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Abstract

For the positive solutions of the Gross–Pitaevskii system
−∆uβ + λβuβ = ω1u

3
β − βuβv2

β

−∆vβ + µβvβ = ω2v
3
β − βu2

βvβ

we prove that L∞–boundedness implies C0,α–boundedness, uniformly as β → +∞, for every
α ∈ (0, 1). Moreover we prove that the limiting profile, as β → +∞, is Lipschitz continuous.
The proof relies upon the blow–up technique and the monotonicity formulae by Almgren and
Alt–Caffarelli–Friedman. This system arises in the Hartree-Fock approximation theory for
binary mixtures of Bose–Einstein condensates in different hyperfine states. Extensions to
systems with k > 2 densities are given.

MSC : 35B40, 35B45, 35J55.
Keywords: Strongly competing systems, asymptotic Hölder estimates, Almgren’s formula.

1 Introduction

The purpose of this paper is to prove uniform bounds in Hölder norm for families of positive
solutions to nonlinear Schrödinger equations of the form

−∆uβ + λβuβ = ω1u
3
β − βuβv

2
β

−∆vβ + µβvβ = ω2v
3
β − βu2

βvβ

uβ , vβ ∈ H1
0 (Ω),

(1)

for the competition parameter β ∈ (0,+∞). Such systems arise in different physical applications,
such as the determination of standing waves in a binary mixture of Bose-Einstein condensates
in two different hyperfine states. While the sign of the parameter ωi discriminates between the
focusing and defocusing behavior of a single component, the sign of β determines the type of
interplay between the two states. When positive, the two states are in competition and repel each
other. In this paper we deal with diverging interspecific competition rates (both in the focusing and
defocusing case). The limiting behavior is known for the ground state solutions: as β → +∞ the
wave amplitudes segregate, that is, their supports tend to be disjoint. This phenomenon, called
phase separation, has been studied, in the case of ωi > 0 (focusing), starting from [7, 8], and,
when ωi < 0 (defocusing), in [6]. As far as the excited states are concerned, the recent literature
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shows that other families of solutions exist for large β’s ([18, 12, 17]). The asymptotic behavior of
such families of solutions has been investigated in [19], where, in the case of planar systems, it is
proved uniform convergence to a segregated limiting profile (u, v), where each component satisfies
the equation {

−∆u+ λu = ω1u
3 in {u > 0},

−∆v + µv = ω2v
3 in {v > 0}. (2)

In this paper we improve the result of [19], proving bounds in Hölder norms whenever Ω ⊂ RN
is a smooth bounded domain, in dimension N = 2, 3 (and also in higher dimension, provided
the cubic nonlinearities are replaced with subcritical ones). Besides the validity of the equations
above, we prove Lipschitz regularity of the limiting profile. Our result relies upon the blow–up
technique (section 3) and suitable Liouville–type theorems (section 2). Such a strategy has been
already adopted by some of the authors in [9] in proving uniform Hölder estimates for competition–
diffusion systems with Lotka–Volterra type of interactions. The arguments there, however, though
helpful in the present situation, need to be complemented with some new ideas, including a proper
use of the Almgren’s frequency formula [1]. This requires the systems to have a gradient form. Let
us mention that Hölder estimates for (non gradient) coupling arising in combustion theory have
been obtained in [5]. Regularity of the limiting profile and its nodal set, for ground states and
other minimizing vector solutions has been established in [11, 4]. Our main results write as follows.

(1.1) Theorem. Let uβ , vβ be positive solutions of (1) uniformly bounded in L∞(Ω), where λβ , µβ
are bounded in R and ω1, ω2 are fixed constants. Then for every α ∈ (0, 1) there exists C > 0,
independent of β, such that

‖(uβ , vβ)‖C0,α(Ω) ≤ C for every β > 0.

(1.2) Theorem. Under the assumptions of the previous theorem, there exists a pair (u, v) of
Lipschitz continuous functions such that, up to a subsequence, there holds

(i) uβ → u, vβ → v in C0,α(Ω) ∩H1(Ω), ∀ α ∈ (0, 1);

(ii) u · v ≡ 0 in Ω and
∫

Ω

βu2
βv

2
β → 0 as β → +∞;

(iii) the limiting functions u, v satisfy system (2) with λ := limβ→+∞ λβ, µ := limβ→+∞ µβ.

For the sake of simplicity we consider here systems of two components, but all the results extend
to the case of systems of k equations −∆ui + λiui = ωiu

3
i − βui

∑
i 6=j

βiju
2
j , i = 1, . . . , k

ui ∈ H1
0 (Ω),

(3)

provided that it possesses a gradient structure, i.e. βij = βji (see Remark 3.11).

The study of system (1) will be carried out as a particular case of a more general one, where
L2–perturbations are allowed. The reason for this approach is that, in a forthcoming paper, the
authors intend to present a variational construction to obtain, for every fixed β, several solutions
of (1); the present estimates, in their more general version, will then be used to study how, and in
which sense, such a variational structure passes to the limit as β → +∞. To be more precise, let
us consider the system 

−∆uβ + λβuβ = ω1u
3
β − βuβv

2
β + hβ in Ω

−∆vβ + µβvβ = ω2v
3
β − βu2

βvβ + kβ in Ω

uβ , vβ ∈ H1
0 (Ω), uβ , vβ ≥ 0 in Ω

(4)
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under the assumptions: hβ , kβ are uniformly bounded in L2(Ω), λβ , µβ ∈ R are bounded in R,
ω1, ω2 ∈ R are fixed constants. Defining

α∗ =

{
1 if N = 2
1/2 if N = 3,

(5)

then, by Sobolev embedding, we have that any solution of (4) belongs to C0,α, for every α ∈ (0, α∗)
(and even α = α∗ if N = 3). As a consequence, in the general case, we can not expect boundedness
for every Hölder exponent. In fact we have the following.

(1.3) Theorem. Let uβ , vβ be solutions of (4) uniformly bounded in L∞(Ω). Then for every
α ∈ (0, α∗) there exists C > 0, independent of β, such that

‖(uβ , vβ)‖C0,α(Ω) ≤ C for every β > 0.

(1.4) Theorem. Let uβ , vβ be solutions of (4) uniformly bounded in L∞(Ω). Then there exists
(u, v) ∈ C0,α, ∀ α ∈ (0, α∗), such that (up to a subsequence) there holds, as β → +∞,

(i) uβ → u, vβ → v in C0,α(Ω) ∩H1(Ω), ∀ α ∈ (0, α∗);

(ii) u · v ≡ 0 in Ω and
∫

Ω

βu2
βv

2
β → 0;

(iii) the limiting functions u, v satisfy the system{
−∆u+ λu = ω1u

3 + h in {u > 0},
−∆v + µv = ω2v

3 + k in {v > 0}, (6)

where λ := limλβ, µ := limµβ, and h, k denote the L2–weak limits of hβ , kβ as β → +∞.

Even though the actual result is stronger (no limitation on α), the proof of Theorem 1.1 is in
fact a particular case of the one of Theorem 1.3, once one observes that, if hβ ≡ kβ ≡ 0, then uβ
and vβ , at any fixed β, belong to C1,α for every α ∈ (0, 1). For this reason, we will prove in the
details all the results in the case of system (4), except the Lipschitz continuity of the limiting state
(section 4), that requires hβ ≡ kβ ≡ 0.

We wish to mention that system (1) is of great interest also in the complementary case we do not
face, namely when β is negative, for instance because of its application to the study of incoherent
solitons in nonlinear optics. For results in this direction we refer the reader to [3, 12, 15, 16] and
references therein.

2 Liouville–type results

In this section we prove some nonexistence results in RN . The main tools will be the monotonicity
formula by Alt, Caffarelli, Friedman originally stated in [2], as well as some generalizations made
by Conti, Terracini, Verzini ([10, 9]).

(2.1) Lemma (Monotonicity formula). Let u, v ∈ H1
loc(RN )∩C(RN ) be nonnegative functions

such that u · v ≡ 0. Assume moreover that −∆u ≤ 0,−∆v ≤ 0 in RN and u(x0) = v(x0) = 0.
Then the function

J(r) :=
1
r2

∫
Br(x0)

|∇u|2

|x− x0|N−2
· 1
r2

∫
Br(x0)

|∇v|2

|x− x0|N−2

is non decreasing for r ∈ (0,+∞).
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(2.2) Proposition. Under the same assumptions of Lemma 2.1, assume moreover that for some
α ∈ (0, 1) there holds

sup
x,y∈RN

|u(x)− u(y)|
|x− y|α

, sup
x,y∈RN

|v(x)− v(y)|
|x− y|α

<∞. (7)

Then either u ≡ 0 or v ≡ 0.

Proof. In the following we will denote Br := Br(x0). Assume by contradiction that neither u nor
v is zero, then none of them is constant since u(x0) = v(x0) = 0. Hence Lemma 2.1 ensures the
existence of a constant C > 0 such that∫

Br

|∇u|2

|x− x0|N−2
·
∫
Br

|∇v|2

|x− x0|N−2
≥ Cr4 (8)

for every r sufficiently large. Let ηa,b (0 < a < b) be any smooth, radial, cut-off function with the
following properties: 0 ≤ ηa,b ≤ 1, ηa,b = 0 in RN \ Bb, ηa,b = 1 in Ba and |∇ηa,b| ≤ C/(b − a).
Given 0 < ε << r, let Aε := B2r \ Bε and η := ηr,2r(1 − ηε,2ε). Testing the inequality −∆u ≤ 0
with the function η2u/|x− x0|N−2 in the annulus Aε, we obtain∫

Aε

η2|∇u|2

|x− x0|N−2
≤ −

∫
Aε

[
2ηu

|x− x0|N−2
∇u · ∇η + η2u∇u · ∇

(
1

|x− x0|N−2

)]
≤

∫
Aε

[
1
2

η2|∇u|2

|x− x0|N−2
+ 2

u2|∇η|2

|x− x0|N−2
− η2u∇u · ∇

(
1

|x− x0|N−2

)]
.

