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While the mathematics of constrained least-squares data-fitting is neat and clear,
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performance by exploiting a class of very flexible and easy-to-control piecewise ra-
tional Hermite interpolants that makes possible to identify the desired solution with
only few computations. The key step of the fitting procedure is represented by a
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Numerical examples illustrating the effectiveness and efficiency of the new method
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1 Introduction

In several applications of computer-aided geometric design we have to deal fre-

quently with 3D point reconstruction problems where a large number of data is

given in the form of an ordered sequence of distinct points describing a target shape

in space. Most of them usually contains measurement errors, while only a few are

rigorously generated and then turn out to be crucial to the final reconstruction.

As regards the computation of a surface/surface intersection curve, for example,

the set of discrete data is made of highly-accurate points (such as border points,

turning points and cusp points) precisely detected on the intersection curve, and

a sequence of marching points generated from each of the above ones by going a

step in the direction defined by the local differential geometry of the curve. The

first, commonly called starting points, will be therefore exactly interpolated, while

all the others will be approximated in order to reduce to the minimum the sum of

the squares of their distances from the desired curve.

An analogous situation occurs in the point-based construction of a Gordon-type

surface. This time the input data is given by a set of 3D points, describing the com-

plete cross-sections of the target surface, which have to be accurately approximated

to produce a fair curve network to be assumed as surface skeleton. Consistency de-

mands that cross-section curves agree in value where an x-section crosses a y-section.

This means that sequences of points along two transversal directions must possess

common intersections and these have to be assumed as positional constraints for

the fitting problem.

In both the outlined circumstances - as well as in many other applications - it is

therefore desirable to use a fitting method that, on one hand, is able to capture

the shape of the overall input data and, on the other, to satisfy the assigned point

constraints precisely.

Since when approximating shapes with a complicated behaviour it always turns out

to be convenient to construct the fitting curve segment-wise by means of a piecewise

model defined in the space of conventional polynomial splines or NURBS, our idea

consists in using the point constraints (identified by the specific application we are

considering or detected from the curvature and torsion information of the input

dataset) to partition the given data into adjacent subsets that can be approximated

separately by a curve segment taken from some specified class of appropriate curves.

Taking into account that when the points lie on the intersection of two analytic sur-

faces, derivative constraints of any order can be easily computed by their parametric

representation and, when generating Gordon-type surfaces, additional information

like first derivatives and/or higher order derivatives to be assumed by the curve

network in the significant locations are also generally available, the most natural

solution to this kind of constrained fitting problem can be obtained by using a fit-

ter that implements a piecewise Hermite interpolant. This solution also allows us

to tremendously simplify the computational process that a standard least-squares

minimization problem with associated positional constraints would have required in

order to ensure a sufficiently high order of continuity at segment boundaries.
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While for pure interpolation there is probably little reason to use a rational form,

for approximation purposes allowing weights to be arbitrary makes it possible to

produce fitting curves with higher accuracy and fewer control points.

The novel solution we are going to propose will rely therefore on a class of piecewise

rational Hermite interpolants. In particular we will adopt here the one introduced

in [1,2] because of its flexibility and easiness of control. This can also be represented

in the conventional NURBS form by assuming multiple knots in correspondence of

the location of the interpolation constraints and letting the control points be depen-

dent both on them and on the weights of the rational representation. In this way,

once a procedure for computing optimal weight values has been designed, control

points turn out to be automatically defined and hence the best-fitting curve results

completely determined.

Therefore, differently from standard NURBS fitting procedures, which require a

complicated and expensive iterative algorithm to minimize with respect to knots,

control points and weights, a sum of squared Euclidean norms measuring the dis-

tance between the point set and the curve to be generated [3,4,9,11,12,13,14,15],

the least-squares fitting method we are going to propose will be performed exclu-

sively to identify the choice of weights that guarantees the best reconstruction of

the original data. Moreover, while the output of existing algorithms cannot always

guarantee a fitting curve with a fair shape (namely with a curvature plot consist-

ing of only a small number of monotone pieces), due to the definition of the novel

fitter this follows straightforward and, whenever the degree of the curve primitive

is bigger than three, a curvature-continuous approximation of the original data is

also ensured.

The organization of the paper is made as follows. In Section 2 we introduce the ra-

tional Hermite basis to be used as novel curve primitive for determining the solution

of the constrained least-squares problem. Next in Section 3 we develop a strategy

for carrying out the automatic computation of the optimal weights to be embodied

in the desired rational form and we describe the overall fitting process in all its

steps. Finally, in Section 4 we close the paper by showing some numerical examples

that confirm the improved performance of the innovative procedure relative to con-

ventional and reliable approaches like the well-known lsqcurvefit algorithm that

is currently implemented in MATLAB’s Optimization Toolbox.

2 Least-squares fitting with a novel curve primitive

Given a set of 3D distinct points representing a target shape in space, we seek a

NURBS curve that lies close to the assigned data and passes through only a few of

them. Let {Qk}k=0,...,M−1 denote the given set of points in R3 and ℑ ⊂ {0, ...,M−1}
the subset of N +1 (N << M) indexes specifying all the points Qk that the fitting

curve must interpolate. In the following we will use the notation {Fi}i=0,...,N to

identify the point constraints Qℑ and we will also assume that the first and last
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data points are always interpolated, that is Q0 ≡ F0 and QM−1 ≡ FN . Hence the

point set {Qk}k=0,...,M−1 turns out to be partitioned by Qℑ into N adjacent sub-

sets that can be approximated separately by a curve segment ci(t) taken from some

specified class of admissible curves. Since it is required that segments ci have com-

mon endpoints Fi, Fi+1 and a contact of order ℓ at Fi and Fi+1, the C
ℓ-continuous

piecewise curve c(t) =
∪N−1

i=0 ci(t) can be naturally generated through a piecewise

rational Hermite interpolant of degree n = 2ℓ+ 1. As, in practice, a reconstruction

with piecewise curves of low degree is usually preferred, due to their simplicity and

robustness, we will confine ourselves here to consider rational Hermite models de-

fined by n = 3 and n = 5 only. This choice is also supported by the observation that

such degrees allow us to establish a good compromise between the number of curve

pieces ci(t) and the accuracy of the final fitting c(t). By taking into account that,

if a large number of pieces is used a curve with very small fitting errors is obtained,

while, if the number of pieces is too small the fitting errors might be very large,

it is easy to understand that the number of curve segments should be controlled

in such a way that the fitting errors reach a level that the user can accept. Since

the idea behind the algorithm we are going to propose is to fit a degree-n rational

Hermite segment to the data confined between the interpolating points Fi, Fi+1,

and, if this cannot guarantee the desired level of accuracy, to adaptively subdivide

the point set limited by the assigned constraints and reconsider the subsets (re-

peating the procedure until the required error tolerance holds), it is important to

make a choice of n which can guarantee a successful reconstruction that does not

need too many and computationally expensive segments. To this aim it has been

proved experimentally that, if n is chosen equal to 3 or 5, a tight and economical fit

is always ensured through only a restricted number of curve pieces. From now on

we will therefore address our attention towards the cubic and the quintic piecewise

rational Hermite models only. Note that the same choice was also made in [7], where

piecewise Hermite polynomials were originally adopted as fitting curve basis in al-

ternative to classical B-splines. But in this work, to facilitate local approximation

with endpoint constraints, we will let each single Hermite piece to be represented

in the well-known rational Bézier form. Next, in order to get a standard NURBS

representation, degree-n Bézier segments will be pieced together with n-fold knots

in correspondence of data points {Fi}i=0,...,N where the joins take place [1,2].

