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t. We revisit the 
elebrated model of Fermi, Pasta and Ulam with the aim of inves-tigating, by numeri
al 
omputations, the trend towards equipartition in the thermodynami
limit. We 
on
entrate our attention on a parti
ular 
lass of initial 
onditions, namely, with allthe energy on the �rst mode or the �rst few modes. We observe that the approa
h to equipar-tition o

urs on two di�erent time s
ales: in a short time the energy spreads up by forming apa
ket involving all low{frequen
y modes up to a 
uto� frequen
y !
, while a mu
h longer timeis required in order to rea
h equipartition, if any. In this sense one has an energy lo
alizationwith respe
t to frequen
y. The 
ru
ial point is that our numeri
al 
omputations suggest thatthis phenomenon of a fast formation of a natural pa
ket survives in the thermodynami
 limit.More pre
isely we 
onje
ture that the 
uto� frequen
y !
 is a fun
tion of the spe
i�
 energy" = E=N , where E and N are the total energy and the number of parti
les, respe
tively.Equivalently, there should exist a fun
tion "
(!), representing the minimal spe
i�
 energy atwhi
h the natural pa
ket extends up to frequen
y !. The time required for the fast formationof the natural pa
ket is also investigated.1. Introdu
tionIn a 
elebrated report of the year 1955 Fermi, Pasta and Ulam performed the �rst nu-meri
al investigation on the dynami
s of a 
hain of parti
les with a non linear 
oupling[1℄;the model was intended to represent a dis
rete approximation of a non{linear string.A

ording to the authors: \The ergodi
 behaviour of su
h systems was studied with theprimary aim of establishing, experimentally, the rate of approa
h to the equipartitionof energy among the various degrees of freedom of the system". It is well known that



2 L. Ber
hialla, L. Galgani and A. Giorgillithe authors a
tually found some unexpe
ted result. In the very words of the authors:\Let us say here that the results of our 
omputations show features whi
h were, fromthe beginning, surprising to us. Instead of a gradual, 
ontinuous 
ow of energy from the�rst mode to higher modes, all of the problems show an entirely di�erent behaviour.(: : :) Instead of a gradual in
rease of all the higher modes, the energy is ex
hanged,essentially, among only a 
ertain few. It is, therefore, very hard to observe the rateof `thermalization' or mixing in our problem, and this was the initial purpose of the
al
ulation".The aim of the present paper is to revisit the phenomenon of \freezing of energy"on the low frequen
y modes that was illustrated in the original report of Fermi, Pastaand Ulam. The problem amounts to establishing the existen
e of states that appear tobe stable for very long times, if not forever, and are 
hara
terized by a 
on
entrationof energy on the low frequen
y modes, to whi
h we give the name of natural pa
kets.Our aim is to investigate whether the phenomenon of the existen
e of natural pa
ketspersists in the thermodynami
 limit, i.e., when the number N of parti
les and the totalenergy E of the 
hain are allowed to be
ome very large, keeping the spe
i�
 energy" = E=N 
onstant.The paper is organized as follows. In se
t. 2 we re
all the model and the mainproblem. In se
t. 3 we illustrate our numeri
al experiment, while the 
on
lusions aredrawn in se
t. 4. A dis
ussion 
on
erning the time required for the fast formation ofthe natural pa
ket, and the dependen
e of the results on the number of initially ex
itedmodes, is deferred to an appendix.2. Re
alling the model and the problemThe model is a one{dimensional 
hain of N + 2 parti
les with �xed ends, as des
ribedby the Hamiltonian(1) H(x; y) = H2(x; y) +H3(x) +H4(x) ;with H2 = 12 NXj=1 y2j + 12 NXj=0�xj+1 � xj�2 ;H3 = �3 NXj=0�xj+1 � xj�3 ;H4 = �4 NXj=0�xj+1 � xj�4 :Here, x1; : : : ; xN are the displa
ements with respe
t to the equilibrium positions (thatobviously exist), and x0 = xN+1 = 0 are the �xed ends. The normal modes are intro-
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Figure 1. Distribution of energy (in time average) among the normal modes atdi�erent times forN = 63 and E = 0:01. Here and in the whole paper, � = � = 1=4.As was pointed out in the FPU report, only a few modes do a
tually share the wholeenergy.du
ed via the 
anoni
al transformationxj =r 2N + 1 NXk=1 qk sin jk�N + 1 ; yj =r 2N + 1 NXk=1 pk sin jk�N + 1 ;(qk; pk) being the new 
oordinates and momenta. The quadrati
 part of the Hamiltonianin the normal 
oordinates is given the form(2) H2 = NXj=1Ej ; Ej = 12�p2j + !2j q2j � ;with harmoni
 frequen
ies(3) !j = 2 sin j�2(N + 1) :Noti
e that the period of the fastest os
illator tends to � as N !1, while the lowestfrequen
y mode has period � �N+1 .All of our numeri
al 
omputations were performed with � = � = 1=4, and with Nranging from 8 to 1023. The integration was performed using a leap{frog method, withtypi
al time step 0:05.
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Figure 2. Same as �g. 1 with initial energy E = 0:3. The number of modes thattake part in the sharing of energy is de�nitely larger than in the previous 
ase.Note also that some of the �rst modes seem to have rea
hed a sort of internalequipartition.The problem, as �rst stated in the paper of Fermi, Pasta and Ulam, is 
on
ernedwith the dynami
al evolution of the harmoni
 energies Ej de�ned in (2). In Classi
alStatisti
al Me
hani
s, in the in�nite time limit one expe
ts that the time average Ejof ea
h of the harmoni
 energies should be the same (equipartition), at least in theso{
alled harmoni
 approximation, i.e., one should haveEj := limT!+1 1T Z T0 Ej(t)dt = " ;where " = E=N is the spe
i�
 energy. The goal of the numeri
al experiment was indeedto observe how the energy, initially given to the �rst mode only, 
ows towards the othermodes until equipartition is possibly rea
hed.The phenomenon observed by Fermi, namely that the energy is ex
hanged essen-tially among only a 
ertain few low{frequen
y modes, is illustrated in �g. 1, whi
h refersto N = 63 and E = 0:01: in a short time (t � 104) a pa
ket of low{frequen
y modesinvolved in the energy sharing is formed, and the distribution of energy does not essen-tially 
hange up to time t � 107. The idea that su
h a phenomenon should disappear ifthe total energy E of the 
hain is raised was �rst put forward by Izrailev and Chirikov[2℄,who 
onje
tured the existen
e of an energy threshold E
 above whi
h the system would
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Figure 3. Same as �g. 1 with initial energy E = 9. A signi�
ant sharing of energyamong the modes o