We can rewrite the last term using the fact that 1/|x− x0|N−2 is harmonic in Aε:

0 =
∫
Aε

∇
(
η2u2

2

)
· ∇
(

1
|x− x0|N−2

)
=

=
∫
Aε

[
ηu2∇η · ∇

(
1

|x− x0|N−2

)
+ η2u∇u · ∇

(
1

|x− x0|N−2

)]
,

obtaining

1
2

∫
Aε

η2|∇u|2

|x− x0|N−2
≤
∫
Aε

[
2

u2|∇η|2

|x− x0|N−2
+ ηu2∇η · ∇

(
1

|x− x0|N−2

)]
.

By the definition of η, the last expression becomes

1
2

∫
Br\B2ε

|∇u|2

|x− x0|N−2
≤ C

εN

∫
B2ε

u2 +
C ′

r2

∫
B2r\Br

u2

|x− x0|N−2
+
C ′′

r

∫
B2r\Br

u2

|x− x0|N−1
.

Keeping in mind that u(x0) = 0, we let now ε→ 0, obtaining∫
Br

|∇u|2

|x− x0|N−2
≤ C ′

r2

∫
B2r\Br

u2

|x− x0|N−2
+
C ′′

r

∫
B2r\Br

u2

|x− x0|N−1
.

Using the assumptions on u, this implies∫
Br

|∇u|2

|x− x0|N−2
≤ C

r2

∫ 2r

0

ρ2α

ρN−2
ρN−1dρ+

C ′

r

∫ 2r

0

ρ2α

ρN−1
ρN−1dρ ≤ C ′′r2α.

Since the same result holds for v, we finally obtain∫
Br

|∇u|2

|x− x0|N−2

∫
Br

|∇v|2

|x− x0|N−2
≤ Cr4α,

which contradicts (8) for r large and α < 1.
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(2.3) Corollary. Let u be an harmonic function in RN such that for some α ∈ (0, 1) there holds

sup
x,y∈RN

|u(x)− u(y)|
|x− y|α

<∞.

Then u is constant.

Proof. If u ≥ 0 or u ≤ 0, then since u is harmonic it holds that it is a constant (this is the usual
nonexistence Liouville result). Otherwise if u changes sign, then we can apply the previous result
to its positive and negative parts.

(2.4) Remark. The previous result does not hold for α = 1: consider for instance the function
u(x) = x1 (analogously, it is possible to see that also system (9) below admits non trivial solutions
which are globally bounded in Lipschitz norm; these are the main reasons for which our strategy,
as it is, can not apply to prove uniform Lipschitz estimates).

We shall need a result similar to Proposition 2.2, for functions u, v which do not have disjoint
supports, but are positive solutions in H1

loc(RN ) ∩ C(RN ) of the system{
−∆u = −uv2 in RN
−∆v = −u2v in RN . (9)

Again, to obtain a Liouville–type result for the previous system, we will use a suitable generalization
of the monotonicity formula (a similar idea, even though with slightly different equations, can be
found in [10, 9]). To this aim we introduce a C1 auxiliary function

f(r) =


2−N

2
r2 +

N

2
r ≤ 1

1
rN−2

r > 1

and denote m(|x|) := −∆f(|x|)/2. Notice that m(|x|) is bounded on RN , vanishes in RN \B1 and
m(|x|) ≥ 0 for a.e. x.

(2.5) Lemma. Let u, v be positive solutions of (9) and let ε > 0 be fixed. Then there exists r̄ > 1
such that the function

J(r) :=
1

r4−ε

∫
Br(0)

[
f(|x|)

(
|∇u|2 + u2v2

)
+m(|x|)u2

]
·
∫
Br(0)

[
f(|x|)

(
|∇v|2 + u2v2

)
+m(|x|)v2

]
is increasing for r ∈ (r̄,+∞).

Proof. Let us first evaluate the derivative of J(r) for r > 1. In order to simplify notations we shall
denote J(r) = J1(r)J2(r)/r4−ε. Then we have

J ′(r)
J(r)

= −4− ε

r
+

∫
∂Br

f(|x|)(|∇u|2 + u2v2)

J1(r)
+

∫
∂Br

f(|x|)(|∇v|2 + u2v2)

J2(r)
(10)

(recall that m(r) = 0 for r > 1). We can rewrite the term J1 in a different way: by testing the
equation for u with f(|x|)u on Br, we obtain∫

Br

f(|x|)(|∇u|2 + u2v2) = −
∫
Br

∇(
u2

2
) · (∇f(|x|)) +

∫
∂Br

f(|x|)u∂νu =

= −
∫
Br

m(|x|)u2 +
∫
∂Br

{f(|x|)u∂νu−
u2

2
∂ν(f(|x|))},
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which gives

J1(r) =
1

rN−2

∫
∂Br

u∂νu+
N − 2
rN−1

∫
∂Br

u2

2
. (11)

In order to estimate this quantity we define

Λ1(r) :=
r2
∫
∂Br

(|∇θu|2 + u2v2)∫
∂Br

u2
, Λ2(r) :=

r2
∫
∂Br

(|∇θv|2 + u2v2)∫
∂Br

v2
,

where |∇θu|2 = |∇u|2 − |∂νu|2. Then for every δ ∈ R, by Young’s inequality, there holds∣∣∣∣∫
∂Br

u∂νu

∣∣∣∣ ≤
(∫

∂Br

u2

)1/2(∫
∂Br

(∂νu)2
)1/2

≤
√

Λ1(r)
2δ2r

∫
∂Br

u2 +
δ2r

2
√

Λ1(r)

∫
∂Br

(∂νu)2

≤ 1
2

[
1
δ2

∫
∂Br

(
|∇θu|2 + u2v2

)
+ δ2

∫
∂Br

(∂νu)2
]

r√
Λ1(r)

.

Substituting in (11) we obtain

J1(r) ≤
1

2rN−3

[(
1

δ2
√

Λ1(r)
+
N − 2
Λ1(r)

)∫
∂Br

(|∇θu|2 + u2v2) +
δ2√
Λ1(r)

∫
∂Br

(∂νu)2
]
.

Now we choose δ in such a way that
1

δ2
√

Λ1(r)
+
N − 2
Λ1(r)

=
δ2√
Λ1(r)

, or equivalently, after some

calculation, √
Λ1(r)
δ2

= γ(Λ1(r)),

where γ : R+ → R is defined as

γ(x) =

√(
N − 2

2

)2

+ x− N − 2
2

.

We remark that this function plays a crucial role in the proof of the Alt-Caffarelli-Friedman Mono-
tonicity Formula (see [2]). Of particular importance is the following property: let E1, E2 be any
couple of disjoint subsets of the sphere SN−1 and denote with λ(Ei) the first eigenvalue of the
Dirichlet Laplacian on SN−1, then

γ(λ(E1)) + γ(λ(E2)) ≥ 2. (12)

With this choice of δ we have

J1(r) ≤
r

2γ(Λ1(r))

∫
∂Br

f(|x|)(|∇u|2 + u2v2),

(recall that r > 1 and consequently f(r) = 1/rN−2) and a similar expression holds also for J2.
Substituting in (10) we obtain

J ′(r)
J(r)

≥ −4− ε

r
+

2γ(Λ1(r))
r

+
2γ(Λ2(r))

r
,

therefore it only remains to prove that there exists a r̄ > 1 such that for every r ≥ r̄ there holds

γ(Λ1(r)) + γ(Λ2(r)) >
4− ε

2
. (13)
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To this aim we define the functions u(r)(θ), v(r)(θ) : ∂B1(0) → R as u(r)(θ) := u(rθ), v(r)(θ) :=
v(rθ). Then a change of variables gives

Λ1(r) =

∫
∂B1

(|∇u(r)|2 + r2u2
(r)v

2
(r))∫

∂B1
u2

(r)

, Λ2(r) =

∫
∂B1

(|∇v(r)|2 + r2u2
(r)v

2
(r))∫

∂B1
v2
(r)

.

The idea now is to show that the functions u(r), v(r) (normalized in L2(∂B1)) converge as r → +∞
to some functions having disjoint supports, and then to take advantage of (12). Notice first of all
that there exists a constant C > 0 such that

∫
∂B1

u2
(r) ≥ C for r sufficiently large. Indeed assume

by contradiction this is not true, then 1
|∂Br|

∫
∂Br

u→ 0 as r → +∞, which implies u(0) = 0 since
u is subharmonic, and this contradicts the assumption u > 0. The same result clearly holds also
for v(r).

Assume (13) does not hold, then there exists rn → +∞ such that

γ(Λ1(rn)) + γ(Λ2(rn)) ≤
4− ε

2
< 2.

In particular, Λ1(rn) and Λ2(rn) are bounded. As a consequence the function

ũ(rn) :=
u(r)

‖u(r)‖L2(∂B1)
satisfies C ≥ Λ1(rn) ≥

∫
∂B1

|∇ũ(rn)|2

(and an analogous property holds for ṽ(rn) := v(r)/‖v(r)‖L2(∂B1)). This ensures the existence of
ū, v̄ 6= 0 such that ũ(rn) ⇀ ū, ṽ(rn) ⇀ v̄ in H1(∂B1(0)). Moreover, since

C ≥ Λ1(rn) ≥ r2n

∫
∂B1

ũ2
(rn)ṽ

2
(rn)

we infer that ū · v̄ ≡ 0. This immediately provides

lim inf
n→+∞

[γ(Λ1(rn)) + γ(Λ2(rn))] ≥ γ(λ({supp(ū)})) + γ(λ({supp(v̄)})),

that is in contradiction with (12).