As frequently done with data-fitting procedures, the overall knot-partition {τk}k=0,...,

M−1 is obtained by applying the cumulative chord length parameterization

τk = τk−1 +
||Qk −Qk−1||2∑M−1

j=1 ||Qj −Qj−1||2
=

∑k
j=1 ||Qj −Qj−1||2∑M−1
j=1 ||Qj −Qj−1||2

, k = 1, ...,M − 1

(1)

(with τ0 = 0) to the given point set Qk, and the subset of multiple break knots

{ti}i=0,...,N , used to identify the junctions between consecutive rational pieces, is

computed by selecting from the previous one the location parameters of index ℑ.
By construction it results therefore that t0 < t1 < ... < tN and t0 ≡ τ0, tN ≡ τM−1.
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Since any Hermite model always requires that ℓth-order derivatives D
(ℓ)
i (ℓ ≥ 1) are

assigned in correspondence of the interpolating points {Fi}i=0,...,N , whenever they

are not given as constraints or cannot be easily obtained (like it happens when the

given data lie on the intersection of two analytic surfaces), then a data-sensitive

derivative estimation must be computed as part of the fitting algorithm. While

estimating first derivatives has been a subject of extensive study, an appropriate

estimation of higher order derivatives is still considered a difficult task. But as it

was assumed that n ∈ {3, 5} and neighboring Bézier segments are joined with a level

of continuity related to the degree of the fitting curve through the formula ℓ = n−1
2 ,

it turns out to be sufficient to estimate first and second order derivatives only. To

this aim we are allowed to exploit a 3-point strategy, based on local quadratic in-

terpolation, that enables us to derive them compatibly with the behaviour of the

data. In particular, given the three-dimensional point set Qk and the sequence of

location parameters τk, an appropriate estimation of first and second order deriva-

tives {D(ℓ)
i }i=0,...N (ℓ = 1, 2) at points Fi, can be worked out respectively by firstly

computing the direction vectors

∆(1)Qk =
θk ∆Qk−1 + θk−1 ∆Qk

θk−1 + θk
(2)

and

∆(2)Qk =
2(∆Qk −∆Qk−1)

θk−1 + θk
, (3)

(where θk = τk+1 − τk and ∆Qk =
Qk+1−Qk

θk
for all k = 0, ...,M − 1) and succes-

sively selecting from them the N + 1 values defined in correspondence of the knot

subsequence {ti}i=0,...,N .

Remark 1 In the above strategy ℓth-order derivatives at τk are estimated to be

those of the quadratic which passes through (τj ,Qj), j = k − 1, k, k + 1. Thus, in

case of open curves, the auxiliary point required by equations (2) and (3) at both the

endpoints can be consistently derived by a quadratic extrapolatory rule. In case of

closed curves, instead, we simply assume Q−1 = QM−2 and QM = Q1.

At this point, having identified the subset of break knots {ti}i=0,...,N defined in

correspondence of the significant points {Fi}i=0,...,N and computed the associated

derivatives {D(ℓ)
i }i=0,...,N (for all ℓ = 1, ..., n−1

2 ), we aim to construct N rational

Hermite curve segments {ci(t)}i=0,...,N−1 of a chosen degree n (n ∈ {3, 5}) that

interpolate the assigned end constraints and best approximate the ordered sequence

of points lying in between. To this purpose it turns out to be very helpful to express

each single Hermite piece ci(t) : [ti, ti+1] → R3 into the following rational Bézier

form.
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Definition 2 Defined the overall knot-partition {τk}k=0,...,M−1 and the related sub-

sequence of break knots {ti}i=0,...,N , the degree-n (n ∈ {3, 5}) rational Hermite in-

terpolant ci(t), with t ∈ [ti, ti+1], can be conveniently written in the rational Bézier

form

ci(t) =
n∑

j=0

Pi
jR

i
j,n(t), (4)

where {Pi
j}j=0,...,n denote the n+1 control points associated with the basis functions

Ri
j,n(t) =

wi
jB

i
j,n(t)∑n

h=0w
i
hB

i
h,n(t)

(5)

defined via the positive weights

wi
0 = 1,

{
wi
j

}
j=1,...,n−1

, wi
n = 1, (6)

and the degree-n Bernstein polynomials

Bi
j,n(t) =

 n

j

 (ti+1 − t)n−j (t− ti)
j

(ηi)n
, with ηi = ti+1 − ti. (7)

Since, once the degree n is fixed, an explicit formulation of all Bézier control points

{Pi
j}j=0,...,n in terms of the weights {wi

j}j=1,...,n−1 and of the assigned boundary

constraints
(
ti,Fi, {D(ℓ)

i }ℓ=1,...,n−1
2

)
,
(
ti+1,Fi+1, {D(ℓ)

i+1}ℓ=1,...,n−1
2

)
can be provided,

we will now formalize their definition both in the cubic and in the quintic cases.

Definition 3 A degree-3 rational Hermite interpolant ci(t) of the kind (4) is defined

by control points {Pi
j}j=0,...,3 having the following expressions:

Pi
0 = Fi, Pi

1 = Fi +
ηiD

(1)
i

3wi
1
, Pi

2 = Fi+1 −
ηiD

(1)
i+1

3wi
2

, Pi
3 = Fi+1. (8)

Analogously,
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Definition 4 A degree-5 rational Hermite interpolant ci(t) of the kind (4) is defined

by control points {Pi
j}j=0,...,5 having the following expressions:

Pi
0 = Fi, Pi

1 = Fi +
ηiD

(1)
i

5wi
1
, Pi

2 = Fi +
(5wi

1−1)ηiD
(1)
i

10wi
2

+
η2i D

(2)
i

20wi
2
, (9)

Pi
3 = Fi+1 −

(5wi
4−1)ηiD

(1)
i+1

10wi
3

+
η2i D

(2)
i+1

20wi
3
, Pi

4 = Fi+1 −
ηiD

(1)
i+1

5wi
4

, Pi
5 = Fi+1.

As regards the rational cubic primitive, it follows by definition that it gives C1

smoothness, which is sufficient for many applications, while keeping computational

costs to a minimum. However, as for certain applications higher order curves could

be necessary or advantageous (in general because higher smoothness and better ap-

proximation are required), whenever C2 continuity is needed the rational quintic

model will be able to provide the desired solution. Despite each single piece is a bit

more expensive than its degree-3 correspondent, it shows excellent approximation

properties and makes it possible to reduce the number of pieces needed to fit a

target shape within the same tolerance.

In the next sections we will show how the proposed rational models can be advan-

tageously used for constructing an optimal fitting of 3D data points, such that high

accuracy is guaranteed and a compact representation is pursued.

