed description of the refinement of each of the 

detected instances would take too much space and would be of scarce interest. 

 

 

5.3. The pattern instances refinement process 

 

Figure 5.1 resumes the adopted refinement process, which is mainly divided in four 

consecutive phases. In the figure, the grey rectangles represent the tools involved in the 

process. Rounded rectangles are related to the needed artifacts and representations, while 

normal rectangles represent the pursued activities and operations. 
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First of all, design pattern instances are identified from the system through the different 

detection tools; then they manually evaluated, in order to understand which of them are 

correct instances, and which are on the other hand false positives. The manual evaluation 

is based both on the system documentation (in the case it traces the existence of patterns 

within the system), and on personal experience and knowledge about patterns. 

 

 

 

Figure 5.1 – An overview of the refinement process 

 

Manual evaluation is a necessary operation, as it currently is the only way to verify the 

actual correctness of a pattern. For the future, the evaluation step could be supported by 

an automated comparison with a repository of valid instances (a work in progress with 

[ATZ08]). 
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The results obtained by the detection tools are represented in different forms, depending 

on the used tool. In general, the tools provide graphical or textual representations, where 

each role is associated with a particular class.  

In order to be refined by the corresponding micro-structure-based rule, each instance must 

be defined in a graph form, where each node represents a role and each edge represents 

the set of micro-structures relating two roles. In the second phase of the refinement 

process we define the roles for each detected instance: each role identified by the tool is 

translated in a graph node. The graph structures are defined in appropriate XML 

templates (one for each kind of pattern). Each element of the template corresponds to a 

role, and is to be completed with the actual class or classes playing that specific role. This 

is currently supported by a manual process, but we are working on the development of 

scripts that help in automating this process, at least for the most common tools for design 

pattern detection.  

Considering the third phase, the defined graph nodes constitute the first input for the 

Design pattern refiner, a graphical front end devoted to the validation of pattern instances. 

For each instance, starting from the graph nodes and from the micro-structures identified 

by the Micro-structures detector on the subject system, the refiner generates the actual 

micro-structure-based pattern instance: the roles in the graph are associated according to 

the micro-structures detected in the classes composing the instance under analysis. The DP 

refiner then applies the adequate refinement rule on each micro-structure-based instance, 

in order to check which of the micro-structures defined by the rule are actually 

implemented in the analyzed instance. Basing on this application, on the micro-structures 

peculiar for the pattern, and on the necessary pattern micro-structures, as defined in 

Section 5.2, in the validation step each instance is automatically accepted as a true pattern 

instance, or classified as a false positive and hence discarded.  

In the fourth and final phase, the results are compared to the manual evaluation of the 

detected instances, in order to verify whether the refinement process provides the same 

results or not. At now, the comparison is manually performed. We plan to automate this 

phase in a future integration of the refinement process just described to the benchmark 

platform for design pattern detection evaluation we are currently developing [ATZ08]. 

As with our approach we actually “restrict” the set of patterns identified by each tool, one 

could argue that this is somehow equivalent to intersect the results provided by two 

different detection tools. However, this is not the case. In fact, the two tools may identify 

the same sets of false positives instances, that won’t obviously be discarded by the 

intersection of the tools’ results. On the other hand, our approach doesn’t make such 

intersections, but considers the results of each tool singularly, trying to discard the false 

positives, which may not be avoided while matching the results provided by two different 

tools. 
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5.4. Application of the rules to the detected instances 

 

Each of the instances detected by the four considered tools has been analyzed according to 

the rules defined in Section 5.2 and according to the process just presented, in order to 

check both their validity and the usefulness of the rules to validate the patterns.  

 

Pattern 

name 
Detected instance 

Refinement result and 

considerations 

F
a

ct
o

ry
 m

et
h

o
d

 

 

In this instance, only the Creator 

role is present. The application of 

the Factory method rule to this 

instance does not validate it, as it 

lacks the remaining pattern roles 

and the fundamental micro-

structures defined by the rule. 

 

In this instance, AbstractFigure  is 

the Creator, PolyLineFigure  the 

Concrete creator, while 

PolyLineConnector  is the Concrete 

product. This instance is validated 

by the rule, as the structural 

relationships among the role exist, 

and the necessary micro-structures 

for this pattern are implemented 

(the Factory method clue). 

S
in

g
le

to
n

 

 

The Clipboard  class has a single 

instance of itself and protected 

instantiation mechanisms to prevent 

the creation of Clipboard  instances 

from other classes. Hence, 

Clipboard  is a correct instance of 

the Singleton pattern and is 

validated by the rule. 

 

Iconkit  only presents the Single 

self instance clue, which is a 

necessary condition for the existence 

of the pattern. Anyway, no 

protected instantiation mechanism 

is provided, therefore Iconkit  is not 

to be considered a correct Singleton 

instance, as the Single self instance 

alone is not enough to grant the 

instance uniqueness property of this 

pattern. 

 

Table 5.5 – Application and results of the refinement process on sample creational design patterns instances 
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We now provide some examples of the results obtained with the refinement process. For 

each instance, we indicate the corresponding design pattern, the graph representing the 

instance after the application of the refinement rule, and the consequent considerations 

about the validity of the analyzed instance. Table 5.5 reports some examples of the 

application of the refinement process on some instances of creational design patterns. 

Table 5.6 describes examples of the application of the refinement process on instances of 

structural design patterns. 

 

Pattern 

name 
Detected instance 

Refinement result and 

considerations 

C
o

m
p

o
si

te
 

The two main roles for the 

Composite pattern have been 

identified: Figure  is the 

Component (this is also verified by 

the presence of the Component 

method clue), and 

CompositeFigure  is the the 

Composite class. The presence of 

the necessary Multiple redirections 

in family and Same interface 

container clues grant us that this is 

a valid instance of the pattern, 

correctly accepted by the 

refinement rule. 

D
ec

o
ra

to
r 

In this instance of the Decorator 

pattern, Locator  is the Component 

and OffsetLocator  is the 

Decorator. These roles constitute 

the skeleton for the Decorator 

pattern according to the refinement 

rule, as no concrete roles have been 

detected. These two roles satisfy the 

constraints defined for them. This 

instance is a valid instance of the 

pattern, and the rule validate it. 

 

Table 5.6 – Application and results of the refinement process on sample structural design patterns instances 
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Table 5.7 introduces examples of the application of the refinement process on instances of 

behavioural design patterns. 

 

Pattern 

name 
Detected instance 

Refinement result and 

considerations 

T
em

p
la

te
 m

et
h

o
d

 

 

In this instance of Template 

method, AbstractFigure  is a 

correct Abstract class, as it presents 

all the elements that characterize 

this role, and especially the 

Template method clue. The tool 

wasn’t able to detect a Concrete 

class for this instance, from a 

further analysis we identified class 

PolyLineFigure  as a correct 

Concrete class, implementing the 

Template implementor clue. This 

instance is correct, and is validated 

by the rule. 

V
is

it
o

r 

In this instance of Visitor, Storable  

is the abstract Visitor class, while 

StorableOutput  should be a 

Concrete element. This instance is 

not correct. The StorableOutput  

does not present the necessary 

Object structure child clue. The 

concrete elements of the pattern 

must belong to a hierarchy of 

objects, whose ancestor is the 

abstract element. As the Object 

structure child is not present, this 

implies that the abstract element 

(i.e. the root of the object structure) 

is not present too. Therefore, this 

instance cannot be considered 

correct, and the refinement rule 

refuses it. 

 

Table 5.7 – Application and results of the refinement process on sample behavioural design patterns instances 

 

 

5.5. Refinement results evaluation 

 

The results of the refinement process applied to the instances detected by the four 

analyzed tools are reported in Tables 5.8 to 5.11. For each of the considered patterns, the 
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number of identified instances is reported. The number of correct instances column 

indicates how many of them are correct implementations, according to the manual 

evaluation process. The number of validated instances is then reported, i.e. the number of 

instances that have been confirmed as correct implementations by the refinement rule. The 

two precision values (the first one referring to the instances detected by each single tool, 

the second one referring to the refined instances considering the actual correct detected 

instances) are then reported. If no instances for a certain pattern have been detected by the 

tool, the precision before refinement value (which considers the number of correct instances 

with respect to the detected instances) cannot be computed; hence a “not available” (n/a) 

value is indicated. Similarly, if no instances for a certain pattern have been validated by 

the refinement process, the precision after refinement (which considers the number of correct 

instances with respect to the validated instances) cannot be computed, and a “not 

available” (n/a) value is reported. Table 5.8 describes the refinement results on the 

instances detected by Design Pattern Detection Tool. 

 

Design Pattern Detection Tool 

Pattern 

category 
Pattern name 

Detected 

instances 

Correct 

instances 
Validated 

Precision before 

refinement 

Precision after 

refinement 

Creational 

Factory 

method 
2 1 1 50% 100% 

Singleton 2 1 1 50% 100% 

Behavioural 

Command 23 11 23 48% 48% 

Template 

method 
5 5 5 100% 100% 

Visitor 1 0 0 0% n/a 

Structural 

Adapter 23 11 23 48% 48% 

Composite 1 1 1 100% 100% 

Decorator 3 3 3 100% 100% 

 

Table 5.8 – Results of the refinement process on the instances detected by Design Pattern Detection Tool 

 

Good results have been achieved in the refinement of the Factory method, the Singleton 

and the Visitor instances, where the corresponding rules succeeded in discarding all the 

detected false positives. As far as the Template method, the Composite and the Decorator 

patterns are concerned, the detected instances are all correct, and the refinement 

succeeded in validating them. Some problems are related to the Adapter/Command 

instances: all of them are accepted as true positives by the refinement rule, even if only 11 

of them actually are. We believe that the detection and consequent validation of instances 

of these patterns is difficult due to their generality. The only kind of information that 

characterizes them (i.e. overriding a superclass or interface method, then calling a method 
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belonging to another class through a Delegate EDP [Smi02]) is already captured by the 

rule. Table 5.9 reports the results obtained for PINOT. 

 

PINOT 

Pattern 

category 
Pattern name 

Detected 

instances 

Correct 

instances 
Validated 

Precision before 

refinement 

Precision after 

refinement 

Creational 

Factory 

method 
34 17 17 31% 100% 

Singleton 0 0 0 n/a n/a 

Behavioural 

Template 

method 
2 2 2 100% 100% 

Visitor 1 0 0 0% n/a 

Structural 

Adapter 5 5 5 100% 100% 

Composite 4 0 0 0% n/a 

Decorator 5 2 2 40% 100% 

 

Table 5.9 – Results of the refinement process on the instances detected by PINOT 

 

In this case, the Factory method and Decorator instances have been correctly refined, and 

the process succeeded in discriminating all the true positives from the false ones. Visitor 

and Composite instances have also been correctly discarded, as they revealed to be only 

false positives. Finally, Template method and Adapter instances (which are constituted 

only by true positives) have all been correctly accepted by the corresponding rules. 

Table 5.10 reports the results obtained for FUJABA. The Factory method instances have 

been correctly refined, and the Abstract factory ones have all been discarded being false 

positives. Template method instances have all correctly been accepted, while for the 

Adapter pattern we can make the same considerations as for Design Pattern Detection 

tool: the pattern is too generic to be correctly refined by the rule. 

 

FUJABA 

Pattern 

category 
Pattern name 

Detected 

instances 

Correct 

instances 
Validated 

Precision before 

refinement 

Precision after 

refinement 

Creational 

Abstract 

factory 
2 0 0 0% n/a 

Factory 

method 
2 1 1 50% 100% 

Singleton 0 0 0 n/a n/a 

Behavioural 

Template 

method 
31 31 31 100% 100% 

Visitor 0 0 0 n/a n/a 

Structural 
Adapter 26 5 26 19% 19% 

Composite 0 0 0 n/a n/a 

Decorator 0 0 0 n/a n/a 

 

Table 5.10 – Results of the refinement process on the instances detected by FUJABA 
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Finally, Table 5.11 indicates the results obtained for Web of Patterns. 

 

Web of Patterns 

Pattern 

category 
Pattern name 

Detected 

instances 

Correct 

instances 
Validated 

Precision before 

refinement 

Precision after 

refinement 

Creational 

Abstract 

factory 
14 3 0 21% 0% 

Singleton 1 1 1 100% 100% 

Behavioural 

Template 

method 
1 1 1 100% 100% 

Visitor 0 0 0 n/a n/a 

Structural 
Adapter 1 0 0 0% n/a 

Composite 1 0 0 0% n/a 

 

Table 5.11 – Results of the refinement process on the instances detected by Web of Patterns 

 

In this case, the rule didn’t succeed in accepting the correct Abstract factory instances, 

hence the precision rate decreased to 0%. The Template method instance has been 

correctly accepted, and the Adapter and Composite instances correctly discarded as false 

positives. 