Now that we have a suitable monotonicity formula we are ready to prove a Liouville–type result
for the considered system.

(2.6) Proposition. Let u, v be non negative solutions of (9). Assume moreover that (7) holds for
some α ∈ (0, 1). Then one of the functions is identically zero and the other is a constant.

Proof. We start by noticing that, due to the form of system (9), if one of the functions is 0 or
a positive constant, then the other must be a constant or 0 respectively. Hence we assume by
contradiction that neither u nor v is constant. Then by the maximum principle u and v are
positive, and Lemma 2.5 ensures the existence of a constant C > 0 such that∫

Br

[
f(|x|)

(
|∇u|2 + u2v2

)
+m(|x|)u2

] ∫
Br

[
f(|x|)

(
|∇v|2 + u2v2

)
+m(|x|)v2

]
≥ Cr4−ε (14)

for r sufficiently large. Let η = ηr,2r be the cut-off function defined in the proof of Proposition 2.2.
By testing the equation for u with η2fu on B2r we obtain∫
B2r

η2f · (|∇u|2 + u2v2) = −
∫
B2r

[
2fηu∇u · ∇η + η2∇

(
u2

2

)
· ∇f

]
≤

≤
∫
B2r

[
1
2
fη2|∇u|2 + 2fu2|∇η|2 −∇

(
η2u2

2

)
· ∇f + u2η∇η · ∇f

]
.
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Recalling that ∆f = −2m and testing it with η2u2/2 in B2r we have∫
B2r

∇
(
η2u2

2

)
· ∇f =

∫
B2r

η2u2m,

which substituted in the previous inequality, together with m ≥ 0, gives∫
B2r

η2
[
f · (|∇u|2 + u2v2) +mu2

]
≤ 2

∫
B2r

[
2fu2|∇η|2 + u2η∇η · ∇f

]
.

Now, recalling the definition of η and f and using assumption (7), we finally obtain∫
Br

[
f · (|∇u|2 + u2v2) +mu2

]
≤ C

∫
B2r\Br

u2

|x|N
≤ C

∫ 2r

0

ρ2α

ρN
ρN−1dρ ≤ Cr2α,

which contradicts (14) for r large enough.

Arguing as above, one can prove the following Liouville–type theorem for systems with an
arbitrary number of densities.

(2.7) Proposition. Let k ≥ 3 and u1, . . . , uk be non negative solutions of

−∆ui = −ui
∑
j 6=i

u2
j in RN , (15)

with the property that, for some α ∈ (0, 1),

sup
x,y∈RN

|ui(x)− ui(y)|
|x− y|α

<∞ for every i.

Then k − 1 functions are identically zero and the remaining one is constant.

Sketch of the proof. We want to see that, for any i 6= j, (at least) one between ui and uj is
identically zero (this, exploiting every possible choice of i and j, will readily complete the proof).
Assume not, then, by the maximum principle, u = ui and v = uj are positive subsolutions of
system (9). It is easy to see that Lemma 2.5 also holds for positive subsolutions of that system;
as a consequence, (14) holds for u = ui and v = uj . But this, reasoning as in the proof of the
previous proposition, is in contradiction with the global bound of the Hölder quotients.

3 Uniform Hölder continuity

This section is mainly devoted to the proof of Theorem 1.3, that will provide, as a byproduct, also
Theorem 1.4. As we said the strategy we follow is reasoning by contradiction, in order to perform
a blow–up analysis, and then to use the results of the previous section to obtain an absurd. To
start with, we need the following technical lemma, which refines the estimate in [9], Lemma 4.4
(to which we refer for more details).

(3.1) Lemma. Let BR ⊂ RN be any ball of radius R. Let M,A be positive constants, h ∈ L2(BR),
and let u ∈ H1(BR) be a solution of −∆u ≤ −Mu+ h in BR

u ≥ 0 in BR
u ≤ A on ∂BR.
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Then for every ε, θ > 0 such that 0 < θ < ε < R there holds

‖u‖L2(BR−ε) ≤
2AR
ε− θ

e−θ
√
M +

1
M
‖h‖L2(BR),

where BR−ε is the ball of radius R− ε which shares its center with BR.

Proof. We can estimate u as |u| ≤ |u1|+ |u2|, where u1, u2 are defined by −∆u1 = −Mu1 in BR
u1 ≥ 0 in BR
u1 = u on ∂BR

{
−∆u2 = −Mu2 + h in BR

u2 = 0 on ∂BR.

In order to estimate u1 we shall make use of Lemma 4.4 in [9], where it is proved that ψ
′′

1 (r) + N−1
r ψ′1(r) = Mψ1(r)

ψ1(R) = A > 0
ψ′1(0) = 0

⇒


ψ1(0) > 0, ψ′1(r) > 0 r ∈ [0,+∞)
ψ1(r) ≤ ψ1(0)er

√
M r ∈ [0,+∞)

ψ1(r) ≥ ψ1(0)r̄

2er̄
√

M

er
√

M

r r ∈ [r̄,+∞).

Choosing r̄ = ε− θ, with θ ∈ (0, ε), we obtain the following inequalities

ψ1(R− ε) ≤ ψ1(0)e(R−ε)
√
M

A = ψ1(R) ≥ ψ1(0)(ε−θ)
2e(ε−θ)

√
M

eR
√

M

R ,

which imply

ψ1(r) ≤ ψ1(R− ε) ≤ 2AR
ε− θ

e−θ
√
M , for all r ∈ [0, R− ε].

Defining v1(x) = ψ1(|x− x0|) (where x0 is the center of BR) and using the maximum principle we
infer 0 ≤ u1(x) ≤ v1(x). To obtain an upper estimate for u2, let us now multiply the equation for
u2 by u2 itself and integrate; having zero boundary conditions we have∫

BR

Mu2
2 ≤

∫
BR

|∇u2|2 +Mu2
2 =

∫
BR

hu2 ≤
(∫

BR

h2

M

)1/2(∫
BR

Mu2
2

)1/2

,

and therefore ‖u2‖L2(BR) ≤ 1
M ‖h‖L2(BR). In conclusion we have ‖u‖L2(BR−ε) ≤ ‖u1‖L2(BR−ε) +

‖u2‖L2(BR) which gives the desired estimates.

3.1 Normalization and blow–up

To start with, we recall the standard non–uniform regularity properties for solutions to system (4).

(3.2) Remark. Let uβ , vβ be solutions of (4). Then, since hβ , kβ belong to L2(Ω), and Ω is
bounded and regular, by elliptic regularity theory it holds

uβ , vβ ∈ H2(Ω) that implies uβ , vβ ∈ C0,α(Ω)

for every α ∈ (0, α∗), where α∗ is defined as in (5). Let us mention that, if hβ ≡ kβ ≡ 0, then, by
a bootstrap argument, we can choose α∗ = 1 also in dimension N = 3.

Coming to the proof of Theorem 1.3, let us assume by contradiction that, for some α ∈ (0, α∗),
up to a subsequence it holds

Lβ := max
{

max
x,y∈Ω

|uβ(x)− uβ(y)|
|x− y|α

, max
x,y∈Ω

|vβ(x)− vβ(y)|
|x− y|α

}
−→ +∞

9



as β → +∞. We can assume that Lβ is achieved, say, by uβ at the pair (xβ , yβ). We observe that

|xβ − yβ | → 0 as β → +∞,

since we have |xβ − yβ |α = |uβ(xβ)− uβ(yβ)|/Lβ ≤ 2‖uβ‖∞/Lβ ≤ 2C/Lβ → 0.

The idea now is to consider an uniformly α-Hölder continuous blow-up with center at xβ .
Keeping this in mind, let us define the rescaled functions

ūβ(x) =
1

Lβrαβ
uβ(xβ + rβx), v̄β(x) =

1
Lβrαβ

vβ(xβ + rβx), for x ∈ Ωβ :=
Ω− xβ
rβ

,

where rβ → 0 will be chosen later. Depending on the asymptotic behavior of the distance d(xβ , ∂Ω)
and on rβ , we have Ωβ → Ω∞, where Ω∞ is either RN or an half-space (when d(xβ , ∂Ω)/rβ →∞
or the limit is finite, respectively).

First of all we observe that the ūβ , v̄β ’s are uniformly α-Hölder continuous for every choice of
rβ , with Hölder constant equal to one:

max

{
max
x,y∈Ωβ

|ūβ(x)− ūβ(y)|
|x− y|α

, max
x,y∈Ωβ

|v̄β(x)− v̄β(y)|
|x− y|α

}
=

∣∣∣ūβ(0)− ūβ

(
yβ−xβ

rβ

)∣∣∣∣∣∣yβ−xβ

rβ

∣∣∣α = 1. (16)

Moreover the rescaled functions satisfy the following system in Ωβ :
−∆ūβ + λβr

2
β ūβ = ω1Mβū

3
β − βMβūβ v̄

2
β + h̄β(x)

−∆v̄β + µβr
2
β v̄β = ω2Mβ v̄

3
β − βMβū

2
β v̄β + k̄β(x)

ūβ , v̄β ∈ H1
0 (Ωβ),

(17)

where
Mβ := L2

βr
2α+2
β ,

and

h̄β(x) :=
r2−αβ

Lβ
hβ(xβ + rβx), k̄β(x) :=

r2−αβ

Lβ
kβ(xβ + rβx).

(3.3) Remark. Since uβ , vβ are L∞(Ω)–bounded, hβ , kβ are L2(Ω)–bounded, λβ , µβ are bounded
in R, and rβ → 0, Lβ → +∞, by direct calculations it is easy to see that

λβr
2
β ūβ , µβr

2
β v̄β → 0 in L∞(Ωβ)

ω1Mβ ū
3
β , ω2Mβ v̄

3
β → 0 in L∞(Ωβ)

h̄β , k̄β → 0 in L2(Ωβ).