3 A Newton-type optimization algorithm for computing best-fitting

weights

We now introduce the notation {Qi
k}k=0,...,Mi−1 to identify the Mi points Qk con-

fined between two assigned interpolating points Fi,Fi+1 and we denote by {τ ik}k=0,...,

Mi−1 the parameters τk associated with these points (such that Qi
0 = Fi, Q

i
Mi−1 =

Fi+1 and τ i0 = ti, τ iMi−1 = ti+1). In this way, the approximating curve c(t) =∪N−1
i=0 ci(t) will be made of single pieces ci(t) in the form (4), defined to minimize

over each interval [ti, ti+1] the least-squares error

Φ(wi
1, ..., w

i
n−1) =

Mi−1∑
k=0

||ci(τ ik)−Qi
k||22 (10)

with respect to the unknowns {wi
j}j=1,...,n−1. Since the dependence of the ith seg-

ment ci(t) on the weight vector wi = (wi
1, ..., w

i
n−1)

T of the rational representation

(4) is nonlinear and is not available in a simple analytical form, we have to use a

nonlinear optimization procedure that can cope with this problem. But as the range

of positive values attainable by the parameters wi
j should be bounded away from

zero and, for clear practical reasons, limited by a plausible upper bound, indeed we

have to deal with a minimization problem whose solutions can only be expected in

7



a particular area. We are thus allowed to consider a numerical method for nonlinear

optimization with a feasible set in the form of box. However, differently from stan-

dard NURBS curves, we are not forced to avoid using dramatically varying weights,

since, being the control points definition influenced by the weights themselves, what-

ever their choice is we can guarantee a good parameterization. In this way we can

arbitrarily set lower and upper bounds, giving the weights the possibility to assume

also values very distant from 1. To our purposes it has been proved experimentally

that a good choice of feasible set is given by the box

Ω := {wi ∈ Rn−1 : lj ≤ wi
j ≤ uj with lj = 10−3, uj = 103 ∀j = 1, ..., n− 1},

where lj , uj denote the lower and upper bounds for wi
j , respectively. While lj = 10−3

has been imposed by the condition that weights wi
j should be strictly positive and

sufficiently far from zero, the value uj = 103 is dictated by a reasonable choice that

allows us to simplify our analysis and make the solution useful in practical problems.

Indeed we have to solve a nonlinear and multivariate optimization problem that

aims at minimizing the objective function Φ : Rn−1 → R, defined by the following

infinitely continuously differentiable expression

Φ(wi) =
Mi−1∑
k=0

||ci(τ ik)−Qi
k||22 =

Mi−1∑
k=0

||Ei
k||22, (11)

subject to wi ∈ Ω.

The existence of local minima is generally not a real difficulty in our case, but a

fast convergence towards a minimum is certainly a crucial problem.

Usually, most efficient algorithms for calculating a local minimum of a nonlinear

function may be considered to be descent methods. At each step they consist in

minimizing the objective function along a straight line defined by a direction named

the descent-direction. Each method is characterized by the way in which this direc-

tion is built. Be warned that, if it is not opportunely defined, the algorithm may

become really expensive and time-consuming since several iterations may be needed

to reach the minimum.

When the objective function is very regular, among the fastest descent methods we

can find the so-called Newton-type methods. In fact, when the exact computation of

the objective function derivatives is possible, the strategies which do not use these

information turn out to be more expensive than the ones which use them.

In principle, for NURBS curve fitting problems, computing derivatives with respect

to weights poses no severe difficulties, primarily because NURBS are a rational

combination of these variables. In addition, using the special NURBS representa-

tion proposed in the previous section, gradient and Hessian of the objective function

turn out to possess a very simple and compact symbolic form. Thus, to perform the

optimization process in (11) it appears to be convenient to use a Newton-type al-
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gorithm that requires the computation of both first and second order derivatives of

Φ(wi). Indeed, due to the presence of box constraints, the most adequate class of

Newton-type algorithms turns out to be the one of projected affine-scaling interior-

point Newton methods.

In the last ten years several papers proposing more and more efficient variants of

this type of simple-constrained optimization procedure have been published (see

[8,10] and references therein).

Among all possible solvers of this class, we consider here the iterative method in-

troduced in [8] and we develop some improvements to guarantee that the desired

fitting curve is obtained with less computation and a fast convergence is ensured in

any situation. In particular, we firstly observe that there is a scaling matrix that

can be cancelled on both sides of the linear system to be solved at each step of

Heinkenschloss et al. algorithm, allowing a more efficient implementation; secondly,

since when choosing a value of the steplength σ very close to 1 (as suggested by the

authors) their iterative method does not always converge to the optimal weight vec-

tor wi,∗, we will propose an innovative optimization procedure that can combine the

above-mentioned simplified version of the algorithm in [8] with a modified choice

of the σ parameter that is able to ensure an order-two convergence for any type

of input data. Our solution to this kind of problem is based on a non-stationary

definition of σ which, although starting from a small guess in (0,1), allows us to

guarantee in only a few steps increasing values closer and closer to 1, thus providing

an affine-scaling interior-point Newton-type method that is always quadratically

convergent.

Before developing the novel order-two interior-point Newton method that enables

us to compute the best-fitting values of wi, we will introduce the following nota-

tion. For the objective function Φ : Rn−1 → R, we denote by ∇Φ(wi) ∈ Rn−1 and

∇2Φ(wi) ∈ R(n−1)×(n−1) its gradient vector and its Hessian matrix, respectively,

while we use
[
∇Φ(wi)

]
j and

[
∇2Φ(wi)

]
j1j2

for their components.

By definition, the gradient of Φ(wi) is the (n− 1) dimensional column vector

∇Φ(wi) =


∂Φ(wi)
∂wi

1
...

∂Φ(wi)
∂wi

n−1

 , (12)

while its Hessian is the (n− 1)× (n− 1) symmetric matrix

∇2Φ(wi) =


∂2Φ(wi)

∂(wi
1)

2 · · · ∂2Φ(wi)
∂wi

1∂w
i
n−1

... . . .
...

∂2Φ(wi)
∂wi

n−1∂w
i
1
· · · ∂2Φ(wi)

∂(wi
n−1)

2

 . (13)
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Even though providing an explicit formulation of∇Φ(wi) and∇2Φ(wi) for arbitrary

objective functions Φ(wi) is generally a difficult and computationally intensive task,

one of the beauties of the rational model proposed here for representing ci(t), is that

it allows us to remarkably simplify these operations. In fact, using equation (11)

and the sum and product derivative rules, we can state that

∇Φ(wi) =


2
∑Mi−1

k=0 Ei
k •

∂Ei
k

∂wi
1

...

2
∑Mi−1

k=0 Ei
k •

∂Ei
k

∂wi
n−1

 (14)

where • denotes the inner product of two vectors. Then, in turn, using the difference

and quotient derivative rules, we can assert that for a rational cubic Hermite element

it holds

∂Ei
k

∂wi
1

= −
[Fi − ci(τ

i
k)]B

i
1,3(τ

i
k)∑3

h=0 wi
h Bi

h,3(τ
i
k)

, (15)

∂Ei
k

∂wi
2

= −
[Fi+1 − ci(τ

i
k)]B

i
2,3(τ

i
k)∑3

h=0 wi
h Bi

h,3(τ
i
k)

, (16)

while for its quintic correspondent we have

∂Ei
k

∂wi
1

= −
[Fi − ci(τ

i
k)]B

i
1,5(τ

i
k) +

ηi
2 D

(1)
i Bi

2,5(τ
i
k)∑5

h=0 wi
h Bi

h,5(τ
i
k)

, (17)

∂Ei
k

∂wi
2

= −
[Fi − ci(τ

i
k)]B

i
2,5(τ

i
k)∑5

h=0 wi
h Bi

h,5(τ
i
k)

, (18)

