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Abstract. We investigate with numerical methods the scaling of the relaxation time to equipar-
tion in the celebrated Fermi—Pasta—Ulam model. Our numerical results strongly suggest that
the time increases exponentially with an inverse power of the specific energy. Such a scaling
appears to remain valid in the thermodynamic limit.
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1. Introduction
The FPU paradox, originated by the celebrated report of Fermi, Pasta and Ulam!'?,
has been the subject of many studies in the past decades. The facts are well known. One
is interested in the evolution towards equipartition of energy in a chain of non—linearly
coupled oscillators with identical masses if the energy is initially given to one or a few
modes. For small energies, one observes instead an unexpected behaviour: the energy
remains concentrated only on a few modes. Further investigation has shown that the
sharing of energy, if it happens, takes a very long time that becomes unobservable even
with the most powerful computers. The problem is to explain this phenomenon, and to
prove or disprove its persistence in the thermodynamic limit.

Two different conjectures have been raised at the very beginning of this long story.
On the one hand, Izrailev and Chirikov tried to interpret the FPU phenomenon as due
to the existence of an energy threshold E. below which equipartition can not occur!?%.
However, they conjectured that the FPU phenomenon could not persist when the num-
ber of particles grows very large, due to the presence of many resonances among the
frequencies of the normal modes: the energy threshold F. should vanish in the ther-
modynamic limit. In a paper by Shepelyansky!?” it is argued that the conjecture of
Izrailev and Chirikov was finally proved. On the other hand, Bocchieri, Scotti, Bearzi
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and Loinger conjectured the existence of threshold e, in specific energy (or energy per
particle ¢ = E/N) that is independent of the number N of particles®. The relevance of
the latter conjecture was particularly stressed by Cercignani, Galgani and Scotti ([14],
[15], [7]; see also [4]).

Several papers have been devoted to the problem of identifying such thresholds,
and in particular to investigate their persistence for large N: see, e.g., [5], [21], [23],
[24], [25], [22], [6]. However, it seems appropriate to say that a definite conclusion has
not been reached till now.

More recently a new interpretation has been proposed, based on the Nekhoroshev’s
theory on exponential stability: equipartition should always occur, but when the specific
energy is small enough it could take an exponentially long time that might even overcome
the lifetime of a physical system!'6]. This idea was apparently first proposed in a paper
by Fucito et al.['3]. Tt is natural to identify the threshold conjectured by Bocchieri, Scotti,
Bearzi and Loinger with the energy below which the relaxation time to equipartition
begins to increase as exp(e~?), with some positive a.

The time scale to equipartition has been investigated by some authors. Pettini and
Landolfi suggest that an exponential law with parameters independent of the number
of particles should hold[2%!, De Luca, Lichtenberg and Lieberman make a careful study
of the role of resonances in driving the sharing of energy among modes!®l. De Luca,
Lichtenberg and Ruffo in a series of papers concentrate their attention on the range
of energy where the sharing of energy actually occurs®1[11 and suggest that an

appropriate scaling law for the relaxation time is a power law .

The considerations of the present paper are based on the work [11] of De Luca,
Lichtenberg and Ruffo and on the recent paper [2] by Berchialla, Galgani and Giorgilli.
In [2] a numerical evidence of the existence of two well separated time scales has been
produced. The first time scale corresponds to a fast flow of energy from the first initially
excited mode to the next few low—frequency modes. This creates what has been called
a natural packet, which persists for a long time. The second time scale corresponds
to the destruction of the natural packet, due to a further flowing of energy towards
the highest modes. It is this second time scale which is of particular interest, since it
may be naturally identified with the relaxation time to equipartition. However, no clear
indication concerning the scaling of the latter time with the specific energy is given
(see sect. 3 for more details). In [11] De Luca, Lichtenberg and Ruffo give a theoretical
and numerical estimate of the relaxation time to equipartition, suggesting a scaling law
T ~ &3 (see formula (17) in that paper).

Now, a direct comparison of the results in [2] and [11] is impossible, due to different
choices of the model, the initial conditions, and the parameters. Thus, we performed a
numerical investigation using the same model, class of initial conditions and parameter
as in [11]. As a result of our investigations it turns out that the power law T ~ ¢=3
appears somehow to be an artifact due to the choice of a too restricted energy range, and
that extending the calculations to a wider range leads to a different conclusion. Indeed,
our calculations indicate that the relaxation time to equipartition may well increase as
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T ~ exp(e~'/4). It might be useful to recall here a general property which helps to
understand how it can occur that the data appear to fit a power law in some region,
and to better fit an exponential law in a larger one. The point is that a typical result
of perturbation theory is indeed that some relevant quantity remains almost invariant
for a time of order ™" for some r > 1. The exponential time typical of Nekhoroshev’s
theory is then the outcome of an optimal choice of r as a function of ¢, i.e., r ~ 7% for
some a (see, e.g., [18] for an informal exposition and [19] for a quantitative application).