urs. The �nal distribution of energy looks fully 
onsistentwith equipartition.rapidly rea
h equipartition. In fa
t, this is exhibited in �gs. 2 and 3. The number ofparti
les is still N = 63, while the total energy is 0:3 and 9, respe
tively. Fig. 3 showsthat at E = 9 equipartition is essentially rea
hed in the short time t � 104, while anintermediate behaviour o

urs in the 
ase of �g. 2, at E = 0:3.Con
erning the dependen
e of the energy threshold on the number N of parti
les,Bo

hieri, S
otti, Bearzi and Loinger[3℄ put forward the expli
it 
onje
ture that E
should be proportional to N , i.e., that there should exist a 
riti
al spe
i�
 energy "
su
h that equipartition would rapidly show up if " > "
.This question was widely dis
ussed during the last 30 years ([4℄ and [11℄{[19℄).However, in our opinion, a de�nite 
on
lusion is still la
king.3. The numeri
al experimentOur starting point is the spreading of energy among a few low{frequen
y modes that isobserved in �gs. 1 and 2. We emphasize that su
h a spreading o

urs in a quite shorttime, while the subsequent 
ow of energy towards higher order modes seems to be veryslow | if it o

urs at all. Moreover, the number of modes that take part in the energy
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Figure 4. Illustrating how the relaxation time tRs is determined. The �ve 
urvesrepresent as fun
tions of time the quantities #s, as de�ned in (5), for the �rst�ve pa
kets. The horizontal lines mark the thresholds for the �rst four pa
kets, asdes
ribed in the paper. In this �gure, N = 15, and E = 1.sharing seems to in
rease with the total energy. Hen
e we introdu
e the quantities(4) E1 = E1 ; E2 = E1 + E2 ; : : : ; Es = E1 + : : :+Es ; : : :as good 
andidates to quasi{invarian
e. That is, we 
onsider the total harmoni
 energy ofa pa
ket of modes | the �rst s modes, s = 1; : : : ; n. Correspondingly, we also introdu
ethe normalized mean energies of su
h pa
kets(5) #s = EsPNj=1 Ej :We presently 
onsider only initial data with all the energy on the �rst mode (as inFermi's paper); later we will dis
uss how the results 
hange if the energy is initiallygiven to a number of low frequen
y modes proportional to N . Thus we have initially#0s = 1 for s = 1; : : : ; N . The value expe
ted a