∂Ei
k

∂wi
3

= −
[Fi+1 − ci(τ

i
k)]B

i
3,5(τ

i
k)∑5

h=0 wi
h Bi

h,5(τ
i
k)

, (19)
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∂Ei
k

∂wi
4

= −
[Fi+1 − ci(τ

i
k)]B

i
4,5(τ

i
k)−

ηi
2 D

(1)
i+1B

i
3,5(τ

i
k)∑5

h=0 wi
h Bi

h,5(τ
i
k)

. (20)

Thus, inserting equations (15)-(16) and (17)-(20) in (14), we get respectively

∇Φ(wi) =


−2

∑Mi−1
k=0

Ei
k•[Fi−ci(τ

i
k)]B

i
1,3(τ

i
k)∑3

h=0
wi

h
Bi

h,3
(τ i

k
)

−2
∑Mi−1

k=0

Ei
k•[Fi+1−ci(τ

i
k)]B

i
2,3(τ

i
k)∑3

h=0
wi

h
Bi

h,3
(τ i

k
)

 (21)

in the cubic case, and

∇Φ(wi) =



−2
∑Mi−1

k=0

Ei
k•[Fi−ci(τ

i
k)]B

i
1,5(τ

i
k)+

ηi
2
Ei

k•D
(1)
i Bi

2,5(τ
i
k)∑5

h=0
wi

h
Bi

h,5
(τ i

k
)

−2
∑Mi−1

k=0

Ei
k•[Fi−ci(τ

i
k)]B

i
2,5(τ

i
k)∑5

h=0
wi

h
Bi

h,5
(τ i

k
)

−2
∑Mi−1

k=0

Ei
k•[Fi+1−ci(τ

i
k)]B

i
3,5(τ

i
k)∑5

h=0
wi

h
Bi

h,5
(τ i

k
)

−2
∑Mi−1

k=0

Ei
k•[Fi+1−ci(τ

i
k)]B

i
4,5(τ

i
k)−

ηi
2
Ei

k•D
(1)
i+1B

i
3,5(τ

i
k)∑5

h=0
wi

h
Bi

h,5
(τ i

k
)


(22)

in the quintic one. Hence, the elements in the Hessian matrix ∇2Φ(wi) can be

reduced to the simplified expressions written below. Be warned that, for ease of

notation, we will omit the arguments of the Bernstein basis functions Bi
j,n(τ

i
k) (j =

1, ..., n− 1) and we will assume the following compact forms:

Gi1,k := [Fi − ci(τ
i
k)] • [Fi − ci(τ

i
k) + 2Ei

k],

Gi2,k := [Fi+1 − ci(τ
i
k)] • [Fi+1 − ci(τ

i
k) + 2Ei

k],

Hi
k := [Fi+1 − ci(τ

i
k)] • [Fi − ci(τ

i
k) +Ei

k] + [Fi − ci(τ
i
k)] •Ei

k,

Ii1,k :=D
(1)
i • [Fi − ci(τ

i
k) +Ei

k],

Ii2,k :=D
(1)
i+1 • [Fi − ci(τ

i
k) +Ei

k],

J i
1,k :=D

(1)
i • [Fi+1 − ci(τ

i
k) +Ei

k],

J i
2,k :=D

(1)
i+1 • [Fi+1 − ci(τ

i
k) +Ei

k],

Ki
1 :=D

(1)
i •D

(1)
i , Ki

2 := D
(1)
i •D

(1)
i+1, Ki

3 := D
(1)
i+1 •D

(1)
i+1.

In this way, in the cubic case it holds
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[
∇2Φ(wi)

]
11

=2
Mi−1∑
k=0

(
Bi

1,3

)2
Gi1,k(∑3

h=0 wi
hB

i
h,3

)2 ,
[
∇2Φ(wi)

]
12

=2
Mi−1∑
k=0

Bi
1,3B

i
2,3Hi

k(∑3
h=0 wi

hB
i
h,3

)2 ,
[
∇2Φ(wi)

]
22

=2
Mi−1∑
k=0

(
Bi

2,3

)2
Gi2,k(∑3

h=0 wi
hB

i
h,3

)2 ,

while in the quintic one we get
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[
∇2Φ(wi)

]
11

=2
Mi−1∑
k=0

(
Bi

1,5

)2
Gi1,k + ηiB

i
1,5B

i
2,5Ii1,k +

η2i
4

(
Bi

2,5

)2
Ki

1(∑5
h=0 wi

hB
i
h,5

)2 ,

[
∇2Φ(wi)

]
12

=2
Mi−1∑
k=0

Bi
1,5B

i
2,5Gi1,k +

ηi
2

(
Bi

2,5

)2
Ii1,k(∑5

h=0 wi
hB

i
h,5

)2 ,

[
∇2Φ(wi)

]
13

=2
Mi−1∑
k=0

Bi
1,5B

i
3,5Hi

k +
ηi
2 B

i
2,5B

i
3,5J i

1,k(∑5
h=0 wi

hB
i
h,5

)2 ,

[
∇2Φ(wi)

]
14

=2
Mi−1∑
k=0

Bi
1,5B

i
4,5Hi

k +
ηi
2 (B

i
2,5B

i
4,5J i

1,k −Bi
1,5B

i
3,5Ii2,k)−

η2i
4 B

i
2,5B

i
3,5Ki

2(∑5
h=0 wi

hB
i
h,5

)2 ,

[
∇2Φ(wi)

]
22

=2
Mi−1∑
k=0

(
Bi

2,5

)2
Gi1,k(∑5

h=0 wi
hB

i
h,5

)2 ,
[
∇2Φ(wi)

]
23

=2
Mi−1∑
k=0

Bi
2,5B

i
3,5Hi

k(∑5
h=0 wi

hB
i
h,5

)2 ,
[
∇2Φ(wi)

]
24

=2
Mi−1∑
k=0

Bi
2,5B

i
4,5Hi

k −
ηi
2 B

i
2,5B

i
3,5Ii2,k(∑5

h=0 wi
hB

i
h,5

)2 ,

[
∇2Φ(wi)

]
33

=2
Mi−1∑
k=0

(
Bi

3,5

)2
Gi2,k(∑5

h=0 wi
hB

i
h,5

)2 ,
[
∇2Φ(wi)

]
34

=2
Mi−1∑
k=0

Bi
3,5B

i
4,5Gi2,k −

ηi
2

(
Bi

3,5

)2
J i
2,k(∑5

h=0 wi
hB

i
h,5

)2 ,

[
∇2Φ(wi)

]
44

=2
Mi−1∑
k=0

(
Bi

4,5

)2
Gi2,k − ηiB

i
3,5B

i
4,5J i

2,k +
η2i
4

(
Bi

3,5

)2
Ki

3(∑5
h=0 wi

hB
i
h,5

)2 .

