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Abstract
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1 Introduction

This paper deals with the following class of nonlinear elliptic problems




−∆u −
λ

|x|2
u =

(
1 + εK(x)

)
u2∗−1,

u ∈ D1,2(RN ), u > 0 in R
N \ {0},

(Pε
λ,K)

where

N ≥ 3, 2∗ =
2N

N − 2
, −∞ < λ <

(N − 2)2

4
,

K is a continuous bounded function, and ε is a small real perturbation parameter. Here D1,2(RN )
denotes the closure space of C∞

0 (RN ) with respect to

‖u‖D1,2(RN ) :=

(∫

RN

|∇u|2 dx

)1/2
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which is equivalent to the norm

‖u‖ :=

(∫

RN

|∇u|2 dx − λ
u2

|x|2
dx

)1/2

in view of the Hardy inequality. D1,2(RN ) endowed with the scalar product

(u, v) =

∫

RN

∇u · ∇v dx − λ
uv

|x|2
dx, u, v ∈ D1,2(RN )

is a Hilbert space.
The main features of the above problem are the critical Sobolev growth and the presence

of a singular potential having the same spatial homogeneity. The study of this type of singular
problems arises in several fields, such as quantum mechanics, astrophysics, as well as Rieman-
nian geometry. Indeed equation (Pε

λ,K) is related to the nonlinear Schrödinger equation with
a potential which exhibits a singular behavior at the origin. For discussion on Schrödinger op-
erators we refer to [7]. Moreover (Pε

λ,K) can be seen as a simplified prototype of the nonlinear
Wheeler-De Witt equation which appears in quantum cosmological models (for more details we
remind to [6] and references therein). Let us finally remark that the study of (P ε

λ,K) has also

a geometric motivation, since it is related to the scalar curvature problem on the sphere S
N .

Indeed, if we identify R
N with S

N through the stereographic projection and endow S
N with a

metric whose scalar curvature is singular at the north and the south poles, then the problem of
finding a conformal metric with prescribed scalar curvature 1 + εK(x) leads to solve equation
(Pε

λ,K), where the unknown u has the meaning of a conformal factor (see [5] and [22]).

For λ < (N − 2)2/4, the unperturbed problem, namely the problem with ε = 0, admits a
one-dimensional manifold of radial solutions

Zλ =
{

zλ
µ = µ−N−2

2 zλ
1

(
·
µ

)∣∣∣ µ > 0
}

(1.1)

where

zλ
1 (x) = A(N,λ)

[
|x|

2aλ
N−2 + |x|

2(N−2−aλ)

N−2

]−N−2
2

, A(N,λ) =

[
N(N − 2 − 2aλ)2

N − 2

]N−2
4

(1.2)

and aλ = N−2
2 −

√(
N−2

2

)2
− λ, see [26]. Moreover in [26] it is proved that if λ > 0 such

solutions are the unique positive solutions whereas if λ is sufficiently negative also nonradial
solutions exist.

Positive solutions to (Pε
λ,K) can be found as critical points in the space D1,2(RN ) of the

functional

fK
ε (u) =

1

2
‖u‖2 −

1

2∗

∫

RN

(
1 + εK(x)

)
u2∗

+ , u ∈ D1,2(RN ),

where u+ := max{u, 0}. A key role in the variational approach to the problem is the study of
nondegeneracy properties of the unperturbed functional, i.e. of the functional

f0(u) =
1

2
‖u‖2 −

1

2∗

∫

RN

u2∗
+ .
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We say that the critical manifold Zλ is nondegenerate if

kerD2f0(z) = TzZ
λ for all z ∈ Zλ, (1.3)

where D2f0(z) denotes the second Fréchet derivative of f0 at z, which is considered as an element
of D1,2(RN ) in view of the canonical identification of D1,2(RN ) with its dual. A complete answer
to the question of nondegeneracy of Zλ is given in [16], where it is proved that degeneracy occurs
only along a sequence of values of λ; more precisely Zλ is nondegenerate if and only if

λ 6=
(N − 2)2

4

[
1 −

j(N + j − 2)

N − 1

]
for any j ∈ N \ {0}, (1.4)

see Theorem 2.1 below. For all values of λ < (N−2)2/4 satisfying (1.4), it is possible to perform a
finite dimensional reduction, using a perturbative method developed by Ambrosetti and Badiale,
see [3]. Using this procedure, in [16] existence of solutions to problem (P ε

λ,K) close to Zλ was
proved for |ε| small, provided K vanishes at 0 and at infinity and (1.4) is satisfied, even for a
more general class of operators related to Caffarelli-Kohn-Nirenberg inequalities. Such solutions
have a single bubble profile wich is singular at zero when λ > 0 and vanishes at zero when λ < 0.
The purpose of this paper is to prove the existence of solutions with a multi-bubbling profile,
see figures 1 and 2.
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To this aim we will assume that K is of the form

K(x) =
∑̀

i=1

Ki

(
x
νi

)
(1.5)

where νi > 0,
Ki(∞) := lim

|x|→∞
Ki(x) exists and Ki(∞) = Ki(0) = 0 (1.6)
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for any i = 1, . . . , `, and

min
i6=j

[
νi

νj
+

νj

νi

]
is large, (1.7)

and discuss the existence of fountain-like solutions, obtained by superposition of ` bubbles of
different blow-up orders. The main result of the present paper is the following existence theorem.

Main Theorem. Let λ < (N −2)2/4 satisfying (1.4) and assume (1.5) and (1.6) hold. Suppose
that for each i = 1, 2, . . . , `, Ki ∈ L∞(RN ) ∩ C1(RN ) satisfies

either there exists ri > 0 such that

∫

SN−1

Ki(riθ) dθ 6= 0, (1.8)i

or Ki 6≡ 0 and Ki has a fixed sign (i.e. either Ki ≥ 0 or Ki ≤ 0). (1.9)i

Then there exist 0 < ai < bi, i = 1, 2, . . . , `, C = C(λ,N, ai, bi, ‖Ki‖L∞ , `) > 0 and some ε̄
sufficiently small such that if |ε| ≤ ε̄ and

ε2 min
i6=j

g
( νi

νj

)−max
{

1
2
, N−2
N+2

}
≥ C (1.10)

where

g(ν) := max
{[

ν1−
2aλ
N−2 + ν

2aλ
N−2

−1]−max
{

2, N−2
2

}
,
(
f1(ν) + f2(ν)

)}
(1.11)

and f1, f2 are defined in (2.13) below, there exists a solution uε to problem (Pε
λ,K) close to

∑`
i=1 zλ

µi
for some µi ∈ (νiai, νibi).

The proof of the above theorem is given in detail for ` = 2, the general case requiring only
simple modifications.

We will construct fountain-like solutions to (P ε
λ,K) using the perturbative method of [3]. This

method allows to find critical points of a perturbed functional of the type fε(u) = f0(u)−εG(u)
by studying a finite dimensional problem. More precisely, if the unperturbed functional f0 has a
finite dimensional manifold of critical points Z which satisfies the nondegeneracy condition (1.3),
it is possible to prove, for |ε| sufficiently small, the existence of a small perturbation function
wε(z) : Z → (TzZ)⊥ such that any critical point z̄ ∈ Z of the function

Φε : Z → R, Φε(z) = fε

(
z + wε(z)

)

gives rise to a critical point uε = z̄ + wε(z̄) of fε. Moreover the reduced function Φε can be
expanded as

Φε(z) = b0 − εΓ(z) + o(ε) as |ε| → 0

for some constant b0 and for some function Γ : Z → R, see Theorem 2.1, so that critical points
of Γ which are stable in a suitable sense correspond to critical points of fε which are close to Z.
In order to prove the existence of `-bubbling solutions, we mean to construct solutions close to∑`

i=1 zλ
µi

. We remark that functions of the type
∑`

i=1 zλ
µi

are pseudo-critical points of f0, in the

sense that f ′
0(

∑`
i=1 zλ

µi
) vanishes as the interactions between different bubbles tend to zero. We
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will show that when the rescaling factors νi satisfy condition (1.7), the interaction is small and
it is possible to construct a natural constraint for the functional f K

ε close to the `-dimensional
manifold Zε =

{∑`
i=1 zλ

µi
, µi ∈ R, i = 1, . . . , `

}
. Figure 3 represents the function

∑`
i=1 zλ

µi

when λ = −4, N = 3, ` = 3, µ1 = 2, µ2 = 6, and µ3 = 20.
The finite dimensional reduction described above leads us to look for critical points of a

function defined on R
`. The study of such a finite dimensional function will be performed by a

topological degree argument based on the Miranda’s Theorem, see Theorem 7.2.
We mention that a similar perturbative argument was used in [9] to construct multi-bump

solutions for the Yamabe problem on S
N and in [8] to find multi-bump and infinite-bump solu-

tions to a perturbed dynamical second order system. Moreover multi-bubbling phenomenon at a
single point was observed for the scalar curvature problem in [12], where a sequence of solutions
blowing up with infinite energy was found. The existence of radial solutions which behave like
superposition of bubbles was also proved in [13] for the supercritical Brezis-Nirenberg problem
and in [14] for an elliptic equation involving the p-laplacian and an exponential nonlinearity.

Let us now recall some results concerning elliptic equations with singular potential which
can be found in the literature. In [25] Smets considers the nonperturbative problem

−∆u −
λ

|x|2
u = F (x)u2∗−1 (1.12)

in the case N = 4, proving, by minimax methods, that, if F is a C 2 positive function such that
F (0) = lim|x|→+∞ F (x), then for any λ ∈ (0, 1) there exists at least one solution.

In [1], existence of solutions to problem (1.12) blowing-up at global maximum points of F as
the parameter λ goes to zero is proved under some suitable assumption about the local behavior
of F close to such maximum points. In [15], it is studied the existence of solutions to problem
(1.12) blowing-up at a suitable critical point (not necessarily a maximum point) of the function
F , as λ goes to zero. Let us mention that some related singular equations with Hardy type
potential were also studied in [2, 18, 20, 21, 24].

The change of variable v(x) = |x|aλu(x) transforms problem (1.12) into the following degen-
erate elliptic equation with the same critical growth

−div (|x|−2aλ∇v) = F (x)
v2∗−1

|x|2∗aλ
(1.13)

which is related to Caffarelli-Kohn-Nirenberg inequalities, see [10] and [11]. The estimates of
the behavior of single bubbles given in Section 3 are essentially based on the regularity results
for equation (1.13) contained in [17].

To construct fountain-like solutions to P ε
λ,K is equivalent to built multi-bump solutions for

a transformed problem on a cylinder. Indeed the Emden transformation

v(x) = |x|−
N−2−2aλ

2 ϕ
(
− ln |x|, x

|x|

)

turns equation (1.13) into the following problem on the cylinder C := R × S
N−1

−ϕtt − ∆θϕ +
(

N−2−2 aλ

2

)2
ϕ = F (θet)ϕ2∗−1, (t, θ) ∈ C (1.14)
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where ∆θ denotes the Laplace-Beltrami operator on the sphere S
N−1. We remark that

fountain-like solutions to Pε
λ,K correspond through the above transformations to multi-bump

solutions to equation (1.14).
The paper is organized as follows. In section 2 we introduce some notation, recall some

known facts and state the existence theorem for two-bubble solutions. In section 3 we provide
estimates of the behavior of the one-bubble solutions while section 4 contains estimates of the
interaction between different bubbles. Section 5 is devoted to the construction of the natural
constraint for the problem. In section 6 we expand the Jacobian of the reduced function up to
the first order and in section 7 we give the proof of the existence of critical points of the reduced
function by topological degree arguments. In the appendix we collect some technical lemmas.

2 Two bubble fountain solutions

For any k ∈ L∞(RN ) ∩ C0(RN ), let us consider the functional f k
ε : D1,2(RN ) → R defined by

fk
ε (u) = f0(u) − εGk(u)

where

f0(u) =
1

2

∫

RN

|∇u|2 dx −
λ

2

∫

RN

u2

|x|2
dx −

1

2∗

∫

RN

u2∗
+ dx and Gk(u) =

1

2∗

∫

RN

k(x)u2∗
+ dx.

The functional f k
ε is of class C2 and its critical points are solutions of the problem





−∆u −
λ

|x|2
u =

(
1 + εk(x)

)
u2∗−1,

u ∈ D1,2(RN ), u > 0 in R
N \ {0}.

(Pε
λ,k)

The following theorem ensures that for λ satisfying (1.4) a finite dimensional reduction is pos-
sible. For simplicity of notation, in the sequel we write zµ instead of zλ

µ and Z instead of Zλ if
there is no possibility of confusion.

