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azioni,Via degli Ar
imboldi 8, 20126 | Milano, Italy.Abstra
t. We investigate with numeri
al methods the s
aling of the relaxation time to equipar-tion in the 
elebrated Fermi{Pasta{Ulam model. Our numeri
al results strongly suggest thatthe time in
reases exponentially with an inverse power of the spe
i�
 energy. Su
h a s
alingappears to remain valid in the thermodynami
 limit.PACS numbers: 05.45.{a, 63.20.Ry, 63.10.+aKeywords: Nonlinear 
hain, FPU model, Thermodynami
 limit.1. Introdu
tionThe FPU paradox, originated by the 
elebrated report of Fermi, Pasta and Ulam[12℄,has been the subje
t of many studies in the past de
ades. The fa
ts are well known. Oneis interested in the evolution towards equipartition of energy in a 
hain of non{linearly
oupled os
illators with identi
al masses if the energy is initially given to one or a fewmodes. For small energies, one observes instead an unexpe
ted behaviour: the energyremains 
on
entrated only on a few modes. Further investigation has shown that thesharing of energy, if it happens, takes a very long time that be
omes unobservable evenwith the most powerful 
omputers. The problem is to explain this phenomenon, and toprove or disprove its persisten
e in the thermodynami
 limit.Two di�erent 
onje
tures have been raised at the very beginning of this long story.On the one hand, Izrailev and Chirikov tried to interpret the FPU phenomenon as dueto the existen
e of an energy threshold E
 below whi
h equipartition 
an not o

ur[20℄.However, they 
onje
tured that the FPU phenomenon 
ould not persist when the num-ber of parti
les grows very large, due to the presen
e of many resonan
es among thefrequen
ies of the normal modes: the energy threshold E
 should vanish in the ther-modynami
 limit. In a paper by Shepelyansky[27℄ it is argued that the 
onje
ture ofIzrailev and Chirikov was �nally proved. On the other hand, Bo
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onje
tured the existen
e of threshold "
 in spe
i�
 energy (or energy perparti
le " = E=N) that is independent of the number N of parti
les[3℄. The relevan
e ofthe latter 
onje
ture was parti
ularly stressed by Cer
ignani, Galgani and S
otti ([14℄,[15℄, [7℄; see also [4℄).Several papers have been devoted to the problem of identifying su
h thresholds,and in parti
ular to investigate their persisten
e for large N : see, e.g., [5℄, [21℄, [23℄,[24℄, [25℄, [22℄, [6℄. However, it seems appropriate to say that a de�nite 
on
lusion hasnot been rea
hed till now.More re
ently a new interpretation has been proposed, based on the Nekhoroshev'stheory on exponential stability: equipartition should always o

ur, but when the spe
i�
energy is small enough it 
ould take an exponentially long time that might even over
omethe lifetime of a physi
al system[16℄. This idea was apparently �rst proposed in a paperby Fu
ito et al.[13℄. It is natural to identify the threshold 
onje
tured by Bo

hieri, S
otti,Bearzi and Loinger with the energy below whi
h the relaxation time to equipartitionbegins to in
rease as exp("�a), with some positive a.The time s
ale to equipartition has been investigated by some authors. Pettini andLandol� suggest that an exponential law with parameters independent of the numberof parti
les should hold[26℄. De Lu
a, Li
htenberg and Lieberman make a 
areful studyof the role of resonan
es in driving the sharing of energy among modes[8℄. De Lu
a,Li
htenberg and Ru�o in a series of papers 
on
entrate their attention on the rangeof energy where the sharing of energy a
tually o