 

 

5.6. Concluding remarks 

 

In this chapter we have presented an innovative approach to the refinement and 

validation of the results provided by the experimentation of common design pattern 

detection tools. The approach is based on the application of rules defined in terms of the 

roles constituting each pattern, and of the micro-structures that characterize them. As 

different tools generally provide different results even while analyzing the same target 

systems (and the results are generally affected by a considerable number of false 

positives), this approach is intended to discard the identified false positives, hence 

improving the precision of each single tool. From our experimentations, out of the 

considered design patterns, it emerged that the refinement rules behave well for the 

Factory method, the Singleton, the Template method, the Visitor, the Composite and the 

Decorator patterns. For these patterns, false positives have been correctly eliminated, and 

real instances have been confirmed. The Adapter pattern revealed to be problematic, as the 

hints for its detection are too much general due to the actual pattern definition and 

purpose. For this pattern, the false positives have not been recognized by the rule, 

therefore they have been accepted as real pattern instances. 

The refinement approach is obviously not intended to improve the recall of each single 

tool, as it is devoted uniquely to the analysis of already detected instances, and it doesn’t 
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allow for the detection of further pattern instances in the subject systems. Moreover, at our 

knowledge no similar approach currently exists in the literature, confirming the novelty 

and originality of our work; therefore any comparisons with other works can’t be made. 

In this chapter we have described and refined the results provided by four design pattern 

detection tools on the analysis of a single system (JHotDraw 6.0b1), in order to provide an 

exhaustive example and explanation of the refinement process. 

For the future, we plan to extend our experimentations on the analysis of more systems, as 

well as on the analysis of repositories of design pattern instances. In this way, it will be 

interesting to integrate the refinement approach within the benchmark platform for design 

pattern detection evaluation [ATZ08]. In this way, the approach will be extendedly used 

on the results provided by more tools on the analysis of more systems, and will be useful 

to improve the comparisons among the instances detected by the different tools. 
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Chapter 6 

 

Micro-structures for  

software architecture reconstruction 

 

 
Abstract 

 

In this chapter we investigate the usefulness of micro-structures for software architecture reconstruction activities. In 

particular, we focus on elemental design patterns and micro patterns as possible sources for the reconstruction of 

architectural information out of the analyzed systems. We indicate which are the artifacts that we want to generate, and 

we provide an evaluation between elemental design patterns and micro patterns, in order to understand which of them 

are more suitable for the generation of each artifact. Moreover, we introduce some structural and object-oriented 

antipatterns that can be detected inside a software system by analyzing the considered micro-structures. 

 

 

 

6.1. Elemental design patterns and micro patterns for SAR purposes 

 

One of the aims of this thesis is investigating the possibility to recover architectural 

information from the micro-structures that are identified within a subject system. To our 

knowledge, micro-structures have never been considered before for SAR activities in the 

literature. Indeed, they are able to capture structural relationships among the classes and 

modules composing a software system, and can be exploited to extract relevant structural 

information out of it. An example of this capability has been discussed in Chapter 4, where 

we underlined how EDPs are suitable to recover the structural relationships existing 

among pattern roles. 

In this context, we are focused on the extraction of structural information basing on the 

analysis of the micro-structures detected in a target system. The type of information we 

consider is exclusively static. In fact, micro-structures are detected from source code 

analysis, and the behavior of the system is not considered while detecting these elements. 

Moreover, at now micro-structures don’t codify any behavioural information, so that 
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dynamic or behavioural system views or artifacts cannot be currently recovered with the 

adopted approach.  

We are interested in recovering the following kind of information: 

 

- System views: graphical views are considered as one of the best means to cope with the 

analysis of system complexity and to have a global understanding of it, without 

minding at its details, as also underlined by many experts in the SAR field (some of 

the definitions presented in Chapter 1 focused on this aspect). As discussed in Chapter 

3, some micro-structures actually represent relationships between the entities 

composing a system. Therefore, they can be exploited in this sense, as they can be 

matched on the relationships that exist among classes, and can be consequently 

translated to graphical forms. The exploitation of micro-structures for the generation 

of views is introduced in Section 6.2.1; 

- Software metrics: metrics are exploited both to understand the complexity of the 

analyzed systems and their overall quality and stability. We are interested in the 

computation of a set of metrics (discussed in Section 6.2.2) that can be derived from 

the analysis of the micro-structures detected in the analyzed systems; 

- Software antipatterns: an antipattern is a software structure that, on the contrary of 

design patterns, seems to be an adequate solution to a certain design or programming 

issue, but it is actually far from the optimal practice. The presence of antipatterns 

inside an object-oriented system reflects in a system being not modular, far from the 

object-oriented best practices, and difficult to maintain and reuse. Hence, the 

identification of these structures inside a system helps in the detection of important 

critical components composing it, that can be seen by the engineers as the main 

candidates for possible refactoring or restructuring activities. The detection of a set of 

antipatterns is supported by both metrics analysis (discussed in Section 6.2.3), and by 

micro pattern analysis (discussed in Section 6.3.2); 

- Classes of particular interest: there may be classes and modules inside a system that, 

besides their architectural and structural context, may present particular qualities that 

are relevant to be indicated. These entities are presented in Section 6.3.3. 

 

These different kinds of information can all be obtained by the analysis and exploitation of 

the micro-structures detected in the subject systems by the Micro-structures detector 

module introduced in Chapter 3. In this way, a common source of information for both 

design pattern detection and refinement and for SAR activities is adopted. As a 

consequence, according to our approach it is not necessary to further inspect or analyze 

the target system, as all the necessary information for SAR is enclosed in the detected 
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micro-structures. This is a first step to have an integrated tool supporting both DPD and 

SAR activities. 

Table 6.1 outlines the sets of EDPs and micro patterns that are used for the recovery of the 

architectural information, the computation of metrics and the detection of antipatterns and 

particular classes we are interested in. The motivations for the reported choices will be 

further detailed in the subsequent sections. In this process, DP clues are not considered, as 

they represent useful hints only for design pattern detection and refinement, and do not 

devise particular structural constraints besides those already derivable by the analysis of 

EDPs and micro patterns. 

As we can notice from the table, only subsets of EDPs and of micro patterns are actually 

used to recover system architectural information. The elements that are not considered in 

these sets have been discarded either because the information they convey and that we 

consider useful is already embodied in some other element we actually consider, or else 

because in our opinion they do not represent any useful architectural or structural 

information at all. For example, even if we are able to detect the whole set of micro 

patterns from the source code of a system, indicating all of them in the output of the 

reconstruction process would obviously result in an excessive amount of information that 

is not granted to be relevant for the purposes of the reconstruction activity. 

 

Artifact Exploited EDPs Exploited micro patterns 

System views 

Create object, retrieve, inheritance, 

delegate, redirect, revert method, extend 

method, delegate in family, redirect in 

family, delegate in limited family, redirect 

in limited family. 

 

Software metrics 

Create object, retrieve, inheritance, 

delegate, redirect, revert method, extend 

method, delegate in family, redirect in 

family, delegate in limited family, redirect 

in limited family. 

 

Software antipatterns 

Create object, retrieve, delegate, redirect, 

delegate in family, delegate in limited 

family, redirect in limited family. 

Cobol like, pool, pseudo class, record. 

Classes of particular interest  

Function pointer, function object, 

immutable, canopy, data manager, sink, 

outline. 

 

Table 6.1 – EDPs and micro patterns for the obtainment of architectural and structural system information 
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We have developed a module for software architecture reconstruction activities, that is 

devoted to the generation of views about the analyzed systems, the computation of 

metrics and the detection of antipatterns and of particularly interesting classes. The 

module is structured according to Figure 6.1. 

 

 
 

Figure 6.1 – The architecture of the SAR module 

 

As many other tools for software architecture reconstruction and program understanding, 

our module presents a canonical three-layer architecture, which follows the extract-

abstract-present model presented in Chapter 1 and described in Tilley [TPS96]. The input 

layer is formed by two kinds of input, represented by corresponding XML files, which are 

provided by the Micro-structures detector module described in Chapter 3. The System 

structure information input collects the whole set of packages and types, i.e. the classes and 

interfaces composing the subject system. For each type, the set of the defined methods and 

attributes is also specified. No information about the relationships among the various 

entities is reported in this input. Indeed, neither the second input contains this kind of 

information. In fact, the Micro-structures information just collects the whole set of micro-

structures that have been detected in a system: for each type, it reports which DP clues, 

which EDPs and which micro patterns are implemented within it. 
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The structural relationships among classes and all the other functionalities resumed in 

Table 6.1 are all derived and computed by the elaboration layer, basing on the information 

provided by the two XML files just described (the analysis of the XML inputs is performed 

using the Apache XMLBeans technology [XML]). This layer is composed by four sub-

modules. The class structure parser is devoted to the generation of an abstracted 

representation of the types (classes and interfaces, with their corresponding methods and 

attributes) and packages composing the system, basing on the information provided by 

the input layer. The class core parser analyzes the micro-structures detected from source 

code and consequently maps them on the relationships among classes. Recall that in this 

process only EDPs and micro patterns are considered. 

The metrics computation sub-module computes common object oriented metrics basing on 

the relationships generated by the class core parser. The metrics that are currently computed 

will be introduced in Section 6.2.2. The visualization sub-module organizes the whole 

abstracted information generated by the elaboration layer in order to be exploitable by the 

end users. As far as the entities composing the analyzed system are concerned, packages 

and types will be represented in package or class views (introduced in Section 6.2.1) as 

graph nodes, while the relationships among them identified by the class core parser will be 

depicted as edges connecting them. The generated views are produced exploiting the 

functionalities provided by the JGraph libraries [JGraph].  The results are finally presented 

by the output layer, which provides the users with the set of generated structural views, the 

metrics computed on the system, and tags related to the identified antipatterns and other 

eventual interesting classes, in terms of the micro patterns representing them and shown 

in Table 6.1. 

We now go further into details, explaining how the EDPs and the micro patterns are 

actually exploited to achieve the presented functionalities. 

 

 

6.2. Elemental design patterns for SAR 

 

Elemental design patterns are exploited for the generation of views about the analyzed 

systems, the computation of metrics and the detection of structural antipatterns. In the 

following sub-sections we present the views, the metrics and the antipatterns that it is 

possible to generate and calculate with the SAR module, and how the EDPs are exploited 

for their obtainment. 
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6.2.1. Views 

 

The core concepts residing behind the views currently provided by the SAR module are 

the entities composing the system (i.e. packages, classes and interfaces), and the 

relationships connecting them with one another. While packages, classes and interfaces are 

derived by the class structure parser sub-module, analyzing the system structure 

information, the relationships among them are identified by the class core parser, analyzing 

the micro-structures information input. Through the analysis of the EDPs given as input it 

is possible to generate visual representations of the association, generalization and 

implementation relationships. Table 6.2 indicates the EDPs that are exploited in the 

generation of the available relationships. 

 

 

Relationship Object elements EDPs Type relation EDPs Method invocation EDPs 

Association Create object, Retrieve  

Delegate, redirect, delegate 

in family, delegate in 

limited family, redirect in 

limited family 

Generalization  Inheritance 
Revert method, extend 

method 

Implementation  Inheritance  

 

Table 6.2 – The EDPs exploited for the generation of the relationships among packages and classes 

 

The main way to generate an association relationship is through a Create object EDP. 

Every time a realization of this EDP is encountered (i.e. in correspondence of every 

“Object obj = new… ” statement), the class creating the instance establishes a connection 

to the class an instance of which is being created; hence, the source class is physically 

associating itself with the destination class. In the same way, the method invocation EDPs 

used for the generation of association relationships are those that imply the existence of a 

reference to another class. As far as the generalization and implementation relationships 

are concerned, they are obviously derived from the Inheritance EDP. Actually, this EDP 

doesn’t specify whether the extended entity is a class (therefore a generalization 

relationship must be created) or an interface (leading to the creation of an implementation 

relationship). This distinction is obtained by analyzing the system structure information 

input, in which classes and interfaces are distinguished. Generalization relationships can 

also be generated by the analysis of the Revert method and Extend method EDPs, which 

imply the presence of a parent class for the class performing these kinds of method 

invocations. Also the Retrieve EDP is used to generate association relationships, as it 
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actually establishes a connection between two classes, where the first one retrieves a 

reference to a certain declared object from the second class. 