Theorem 2.1. Let λ < (N − 2)2/4 satisfying (1.4). Then the critical manifold Z = Zλ defined
in (1.1) satisfies the following nondegeneracy condition

TzµZ = ker D2f0(zµ) for all µ > 0. (2.1)

Moreover for any k ∈ L∞(RN )∩C0(RN ) there exist εk, Ck = Ck(‖k‖L∞ , λ,N) > 0, and a unique
couple of smooth functions wk : (0,+∞)×(−εk , εk) → D1,2(RN ), αk : (0,+∞)×(−εk, εk) → R

such that for any µ > 0 and ε ∈ (−εk, εk)

wk(µ, ε) is orthogonal to TzµZ, (2.2)

Dfk
ε

(
zµ + wk(µ, ε)

)
= αk(µ, ε)ξ̇µ, (2.3)

‖wk(µ, ε)‖ + |αk(µ, ε)| ≤ Ck|ε|, (2.4)

‖∂µwk(µ, ε)‖ ≤ Ckµ
−1|ε|min{1,4/(N−2)}, (2.5)
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where ξ̇µ denotes the normalized tangent vector

ξ̇µ :=
żµ

‖żµ‖
, żµ =

d

dµ
zµ. (2.6)

Finally

fk
ε

(
zµ + wk(µ, ε)

)
= f0(z1) − εΓk(µ) + o(ε) (2.7)

as |ε| → 0 uniformly with respect to µ > 0, where

Γk(µ) = Gk(zµ) =
1

2∗

∫

RN

k(x)z2∗
µ dx. (2.8)

Proof. We refer to [16, Theorem 1.1, Lemma 3.4, and Lemma 4.1] for the proof of nondegen-
eracy, existence, uniqueness, estimate (2.4), and expansion (2.7). To prove estimate (2.5) we
observe that wk and αk are implicitly defined by h(µ,w, α, ε) = (0, 0) where

h : (0,∞) ×D1,2(RN ) × R × R → D1,2(RN ) × R

h(µ,w, α, ε) :=
(
Dfε(zµ + w) − α ξ̇µ, (w, ξ̇µ)

)
.

It is possible to show (see [16]) that (2.1) implies the existence of a positive constant C∗ such
that for any µ > 0

∥∥∥∥
(

∂h

∂(w,α)
(µ, 0, 0, 0)

)−1∥∥∥∥ < C∗.

Since ∂µwk(µ, ε) satisfies

(
∂µwk(µ, ε)
∂µαk(µ, ε)

)
= −

(
∂h

∂(w,α)

)−1∣∣∣∣
(µ,wk,αk,ε)

·
∂h

∂µ

∣∣∣∣
(µ,wk,αk,ε)

we have

‖∂µwk(µ, ε)‖ ≤ C∗

∥∥∥∥
∂h

∂µ

∣∣∣∣
(µ,wk,αk,ε)

∥∥∥∥

≤ C∗

[∥∥∥D2fk
ε (zµ + wk(µ, ε))żµ − α(µ, ε)

d

dµ
ξ̇µ

∥∥∥ +
∣∣∣
(
wk(µ, ε),

d

dµ
ξ̇µ

)∣∣∣
]

≤ C∗

[∥∥∥
(
D2f0(zµ + wk(µ, ε)) − D2f0(zµ)

)
żµ

∥∥∥ + |ε|
∥∥∥D2Gk(zµ + wk(µ, ε))żµ

∥∥∥

+ |α(µ, ε)|
∥∥∥

d

dµ
ξ̇µ

∥∥∥ + ‖wk(µ, ε)‖
∥∥∥

d

dµ
ξ̇µ

∥∥∥
]
. (2.9)

Since ‖zµ‖ = ‖z1‖, ‖żµ‖ = µ−1‖ż1‖,
∥∥ d

dµ ξ̇µ

∥∥ ≤ c(λ,N)µ−1 for some positive constant c(λ,N)
depending only on λ and N (see (A.10) and (A.18)), using (A.8) of the appendix, (2.4), and the
estimate

∥∥D2Gk(zµ + wk(µ, ε))żµ

∥∥ = sup
‖v‖≤1

∣∣∣∣(2
∗ − 1)

∫

RN

k(x)(zµ + wk(µ, ε))2
∗−2

+ żµv

∣∣∣∣ ≤ const ‖żµ‖
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which follows easily from Hölder inequality, (2.9) yields estimate (2.5). This ends the proof. 2

Let us set

zk
µ,ε := zµ + wk(µ, ε). (2.10)

Hereafter we assume

K(x) = K1(x) + K2(x/ν) (2.11)

where ν > 0 and K1,K2 ∈ L∞(RN ) ∩ C0(RN ) satisfy (1.6). We will also use the notation

k1(x) = K1(x) and k2(x) = K2(x/ν). (2.12)

Let us set

f1(ν) =

[ ∫

RN

|K1(νx)|z2∗
1 (x) dx

] 2∗−1
2∗

, f2(ν) =

[ ∫

RN

∣∣∣K2

(x

ν

)∣∣∣z2∗
1 (x) dx

] 2∗−1
2∗

. (2.13)

Lemma 2.2. Assume that (1.6) holds. Then

lim
ν→0+

fi(ν) = lim
ν→+∞

fi(ν) = 0, i = 1, 2.

Proof. It follows from (1.6) and the Dominated Convergence Theorem. 2

In order to ensure that the functions Γk1 and Γk2 are not identically equal to zero, we require
that Ki, i = 1, 2, satisfies either (1.8)i or (1.9)i.

Lemma 2.3. Let i = 1, 2. Assume that Ki ∈ L∞(RN ) satisfies either (1.8)i or (1.9)i. Then
Γki 6≡ 0.

Proof. Let i = 1 and assume (1.8)i. For any g ∈ L1([0,∞), dr/r) let us define the Mellin
transform of g as

M[g](s) =

∫ ∞

0
r−isg(r)

dr

r
,

see [19] and [4, Theorem 4.3]. The associated convolution is defined by

(g × h)(s) =

∫ ∞

0
g(r)h(s/r)

dr

r
.

There holds M[g × h] = M[g] · M[h]. Let η be a smooth cut-off function such that η(x) ≡ 1
for |x| ≤ 1, η(x) ≡ 0 for |x| ≥ 2, and 0 ≤ η ≤ 1 in R

N . Using polar coordinates and the above
notation we can write Γk1 as

Γk1(µ) =
1

2∗

∫

RN

K1(x)z2∗
µ dx =

1

2∗

∫ ∞

0

[ ∫

SN−1

K1(rθ) dθ

]
z2∗
µ (r) rN−1 dr

=
1

2∗
µ−α1

∫ ∞

0
g1(r)z

2∗

1

( r

µ

)( r

µ

)N−α1 dr

r
+

1

2∗
µ−α2

∫ ∞

0
g2(r)z

2∗

1

( r

µ

)( r

µ

)N−α2 dr

r

=
1

2∗
µ−α1(g1 × h1)(µ) +

1

2∗
µ−α2(g2 × h2)(µ)
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where

g1(r) := rα1

∫

SN−1

η(rθ)K1(rθ) dθ, g2(r) := rα2

∫

SN−1

(1 − η)(rθ)K1(rθ) dθ,

h1(r) := z2∗

1

(1

r

)(1

r

)N−α1

, h2(r) := z2∗

1

(1

r

)(1

r

)N−α2

,

and α1, α2 are chosen in such a way that

0 < α1 < N − 2∗aλ, 2∗aλ − N < α2 < 0. (2.14)

Note that the choice of η, (1.2), and (2.14) imply that g1, g2, h1, h2 ∈ L1([0,∞), dr/r). If, by
contradiction, Γk1 ≡ 0, then µ−α1(g1 × h1)(µ) + µ−α2(g2 × h2)(µ) ≡ 0, and hence

M[g1 × h1]
(
s +

α1

i

)
+ M[g2 × h2]

(
s +

α2

i

)
= 0, for any s ∈ R.

From multiplication property of convolution we obtain

M[g1]
(
s +

α1

i

)
· M[h1]

(
s +

α1

i

)
+ M[g2]

(
s +

α2

i

)
·M[h2]

(
s +

α2

i

)
= 0, for any s ∈ R.

Since M[h1] is real analytic, it has a discrete number of zeroes. Moreover from a direct compu-
tation we have

M[h1]
(
s +

α1

i

)
= M[h2]

(
s +

α2

i

)
=

∫ ∞

0
r−isz2∗

1

(1

r

)(1

r

)N dr

r
.

Hence by continuity if follows that

M[g1]
(
s +

α1

i

)
+ M[g2]

(
s +

α2

i

)
= 0, for any s ∈ R. (2.15)

On the other hand a direct computation yields

M[g1]
(
s +

α1

i

)
+ M[g2]

(
s +

α2

i

)
= M[g̃](s) (2.16)

where g̃(r) :=
∫

SN−1 K1(rθ) dθ. From (2.15) and (2.16) we deduce that M[g̃] ≡ 0. Then
g̃ ≡ 0, which contradicts assumption (1.8)i. The proof for i = 2 is analogous. The proof under
assumption (1.9)i is elementary. 2

Lemma 2.4. Let i = 1, 2. Assume that Ki ∈ L∞(RN ) ∩ C0(RN ) satisfies (1.6). Then

lim
µ→0+

Γki(µ) = lim
µ→+∞

Γki(µ) = 0.

Proof. It follows from (2.8), the change of variable y = x/µ, (1.6), and the Dominated
Convergence Theorem. 2

An easy consequence of Lemmas 2.3 and 2.4 is the following result.
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Corollary 2.5. Assume that K1 ∈ L∞(RN ) ∩ C1(RN ) satisfies either (1.8)i or (1.9)i, K2 ∈
L∞(RN )∩C1(RN ) satisfies either (1.8)i or (1.9)i, and (1.6) holds. Then there exist 0< a1 <b1,
0< a2 <b2 depending only on K1, respectively K2, (and independent of ν), such that

(Γk1)′(a1) · (Γ
k1)′(b1) < 0,

(Γk2)′(ν a2) · (Γ
k2)′(ν b2) < 0.

Proof. Lemmas 2.3 and 2.4 imply that the functions

µ 7→

∫

RN

Ki(µx)z2∗
1 (x) dx, i = 1, 2

vanish at 0 and at ∞ and are not identically zero. Hence we can find 0 < a1 < b1, 0 < a2 < b2

such that (∫

RN

∇Ki(aix) · x z2∗
1 (x) dx

)( ∫

RN

∇Ki(bix) · x z2∗
1 (x) dx

)
< 0, i = 1, 2.

The result follows from above and the definition of Γki , see (2.8) and (2.12). 2

For ν either large or small enough, we will construct a natural constraint for the functional
fk1+k2

ε close to the 2-dimensional manifold

Zε =
{
zk1+k2
µ1,ε + zk1+k2

µ2 ,ε

∣∣ µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2)
}

where 0 < a1 < b1 and 0 < a2 < b2 are as in Corollary 2.5.

We will give a proof of our main theorem in the case ` = 2, i.e. of the following theorem.

Theorem 2.6. Let λ < (N − 2)2/4 satisfy (1.4) and assume (1.6) and (2.11) hold. Suppose
that K1 ∈ L∞(RN ) ∩ C1(RN ) satisfies either (1.8)i or (1.9)i, K2 ∈ L∞(RN ) ∩ C1(RN ) satisfies
either (1.8)i or (1.9)i, and that a1, a2, b1, b2 are as in Corollary 2.5. Then there exist a constant
C =C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞)>0 and some ε̄ sufficiently small such that if |ε| ≤ ε̄
and

ε2g(ν)−max
{

1
2
, N−2
N+2

}
≥ C (2.17)

there exists a solution uε to problem (Pε
λ,K) close to zµ1 + zµ2 for some µ1 ∈ (a1, b1) and

µ2 ∈ (νa2, νb2).

The general case ` > 2 requires just simple modifications.

3 Estimates of the behaviour of z
ki

µi,ε

Lemma 3.1. There exists C = C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞) > 0 such that for any
µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), and |ε| ≤ ε0 = min{εk1 , εk2}

(i)
∣∣zk1

µ1 ,ε(x)
∣∣ ≤ C |x|−(N−2−aλ) for all |x| > 1,

(ii)
∣∣zk2

µ2 ,ε(x)
∣∣ ≤ C ν

N−2−2aλ
2 |x|−(N−2−aλ) for all |x| > ν,

(iii)
∣∣zk1

µ1 ,ε(x)
∣∣ ≤ C |x|−aλ for all |x| < 1,

(iv)
∣∣zk2

µ2 ,ε(x)
∣∣ ≤ C ν−

N−2−2aλ
2 |x|−aλ for all |x| < ν.
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In order to prove the above estimates we will use the following elliptic estimate which is an easy
consequence of [17, Theorem 1.1].

Theorem 3.2. Suppose Ω ⊂ R
N is a bounded domain and u ∈ H1(Ω) weakly solves

−∆u −
λ

|x|2
u = f.

Assume that ∫

Ω
|x|−aλ(2∗−2∗s+s)|f(x)|s dx < ∞

for some s > N/2. Then for any Ω′
b Ω there is a constant C = C(N,Ω,dist (Ω′,Ω), s) such

that

sup
Ω′

||x|aλu(x)| ≤ C

{
‖u‖L2(Ω) +

(∫

Ω
|x|−aλ(2∗−2∗s+s)|f(x)|s dx

)1/s}
.

Proof. It follows from [17, Theorem 1.1] after making the change of variable v(x) = |x|aλu(x). 2

Let us denote as D1,2
aλ

(RN ) the space obtained by completion of C∞
0 (RN ) with respect to the

weighted norm

‖v‖
D1,2

aλ
(RN )

:=

(∫

RN

|x|−2aλ |∇v|2 dx

)1/2

,

and set

S(λ,N) := inf
D1,2

aλ
(RN )\{0}

∫
RN |x|−2aλ |∇v|2 dx

( ∫
RN |x|−2∗aλ |v(x)|2∗ dx

)2/2∗
. (3.1)

We have that S(λ,N) > 0; moreover S(λ,N) is attained if aλ ≥ 0 (i.e. if λ ≥ 0) and not
attained if aλ < 0 (i.e. if λ < 0), see [11].