urs[9℄[10℄[11℄, and suggest that anappropriate s
aling law for the relaxation time is a power law "�a.The 
onsiderations of the present paper are based on the work [11℄ of De Lu
a,Li
htenberg and Ru�o and on the re
ent paper [2℄ by Ber
hialla, Galgani and Giorgilli.In [2℄ a numeri
al eviden
e of the existen
e of two well separated time s
ales has beenprodu
ed. The �rst time s
ale 
orresponds to a fast 
ow of energy from the �rst initiallyex
ited mode to the next few low{frequen
y modes. This 
reates what has been 
alleda natural pa
ket, whi
h persists for a long time. The se
ond time s
ale 
orrespondsto the destru
tion of the natural pa
ket, due to a further 
owing of energy towardsthe highest modes. It is this se
ond time s
ale whi
h is of parti
ular interest, sin
e itmay be naturally identi�ed with the relaxation time to equipartition. However, no 
learindi
ation 
on
erning the s
aling of the latter time with the spe
i�
 energy is given(see se
t. 3 for more details). In [11℄ De Lu
a, Li
htenberg and Ru�o give a theoreti
aland numeri
al estimate of the relaxation time to equipartition, suggesting a s
aling lawT � "�3 (see formula (17) in that paper).Now, a dire
t 
omparison of the results in [2℄ and [11℄ is impossible, due to di�erent
hoi
es of the model, the initial 
onditions, and the parameters. Thus, we performed anumeri
al investigation using the same model, 
lass of initial 
onditions and parameteras in [11℄. As a result of our investigations it turns out that the power law T � "�3appears somehow to be an artifa
t due to the 
hoi
e of a too restri
ted energy range, andthat extending the 
al
ulations to a wider range leads to a di�erent 
on
lusion. Indeed,our 
al
ulations indi
ate that the relaxation time to equipartition may well in
rease as
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 limit 3T � exp("�1=4). It might be useful to re
all here a general property whi
h helps tounderstand how it 
an o

ur that the data appear to �t a power law in some region,and to better �t an exponential law in a larger one. The point is that a typi
al resultof perturbation theory is indeed that some relevant quantity remains almost invariantfor a time of order "�r for some r � 1. The exponential time typi
al of Nekhoroshev'stheory is then the out
ome of an optimal 
hoi
e of r as a fun
tion of ", i.e., r � "�a forsome a (see, e.g., [18℄ for an informal exposition and [19℄ for a quantitative appli
ation).2. The modelThe FPU �{model that we are 
onsidering is a one{dimensional 
hain of N+2 parti
leswith �xed ends, as des
ribed by the Hamiltonian(1) H(x; y) = 12 NXj=1 y2j + 12 NXj=0�xj+1 � xj�2 + �4 NXj=0�xj+1 � xj�4 :Here, x1; : : : ; xN are the displa
ements with respe
t to the equilibrium positions (thatobviously exist), and x0 = xN+1 = 0 are the �xed ends. The normal modes are intro-du
ed via the 
anoni
al transformationxj =r 2N + 1 NXk=1 qk sin jk�N + 1 ; yj =r 2N + 1 NXk=1 pk sin jk�N + 1 ;(qk; pk) being the new 
oordinates and momenta. The quadrati
 part of the Hamiltonianin the normal 
oordinates is given the form(2) H2 = NXj=1Ej ; Ej = 12�p2j + !2j q2j � ;with harmoni
 frequen
ies(3) !j = 2 sin j�2(N + 1) :We investigate numeri
ally the model with � = 1=10, and with N typi
ally rangingfrom 255 to 1023; in a few 
ases N has been in
reased up to 32767. The integration wasperformed using a leap{frog method, with typi