Three different views are currently available. They are the package view, the class compact 

view and the class extended view. 

The package view represents the packages composing a system and the relationships among 

them. It is used in order to obtain an immediate understanding of the dependencies 

among the various parts composing the subject system. Figure 6.2 reports the package 

view of JHotDraw 6.0b1.  

 

 
 

Figure 6.2 – The package view of JHotDraw 6.0b1 

 

Between two related packages, only one relationship is graphically depicted. Anyway, 

many different actual relationships may subsist between them. A possible improvement 

will regard tagging each single relationship arrow with the number of actual relationships 

it resumes. Or else, it will be possible to color the arrows according to the number of 

relationships they enclose (for example assigning brighter colors to those arrows that 

represent a larger number of relationships). The user can also filter the shown 

relationships allowing the tool to display only associations, generalizations, 

implementations or a combination of them. 

The class compact view reports a class diagram about a particular package, with all the 

classes and interfaces composing it and the relationships among them. A sample view is 

reported in Figure 6.3, showing the classes composing the org.jhotdraw.figures  

package of JHotDraw 6.0b1. 
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Figure 6.3 – The class compact view for package org.jhotdraw.figures 

 

The user can choose the package to be inspected selecting the corresponding tab panel. 

Actually, this view can be quite overwhelmed, while dealing with packages having a high 

number of classes and relationships among them. As for the package view, the users may 

filter the relationships through the Filter menu, in order to show only associations, 

generalizations, implementations or a combination of them. Anyhow, in order to provide a 

more effective navigation through the classes composing a package, the class extended view 

(shown in Figure 6.4) has been introduced. In this view, each class is shown detached from 

the other ones. Hence, the software engineer can focus on single classes, managing only 

the relationships it has with the other classes, without minding globally at the rest of the 

package and consequently avoiding the confusion that may arise from the presence of a 

huge number of classes and interrelationships. 

 

 

6.2.2. Metrics 

 

Four main metrics are computed in the SAR module. They are: 

 

- Local dependencies: given a type (either a class or interface), the local dependencies of 

this type is the number of types this type depends on, within the same package. It is 

obtained by counting the number of associations going out from the subject type to 

types belonging to the same package; 

- Local dependents: given a type, the local dependents of this type is the number of types 

that depend on the functionalities provided by the subject type, within the same 
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package. It is obtained by counting the number of associations coming in the 

considered type from types belonging to the same package; 

- External dependencies: given a type, the external dependencies of this type is the 

number of types this class depends on, considering the overall system and not the 

package the subject type is contained in. It is derived by counting the number of 

associations going out from the type to types belonging to different packages; 

- External dependents: given a type, the external dependents of this type is the number of 

types that depend on the functionalities provided by the subject type, but not 

belonging to the same package. It is computed by counting the number of associations 

coming in the considered type from types belonging to packages different from the 

package the subject type is contained in. 

 

Dependencies and dependents can be related to packages as well. In this case, only the 

global case is considered, as a package can only expose relationships with other (external) 

packages. Therefore the dependencies of a package are the number of packages the subject 

package depends on, while the dependents of a package are the number of packages that 

depend on the functionalities provided by the subject package. 

 

 

 

Figure 6.4 – The class extended view for package org.jhotdraw.figures 
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These metrics are used in different approaches and tools for software architecture 

reconstruction as for example [SA4J, JDepend]. Further analyzed (as we will see later on), 

they are well established means to assert the quality of a system in terms of its stability, 

cohesion, and ease of reuse. As these metrics consider the number of associations related 

to each single class, and as associations are derived by analyzing the EDPs characterizing 

each class, we can state that these metrics are derived by EDPs as well, without further 

reasoning about the subject system. 

Dependencies and dependents can be considered as a first mean to understand the 

complexity of a system. A high quality system must pursue the “high cohesion – low 

coupling” principle [Lar04]. The number of dependencies of a class is to be considered as 

an indication of the level of coupling of each single class. Classes with a high number of 

dependencies consequently augment the coupling of the system, worsening its overall 

quality. In the same way, the number of dependencies of a package can be seen as an 

indication of the cohesion of the same package. The fewer dependencies the package has 

with the rest of the system, the more cohesive the package is, consequently improving the 

quality of the system. On the other hand, the number of dependents of a class gives an 

overview of how many classes in the system are affected if the subject class is changed. 

Dependencies and dependents are also strictly related to the identification of structural 

antipatterns, as discussed in Section 6.2.3. 

We shall make an important clarification. The meaning of “local” and “external” within 

MARPLE SAR is different from that adopted for example by SA4J. In MARPLE SAR, the 

local relationships of a type are all those relationships that involve the type itself and only 

types belonging to the same package. On the other hand, external relationships regard the 

types declared in other packages which are related with the subject type. 

SA4J considers local and global relationships. The local relationships of a type involve all 

the immediate dependencies and/or dependents of the type itself, no matter the package 

they belong to. The global relationships of a type are related to all the non-immediate 

entities related to the subject type. Figure 6.5 depicts two sample packages and possible 

relationships among their classes. Table 6.3 indicates which are the local, external or global 

dependencies and dependents detected by MARPLE SAR and SA4J for each of the 

considered types. As it can be noticed from the table, the relationships identified by SA4J 

are more complex than those considered by MARPLE SAR. As an example, class 4 of 

Package_1 doesn’t have any external dependents according to MARPLE SAR, while it has 

five global dependents belonging to both packages according to SA4J. 
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Figure 6.5 - Two sample packages 

 

 

 MARPLE SAR Structural Analysis for Java 

Class 
Loc. 

D.cies 

Loc. 

D.ents 

Ext. 

D.cies 

Ext. 

D.ents 

Loc. 

D.cies 

Loc. 

D.ents 

Glob. 

D.cies 

Glob. 

D.ents 

1 3, 5 2 / / 3, 5 2 4, b / 

2 1, 3 / / / 1, 3 / 3, 4 / 

3 4 1, 2 / a 4 1, 2, a / 2, c, d 

4 / 3 / / / 3 / 
1, 2, a, 

c, d 

5 / 1 b / b 1 / 2 

a / c 3 / 3 c 4 d 

b / c / 5 / 5 / d, 1, 2 

c a, b d / / a, b d 3, 4 / 

d c / / / c / a, 3, 4 / 

 

Table 6.3- The local, external and global dependencies and dependents 

according to MARPLE SAR and SA4J 

 

 

Due to the adopted interpretation of the “local” and “global” concepts, SA4J doesn’t allow 

the user to distinguish immediately intra-package from inter-package relationships, which 

is on the contrary possible with MARPLE SAR. Having a strong and clear distinction 

between these two kinds of relationships lets the users evaluate the cohesion and coupling 

within single packages, as well as about the overall system. 

Another fundamental metric that can be computed is abstractness [Mar95], i.e. the amount 

of abstract classes and interfaces inside a package with respect to the total number of types 

composing it. It can be evaluated by considering the Abstract interface EDP, which 

indicates that inside a given class an abstract class method or an interface method is 

declared, hence the declaring type is consequently an abstract class or an interface. 

Packages with high abstractness values are easily extensible and reusable by other parts or 

modules of the system. 

Starting from these basic five metrics (local and external dependencies, local and external 

dependents, and abstractness), five other metrics (for a total of ten metrics) can be 

computed and derived, both on classes and on packages.  

 

The metric that can be calculated on classes is: 

 

- Belonging [SA4J]: it represents how much a class is being used by its package, dividing 

the number of local dependencies and dependents by the overall number of 

dependencies and dependents of the class, considered both at the local and at the 
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external level. If it equals to 1, the class is completely used and referenced within its 

package, as it doesn’t have any external dependencies or dependents; 

 

The metrics that can be obtained on packages are: 

 

- Instability [Mar95]: it indicates how much the classes are linked to their package, and it 

is obtained by dividing the number of external dependencies by the number of 

external dependencies and external dependents.  

This metric is an indicator of the package's resilience to change. A value of zero 

indicates a completely stable package (as its classes don’t refer to classes belonging to 

other packages, therefore the package is completely self-contained) and a value of one 

indicates a completely instable package (as its classes only refer to external types); 

- Distance from the main sequence [Mar95]: abstractness (A) and instability (I) are strictly 

related metrics. Given the graph depicted in Figure 6.6, two core categories of 

packages can be identified: those being totally composed by abstract entities and 

stable (represented by the (0, 1) point in the diagram), and those that contain only 

concrete entities and are completely instable (represented by the (1, 0) point in the 

diagram). 

 

 
 

Figure 6.6 – The relationship between abstractness and instability: the main sequence 

 

Obviously, not all of the packages of a system can belong to one of these two positions, 

as they generally have different degrees of abstractness and instability values. 

For example, a package with A = 0 and I = 0 is highly stable and totally concrete. Such 

packages are not desirable, as they are rigid, hence they cannot be extended as they 

are not abstract. They are also difficult to change, due to their stability. 

Packages with A = 1 and I = 1 are not desirable as well, as they are totally abstract, but 

with no dependents, hence the abstractions are impossible to be extended. 

A package with A = 0.5 and I = 0.5 is partially extensible and partially stable, so that 

the extensions are not subject to maximal instability. Martin states that the package 
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stability is in balance with its abstractness. In Figure 6.5, the line connecting the (0, 1) 

and (1, 0) points represents those packages whose abstractness is balanced with 

stability. This line is called the main sequence. As it is desirable for packages being as 

close as possible to the main sequence, Martin defines the (normalized) distance from 

the main sequence as D = |Abstractness + Instability – 1|. Values for this metric range in 

the interval [0, 1]. The more a package has a D value close to zero, the more it is near 

to the main sequence and hence well balanced. The engineers can therefore focus on 

those packages with a D value not near to zero, as they are the first candidates to be 

reanalyzed and restructured. 

- Bonding [SA4J]: it indicates how well the classes within the package are connected with 

one another, and can be obtained by dividing the number of local dependencies by the 

total number of dependencies, both local and external.  

This metric gives an idea of how much a certain class exploits the functionalities 

provided by the other classes belonging to the same package: if it equals to 1, the class 

lends itself only on classes of the same package. 

- Link density [SA4J]: it indicates the mean number of relationships among classes within 

the package, giving an indication of how strong these relationships are; it is obtained 

dividing the number of local dependencies and dependents by the total number of 

types contained in the package. 

 

Figure 6.7 reports a sample of the metrics computed through MARPLE SAR on the classes 

belonging to JHotDraw’s org.jhotdraw.figures  package. For a focused exploitation, 

users may right click on a package or a type and evaluate the metrics only for that entity.  

 

 
 

Figure 6.7 – The metrics computed on the classes of a JHotDraw package 
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Many other metrics could actually be calculated following our approach based on micro-

structures. Anyway, we decided to focus on this set of metrics for different reasons. First 

of all, we are interested in pursuing activities related to the architecture of a system. Basic 

object-oriented metrics, like for example the number of attributes (NOA) or methods 

(NOM) of a class [LK94], if considered stand-alone, don’t provide very interesting 

information about the architecture of a system and its modules. This because these metrics 

are generally focused in evaluating the characteristics of single classes, and don’t consider 

the system (or part of it) in its overall structure. To obtain some usable information about 

the structure of a system they need to be combined with other metrics, and adequately 

analyzed and interpreted [KB04]. 

On the other hand, the metrics we consider (the dependencies, dependents and their 

derived metrics) are in their nature focused on the structure of a system, as they are 

computed on single types or packages, but depending on the entities connected to these 

types or packages. They automatically provide a sort of structured information that can be 

more easily exploitable and can be more useful during the evaluation of the architecture of 

a software system. 

 

 

6.2.3. Structural antipatterns 

 

Given the number of local and external dependencies and dependents, six structural 

antipatterns [SA4J] can be identified: 

 

- Local breakable: a local breakable is a class with many local dependencies. Local 

breakables have excessive responsibility within the system, and can be typically 

recognized by the presence of many long methods (even if the local dependencies 

metric can be used as well). The presence of breakables makes the code very difficult 

to understand, to maintain, and to reuse; 

- Global breakable: a global breakable is a type that is often affected when any other entity 

within the system is changed, due to the high number of external dependencies it has. 