The following Brezis-Kato type Lemma will be also used to prove Lemma 3.1. We refer to
[17] for a proof (see also [25, Theorem 2.3]).

Lemma 3.3. Let Ω ⊂ R
N be open and q > 2. Assume that v ∈ D1,2

aλ
(RN ),

∫

Ω
|x|−2∗aλ |v(x)|q < +∞

and v is a weak solution of

−div (|x|−2aλ∇v) −
V (x)

|x|2∗aλ
v =

f(x)

|x|2∗aλ
in Ω,

where ∫

Ω
|x|−2∗aλ |f(x)|q < +∞

and V satisfies for some σ > 0

∫

|V (x)|≥σ
|x|−2∗aλ |V (x)|

N
2 +

∫

Ω\Bσ(0)
|x|−2∗aλ |V (x)|

N
2 ≤ min

{
1

8
S(λ,N),

2

q + 4
S(λ,N)

}N
2

(3.2)
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where S(λ,N) is defined in (3.1). Then for any Ω′
b Ω there is a constant C = C(σ, q,Ω′) such

that

(∫

Ω′

|x|−2∗aλ |v(x)|
2∗q

2 dx

) 2
2∗q

≤ C(σ, q,Ω′)

(∫

Ω
|x|−2∗aλ |v(x)|q

)1/q

+

(∫

Ω
|x|−2∗aλ |f(x)|q

)1/q

.

Proof of Lemma 3.1. Let us set u1 = zk1
µ1,ε. From (2.3) we have that u1 solves

−∆u1 −
λ

|x|2
u1 =

(
1 + εk1(x)

)
u2∗−1

1 − αk1
µ1 ,ε

(
∆ξ̇µ1 +

λ

|x|2
ξ̇µ1

)
.

Since ξ̇µ1 solves the linearized problem −∆ξ̇µ1 −
λ

|x|2
ξ̇µ1 = (2∗ − 1)z2∗−2

µ1
ξ̇µ1 , we obtain

−∆u1 −
λ

|x|2
u1 =

(
1 + εk1(x)

)
u2∗−1

1 + αk1
µ1,ε(2

∗ − 1)z2∗−2
µ1

ξ̇µ1 . (3.3)

For any function u ∈ D1,2(RN ) let us denote by u? ∈ D1,2(RN ) its Kelvin transform

u?(x) = |x|−(N−2)u(x/|x|2). (3.4)

Let us set w1 := u?
1. Since u1 satisfies (3.3) in R

N \ B1/2(0), we have that w1 satisfies

−∆w1 −
λ

|x|2
w1 =

(
1 + εk1(x/|x|2)

)
w2∗−1

1 + (2∗ − 1)αk1
µ1 ,ε(z

?
µ1

)2
∗−2(ξ̇µ1)

? in B2(0). (3.5)

The weighted function v1(x) = |x|aλw1(x) satisfies

−div (|x|−2aλ∇v1) −
V (x)

|x|2∗aλ
v1 =

f(x)

|x|2∗aλ
in B2(0)

where

V (x) = (1 + εk1(x/|x|2))|x|(2
∗−2)aλw1(x)2

∗−2

and

f(x) = (2∗ − 1)αk1
µ1 ,ε|x|

(2∗−1)aλ(z?
µ1

)2
∗−2(ξ̇µ1)

?.

We claim that the function V defined above satisfies (3.2) for some σ independent of µ1 ∈ (a1, b1)
and ε ∈ (−ε0, ε0). Indeed since the map wk1 depends continuously on µ1 and ε and the Kelvin
transform defined in (3.4) is an isomorphism of D1,2(RN ), it is easy to check that the family of
functions

{|zk1
µ1 ,ε

?
|2

∗

: µ1 ∈ (a1, b1), ε ∈ (−ε0, ε0)}

is relatively compact in L1(RN ), hence from the Dunford-Pettis Theorem such a family is equi-
integrable, i.e. for any η > 0 there exists δ > 0 such that for any measurable set A with measure
less than δ there holds

∫

A
|zk1

µ1,ε
?
|2

∗

< η for all µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0).
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Set Aσ
µ1,ε = {x ∈ B2(0) : |V (x)| ≥ σ} and let 0 < γ < min

{
2∗, 2∗N

N−2∗aλ

}
. Then for some positive

constants ci independent of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0), Hölder inequality yields

σ
γ

2∗−2 |Aσ
µ1 ,ε| ≤

∫

Aσ
µ1,ε

|V (x)|
γ

2∗−2 dx ≤ c1

∫

Aσ
µ1,ε

|x|aλγ |zk1
µ1 ,ε

?
|γ ≤ c2

(∫

Aσ
µ1,ε

|zk1
µ1 ,ε

?
|2

∗

) γ

2∗

≤ c3

hence we can choose σ large enough independently of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0) in order
to have |Aσ

µ1,ε| as small as we need. From this and the equi-integrability of (zk1
µ1 ,ε)

2∗ , condition
(3.2) is proved to hold for some σ large enough independently of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0).
Lemma A.5 and Lemma 3.3 with q = 2∗ imply that for any r < 2

∫

Br(0)
|x|−2∗aλ |v1(x)|

(2∗)2

2 dx ≤ c(N,λ, r).

Iterating the argument above a finite number of times, it is possible to show that for any τ > 2∗

there exists some constant c = c(N,λ, τ) independent of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0) such
that ∫

B 3
2
(0)

|x|−2∗aλ |v1(x)|τ dx =

∫

B 3
2
(0)

|x|−2∗aλ+aλτ |w1(x)|τ dx ≤ c(N,λ, τ). (3.6)

Estimate (3.6) with some fixed τ > (2∗−1)N
2 , Lemma A.5 and (2.4) ensure that w1 satisfies the

assumptions of Theorem 3.2 with s = τ
2∗−1 > N

2 . Then Theorem 3.2 yields

sup
B1(0)

∣∣∣∣|x|
aλ−(N−2)zk1

µ1,ε

( x

|x|2

)∣∣∣∣ ≤ C

for some positive constant C independent of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0), hence

sup
|y|>1

∣∣|x|N−2−aλzk1
µ1 ,ε(y)

∣∣ ≤ C.

Estimate (i) is thereby proved. To prove (ii) we set u2 = zk2
µ2 ,ε. From (2.3) we have that u2

solves

−∆u2 −
λ

|x|2
u2 =

(
1 + εk2(x)

)
u2∗−1

2 + αk2
µ2,ε(2

∗ − 1)z2∗−2
µ2

ξ̇µ2 . (3.7)

Let us set w̄2 := u?
2. Since u2 satisfies (3.7) in R

N \ Bν/2(0), we have that w̄2 satisfies

−∆w̄2 −
λ

|x|2
w̄2 =

(
1 + εk2(x/|x|2)

)
w̄2∗−1

2 + (2∗ − 1)αk2
µ2 ,ε(z

?
µ2

)2
∗−2(ξ̇µ2)

? in B2/ν(0).

The rescaled function w2(x) = ν−N−2
2 w̄2(ν

−1x) satisfies

−∆w2 −
λ

|x|2
w2 =

(
1 + εk2(νx/|x|2)

)
w2∗−1

2 + (2∗ − 1)αk2
µ2 ,ε

(
z?

µ2
ν

)2∗−2(
ξ̇µ2

ν

)?
in B2(0). (3.8)

Since µ2

ν ∈ (a2, b2) we can argue as in the proof of (i) above to conclude

sup
B1(0)

∣∣|x|aλw2(x)
∣∣ ≤ C (3.9)
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for some positive constant C independent of µ2 ∈ (a2, b2) and ε ∈ (−ε0, ε0) (depending on a2,
b2, λ, N , ‖k2‖L∞). Estimate (ii) hence follows from (3.9) and

w2(x) = ν
N−2

2 |x|−(N−2)zk2
µ2,ε

(
ν

x

|x|2

)
.

Let us now prove (iii). Set ṽ1(x) = |x|aλu1(x), where u1 = zk1
µ1,ε solves (3.3). We have that ṽ1

solves equation

−div (|x|−2aλ∇ṽ1) −
Ṽ (x)

|x|2∗aλ
ṽ1 =

f̃(x)

|x|2∗aλ
in B2(0)

where
Ṽ (x) = (1 + εk1(x))|x|(2

∗−2)aλu1(x)2
∗−2

and
f̃(x) = (2∗ − 1)αk1

µ1 ,ε|x|
(2∗−1)aλz2∗−2

µ1
ξ̇µ1 .

Since {zk1
µ1 ,ε; µ1 ∈ (a1, b1)} is equi-integrable and (A.17) holds, we can argue as the proof of (i)

and apply Lemma 3.3 a finite number of times to deduce that for any τ > 2∗ there exists some
constant c = c(N,λ, τ) independent of µ1 ∈ (a1, b1) such that

∫

B 3
2
(0)

|x|−2∗aλ |ṽ1(x)|τ dx =

∫

B 3
2
(0)

|x|−2∗aλ+aλτ |u1(x)|τ dx ≤ c(N,λ, τ). (3.10)

Estimate (3.10) with some fixed τ > (2∗−1)N
2 , (A.17) and (2.4) ensure that u1 satisfies the

assumptions of Theorem 3.2 with s = τ
2∗−1 > N

2 hence we obtain

sup
B1(0)

∣∣|x|aλzk1
µ1,ε(x)

∣∣ ≤ C

for some positive constant C independent of µ1 ∈ (a1, b1) and ε ∈ (−ε0, ε0) thus proving (iii).

Similarly (iv) follows by applying Theorem 3.2 to the function ν
N−2

2 zk2
µ2,ε(νx). 2

As a consequence of Lemma 3.1 we obtain the following result.

Lemma 3.4. There exists C = C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞) > 0 such that for any
µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), and |ε| ≤ ε0

∣∣zk1
µ1 ,ε(x)

∣∣ ≤ Cz1(x), (3.11)
∣∣zk2

µ2 ,ε(x)
∣∣ ≤ Czν(x). (3.12)

Proof. A direct calculation gives

z1(x) =
A(N,λ)|x|−aλ

(
1 + |x|2−

4aλ
N−2

)N−2
2

=
A(N,λ)|x|−(N−2−aλ)

(
1 + |x|

4aλ
N−2

−2)N−2
2

hence

z1(x) ≥

{
c(λ,N)|x|−aλ if |x| < 1,

c(λ,N)|x|−(N−2−2aλ) if |x| > 1.
(3.13)



16 V. Felli and S. Terracini

(3.11) follows from (3.13) and (i), (iii) of Lemma 3.1. To prove (3.12) we observe that

zν(x) =
A(N,λ)ν−

N−2−2aλ
2 |x|−aλ

(
1 + |x/ν|2−

4aλ
N−2

)N−2
2

=
A(N,λ)ν

N−2−2aλ
2 |x|−(N−2−aλ)

(
1 + |x/ν|

4aλ
N−2

−2)N−2
2

hence

zν(x) ≥

{
c(λ,N)ν−

N−2−2aλ
2 |x|−aλ if |x| < ν,

c(λ,N)ν
N−2−2aλ

2 |x|−(N−2−2aλ) if |x| > ν.
(3.14)

(3.12) follows from (3.14) and (ii), (iv) of Lemma 3.1. 2

Remark 3.5. The same argument used in the proof of Lemmas 3.1 and 3.4 can be performed
to prove analogous estimates for zk1+k2

µ1 ,ε and zk1+k2
µ2 ,ε , namely it is possible to prove

∣∣zk1+k2
µ1,ε (x)

∣∣ ≤ Cz1(x), (3.15)
∣∣zk1+k2

µ2,ε (x)
∣∣ ≤ Czν(x), (3.16)

for some positive constant C =C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞)>0.

4 Interaction estimates

Lemma 4.1. For any 0 < β < 2∗ there exists C =C(β, λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞)>0
such that for any µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), and |ε| ≤ ε0

∫

RN

|zk1
µ1 ,ε|

2∗−β|zk2
µ2,ε|

β ≤ C
[
νγλ + ν−γλ

]−β N−2
2 , (4.1)

∫

RN

|zk2
µ2 ,ε|

2∗−β|zk1
µ1,ε|

β ≤ C
[
νγλ + ν−γλ

]−β N−2
2 , (4.2)

∫

RN

|zk1+k2
µ1 ,ε |2

∗−β|zk1+k2
µ2 ,ε |β ≤ C

[
νγλ + ν−γλ

]−β N−2
2 , (4.3)

∫

RN

|zk1+k2
µ2 ,ε |2

∗−β|zk1+k2
µ1 ,ε |β ≤ C

[
νγλ + ν−γλ

]−β N−2
2 , (4.4)

where γλ = 1 − 2aλ

N−2 .