al time step 0:05. Ex
ept when expli
itlyindi
ated, the initial 
onditions were always taken as in [11℄. I.e., the total energy E isequally distributed among the modes between (N + 1)=64 and 5(N + 1)=64.
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Figure 1. The 
riti
al time tRs (abs
issas) 
orresponding to a spe
i�
 energy "(ordinates) for all pa
kets. Number of parti
les: 511. Left �gure: initial 
onditionswith the whole energy on the lowest frequen
y mode; 
rosses: s = 1, triangles:s = 4, squares: s = 8, diamonds: s = 16, 
ir
les: s = 32. Right �gure: initial
ondition with energy equally distributed among the modes 8{40; 
rosses: s = 35,triangles: s = 37, squares: s = 63, diamonds: s = 127, 
ir
les: s = 255. The dots
orrespond to the other values of s.3. The phenomenon of the natural pa
ketsOur starting point is the formation of natural pa
kets and their subsequent destru
tion,as observed in [2℄. We 
onsider the quantities(4) E1 = E1 ; E2 = E1 + E2 ; : : : ; Es = E1 + : : :+Es ; : : :i.e., the total harmoni
 energy of the pa
ket of the �rst s modes, s = 1; : : : ; n. Assumethat at time t = 0 we have Es = E for a given s. If the system evolves towards equipar-tition we expe
t Es(t) ! sE=N when time in
reases to in�nity (over line denotes thetime average), i.e., the energy Es is de
reased by (N�s)E=N . The 
riti
al time tRs is the�rst instant at whi
h Es(t) has lost a fra
tion 
 of the latter quantity, with 0 < 
 < 1.The numeri
al data for (tRs ; ") are plotted in �g. 1, for N = 511 and 
 = 0:15. Thedashed lines delimit the interval of spe
i�
 energy 0:03 � " � 0:4 
onsidered in [11℄.Let us �rst 
onsider the left side of �g. 1. The whole energy is initially on the lowest
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 limit 5frequen
y mode, as in the 
lassi
al experiment of Fermi, Pasta and Ulam. Thus, we haveEs = E for s = 1; : : : ; N . For a 
onstant value of the initial energy, i.e., moving on ahorizontal line, the points 
orresponding to in
reasing values of s are aligned from leftto right. The relevant information here is that the energy 
ows quite rapidly from theinitially ex
ited modes to the next ones, but for some value of s the 
ow stops, and amu
h longer time is needed for the quantity Es(t) to fall below the wanted threshold.In this 
ase we say that the �rst s modes form a natural pa
ket that persists for a longtime. The �gure also shows that if we let the value of the energy de
rease, then thelength of the natural pa
ket de
reases, too, and the time needed for the energy to 
owto higher modes signi�
antly in
reases. This is the phenomenon des
ribed in [2℄.The 
omparison with [11℄ is illustrated by the right side of �g. 1. The energy isequally distributed among the modes 8{40, as des
ribed at the end of se
t. 2. Thus,we have initially Es = 0 for 1 � s < 8 and Es = E for s � 40. For 8 � s � 40 theenergy Es of the pa
kets in
reases linearly from 0 to E. There are initially a numberof pa
kets with energy less than the wanted threshold, so that the natural pa
kets oflow frequen
y modes are not well de�ned. However, this is a
tually harmless. Indeed,the right side of �g. 2 strongly supports the 
onje
ture that after a short time thesystem rea
hes a metastable state in whi
h a splitting of the system in two separated
omponents seems to o