ording to equipartition is instead#eqs = s=N .Let us take a �xed value for N . If we plot #s(t) vs. t for di�erent values of s wetypi
ally get the graph of �g. 4. Of 
ourse, we have #1 < #2 < : : : , so that di�erent
urves 
orrespond to in
reasing values of s, starting from the bottom 
urve s = 1. Fromthe �gure, whi
h refers to N = 16, one has the 
lear impression that in a short time the
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Figure 5. Relaxation time tRs for varying energy and number of modes in a pa
ket.Di�erent symbols 
orrespond to di�erent values of s = 1; 2; : : :, from left to right.This �gure is drawn for N = 15.pa
ket of the �rst three modes has lost a signi�
ant fra
tion of its initial energy, whilethe pa
ket of the �rst four modes seems to keep most of its initial energy. We 
ould saythat the dynami
s involves essentially the �rst four modes. We now attempt to give thisinformation a quantitative form. To this end, we noti
e that the s{th pa
ket rea
hesequipartition when it has lost enough energy, namely #s has de
reased by a quantity�#s = (N�s)=N . Thus, we introdu
e the relaxation time tRs de�ned as the �rst instantat whi
h #s has de
reased by a fra
tion 
�#s with a positive 
 < 1. Equivalently, this isthe �rst time for whi
h one has #s = 1� 
+ 
s=N . In our 
al
ulations we take 
 = 0:2.Thus, letting the total energy E vary, we are given a set of pairs �tRs ; E� that we plotin �g. 5, whi
h still refers to N = 15. For a 
onstant value of the energy, i.e., movingon a horizontal line, the points 
orresponding to in
reasing values of s are aligned fromleft to right, in agreement with the qualitative behaviour of �g. 2.The relevant information here is that, for a �xed E, the energy 
ows quite rapidlyfrom the �rst pa
ket to the se
ond, third &
, but for some value of s the fast 
owstops, and a mu
h longer time is needed for the quantity #s(t) to fall below the wantedthreshold. In this 
ase we say that a good quasi{invariant quantity is the energy Es of thepa
ket of the �rst s modes, i.e., a fast formation of a natural pa
ket of s low{frequen
ymodes has o

urred. If we let the energy de
rease, then we see that the number s of
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Figure 6. Plot of the numeri
ally 
al
ulated values of ER(N; s) vs. s, for di�erentvalues of N as identi�ed by the di�erent symbols.modes forming the natural pa
ket de
reases, too. This is exhibited by the fa
t that fora �xed s the points �tRs ; E� look aligned on a straight line for high values of the energy,but suddenly separate from su
h a straight line going very rapidly towards the right.The slope of the straight line indi
ates a dependen
e tRs � E�1=2.The point of separation of the s{th 
urve de�nes a threshold energy ER(s) in thefollowing sense: for initial energy less than ER(s) the natural pa
ket 
ontains at mosts modes. Thus, re
alling that we are working at a �xed value of N , we are given athreshold energy ER(N; s) as a fun
tion of N and s.Let now N vary, and let us plot ER(N; s) vs. s for di�erent values of N . We get thegraph in �g. 6, where di�erent symbols have been used for di�erent values of N . Thedata look aligned on parallel lines, ea
h line 
orresponding to a di�erent N . The regularspa
ing among the lines strongly suggests that something proportional to N must behidden inside these data. Thus, we repla
e the pa
ket number s and the energy E bythe fra
tion s=N of the total number of modes and by the spe
i�
 energy ", respe
tively.Moreover, re
alling the form (3) of the frequen
y spe
trum we remark that there is aone{to{one 
orresponden
e between s=N and !. Therefore, in �g. 7 we plot the samedata of �g. 6 on a di�erent s
ale, using the frequen
y ! as abs
issa and the spe
i�
energy " as ordinate. It is immediately evident that all the points are well aligned on a
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Figure 7. Same data as in �g. 6, but with the frequen
y ! in abs
issas and thespe
i�
 energy in ordinates. All points look well aligned on the same 
urve (possiblya straight line). This de�nes the fun
tion "
(!), as de�ned in the text.unique 
urve, very 
lose to a straight line, whi
h does not depend on N , at least in therange 8 � N � 1023.4. Con
lusionOur numeri
al investigations strongly suggest that there exist two separate time s
alesfor the energy sharing among modes, when energy is initially given to the �rst mode.In a rather short time the energy spreads over a natural pa
ket involving the modes upto a 
ertain 
riti
al frequen
y !
. Further spreading of energy over all modes, possiblyleading to equipartition, requires a mu
h longer time s
ale, that we are presently unableto quantify.Quantitative estimates are instead available for the fast spreading of energy insidethe natural pa
ket. Pre
isely from the graph of �g. 7 we 
onje
ture that there existsa spe
i�
 energy threshold, namely a fun
tion "
(!) with the following meaning: thenatural pa
ket in
ludes the mode of frequen
y ! only if the initial spe
i�
 energy " isgreater than "
(!). In parti
ular, as ! = 2 is the maximal frequen
y in the spe
trum
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(2) de�nes a spe
i�
 energy threshold above whi
h thenatural pa
ket 
overs the whole available spe
trum. This should somehow 
orrespondto the spe
i�
 energy threshold for fast equipartition observed by Bo