Proof. We claim that
∫

RN

z2∗−β
1 zβ

µ ≤ c
[
µγλ + µ−γλ

]−β N−2
2 for any µ > 0 (4.5)

for some positive constant c depending only on N , β, and λ. Indeed if β < 2∗/2, for any µ > 0
we have

∫

RN

z2∗−β
1 zβ

µ = A(N,λ)2
∗

|SN−1|

∫ ∞

0
r−1

(
rγλ + r−γλ

)−(2∗−β) N−2
2

(∣∣∣
r

µ

∣∣∣
γλ

+
∣∣∣
r

µ

∣∣∣
−γλ

)−β N−2
2

dr
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where |SN−1| denotes the measure of the unit (N−1)-dimensional sphere. Performing the change
of variable t = ln r we obtain

∫ ∞

0
r−1

(
rγλ + r−γλ

)−(2∗−β) N−2
2

(∣∣∣
r

µ

∣∣∣
γλ

+
∣∣∣
r

µ

∣∣∣
−γλ

)−β N−2
2

dr

= 2−N

∫

R

(
cosh(γλt)

)−(2∗−β) N−2
2

[
cosh(γλ(t − lnµ))

]−β N−2
2 dt

=

[
cosh(γλ lnµ)

]−β N−2
2

2N

∫

R

[
cosh(γλt)

]−(2∗−β) N−2
2

[
cosh(γλt) − tanh(γλ lnµ) sinh(γλt)

]−β N−2
2 dt

≤ const
[
cosh(γλ lnµ)

]−β N−2
2

∫

R

[
cosh(γλt)

]−(2∗−β) N−2
2

[
cosh(γλt) − sign t sinh(γλt)

]−β N−2
2 dt

≤ const
[
cosh(γλ lnµ)

]−β N−2
2 = const

[
µγλ + µ−γλ

]−β N−2
2

proving (4.5) for β < 2∗/2. Estimate (4.5) for 2∗ > β > 2∗/2 follows from above and

∫

RN

z2∗−β
µ zβ

1 =

∫

RN

z2∗−β
1 zβ

1
µ

. (4.6)

If β = 2∗/2 = N/(N − 2) from Hölder’s inequality and (4.5) with β = 4N
3(N−2) 6= 2∗

2 we have that

∫

RN

z
N

N−2

1 z
N

N−2
µ =

∫

RN

z
N

2(N−2)

1 z
N

2(N−2)

1 z
N

N−2
µ

≤

(∫

RN

z2∗

1

)1/4(∫

RN

z
2N

3(N−2)

1 z
4N

3(N−2)
µ

)3/4

≤ const
[
µγλ + µ−γλ

]−N
2 (4.7)

thus proving (4.5) in the case β = 2∗

2 . Estimate (4.1) follows from Lemma 3.4 and (4.5). Estimate
(4.2) follows from Lemma 3.4, (4.6), and (4.5). The proof of (4.3) and (4.4) is analogous taking
into account Remark 3.5. 2

Lemma 4.2. There exists C = C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞) > 0 such that for any
µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), and |ε| ≤ ε0

‖Dfk1+k2
ε (zk1

µ1 ,ε) − Dfk1
ε (zk1

µ1,ε)‖ ≤ C|ε|f2(ν), (4.8)

‖Dfk1+k2
ε (zk2

µ2 ,ε) − Dfk2
ε (zk2

µ2,ε)‖ ≤ C|ε|f1(ν), (4.9)

where f1, f2 are defined in (2.13).

Proof. Hölder and Sobolev inequalities and estimate (3.11) yield

∣∣(Dfk1+k2
ε (zk1

µ1,ε) − Dfk1
ε (zk1

µ1,ε), v
)∣∣ =

∣∣∣∣ε
∫

RN

k2(x)
(
zk1
µ1 ,ε

)2∗−1

+
v dx

∣∣∣∣

≤ const |ε|‖v‖

( ∫

RN

∣∣∣K2

(x

ν

)∣∣∣z2∗

1 (x) dx

) 2∗−1
2∗

.
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In a similar way using Hölder and Sobolev inequalities and estimate (3.12) we obtain

∣∣(Dfk1+k2
ε (zk2

µ2 ,ε) − Dfk2
ε (zk2

µ2 ,ε), v
)∣∣ =

∣∣∣∣ε
∫

RN

k1(x)
(
zk2
µ2,ε

)2∗−1

+
v dx

∣∣∣∣

≤ const |ε|‖v‖

( ∫

RN

∣∣∣K1(x)
∣∣∣z2∗

ν (x) dx

) 2∗−1
2∗

= const |ε|‖v‖

( ∫

RN

∣∣∣K1(νx)
∣∣∣z2∗

1 (x) dx

) 2∗−1
2∗

.

The lemma is thereby established. 2

Lemma 4.3. Let λ < (N − 2)2/4 satisfying (1.4). There exist C1, ε1 > 0, ε1 ≤ ε0 such that for
all |ε| ≤ ε1 and µ > 0 there holds

‖wk1+k2(µ, ε) − wk1(µ, ε)‖ ≤ C1‖Dfk1+k2
ε (zk1

µ,ε) − Dfk1
ε (zk1

µ,ε)‖ (4.10)

and
‖wk1+k2(µ, ε) − wk2(µ, ε)‖ ≤ C1‖Dfk1+k2

ε (zk2
µ,ε) − Dfk2

ε (zk2
µ,ε)‖. (4.11)

Proof. Let us define the map

Ψ : R
+ ×D1,2(RN ) × R × R → D1,2(RN ) × R

with components Ψ1 ∈ D1,2(RN ) and Ψ2 ∈ R given by




Ψ1(µ,w, α, ε) = Dfk1+k2
ε

(
zµ + wk1(µ, ε) + w

)
−

(
αk1(µ, ε) + α

)
ξ̇µ

Ψ2(µ,w, α, ε) =
(
w, ξ̇µ

)
.

(4.12)

We have that Ψ(µ,w, α, ε) = 0 if and only if (w,α) = Φε,µ(w,α) where

Φε,µ(w,α) = −

[
∂Ψ

∂(w,α)
(µ, 0, 0, ε)

]−1

Ψ(µ,w, α, ε) + (w,α).

Using non-degeneracy property (2.1) and (A.8), we can easily obtain that for ε sufficiently small
∂Ψ

∂(w,α)(µ, 0, 0, ε) is invertible and

∥∥∥∥
(

∂Ψ

∂(w,α)
(µ, 0, 0, ε)

)−1∥∥∥∥ ≤ const uniformly with respect to µ > 0

hence for some positive constant c

‖Φε,µ(w,α)‖ ≤ c

∥∥∥∥Ψ(µ,w, α, ε) −
∂Ψ

∂(w,α)
(µ, 0, 0, ε)(w,α)

∥∥∥∥

= c
∥∥∥Dfk1+k2

ε

(
zµ + wk1(µ, ε) + w

)
− Dfk1

ε

(
zµ + wk1(µ, ε)

)
− D2fk1+k2

ε

(
zµ + wk1(µ, ε)

)
w

∥∥∥

≤ c
∥∥∥Dfk1+k2

ε

(
zk1
µ,ε + w

)
− Dfk1+k2

ε

(
zk1
µ,ε

)
− D2fk1+k2

ε

(
zk1
µ,ε

)
w

∥∥∥

+ c
∥∥∥Dfk1+k2

ε

(
zk1
µ,ε

)
− Dfk1

ε

(
zk1
µ,ε

)∥∥∥

= c

∣∣∣∣
∫ 1

0

[
D2fk1+k2

ε

(
zk1
µ,ε + tw

)
− D2fk1+k2

ε

(
zk1
µ,ε

)]
w dt

∣∣∣∣ + c
∥∥∥Dfk1+k2

ε

(
zk1
µ,ε

)
− Dfk1

ε

(
zk1
µ,ε

)∥∥∥.

(4.13)
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Therefore if ‖w‖ ≤ ρ < 1, (4.13) and (A.8) yield for some positive constant c1

‖Φε,µ(w,α)‖ ≤ c1

[∥∥∥Dfk1+k2
ε

(
zk1
µ,ε

)
− Dfk1

ε

(
zk1
µ,ε

)∥∥∥ + ρmin
{

2, N+2
N−2

}]
. (4.14)

Similarly from (A.8), we have for some positive constant c2 that for any w1, w2 ∈ Bρ(0) ⊂
D1,2(RN )

‖Φε,µ(w1, α1) − Φε,µ(w2, α2)‖

≤ c
∥∥∥Dfk1+k2

ε

(
zµ + wk1(µ, ε) + w1

)
− Dfk1+k2

ε

(
zµ + wk1(µ, ε) + w2

)

− D2fk1+k2
ε

(
zµ + wk1(µ, ε)

)
(w1 − w2)

∥∥∥

≤ c

∫ 1

0

∥∥∥D2fk1+k2
ε

(
zk1
µ,ε + t(w1 − w2) + w2

)
− D2fk1+k2

ε

(
zk1
µ,ε

)∥∥∥‖w1 − w2‖ dt

≤ c2 ρmin
{

1, 4
N−2

}
‖w1 − w2‖. (4.15)

Let us choose ρ = ρ(µ, ε) = 2c1

∥∥∥Dfk1+k2
ε

(
zk1
µ,ε

)
−Dfk1

ε

(
zk1
µ,ε

)∥∥∥ and note that in view of Lemma 4.2

there exists 0 < ε1 < ε0 such that for all |ε| ≤ ε1 and for all µ > 0

ρ(µ, ε)min
{

1, 4
N−2

}
≤ min

{ 1

2c1
,

1

2c2

}
. (4.16)

From (4.14), (4.15) and (4.16), we deduce that Φε,µ for |ε| ≤ ε1 maps the ball of radius ρ(µ, ε)
into itself and it is a contraction there. From the Contraction Mapping Theorem we have that
Φε,µ has a unique fixed point in the ball of radius ρ(µ, ε), namely there exists a unique couple
of functions

(
w̄(µ, ε), ᾱ(µ, ε)

)
∈ D1,2(RN ) × R such that for all µ > 0 and |ε| ≤ ε1

(
w̄(µ, ε), ξ̇µ

)
= 0,

Dfk1+k2
ε

(
zµ + wk1(µ, ε) + w̄(µ, ε)

)
=

(
αk1(µ, ε) + ᾱ(µ, ε)

)
ξ̇µ,

‖w̄(µ, ε)‖ ≤ 2c1

∥∥∥Dfk1+k2
ε

(
zk1
µ,ε

)
− Dfk1

ε

(
zk1
µ,ε

)∥∥∥.

By the uniqueness statement of Theorem 2.1 there must be

wk1(µ, ε) + w̄(µ, ε) = wk1+k2(µ, ε)

and hence

‖wk1+k2(µ, ε) − wk1(µ, ε)‖ = ‖w̄(µ, ε)‖ ≤ 2c1

∥∥∥Dfk1+k2
ε

(
zk1
µ,ε

)
− Dfk1

ε

(
zk1
µ,ε

)∥∥∥.

(4.10) is thereby proved. The proof of (4.11) is analogous. 2
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5 Natural constraint for two bubble fountain solutions

Let us consider the function

H : R
+ × R

+ ×D1,2(RN ) × R × R × R → D1,2(RN ) × R × R

with components H1 ∈ D1,2(RN ) and H2 ∈ R × R given by




H1(µ1, µ2, w, α1, α2, ε) = Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w
)

−
(
α1 + αk1+k2(µ1, ε)

)
ξ̇µ1 −

(
α2 + αk1+k2(µ2, ε)

)
ξ̇µ2

H2(µ1, µ2, w, α1, α2, ε) =
(
(w, ξ̇µ1), (w, ξ̇µ2 )

)
.

(5.1)

We endow the space D1,2(RN )×R×R with the norm ‖(v, β1, β2)‖ = max{‖v‖, |β1|, |β2|}. The fol-
lowing lemma ensures that if ν is either large or small enough, the operator ∂H

∂(w,α1,α2)

∣∣
(µ1,µ2,0,0,0,ε)

is invertible for ε small and the norm of the inverse is uniformly bounded.

Lemma 5.1. There exist C2, ε2, L1 > 0 such that for any ν ∈ (0, 1/L1)∪(L1,+∞), µ1 ∈ (a1, b1),
µ2 ∈ (νa2, νb2) and for |ε| ≤ ε2 there holds

∥∥∥∥
∂H

∂(w,α1, α2)

∣∣∣∣
(µ1,µ2,0,0,0,ε)

(v, β1, β2)

∥∥∥∥ ≥ C2‖(v, β1, β2)‖ (5.2)

for any (v, β1, β2) ∈ D1,2(RN ) × R × R.