Since the Newton-type algorithm we are going to describe is an iterative method that

updates the weight vectorwi at each step s, until the optimal onewi,∗ is determined,

we will denote the solution correspondent to the sth step by wi,s. Afterwards we

use the explicit expressions of ∇Φ(wi) and ∇2Φ(wi) developed above to define the

following diagonal matrices for the sth round of the algorithm:

• D(wi,s) := diag
(
d1(w

i,s
1 ), ..., dn−1(w

i,s
n−1)

)
, where for any j = 1, ..., n− 1

13



dj(w
i,s
j ) :=


d̃j(w

i,s
j ), if |[∇Φ(wi,s)]j | < min{wi,s

j − lj , uj − wi,s
j }2

or min{wi,s
j − lj , uj − wi,s

j } < |[∇Φ(wi,s)]j |2,

1, otherwise

with

d̃j(w
i,s
j ) :=


wi,s
j − lj , if [∇Φ(wi,s)]j > 0,

uj − wi,s
j , if [∇Φ(wi,s)]j < 0,

min{wi,s
j − lj , uj − wi,s

j }, if [∇Φ(wi,s)]j = 0;

• G(wi,s) := diag
(
g1(w

i,s
1 ), ..., gn−1(w

i,s
n−1)

)
, where for any j = 1, ..., n− 1

gj(w
i,s
j ) :=


|[∇Φ(wi,s)]j |, if |[∇Φ(wi,s)]j | < min{wi,s

j − lj , uj − wi,s
j }2

or min{wi,s
j − lj , uj − wi,s

j } < |[∇Φ(wi,s)]j |2,

0, otherwise.

As with any iterative scheme, to start the algorithm good initial guesses are required

for the unknowns. Namely, we want to start with a plausible configuration of the

variables wi,0
j with respect to the observation that the weight vector must contain

values in the range [lj , uj ]. In practice, we have found in our experiments that using

the initial vector wi,0 = (1, ..., 1)T is adequate for any cases. Therefore, the iterative

process we are going to illustrate always starts from a piecewise polynomial Hermite

model - since all the weights wi
j are initialized to 1 - and proceeds updating their

values through iterative minimization of the fitting error.

The other main issue in minimizing an objective function is given, instead, by the

stop criterion. To check the convergence towards the target shape, the stop criterion

|Φ(wi,s)− Φ(wi,s−1)|
Φ(wi,s)

< δ ∀i = 0, ..., N − 1 (23)

on the squared 2-norms of the residuals at the current and last step is examined

over each segment contemporarily with the termination test on the 2-norm of the

following scaled gradient

||D(wi,s) ∇Φ(wi,s)||2 < ε ∀i = 0, ..., N − 1. (24)
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The stop occurs when these norms are lower than given accuracies. In order to see

some interesting effects when comparing this method with a competitive one, we

have chosen for tolerances δ and ε the values 10−10 and 10−25, respectively. But

these parameters might be changed by the user if a higher or lower accuracy is

required. Note that, for practical reasons, the second criterion is more meaningful,

but the first one gives better information about the quality of the minimum when

the function is flat around it.

Having fixed starting values and stopping criterions, we are then in the position to

state the novel interior-point Newton-type method for the solution of the bound

constrained optimization problem (11).

Algorithm 1: Best-Fitting Weights Computation

(S.0) Choose tolerances δ and ε (we have set δ = 10−10 and ε = 10−25 in our

implementation). Set s := 0, wi,0 := (1, ..., 1)T ∈ Rn−1 and Φ(wi,−1) =

2Φ(wi,0). Define a starting parameter σ0 ∈ (0, 1) (we have found σ0 =

0.3 to be a good choice for any kind of data).

(S.1) Compute Ψ(wi,s) := |Φ(wi,s)−Φ(wi,s−1)|
Φ(wi,s)

and b(wi,s) := D(wi,s) ∇Φ(wi,s).

If Ψ(wi,s) < δ and ||b(wi,s)||2 < ε, STOP.

(S.2) Compute A(wi,s) := D(wi,s) ∇2Φ(wi,s) +G(wi,s).

(S.3) Let xs ∈ Rn−1 be the Newton-type search direction obtained by solving

the linear system A(wi,s) xs = b(wi,s).

(S.4) Compute PΩ(w
i,s − xs) using the following projection mapping:

PΩ : Rn−1 → Ω

PΩ(w
i,s
j − xsj) = max

{
lj ,min{uj , wi,s

j − xsj}
}
∀j = 1, ..., n− 1.

(25)

(S.5) Compute ρs := max
{
σs, 1− ||PΩ(w

i,s − xs)−wi,s||2
}
, so that strict

feasibility of the iterates worked out in the following step can be ensured.

(S.6) Set wi,s+1 := wi,s + ρs
(
PΩ(w

i,s − xs)−wi,s
)
.

(S.7) Update the value of σs through the formula

σs+1 =

√
1 + σs

2
. (26)

(S.8) Set s← s+ 1 and go to (S.1).

Remark 5 Note that the linear system to be solved in step (S.3) contains just n−1
equations (i.e. 2 and 4 equations in the cubic and quintic case respectively), that is

it can be easily solved by a direct approach like Gaussian elimination.
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Lemma 6 Given an initial parameter σ0 ∈ (0, 1), the recurrence relation in (26)

satisfies the properties:

σs ∈ (0, 1) ∀s ≥ 1 (27)

and

lim
s→+∞

σs = 1. (28)

Proof. Demonstration of (27) trivially follows.

To prove (28) we recall that a monotonic and bounded sequence is always convergent

and, in particular, if it is non decreasing and upper bounded, then it converges to

the upper bound of the values it assumes. For the recurrence formula


σ0 ∈ (0, 1)

σs =
√

1+σs−1

2 ∀s ≥ 1

(29)

it holds that the sequence {σs}s≥1 is non decreasing and hence convergent to 1. In

fact, called γ its limit, we have

γ = lim
s→+∞

σs = lim
s→+∞

√
1 + σs−1

2

 =

√
1 + γ

2
.

Thus, solving the last equation with respect to γ we get γ = 1. �

From the above result it follows that σs ∈ (0, 1) for any step s and the sequence

generated in (S.7) converges to 1 so that Heinkenschloss et al. condition on the

steplength is still satisfied. Thus the projected direction is truncated by a coefficient

ρs which approaches fast enough to 1 that the following convergence result holds.

Proposition 7 The weight vector wi,s converges with order two to the best-fitting

solution wi,∗.

Proof. Since the parameter σs defined in (26) always stays in (0, 1) and the linear

system to be solved in step (S.3) is equivalent to the one derived by Heinkenschloss

et al. in [8], the same convergence result established for that procedure still holds for

the projected affine-scaling interior-point Newton method proposed in Algorithm 1.

�

By combining the σ parameter correction in Lemma 6 with the simplified version of

16



Heinkenschloss et al. algorithm, it is possible to get an optimization method that is

very efficient and extremely robust. Due to Proposition 7, the convergence theory

from Heinkenschloss et al. paper still holds for this approach.

We now assemble the quadratically-convergent iterative method in Algorithm 1

with the steps described in Section 2 in order to develop a constrained least-squares

fitting technique that aims at generating the piecewise rational Hermite curve c(t)

which passes as close as possible to the sequence of points Qk assigned as input

and interpolates the set of points Fi and derivatives D
(ℓ)
i (ℓ = 1, 2) defined as

constraints.

Algorithm 2: Constrained Least-Squares Data-Fitting

Input:

- the degree n (n ∈ {3, 5}) of the desired fitting curve (remember that if Cℓ conti-

nuity is required, then the chosen degree must be n = 2ℓ+ 1);

- a 3D point set {Qk}k=0,...,M−1 and a subset of interpolating points {Fi}i=0,...,N

with F0 ≡ Q0 and FN ≡ QM−1;

- optionally, ℓth-order derivatives {D(ℓ)
i }i=0,...,N (ℓ = 1, 2) to be assumed by the

fitting curve in correspondence of the interpolating points {Fi}i=0,...,N ;

- a parameter λ = 0, 1, 2 specifying the order of assigned derivatives (note that

λ = 0 means no derivatives are specified).