hieri, S
otti,Bearzi and Loinger. Our result 
an be equivalently expressed by saying that there existsa fun
tion !
("), the inverse of the fun
tion "
(!), whi
h gives the width of the naturalpa
ket, as a fun
tion of the spe
i�
 energy ".A
tually, �g. 7 suggests a rather de�nite fun
tional form for the fun
tions introdu
edabove, namely "
(!) � !4, i.e., !
(") � "1=4. Presently, no theoreti
al justi�
ation ofthis fa
t is available to us.Our numeri
al 
al
ulations allowed us to estimate the time needed for the formationof the natural pa
ket and to 
on�rm the persisten
e of a separate and longer time s
aleto equipartition in 
ase one takes initial 
onditions involving a number of low modesproportional to N . Obviously, the initial distribution of energy should still be lo
alizedaround the �rst mode. E.g., the size of the initially ex
ited pa
ket should not ex
eedhalf the size of the natural pa
ket. In su
h a 
ase we observe that one still has a fastformation of a natural pa
ket similar to that of the previous 
al
ulations. The main pointis that with su
h a 
lass of initial 
onditions the times needed for the fast formationof the natural pa
ket exhibit a strong dependen
e on the initial distribution of energy,but the qualitative behaviour indi
ating that the natural pa
ket survives for a long timebefore the system relaxes to equipartition appears to persist. This is dis
ussed in theAppendix below. AppendixWe address �rst of all the problem of the dependen
e of the relaxation time tRs (namelythe time of formation of the natural pa
ket as represented in �g. 5) on the number N ofdegrees of freedom, at a �xed spe
i�
 energy; this turns out to strongly depend on thetype of initial 
onditions. With all the energy initially on the lowest frequen
y mode wefound that for the values of s that 
orresponds to modes belonging to the natural pa
ketone has tRs � N . An example of this is illustrated in �g. 8, where the relaxation time tR1for the mode 1 is plotted vs. N , and represented by bla
k dots. The �gure refers to the
ase of initial spe
i�
 energy " = 0:01, and to values of N of the form N = 2r � 1 withr = 4; 5; : : : ; 17, i.e., N = 15; 31; 63; : : : ; 131 071. (A
tually, for the 
ase of one{modeex
itation the points for N > 32 767 are missing, be
ause the 
al
ulation would requirean ex
eedingly long time.)Thus, the time of formation of the natural pa
ket would seem to tend to in�nitywith N . However, this way of posing the problem is not relevant for the thermodynami
limit, being related to the very parti
ular 
lass of initial 
onditions 
onsidered till now,namely with all the energy given initially to the lowest frequen
y mode. By the way, thebehaviour tR1 � N in su
h a 
ase may be understood if one remarks that the period ofthe lowest frequen
y mode, a