Proof. Since from Lemma A.3 and (2.4)
∥∥∥∥

∂H

∂(w,α1, α2)

∣∣∣∣
(µ1,µ2,0,0,0,ε)

−
∂H

∂(w,α1, α2)

∣∣∣∣
(µ1 ,µ2,0,0,0,0)

∥∥∥∥

=
∥∥D2fk1+k2

ε (zµ1 + zµ2 + wk1+k2(µ1, ε) + wk1+k2(µ2, ε)) − D2f0(zµ1 + zµ2)
∥∥

≤
∥∥D2fk1+k2

ε (zµ1 + zµ2 + wk1+k2(µ1, ε) + wk1+k2(µ2, ε)) − D2fk1+k2
ε (zµ1 + zµ2)

∥∥

+
∥∥D2fk1+k2

ε (zµ1 + zµ2) − D2f0(zµ1 + zµ2)
∥∥ ≤ const |ε|min{1,4/(N−2)}

to prove (5.2) it is enough to prove that for some positive constant C
∥∥(

D2f0(zµ1 + zµ2)v − β1ξ̇µ1 − β2ξ̇µ2 , (v, ξ̇µ1 ), (v, ξ̇µ2)
)∥∥ ≥ C‖(v, β1, β2)‖ (5.3)

for all v ∈ D1,2(RN ), β1, β2 ∈ R, µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), provided ν is either large or small
enough. Arguing by contradiction, let us assume that (5.3) is not verified, namely that there
exist sequences {νn}n, {β1

n}n, {β2
n}n, {µ1

n}n, {µ2
n}n ⊂ R and {vn}n ⊂ D1,2(RN ) such that

either νn < 1/n or νn > n, a1 < µ1
n < b1, νna2 < µ2

n < νnb2, (5.4)

‖vn‖ + |β1
n| + |β2

n| = 1, (5.5)

∥∥(
D2f0(zµ1

n
+ zµ2

n
)vn − β1

nξ̇µ1
n
− β2

nξ̇µ2
n
, (vn, ξ̇µ1

n
), (vn, ξ̇µ2

n
)
)∥∥ −→

n→∞
0, (5.6)

|(vn, ξ̇µ1
n
)| + |(vn, ξ̇µ2

n
)| −→

n→∞
0. (5.7)
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From (5.4) either there exists a subsequence of {νn}n tending to 0 or there exists a subse-
quence tending to ∞, therefore there is no restriction assuming that either limn→∞ νn = 0 or
limn→∞ νn = +∞. For µ > 0, we denote as Uµ : D1,2(RN ) → D1,2(RN ) the rescaling map
defined by

Uµ(u) := µ−N−2
2 u

(
x/µ

)
. (5.8)

It is easy to check that Uµ conserves the norms ‖ · ‖ and ‖ · ‖L2∗ (RN ), thus for every µ > 0

(Uµ)−1 = (Uµ)t = Uµ−1 and f0 = f0 ◦ Uµ (5.9)

where (Uµ)t denotes the adjoint of Uµ. Twice differentiating the identity f0 = f0 ◦Uµ we obtain
for all h1, h2, v ∈ D1,2(RN )

(D2f0(v)h1, h2) = (D2f0(Uµ(v))Uµ(h1), Uµ(h2)). (5.10)

Set un := U1/µ1
n
vn. From (5.10) we have that for any h ∈ D1,2(RN )

(
D2f0(zµ1

n
+ zµ2

n
)vn, h

)
=

(
D2f0(z1 + zµ2

n/µ1
n
)un, U1/µ1

n
h
)
. (5.11)

From (A.18) it follows

ξ̇µ =
Uµż1

‖ż1‖
for all µ > 0. (5.12)

From (5.9) and (5.12) we have

(h, ξ̇µ1
n
) = (U1/µ1

n
h, ξ̇1) and (h, ξ̇µ2

n
) = (U1/µ1

n
h, ξ̇µ2

n/µ1
n
). (5.13)

From (5.11) and (5.13) we deduce

D2f0(zµ1
n

+ zµ2
n
)vn − β1

nξ̇µ1
n
− β2

nξ̇µ2
n

= (U1/µ1
n
)t

(
D2f0(z1 + zµ2

n/µ1
n
)un − β1

nξ̇1 − β2
nξ̇µ2

n/µ1
n

)

hence from (5.6) we obtain

∥∥∥D2f0(z1 + zµ2
n/µ1

n
)un − β1

nξ̇1 − β2
nξ̇µ2

n/µ1
n

∥∥∥ −→
n→∞

0. (5.14)

On the other hand from (5.12) and (5.9) we have (vn, ξ̇µ1
n
) = (un, ξ̇1) and (vn, ξ̇µ2

n
) = (un, ξ̇µ2

n/µ1
n
)

hence (5.7) yields

|(un, ξ̇1)| + |(un, ξ̇µ2
n/µ1

n
)| −→

n→∞
0. (5.15)

Moreover (5.5) and invariance of norm under rescaling imply

‖un‖ + |β1
n| + |β2

n| = 1. (5.16)

If νn → ∞, from (5.4) we have that

µn :=
µ2

n

µ1
n

−→
n→∞

+∞.
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From (5.16), there exist subsequences of {un}n, {β1
n}n, {β2

n}n (still denoted by {un}n, {β1
n}n,

{β2
n}n) such that

β1
n −→

n→∞
β1, β2

n −→
n→∞

β2, un −⇀
n→∞

u in D1,2(RN ).

For any h ∈ D1,2(RN ) there holds

(D2f0(z1 + zµn)un, h) = (un, h) − (2∗ − 1)

∫

RN

(z1 + zµn)2
∗−2

+ unh dx. (5.17)

Since zµn converges to 0 poitwise a.e., by Vitali’s convergence Theorem, we can pass to the limit
in (5.17) and thus find

(D2f0(z1 + zµn)un, h) −→
n→∞

(u, h) − (2∗ − 1)

∫

RN

z2∗−2
1 uh dx. (5.18)

From boundedness and pointwise convergence of ξ̇µn , we deduce that ξ̇µn weakly converges to 0
in D1,2(RN ), hence from (5.14) and (5.18) we get

(u, h) − (2∗ − 1)

∫

RN

z2∗−2
1 uh dx − β1(ξ̇1, h) = 0 for any h ∈ D1,2(RN )

i.e. D2f0(z1)u = β1ξ̇1. Hence β1 = (D2f0(z1)u, ξ̇1) = (D2f0(z1)ξ̇1, u) = 0. Then D2f0(z1)u = 0.
From (2.1) we deduce that u = αξ̇1 for some α ∈ R. From (5.15) we obtain

0 = lim
n→∞

(un, ξ̇1) = (u, ξ̇1)

which implies α = 0. Hence u = 0. We have thus proved that un ⇀ 0 in D1,2(RN ) and β1
n → 0

as n → ∞. In a similar way, we define wn := U1/µ2
n
vn. Arguing as above we can prove that

wn ⇀ 0 in D1,2(RN ) and β2
n → 0 as n → ∞. As a consequence, from (5.14) we find that

D2f0(z1 + zµn)un → 0 in D1,2(RN ) and hence

‖un‖
2 − (2∗ − 1)

∫

RN

(z1 + zµn)2
∗−2

+ u2
n −→

n→∞
0. (5.19)

Since
∫

RN z2∗−2
µn

u2
n =

∫
RN z2∗−2

1 w2
n from Vitali’s convergence Theorem we get

∫
RN z2∗−2

µn
u2

n → 0.
Using Lemma A.1 with s = 2∗−2 and again Vitali’s convergence Theorem, one can easily prove
that ∫

RN

|(z1 + zµn)2
∗−2

+ − z2∗−2
µn

|u2
n −→

n→∞
0.

Therefore
∫

RN

(z1 + zµn)2
∗−2

+ u2
n ≤

∫

RN

|(z1 + zµn)2
∗−2

+ − z2∗−2
µn

|u2
n +

∫

RN

z2∗−2
µn

u2
n −→

n→∞
0

and hence from (5.19) we deduce that un → 0 in D1,2(RN ) as n → ∞, which is in contradiction
with (5.16). As the proof in the case νn → 0 is analogous, we omit it. 2
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Proposition 5.2. There exist C =C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞)>0 , L > 0 and ε̄ > 0
such that for all ν ∈ (0, 1/L) ∪ (L,+∞) there exist C 1-functions

w : (a1, b1) × (νa2, νb2) × (−ε̄, ε̄) −→ D1,2(RN ),

αi : (a1, b1) × (νa2, νb2) × (−ε̄, ε̄) −→ R, i = 1, 2,

such that for all µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2), and for all |ε| ≤ ε̄, there hold

(i) w(µ1, µ2, ε) ∈ 〈ξ̇µ1 , ξ̇µ2〉
⊥,

(ii) Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)

=
(
αk1+k2(µ1, ε) + α1(µ1, µ2, ε)

)
ξ̇µ1 +

(
αk1+k2(µ2, ε) + α2(µ1, µ2, ε)

)
ξ̇µ2 ,

(iii) ‖w(µ1, µ2, ε)‖ +

2∑

i=1

|αi(µ1, µ2, ε)| ≤ g(ν)max
{

1
2
, N−2
N+2

}
,

(iv) ‖∂µ1w(µ1, µ2, ε)‖ ≤ C
[
|ε|min

{
1, 4

N−2

}
+ g(ν)min

{
1
2
, 2
N−2

}]
,

(v) ‖∂µ2w(µ1, µ2, ε)‖ ≤ C ν−1
[
|ε|min

{
1, 4

N−2

}
+ g(ν)min

{
1
2
, 2
N−2

}]
,

where g is defined in (1.11).

Proof. Let H be the function defined in (5.1). If H(µ1, µ2, w, α1, α2, ε) = 0 then w, α1, and
α2 satisfy (i − ii) and H(µ1, µ2, w, α1, α2, ε) = 0 if and only if (w,α1, α2) = Fε,µ1,µ2(w,α1, α2)
where

Fε,µ1,µ2(w,α1, α2) = −

[
∂H

∂(w,α1, α2)
(µ1, µ2, 0, 0, 0, ε)

]−1

H(µ1, µ2, w, α1, α2, ε) + (w,α1, α2).

Suppose that (w,α1, α2) ∈ B̄ρ(0) = {(x, β1, β1) ∈ D1,2(RN ) × R × R : ‖(x, β1, β1)‖ ≤ ρ} with
ρ < 1 to be detemined. From (5.2) we have

‖Fε,µ1,µ2(w,α1, α2)‖ ≤
1

C2

∥∥∥∥H(µ1, µ2, w, α1, α2, ε) −
∂H

∂(w,α1, α2)
(µ1, µ2, 0, 0, 0, ε)(w,α1 , α2)

∥∥∥∥

=
1

C2

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w
)
− D2fk1+k2

ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε

)
w

− αk1+k2(µ1, ε)ξ̇µ1 − αk1+k2(µ2, ε)ξ̇µ2

∥∥
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where C2 is as in Lemma 5.1. From above and (2.3) we deduce

‖Fε,µ1,µ2(w,α1, α2)‖

≤
1

C2

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2 ,ε + w
)
− Dfk1+k2

ε

(
zµ1 + wk1+k2(µ1, ε)

)

− Dfk1+k2
ε

(
zµ2 + wk1+k2(µ2, ε)

)
− D2fk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
w

∥∥

≤
1

C2

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2 ,ε + w
)
− Dfk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2 ,ε

)

− D2fk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
w

∥∥

+
1

C2

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
− Dfk1+k2

ε (zk1+k2
µ1,ε ) − Dfk1+k2

ε (zk1+k2
µ2 ,ε )

∥∥. (5.20)

From Lemma A.3 it follows that

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w
)
− Dfk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
− D2fk1+k2

ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε

)
w

∥∥

≤ ‖w‖

∫ 1

0

∥∥D2fk1+k2
ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε + tw
)
− D2fk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
‖ dt

≤





const ‖w‖2
(
1 + ‖w‖

6−N
N−2

)
, if N < 6,

const ‖w‖
N+2
N−2 , if N ≥ 6,



 ≤ const ρmin{2,(N+2)/(N−2)} . (5.21)

On the other hand

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
− Dfk1+k2

ε (zk1+k2
µ1 ,ε ) − Dfk1+k2

ε (zk1+k2
µ2,ε )

∥∥

≤
∥∥Dfk1+k2

ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε

)
− Dfk1+k2

ε

(
zk1
µ1,ε + zk2

µ2 ,ε

)∥∥

+
∥∥Dfk1+k2

ε

(
zk1+k2
µ1,ε

)
− Dfk1+k2

ε

(
zk1
µ1 ,ε

)∥∥ +
∥∥Dfk1+k2

ε

(
zk1+k2
µ2 ,ε

)
− Dfk1+k2

ε

(
zk2
µ2 ,ε

)∥∥

+
∥∥Dfk1+k2

ε

(
zk1
µ1,ε + zk2

µ2,ε

)
− Dfk1+k2

ε (zk1
µ1 ,ε) − Dfk1+k2

ε (zk2
µ2 ,ε)

∥∥. (5.22)

From Hölder inequality and estimate (A.4)s with s = 2∗−1 it follows that for any h ∈ D1,2(RN )

∣∣(Dfk1+k2
ε

(
zk1
µ1,ε + zk2

µ2 ,ε

)
− Dfk1+k2

ε (zk1
µ1,ε) − Dfk1+k2

ε (zk2
µ2,ε), h

)∣∣

=

∣∣∣∣
∫

RN

(
1 + ε(k1 + k2)

)[(
zk1
µ1,ε + zk2

µ2,ε

)2∗−1

+
−

(
zk1
µ1 ,ε

)2∗−1

+
−

(
zk2
µ2,ε

)2∗−1

+

]
h

∣∣∣∣

≤ const ‖h‖

( ∫

RN

∣∣∣
(
zk1
µ1,ε + zk2

µ2,ε

)2∗−1

+
−

(
zk1
µ1,ε

)2∗−1

+
−

(
zk2
µ2 ,ε

)2∗−1

+

∣∣∣
2N

N+2

)N+2
2N

≤ const ‖h‖

( ∫

RN

∣∣∣|zk1
µ1 ,ε|

4
N−2 |zk2

µ2,ε| + |zk2
µ2 ,ε|

4
N−2 |zk1

µ1 ,ε|
∣∣∣

2N
N+2

)N+2
2N

≤ const ‖h‖

( ∫

RN

|zk1
µ1 ,ε|

8N

N2−4 |zk2
µ2 ,ε|

2N
N+2 + |zk2

µ2,ε|
8N

N2−4 |zk1
µ1,ε|

2N
N+2

)N+2
2N

. (5.23)
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From (5.23) and Lemma 4.1 we deduce that