Global breakables are to be avoided, as they indicate fragility and lack of modularity 

in the system; 

- Local butterfly: local butterfly is a type that has many local dependents. If a local 

butterfly is changed, these changes often have an important impact on the rest of the 

package. Hence, local butterflies are allowed only for either basic system interfaces or 

utility classes; 

- Global butterfly: a global butterfly is a type with many global dependents. If a global 

butterfly is changed, this produces heavy consequences on the rest of the system. 
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Therefore, as in the local case, global butterflies should only be either basic system 

interfaces or utility classes; 

- Local hub: a local hub is a type that has many immediate dependencies and many 

immediate dependents. Therefore, it is both a local breakable and a local butterfly at 

the same time. Local hubs have too many responsibilities within the system, and also 

serve as utility components. Hubs make the code difficult to understand, to maintain, 

and to reuse, and they also make the code itself unstable; 

- Global hub: a global hub is a type with many global dependencies and many global 

dependents. Therefore, it is both a global breakable and a global butterfly. If a 

modification within a system occurs, a global hub is often consequently affected. Being 

a global butterfly, it also affects a significant part of the system if it changes. Global 

hubs indicate fragility and lack of modularity in the system. 

 

A class is considered a breakable (resp. butterfly or hub) if it has at least ten dependencies 

(resp. dependents or both) with other classes. A further improvement will consider the 

number of dependencies and dependents with respect to the number of types composing 

the single package or the global system. In fact, it seems sensible to assert that a class 

belonging to a package containing, for example, ten classes, which presents ten local 

dependencies is far more critical than a class having the same ten local dependencies, but 

spread in a larger package, with for example a hundred or more classes. 

Just as an example, Figure 6.8 reports a sample global breakable class, identified in 

JHotDraw 6.0b1. The detection of these structural antipatterns helps the engineers to 

identify the components of a system that are critical in terms of their structure, i.e. in terms 

of their number of outgoing and incoming relationships with the rest of the system. 

 

 
Figure 6.8 – A global breakable class, detected in JHotDraw 6.0b1 

 

These complex components are to be considered as the first candidates for a structural 

refactoring. Re-engineering these entities results in having a more stable and self 
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contained system. Currently, the tool doesn’t provide a functionality to get all the detected 

structural antipatterns at a glance. Anyway, the user may refer to the metrics tables related 

to classes, individuate those classes presenting a high number of dependents and 

dependencies, and consequently focus on them. As an example, Figure 6.9 report the 

metrics computed on some classes belonging to the org.jhotdraw.standard  package. 

 

 
 

Figure 6.9 – Metrics computed on some classes belonging to the org.jhotdraw.standard package 

 

Consider the AbstractCommand  and StandardDrawingView  classes. According to the 

antipatterns definitions provided before and to the dependencies and dependents values 

obtained on them, they respectively should be a local and global butterfly, and a local and 

global breakable. This can be verified by analyzing the Class extended view, where these 

classes are correctly tagged with the corresponding antipatterns (Figures 6.10 and 6.11). 

 

 
 

Figure 6.10 – The AbstractCommand class, instance of the local and global butterfly antipatterns 

 

 
 

Figure 6.11 – The StandardDrawingView class, instance of the local and global breakable antipatterns 
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6.3. Micro patterns for SAR 

 

In the context of software architecture reconstruction, micro patterns cannot be used to 

identify structural relationships among the classes or entities composing a system. As we 

have described in Chapter 3, micro patterns are focused on the characteristics and 

properties of single classes, with particular emphasis on the properties of their attributes 

and methods. As breakables, butterflies and hubs identify single classes needing 

restructuring, in the same way the detection of micro patterns can be exploited to identify 

classes of particular interest within the system, and classes representing possible class-

level antipatterns. In the following sub-sections we will discuss the micro patterns that are 

considered in the SAR module, motivating for their detection and their importance for 

SAR activities. 

 

 

6.3.1. Micro patterns identifying classes of particular interest 

 

Through the use of the Micro-structures detector, we are able to detect the whole set of 

micro patterns by analyzing the source code of the subject systems. For SAR purposes, we 

consider only a subset of the micro patterns that let the identification of types of particular 

interest possible. The considered micro patterns are Function pointer, Function object, 

Immutable, Canopy, Data manager, Sink and Outline. We now motivate for their 

consideration and for their importance for the reconstruction of software architectures. For 

some micro patterns, a direct correspondence with the values assumed by the 

dependencies and dependents of classes has been noticed. We will indicate and motivate 

the results on the experimentations pursued on JHotDraw 6.0b1. 

 

Function pointer 

Definition: Function pointer classes are those classes presenting only one public instance 

method, and no fields. They represent the equivalent of a function pointer in a procedural 

programming language, and can therefore be used to make an indirect polymorphic call to 

that method.  

Relevance for the detection: we can state that these classes play a limited role in the 

architecture as classes themselves, as they are not characterized by any state, due to the 

lack of fields. They can be considered as a filter on the set of classes composing a system: 

as they don’t play any particular role within the architecture, the engineers can 

concentrate on other parts of the system. 
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Function object 

Definition: Function object classes have a single public instance method, but, differently 

from the function pointers, they actually have a state, represented by a set of fields. 

Therefore, instances of the Function object micro pattern can store parameters to the main 

method of the class.  

Relevance for the detection: it has been experimented [GM05] that this micro pattern matches 

many classes that are event handlers, passed as callback hooks in, for example, the AWT 

and Swing libraries. The identification of instances of this micro pattern helps the engineer 

to identify these peculiar classes, allowing to deal with the event-handling classes of the 

system. 

 

Immutable 

Definition: an Immutable class is a class whose fields are only changed by its constructors, 

therefore only once.  

Relevance for the detection: this micro pattern is considered relevant as it establishes a strong 

condition on the fields assignment: as they can only be changed by the constructors, the 

declaring classes have a limited impact with the rest of the system. However, no direct 

correlation with the dependencies and dependents of Immutable classes has been noticed, 

as also demonstrated by the sample results provided in Table 6.4. Values for dependencies 

and dependents vary among the Immutable classes detected in the considered package, 

not differently from what happens while considering another set of classes not 

implementing the Immutable micro pattern. 

 

Class Local dependencies Local dependents 
External 

dependencies 

External 

dependents 

GroupFigure 1 1 8 1 

ElbowConnection 4 0 10 5 

PolyLineHandle 2 2 4 1 

InsertImageCommand 1 0 2 2 

NumberTextFigure 1 0 1 2 

LineFigure 1 0 0 7 

 

Table 6.4 – Relationships between sample instances of the Immutable micro pattern  

and the dependencies/dependents values 

 

Canopy 

Definition: a Canopy is a class with one instance field that can be changed only by the class 

constructors.  
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Relevance for the detection: the same considerations traced for the Immutable micro pattern 

can be applied also to the Canopy micro pattern, also as far as dependencies and 

dependents metrics are concerned. 

 

Data manager 

Definition: a Data manager class is a class whose methods are all setters or getters.  

Relevance for the detection: the detection of these classes allows for the identification of 

classes whose objective is exclusively being a repository for data and managing these data. 

The detected Data manager instances are characterized by a low number of dependencies, 

as shown in Table 6.5. This indicates that these classes are generally self-contained, 

without the need of making references to other classes. 

 

Class 
Local 

dependencies 

Local 

dependents 

External 

dependencies 

External 

dependents 

FastBufferedUpdateStrategy 0 0 7 1 

JHotDrawException 0 0 1 0 

JHotDrawRuntimeException 0 1 1 10 

Clipboard 0 0 0 3 

WindowMenu.ChildMenuItem 0 2 1 0 

CTXWindowMenu.ChildMenuItem 0 2 1 0 

CommandCheckBox 1 1 2 1 

DesktopEvent 0 1 1 1 

 

Table 6.5 – Relationships between sample instances of the Data manager micro pattern 

and the dependencies/dependents values 

 

Sink 

Definition: a Sink is a class whose methods do not propagate any call to any other method. 

Relevance for the detection: the ambit of these classes is limited, they usually have a low 

number of dependencies, but may have a large number of dependents.  

 

Class 
Local 

dependencies 

Local 

dependents 

External 

dependencies 

External 

dependents 

NullTool 1 0 0 2 

AWTCursor 0 5 2 1 

NullPainter 0 0 1 0 

FigureChangeAdapter 0 0 1 2 

ColorEntry 0 1 0 0 

PaletteIcon 0 0 1 2 

ResourceManagerNotSetException 0 1 1 0 

 

Table 6.6 – Relationships between sample instances of the Sink micro pattern 

and the dependencies/dependents values 
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The low number of dependencies has also been demonstrated in practice, as it can be 

noticed by the results provided in Table 6.6. As it can be noticed, the maximum number of 

local dependencies detected on a Sink class is 1. This occurred only for one class, while for 

the remaining instances the number of local dependencies is zero. 

 

Outline 

Definition: an Outline class is a class for which at least one method invokes an abstract 

method declared in the same class.  

Relevance for the detection: as the name suggests, their aim is to give an outline to a 

particular algorithm, specifying its main operations without going in the details of their 

implementation. This is also the aim of the Template method design pattern [GHJV94]: the 

Outline micro pattern can be considered a hint for its detection. The existence of Outline 

classes let assume that there exist subclasses extending it, and therefore better specifying 

the algorithm implementation by overriding the abstract method. This has been practically 

demonstrated on JHotDraw 6.0b1, as reported in Table 6.7, where we can notice that each 

Outline instance presents at least one local or external dependent. 

 

Class 
Local 

dependencies 

Local 

dependents 

External 

dependencies 

External 

dependents 

AbstractLineDecoration 2 1 6 0 

ActionTool 1 0 3 1 

AbstractFigure 4 3 9 24 

ChangeConnectionHandle 3 2 9 0 

ChangeConnectionHandle.UndoActivity 0 3 4 0 

AutoscrollHelper 0 0 0 2 

DNDHelper 2 2 2 1 

 

Table 6.7 – Relationships between sample instances of the Outline micro pattern 

and the dependencies/dependents values 

 

The existence of dependents for classes implementing the Outline micro pattern allows us 

to make an interesting consideration. Outline classes are necessarily abstract classes, by the 

same definition of the Outline micro pattern. Having dependents for such classes grants 

that an implementation of the abstract method is provided, consequently also obtaining a 

correct implementation of the template method pattern. The consideration could be 

extended to abstract classes and interfaces in general. It is desirable that these types 

present at least one dependent type. This would grant us that abstract classes and 

interfaces are actually used within the system, providing a mean for their extension. 
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There are two reasons for which the remaining micro patterns are not considered for SAR. 

First of all, they may capture information that is already captured (even if in different 

forms) by EDPs. Or else, they represent types that are of scarce interest from a structural 

point of view, with no very peculiar characteristics. 

 

 

6.3.2. Object-oriented antipatterns 

 

Four of the defined micro patterns are devoted to the identification of classes whose 

implementation is far from the object-oriented paradigm. We can define them as a sort of 

object-oriented antipatterns, and, even if it has been demonstrated that their presence 

inside real systems is generally scarce [GM05], their identification lets the engineers focus 

on these classes in order to solve the issues and problems they present. The four micro 

patterns representing antipatterns are the following. 

 

Cobol like 

Definition: Cobol like classes are classes with a single static method, one or more static 

variables, but no instance methods or fields.  

Relevance for the detection: the programming style represented by this micro pattern is far 

away from object orientation. This micro pattern can be mainly detected in those main 

classes developed by beginner programmers, even if also well established systems and 

libraries may present instances of it. 

 

Pool 

Definition: a Pool is a class which declares only static final fields, but no methods.  

Relevance for the detection: Pool classes are considered antipatterns as they can be generally 

implemented as interfaces. In [Blo01] it is known as the “constant interface antipattern”. 

 

Pseudo class 

Definition: a Pseudo class is a class with no instance fields, and no concrete methods. 

Within it, only static fields and abstract methods are allowed.  

Relevance for the detection: this kind of classes constitutes an antipattern as they can be 

rewritten as interfaces, therefore they are good candidates for an easy refactoring. 

 

Record 

Definition: a Record is a class in which all fields are public, and no methods are declared 

(other than constructors and those methods inherited from java.lang.Object ).  
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Relevance for the detection: instances of the Record micro pattern look very similar to Pascal 

record types. Such classes run against the encapsulation principle of object orientation, 

according to which fields should be declared private (or protected) and accessed by 

appropriate getter and setter methods (as it happens, for example, with data manager 

classes). 

