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Abstract. We revisit the celebrated model of Fermi, Pasta and Ulam with the aim of inves-
tigating, by numerical computations, the trend towards equipartition in the thermodynamic
limit. We concentrate our attention on a particular class of initial conditions, namely, with all
the energy on the first mode or the first few modes. We observe that the approach to equipar-
tition occurs on two different time scales: in a short time the energy spreads up by forming a
packet involving all low—frequency modes up to a cutoff frequency w., while a much longer time
is required in order to reach equipartition, if any. In this sense one has an energy localization
with respect to frequency. The crucial point is that our numerical computations suggest that
this phenomenon of a fast formation of a natural packet survives in the thermodynamic limit.
More precisely we conjecture that the cutoff frequency w. is a function of the specific energy
e = FE/N, where E and N are the total energy and the number of particles, respectively.
Equivalently, there should exist a function e.(w), representing the minimal specific energy at
which the natural packet extends up to frequency w. The time required for the fast formation
of the natural packet is also investigated.

1. Introduction

In a celebrated report of the year 1955 Fermi, Pasta and Ulam performed the first nu-
merical investigation on the dynamics of a chain of particles with a non linear couplingl!l;
the model was intended to represent a discrete approximation of a non-linear string.
According to the authors: “The ergodic behaviour of such systems was studied with the
primary aim of establishing, experimentally, the rate of approach to the equipartition
of energy among the various degrees of freedom of the system”. It is well known that
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the authors actually found some unexpected result. In the very words of the authors:
“Let us say here that the results of our computations show features which were, from
the beginning, surprising to us. Instead of a gradual, continuous flow of energy from the
first mode to higher modes, all of the problems show an entirely different behaviour.
(...) Instead of a gradual increase of all the higher modes, the energy is exchanged,
essentially, among only a certain few. It is, therefore, very hard to observe the rate
of ‘thermalization’ or mixing in our problem, and this was the initial purpose of the
calculation”.

The aim of the present paper is to revisit the phenomenon of “freezing of energy”
on the low frequency modes that was illustrated in the original report of Fermi, Pasta
and Ulam. The problem amounts to establishing the existence of states that appear to
be stable for very long times, if not forever, and are characterized by a concentration
of energy on the low frequency modes, to which we give the name of natural packets.
Our aim is to investigate whether the phenomenon of the existence of natural packets
persists in the thermodynamic limit, i.e., when the number N of particles and the total
energy FE of the chain are allowed to become very large, keeping the specific energy
e = E/N constant.

The paper is organized as follows. In sect. 2 we recall the model and the main
problem. In sect. 3 we illustrate our numerical experiment, while the conclusions are
drawn in sect. 4. A discussion concerning the time required for the fast formation of
the natural packet, and the dependence of the results on the number of initially excited
modes, is deferred to an appendix.

2. Recalling the model and the problem

The model is a one—dimensional chain of N + 2 particles with fixed ends, as described
by the Hamiltonian

(1) H(x/y) :Hz(x,y)+H3(.r)+H4(x) ’
with
1 1
2 4
Hy=5> vi+5 2 (w1 —2i)
7j=1 7=0
o 3
Hy =< > (@i —a5)”
§=0
N
p 4
H4 = Z Z(l’j+1 — l’j) .
§=0
Here, x1,...,zn are the displacements with respect to the equilibrium positions (that

obviously exist), and xg = xy41 = 0 are the fixed ends. The normal modes are intro-
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Figure 1. Distribution of energy (in time average) among the normal modes at
different times for N = 63 and E' = 0.01. Here and in the whole paper, « = 8 = 1/4.
As was pointed out in the FPU report, only a few modes do actually share the whole
energy.

duced via the canonical transformation

2 N Jkm 2 ol Jkm
N T N W T T ey

(qk, pr:) being the new coordinates and momenta. The quadratic part of the Hamiltonian
in the normal coordinates is given the form

N
L. 2 2
i=1
with harmonic frequencies
. Jm
3 C—9gin —2— .
(3) W sin N T D)

Notice that the period of the fastest oscillator tends to m as N — oo, while the lowest
frequency mode has period ~ NL-H

All of our numerical computations were performed with o« = 8 = 1/4, and with N
ranging from 8 to 1023. The integration was performed using a leap—frog method, with
typical time step 0.05.
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Figure 2. Same as fig. 1 with initial energy E = 0.3. The number of modes that
take part in the sharing of energy is definitely larger than in the previous case.
Note also that some of the first modes seem to have reached a sort of internal
equipartition.