∥∥Dfk1+k2
ε

(
zk1
µ1 ,ε + zk2

µ2 ,ε

)
− Dfk1+k2

ε (zk1
µ1 ,ε)−Dfk1+k2

ε (zk2
µ2 ,ε)

∥∥

≤ const
[
ν1−

2aλ
N−2 + ν

2aλ
N−2

−1]−max
{

2, N−2
2

}
. (5.24)

From (A.7), Lemma 4.3, and Lemma 4.2 we find that

∥∥Dfk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
− Dfk1+k2

ε

(
zk1
µ1,ε + zk2

µ2,ε

)∥∥

+
∥∥Dfk1+k2

ε

(
zk1+k2
µ1,ε

)
− Dfk1+k2

ε

(
zk1
µ1,ε

)∥∥ +
∥∥Dfk1+k2

ε

(
zk1+k2
µ2,ε

)
− Dfk1+k2

ε

(
zk2
µ2,ε

)∥∥

≤ const
[
‖wk1+k2(µ1, ε) − wk1(µ1, ε)‖ + ‖wk1+k2(µ2, ε) − wk2(µ2, ε)‖

]

≤ const |ε|
[
f1(ν) + f2(ν)

]
. (5.25)

From (5.20), (5.21), (5.22), (5.24), and (5.25) we deduce the existence of a positive constant c4

such that

‖Fε,µ1,µ2(w,α1, α2)‖ ≤ c4

[
ρmin{2,(N+2)/(N−2)} + g(ν)

]
(5.26)

where g(ν) is defined in (1.11). On the other hand from (A.8) we obtain for some positive
constant c5

‖Fε,µ1,µ2(w,α1, α2) − Fε,µ1,µ2(w
′, µ′

1, µ
′
2)‖

≤ const
∥∥Dfk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w
)
− Dfk1+k2

ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w′
)

− D2fk1+k2
ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε

)
(w − w′)

∥∥

≤ const ‖w − w′‖

∫ 1

0

∥∥D2fk1+k2
ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε + w′ + t(w − w′)
)

− D2fk1+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε

)
‖ dt

≤ c5 ‖w − w′‖ ρmin{1,4/(N−2)} . (5.27)

From Lemma 2.2 we get that

lim
ν→0

g(ν) = lim
ν→+∞

g(ν) = 0

hence there exists L > 0 such that

g(ν)min
{

1
2
, 4
N+2

}
≤ min

{ 1

2c4
,

1

2c5

}
for all ν ∈ (0, 1/L) ∪ (L,+∞). (5.28)

Let us choose ρ = ρ(ν) = g(ν)max
{

1
2
, N−2
N+2

}
. With this choice of ρ from (5.26) and (5.27) it

follows that Fε,µ1,µ2 maps the ball of radius ρ(ν) into itself and it is a contraction there. From the
Contraction Mapping Theorem we have that Fε,µ1,µ2 has a unique fixed point in the ball of radius
ρ(ν), namely there exists a unique triplet of functions

(
w(µ1, µ2, ε), α1(µ1, µ2, ε), α2(µ1, µ2, ε)

)
∈

D1,2(RN ) × R × R such that (i − iii) are satisfied.
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To prove estimates (iv − v) we observe that w and αi, i = 1, 2, are implicitly defined by
H(µ1, µ2, w, α1, α2, ε) = 0. From Lemma 5.1, for any µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2) and |ε| < ε̄

∥∥∥∥
(

∂H

∂(w,α1, α2)

)−1∣∣∣∣
(µ1,µ2,0,0,0,ε)

∥∥∥∥ ≤
1

C2

and hence there exists a positive constant C̃ such that
∥∥∥∥
(

∂H

∂(w,α1, α2)

)−1∣∣∣∣
(µ1,µ2,w(µ1,µ2,ε),α1(µ1 ,µ2,ε),α2(µ1,µ2,ε),ε)

∥∥∥∥ ≤ C̃

for ν either large or small enough. Since ∂µ1w(µ1, µ2, ε) satisfies



∂µ1w(µ1, µ2, ε)
∂µ1α1(µ1, µ2, ε)
∂µ1α2(µ1, µ2, ε)


 = −

(
∂H

∂(w,α1, α2)

)−1∣∣∣∣
(µ1,µ2,w,α1,α2,ε)

·
∂H

∂µ1

∣∣∣∣
(µ1 ,µ2,w,α1,α2,ε)

we have

‖∂µ1w(µ1, µ2, ε)‖ ≤ C̃

∥∥∥∥
∂H

∂µ1

∣∣∣∣
(µ1 ,µ2,w,α1,α2)

∥∥∥∥

≤ C̃

[∥∥∥D2fk1+k2
ε (zk1+k2

µ1 ,ε + zk1+k2
µ2,ε + w(µ1, µ2, ε))∂µ1z

k1+k2
µ1 ,ε − α1(µ1, µ2, ε)

d

dµ1
ξ̇µ1

− ∂µ1α
k1+k2(µ1, ε)ξ̇µ1 − αk1+k2(µ1, ε)

d

dµ1
ξ̇µ1

∥∥∥ +
∣∣∣
(
w(µ1, µ2, ε),

d

dµ1
ξ̇µ1

)∣∣∣
]
. (5.29)

From (2.3) we have that
Dfk1+k2

ε (zk1+k2
µ1 ,ε ) = αk1+k2(µ1, ε)ξ̇µ1

which, differentiating with respect to µ1, yields

D2fk1+k2
ε (zk1+k2

µ1 ,ε )∂µ1z
k1+k2
µ1,ε = ∂µ1α

k1+k2(µ1, ε)ξ̇µ1 + αk1+k2(µ1, ε)
d

dµ1
ξ̇µ1

hence from (5.29) we have

‖∂µ1w(µ1, µ2, ε)‖

≤ C̃

[∥∥∥
(
D2fk1+k2

ε (zk1+k2
µ1 ,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)) − D2fk1+k2
ε (zk1+k2

µ1,ε )
)
∂µ1z

k1+k2
µ1 ,ε

− α1(µ1, µ2, ε)
d

dµ1
ξ̇µ1

∥∥∥ +
∣∣∣
(
w(µ1, µ2, ε),

d

dµ1
ξ̇µ1

)∣∣∣
]
. (5.30)

We have that∣∣∣
((

D2fk1+k2
ε (zk1+k2

µ1 ,ε + zk1+k2
µ2,ε + w(µ1, µ2, ε)) − D2fk1+k2

ε (zk1+k2
µ1 ,ε )

)
∂µ1z

k1+k2
µ1 ,ε , v

)∣∣∣

= (2∗ − 1)

∣∣∣∣
∫

RN

(1 + ε(k1 + k2))
[(

zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε + w(µ1, µ2, ε)
)2∗−2

+
−

(
zk1+k2
µ1,ε )2

∗−2
+

]
∂µ1z

k1+k2
µ1 ,ε v

∣∣∣∣

≤ const

[ ∫

RN

∣∣∣
(
zk1+k2
µ1 ,ε + zk1+k2

µ2 ,ε + w(µ1, µ2, ε)
)2∗−2

+
−

(
zk1+k2
µ1,ε )2

∗−2
+ −

(
zk1+k2
µ2,ε )2

∗−2
+

∣∣∣|∂µ1z
k1+k2
µ1,ε ||v|

+

∫

RN

∣∣zk1+k2
µ2 ,ε

∣∣2∗−2
|∂µ1z

k1+k2
µ1,ε ||v|

]
. (5.31)
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If N ≥ 6, then 2∗ − 2 ≤ 1, hence using (A.6)s with s = 2∗ − 2 and r = q = 2/(N − 2), Hölder
and Sobolev inequalities we obtain
∫

RN

∣∣∣
(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)2∗−2

+
−

(
zk1+k2
µ1,ε

)2∗−2

+
−

(
zk1+k2
µ2,ε

)2∗−2

+

∣∣∣|∂µ1z
k1+k2
µ1,ε ||v|

≤ const

[ ∫

RN

|w(µ1, µ2, ε)|
2∗−2|∂µ1z

k1+k2
µ1,ε ||v| +

∫

RN

|zk1+k2
µ1,ε |

2
N−2 |zk1+k2

µ2 ,ε |
2

N−2 |∂µ1z
k1+k2
µ1 ,ε ||v|

]

≤ const ‖v‖‖∂µ1z
k1+k2
µ1,ε ‖

[
‖w(µ1, µ2, ε)‖

2∗−2 +

(∫

RN

|zk1+k2
µ1 ,ε |

N
N−2 |zk1+k2

µ2,ε |
N

N−2

) 2
N

]
. (5.32)

From (A.10) and (2.5) it follows that

‖∂µ1z
k1+k2
µ1,ε ‖ ≤ ‖żµ1‖ + ‖∂µ1w

k1+k2(µ1, ε)‖ ≤ c (5.33)

for some constant c > 0 depending only on a1, b1, λ,N,K1,K2. From (5.32), (5.33), (4.3) and
(iii) we deduce for N ≥ 6

∫

RN

∣∣∣
(
zk1+k2
µ1 ,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)2∗−2

+
−

(
zk1+k2
µ1 ,ε

)2∗−2

+
−

(
zk1+k2
µ2,ε

)2∗−2

+

∣∣∣|∂µ1z
k1+k2
µ1,ε ||v|

≤ const ‖v‖ g(ν)
2

N−2 . (5.34)

For N < 6, from (A.5)s with s = 2∗ − 2, Lemma 4.1, and (iii) we obtain

∫

RN

∣∣∣
(
zk1+k2
µ1 ,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)2∗−2

+
−

(
zk1+k2
µ1 ,ε

)2∗−2

+
−

(
zk1+k2
µ2,ε

)2∗−2

+

∣∣∣|∂µ1z
k1+k2
µ1,ε ||v|

≤ const ‖v‖ g(ν)
1
2 . (5.35)

From Hölder inequality, (A.11), and (3.16) we obtain

∫

RN

∣∣zk1+k2
µ2 ,ε

∣∣2∗−2
|∂µ1z

k1+k2
µ1,ε ||v| ≤ const ‖v‖

[
‖∂µ1w

k1+k2(µ1, ε)‖ +

(∫

RN

|zν |
8N

N2−4 |z1|
2N

N+2

)N+2
2N

]
.

From above, (4.5), (4.6), and (2.5) we deduce

∫

RN

∣∣zk1+k2
µ2,ε

∣∣2∗−2
|∂µ1z

k1+k2
µ1 ,ε ||v| ≤ const ‖v‖

[
|ε|min

{
1, 4

N−2

}
+ g(ν)

]
. (5.36)

From (5.31), (5.34), (5.35), and (5.36) we obtain

∥∥(
D2fk1+k2

ε (zk1+k2
µ1 ,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)) − D2fk1+k2
ε (zk1+k2

µ1,ε )
)
∂µ1z

k1+k2
µ1 ,ε

∥∥

≤ const
[
|ε|min

{
1, 4

N−2

}
+ g(ν)min

{
1
2
, 2
N−2

}]
. (5.37)

From (A.13) we deduce that for any µ > 0

d

dµ
ξ̇µ = µ−1 Uµ(ż1 + z̈1)

‖ż1‖
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hence ∥∥∥
d

dµ
ξ̇µ

∥∥∥ = µ−1 ‖ż1 + z̈1‖

‖ż1‖
= c(λ,N)µ−1. (5.38)

for some constant c(λ,N) depending only on λ and N . From (iii) and (5.38) we deduce

∥∥∥α1(µ1, µ2, ε)
d

dµ1
ξ̇µ1

∥∥∥ +
∣∣∣
(
w(µ1, µ2, ε)),

d

dµ1
ξ̇µ1

)∣∣∣ ≤ const g(ν)max
{

1
2
, N−2
N+2

}
. (5.39)

From (5.30), (5.37), (5.39) we get (iv). The proof of (v) is analogous. 2

Proposition 5.3. Under the assumptions of Proposition 5.2 we may choose ε̄ small and L large
enough such that for all ν ∈ (0, 1/L) ∪ (L,+∞) and |ε| ≤ ε̄ the manifold

Z̃ε =
{
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε) : µ1 ∈ (a1, b1), µ2 ∈ (νa2, νb2)
}

is a natural constraint for f k1+k2
ε .

Proof. Let u = zk1+k2
µ1,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε) ∈ Z̃ε be a critical point of f k1+k2
ε

∣∣
eZε

, i.e.