In order to manage the different parts of the proof, we will need to make different choices of the
sequence rβ . Once rβ is chosen, we wish to pass to the limit (on compact sets), and to this aim we
will use Ascoli–Arzelà’s Theorem. Now, since the ūβ , v̄β ’s are uniformly α-Hölder continuous, it
suffices to show that {ūβ(0)}, {v̄β(0)} are bounded in β. The following lemma provides a sufficient
condition on rβ for such a bound to hold.

(3.4) Lemma. Under the previous notations, let rβ → 0 as β → +∞ be such that

(i)
|yβ − xβ |

rβ
≤ R′ for some R′ > 0,

(ii) βMβ 9 0.

10



Then {ūβ(0)}, {v̄β(0)} are uniformly bounded in β.

Proof. Assume by contradiction that {ūβ(0)} is unbounded, and let R ≥ R′. Since the ūβ ’s are
uniformly Hölder continuous and vanish on ∂Ωβ , we can consider β sufficiently large such that
B2R(0) ⊂ Ωβ . Moreover since βMβ 9 0, we have that

Iβ := inf
B2R(0)

βMβūβ −→ +∞.

Now since βMβ ūβ ≤ βMβ ū
2
β in B2R(0) and (similarly to Remark 3.3) ‖ω2Mβ v̄

2
β‖L∞(B2R) → 0 as

β → +∞, we have

−∆v̄β = −µβr2β v̄β + ω2Mβ v̄
3
β − βMβū

2
β v̄β + k̄β

≤ −Iβ
2
v̄β + k̄β .

In order to use Lemma 3.1, we need to show that v̄β is bounded on ∂B2R(0). With this in
mind, let us choose a cut-off function η that vanishes outside B2R(0). Then by testing the second
equation in (17) with η2v̄β in B2R(0), we obtain∫

B2R(0)

{η2|∇v̄β |2 + 2ηv̄β∇η · ∇v̄β + µβr
2
β v̄

2
βη

2} ≤
∫
B2R(0)

{ω2Mβ v̄
4
βη

2 − Iβη
2v̄2
β + k̄βη

2v̄β},

and thus∫
B2R(0)

{1
2
η2|∇v̄β |2 + Iβη

2v̄2
β} ≤ 2

∫
B2R(0)

{|∇η|2v̄2
β + |µβ |r2βv2

βη
2 + |ω2|Mβ v̄

4
βη

2 + k̄βη
2v̄β}

≤ C(R)( sup
B2R(0)

v̄2
β + 1).

On the other hand, since v̄β is uniformly Hölder continuous,

Iβ

∫
B2R(0)

η2v̄2
β ≥ IβC

′(R) inf
B2R(0)

v̄2
β ≥ IβC

′(R) sup
B2R(0)

v̄2
β − IβC

′′(R).

Therefore, putting together the two previous inequalities, we obtain

IβC(R) sup
B2R(0)

v̄2
β ≤ C ′(R)( sup

B2R(0)

v̄2
β + 1) + IβC

′′(R)

which implies the boundedness of v̄β in B2R(0) (in particular on ∂B2R(0)).

Thus we can apply Lemma 3.1, which gives

‖v̄β‖L2(BR) ≤ Ce−C
′√Iβ +

2
Iβ
‖k̄β‖L2(B2R).

Hence

‖βMβ ūβ v̄β‖L2(BR) ≤ (Iβ + βMβ(4R)α)‖v̄β‖L2(Br) ≤ 2Iβ(Ce−C
′√Iβ +

2
Iβ
‖k̄β‖L2(B2R)) → 0

when β → +∞. This, together with Remark 3.3 and the boundedness of v̄β , gives

‖∆ūβ‖L2(BR) → 0 (18)

for every R ≥ R′.

11



Consider now ũβ(x) := ūβ(x) − ūβ(0). By the uniform Hölder continuity and Ascoli–Arzelà’s
Theorem we know that ũβ → ũ∞ on compact sets. Moreover by (18) we have that ūβ is bounded
in C0,γ

loc , with γ ∈ (0, α∗) (in fact, Theorem 8.12 of [14] gives us boundedness in W 2,2, and the
result follows by Sobolev imbbedings). As a consequence we obtain:

max
x,y∈Ω∞

|ũ∞(x)− ũ∞(y)|
|x− y|α

= 1. (19)

Indeed notice that by assumption (i), (yβ − xβ)/rβ must converge up to a subsequence. But it can
not be (yβ − xβ)/rβ → 0, otherwise we would have (considering an ε > 0 sufficiently small)∣∣∣ūβ(0)− ūβ

(
yβ−xβ

rβ

)∣∣∣∣∣∣yβ−xβ

rβ

∣∣∣α =
∣∣∣∣yβ − xβ

rβ

∣∣∣∣ε
∣∣∣ũβ(0)− ũβ

(
yβ−xβ

rβ

)∣∣∣∣∣∣yβ−xβ

rβ

∣∣∣α+ε ≤ C

∣∣∣∣yβ − xβ
rβ

∣∣∣∣ε → 0 (20)

with β, which contradicts (16). Therefore, there is an a ∈ RN \ {0} such that (yβ − xβ)/rβ → a,
and hence the left hand side of (16) also passes to the limit in β, providing (19).

Finally, we have that ∆ũ∞ = 0 in Ω∞. Now if Ω∞ = RN , by Corollary 2.3 ũ∞ is a constant,
in contradiction with (19). On the other hand, if Ω∞ is an half space, we have that ũ∞ = 0 on
∂Ω∞ and thus we can extend it by symmetry as an harmonic function in the whole RN , obtaining
the same contradiction.

We have shown that {ūβ(0)} is bounded. Let us now check that the same happens with {v̄β(0)}.
In order to do so, we have to make some small changes to the previous argument. Assume then
that {v̄β(0)} is unbounded, and consider the quantity (for R ≥ R′ fixed)

Ĩβ := inf
B2R(0)

βMβ v̄
2
β → +∞.

We have

−∆ūβ ≤ − Ĩβ
2
ūβ + h̄β

and ūβ is bounded on ∂B2R(0). Therefore by Lemma 3.1

‖ūβ‖L2(Br) ≤ Ce−C
′
√
Ĩβ +

2
Ĩβ
‖h̄β‖L2(B2R)

and hence
‖βMβūβ v̄

2
β‖L2(BR) → 0

as β → +∞. Once again this gives ‖∆ūβ‖L2(BR) → 0 and the proof follows as before.

Using the previous lemma we can now quantify the asymptotic relation between β, Lβ and
|xβ − yβ |.

(3.5) Lemma. Under the previous notation, we have (up to a subsequence)

βL2
β |xβ − yβ |2α+2 → +∞.

Proof. By contradiction assume that βL2
β |xβ − yβ |2α+2 is bounded. Then we can choose

rβ = (βL2
β)
− 1

2α+2 (and thus βMβ = 1),

in such a way that the assumptions of Lemma 3.4 are satisfied and thus {ūβ(0)}, {v̄β(0)} are
bounded. By uniform Hölder continuity and Ascoli–Arzelà’s theorem we have that, up to a subse-
quence, there exist u∞, v∞ such that ūβ → u∞, v̄β → v∞ uniformly in the compact subsets of Ω∞.
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Since βMβ = 1 and by Remark 3.3, we have that ∆ūβ , ∆v̄β are bounded in L2
loc and therefore

the same happens to ūβ , v̄β in C0,γ
loc (Ω∞), for all γ ∈ (0, α∗). We are now going to show that, as

a consequence, u∞, v∞ are α-Hölder continuous and that the maximum of the Hölder quotients is
given by:

max
x,y∈Ω∞

|u∞(x)− u∞(y)|
|x− y|α

= 1. (21)

Indeed notice that we cannot have (yβ − xβ)/rβ → 0, otherwise we would obtain the same contra-
diction as in (20). Therefore, there is an a ∈ R2\{0} such that (yβ − xβ)/rβ → a, and hence the
left hand side of (16) also passes to the limit in β, providing (21). Moreover, at the limit we have{

−∆u∞ = −u∞v2
∞ in Ω∞

−∆v∞ = −u2
∞v∞ in Ω∞.

If Ω∞ = RN , then by Proposition 2.6 u∞, v∞ are constants, which contradicts (21).

On the other hand, let Ω∞ be equal to an half-space. Since u∞ = 0 on ∂Ω∞, we can extend it to
the whole space by even symmetry and obtain a function satisfying the hypotheses of Proposition
2.2 (apply it to the pair (u∞|Ω∞ , u∞|RN\Ω∞

) – were we consider both functions extended by 0 –
and choose for x0 any point of ∂Ω∞). Therefore u∞ ≡ 0, which contradicts (21).

Now we are in a position to define our choice of rβ and to deduce the convergence of the blow–up
sequences.

(3.6) Lemma. Let
rβ = |xβ − yβ |.

Then there exist u∞, v∞ ∈ C0,α(RN ) such that, as β → +∞ (up to subsequences), there holds

(i) ūβ → u∞, v̄β → v∞, uniformly in compact subsets of Ω∞ = RN ; moreover

(ii) for any fixed r > 0 and x0 ∈ RN there holds
∫
Br(x0)

βMβū
2
β v̄

2
β → 0; as a consequence

(iii) ‖ūβ − u∞‖H1(Br(x0)) → 0, ‖v̄β − v∞‖H1(Br(x0)) → 0.