 

The detection of these micro patterns has two main advantages. First of all, if detected, 

they can be refactored according to the object-oriented paradigm, in order to fully comply 

with the rest of the system. On the other hand, their absence can be considered as an 

indication of good system quality, as it demonstrates that the system has been designed 

and implemented correctly following the object-oriented directives. 

 

 

6.4. Considerations about the detection of software antipatterns and other 

defects 

 

As we have outlined, in our approach for the reconstruction of software architectures we 

are also interested in the identification of some antipatterns (namely structural and object-

oriented antipatterns) in the analyzed system. 

We think that the identification of antipatterns or other kinds of design or programming 

defects is useful in the context of SAR activities for different reasons. First of all, their 

detection allows the engineers having an immediate understanding of the critical points of 

the systems, leading them to a focused and precise intervention on the identified problems 

in order to solve them in the most effective way. Detecting and consequently solving these 

issues will therefore improve the quality of the analyzed system and its maintenance. 

Besides the structural and object-oriented antipatterns considered in our approach, several 

other categories of antipatterns have been presented in the literature. The most prominent 

categorization of antipatterns is proposed by Brown [BMMM98], who distinguishes 

among development, architecture and management antipatterns. These antipatterns cover 

various aspects of software development, like issues related to the development and 

management team to problems more strictly related to the implementation and to the 

modules composing a software system. To our current knowledge, few tools for the 

detection of some of these antipatterns currently exist. One of them is Analyst4j [A4J], a 

commercial tool devoted to the identification of the Blob, Spaghetti code and Swiss army 

knife antipatterns (refer to [BMMM98] for their definition). With respect to Brown’s or 

other kinds of antipatterns, a set of elements representing simpler design or programming 

defects is constituted by code smells [Fow99]. A code smell is any symptom in the source 
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code of a system that possibly indicates a deeper issue, and can be seen as ineffective 

solutions to reccuring implementation problems. Even if they may look similar to software 

antipatterns, they actually differ from them for different aspects. First of all smells 

generally have a limited impact in the context of single classes, while antipatterns may 

involve also groups of classes. They are focused on the identification of bad programming 

practices, while antipatterns may also consider design or management issues. Smells seem 

to have a direct correlation to particular values of software metrics, which make them 

somehow more easily detectable from subject systems with respect to software 

antipatterns. 

Even if antipatterns and smells are actually different elements, strict correlations have 

been pointed out by some researchers. In [MGD+09a, MGD+09b], Moha et al. provide a 

taxonomy in which some development antipatterns are related to the code smells which 

are exploited for their identification. They proposed an approach (DECOR) and a related 

technique (DETEX) for the identification of code smells and related antipatterns, basing on 

the computation of ad-hoc metrics. Through their approach, they identify the Blob, 

Functional decomposition, Spaghetti code and Swiss army knife antipatterns [BMMM98] 

and they provide experimental results about their detection on 11 open source Java 

systems. 

Different other approaches and tools for smell detection have been implemented. We now 

cite some examples which are not exhaustive of the current literature, but which give an 

overall idea of the current approaches and available tools for the detection of these 

elements. Marinescu [Mar04] defined detection strategies for the identification of ten 

common design flaws. These strategies are based on combinations of metrics whose values 

can be indicators of the presence of flaws in the analyzed systems. Chatzigeorgiou and 

Tsantalis implemented JDeodorant [JDeo], an Eclipse plugin which is able to detect (and 

also solve) the Feature envy [TC09a, TC09c] and the Type checking [TC09b] smells, by 

respectively applying Move method refactoring and polymorphism exploitation. Other 

tools concerned with smell identification are for example FindBugs [FindBugs], which is 

devoted to the detection of bugs related to the correctness and the performances of Java 

systems, and PMD [PMD], which allows for the identification of bugs (like empty try-catch 

or switch statements), dead code, complicated expressions as well as duplicate code in 

Java systems. 

These are only a sample of the available approaches. As it can be noticed, research in this 

field is lively active. Many tools for smell identification have been implemented, but (as 

we have seen) the same cannot be stated as far as antipatterns are concerned. 

We shall observe that none of these tools is currently integrated in any SAR framework. 

For the future, it is hopefully expected that SAR tools will provide antipatterns and/or 
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smell identification capabilities, as they are of great support for the reengineering and 

maintenance processes. 

 

 

6.5. Concluding remarks 

 

In this chapter we have described how the micro-structures (and in particular the EDPs 

and micro patterns) are currently exploited for architecture reconstruction and software 

analysis capabilities. EDPs have been exploited in order to generate views on the analyzed 

systems, both on packages (through the Package view) and on classes (through the Class 

compact and Class extended view). Through the analysis of EDPs, it is possible to 

compute a set of common object oriented and quality metrics, which help the engineers in 

analyzing the complexity of the subject systems and consequently focusing on those 

components and modules that expose criticalities. This process is also supported by the 

detection of structural antipatterns, which are represented by types with a high number of 

dependencies and/or dependents with other entities. A set of object-oriented antipatterns 

is also detectable through micro patterns. In this case, the engineer can analyze those 

classes whose implementation is not compliant with the object-oriented principles, 

violating encapsulation and limiting the possibility of extension or reuse of the affected 

classes. Several other micro patterns can be detected through our SAR module, that depict 

peculiar classes which the engineers can be interested in. For some of them, correlations 

with particular metrics values have been underlined and inspected along the chapter. 
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Chapter 7 

 

A novel interpretation  

of micro patterns 

 

 
Abstract 

 

In this chapter we reconsider micro patterns and we suggest a novel approach to their detection aimed to identify classes 

that are very close and similar to a correct micro pattern implementation, even if some of the methods and/or attributes 

of the class do not comply with the constraints defined by the micro pattern. The new interpretation is based on two 

common object oriented metrics, namely the number of attributes (NOA) and the number of methods (NOM) of a class. 

Among the various advantages of this approach, the identification of classes or interfaces similar to micro patterns 

allows for example the analysis of software systems along various releases (checking if and how the nature of the 

attributes and/or methods of a class has changed), as well as the identification of possible critical classes that can’t be 

detected with a precise matching approach. 

 

 

 

7.1. Motivation 

 

We now recall some concepts related to micro patterns that have already been presented, 

but that are useful in order to understand the motivations behind a new interpretation of 

these micro-structures. We let the reader refer to [GM05] to have a complete description of 

micro patterns. 

Micro patterns have been defined as a set of class-level traceable patterns. Three concepts 

are related to this definition: 

 

- being class-level: each micro pattern stands at the class abstraction level, i.e. it captures 

characteristics about single classes, which can be derived exclusively from the analysis 

of their methods and attributes; 
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- being traceable: a code structure is said to be traceable if it is mechanically recognizable 

from the analyzed systems, or, more formally, “it can be expressed as a simple formal 

condition on the attributes, types, name and body of a software module and its 

components” [GM05]; 

- being patterns: their aim is to capture some programming techniques that are very 

common in particular among Java developers. 

 

Although the definition of the 27 micro patterns (as proposed by Gil and Maman) 

followed a rigorous and well established process, in our opinion these elements may 

encounter some drawbacks. 

First of all, the definition of some micro patterns is ambiguous. For example, consider the 

Data manager micro pattern, which belongs to the Data managers micro pattern category. 

This elements has been defined as: 

 

- Data manager: a class where all methods are either getters or setters; 

 

A question arises here: what kind of methods should be considered as getters or setters? 

Are setter methods only those methods which contain only one statement that assigns an 

input parameter to a variable of the class? Or may they contain other statements and 

operations? In the same way, are getter methods only those methods which contain only 

one statement returning a field of the class, or may they contain other statements? This 

kind of ambiguity is not resolved in the original catalogue. We tried to solve this problem 

in Chapter 3, where getter and setter methods are considered as code atoms, and they are 

constituted only by one statement, which sets or correspondently returns a field of a 

certain class. 

A second issue related to micro patterns is that all of them are placed at the class 

abstraction level. Each micro pattern definition begins with “A class/interface that…”: this 

characteristic make it compulsory to analyze each class in general, considering the whole 

set of attributes and methods, in order to understand if the constraints expressed on each 

micro pattern are satisfied. As we have seen, other kinds of micro-structures are placed at 

lower abstraction levels, like single attributes or methods. Hypothetically considering 

micro patterns defined not on classes, but on the attributes and/or methods of a class, we 

may have more precise and focused definitions. For example, the Data manager micro 

pattern could be placed at the method detail level, hence it would not be defined as “a 

class where all methods are either getters or setters”, but could be seen as “a method 

which is either a getter or a setter”. 

A third problem of micro patterns is strictly related to the previous one: micro patterns are 

in our opinion too much restrictive. In general, given a type (i.e. either a class or interface) 
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T, T is an instance of the micro pattern MP if and only if the whole set of methods and/or 

attributes of T satisfies the constraints specified for MP. This means that, if a type that is a 

correct realization of a micro pattern MP is even slightly modified introducing some code 

elements that don’t comply with the specifications for MP, the type won’t be considered 

an instance of MP anymore. For example, consider again the Data manager micro pattern. 

Its definition states that all methods are either getters or setters. Given a class implementing 

the Data manager micro pattern, and adding to it a method that is neither a setter nor a 

getter, the class is not to be considered a correct instance of the micro pattern. In the same 

way, there may exist in a system many classes whose largest part of methods is formed by 

setters and/or getters. These observations can obviously be extended to all the other micro 

patterns. Hence, we assert that inside a software system there are potentially numerous 

types presenting micro pattern flavours, i.e. types that look very similar to some micro 

patterns, except for a restricted set of attributes and/or methods that place them at a very 

little distance from the correct micro pattern implementation [AM09b]. 

In this context, our aim is finding types that present micro pattern flavours, with the help 

of the number of attributes (NOA) and number of methods (NOM) metrics [LK94]. These 

metrics generally take into account both static and non-static members of a given type. It is 

worth notice that these two metrics considered stand alone don’t give really important 

information about the complexity or quality of a system. Indeed, they are focused on 

single classes, whose complexity or quality cannot be objectively evaluated only through 

the use of these (or other) simple metrics. Generally, such basic metrics have to be 

combined and contextualized, in order to achieve a better general understanding of single 

classes or of the overall analyzed system as well [KB04]. 

The detection of micro pattern flavours has two main advantages. First of all, the 

identification of types presenting micro pattern flavours will obviously lead to the 

detection of much more instances with respect to the exact ones. It will be noticed, thank 

to the definition of ad-hoc similarity measures, that many of the newly detected instances 

are similar to the desired micro patterns with rates often larger than 80%. The detection of 

these instances helps to identify a larger number of system parts that may need to be 

changed in order to solve design or programming issues (as for example in the case of the 

antipatterns already considered in Chapter 6, Section 6.3.2), or simply improved (for 

example by making them exactly compliant to a micro pattern definition, in the case the 

micro patterns they implement represent good programming practices). Moreover, the 

identification of types which present micro pattern flavours allows the analysis of 

software systems along various releases; the engineers can check if and how the nature of 

the attributes and/or methods of a class has changed between two different releases of the 

analyzed systems, making considerations about the eventual improvement of the system 

stability and quality. 
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7.2. A new interpretation of micro patterns based on NOA and NOM 

metrics 

 

In order to allow the detection of types presenting micro pattern flavours through a 

similarity-based approach, we first propose a different categorization of micro patterns in 

three groups. If we consider the definitions provided for the micro patterns, we notice that 

each of them is based on one of the following three aspects: 

 

- The analysis of the attributes belonging to a type; 

- The analysis of the methods declared within a type; 

- The analysis of both attributes and methods that characterize a type; 

 

We define the set A as the set of micro patterns that can be identified by only analyzing the 

attributes of a type. Starting from [GM05] and from the definitions provided in Chapter 3, 

this set is clearly defined as A = {Stateless, Common state, Immutable, Box, Compound 

box, Canopy, Trait}. 

We define the set M as the set of micro patterns that can be identified by analyzing only 

the methods declared within a type. Therefore, M = {Data manager, Sink, Outline, State 

machine, Implementor, Overrider, Extender}.  

Finally, the set AM is the set containing those micro patterns that are identified by 

analyzing both the attributes and methods belonging to a certain type. Hence, AM = 

{Designator, Taxonomy, Joiner, Pool, Function pointer, Function object, Cobol like, 

Restricted creation, Sampler, Record, Pure type, Augmented type, Pseudo class}. 