1. Chord Length Parameterization.

Determine the parameters τk to be associated with the points {Qk}k=0,...,M−1

through the chord-length method in (1) and select from them the subsequence of

break knots {ti}i=0,...,N , fixing t0 = τ0 and tN = τM−1, such that the endpoints

of the data set Q always match with the endpoints of the fitting curve c(t).

2. Check Specified Constraints.

2.1. If λ = 0

Compute an appropriate estimation of derivatives {D(ℓ)
i }i=0,...,N , for all ℓ =

1, ..., n−1
2 , by selecting among the direction vectors {∆(ℓ)Qk}k=0,...,M−1 derived

through formulas (2)-(3), the ones corresponding to the subsequence of knots

{ti}i=0,...,N .

2.2. Elseif λ = 1 and n > 3

Compute an appropriate estimation of 2nd-order derivatives {D(2)
i }i=0,...,N by

selecting among the direction vectors {∆(2)Qk}k=0,...,M−1 derived through for-

mula (3), the ones corresponding to the subsequence of knots {ti}i=0,...,N .

3. Best-Fitting Weights Computation.

For all i = 0, ..., N−1 approximate the data points {Qi
k}k=0,...,Mi−1 lying between

two consecutive interpolating points Fi,Fi+1, through the rational Hermite in-

terpolant ci(t) with optimal parameters {wi
j}j=1,...,n−1 provided by Algorithm

1.

Output:
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the degree-n approximating curve c(t) =
∪N−1

i=0 ci(t) in the desired form (4).

To summarize, the idea at the base of our innovative strategy is the following: (i)

we define a number of parameter values compatible with the given data set, (ii)

we estimate first and, if required, second order derivatives in correspondence of all

points to be precisely interpolated and (iii) finally, for each curve piece, we compute

the weight vector which minimizes the fitting error in the least-squares sense, so

that the rational Bézier form (4) can be provided. The main contribution of this

paper lies therefore in bringing all these components together with some innovations

to complete a new and efficient algorithm for constrained least-squares data-fitting.

Its performances in terms of accuracy, number of iterations and computing time

have been extensively analyzed over a wide range of experiments which confirm

its superiority if compared with existing procedures. In the next section we will

illustrate the results we got by comparing the proposed fitter with MATLAB’s

lsqcurvefit function.

4 Comparisons and experimental results

To illustrate the efficiency of the fitting method derived in Section 3, we have com-

pared the optimal weights computation in Algorithm 1 with MATLAB’s lsqcurvefit

procedure. By default this implements a subspace trust region approach based on

the interior-reflective Newton method described in [5,6], whose single step involves

the approximate solution of a large linear system by using the method of Precondi-

tioned Conjugate Gradients (PCG).

The two algorithms have been implemented in MATLAB and tested for fitting many

sets of points with constraints, always showing that, starting with the same initiali-

zation values and adopting the same stopping criterions, the novel approach allows

us to reduce the number of lsqcurvefit iterations and the overall computing time

significantly, while keeping the fitting curve within at least the same accuracy and in

good quality. Such kinds of results, proving the superior performance of our method,

have been obtained testing the two procedures on many sequences of points repre-

senting any type of target shape in space.

Since important applications in Computer Aided Geometric Design often require fit-

ting points that lie on the intersection of two surfaces by using a fair and accurate

NURBS model, in the examples selected for this paper we have exploited degree 3

and 5 rational Hermite elements to approximate sequences of points {Qk}k=0,...,M−1

generated by a marching algorithm arising from a set of starting points (consisting

of border points, turning points and cusp points) that turns out to be crucial to the

intersection curve reconstruction.

For each segment ci(t) the closeness of fit has been verified by computing the aver-

age distance of the rational curve representation, resulting by the identified weights,

from the data set Q. Such a distance has been worked out with respect to the se-
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quence of parameter values τk previously determined through (1), by means of the

root mean square error

Ei
RMS =

(
1

Mi
Φ(wi,∗)

) 1
2

. (30)

The efficiency of the new procedure in terms of approximation accuracy, number of

iterations and computing time is confirmed by numerical results listed in the fol-

lowing tables (they all refer to tests made on a Pentium IV 3 GHz PC computer).

As it appears and it was confirmed by many other experiments, each round of Algo-

rithm 1 turns out to be really effective, so that convergence to the optimum is always

achieved in a few steps which globally require a very short time. More precisely, while

in the cubic case the same approximation accuracies reached by the lsqcurvefit

procedure are obtained after not much less rounds of the algorithm, the computing

time needed by the overall process to work out the best-fitting weights, is noticeably

smaller. In the quintic case the superiority of the new approach is even more evident:

more precise fitting curves are generated through a remarkably reduced number of

iterations which leads to a significant improvement of the computational time.

Data points considered in Tables 1-2, 3-4, 5-6 and 7 are determined respectively by

a free-form surface/free-form surface, a sphere/free-form surface, a sphere/cylinder

and a torus/cylinder intersection. In these four cases the overall set Q is made of

2302, 702, 514 and 590 points with Q0 ≡ QM−1; the subset of starting points as-

sumed in each of these contexts is given by 7, 5, 5 and 7 entries, respectively. For

all the data sets the sequence of break points Fi to be interpolated by the final

fitting coincides with the given starting points (see Figures 1-3-5 and Tables 1-3-5).

Sometimes, however, since the resulting number of curve pieces turns out to be too

small to get a sufficiently accurate reconstruction, wherever required we adaptively

subdivide the point set {Qi
k}k=0,...,Mi−1 confined between the assigned constraints

Fi and Fi+1, in such a way that the fitting error of each curve segment may reach

the required error tolerance. In the examples below this strategy has been applied

on all the 4 subsets in data set 2 and 3 to make the Ei
RMS errors related to the

least-squares cubic procedure reach the same level of accuracy obtained by its quin-

tic counterpart (see Figures 4-6 and Tables 4-6). Parallel to this, the first, second,

fifth and sixth of the 6 subsets identified by the 7 starting points adopted for data

set 1, have been subdivided to generate 10 pieces of cubic with Ei
RMS errors smaller

than 10−2 (see Figure 2 and Table 2). Analogously, the second and fifth of the 6

subsets identified by the 7 starting points adopted for data set 4, have been subdi-

vided to generate 8 pieces of quintic with Ei
RMS errors smaller than 10−2 (see Figure