Proof. With this choice of rβ , we obtain βMβ = βL2
β |xβ − yβ |2α+2 → +∞ by Lemma 3.5. Once

again the assumptions of Lemma 3.4 are satisfied and hence, reasoning as in the initial part of
the proof of Lemma 3.5, we deduce that the rescaled functions ūβ , v̄β converge uniformly to some
u∞, v∞, in every compact set of Ω∞. In this situation (16) writes

1 = max

{
max
x,y∈Ωβ

|ūβ(x)− ūβ(y)|
|x− y|α

, max
x,y∈Ωβ

|v̄β(x)− v̄β(y)|
|x− y|α

}
=
∣∣∣∣ūβ(0)− ūβ

(
yβ − xβ
rβ

)∣∣∣∣
and hence by L∞loc(Ωβ) convergence, u∞, v∞ are globally α–Hölder continuous and in particular

max
x∈∂B1(0)∩Ω∞

|u∞(0)− u∞(x)| = 1. (22)

Now if Ω∞ is an half-space we can proceed exactly as in the last part of the proof of Lemma 3.5,
obtaining a contradiction. Therefore Ω∞ = RN , and (i) is proved.

In order to prove the second part of the lemma, let us fix any ball Br(x0) of RN , and let β be
large so that Br(x0) ⊂ Ωβ . Let us consider a smooth cut-off function 0 ≤ η ≤ 1 such that η = 1 in
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Br, η = 0 in RN \B2r. Testing the equation for ūβ with η, we obtain (since the ūβ ’s are uniformly
bounded in B2r)∫

Br

βMβ ūβ v̄
2
β ≤

∫
B2r

|ūβ∆η − λβr
2
βηūβ + ω1Mβηū

3
β + ηh̄β | ≤ C (23)

and analogously
∫
Br

βMβ ū
2
β v̄β ≤ C. This immediately implies that

u∞ · v∞ ≡ 0 in RN , (24)

providing∫
Br

βMβ ū
2
β v̄

2
β ≤ ‖ūβ‖L∞(Br∩{u∞=0})

∫
Br

βMβūβ v̄
2
β + ‖v̄β‖L∞(Br)∩{v∞=0}

∫
Br

βMβū
2
β v̄

≤ C
(
‖ūβ‖L∞(Br∩{u∞=0}) + ‖v̄β‖L∞(Br∩{v∞=0})

)
→ 0, (25)

which is (ii).

Finally, integrating the equation for ūβ in Br, we have∣∣∣∣∫
∂Br

∂ν ūβ dσ

∣∣∣∣ ≤ ∫
Br

βMβūβ v̄
2
β +

∫
Br

|λβr2βūβ − ω1Mβū
3
β − h̄β | ≤ C, (26)

which also gives, testing the equation for ūβ with ūβ itself,
∫
Br
|∇ūβ |2 ≤ C. Doing the same with

v̄β , we obtain the weak H1–convergence ūβ ⇀ u∞, v̄β ⇀ v∞. Finally by testing the equation for
ūβ with ūβ − u∞ we obtain∫

Br

∇ūβ · ∇(ūβ − u∞) ≤ ‖ūβ − u∞‖L∞(Br)·
(∫

∂Br

|∂ν ūβ |+

+
∫
Br

| − λβr
2
βūβ + ω1Mβū

3
β − βMβūβ v̄

2
β + h̄β |

)
and therefore we proved (iii) by uniform convergence and estimates (26), (23) (the convergence of
v̄β is analogous).

In the following lemma we collect the properties enjoyed by the limiting states u∞, v∞.

(3.7) Lemma. Let u∞, v∞ be defined as in Lemma 3.6. Then the following holds.

(i) u∞ · v∞ ≡ 0 in RN ;

(ii) max
x∈∂B1(0)

|u∞(0)− u∞(x)| = 1 (in particular, u∞ is not constant);

(iii)
{
−∆u∞ = 0 in {u∞ > 0},
−∆v∞ = 0 in {v∞ > 0}.

Proof. Properties (i) and (ii) are simply (24) and (22), respectively. Let us check that u∞ is
harmonic in the (open) set {x ∈ RN : u∞(x) > 0} (the same is true for v∞ in the set {x ∈ RN :
v∞(x) > 0}). Given any point x0 such that u∞(x0) > 0, we have to find a neighborhood of it
where u∞ is harmonic. By continuity we can consider a ball Bδ(x0) where u∞ ≥ 2γ > 0, and
hence by locally L∞ convergence ūβ ≥ γ > 0 in Bδ(x0) for large β. Therefore we have

−∆v̄β ≤ −βMβ
γ2

2
v̄β + k̄β
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and thus, using Lemma 3.1, we obtain

‖v̄β‖L2(Bδ/2) ≤ Ce−C
′√βMβ +

1
βMβ

‖k̄β‖L2(Bδ/2).

Hence
‖βMβūβ v̄

2
β‖L2(Bδ/2) → 0

and, using also Remark 3.3, we conclude that ‖∆ūβ‖L2(Bδ/2) → 0, which implies the harmonicity
of u∞ in Bδ/2(x0).

(3.8) Remark. By the previous lemmas we obtain that u∞ must vanish somewhere in RN (indeed
if not u∞ would be a positive non–constant harmonic function in RN , a contradiction), and also
v∞ must vanish somewhere (otherwise we would have u∞ ≡ 0 in RN , again a contradiction).
This, by continuity, implies that u∞ and v∞ must have a common zero, thus they satisfy all the
assumptions of Proposition 2.2. Since u∞ is not constant, we deduce that

v∞ ≡ 0 in RN .

Moreover, we have

{x : u∞(x) = 0} 6= ∅, and {x : u∞(x) > 0} is connected.

This last claim is due to the fact that, was {u∞ > 0} non trivially decomposed into Ω1 ∪Ω2, then
again u = u∞|Ω1 and v = u∞|Ω2 would be non–zero and satisfy the assumptions of Proposition
2.2, a contradiction.

3.2 Almgren’s Formula

In order to conclude the proof of Theorem 1.3 we will show that u∞ is radially homogeneous;
this crucial information will come from a generalization of the Almgren’s Monotonicity Formula.
This formula was first introduced in [1] and used for instance in [4, 13] to prove some regularity
issues related to free boundary problems. The aim is to study the monotonicity properties of the
functions

E(r) =
1

rN−2

∫
Br

{
|∇u∞|2 + |∇v∞|2

}
, H(r) =

1
rN−1

∫
∂Br

{
u2
∞ + v2

∞
}
,

and of the Almgren’s quotient (where it is defined)

N(r) =
E(r)
H(r)

,

where u∞, v∞ are defined in Lemma 3.6 and Br is centered at a fixed x0 (with respect to the
literature, our definition of H involves the averages of the densities, not of their oscillations). It is
worthwhile noticing that the result we prove for u∞, v∞ in fact holds for any non trivial, strong
H1

loc–limits of variational systems; indeed, we will perform the proof without using all the other
properties we collected about u∞, v∞. The reason for this is that we will need a similar result, for
different functions, in Section 4.

(3.9) Proposition. Under the above notations, for every x0 ∈ RN there exists r0 ≥ 0 such that,
for every r > r0, H(r) 6= 0, and

N(r) is an absolutely continuous, non decreasing function

such that
d

dr
log(H(r)) =

2N(r)
r

. (27)

Moreover if N(r) ≡ γ for all r > r0, then r0 = 0 and u∞(x) = rγg1(θ), v∞(x) = rγg2(θ) in RN ,
for some functions g1, g2 (where (r, θ) denote the polar coordinates).
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Proof. Up to a translation, we can suppose Br = Br(0). We divide the proof into steps.

Approximated quotients. Let 0 < r1 < r2 be such that H(r) 6= 0 in [r1, r2] (they exist for
sure, since u∞ 6≡ 0 and it is continuous). Let us check that the conclusions of the proposition follow
in this interval (the existence of r0 as claimed will be obtained only later). To evaluate derivatives
of E(r), H(r) and N(r) we have to face two main problems: first, it is not clear how regular these
functions are; second, we have no global equation for u∞, v∞. To overcome these difficulties, the
idea is to consider analogous functions, that will result to be C1, for the approximated problem
(17), and then to pass to the limit as β → +∞. In order to simplify notations we will denote
for the moment u := ūβ and the same for v̄β , h̄β , k̄β . We then define the approximated Almgren’s
quotient

Nβ(r) =
Eβ(r)
Hβ(r)

,

where

Eβ(r) =
1

rN−2

∫
Br

{
|∇u|2 + |∇v|2 + r2β(λβu

2 + µβv
2)−Mβ(ω1u

4 + ω2v
4) + 2βMβu

2v2
}
,

Hβ(r) =
1

rN−1

∫
∂Br

{
u2 + v2

}
.

We also observe that, by multiplying system (17) by (u, v) and integrating in Br, we obtain

Eβ(r) =
1

rN−2

∫
∂Br

{u ∂νu+ v ∂νv}+
1

rN−2

∫
Br

{h(x)u+ k(x)v} (28)

(the boundary integrals above, and all the following ones, are well defined, for β fixed and for every
r, by Remark 3.2 and by the continuous immersion of H2(Br) into H1(∂Br)).

Derivatives of Eβ, Hβ. In order to compute the derivatives of these expressions, we consider
the rescaled function ur(x) := u(rx) and similar expressions for v, h, k. System (17) now becomes{

−∆ur + r2λβr
2
βur = r2ω1Mβu

3
r − r2βMβurv

2
r + r2hr

−∆vr + r2µβr
2
βvr = r2ω2Mβv

3
r − r2βMβu

2
rvr + r2kr.