(
fk1+k2

ε (u), żµ1 + ∂µ1w
k1+k2(µ1, ε) + ∂µ1w(µ1, µ2, ε)

)
= 0, (5.40)

(
fk1+k2

ε (u), żµ2 + ∂µ2w
k1+k2(µ2, ε) + ∂µ2w(µ1, µ2, ε)

)
= 0. (5.41)

We have to prove that Df k1+k2
ε (u) = 0. From statement (ii) of Proposition 5.2 we have that

Dfk1+k2
ε (u) = c1(µ1, µ1, ε)żµ1 + c2(µ1, µ1, ε)żµ2 (5.42)

for some c1(µ1, µ1, ε), c2(µ1, µ1, ε) ∈ R. From (5.40), (5.41), and (5.42) it follows that

c1(µ1, µ1, ε)
[
‖żµ1‖

2 +
(
żµ1 , ∂µ1w

k1+k2(µ1, ε)
)

+
(
żµ1 , ∂µ1w(µ1, µ2, ε)

)]

+ c2(µ1, µ1, ε)
[
(żµ1 , żµ2) +

(
żµ2 , ∂µ1w

k1+k2(µ1, ε)
)

+
(
żµ2 , ∂µ1w(µ1, µ2, ε)

)]
= 0 (5.43)

and

c2(µ1, µ1, ε)
[
‖żµ2‖

2 +
(
żµ2 , ∂µ2w

k1+k2(µ2, ε)
)

+
(
żµ2 , ∂µ2w(µ1, µ2, ε)

)]

+ c1(µ1, µ1, ε)
[
(żµ1 , żµ2) +

(
żµ1 , ∂µ2w

k1+k2(µ2, ε)
)

+
(
żµ1 , ∂µ2w(µ1, µ2, ε)

)]
= 0. (5.44)

From statement (i) of Proposition 5.2 we have

(
żµ2 , w(µ1, µ2, ε)

)
= 0 and (5.45)(

żµ1 , w(µ1, µ2, ε)
)

= 0 (5.46)

and differentiating (5.45) with respect to µ1 and (5.46) with respect to µ2 we get

(
żµ2 , ∂µ1w(µ1, µ2, ε)

)
= 0 and

(
żµ1 , ∂µ2w(µ1, µ2, ε)

)
= 0. (5.47)
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Differentiating (5.45) with respect to µ2 and (5.46) with respect to µ1 we get
(
żµ2 , ∂µ2w(µ1, µ2, ε)

)
= −

(
z̈µ2 , w(µ1, µ2, ε)

)
and(

żµ1 , ∂µ1w(µ1, µ2, ε)
)

= −
(
z̈µ1 , w(µ1, µ2, ε)

)

and hence in view of (A.12) and (iii) of Proposition 5.2 we obtain

∣∣(żµ2 , ∂µ2w(µ1, µ2, ε)
)∣∣ ≤ c ν−2g(ν)max

{
1
2
, N−2
N+2

}
and (5.48)

∣∣(żµ1 , ∂µ1w(µ1, µ2, ε)
)∣∣ ≤ c g(ν)max

{
1
2
, N−2
N+2

}
(5.49)

for some positive constant c depending only on λ, N , a1, a2, b1, b2. Since żµ1 solves the linearized
problem

−∆żµ1 −
λ

|x|2
żµ1 = (2∗ − 1)z2∗−2

µ1
żµ1 , (5.50)

multiplying by żµ2 we obtain

(żµ1 , żµ2) = (2∗ − 1)

∫

RN

z2∗−2
µ1

żµ1 żµ2

and hence using (A.11) and (4.5) we get

|(żµ1 , żµ2)| ≤ c ν−1
[
νγλ + ν−γλ

]−N−2
2 . (5.51)

From (5.43), (5.44), (A.10), (2.5), (5.47),(5.48), (5.49), and (5.51) we deduce

c1(µ1, µ1, ε)
[
‖żµ1‖

2 + O
(
|ε|min

{
1, 4

N−2

})
+ O

(
g(ν)max

{
1
2
, N−2
N+2

})]

+ c2(µ1, µ1, ε)ν
−1

[
O

([
νγλ + ν−γλ

]−N−2
2

)
+ O

(
|ε|min

{
1, 4

N−2

})]
= 0 (5.52)

and

c2(µ1, µ1, ε)
[
‖żµ2‖

2 + ν−2O
(
|ε|min

{
1, 4

N−2

})
+ ν−2O

(
g(ν)max

{
1
2
, N−2
N+2

})]

+ c1(µ1, µ1, ε)ν
−1

[
O

([
νγλ + ν−γλ

]−N−2
2

)
+ O

(
|ε|min

{
1, 4

N−2

})]
= 0. (5.53)

From (5.53) we deduce that for |ε| sufficiently small and ν either sufficiently small or sufficiently
large

|c2(µ1, µ1, ε)| ≤ |c1(µ1, µ1, ε)| ν
[
O

([
νγλ + ν−γλ

]−N−2
2

)
+ O

(
|ε|min

{
1, 4

N−2

})]
(5.54)

which together with (5.52) yield

|c1(µ1, µ1, ε)|
[
‖żµ1‖

2 + O
(
|ε|min

{
1, 4

N−2

})
+ O

(
g(ν)max

{
1
2
, N−2
N+2

})]

≤ |c1(µ1, µ1, ε)|
[
O

([
νγλ + ν−γλ

]−(N−2)
)

+ O
(
|ε|min

{
2, 8

N−2

})]
.

Therefore for ε̄ sufficiently small and L sufficiently large, the number c1(µ1, µ1, ε) must be zero
and hence from (5.54) also c2(µ1, µ1, ε) = 0. Then from (5.42) Df k1+k2

ε (u) = 0. 2
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6 Expansion of the constrained functional

In view of Proposition 5.3, when |ε| is sufficiently small and ν is either large or small enough, to
get critical points of the functional f k2+k2

ε it is enough to find critical points of the two variable
function Φε defined by

Φε : (a1, b1) × (νa2, νb2) −→ R, Φε(µ1, µ2) := fk2+k2
ε

(
zk1+k2
µ1,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)
.

Proposition 6.1. Let λ < (N − 2)2/4 satisfying (1.4) and assume (1.6) and (2.11) hold. Then
there exists a constant C = C(λ,N, a1, a2, b1, b2, ‖K1‖L∞ , ‖K2‖L∞) > 0 and some ε̄ sufficiently
small such that if |ε| ≤ ε̄ and

ε2g(ν)−max
{

1
2
, N−2
N+2

}
≥ C, (6.1)

then the functions ∂µi
Φε, i = 1, 2, admit the following expansions

∂µ1Φε(µ1, µ2) = −ε∂µ1 Γ̃(µ1, µ2) + o(ε), (6.2)

∂µ2Φε(µ1, µ2) = −ε∂µ2 Γ̃(µ1, µ2) + ν−1o(ε) (6.3)

as ε → 0 uniformly with respect to (µ1, µ2) ∈ (a1, b1) × (νa2, νb2), where

Γ̃(µ1, µ2) := Γk1(µ1) + Γk2(µ2) (6.4)

and Γki is defined in (2.8).

Proof. From (ii) of Proposition 5.2, we have that

∂µ1Φε(µ1, µ2) =
(
Dfk2+k2

ε

(
zk1+k2
µ1 ,ε + zk1+k2

µ2,ε + w(µ1, µ2, ε)
)
, ∂µ1

(
zk1+k2
µ1,ε + w(µ1, µ2, ε)

))

= (αk1+k2(µ1, ε)ξ̇µ1 , żµ1) + α1(µ1, µ2, ε)(ξ̇µ1 , żµ1)

+
(
αk1+k2(µ1, ε) + α1(µ1, µ2, ε)

)(
ξ̇µ1 , ∂µ1

(
wk1+k2(µ1, ε) + w(µ1, µ2, ε)

))

+
(
αk1+k2(µ2, ε) + α2(µ1, µ2, ε)

)(
ξ̇µ2 , ∂µ1

(
wk1+k2(µ1, ε) + w(µ1, µ2, ε)

))

+
(
αk1+k2(µ2, ε) + α2(µ1, µ2, ε)

)
(ξ̇µ2 , żµ1). (6.5)

From (iii) of Proposition 5.2, (6.1), and (A.10) we deduce that

∣∣α1(µ1, µ2, ε)(ξ̇µ1 , żµ1)
∣∣ ≤ ‖żµ1‖g(ν)max

{
1
2
, N−2
N+2

}
≤ const |ε|2 = o(ε). (6.6)

From (2.4), (iii − iv) of Proposition 5.2, (6.1), and (2.5) we get

∣∣(αk1+k2(µ1, ε) + α1(µ1, µ2, ε)
)(

ξ̇µ1 , ∂µ1

(
wk1+k2(µ1, ε) + w(µ1, µ2, ε)

))∣∣

≤ const
(
|ε| + g(ν)max

{
1
2
, N−2
N+2

})∥∥∂µ1w
k1+k2(µ1, ε) + ∂µ1w(µ1, µ2, ε)

∥∥ = o(ε). (6.7)

Similarly

∣∣(αk1+k2(µ2, ε) + α2(µ1, µ2, ε)
)(

ξ̇µ2 , ∂µ1

(
wk1+k2(µ1, ε) + w(µ1, µ2, ε)

))∣∣ = o(ε). (6.8)
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Testing equation (5.50) with ξ̇µ2 we get

(ξ̇µ2 , żµ1) = (2∗ − 1)

∫

RN

z2∗−2
µ1

żµ1 ξ̇µ2

hence in view of (A.19), (A.11), and (4.5)

∣∣(ξ̇µ2 , żµ1)
∣∣ ≤ const

∫

RN

z2∗−1
µ1

zµ2 ≤ const

∫

RN

z2∗−1
1 zν ≤ const g(ν)min

{
N+2

4
, N+2
N−2

}
. (6.9)

From (2.4), (iii) of Proposition 5.2, (6.1), and (6.9) we find

(
αk1+k2(µ2, ε) + α2(µ1, µ2, ε)

)
(ξ̇µ2 , żµ1) = o(ε). (6.10)

Multiplying −∆zµ1 −
λ

|x|2
zµ1 = z2∗−1

µ1
by żµ1 , we obtain

(żµ1 , zµ1) −

∫

RN

z2∗−1
µ1

żµ1 = 0 (6.11)

while testing (5.50) with wk1+k2(µ1, ε) and taking into account (2.2) we get

(2∗ − 1)

∫

RN

z2∗−2
µ1

wk1+k2(µ1, ε)żµ1 =
(
żµ1 , w

k1+k2(µ1, ε)
)

= 0. (6.12)

From (2.3), (2.2), (6.11), and (6.12) we deduce

(αk1+k2(µ1, ε)ξ̇µ1 , żµ1) =
(
Dfk1+k2

ε

(
zµ1 + wk1+k2(µ1, ε)

)
, żµ1)

= −ε

∫

RN

(k1 + k2)z
2∗−1
µ1

żµ1 − ε

∫

RN

(k1 + k2)
(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1

)
żµ1

−

∫

RN

(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1
− (2∗ − 1)z2∗−2

µ1
wk1+k2(µ1, ε)

)
żµ1

+

[
(żµ1 , zµ1) −

∫

RN

z2∗−1
µ1

żµ1

]
− (2∗ − 1)

∫

RN

z2∗−2
µ1

wk1+k2(µ1, ε)żµ1

= −ε

∫

RN

(k1 + k2)z
2∗−1
µ1

żµ1 − ε

∫

RN

(k1 + k2)
(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1

)
żµ1

−

∫

RN

(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1
− (2∗ − 1)z2∗−2

µ1
wk1+k2(µ1, ε)

)
żµ1 . (6.13)

Using (A.3)s with s = 2∗ − 1, (A.11), (2.4) and Hölder and Sobolev inequalities we have

∣∣∣∣ε
∫

RN

(k1 + k2)
(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1

)
żµ1

∣∣∣∣

≤ const |ε|

∫

RN

(
|wk1+k2(µ1, ε)|z

2∗−2
µ1

+ |wk1+k2(µ1, ε)|
2∗−1

)
zµ1

≤ const |ε|
(
‖wk1+k2(µ1, ε)‖ + ‖wk1+k2(µ1, ε)‖

2∗−1
)
≤ const |ε|2 = o(ε). (6.14)
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Estimate (A.1)s with s = 2∗ − 1, (A.11), Hölder and Sobolev inequalities, and (2.4) yield
∣∣∣∣
∫

RN

(
(zµ1 + wk1+k2(µ1, ε))

2∗−1
+ − z2∗−1

µ1
− (2∗ − 1)z2∗−2

µ1
wk1+k2(µ1, ε)

)
żµ1

∣∣∣∣

≤ const

∫

RN

|wk1+k2(µ1, ε)|
2∗−1zµ1 ≤ const ‖wk1+k2(µ1, ε)‖

2∗−1 ≤ const |ε|2
∗−1 = o(ε) (6.15)

if N ≥ 6, and
∣∣∣∣
∫

RN

(
(zµ1w

k1+k2(µ1, ε))
2∗−1
+ − z2∗−1

µ1
− (2∗ − 1)z2∗−2

µ1
wk1+k2(µ1, ε)

)
żµ1

∣∣∣∣

≤ const

∫

RN

(
|wk1+k2(µ1, ε)|

2∗−1 + |wk1+k2(µ1, ε)|
2z2∗−3

µ1

)
zµ1

≤ const
(
‖wk1+k2(µ1, ε)‖

2∗−1 + ‖wk1+k2(µ1, ε)‖
2
)
≤ const |ε|2 = o(ε) (6.16)

if N < 6. On the other hand, (A.11), (2.13), and (6.1) imply that
∣∣∣∣ε

∫

RN

k2z
2∗−1
µ1

żµ1

∣∣∣∣ ≤ const |ε|

∫

RN

|k2|z
2∗

µ1
≤ const |ε|g(ν)

2N
N+2 = o(ε). (6.17)

Collecting (6.13)–(6.17), we have

(αk1+k2(µ1, ε)ξ̇µ1 , żµ1) = −ε

∫

RN

k1z
2∗−1
µ1

żµ1 + o(ε). (6.18)

From (6.5), (6.6), (6.7), (6.8), (6.10), (6.18), we finally get

∂µ1Φε(µ1, µ2) = −ε

∫

RN

k1z
2∗−1
µ1

żµ1 + o(ε)

uniformly with respect to (µ1, µ2) ∈ (a1, b1) × (νa2, νb2), namely

∂µ1Φε(µ1, µ2) = −ε(Γk1)′(µ1) + o(ε) = −ε∂µ1 Γ̃(µ1, µ2) + o(ε).