The problem, as first stated in the paper of Fermi, Pasta and Ulam, is concerned
with the dynamical evolution of the harmonic energies E; defined in (2). In Classical
Statistical Mechanics, in the infinite time limit one expects that the time average F]
of each of the harmonic energies should be the same (equipartition), at least in the
so—called harmonic approximation, i.e., one should have

_ 1 (7
Ej = T1—1>I-|I-loo T /0 Ej (t)dt =€,

where e = E//N is the specific energy. The goal of the numerical experiment was indeed

to observe how the energy, initially given to the first mode only, flows towards the other

modes until equipartition is possibly reached.

The phenomenon observed by Fermi, namely that the energy is exchanged essen-
tially among only a certain few low—frequency modes, is illustrated in fig. 1, which refers
to N = 63 and E = 0.01: in a short time (¢ ~ 10?) a packet of low—frequency modes
involved in the energy sharing is formed, and the distribution of energy does not essen-
tially change up to time ¢ ~ 107. The idea that such a phenomenon should disappear if
the total energy E of the chain is raised was first put forward by Izrailev and Chirikov!?,
who conjectured the existence of an energy threshold F. above which the system would
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Figure 3. Same as fig. 1 with initial energy £ = 9. A significant sharing of energy
among the modes occurs. The final distribution of energy looks fully consistent
with equipartition.

rapidly reach equipartition. In fact, this is exhibited in figs. 2 and 3. The number of
particles is still N = 63, while the total energy is 0.3 and 9, respectively. Fig. 3 shows
that at £ = 9 equipartition is essentially reached in the short time ¢ ~ 10*, while an
intermediate behaviour occurs in the case of fig. 2, at F = 0.3.

Concerning the dependence of the energy threshold on the number N of particles,
Bocchieri, Scotti, Bearzi and Loinger!3] put forward the explicit conjecture that FE.
should be proportional to N, i.e., that there should exist a critical specific energy e,
such that equipartition would rapidly show up if ¢ > e..

This question was widely discussed during the last 30 years ([4] and [11]-[19]).
However, in our opinion, a definite conclusion is still lacking.

3. The numerical experiment

Our starting point is the spreading of energy among a few low—frequency modes that is
observed in figs. 1 and 2. We emphasize that such a spreading occurs in a quite short
time, while the subsequent flow of energy towards higher order modes seems to be very
slow — if it occurs at all. Moreover, the number of modes that take part in the energy
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Figure 4. Tllustrating how the relaxation time ¢ is determined. The five curves
represent as functions of time the quantities 9, as defined in (5), for the first
five packets. The horizontal lines mark the thresholds for the first four packets, as
described in the paper. In this figure, N = 15, and E = 1.

sharing seems to increase with the total energy. Hence we introduce the quantities

(4) Ei=FEy, &E=FE1+Ey,..., E&=E+...+E,...
as good candidates to quasi-invariance. That is, we consider the total harmonic energy of
a packet of modes — the first s modes, s = 1,...,n. Correspondingly, we also introduce
the normalized mean energies of such packets

3
(5) s = N -

> j=1 Ej
We presently consider only initial data with all the energy on the first mode (as in
Fermi’s paper); later we will discuss how the results change if the energy is initially
given to a number of low frequency modes proportional to N. Thus we have initially
90 =1 for s = 1,...,N. The value expected according to equipartition is instead
¥4 = s/N.

Let us take a fixed value for N. If we plot J4(¢) vs. t for different values of s we
typically get the graph of fig. 4. Of course, we have 97 < 5 < ..., so that different
curves correspond to increasing values of s, starting from the bottom curve s = 1. From
the figure, which refers to N = 16, one has the clear impression that in a short time the
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Figure 5. Relaxation time ¢ for varying energy and number of modes in a packet.
Different symbols correspond to different values of s = 1, 2,

..., from left to right.
This figure is drawn for N = 15.

packet of the first three modes has lost a significant fraction of its initial energy, while
the packet of the first four modes seems to keep most of its initial energy. We could say
that the dynamics involves essentially the first four modes. We now attempt to give this
information a quantitative form. To this end, we notice that the s—th packet reaches
equipartition when it has lost enough energy, namely 4, has decreased by a quantity
Ady = (N —5)/N. Thus, we introduce the relaxation time t® defined as the first instant
at which 9, has decreased by a fraction yAd, with a positive v < 1. Equivalently, this is
the first time for which one has 95 = 1 —~ 4 +s/N. In our calculations we take v = 0.2.
Thus, letting the total energy E vary, we are given a set of pairs (tf, E) that we plot
in fig. 5, which still refers to N = 15. For a constant value of the energy, i.e., moving
on a horizontal line, the points corresponding to increasing values of s are aligned from
left to right, in agreement with the qualitative behaviour of fig. 2.