(29)

Performing a change of variables x = ry in Eβ(r) we obtain

Eβ(r) =
∫
B1

{
|∇ur|2 + |∇vr|2 + r2r2β(λβu

2
r + µβv

2
r)− r2Mβ(ω1u

4
r + ω2v

4
r) + 2r2βMβu

2
rv

2
r

}
,

and hence (Remark 3.2 implies that Eβ is in fact C1 in r)

E′
β(r) = 2

∫
B1

{∇ur · ∇(∇u(rx) · x)) +∇vr · ∇(∇v(rx) · x)}+

+2r2
∫
B1

(r2βλβur − 2Mβω1u
3
r + 2βMβurv

2
r)(∇u(rx) · x)+

+2r2
∫
B1

(r2βµβvr − 2Mβω2v
3
r + 2βMβu

2
rvr)(∇v(rx) · x)+

+2r
∫
B1

{
r2β(λβu

2
r + µβv

2
r)−Mβ(ω1u

4
r + ω2v

4
r) + 2βMβu

2
rv

2
r

}
.

Multiplying the first equation in (29) by (∇u(rx) · x), the second one by (∇v(rx) · x), integrating
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by parts in B1 and substituting the result in the previous expression, it follows:

E′
β(r) =

2
rN−2

∫
∂Br

{
(∂νu)

2 + (∂νv)
2
}

+
2

rN−1

∫
Br

{h(x)(∇u · x) + k(x)(∇v · x)}+

+
2

rN−1

∫
Br

{
r2β(λβu

2 + µβv
2)−Mβ(ω1u

4 + ω2v
4) + 2βMβu

2v2
}
−

− 2
rN−1

∫
Br

{
ω1Mβu

3(∇u · x) + ω2Mβv
3(∇v · x)

}
+

+
2

rN−1

∫
Br

{
βMβu(∇u · x)v2 + βMβu

2v(∇v · x)
}
.

Using the divergence theorem, we can rewrite some terms:

2
rN−1

∫
Br

{
βMβu(∇u · x)v2 + βMβu

2v(∇v · x)
}

=
βMβ

rN−1

∫
Br

∇(u2v2) · x =

= − N

rN−1

∫
Br

βMβu
2v2 +

1
rN−2

∫
∂Br

βMβu
2v2;

− 2
rN−1

∫
Br

{
ω1Mβu

3(∇u · x) + ω2Mβ(∇(v) · x)
}

=

= − 2
rN−1

∫
Br

{
ω1Mβ(∇(u4) · x) + ω2Mβ(∇(v4) · x)

}
=

=
N

2rN−1

∫
Br

{
ω1Mβu

4 + ω2Mβv
4
}
− 1

2rN−2

∫
∂Br

{
ω1Mβu

4 + ω2Mβv
4
}

;

obtaining at the end

E′
β(r) =

2
rN−2

∫
∂Br

{
(∂νu)

2 + (∂νv)
2
}

+
2

rN−1

∫
Br

{h(x)(∇u · x) + k(x)(∇v · x)}+

+
1

rN−1

∫
Br

{
2r2β(λβu

2 + µβv
2) +

(
N

2
− 2
)
Mβ(ω1u

4 + ω2v
4) + (4−N)βMβu

2v2

}
+

+
1

2rN−2

∫
∂Br

{
2βMβu

2v2 − ω1Mβu
4 − ω2Mβv

4
}
.

Using the same ideas, we also obtain, for the C1 function Hβ ,

H ′
β(r) =

2
rN−1

∫
∂Br

{u ∂νu+ v ∂νv} .

Estimate of Nβ(r+δ)−Nβ(r). At this point, let us recover the original notations ūβ , v̄β , h̄β , k̄β .
Recalling equation (28) we can compute N ′

β in (r1, r2) as

N ′
β(r) =

2
r2N−3H2

β(r)

{∫
∂Br

[
(∂ν ūβ)

2 + (∂ν v̄β)
2
]
·
∫
∂Br

(ū2
β + v̄2

β) −

−
[∫

∂Br

(ūβ∂ν ūβ + v̄β∂ν v̄β)
]2}

+Rβ(r),
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where

Rβ(r) =
2

rN−1Hβ(r)

∫
Br

{
h̄β(x)(∇ūβ · x) + k̄β(x)(∇v̄β · x)

}
+

+
1

rN−1Hβ(r)

∫
Br

{
2r2β(λβ ū

2
β + µβ v̄

2
β) +

N − 4
2

Mβ(ω1ū
4
β + ω2v̄

4
β) + (4−N)βMβū

2
β v̄

2
β

}
+

+
1

2rN−2Hβ(r)

∫
∂Br

{
2βMβ ū

2
β v̄

2
β − ω1Mβū

4
β − ω2M

4
β

}
−

− 2
r2N−3H2

β(r)

∫
∂Br

{ūβ ∂ν ūβ + v̄β ∂ν v̄β}
∫
Br

{
h̄β(x)ūβ + k̄β(x)v̄β

}
.

Notice that, since Hβ(r) 6= 0, for every δ > 0 such that r, r + δ ∈ (r1, r2), there exists a constant
C > 0 depending only on r1, r2 and δ such that∫ r+δ

r

|Rβ(s)|ds ≤ C

∫
Br2

{|h̄β ||∇ūβ |+ |k̄β ||∇v̄β |+ r2β(ū
2
β + v̄2

β) +Mβ(ū4
β + v̄4

β) +

+βMβ ū
2
β v̄

2
β + |ω1|Mβū

3
β |∇ūβ |+ |ω2|Mβ v̄

3
β |∇v̄β |}+

+‖Mβ ū
4
β +Mβ v̄

4
β‖L∞(Br) + C

∫
Br2

{
|h̄β ||ūβ |+ |k̄β ||v̄β |

}
−→ 0

as β → +∞, where we used Remark 3.3, Lemma 3.6, (iii) and (26). Therefore,

Nβ(r + δ)−Nβ(r) =
∫ r+δ

r

2
s2N−3H2

β(s)

{∫
∂Bs

[
(∂ν ūβ)

2 + (∂ν v̄β)
2
]
·
∫
∂Bs

(ū2
β + v̄2

β) −

−
[∫

∂Bs

(ūβ∂ν ūβ + v̄β∂ν v̄β)
]2}

+ oβ(1).

Derivatives of N , H, E, logH. Now we are in a position to pass to the limit in β. Indeed,
Lemma 3.6, (iii) (that is, strong convergence) ensures that Nβ(r) → N(r) for every r. Moreover it
implies the existence of a function f(ρ) ∈ L1(r1, r2) such that, up to a subsequence,

∫
∂Bρ

|∇ūβ |2 ≤
f(ρ) and

∫
∂Bρ

|∇ūβ |2 →
∫
∂Bρ

|∇u∞|2 a.e. for ρ ∈ (r1, r2) (and analogously for v̄β). Hence, letting
β → +∞ in the previous equation we readily obtain that N is absolutely continuous and that (for
almost every r)

N ′(r) =
2

r2N−3H2(r)

{∫
∂Br

[
(∂νu∞)2 + (∂νv∞)2

]
·
∫
∂Br

(u2
∞ + v2

∞)−

−
[∫

∂Br

(u∞∂νu∞ + v∞∂νv∞)
]2}

≥ 0, (30)

by Hölder inequality. This implies that N(r) is increasing in [r1, r2] and in addition gives an explicit
expression for the derivative. Reasoning as above, we can conclude that

H ′(r) =
2

rN−1

∫
∂Br

{u∞ ∂νu∞ + v∞∂νv∞} ,

H(r) = lim
β→+∞

Hβ(r) =
1

rN−1

∫
∂Br

{
u2
∞ + v2

∞
}
,

E(r) = lim
β→+∞

Eβ(r) =
1

rN−2

∫
∂Br

{u∞ ∂νu∞ + v∞∂νv∞} ,
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(where we used (28) to obtain the last limit) and therefore a direct calculation gives (27) for
r ∈ (r1, r2). Incidentally, we observe that equation (27) implies that logH, and hence H, are
C1–functions.

Existence of r0. Equality (27) also implies that when H(r) > 0, then H ′(r) ≥ 0 and therefore
there exists r0 := inf {r > 0 : H(r) 6= 0} such that H(r) 6= 0 for every r > r0. Hence everything
we have done so far is true in (r0,+∞).

Case N(r) constant. Let us now analyze what happens when N(r) ≡ γ for all r > r0. By
(27) we have

d

dr
log(H(r)) =

2γ
r

=
d

dr
log(r2γ)

for all r > r0. By considering r̄ > r > r0 and integrating the previous equality between r and r̄
we have

H(r) = H(r̄)
(r
r̄

)2γ

.

Now, if H(r0) = 0, since H is continuous, the previous equation implies that r0 = 0; on the other
hand, if H(r0) 6= 0, then r0 = 0 by definition. Moreover, by (30), if N(r) is constant then there
exists C(r) such that (∂νu∞, ∂νv∞) = C(r)(u∞, v∞), which gives u∞ = f(r)g1(θ), v∞ = f(r)g2(θ),
with f(r) > 0 for r > 0. Now since u∞ is harmonic in {u∞ > 0} and v∞ is harmonic in {v∞ > 0},
we finally infer u∞(x) = rγg1(θ), v∞(x) = rγg2(θ) in RN .

(3.10) Remark. Starting from system (3), one can perform the same blow–up argument than
above, obtaining in particular that, for the limiting states (u1,∞, . . . , uk,∞), a result analogous to
Proposition 3.9 holds, with the choice

E(r) =
1

rN−2

∫
Br

k∑
i=1

|∇ui,∞|2, H(r) =
1

rN−1

∫
∂Br

k∑
i=1

u2
i,∞.

3.3 Proof of the main results.

End of the proof of Theorem 1.3. By Lemma 3.6 we know that the blow–up limiting profiles u∞
and v∞ are globally α–Hölder continuous. Moreover, by Remark 3.8, v∞ ≡ 0 and we can choose

x0 such that u(x0) = 0.