These categories contain all the micro patterns, as |M| + |A| + |AM| = 7 + 7 + 13 = 27. 

Table 7.1 reports the number of elements of each of the eight categories defined by Gil and 

Maman which belong to each of the three new categories we have just defined. 

The distribution of the micro patterns inside the new three categories is not surprising, 

and is a direct consequence of the definition of each single micro pattern. 

The Degenerate state and behavior, Degenerate behavior and Controlled creation 

categories are all completely mapped in the AM set. Degenerate state and Wrappers are 

mapped in the A category, as they deal completely with a class state, which is represented 

by its attributes. Only the Inheritors set of micro patterns is completely mapped in the M 

category, the other categories whose elements belong to M have also elements that belong 

to at least another category out of A and AM. 
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Micro pattern category A M AM 

Degenerate state and behavior 0 0 4 

Degenerate behavior 0 0 3 

Degenerate state 3 0 0 

Controlled creation 0 0 2 

Wrappers 3 0 0 

Data managers 0 2 1 

Base classes 1 2 3 

Inheritors 0 3 0 

Total 7 7 13 

 

Table 7.1 – Relationships between the orginal micro pattern categories defined  

by Gil and Maman, and those based on attributes and methods 

 

As we have outlined, we want to revisit the micro patterns according to the NOA and 

NOM metrics, in order to support the detection of types presenting micro pattern flavours.  

To do so, we introduce three values: the attributes similarity ratio (ASR), the methods 

similarity ratio (MSR), and the global similarity ratio (GSR). 

For each micro pattern belonging to the A category, ASR measures the amount of 

attributes of a given type which satisfy the attributes conditions specified for that micro 

pattern, with respect to the total number of attributes declared within the type.  

For each micro pattern in M, MSR calculates the amount of methods of a given type which 

satisfy the methods conditions specified for that micro pattern, with respect to the total 

number of methods declared within the type. 

Finally, for each micro pattern in AM, GSR considers both attributes and methods as being 

homogeneous entities of a type. Therefore, GSR measures the amount of attributes and 

methods (considered altogether) of a given type which satisfy the attributes and methods 

conditions specified for the micro pattern, with respect to the total number of attributes 

and methods declared within the type. 

ASR, MSR and GSR are calculated considering the NOA and NOM of each given type, 

hence taking into account the whole set of attributes and methods that characterize each of 

them. These similarity ratios are percentage rates, and are calculated in a different way 

depending on the micro pattern of interest. Moreover, they are to be intended as an 

indication of how much a given type is similar to a certain micro pattern. The higher the 

value of these measures, the more the type is close to a correct and complete micro pattern 

realization. If a type has a similarity ratio of 100% to a certain micro pattern, the whole set 

of its attributes and/or methods satisfy the constraints specified by the micro pattern, and 

hence it is a precise instance of it. Instances with a 100% similarity ratio are therefore those 



 

131 

 

that can also be identified by the precise matching approach proposed by Gil and Maman 

[GM05]. For some micro patterns (Designator, Taxonomy, Joiner, Trait, Pure type, Pool 

and Record) we specify an upper bound of 3 or 5 methods and/or attributes defined by a 

type. This because we think it is too restrictive to consider only those types that do not 

define any attributes and/or methods at all. Moreover, we verified that specifying a higher 

upper bound would result in detecting a larger number of instances presenting flavours of 

these patterns, but that are of scarce interest if we consider the purpose and the 

specifications of these micro patterns. 

 

Micro pattern Conditions on attributes ASR 

Stateless  

NOA == 0 

 

NOA > 0 

1 

 

(static fileds + final fields) / NOA 

Common state 

NOA == 0 

 

NOA > 0 

0 

 

static fields / NOA 

Immutable 

NOA > 1 

 

 

Else 

Number of fields modified by constructor / NOA 

 

 

0 

Box 

NOA = 0 

 

NOA = 1 

Non-final fields == 1 

  

NOA > 1 

0 

 

1 

 

 

0 

Compound box 

NOA >= 1 

Non-primitive fields == 1 

 

NOA > 1 

Non-primitive fields > 1 

1 

 

 

1 – (Non-primitive fileds / NOA) 

Canopy 

NOA == 1 

 

 

Else 

Number of fields modified by constructor / NOA 

 

 

0 

Trait 

NOA > 5 

 

Else 

0 

 

1 – NOA / 5 

 

Table 7.2 – Attribute similarity ratios for the micro patterns based on attributes analysis 

 

Table 7.2 reports the 7 micro patterns based on attributes, and indicates how the 

correspondent ASR must be calculated in order to identify types presenting flavours of 

these micro patterns. Given the definitions of these micro patterns in [GM05], the new 

interpretation and the meaning of the similarity ratios should be straightforward. 
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Table 7.3 reports the 7 micro patterns based on methods, and indicates how the MSR is 

calculated in order to identify types presenting flavours of these micro patterns. 

 

Micro pattern Conditions on methods MSR 

Data manager  

NOM = 0 

 

NOM > 0 

0 

 

(Getter methods + setter methods) / NOM 

Sink 

NOM = 0 

 

NOM > 0 

0 

 

Propagating methods1 / NOM 

Outline 

Methods invoking an abstract  

method of the same class >= 1 

 

Else 

1 

 

 

0 

State machine 

NOM = 0 

 

NOM > 0 

0 

 

1 – parameterized methods 2/ NOM 

Implementor 

NOM = 0 

 

NOM > 0 

0 

 

Implementing methods3 / NOM 

Overrider 

NOM = 0 

 

NOM > 0 

0 

 

Overriding methods4 / NOM 

Extender 

NOM = 0 

 

NOM > 0 

1 

 

1 – overriding methods / NOM 

 

Table 7.3 – Method similarity ratios for the micro patterns based on methods analysis 

 

 

 

 

 

 

                                                           

1 A propagating method is a method which invokes at least another method within its body, either defined in 

the same class or in another type. In Table 7.3, Propagating methods represents therefore the total number of 

propagating methods detected in a class. 

2 A parameterized method is a method which defines at least one formal parameter. In Table 7.3, Parameterized 

methods is therefore the number of methods with parameters identified in a type. 

3 An implementing method is a method which overrides an inherited abstract method. In Table 7.3, 

Implementing methods represents the number of implementing methods of a class. 

4 An overriding method is a method which overrides an inherited non-abstract method. In Table 7.3, Overriding 

methods represents the number of overriding methods detected in a class. 
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Table 7.4 reports the 13 micro patterns based on both attributes and methods, and reports 

how the GSR similarity value is to be calculated for each of them. 

 

Micro pattern Conditions on attributes Conditions on methods GSR 

Designator 

NOA > 3 

 

In any case 

 

Else 

In any case 

 

NOM > 3 

 

Else 

0 

 

0 

 

((1 - NOA / 3) + (1 – NOM / 

3)) / 2 

Taxonomy 

NOA > 3 

 

In any case 

 

Else 

In any case 

 

NOM > 3 

 

Else 

0 

 

0 

 

((1 - NOA / 3) + (1 – NOM / 

3)) / 2 

Joiner 

NOA > 3 

 

In any case 

 

Else 

In any case 

 

NOM > 3 

 

Else 

0 

 

0 

 

((1 - NOA / 3) + (1 – NOM / 

3)) / 2 

Pool In any case 

NOM > 5 

 

Else 

0 

 

((1 – NOM / 5) + (static final 

fields / NOA)) / 2 

Function pointer 

NOA == 0 

 

 

Else 

NOM >= 1 

Public methods == 1 

 

Else 

1 

 

 

0 

Function object 

NOA >= 1 

 

 

Else 

NOM >= 1 

Public methods == 1 

 

Else 

1 

 

 

0 

Cobol like In any case 

Static methods == 1 

NOM == 1 

 

Static methods == 1 

 

NOM > 1 

Else 

(static methods + static 

fields) / (NOM + NOA) 

 

0 

 

(static methods + static 

fields) / (NOM + NOA) 

Restricted creation 

Static same class fields >= 1 

 

 

Else 

In any case 

Private constructors / 

constructors 

 

0 

Sampler 

Static same class fields >= 1 

 

Else 

Public constructors >= 1 

 

Else 

1 

 

0 
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Record In any case 

NOM > 5 

 

Else 

0 

 

((1 – NOM / 5) + (public 

fields /NOA)) / 2 

Pure type 

NOA > 5 

 

NOA <= 5 

Non static fields == NOA 

 

 

Else 

In any case 

0 

 

((1 – Non static fields /5) + 

(abstract methods / NOM)) / 

2 

 

0 

Augmented type 

Static final same class fields 

>= 3 

 

Else 
In any case 

(1 + abstract methods / 

NOM) / 2 

 

((Static final same class 

fields / 3) + (abstract 

methods / NOM)) / 2 

Pseudo class In any case In any case 

(abstract methods + static 

methods + static fields) / 

(NOM + NOA)  

 

Table 7.4 – Global similarity ratios for the micro patterns based on both attributes and methods analysis 

 

 

7.3. Experimental results 

 

To prove the importance of detecting not only classes that exactly match the micro 

patterns definitions, but also those containing relevant micro pattern flavours, we 

identified instances of micro patterns and micro pattern flavours on the Java systems 

reported in Table 7.5. 

 

System and version Description Number of packages Number of types 

Ant 1.5.2 

Java-based build tool 

56 724 

Ant 1.6.2 67 951 

Ant 1.7.1 72 1130 

JHotDraw 5.1 

GUI framework 

11 172 

JHotDraw 6.0b1 30 544 

JHotDraw 7.1 44 718 

Apache Lucene 1.4.3 
Text search engine 

library 

24 294 

Apache Lucene 1.9 25 459 

Apache Lucene 2.0 24 399 

Total  437 5391 

 

Table 7.5 – An overview of the analyzed systems 
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For each system, we considered three different releases in order to let a comparison about 

the evolution of micro patterns throughout different releases be possible. 

The following tables report the results of the micro patterns detection on the analyzed 

systems. Besides reporting the name of each micro pattern, the tables are divided into two 

main sections. The first half indicates the precise matching results: i.e. for each micro 

pattern and for each system release, it reports the number of exact detected instances, as 

well as the percentage of types implementing the micro pattern with respect to the total 

number of types constituting the subject system release. The second part reports the 

number of types (and their percentage with respect to the overall system) whose similarity 

ratio (i.e. ASR, MSR or GSR, depending on the considered kind of micro pattern) with the 

correspondent micro pattern is at least 80%. We consider 80% as an acceptable lower-

bound threshold, as it allows the detection of those instances that are mostly closed to the 

correct micro patterns implementation. 

Table 7.6 to 7.8 report the results obtained on the analysis of Ant, respectively about the 

micro patterns based on attributes, those based on methods, and those based on both 

attributes and methods. 

As far as the micro patterns based on attributes are concerned, their distribution in the 

three releases remains quite constant, both for the precise matching instances and for the 

classes presenting micro pattern flavours. A considerable number of classes (around 30%) 

are Stateless classes, i.e. their attributes are uniquely both static and final. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 

No. % No. % No. % No. % No. % No. % 

Box 130 18,0% 157 16,5% 177 15,7% 5 0,7% 4 0,4% 7 0,7% 

Canopy 13 1,8% 12 1,3% 16 1,4% 0 0,0% 0 0,0% 0 0,0% 

Common state 39 5,4% 57 6,0% 104 9,2% 9 1,2% 11 1,2% 16 1,7% 

Compound box 140 19,3% 162 17,0% 195 17,3% 7 1,0% 7 0,7% 11 1,2% 

Immutable 20 2,8% 18 1,9% 16 1,4% 1 0,1% 2 0,2% 1 0,1% 

Stateless 206 28,5% 285 30,0% 356 31,5% 8 1,1% 9 0,9% 16 1,7% 

Trait 2 0,3% 5 0,5% 6 0,5% 9 1,2% 13 1,4% 18 1,9% 

 

Table 7.6 – Micro patterns based on attributes: detection results on three releases of Ant 

 

Also the micro patterns based on methods (Table 7.7) don’t undergo any particular 

evolution. In this case, it is relevant the presence of many classes presenting flavours of the 

Extender micro pattern, while fewer are precise implementations of it. This means that 

there is a considerable number of classes (around 20%) within Ant which override only a 

small part of the inherited methods, while an exact implementation of the Extender micro 

pattern would not override any inherited method. 
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Precise matching Similarity matching (at least 80%) 

Micro pattern 
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 

No. % No. % No. % No. % No. % No. % 

Data manager 34 4,7% 45 4,7% 49 4,0% 16 2,2% 21 2,2% 22 1,9% 

Extender 60 8,3% 85 8,9% 108 7,5% 143 19,8% 188 19,8% 211 18,7% 

Implementor 46 6,4% 59 6,2% 50 5,2% 0 0,0% 0 0,0% 1 0,1% 

Outline 10 1,4% 14 1,5% 20 1,2% 0 0,0% 0 0,0% 0 0,0% 

Overrider 17 2,3% 28 2,9% 41 2,5% 1 0,1% 3 0,3% 5 0,4% 

Sink 39 5,4% 53 5,6% 55 4,7% 9 1,2% 10 1,1% 9 0,8% 

State machine 3 0,4% 3 0,3% 7 0,3% 1 0,1% 1 0,1% 1 0,1% 

 

Table 7.7 – Micro patterns based on methods: detection results on three releases of Ant 

 

As far as the third category of micro patterns is concerned (those based on both attributes 

and methods, reported in Table 7.8), we can notice how the number of Function objects 

increases as well as the Function pointer instances decrease. 