The relevant information here is that, for a fixed E, the energy flows quite rapidly
from the first packet to the second, third &c, but for some value of s the fast flow
stops, and a much longer time is needed for the quantity J4(¢) to fall below the wanted
threshold. In this case we say that a good quasi-invariant quantity is the energy &£, of the
packet of the first s modes, i.e., a fast formation of a natural packet of s low—frequency
modes has occurred. If we let the energy decrease, then we see that the number s of
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Figure 6. Plot of the numerically calculated values of EF(N, s) vs. s, for different
values of N as identified by the different symbols.

modes forming the natural packet decreases, too. This is exhibited by the fact that for
a fixed s the points (tf, E) look aligned on a straight line for high values of the energy,
but suddenly separate from such a straight line going very rapidly towards the right.
The slope of the straight line indicates a dependence t# ~ E~1/2,

The point of separation of the s—th curve defines a threshold energy Ef(s) in the
following sense: for initial energy less than EF(s) the natural packet contains at most
s modes. Thus, recalling that we are working at a fixed value of N, we are given a
threshold energy E®(N, s) as a function of N and s.

Let now N vary, and let us plot EE(N, s) vs. s for different values of N. We get the
graph in fig. 6, where different symbols have been used for different values of N. The
data look aligned on parallel lines, each line corresponding to a different N. The regular
spacing among the lines strongly suggests that something proportional to N must be
hidden inside these data. Thus, we replace the packet number s and the energy E by
the fraction s/N of the total number of modes and by the specific energy e, respectively.
Moreover, recalling the form (3) of the frequency spectrum we remark that there is a
one—to—one correspondence between s/N and w. Therefore, in fig. 7 we plot the same
data of fig. 6 on a different scale, using the frequency w as abscissa and the specific
energy € as ordinate. It is immediately evident that all the points are well aligned on a
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Figure 7. Same data as in fig. 6, but with the frequency w in abscissas and the
specific energy in ordinates. All points look well aligned on the same curve (possibly
a straight line). This defines the function e.(w), as defined in the text.

unique curve, very close to a straight line, which does not depend on N, at least in the
range 8 < N < 1023.

4. Conclusion

Our numerical investigations strongly suggest that there exist two separate time scales
for the energy sharing among modes, when energy is initially given to the first mode.
In a rather short time the energy spreads over a natural packet involving the modes up
to a certain critical frequency w.. Further spreading of energy over all modes, possibly
leading to equipartition, requires a much longer time scale, that we are presently unable
to quantify.

Quantitative estimates are instead available for the fast spreading of energy inside
the natural packet. Precisely from the graph of fig. 7 we conjecture that there exists
a specific energy threshold, namely a function e.(w) with the following meaning: the
natural packet includes the mode of frequency w only if the initial specific energy € is
greater than e.(w). In particular, as w = 2 is the maximal frequency in the spectrum
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of our model, the quantity ¢.(2) defines a specific energy threshold above which the
natural packet covers the whole available spectrum. This should somehow correspond
to the specific energy threshold for fast equipartition observed by Bocchieri, Scotti,
Bearzi and Loinger. Our result can be equivalently expressed by saying that there exists
a function w.(g), the inverse of the function e.(w), which gives the width of the natural
packet, as a function of the specific enerqgy €.

Actually, fig. 7 suggests a rather definite functional form for the functions introduced
above, namely e.(w) ~ w, i.e., we(e) ~ e'/%. Presently, no theoretical justification of
this fact is available to us.

Our numerical calculations allowed us to estimate the time needed for the formation
of the natural packet and to confirm the persistence of a separate and longer time scale
to equipartition in case one takes initial conditions involving a number of low modes
proportional to N. Obviously, the initial distribution of energy should still be localized
around the first mode. E.g., the size of the initially excited packet should not exceed
half the size of the natural packet. In such a case we observe that one still has a fast
formation of a natural packet similar to that of the previous calculations. The main point
is that with such a class of initial conditions the times needed for the fast formation
of the natural packet exhibit a strong dependence on the initial distribution of energy,
but the qualitative behaviour indicating that the natural packet survives for a long time
before the system relaxes to equipartition appears to persist. This is discussed in the
Appendix below.

Appendix

We address first of all the problem of the dependence of the relaxation time ¢ (namely
the time of formation of the natural packet as represented in fig. 5) on the number N of
degrees of freedom, at a fixed specific energy; this turns out to strongly depend on the
type of initial conditions. With all the energy initially on the lowest frequency mode we
found that for the values of s that corresponds to modes belonging to the natural packet
one has t® ~ N. An example of this is illustrated in fig. 8, where the relaxation time ¢{*
for the mode 1 is plotted vs. N, and represented by black dots. The figure refers to the
case of initial specific energy € = 0.01, and to values of N of the form N = 2" — 1 with
r=4,5 ...,17,ie, N =15,31, 63, ..., 131071. (Actually, for the case of one-mode
excitation the points for N > 32 767 are missing, because the calculation would require
an exceedingly long time.)