ording to formula (3), is T1 = 2�=!1 � 1=N . Sin
e only
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Figure 8. Dependen
e of the relaxation time tRs on N and on the initial distribu-tion of energy among the low frequen
y modes. The dots represent the relaxationtime tR1 for N = 15; 31; 63; 127; : : : ; 32 767 , with all the energy initially on thelowest frequen
y mode. The triangles and the 
ir
les 
orrespond to initial 
on-ditions with energy distributed among the �rst s = (N + 1)=16 modes. Thus,for N = 15; 31; : : : ; 131 071 the size of the initially ex
ited pa
ket of modes iss = 1; 2; : : : ; 8 192, respe
tively. This means that the initial pa
ket 
ontains allmodes of frequen
y not ex
eeding a �xed value !̂ (whi
h in our 
ase 
an be iden-ti�ed with the lowest frequen
y for N = 15). The triangles 
orrespond to the 
aseof initial 
onditions with energy linearly de
reasing from the �rst mode to the(s + 1){th mode, with zero energy on the mode s + 1. The 
ir
les 
orrespond tothe 
ase of initial 
onditions with energy equally distributed among the s modesof the initially ex
ited pa
ket. In both these 
ases we plot the relaxation time tRsfor the initial pa
ket. In all 
ases the spe
i�
 energy is " = 0:01.the lowest frequen
y mode is a
tually ex
ited, it seems reasonable to expe
t that thetypi
al time s
ale of the dynami
s during the �rst phase of the evolution is the periodof the lowest frequen
y mode. This makes the linear dependen
e on N understandable.In view of this argument, the dependen
e of the relaxation time on N might be ex-pe
ted to drasti
ally 
hange if the energy is initially shared by a pa
ket of low frequen
ymodes of length depending on N in some proper way. In order to 
he
k this fa
t let us
onsider initial 
onditions with the energy distributed among the modes with frequen
ynot ex
eeding a �xed !̂. This means that the size of the initial pa
ket is proportional
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Figure 9. Relaxation times for N = 63, with energy initially distributed amongthe �rst 4 modes and spe
i�
 energy 0:01. One 
learly sees that the qualitativebehavior is similar to that of �g. 5, thus showing the persisten
e of the phenomenonof existen
e of two well separated time s
ales. Here, the symbol � refers to therelaxation time for the pa
ket of the �rst four modes.to N . Of 
ourse, !̂ should be 
hosen su
h that the size of the initial pa
ket pa
ket doesnot ex
eed the size of the natural pa
ket. For instan
e, looking at �g. 5, whi
h refers toN = 15, we see that for spe
i�
 energy " = 0:01, i.e., total energy E = 0:15, the naturalpa
ket 
ontains two modes, i.e., (N +1)=8 modes. Thus, let us 
hoose !̂ as the smallestfrequen
y for N = 15, so that the size of the initial pa
ket is (N +1)=16, 
orrespondingto half the size of the natural pa
ket. That is, for N = 31; 63; 127; : : : we start withan initial pa
ket of s = 2; 4; 8; : : : modes, respe
tively, and look for the relaxation timetRs , namely the time at whi
h the initially ex
ited pa
ket has lost a signi�
ant fra
tionof its initial energy, in a sense analogous to the previously 
onsidered one.We 
onsider two di�erent 
lasses of initial 
onditions. In the �rst 
lass we distributethe energy so that it de
reases linearly from the �rst mode to the mode s, and the modes+1 has initially zero energy. In the se
ond 
lass we start with the initial energy equallydistributed among the �rst s modes. The result is illustrated in �g. 8, for initial spe
i�
energy " = 0:01 and for the values of N as above. The data for the �rst 
ase are reportedby triangles, and the relaxation time appears to tend to a 
onstant value. The data forthe se
ond 
ase are plotted as 
ir
les, and the relaxation time appears to de
rease with
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ket takes a time that dtronglydepends on the initial distribution of energy inside the pa
ket. The divergen
e with Nseems to be pe
uliar to a 
lass of extremely lo
alized ex
itations.Let us �nally turn to the problem of the existen
e of two well separated times
ales in order to 
he
k whether it may be 
on�rmed also for the latter 
lass of initial
onditions. In parti
ular, it is interesting to 
he
k whether the long time persisten
e ofthe natural pa
ket still o

urs for the se
ond 
lass on initial 
onditions dis
ussed above.The qualitative answer is given by �g. 9, where N = 63 and the energy is initiallyequally distributed among the 4 lowest frequen
y modes. By 
omparison with �g. 5 oneobserves the same qualitative behaviour, namely the formation of a natural pa
ket thatpersists for longer and longer times when the spe
i�
 energy is de
reased.Thus, the existen
e of two well separated time s
ales for the evolution appears tobe 
on�rmed for a signi�
ant 
lass of initial 
onditions with energy 
on
entrated on apa
ket of low frequen
y modes, and this is the most relevant 
on
lusion of the presentpaper. Referen
es[1℄ Fermi, E., Pasta, J. and Ulam, S.: Studies of nonlinear problems, Los Alamosdo
ument LA{1940 (1955).[2℄ Izrailev, F.M. and Chirikov, B.V.: Dokl. Akad. Nauk. SSSR 166, 57 (1966); Sov.Phys. Dokl. 11, 30 (1966).[3℄ Bo