No other particular evolutions are to be noticed. There are very few instances of the four 

micro patterns devising antipatterns (i.e. Cobol like, Pool, Pseudo class and Record), hence 

the system seems to be well implemented according to the object-oriented paradigm. 

Anyway, there are also some classes presenting considerable flavours of the Pool and 

Record micro patterns, that will probably need to be further inspected. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 Ant 1.5.2 Ant 1.6.2 Ant 1.7.1 

No. % No. % No. % No. % No. % No. % 

Augmented type 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

Cobol like 10 1,4% 13 1,4% 17 1,5% 2 0,3% 3 0,3% 9 0,8% 

Designator 1 0,1% 4 0,4% 4 0,4% 17 2,3% 23 2,4% 31 2,7% 

Function object 40 5,5% 54 5,7% 86 7,6% 0 0,0% 0 0,0% 0 0,0% 

Function pointer 76 10,5% 93 9,8% 74 6,5% 0 0,0% 0 0,0% 0 0,0% 

Joiner 1 0,1% 3 0,3% 3 0,3% 0 0,0% 0 0,0% 0 0,0% 

Pool 1 0,1% 2 0,2% 5 0,4% 15 2,1% 25 2,6% 50 4,4% 

Pseudo class 0 0,0% 1 0,1% 1 0,1% 0 0,0% 0 0,0% 0 0,0% 

Pure type 34 4,7% 46 4,8% 59 5,2% 2 0,3% 2 0,2% 3 0,3% 

Record 8 1,1% 10 1,1% 10 0,9% 9 1,2% 16 1,7% 25 2,2% 

Restricted creation 1 0,1% 1 0,1% 2 0,2% 0 0,0% 0 0,0% 0 0,0% 

Sampler 0 0,0% 0 0,0% 5 0,4% 0 0,0% 0 0,0% 0 0,0% 

Taxonomy 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

 

Table 7.8 – Micro patterns based on both attributes and methods: detection results on three releases of Ant 

 

Table 7.9 to 7.11 report the results obtained on the analysis of three different releases of 

JHotDraw. 
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A considerable amount of Box, Compound box and Stateless instances are found in all the 

releases. It should be noticed that there are very few classes which are similar to micro 

patterns, most of the found instances precisely match with the specifications. On one hand, 

this can be an indication of a well-structured and implemented system, where each single 

class seems to be designed to fully comply with the micro pattern specifications. On the 

other hand, we can assert that the definition of micro patterns is actually able to well 

capture programming practices, codifying classes whose structure is commonly present in 

well developed systems. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 

No. % No. % No. % No. % No. % No. % 

Box 35 20,3% 70 12,9% 91 12,7% 0 0,0% 1 0,2% 0 0,0% 

Canopy 13 7,6% 22 4,0% 6 0,8% 0 0,0% 0 0,0% 0 0,0% 

Common state 11 6,4% 22 4,0% 92 12,8% 0 0,0% 2 0,4% 1 0,1% 

Compound box 51 29,7% 258 47,4% 100 13,9% 0 0,0% 0 0,0% 0 0,0% 

Immutable 15 8,7% 24 4,4% 20 2,8% 0 0,0% 1 0,2% 1 0,1% 

Stateless 57 33,1% 160 29,4% 235 32,7% 0 0,0% 2 0,4% 1 0,1% 

Trait 2 1,2% 6 1,1% 8 1,1% 3 1,7% 3 0,6% 8 1,1% 

 

Table 7.9 – Micro patterns based on attributes: detection results on three releases of JHotDraw 

 

Differently from what happened with Ant, the three releases actually underwent 

important evolutions and modifications, as proved by the changes in the micro pattern 

percentages along the releases. This is also demonstrated by the heavily different number 

of types that constitute each release, and by the different structure of packages and kind of 

types each of them is composed of. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 

No. % No. % No. % No. % No. % No. % 

Data manager 3 1,7% 8 1,5% 3 0,4% 0 0,0% 0 0,0% 3 0,4% 

Extender 7 4,1% 22 4,0% 49 6,8% 1 0,6% 20 3,7% 12 1,7% 

Implementor 0 0,0% 0 0,0% 0 0,0% 0 0,0% 3 0,6% 2 0,3% 

Outline 5 2,9% 7 1,3% 15 2,1% 0 0,0% 0 0,0% 0 0,0% 

Overrider 10 5,8% 32 5,9% 39 5,4% 5 2,9% 6 1,1% 12 1,7% 

Sink 25 14,5% 34 6,3% 61 8,5% 1 0,6% 3 0,6% 17 2,4% 

State machine 2 1,2% 7 1,3% 4 0,6% 0 0,0% 1 0,2% 1 0,1% 

 

Table 7.10 – Micro patterns based on methods: detection results on three releases of JHotDraw 
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Similar considerations can be made while analyzing the other two categories of micro 

patterns. Once again, we can notice how very few instances present micro pattern 

flavours, being a hint for a well-designed system. This is also evident by the scarce 

presence of the Cobol like, Pool, Pseudo class and Record micro patterns: their absence 

justify for a system which is strictly developed according to the object-oriented principles. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 JHotDraw 5.1 JHotDraw 6.0b1 JHotDraw 7.1 

No. % No. % No. % No. % No. % No. % 

Augmented type 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

Cobol like 2 1,2% 4 0,7% 12 1,7% 0 0,0% 1 0,2% 1 0,1% 

Designator 0 0,0% 3 0,6% 1 0,1% 5 2,9% 8 1,5% 6 0,8% 

Function object 10 5,8% 16 2,9% 64 8,9% 0 0,0% 0 0,0% 0 0,0% 

Function pointer 15 8,7% 29 5,3% 21 2,9% 0 0,0% 0 0,0% 0 0,0% 

Joiner 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

Pool 0 0,0% 0 0,0% 17 2,4% 6 3,5% 9 1,7% 20 2,8% 

Pseudo class 0 0,0% 2 0,4% 1 0,1% 0 0,0% 0 0,0% 0 0,0% 

Pure type 18 10,5% 41 7,5% 45 6,3% 0 0,0% 0 0,0% 0 0,0% 

Record 1 0,6% 1 0,2% 15 2,1% 0 0,0% 1 0,2% 22 3,1% 

Restricted creation 1 0,6% 2 0,4% 2 0,3% 0 0,0% 0 0,0% 0 0,0% 

Sampler 1 0,6% 5 0,9% 4 0,6% 0 0,0% 0 0,0% 0 0,0% 

Taxonomy 0 0,0% 1 0,2% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

 

Table 7.11 – Micro patterns based on both attributes and methods: detection results on three releases of JHotDraw 

 

Finally, Tables 7.12 to 7.14 indicate the results obtained on the analysis of Lucene. As it 

happened with Ant and JHotDraw, the majority of the micro patterns based on attributes 

are instances of the Box, Compound box or Stateless micro pattern. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0 

No. % No. % No. % No. % No. % No. % 

Box 88 29,9% 142 30,9% 142 35,6% 2 0,7% 0 0,0% 0 0,0% 

Canopy 3 1,0% 2 0,4% 2 0,5% 0 0,0% 0 0,0% 0 0,0% 

Common state 18 6,1% 20 4,4% 20 5,0% 6 2,0% 6 1,3% 6 1,5% 

Compound box 60 20,4% 83 18,1% 82 20,6% 3 1,0% 3 0,7% 3 0,8% 

Immutable 8 2,7% 6 1,3% 6 1,5% 1 0,3% 1 0,2% 1 0,3% 

Stateless 61 20,7% 77 16,8% 77 19,3% 5 1,7% 6 1,3% 6 1,5% 

Trait 11 3,7% 13 2,8% 12 3,0% 8 2,7% 10 2,2% 9 2,3% 

 

Table 7.12 – Micro patterns based on attributes: detection results on three releases of Lucene 
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No particular evolution in terms of micro patterns has been registered along the three 

releases. For some micro patterns (like Trait, Implementor and State machine), the number 

of classes presenting flavours is considerable if compared with the exact instances. This 

suggests us to check for those classes and see if it is possible to make them fully compliant 

with the micro pattern specifications. 

 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0 

No. % No. % No. % No. % No. % No. % 

Data manager 9 3,1% 10 2,2% 9 2,3% 2 0,7% 1 0,2% 1 0,3% 

Extender 14 4,8% 17 3,7% 16 4,0% 0 0,0% 3 0,7% 2 0,5% 

Implementor 1 0,3% 1 0,2% 4 1,0% 4 1,4% 10 2,2% 9 2,3% 

Outline 13 4,4% 16 3,5% 16 4,0% 0 0,0% 0 0,0% 0 0,0% 

Overrider 4 1,4% 6 1,3% 3 0,8% 2 0,7% 2 0,4% 2 0,5% 

Sink 4 1,4% 8 1,7% 8 2,0% 0 0,0% 0 0,0% 0 0,0% 

State machine 1 0,3% 1 0,2% 1 0,3% 3 1,0% 3 0,7% 3 0,8% 

 

Table 7.13 – Micro patterns based on methods: detection results on three releases of Lucene 

 

This is even more relevant with three of the micro patterns codifying antipatterns, namely 

Pool, Pseudo class, and Record. 

 
Precise matching Similarity matching (at least 80%) 

Micro pattern 
Lucene 1.4.3 Lucene 1.9 Lucene 2.0 Lucene 1.4.3 Lucene 1.9 Lucene 2.0 

No. % No. % No. % No. % No. % No. % 

Augmented type 0 0,0% 0 0,0% 0 0,0% 1 0,3% 1 0,2% 1 0,3% 

Cobol like 7 2,4% 9 2,0% 9 2,3% 1 0,3% 1 0,2% 1 0,3% 

Designator 1 0,3% 2 0,4% 2 0,5% 2 0,7% 3 0,7% 3 0,8% 

Function object 48 16,3% 60 13,1% 60 15,0% 0 0,0% 0 0,0% 0 0,0% 

Function pointer 12 4,1% 15 3,3% 15 3,8% 0 0,0% 0 0,0% 0 0,0% 

Joiner 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 

Pool 3 1,0% 3 0,7% 3 0,8% 3 1,0% 13 2,8% 12 3,0% 

Pseudo class 4 1,4% 3 0,7% 4 1,0% 3 1,0% 3 0,7% 3 0,8% 

Pure type 12 4,1% 13 2,8% 14 3,5% 2 0,7% 3 0,7% 2 0,5% 

Record 16 5,4% 15 3,3% 15 3,8% 3 1,0% 8 1,7% 7 1,8% 

Restricted creation 0 0,0% 7 1,5% 7 1,8% 0 0,0% 0 0,0% 0 0,0% 

Sampler 1 0,3% 1 0,2% 1 0,3% 0 0,0% 0 0,0% 0 0,0% 

Taxonomy 1 0,3% 1 0,2% 1 0,3% 0 0,0% 0 0,0% 0 0,0% 

 

Table 7.14 – Micro patterns based on both attributes and methods: detection results on three releases of Lucene 

 

As these elements represent critical classes inside a system, those classes presenting 

flavours of these patterns are possible candidates for refactoring. Anyway, the number of 

instances of these micro patterns is low if compared with the size of the system. Like for 
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JHotDraw, this is an indicator of a system that is well developed according to the 

principles of object-orientation. 