ur. The situation looks similar to the one des
ribed in [16℄ for aFPU system with alternating masses, where there is a natural splitting of the system inthe populations of a
ousti
 (low frequen
y) and opti
al (high frequen
y) modes. Here,it is not evident a priori how to separate the frequen
ies of the modes. In fa
t, thesystem itself �nds its natural splitting, depending on the spe
i�
 energy ". We have
he
ked that the same phenomenon o

urs for N ranging from 31 to 1023. Moreover,the qualitative aspe
ts of the �gure do not 
hange signi�
antly when the parameter 
varies between 0:05 and 0:95. We emphasize that although no data points appear forthe interval 10�4 < " < 10�3 we a
tually did the 
al
ulation: the 
riti
al time in thisrange over
omes the limits of our numeri
al experiment.Now, the problem is to make a quantitative estimate of the relaxation time toequipartition, i.e., the se
ond and longer relaxation time that shows up in the �gure.A

ording to the general theory developed in [1℄ the rate of ex
hange of energy be-tween the two populations be
omes exponentially small with a s
aling law of the formexp(���a), where � is the size of the perturbation and a is some positive number lessthan 1. In parti
ular, it is shown that resonan
es may play an a
tive role in 
reatingmetastable states, possibly with an internal 
haoti
 dynami
s. In su
h a 
ase, theo-reti
al 
onsiderations suggest that typi
al values for a 
ould be 1=2 or 1=4. Although,stri
tly speaking, the theoreti
al results do no apply in a straightforward manner to theFPU model, we may 
onje
ture that the existen
e of strong resonan
es among the lowfrequen
ies may 
reate su
h a kind of metastable state. Sin
e in the 
ase of the FPUsystem the natural perturbation parameter is the amplitude of the os
illation, i.e., "1=2,we 
onje
ture that an exponential law te� � exp("�1=4) may be appropriate for our
ase. This is the 
onje
ture that we want to test with a numeri
al experiment.
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Figure 2. The time te� needed to rea
h ne�=N = 0:4 vs. "�1, in log{log s
ale (leftside) and vs. "�1=4 in semi-log s
ale (right side). Left �gure: the straight line is thebest �t using the data in the interval 0:03 � " � 0:4, whi
h has been 
onsideredin [11℄. The slope is 2:99, whi
h is 
onsistent with the predi
tions in that paper.Right �gure: the straight line is the best �t using the data for " � 1.4. Numeri
al estimate of the relaxation time to equipartitionIn order to investigate how the system relaxes to equipartition we use the same parame-ter ne� and the same method as in [11℄. We re
all the relevant de�nitions. The harmoni
energies Ej de�ned by (2) are renormalized as ej = Ej=Pk Ek. The spe
tral entropyis then de�ned as S = �Pj ej ln ej . This is a quantity ranging from 0 (when a singlemode owns all the energy) to lnN when the energy is equally distributed among themodes. As suggested in [8℄, [9℄ and [10℄, a better quantity to be 
al
ulated is ne� = eS ,whi
h may be interpreted as the e�e
tive number of modes that share the energy.In this paper we 
al
ulate the average of ne�=N over 25 di�erent orbits at the sameenergy, with the same distribution of energy among the modes, and with a random
hoi
e of the initial phases. The value ne�(t)=N is observed to in
rease from 0 to amaximal value around 0:66. The observed behaviour is the same as in �g. 3 of [11℄, sowe omit the �gure. In order to give a quantitative evaluation of the relaxation time toequipartition we look for a time te� at whi
h ne�(t)=N rea
hes a �xed value, that wetake 0:4, as in [11℄. Looking at �gure 1 it is quite evident that for spe
i�
 energy below
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Figure 3. Dependen
e of the relaxation time to equipartition on the number N ofparti
les, for two di�erent values of the spe
i�
 energy ", namely " = 0:137 (
ir
les)and " = 0:0516 (triangles). The �gure shows that the time tends to a 
onstant valuefor large N , thus supporting the 
onje
ture that the exponential law remains validin the thermodynami
 limit.about 5� 10�3 the 
al
ulation will be in the best 
ase impra
ti
al. Thus, we performedour investigation in the interval 8:9 � 10�3 � " � 7:7. The results are illustrated in�g. 2, using di�erent s
ales.The s
aling law te� � "�3 predi
ted in [11℄ is 
he
ked in the left part of the �gure.The predi
tion is 
on�rmed by the experimental data in the range 0:03 � " � 0:4;the interval is marked by the verti
al dashed lines. However, by extending the spe
i�
energy range of the investigations the 
ubi
 s
aling law seems not to be appropriate,sin
e it fails to �t the experimental data.The right side of �g. 2 tests the 
onje
ture te� � exp("�1=4) made at the end ofse
t. 3. The 
omparison with the experimental data shows that the exponential �ttingis de�nitely better than the 
ubi
 one. The deviation from the exponential law of thedata for " > 1 is not surprising, be
ause the data of �g. 1 show that no splitting of thesystem o

urs for su
h an high energy. It would be interesting to better investigate theexponential law by further de
reasing the spe
i�
 energy, but the exponential in
reaseof the 
omputational time makes su
h a 
al
ulation a
tually impossible.We 
ome now to dis
uss how the time te� depends on the number N of parti
les.As a matter of fa
t, for N ranging from 63 to 1023 our data 
on�rm the exponential
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e of the relaxation time to equipartition on "�1=4. However, for a �xed value" the time te� is observed to a
tually depend on N , and in parti
ular to signi�
antlyde
rease for low values of N . Therefore, we 
he
ked su
h a dependen
e by letting N toin
rease up to 32767. The results for two �xed values of " are illustrated in �g. 3. Itis immediate to observe that the time is de�nitely stabilized for N � 1023, indi
atingthat the exponential law 
ould survive in the thermodynami
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