Thus, the time of formation of the natural packet would seem to tend to infinity
with N. However, this way of posing the problem is not relevant for the thermodynamic
limit, being related to the very particular class of initial conditions considered till now,
namely with all the energy given initially to the lowest frequency mode. By the way, the
behaviour ¢f ~ N in such a case may be understood if one remarks that the period of
the lowest frequency mode, according to formula (3), is Ty = 27 /w; ~ 1/N. Since only
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Figure 8. Dependence of the relaxation time t& on N and on the initial distribu-
tion of energy among the low frequency modes. The dots represent the relaxation
time ¢ for N = 15, 31, 63, 127, ..., 32767, with all the energy initially on the
lowest frequency mode. The triangles and the circles correspond to initial con-
ditions with energy distributed among the first s = (N + 1)/16 modes. Thus,
for N = 15, 31, ..., 131071 the size of the initially excited packet of modes is
s =1,2,...,8192, respectively. This means that the initial packet contains all
modes of frequency not exceeding a fixed value @ (which in our case can be iden-
tified with the lowest frequency for N = 15). The triangles correspond to the case
of initial conditions with energy linearly decreasing from the first mode to the
(s + 1)—th mode, with zero energy on the mode s + 1. The circles correspond to
the case of initial conditions with energy equally distributed among the s modes
of the initially excited packet. In both these cases we plot the relaxation time t?
for the initial packet. In all cases the specific energy is ¢ = 0.01.

the lowest frequency mode is actually excited, it seems reasonable to expect that the
typical time scale of the dynamics during the first phase of the evolution is the period
of the lowest frequency mode. This makes the linear dependence on N understandable.

In view of this argument, the dependence of the relaxation time on N might be ex-
pected to drastically change if the energy is initially shared by a packet of low frequency
modes of length depending on N in some proper way. In order to check this fact let us
consider initial conditions with the energy distributed among the modes with frequency
not exceeding a fixed w. This means that the size of the initial packet is proportional



12 L. Berchialla, L. Galgani and A. Giorgilli

1072 107" 10°

Specific energy

1073

L | | I ES

102 10% 10%
Relaxation time

1074

—
o
o

Figure 9. Relaxation times for N = 63, with energy initially distributed among
the first 4 modes and specific energy 0.01. One clearly sees that the qualitative
behavior is similar to that of fig. 5, thus showing the persistence of the phenomenon
of existence of two well separated time scales. Here, the symbol x refers to the
relaxation time for the packet of the first four modes.

to N. Of course, @ should be chosen such that the size of the initial packet packet does
not exceed the size of the natural packet. For instance, looking at fig. 5, which refers to
N = 15, we see that for specific energy € = 0.01, i.e., total energy E = 0.15, the natural
packet contains two modes, i.e., (N +1)/8 modes. Thus, let us choose & as the smallest
frequency for N = 15, so that the size of the initial packet is (N +1)/16, corresponding
to half the size of the natural packet. That is, for N = 31, 63, 127, ... we start with
an initial packet of s = 2, 4, 8, ... modes, respectively, and look for the relaxation time
t® namely the time at which the initially excited packet has lost a significant fraction
of its initial energy, in a sense analogous to the previously considered one.

We consider two different classes of initial conditions. In the first class we distribute
the energy so that it decreases linearly from the first mode to the mode s, and the mode
s+ 1 has initially zero energy. In the second class we start with the initial energy equally
distributed among the first s modes. The result is illustrated in fig. 8, for initial specific
energy € = 0.01 and for the values of IV as above. The data for the first case are reported
by triangles, and the relaxation time appears to tend to a constant value. The data for
the second case are plotted as circles, and the relaxation time appears to decrease with
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N. Thus, it appears that the formation of the natural packet takes a time that dtrongly
depends on the initial distribution of energy inside the packet. The divergence with N
seems to be peculiar to a class of extremely localized excitations.

Let us finally turn to the problem of the existence of two well separated time
scales in order to check whether it may be confirmed also for the latter class of initial
conditions. In particular, it is interesting to check whether the long time persistence of
the natural packet still occurs for the second class on initial conditions discussed above.
The qualitative answer is given by fig. 9, where N = 63 and the energy is initially
equally distributed among the 4 lowest frequency modes. By comparison with fig. 5 one
observes the same qualitative behaviour, namely the formation of a natural packet that
persists for longer and longer times when the specific energy is decreased.

Thus, the existence of two well separated time scales for the evolution appears to
be confirmed for a significant class of initial conditions with energy concentrated on a
packet of low frequency modes, and this is the most relevant conclusion of the present

paper.
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