Expansion (6.2) is thereby proved. The proof of (6.3) is analogous. 2

7 Study of Γ̃ and Proof of Theorem 2.6

Stability properties of the topological degree allow to reduce the computation of the topological
degree of the jacobian map of Φε to the computation of the topological degree of the jacobian
map of Γ̃, as the following lemma states.

Lemma 7.1. Under the same assumptions of Proposition 6.1, there exists ε̄ such that for all
|ε| ≤ ε̄

deg
(
− ε−1JacΦε, Qν , 0

)
= deg

(
Jac Γ̃, Qν , 0

)
, (7.1)

where Qν := (a1, b1) × (ν a2, ν b2).
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Proof. From (6.2) and (6.3) we have that

deg
(
− ε−1Jac Φε, Qν , 0

)
= deg

(
Jac Γ̃ + Eν,ε, Qν , 0

)

where Eν,ε = o(1)
( 1
1/ν

)
. We can choose δ > 0 such that

(
(−δ, δ) × ν−1(−δ, δ)

)
∩ Jac Γ̃(∂Qν) = ∅.

Let ε̄ be such that for all |ε| ≤ ε̄ we have Eν,ε ∈ (−δ, δ)×ν−1(−δ, δ). From well-known properties
of the topological degree it follows that

deg
(
Jac Γ̃ + Eν,ε, Qν , 0

)
= deg

(
Jac Γ̃, Qν , 0

)
.

The lemma is thereby proved. 2

In order to prove that deg
(
Jac Γ̃, Qν , 0

)
6= 0 we use the theorem below, which is due to

Miranda, see [23].

Theorem 7.2. [Miranda’s Theorem] Let Q = [α−
1 , α+

1 ] × [α−
2 , α+

2 ] × · · · × [α−
k , α+

k ] and let
f = (f1, f2, . . . , fk) : Q → R

k be a continuous function. Set γ±
i = ∂Q∩ {x = (x1, . . . , xk) : xi =

α±
i }. Assume that fi

∣∣
γ±

i

never vanish, have a fixed sign, and

sign
(
fi

∣∣
γ+

i

)
· sign

(
fi

∣∣
γ−

i

)
< 0. (7.2)

Then there exists x̄ ∈ Q such that fi(x̄) = 0 for all i = 1, 2, . . . , k. Moreover if we set

σ(i) =





+1 if fi

∣∣
γ−

i

< 0 < fi

∣∣
γ+

i

,

−1 if fi

∣∣
γ+

i

< 0 < fi

∣∣
γ−

i

,

then

deg(f,Q, 0) =
k∏

i=1

σ(i).

Proposition 7.3. Let λ < (N−2)2/4 satisfying (1.4) and assume (1.6) and (2.11) hold. Suppose
that K1 ∈ L∞(RN ) ∩ C1(RN ) satisfies either (1.8)i or (1.9)i, and K2 ∈ L∞(RN ) ∩ C1(RN )
satisfies either (1.8)i or (1.9)i. Then

deg
(
Jac Γ̃, Qν , 0

)
6= 0.

Proof. We use Miranda’s Theorem with k = 2, α−
1 = a1, α+

1 = b1, α−
2 = νa2, α+

2 = νb2, and

f = Jac Γ̃. Corollary 2.5 ensures that (7.2) is satisfied. The conclusion follows from Theorem 7.2.
2

Proof of Theorem 2.6. From Lemma 7.1 and Proposition 7.3, it follows that

deg
(
Jac Φε, Qν , 0

)
6= 0,

provided |ε| ≤ ε̄ and (6.1) holds. From the solution property of the topological degree it follows
that Φε has a critical point (µ1, µ2) ∈ Qν . From Proposition 5.3 we deduce that zk1+k2

µ1,ε +zk1+k2
µ2,ε +

w(µ1, µ2, ε) is a critical point of f k1+k2
ε , and hence a nonnegative solution to equation (P ε

λ,K).
Positivity of solution outside 0 follows from the Maximum Principle 2
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Appendix

In this appendix we collect some technical lemmas. The first result provides some elementary
inequalities, the proof of which is omitted since it is quite standard.

Lemma A.1. The following inequalities

∣∣∣(a + b)s
+ − as

+ − sas−1
+ b

∣∣∣ ≤





C(as−2
+ |b|2 + |b|s) if s ≥ 2

C |b|s if 1 < s < 2,
(A.1)s

∣∣∣(a + b)s
+ − as

+

∣∣∣ ≤ C|b|s if 0 < s ≤ 1 (A.2)s
∣∣∣(a + b)s

+ − as
+

∣∣∣ ≤ C(|a|s−1|b| + |b|s) if s ≥ 1 (A.3)s

hold for some C = C(s) > 0 and for any a, b ∈ R. Moreover

∣∣∣(a + b)s
+ − as

+ − bs
+

∣∣∣ ≤





C(|a|s−1|b| + |a||b|s−1) if s ≥ 1

C |a|r|b|q if s ≤ 1
(A.4)s

for any a, b ∈ R, r > 0, q > 0, r + q = s and for some C = C(s, r, q) > 0.

Corollary A.2. If s ≥ 1 there exists a constant C = C(s) > 0 such that for any a, b ∈ R there
holds ∣∣∣(a + b + w)s

+ − as
+ − bs

+

∣∣∣ ≤ C(|w|s + |a + b|s−1|w| + |a|s−1|b| + |a||b|s−1). (A.5)s

If s ≤ 1 and r > 0, q > 0, r + q = s there exists a constant C = C(s, r, q) > 0 such that for any
a, b ∈ R there holds

∣∣∣(a + b + w)s
+ − as

+ − bs
+

∣∣∣ ≤ C(|w|s + |a|r|b|q). (A.6)s

Proof. Since
∣∣(a + b + w)s

+ − as
+ − bs

+

∣∣ ≤
∣∣(a + b + w)s

+ − (a + b)s
+

∣∣ +
∣∣(a + b)s

+ − as
+ − bs

+

∣∣,

(A.5)s follows from (A.3)s and (A.4)s, while (A.6)s comes from (A.2)s and (A.4)s. 2

Lemma A.3. For any k ∈ L∞(RN ) there exist C = C(N, ‖k‖L∞(RN )) > 0 such that for any

|ε| ≤ 1 and u,w ∈ D1,2(RN )

‖Dfk
ε (u + w) − Dfk

ε (u)‖ ≤ C‖w‖
(
‖u‖

4
N−2 + ‖w‖

4
N−2

)
(A.7)

‖D2fk
ε (u + w) − D2fk

ε (u)‖ ≤





C‖w‖
(
‖u‖

6−N
N−2 + ‖w‖

6−N
N−2

)
if 3 ≤ N < 6

C‖w‖
4

N−2 if N ≥ 6,

(A.8)

and

‖D2fk
ε (u) − D2f0(u)‖ ≤ C|ε|‖u‖

4
N−2 . (A.9)
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Proof. From Hölder and Sobolev inequality we have that for any v ∈ D1,2(RN )

∣∣∣
(
Dfk

ε (u + w) − Dfk
ε (u), v

)∣∣∣ =

∣∣∣∣(w, v) −

∫

RN

(1 + εk(x))
(
(u + w)2

∗−1
+ − u2∗−1

+

)
v dx

∣∣∣∣

≤ ‖w‖‖v‖ + (1 + ‖k‖L∞(RN ))‖v‖L2∗ (RN )

(∫

RN

∣∣(u + w)2
∗−1

+ − u2∗−1
+

∣∣ 2N
N+2

)N+2
2N

≤ C‖v‖

[
‖w‖ +

(∫

RN

∣∣(u + w)2
∗−1

+ − u2∗−1
+

∣∣ 2N
N+2

)N+2
2N

]
.

Estimate (A.7) follows from (A.3)s with s = 2∗ − 1. Using again Hölder and Sobolev inequality,
we have that for any v1 and v2 ∈ D1,2(RN )

∣∣∣
([

D2fk
ε (u + w) − D2fk

ε (u)
]
v1, v2

)∣∣∣

= (2∗ − 1)

∣∣∣∣
∫

RN

(1 + εk(x))
(
(u + w)2

∗−2
+ − u2∗−2

+

)
v1v2 dx

∣∣∣∣

≤ (2∗ − 1)(1 + ‖k‖L∞(RN ))‖v1‖L2∗ (RN )‖v2‖L2∗ (RN )

(∫

RN

∣∣(u + w)2
∗−2

+ − u2∗−2
+

∣∣N
2

) 2
N

≤ C‖v1‖‖v2‖

( ∫

RN

∣∣(u + w)2
∗−2

+ − u2∗−2
+

∣∣N
2

) 2
N

.

Using (A.3)s if N < 6 and (A.2)s if N ≥ 6 with s = 2∗ − 2 we get estimate (A.8). Estimate
(A.9) follows easily from Hölder inequality. 2

Lemma A.4. There holds

‖żµ‖ =
1

µ
‖ż1‖ and ‖z̈µ‖ =

1

µ2
‖z̈1‖. (A.10)

Moreover there exists a positive constant C depending only on λ and N such that

|żµ| ≤ c µ−1zµ, (A.11)

|z̈µ| ≤ c µ−2zµ. (A.12)

Proof. Let Uµ : D1,2(RN ) → D1,2(RN ) de defined in (5.8). Differentiating the identity
zσ = Uµzσ/µ with respect to σ we obtain

żµ =
1

µ
Uµż1 and z̈µ =

1

µ2
Uµz̈1. (A.13)

Since Uµ conserves the norm, we obtain

‖żµ‖ =
1

µ
‖ż1‖ and ‖z̈µ‖ =

1

µ2
‖z̈1‖
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thus proving (A.10). An explicit calculation shows that

ż1(x) = A(N,λ)
N − 2

2

(
1 −

2aλ

N − 2

) |x|
2aλ
N−2 − |x|

2(N−2−aλ)

N−2

(
|x|

2aλ
N−2 + |x|

2(N−2−aλ)

N−2

)N
2

(A.14)

hence for some positive constant c depending only on N and λ

|ż1(x)| ≤ c z1(x). (A.15)

From (A.13) and (A.15), it follows that

|żµ(x)| = µ−1µ−N−2
2 |ż1(x/µ)| ≤ cµ−1µ−N−2

2 z1(x/µ) = cµ−1zµ(x)

thus proving (A.11). The proof of (A.12) is similar. 2

Lemma A.5. Let Ω be an open bounded subset of R
N . Then there exists a positive constant

C = C(λ,N) such that for any µ > 0 and s ≥ 1

∫

Ω

∣∣(z?
µ)2

∗−2(ξ̇µ)?
∣∣s|x|−aλ(2∗−2∗s+s) dx ≤ Cµ

N+2
2

s
(
1−

2aλ
N−2

)
(A.16)

and ∫

Ω

∣∣z2∗−2
µ ξ̇µ

∣∣s|x|−aλ(2∗−2∗s+s) dx ≤ Cµ−N+2
2

s
(
1−

2aλ
N−2

)
(A.17)

where zµ, respectively ξ̇µ, are defined in (1.1), respectively (2.6), and ? denotes the Kelvin
transform defined in (3.4).

Proof. A direct calculation shows that

ξ̇µ(x) =
µ−N−2

2 ż1(x/µ)

‖ż1‖
(A.18)

where the explicit expression of ż1 is given in (A.14). Hence from (A.15)

|ξ̇µ(x)| ≤ c(λ,N)zµ(x) (A.19)

and

|(ξ̇µ)?(x)| =

∣∣∣∣
µ−N−2

2 |x|−(N−2)

‖ż1‖
ż1

(
x

µ|x|2

)∣∣∣∣

≤ c(λ,N)µ−N−2
2 |x|−(N−2)z1

(
x

µ|x|2

)
= c(λ,N)z?

µ(x). (A.20)

A direct calculation shows that

z?
µ(x) = A(N,λ)µ

N−2
2

−aλ |x|−aλ

(
1 + µ2−

4aλ
N−2 |x|2−

4aλ
N−2

)−N−2
2

. (A.21)
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From (A.20) and (A.21) it follows that for some positive constant c depending only on N and λ

∣∣(z?
µ(x))2

∗−2(ξ̇µ)?(x)
∣∣ ≤ cµ

N+2
2

−aλ
N+2
N−2 |x|−aλ

N+2
N−2

hence for some positive constant c depending only on N and λ

∫

Ω

∣∣(z?
µ)2

∗−2(ξ̇µ)?
∣∣s|x|−aλ(2∗−2∗s+s) dx ≤ cµ

N+2
2

s
(
1−

2aλ
N−2

) ∫

Ω
|x|−2∗aλ dx = C(λ,N)µ

N+2
2

s
(
1−

2aλ
N−2

)
.

Estimate (A.16) is thereby proved. From (A.19), (1.1), and (1.2) we get

∫

Ω

∣∣z2∗−2
µ ξ̇µ

∣∣s|x|−aλ(2∗−2∗s+s) dx ≤ cµ−N+2
2

s
(
1−

2aλ
N−2

) ∫

Ω
|x|−2∗aλ dx = C(λ,N)µ−N+2

2
s
(
1−

2aλ
N−2

)

thus proving (A.17). 2
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