7 and Table 7). Note that the best fitting curve got by running the lsqcurvefit

algorithm on data set 4 subject to the so computed point constraints, is not able to

satisfy the required accuracy.
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Figure 1. Least-squares fitting of data set 1 through 6 rational quintic Hermite
elements. In both pictures the piecewise quintic that best approximates the sequence
of points {Qk}k=0,...,2301 lying on the free-form surfaces intersection is denoted by
a solid line. Control polygons of the 6 curve pieces passing through the assigned
break points {Fi}i=0,...,6 (with F0 ≡ F6) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 462 8.502508e-03 [0.966060, 1.542797, 2.879184, 3.966312] 862

i = 1 404 6.623846e-03 [0.651238, 0.443307, 0.371919, 0.304374] 550

i = 2 286 1.764809e-03 [2.606749, 2.858480, 1.995475, 0.378754] 133 5.375

i = 3 223 3.290281e-03 [1.172632, 0.700361, 1.492148, 2.419566] 79 (sec)

i = 4 470 4.656866e-03 [1.743332, 1.381264, 0.960209, 1.059620] 37

i = 5 462 5.929960e-03 [2.440559, 1.722728, 0.971568, 0.749022] 94

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 462 8.444008e-03 [1.105368, 1.694575, 3.560147, 5.058892] 13

i = 1 404 6.576148e-03 [0.599338, 0.404932, 0.353357, 0.305320] 11

i = 2 286 1.747577e-03 [2.690090, 2.948713, 2.049340, 0.380522] 11 1.000

i = 3 223 2.897061e-03 [0.671066, 0.323021, 0.651753, 1.329987] 8 (sec)

i = 4 470 4.358240e-03 [1.105289, 0.837489, 0.590726, 0.688098] 7

i = 5 462 5.911690e-03 [2.538682, 1.774742, 0.972904, 0.753972] 9

Table 1. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 1 for computing

the best-fitting weights of the rational quintic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 2. Least-squares fitting of data set 1 through 10 rational cubic Hermite
elements. In both pictures the piecewise cubic that best approximates the sequence
of points {Qk}k=0,...,2301 lying on the free-form surfaces intersection is denoted by
a solid line. Control polygons of the 10 curve pieces passing through the assigned
break points {Fi}i=0,...,10 (with F0 ≡ F10) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 203 9.901198e-03 [0.810957, 0.916647] 7

i = 1 260 1.655288e-03 [1.057301, 1.079532] 7

i = 2 230 6.240072e-03 [0.955543, 0.891114] 7

i = 3 175 7.886030e-03 [0.657198, 0.616490] 9

i = 4 286 9.376179e-03 [2.794953, 2.642180] 11 0.734

i = 5 223 7.159967e-03 [0.554349, 0.757921] 9 (sec)

i = 6 240 2.843597e-03 [1.407494, 1.393785] 9

i = 7 231 6.872127e-03 [0.792434, 0.815610] 7

i = 8 328 6.596095e-03 [1.120769, 1.080506] 7

i = 9 135 9.978804e-03 [0.976209, 0.821802] 7

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 203 9.901198e-03 [0.810957, 0.916646] 4

i = 1 260 1.655288e-03 [1.057300, 1.079531] 5

i = 2 230 6.240072e-03 [0.955543, 0.891114] 4

i = 3 175 7.886030e-03 [0.657198, 0.616489] 5

i = 4 286 9.376179e-03 [2.794966, 2.642193] 9 0.516

i = 5 223 7.159967e-03 [0.554346, 0.757920] 5 (sec)

i = 6 240 2.843597e-03 [1.407494, 1.393785] 7

i = 7 231 6.872127e-03 [0.792434, 0.815609] 4

i = 8 328 6.596095e-03 [1.120768, 1.080505] 5

i = 9 135 9.978804e-03 [0.976210, 0.821802] 5

Table 2. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 1 for computing

the best-fitting weights of the rational cubic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 3. Least-squares fitting of data set 2 through 4 rational quintic Hermite
elements. In both pictures the piecewise quintic that best approximates the sequence
of points {Qk}k=0,...,701 lying on the sphere/free-form surface intersection is denoted
by a solid line. Control polygons of the 4 curve pieces passing through the assigned
break points {Fi}i=0,...,4 (with F0 ≡ F4) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 175 9.851175e-03 [0.799363, 0.854799, 0.855022, 0.806935] 388

i = 1 177 9.787529e-03 [0.809450, 0.863250, 0.863679, 0.810923] 310 2.656

i = 2 177 1.140690e-02 [0.786697, 0.840007, 0.837876, 0.789397] 373 (sec)

i = 3 176 1.260546e-02 [0.780919, 0.836727, 0.839393, 0.788605] 262

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 175 9.850409e-03 [0.798542, 0.854101, 0.854315, 0.806106] 5

i = 1 177 9.779958e-03 [0.806808, 0.861036, 0.861462, 0.808340] 5 0.313

i = 2 177 1.138628e-02 [0.782243, 0.836331, 0.834043, 0.784920] 5 (sec)

i = 3 176 1.259544e-02 [0.777628, 0.834029, 0.836690, 0.785366] 5

Table 3. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 2 for computing

the best-fitting weights of the rational quintic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 4. Least-squares fitting of data set 2 through 8 rational cubic Hermite ele-
ments. In both pictures the piecewise cubic that best approximates the sequence of
points {Qk}k=0,...,701 lying on the sphere/free-form surface intersection is denoted
by a solid line. Control polygons of the 8 curve pieces passing through the assigned
break points {Fi}i=0,...,8 (with F0 ≡ F8) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 88 7.501697e-03 [0.866362, 0.939911] 7

i = 1 88 8.179204e-03 [0.937168, 0.854591] 7

i = 2 89 8.617295e-03 [0.851643, 0.936051] 7

i = 3 89 6.994487e-03 [0.941680, 0.870211] 7 0.328

i = 4 89 7.712267e-03 [0.868871, 0.939994] 7 (sec)

i = 5 89 8.573518e-03 [0.935705, 0.849667] 7

i = 6 88 8.265148e-03 [0.854832, 0.936924] 7

i = 7 89 7.561317e-03 [0.939118, 0.862619] 7

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 88 7.501697e-03 [0.866362, 0.939911] 4

i = 1 88 8.179204e-03 [0.937168, 0.854591] 5

i = 2 89 8.617295e-03 [0.851643, 0.936051] 4

i = 3 89 6.994487e-03 [0.941680, 0.870211] 4 0.187

i = 4 89 7.712267e-03 [0.868871, 0.939994] 4 (sec)

i = 5 89 8.573518e-03 [0.935705, 0.849667] 4

i = 6 88 8.265148e-03 [0.854832, 0.936924] 5

i = 7 89 7.561317e-03 [0.939118, 0.862619] 4

Table 4. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 2 for computing

the best-fitting weights of the rational cubic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 5. Least-squares fitting of data set 3 through 4 rational quintic Hermite
elements. In both pictures the piecewise quintic that best approximates the sequence
of points {Qk}k=0,...,513 lying on the sphere/cylinder intersection is denoted by a
solid line. Control polygons of the 4 curve pieces passing through the assigned
break points {Fi}i=0,...,4 (with F0 ≡ F2 ≡ F4) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 130 3.321477e-03 [1.139599, 1.106147, 1.018917, 0.926744] 376

i = 1 128 3.823595e-03 [0.935399, 1.025981, 1.117559, 1.148720] 208 2.437

i = 2 130 3.432370e-03 [1.145902, 1.112684, 1.022914, 0.930366] 274 (sec)

i = 3 129 3.015703e-03 [0.888400, 0.974535, 1.042578, 1.087367] 478

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 130 1.739287e-03 [1.033776, 0.978617, 0.933440, 0.843413] 6

i = 1 128 1.726771e-03 [0.838807, 0.927343, 0.970547, 1.027221] 6 0.265

i = 2 130 1.607762e-03 [1.032087, 0.975694, 0.931319, 0.841457] 6 (sec)