 

 

7.4. Concluding remarks 

 

From the above experimentations, some interesting conclusions can be drawn. First of all, 

Box, Compound box and Stateless are the more frequent micro patterns in all the systems 

and in all the considered releases. These results can be also compared with [GM05], Table 

4, which demonstrates how these micro patterns are quite frequent, independently from 

the analyzed system. They seem therefore to codify types that are very recurrent in the 

programming practices. 

Another observation comes from the occurrences of the Trait micro pattern. Trait identifies 

abstract classes which have no state. To some extent, this micro pattern can therefore be 

considered as an indication of the abstractness of the considered system. The relaxation of 

the constraint of this micro pattern to allow the existence of some state succeeded in 

identifying a good number of classes presenting Trait flavours. In some cases, classes 

closely similar to Trait are more than those that exactly match the micro pattern. These 

classes could be further inspected in order to make them fully compliant with the 

specifications. 

Instances of the Extender, Implementor and Overrider micro patterns give indications 

about how the systems organize class hierarchies. JHotDraw mainly overrides non-

abstract methods, hence redefining already established operations. Many classes are 

similar to the Extender micro pattern, hence they extend a class overriding only a little set 

of methods. Many precise instances of the Extender micro pattern have also been detected 

on Lucene and Ant (the latter providing also an interesting rate of Extender flavours). In 

these systems, a good percentage of classes overriding abstract methods of the 

superclasses can also be found. The detection of classes presenting micro pattern flavours 

allowed for the identification of a good number of inheritors micro patterns, that surely 

add more information to that provided uniquely by the precise instances, and gives an 

overview of the inheritance mechanisms adopted by the various systems. 

Moreover, the identification of micro pattern flavours is especially useful in two cases. 

First of all, identifying flavours of micro patterns devising good programming practices in 

some classes can suggest to modify those classes in order to make them fully compliant 

with the specifications. On the other side, it is useful to identify flavours of micro patterns 

codifying bad programming practices, like Cobol like, Pool, Pseudo class and Record, that 

would not be detected by any precise matching approach. The detection of these instances 

suggests to refactor them in order to solve the issues they present. 
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Chapter 8 

 

Conclusions and future works 

 

 
8.1. Conclusions 

 

The main contributions and results of this thesis are placed in the vast field of reverse 

engineering. In particular, the focus was concentrated on exploring and analyzing three 

categories of software micro-structures (elemental design patterns, design pattern clues 

and micro patterns), inspecting their relevance and role in design pattern detection and 

software architecture reconstruction activities.  

From a first in-depth analysis of micro-structures, we provided a comparison aiming at 

underlining the characteristics and peculiarities of each category, and at tracing the 

possible similarities and differences among them. An important outcome of this 

comparative evaluation is related to the disadvantages exposed by the considered micro-

structures. Two main drawbacks can be pointed out. First of all, the definition of micro-

structures is generally not formal, and may result ambiguous in some cases. Secondly, 

each category has always been considered as a stand-alone, and never compared with 

other micro-structures categories. Indeed, we think that micro-structures, independently 

from their purposes and definitions, can actually be considered as similar elements, in that 

they can all be automatically identified from source code and exploited for DPD and/or 

SAR purposes, as discussed in this thesis. For these reasons, we provided a novel 

definition of the considered micro-structures that is based on common core concepts. The 

redefinition process aimed at solving the possible ambiguities presented by the micro-

structures, and at giving them a common categorization and meaning. We implemented a 

module for the identification of all the considered micro-structures inside Java systems, 

which has been developed as an Eclipse plugin. 

The first introduction of micro-structures was supported by a practical task. Elemental 

design patterns were exploited for design pattern detection purposes, supported by the 

SPQR approach. Design pattern clues as well have been introduced and exploited for 
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design pattern detection, while micro patterns have been defined to identify common 

programming techniques, and their relevance and presence in existing systems has been 

analyzed. Anyhow, each micro-structures category has never been considered with respect 

to the already defined ones, in order to verify if the joint exploitation of different kinds of 

micro-structures would have provided advantages in the activities of interest. We faced 

this issue by considering the whole set of EDPs, clues and micro patterns and inspect their 

global usefulness for both DPD and SAR purposes. 

As far as DPD is concerned, we inspected the role and relevance of micro-structures in the 

identification of pattern roles and pattern structures. From our experimentations on 

different sets of pattern instances, we verified how EDPs reveal useful for the extraction of 

structural information related to the pattern instances, while clues are more suited to 

identify pattern roles. On the other hand, in general micro patterns didn’t provide useful 

information, neither for the recovery of structural information about a pattern, nor for the 

identification of their roles. Some exceptions shall be made, like for the Template method 

pattern, whose abstract class role can be correctly identified by the Outline micro pattern. 

Starting from our experimentations, for each pattern we defined the set of micro-structures 

that are useful in the detection process. Through our work we pointed out how 

considering only one single category of micro-structures would not be sufficient in order 

to detect all the peculiarities related to a design patterns. On the contrary, this seems 

possible while extending the considerations to at least two micro-structures categories. 

An innovative research task we have introduced is related to the refinement of the design 

pattern detection results provided by various detection tools. It is well known and 

experimented that design pattern detection tools generally identify different design 

patterns and detect different instances, even while analyzing the same systems. This is 

mainly due to the heterogeneous strategies adopted in the detection process, and also to 

the lack of formalization for design patterns, which is one of the causes of the well known 

variants problem. As the detection results vary among tools, this implies that the tools 

necessarily identify many false positive instances, which badly affect the precision of the 

results. The refinement process we proposed is aimed to improve the precision of the 

detection tools by trying to eliminate false positive instances. The approach is based on the 

application of micro-structure-based rules on the detected instances, which allow to 

discard those instances that do not implement the necessary micro-structures which 

characterize the corresponding pattern. From our experimentations, it emerged that, out of 

the considered patterns, the refinement rules behave well for the Factory method, 

Singleton, Template method, Visitor, Composite and Decorator design patterns, while 

some problems were encountered in the refinement of the Adapter pattern, due to its 

generality. 
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Focusing on micro patterns, we gave a novel interpretation of them, basing on the NOM 

and NOA metrics, which allowed us to identify classes that are very close and similar to a 

micro pattern implementation, but couldn’t be detected by the original precise matching 

approach. The adopted similarity-based approach allowed us to compare different 

releases of a same subject system, inspecting and analyzing the evolution of the 

implemented micro patterns throughout the various releases. In the case the considered 

micro pattern represents a well established and valid programming practice, identifying 

classes that are very similar to this micro pattern lets the engineers concentrate on it in 

order to make it fully compliant with the micro pattern specifications. On the other hand, 

in the case of micro patterns representing design or programming issues, it allows to solve 

the issues they present, and that would have been not considered by the precise matching 

detection approach. 

As far as software architecture reconstruction is concerned, we shall remind that, to our 

current knowledge, the exploitation of micro-structures for this activity has never been 

inspected. We moved the first steps towards this research direction, developing a module 

for software architecture reconstruction based on micro-structures detection which is 

devoted to the generation of package and class views on the subject systems, as well as to 

the computation of object-oriented and quality metrics, and to the detection of structural 

and object-oriented antipatterns, or of classes of particular interest. In this context, we 

experimented that EDPs can be exploited in order to recover the relationships among the 

packages and classes composing a system. Consequently, they are also suitable to compute 

the dependencies and dependents of each single software entity. Dependencies and 

dependents are the core values which other quality metrics can be calculated from, as we 

discussed in chapter 6. We also provided considerations about classes with a high number 

of dependencies and/or dependents, which are to be considered as structural antipatterns 

and hence need particular consideration by the software engineers. In fact, these 

components are the most critical, as they negatively influence the maintainability and 

evolution of the system itself. In the context of SAR, we also considered micro patterns as 

means to identify classes of particular interest and some object-oriented antipatterns. For 

some micro patterns, we noticed possible correlations with the dependencies and 

dependents metrics, and discussed about them and their relevance. Micro patterns were 

also exploited to detect four antipatterns representing classes whose implementation is far 

from the object-oriented best practices. For SAR purposes, we didn’t consider design 

pattern clues, as they didn’t reveal useful for the identification of structural relationships 

among system components. In fact, for their own definition, they are focused on the 

identification of hints for the presence of design patterns inside the system, which are 

generally intra-class peculiarities and don’t devise any particular constraint about the 

relationships among different classes. 
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The exploitation of micro-structures for SAR as well as for DPD allowed us to have a 

common source of information for both activities, without the need to further inspect and 

analyze the subject systems in order to achieve the desired functionalities. At now, only 

few tools support both functionalities, and in general they are able to detect a little set of 

patterns, as far as DPD is concerned. We think that SAR and DPD are strictly related 

activities. In fact, DPD can be exploited to assert the quality of a system and the presence 

of well designed and reusable system modules, whose presence is important in order to 

have an easily maintainable and evolvable system. Having a common source of 

information for both DPD and SAR is the first step towards the complete development of 

an integrated approach and tool supporting both activities. 

 

 

8.2. Future works 

 

As the exploitation of micro-structures for both DPD and SAR purposes is an innovative 

research field, many future activities can be devised. Focusing on our work, the refinement 

process described in Chapter 5 seems very promising. We will extend our 

experimentations by considering the results provided by more design pattern detection 

tools on a larger set of subject systems. Moreover, we are planning to extend the set of 

patterns we will be able to refine, by defining appropriate validation rules for them. We 

have also planned to integrate the refinement approach within the benchmark platform for 

design pattern detection proposed in [ATZ08]. The integration will hopefully result in an 

extended application of the refinement process on the results provided by more detection 

tools on the analysis of a wide set of systems. The exploitation of the approach will reveal 

useful also to improve the comparisons among the instances detected by the various tools. 

As far as SAR activities are concerned, we have implemented a first module for 

architecture reconstruction, metrics computation and antipattern detection. We are 

currently planning to extend our work with new views and with the computation of other 

metrics. Furthermore, we are working on the detection of the antipatterns defined in 

[BMMM98], as at our knowledge no tool for the detection of these entities currently exists 

(except for Analyst4J [A4J], a commercial tool which is able to detect three of the defined 

antipatterns, namely Blob, Spaghetti code and Swiss army knife). We think that the 

detection of antipatterns is crucial in order to assess the quality of a system and to possibly 

identify its critical components.  

It will also be interesting to analyze the smells presented in [Fow99] and the approaches 

for their detection, in order to understand if our SAR approach could actually benefit from 

the identification of these elements. In this context it will be of particular interest trying to 

integrate or exploit the approaches presented for example in [MGD+09a, MGD+09b, 
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TC09a, TC09b, TC09c] with our tool, as well as start possible collaborations with 

researchers working in this field. 

In the last years, the migration of legacy systems towards SOA architectures is achieving 

more and more importance [BSL05, LMSB05]. We think that the detection of design 

patterns and antipatterns, supported by an integrated tool, can be of great usefulness for 

this process. The core concept behind the migration process resides in the identification of 

system components that can be externally exposed as services. Some design patterns, like 

the Façade [GHJV94], are well suited for the identification of candidate classes to be 

migrated to services, as they completely hide the real implementation of a system, 

providing a single integrated interface to access it. Some preliminary work in this direction 

and discussion on these topics can be found in [ATZ08b]. 

On the other hand, the identification of classes implementing other kinds of design 

patterns or antipatterns as described in this thesis will reveal the impossibility to migrate 

them to services. For example, classes or modules that are highly globally coupled with 

the overall system are not good candidates for this migration, as they do not expose a 

uniform interface that can be effectively exploited and accessed from outside the system.  

Another research direction we would like to investigate is related to the dynamic analysis 

of software systems. In this context, a survey of dynamic analysis techniques to support 

program comprehension can be found in [CZD+09]. At now, we only focused on static 

analysis because the considered micro-structures, as they are directly extracted from the 

source code of the analyzed systems, currently codify static information. Moving towards 

dynamic analysis we will be able to generate behavioural views and reports about the 

subject systems, as well as to provide hints for the detection of behavioural design 

patterns, whose identification through micro-structures (and through standard static 

analysis approaches) revealed troublesome. 

All these considerations suggest us that having an integrated approach for DPD and SAR 

based on software micro-structures will allow us to support software evolution through 

design quality evaluation. As it is well established, design quality is strictly related to the 

computation of quality metrics, as well as to the presence or absence of design patterns or 

antipatterns. The integration of DPD and SAR functionalities in a single tool will ease and 

improve these kinds of evaluations. 
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