If N(r) is defined as in Proposition 3.9, then we claim that N(r) ≡ α for all r > r0. Indeed,
according to that proposition, assume that there exists r̄ > r0 such that N(r̄) ≤ α − ε. Then by
monotonicity, for all r0 < r < r̄ we have N(r) ≤ α− ε and

d

dr
log(H(r)) ≤ 2

r
(α− ε),

hence (integrating between r and r̄) we have Cr2α−2ε ≤ H(r) for all r0 < r < r̄. On the
other hand, by the α–Hölder continuity and the fact that u∞(x0) = v∞(x0) = 0, we also have
H(r) ≤ C ′(r − r0)2α, a contradiction. On the other hand, if N(r̄) ≥ α + ε, then by monotonicity
N(r) ≥ α+ ε for all r > r̄, and thus

d

dr
logH(r) ≥ 2

r
(α+ ε),

which implies (integrating between r̄ and r and again by the α–Hölder continuity) that Cr2α+2ε ≤
H(r) ≤ C ′r2α for large r, a contradiction.

Therefore N(r) ≡ α for all r > r0, and by the previous proposition we know that r0 = 0 and
u∞(x) = rαg1(θ). This implies that the null set Γ = {u∞ = 0} is a cone with respect to x0. Since

19



this can be done for any x0 ∈ Γ, we obtain that Γ is in fact a cone with respect to each of its
points, and thus it is a linear subspace of RN . Moreover, again by Remark 3.8, Γ has dimension
strictly smaller than N − 1, otherwise {u∞ > 0} would be disconnected. But then u∞ turns out
to be a non–negative, non–constant function in H1

loc(RN ), which is harmonic on the complement
of a set of zero (local) capacity. That is, it is harmonic on the whole RN , a contradiction.

Proof of Theorem 1.4. By Theorem 1.3, for every α < α′ < α∗ there exists a constant C > 0 such
that ‖(uβ , vβ)‖C0,α′ ≤ C, for every β > 0. By compact embedding, we obtain, up to a subsequence,
the existence of (u, v) ∈ C0,α′ that are strong C0,α–limits of (uβ , vβ). By uniqueness of the limit,
this proves that

(uβ , vβ) → (u, v) in C0,α(Ω) for every α < α∗.

To obtain the other claims of the theorem, we reason as in the proof of Lemma 3.6. Testing system
(4) with (uβ , vβ) we obtain ∫

Ω

|∇uβ |2 ≤
∫

Ω

(
−λβuβ + ω1u

3
β + hβ

)
uβ ,

and an analogous inequality for vβ . By uniform convergence, the right hand side is bounded and
then (uβ , vβ) is bounded in H1

0 . Thus, again up to a subsequence, we have

(uβ , vβ) ⇀ (u, v) weakly in H1
0 (Ω).

On the other hand, integrating system (4) we have

−
∫
∂Ω

∂νuβ + β

∫
Ω

uβv
2
β =

∫
Ω

(
−λβuβ + ω1u

3
β + hβ

)
.

Again, the right hand side is bounded and, by Hopf lemma, ∂νuβ < 0 on ∂Ω. We infer

β

∫
Ω

uβv
2
β ≤ C, β

∫
Ω

u2
βvβ ≤ C

not depending on β. This immediately provides u · v ≡ 0 almost everywhere in Ω, and, in turn,
reasoning as (25),

β

∫
Ω

u2
βv

2
β → 0 as β → +∞,

that completes the proof of (ii). Now we can test system (4) with (uβ − u, vβ − v), obtaining∫
Ω

∇uβ · ∇(uβ − u) ≤ ‖uβ − u‖L∞
∫

Ω

(
−λβuβ + ω1u

3
β − uβv

2
β + hβ

)
,

and the same for v. By uniform convergence we infer convergence in norm, and hence strong
H1

0–convergence of (uβ , vβ) to (u, v), and also (i) is proved. Finally, to prove (iii), we observe
that, by continuity of the limiting profile, we know that {u > 0} is an open set. Therefore, given
x0 ∈ {u > 0}, there exists Bδ(x0) such that u ≥ 2γ > 0 in Bδ(x0), for some positive constant γ.
Let us show that the equation is satisfied in this open neighborhood. By (i) there holds uβ ≥ γ in
Bδ(x0) for large β, therefore ∫

Bδ(x0)

βuβv
2
β ≤

1
γ

∫
Bδ(x0)

βu2
βv

2
β → 0,

because of (ii). By testing the equation with a test function φ ∈ C1
0 (Bδ(x0)) we obtain∫

Bδ(x0)

(∇uβ · ∇φ+ λβuβφ) =
∫
Bδ(x0)

(ω1u
3
β − βuβv

2
β + hβ)φ,

and the previous estimate together with the H1–convergence conclude the proof.
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Proof of Theorems 1.1 and 1.2. As we just noticed, with one small change in the previous argu-
ments one can prove also these two theorems, except for the Lipschitz continuity of the limiting
profile (u, v), which will be the object of the following section. In dimension N = 2, since α∗ = 1,
then the theorems follow directly from Theorems 1.3 and 1.4. In dimension N = 3, according to
Remark 3.2, if hβ ≡ kβ ≡ 0 then we can choose α∗ = 1 and repeat, as they are, all the argu-
ments in this section. Then Theorem 1.1 straightly follows, while the proof of Theorem 1.2 will be
completed by Proposition 4.1 and Remark 4.9 below.

(3.11) Remark. With exactly the same strategy it is also possible to prove analogous results for
L∞–bounded, positive solutions of system (3). The only differences are pointed out in Proposition
2.7 and in Remark 3.10.

4 Lipschitz continuity of the limiting profile

Throughout all this section, let (u, v) ∈ C0,α∩H1
0 denote the limiting profile introduced in Theorem

1.4, and hβ , kβ ≡ 0 (that is, we are dealing with system (1)). As we noticed, in this case the uniform
Hölder continuity result holds for every α ∈ (0, 1) also if N = 3. In such a situation, although we
are not able to prove uniform Lipschitz continuity of the solutions with respect to β (see Remark
2.4), one can prove that the limiting profile is in fact Lipschitz continuous. To be more precise, we
will first give the details of the proof of the local Lipschitz continuity of (u, v), and then we will
advise (in Remarks 4.8 and 4.9) how this proof can be modified in order to obtain the Lipschitz
regularity up to the boundary of Ω. Also, after Remarks 3.10 and 3.11, the reader will easily see
how this result holds true for k–tuples of densities that are solutions of system (3).

Let us fix a (regular) domain Ω̃ ⊂⊂ Ω, and let us define the null set

Γ = {x ∈ Ω̃ : u(x) = v(x) = 0} 6= Ω̃

(from now on, we will exclude the trivial case (u, v) ≡ (0, 0) in Ω̃, which obviously enjoys Lipschitz
continuity).

(4.1) Proposition. Let (u, v) be the limiting profile introduced in Theorem 1.4, hβ ≡ kβ ≡ 0 and
Ω̃ ⊂⊂ Ω. Then (u, v) ∈W 1,∞(Ω̃).

Again, in order to prove the proposition, the main tool will be the Almgren’s Monotonicity
Formula introduced in Section 3.2, with some small change in its definition. In fact, due to the
fact that the limiting profiles satisfy system (2), the natural definitions for E(r) and H(r) are

E(r) = Ex0(r) =
1

rN−2

∫
Br(x0)

(
|∇u|2 + |∇v|2 + λu2 + µv2 − ω1u

4 − ω2v
4
)
,

H(r) = Hx0(r) =
1

rN−1

∫
∂Br(x0)

(u2 + v2),

where, here and in the following,

x0 ∈ Γ and r < r̄1 := dist(Ω̃, ∂Ω).

In this setting, we have that E(r)/H(r) is no longer necessarily positive. To overcome this fact,
we define a modified Almgren’s quotient as

N(r) =
E(r)
H(r)

+ 1 =
E(r) +H(r)

H(r)
.

With this choice, N turns out to be non negative (where it is defined).
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(4.2) Lemma. There exists r̄2 < r̄1 such that for every 0 < r ≤ r̄2 and for every x0 we have

E(r) +H(r) ≥ 1
2

[
1

rN−2

∫
Br(x0)

(|∇u|2 + |∇v|2) +
1

rN−1

∫
∂Br(x0)

(u2 + v2)

]
≥ 0.

Proof. We shall make use of the following formulation of Poincaré’s inequality: for every w ∈
H1

loc(RN ), every x0 and every r > 0 there holds

1
rN

∫
Br

w2 ≤ 1
N − 1

[
1

rN−2

∫
Br

|∇w|2 +
1

rN−1

∫
∂Br

w2

]
.

Recalling that u, v ∈ L∞(Ω), let now C > 0 be such that∣∣∣∣ 1
rN

∫
Br

λu2 + µv2 − ω1u
4 − ω2v

4

∣∣∣∣ ≤ C

rN

∫
Br

(u2 + v2)

(hence C depends on u, v, ωi, λ, µ, but not on x0 and r). Then

E(r) +H(r) ≥ 1
rN−2

∫
Br

(|∇u|2 + |∇v|2) +
1

rN−1

∫
∂Br

(u2 + v2)− r2
C

rN

∫
Br

(u2 + v2),

and Poincaré’s inequality immediately implies that, for r ≤ r̄2 sufficiently small (independent of
the choice of x0), the lemma holds.

Now, with the new notations of this section, let us present a result which corresponds to
Proposition 3.9 in this context.

(4.3) Proposition. There exist r̄ ≤ r̄2 and C > 0 such that, for every x0 ∈ Γ and 0 < r ≤ r̄, we
have H(r) 6= 0,

N ′(r) ≥ −2CrN(r), and thus Ñ(r) := eCr
2
N(r) is non decreasing.