2. The model

The FPU —model that we are considering is a one—dimensional chain of N + 2 particles
with fixed ends, as described by the Hamiltonian

1 X | X ﬂ N
(1) H(z,y) = 5295‘*‘ §Z($g+1 ZZ Tjp1 —
j=1 j=0 j=0
Here, x1,...,zn are the displacements with respect to the equilibrium positions (that

obviously exist), and xg = xny41 = 0 are the fixed ends. The normal modes are intro-

duced via the canonical transformation
U +1ZkaIHN+1

U +1qusm

(qk, pr) being the new coordinates and momenta. The quadratic part of the Hamiltonian
in the normal coordinates is given the form

N
1
(2) H2:ZE], Ej 5(,’03 + w; qj)',
1=1
with harmonic frequencies
. Jm
3 S =2sin—1— .
(3) wj sin 2N +1)

We investigate numerically the model with 8 = 1/10, and with N typically ranging
from 255 to 1023; in a few cases N has been increased up to 32767. The integration was
performed using a leap—frog method, with typical time step 0.05. Except when explicitly
indicated, the initial conditions were always taken as in [11]. L.e., the total energy E is
equally distributed among the modes between (N + 1)/64 and 5(N + 1)/64.
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Figure 1. The critical time ¢ (abscissas) corresponding to a specific energy e
(ordinates) for all packets. Number of particles: 511. Left figure: initial conditions
with the whole energy on the lowest frequency mode; crosses: s = 1, triangles:
s = 4, squares: s = 8, diamonds: s = 16, circles: s = 32. Right figure: initial
condition with energy equally distributed among the modes 8-40; crosses: s = 35,
triangles: s = 37, squares: s = 63, diamonds: s = 127, circles: s = 255. The dots
correspond to the other values of s.

3. The phenomenon of the natural packets

Our starting point is the formation of natural packets and their subsequent destruction,
as observed in [2]. We consider the quantities

(4) Ei=FEy, &E=FE1+Ey,..., & =E+...+E,...

i.e., the total harmonic energy of the packet of the first s modes, s =1,...,n. Assume
that at time ¢ = 0 we have £ = FE for a given s. If the system evolves towards equipar-
tition we expect £4(t) — sE/N when time increases to infinity (over line denotes the
time average), i.e., the energy &, is decreased by (N —s)E/N. The critical time ¢£ is the
first instant at which £,(t) has lost a fraction 7 of the latter quantity, with 0 < y < 1.
The numerical data for (t%,¢) are plotted in fig. 1, for N = 511 and v = 0.15. The
dashed lines delimit the interval of specific energy 0.03 < e < 0.4 considered in [11].
Let us first consider the left side of fig. 1. The whole energy is initially on the lowest
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frequency mode, as in the classical experiment of Fermi, Pasta and Ulam. Thus, we have
s = FE for s = 1,...,N. For a constant value of the initial energy, i.e., moving on a
horizontal line, the points corresponding to increasing values of s are aligned from left
to right. The relevant information here is that the energy flows quite rapidly from the
initially excited modes to the next ones, but for some value of s the flow stops, and a
much longer time is needed for the quantity £,(t) to fall below the wanted threshold.
In this case we say that the first s modes form a natural packet that persists for a long
time. The figure also shows that if we let the value of the energy decrease, then the
length of the natural packet decreases, too, and the time needed for the energy to flow
to higher modes significantly increases. This is the phenomenon described in [2].

The comparison with [11] is illustrated by the right side of fig. 1. The energy is
equally distributed among the modes 8-40, as described at the end of sect. 2. Thus,
we have initially £, = 0 for 1 < s < 8 and & = FE for s > 40. For 8 < s < 40 the
energy &, of the packets increases linearly from 0 to E. There are initially a number
of packets with energy less than the wanted threshold, so that the natural packets of
low frequency modes are not well defined. However, this is actually harmless. Indeed,
the right side of fig. 2 strongly supports the conjecture that after a short time the
system reaches a metastable state in which a splitting of the system in two separated
components seems to occur. The situation looks similar to the one described in [16] for a
FPU system with alternating masses, where there is a natural splitting of the system in
the populations of acoustic (low frequency) and optical (high frequency) modes. Here,
it is not evident a priori how to separate the frequencies of the modes. In fact, the
system itself finds its natural splitting, depending on the specific energy €. We have
checked that the same phenomenon occurs for N ranging from 31 to 1023. Moreover,
the qualitative aspects of the figure do not change significantly when the parameter vy
varies between 0.05 and 0.95. We emphasize that although no data points appear for
the interval 107 < ¢ < 1072 we actually did the calculation: the critical time in this
range overcomes the limits of our numerical experiment.