hieri, P., S
otti, A., Bearzi, B. and Loinger, A.: Anharmoni
 
hain withLennard{Jones intera
tion, Phys. Rev. A 2, 2013{2019 (1970).[4℄ Casetti, L., Cerruti{Sola, M., Pettini, M. and Cohen, E.G.D.: The Fermi{Pasta{Ulam problem revisited: Sto
hasti
ity thresholds in nonlinear Hamiltonian sys-tems, Phys. Rev. E 55, 6566{6574 (1997).[5℄ De Lu
a, J., Li
htenberg, A.J. and Ru�o, S.: Energy transition and time s
aleto equipartition in the Fermi{Pasta{Ulam os
illator 
hain, Phys. Rev. E 51,2877{2884 (1995).[6℄ De Lu
a, J., Li
htenberg, A.J. and Ru�o, S.: Universal evolution to equipartitionin os
illator 
hains, Phys. Rev E 54, 2329{2333 (1996).[7℄ De Lu
a, J., Li
htenberg, A.J. and Ru�o, S.: Finite time to equipartition in thethermodynami
 limit, Phys. Rev E 60, 3781{3786 (1999).[8℄ Carotta, M.C., Ferrario, C., Lo Ve

hio, G., Carazza, B. and Galgani, L.: Newphenomenon in the sto
hasti
 transition of 
oupled os
illators, Phys. Rev A 17,786 (1978).[9℄ A. Giorgilli:Rigorous results on the power expansions for the integrals of a Hamil-tonian system near an ellipti
 equilibrium point, Ann. Ist. H. Poin
ar�e, 48, n .4,423{439 (1988).[10℄ Galgani, L., Giorgilli, A., Martinoli, A. and Vanzini, S.: On the problem of energy



14 L. Ber
hialla, L. Galgani and A. Giorgilliequipartition for large systems of the Fermi{Pasta{Ulam type: analyti
al andnumeri
al estimates, Physi
a D 59, 334{348 (1992).[11℄ Kantz, H.: Vanishing stability thresholds in the thermodynami
 limit of noninte-grable 
onservative systems, Physi
a D 39, 322{335 (1989).[12℄ Kantz, H., Livi, R. and Ru�o, S.: Equipartition thresholds in 
hains of anhar-moni
 os
illators, J. Stat. Phys. 76, 627{643 (1994).[13℄ Livi, R., Pettini, M., Ru�o, S., Sparpaglione, M. and Vulpiani, A.: Relaxationto di�erent stationary states in the Fermi{Pasta{Ulam model, Phys. Rev A 28,3544{3552 (1983).[14℄ Livi, R., Pettini, M., Ru�o, S., Sparpaglione, M. and Vulpiani, A.: Equipartitionthreshold in nonlinear large Hamiltonian systems: the Fermi{Pasta{Ulam model,Phys. Rev. A 31, 1039{1045 (1985).[15℄ Livi, R., Pettini, M., Ru�o, S. and Vulpiani, A.: Further results on the equipar-tition threshold in large nonlinear Hamiltonian systems, Phys. Rev. A 31, 2740{2742 (1985).[16℄ Isola, S., Livi, R., Ru�o, S. and Vulpiani, A.: Stability and 
haos in Hamiltoniandynami
s, Phys. Rev A 33, 1163{1170 (1986).[17℄ Livi, R., Pettini, M. Ru�o, S. and Vulpiani, A.: Chaoti
 behaviour in nonlinearHamiltonian systems and equilibrium statisti
al me
hani
s, J. Stat. Phys. 48,539{559 (1987).[18℄ Pettini, M. and Landol�, M.: Relaxation properties and ergodi
ity breaking innonlinear Hamiltonian dynami
s, Phys. Rev A 41, 768{783 (1990).[19℄ Pettini, M. and Cerruti{Sola, M.: Strong sto
hasti
ity threshold in nonlinearHamiltonian systems: e�e
t of mixing times, Phys. Rev A 44, 975{987 (1991).