i = 3 129 1.904271e-03 [0.828015, 0.912513, 0.950083, 1.010514] 6

Table 5. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 3 for computing

the best-fitting weights of the rational quintic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 6. Least-squares fitting of data set 3 through 8 rational cubic Hermite ele-
ments. In both pictures the piecewise cubic that best approximates the sequence of
points {Qk}k=0,...,513 lying on the sphere/cylinder intersection is denoted by a solid
line. Control polygons of the 8 curve pieces passing through the assigned break
points {Fi}i=0,...,8 (with F0 ≡ F4 ≡ F8) are shown as dashed lines.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 66 3.455816e-03 [0.973239, 0.954270] 7

i = 1 65 2.200337e-03 [0.945824, 0.891170] 7

i = 2 65 1.947531e-03 [0.895264, 0.946503] 7

i = 3 64 4.129708e-03 [0.952065, 0.973126] 7 0.296

i = 4 66 4.321906e-03 [0.971470, 0.948619] 7 (sec)

i = 5 65 2.062406e-03 [0.947309, 0.899389] 7

i = 6 65 1.708276e-03 [0.916043, 0.951027] 7

i = 7 65 6.755706e-03 [0.936736, 0.969365] 7

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 66 3.455816e-03 [0.973239, 0.954270] 4

i = 1 65 2.200337e-03 [0.945824, 0.891170] 4

i = 2 65 1.947531e-03 [0.895264, 0.946503] 4

i = 3 64 4.129708e-03 [0.952065, 0.973126] 4 0.141

i = 4 66 4.321906e-03 [0.971470, 0.948619] 4 (sec)

i = 5 65 2.062406e-03 [0.947309, 0.899389] 4

i = 6 65 1.708276e-03 [0.916043, 0.951027] 4

i = 7 65 6.755706e-03 [0.936736, 0.969365] 4

Table 6. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 3 for computing

the best-fitting weights of the rational cubic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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Figure 7. Least-squares fitting of data set 4 through 8 rational quintic Hermite
elements. In both pictures the piecewise quintic that best approximates the sequence
of points {Qk}k=0,...,589 lying on the torus/cylinder intersection is denoted by a solid
line. The assigned break points {Fi}i=0,...,8 (with F0 ≡ F8) interpolated by the
resulting piecewise quintic are denoted by small circles.

lsqcurvefit

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 74 1.278429e-03 [1.069575, 0.972395, 0.930822, 1.021725] 22

i = 1 75 1.030284e-02 [1.007062, 2.307917, 2.187811, 0.817368] 37

i = 2 76 3.608295e-03 [1.305328, 1.076340, 0.799544, 0.691877] 169

i = 3 74 2.771231e-03 [0.559891, 0.675602, 0.606955, 0.595069] 115 1.219

i = 4 75 1.421212e-03 [0.994152, 0.877017, 0.831445, 0.938514] 79 (sec)

i = 5 74 8.635112e-03 [0.843162, 1.832346, 1.696077, 0.683963] 49

i = 6 75 3.532453e-03 [1.825726, 1.359416, 0.955129, 0.874475] 22

i = 7 74 2.946511e-03 [0.576109, 0.679351, 0.591689, 0.602577] 133

Algorithm 1

curve segment Mi Ei
RMS wi,∗ nit time

i = 0 74 1.102737e-03 [0.984324, 0.923414, 0.849825, 0.962449] 5

i = 1 75 9.922827e-03 [3.244976, 7.916870, 7.953229, 2.987525] 13

i = 2 76 3.262948e-03 [0.990607, 0.880050, 0.701977, 0.556298] 6

i = 3 74 2.769366e-03 [0.556354, 0.674249, 0.603909, 0.595455] 6 0.343

i = 4 75 1.297896e-03 [0.944059, 0.855645, 0.784090, 0.900877] 6 (sec)

i = 5 74 7.785963e-03 [0.505213, 0.638850, 0.448414, 0.224541] 6

i = 6 75 3.006249e-03 [1.095881, 0.903639, 0.716018, 0.586672] 7

i = 7 74 2.926852e-03 [0.562427, 0.673401, 0.581701, 0.603127] 6

Table 7. Comparison of error measures (Ei
RMS), optimal solutions (wi,∗), numbers of iterations (nit) and

computing time (time) for lsqcurvefit and Algorithm 1 when they are tested on data set 4 for computing

the best-fitting weights of the rational quintic model. Be warned that as regards the lsqcurvefit procedure,

the parameter nit includes also the number of PCG iterations.
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In all the selected examples first and second order derivatives at the prescribed

locations Fi have been worked out through formulas (2)-(3) as previously explained

in Section 2. Since the novel fitter relies on piecewise Hermite curves, interpolation

of computed derivatives allows us to naturally guarantee a fair fitting, as proved by

the curvature and torsion plots in Figures 8, 9, 10, 11.

The innovative least-squares fitting method proposed in Section 3 is thus optimized

for handling arbitrary spatial data sets with constraints in respect of great quality

and high speed.
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Figure 8. Curvature plot of the piecewise quintic fitting curve in: (a) Fig.1, (b) Fig.3,
(c) Fig.5 and (d) Fig.7.
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Figure 9. Curvature plot of the piecewise cubic fitting curve in: (a) Fig.2, (b) Fig.4
and (c) Fig.6.
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Figure 10. Torsion plot of the piecewise quintic fitting curve in: (a) Fig.1, (b) Fig.3,
(c) Fig.5 and (d) Fig.7.
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Figure 11. Torsion plot of the piecewise cubic fitting curve in: (a) Fig.2, (b) Fig.4
and (c) Fig.6.

5 Concluding remarks

Existing techniques for computing a smooth parametric curve that approximates a

well-ordered sequence of distinct data satisfying specific requirements on points and

derivatives to be interpolated, rely on mathematical models defined in the space

of conventional polynomial splines and NURBS. While alternative approaches have

proposed to use piecewise Hermite polynomials of degree three and five as possible

fitting curve basis [7], their rational counterparts have never been taken into account.

This consideration prompted us to propose an innovative solution to the problem of

constrained least-squares data-fitting that is based on cubic and quintic piecewise

rational Hermite interpolants. The use of this novel curve primitive provides an
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efficient fitter, which turns out to enclose a number of advantages that cannot be

set aside:

• it is simple in definition and construction;

• it can be written into standard NURBS format and thus can be exported to any

CAD system;

• it is fully automatic since no user intervention is ever required;

• it provides fair (and, whenever n > 3, curvature continuous) reconstructions;

• it is both flexible and powerful as it can easily solve any fitting problem with very

few computations;

• it converges rapidly (quadratically) to the target shape, always guaranteeing a

highly accurate fitting through only a very few number of iterations.

All these benefits are due to the fact that the novel fitting procedure combines

a very effective optimization algorithm for identifying the best-fitting or optimal

weights, with a very powerful rational representation that is able to realize the full

modelling potential of NURBS in a cheapest way than conventional approaches

because all the control variables are handled collectively and simultaneously in a

unified way. Since the NURBS control points turn out to be automatically defined

through the weights, the optimization process can be performed only on the latter,

so reducing difficulties and computations. Furthermore, due to the locality of the

proposed strategy, processing extremely large data sets is not a burden and, if the

number of given points is increased, neither instability nor memory problems may

occur.

The proposed technique results therefore in an efficient and practical method to be

used directly in applications like the reconstruction of a surface/surface intersection

curve and the generation of the curve network at the base of a Gordon-type surface,

where a fair shape is desired by approximating a given point set with positional

constraints.
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