Now, the problem is to make a quantitative estimate of the relaxation time to
equipartition, i.e., the second and longer relaxation time that shows up in the figure.
According to the general theory developed in [1] the rate of exchange of energy be-
tween the two populations becomes exponentially small with a scaling law of the form
exp(—pu~%), where p is the size of the perturbation and a is some positive number less
than 1. In particular, it is shown that resonances may play an active role in creating
metastable states, possibly with an internal chaotic dynamics. In such a case, theo-
retical considerations suggest that typical values for a could be 1/2 or 1/4. Although,
strictly speaking, the theoretical results do no apply in a straightforward manner to the
FPU model, we may conjecture that the existence of strong resonances among the low
frequencies may create such a kind of metastable state. Since in the case of the FPU
system the natural perturbation parameter is the amplitude of the oscillation, i.e., £!/2,
we conjecture that an exponential law teg ~ exp(5_1/4) may be appropriate for our
case. This is the conjecture that we want to test with a numerical experiment.
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Figure 2. The time t.g needed to reach neg/N = 0.4 vs. ¢, in log-log scale (left
side) and vs. e7'/* in semi-log scale (right side). Left figure: the straight line is the
best fit using the data in the interval 0.03 < ¢ < 0.4, which has been considered
n [11]. The slope is 2.99, which is consistent with the predictions in that paper.
Right figure: the straight line is the best fit using the data for ¢ < 1.

4. Numerical estimate of the relaxation time to equipartition

In order to investigate how the system relaxes to equipartition we use the same parame-
ter neg and the same method as in [11]. We recall the relevant definitions. The harmonic
energies F; defined by (2) are renormalized as e; = F;/ ", Ej. The spectral entropy
is then defined as S = — Zj ejlne;. This is a quantity ranging from 0 (when a single
mode owns all the energy) to In N when the energy is equally distributed among the
modes. As suggested in [8], [9] and [10], a better quantity to be calculated is neg = €,
which may be interpreted as the effective number of modes that share the energy.

In this paper we calculate the average of neg /N over 25 different orbits at the same
energy, with the same distribution of energy among the modes, and with a random
choice of the initial phases. The value neg(t)/N is observed to increase from 0 to a
maximal value around 0.66. The observed behaviour is the same as in fig. 3 of [11], so
we omit the figure. In order to give a quantitative evaluation of the relaxation time to
equipartition we look for a time teg at which neg(t)/N reaches a fixed value, that we
take 0.4, as in [11]. Looking at figure 1 it is quite evident that for specific energy below
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Figure 3. Dependence of the relaxation time to equipartition on the number N of
particles, for two different values of the specific energy e, namely ¢ = 0.137 (circles)
and € = 0.0516 (triangles). The figure shows that the time tends to a constant value
for large NV, thus supporting the conjecture that the exponential law remains valid
in the thermodynamic limit.

about 5 x 1073 the calculation will be in the best case impractical. Thus, we performed
our investigation in the interval 8.9 x 1072 < ¢ < 7.7. The results are illustrated in
fig. 2, using different scales.

The scaling law teg ~ €3 predicted in [11] is checked in the left part of the figure.
The prediction is confirmed by the experimental data in the range 0.03 < ¢ < 0.4;
the interval is marked by the vertical dashed lines. However, by extending the specific
energy range of the investigations the cubic scaling law seems not to be appropriate,
since it fails to fit the experimental data.

The right side of fig. 2 tests the conjecture tog ~ exp(e~'/4) made at the end of
sect. 3. The comparison with the experimental data shows that the exponential fitting
is definitely better than the cubic one. The deviation from the exponential law of the
data for ¢ > 1 is not surprising, because the data of fig. 1 show that no splitting of the
system occurs for such an high energy. It would be interesting to better investigate the
exponential law by further decreasing the specific energy, but the exponential increase
of the computational time makes such a calculation actually impossible.

We come now to discuss how the time t.g depends on the number N of particles.
As a matter of fact, for N ranging from 63 to 1023 our data confirm the exponential
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—1/4 However, for a fixed value

€ the time t.g is observed to actually depend on N, and in particular to significantly
decrease for low values of N. Therefore, we checked such a dependence by letting N to
increase up to 32767. The results for two fixed values of ¢ are illustrated in fig. 3. It
is immediate to observe that the time is definitely stabilized for N > 1023, indicating
that the exponential law could survive in the thermodynamic limit.
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