Moreover
d

dr
log(H(r)) =

2
r
(N(r)− 1). (31)

(4.4) Remark. During the proof of this proposition we will also see that Γ has empty interior.

Proof. We will follow closely the proof of Proposition 3.9.

Proof when H(r) 6= 0. Let us first suppose that there is an interval [r1, r2], with r2 < r̄2
(defined in the previous lemma), such that H(r) > 0 in [r1, r2]. Again, we first consider the
approximated problem

Eβ(r) =
1

rN−2

∫
Br

(
|∇uβ |2 + |∇vβ |2 + λβu

2
β + µβv

2
β − ω1u

4
β − ω2v

4
β + 2βu2

βv
2
β

)
,

Hβ(r) =
1

rN−1

∫
∂Br

(u2
β + v2

β),

Nβ(r) =
Eβ(r) +Hβ(r)

Hβ(r)
.

Proceeding exactly as in Proposition 3.9 we obtain

H ′
β(r) =

2
rN−1

∫
∂Br

{uβ∂νuβ + vβ∂νvβ} =
2
r
Eβ(r),

E′
β(r) =

2
rN−2

∫
∂Br

{(∂νuβ)2 + (∂νvβ)
2}+Rβ(r),
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where

Rβ(r) =
1

rN−1

∫
Br

{
2λβu2

β + µβv
2
β +

N − 4
2

(ω1u
4
β + ω2v

4
β) + (4−N)βu2

βv
2
β

}
−

− 1
2rN−2

∫
∂Br

{ω1u
4
β + ω2v

4
β − 2βu2

βv
2
β}.

Hence in (r1, r2) there holds, by Hölder inequality,

N ′
β(r)

Nβ(r)
=
E′
β(r)Hβ(r)− Eβ(r)H ′

β(r)
(Eβ(r) +Hβ(r))Hβ(r)

≥ Rβ(r)
Eβ(r) +Hβ(r)

,

(recall that, by Lemma 4.2, H(r) > 0 implies E(r) +H(r) > 0, and N(r) > 0). Now we can let
β → +∞, obtaining

N ′(r)
N(r)

≥ R(r)
E(r) +H(r)

,

with

R(r) =
1

rN−1

∫
Br

{
2λu2 + 2µv2 +

N − 4
2

(ω1u
4 + ω2v

4)
}
− 1

2rN−2

∫
∂Br

{ω1u
4 + ω2v

4}.

Finally, by using the same arguments as in the proof of Lemma 4.2, we can prove the existence of
a constant C > 0 (depending only on r1, r2, independent of x0) such that

|R(r)| ≤ 2C(E(r) +H(r)), and thus
N ′(r)
N(r)

≥ −2C.

Finally, (31) comes from a direct calculation as in Proposition 3.9.

Therefore, at this point, we have proved the lemma for every interval [r1, r2] with r2 < r̄1 and
for every x0 where H(r) > 0. Now we need only to check that in fact H(r) 6= 0 for r small, and
the proof will be complete. This will be done in two more steps.

Γ has empty interior. Assume not, and let x1 ∈ Γ be such that d1 := dist(x1, ∂Γ) < r̄1
(recall that we are assuming that u2 + v2 is not identically zero in Ω̃). We have H(r) > 0 for
r ∈ (d1, d1 + ε) for some small ε > 0. By what we have done so far H(r) verifies, in (d1, d1 + ε),
the initial value problem {

H ′(r) = a(r)H(r) r ∈ (d1, d1 + ε)
H(d1) = 0,

with a(r) = 2(N(r) − 1)/r, which is continuous also at d1 by the monotonicity of Ñ . Then by
uniqueness H(r) ≡ 0 for r > d1, a contradiction with the definition of d1.

Definition of r̄. Finally we observe that, by (2), we have

−∆u ≤ (ω1u
2 − λ)u < λ1(Br(x0))u in Ω

for small r, let us say for 0 < r < r̄3, independent of x0 (indeed λ1(Br(x0)) → +∞ when r → 0);
an analogous inequality holds for v. Fixing now r̄ < min{r̄2, r̄3}, so that all we have done so far
holds, for 0 < r ≤ r̄ we must have Hx0(r) 6= 0 for every x0. Otherwise, for some x1 ∈ Γ, we
would have u, v = 0 on ∂Br(x1). This, together with the previous inequality, would give u, v ≡ 0
in Br(x1), a contradiction since Γ has empty interior.

The previous lemma immediately provides some estimates of N for small r.

(4.5) Lemma. Under the previous notations, for every x0 ∈ Γ, 0 < r ≤ r̄,

N(0+) ≥ 2 and thus N(r) ≥ 2e−Cr
2
.
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Proof. First of all, the limit exists finite because of the monotonicity of Ñ(r) = eCr
2
N(r), and

N(0+) = Ñ(0+). Let us assume by contradiction that, for some x0, N(0+) < 2. As a consequence
there exist r∗ < r̄ and ε > 0 such that, for 0 < r < r∗, we have N(r) ≤ 2 − ε. Integrating (31)
between r and r∗, we obtain

H(r∗)
H(r)

≤
(
r∗

r

)2(1−ε)

.

This and the fact that u, v are α–Hölder continuous for every α ∈ (0, 1) implies C(r∗)r2(1−ε) ≤
H(r) ≤ C ′r2α for every α ∈ (0, 1), a contradiction.

(4.6) Remark. We recall that, for any fixed 0 < r < r̄, the maps

x0 7→ Ex0(r), x0 7→ Hx0(r) are continuous in Γ.

As a consequence, for r̄ as in the previous lemma, we deduce the existence of a constants C1, C2,
not depending on x0, such that

0 < C1 ≤ Hx0(r̄) ≤ C2 for every x0 ∈ Γ,

indeed H is lower–bounded as a result of the fact that Γ has an empty interior (Remark 4.4). Thus
also

Ñx0(r) ≤ Ñx0(r̄) =
eCr̄

2
(Ex0(r) +Hx0(r))

Hx0(r)
≤ C3 for every x0 ∈ Γ, 0 < r ≤ r̄,

whit C3 not depending on x0.

(4.7) Lemma. Under the previous notations there exists a constant C > 0, not depending on x0

and r, such that

1
rN

∫
Br(x0)

{
|∇u|2 + |∇v|2

}
≤ C for every x0 ∈ Γ, 0 < r ≤ r̄.

Proof. By Lemma 4.2 and the definitions of N , Ñ , we know that

1
rN−2

∫
Br(x0)

{
|∇u|2 + |∇v|2

}
≤ 2(E(r) +H(r)) = 2e−Cr

2
Ñ(r)H(r) ≤ 2Ñ(r̄)H(r),

and thus
1
rN

∫
Br(x0)

{
|∇u|2 + |∇v|2

}
≤ 2C3

H(r)
r2

, (32)

where C3, not depending on r and x0, is as in Remark 4.6. In order to estimate the right hand
side above, we can use (31) to write

H(r̄)
r̄2

− H(r)
r2

=
∫ r̄

r

d

dρ

H(ρ)
ρ2

dρ =
∫ r̄

r

2
ρ

(N(ρ)− 2) dρ,

that, taking into account Lemma 4.5 and Remark 4.6, implies

H(r)
r2

≤ C2

r̄2
+
∫ r̄

0

4
ρ

(
1− e−Cρ

2
)
dρ ≤ C ′,

not depending on x0 and r. Substituting into (32), the lemma is proved.

Finally, we are ready to prove the local Lipschitz regularity of the limiting profile.
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Proof of Proposition 4.1. Let us assume by contradiction that (u, v) is not Lipschitz continuous
in Ω̃ (we follow some of the ideas of the proof of Theorem 5.1 in [8], to which we refer for more
details). Then there exists {xn} ⊂ Ω̃, rn → 0 such that

lim
n→+∞

1
rNn

∫
Brn (xn)

(|∇u|2 + |∇v|2) = +∞. (33)

We claim that (33) holds also for a different choice of the centers yn ∈ Γ instead of xn. This will
contradict Lemma 4.7 and prove the proposition.

Clearly d(xn,Γ) → 0 (u and v solve (2) where they are positive), hence, up to a subsequence,
we can assume the existence of x0 ∈ Γ such that xn → x0. Let us start by showing that (33) holds
for a choice of {x′n} such that d(x′n,Γ) ≤ Krn, with K independent of n. If, up to a subsequence,
xn ∈ Γ, then there is nothing to prove. Otherwise, in every set An = {x ∈ Ω̃ : d(x,Γ) ≥ rn} there
holds {

−∆u+ λu = ω1u
3

−∆v + µv = ω2v
3,

and hence
−∆(|∇u|2) ≤ 2∇u · ∇(−∆u) = 2(3ω1u

2 − λ)|∇u|2

in every An and similarly for v. If we set

Φ(x) =
1
rN

∫
Br(x)

(|∇u(y)|2 + |∇v(y)|2)dy =
1
rN

∫
Br(0)

(|∇u(x+ y)|2 + |∇v(x+ y)|2)dy,

then we just have proved the existence of a constant C ≥ 0 (independent on n) such that −∆Φ ≤
CΦ in An, for every n. Let now ρ be so small that −∆ϕ ≤ Cϕ admits a strictly positive solution
ϕ in Bρ(x0) and let n ≥ n̄ such that xn ∈ Bρ(x0) ∀n. Then on An,ρ = An ∪ Bρ(x0) there holds
−div(ϕ2∇Φ

ϕ ) ≤ 0, and hence by the maximum principle

max
An,ρ

Φ ≤ C ′ max
∂An

Φ.

This immediately implies that (33) holds for a choice {x′n} such that d(x′n,Γ) ≤ Krn. Let now
yn ∈ Γ be such that |yn − x′n| = d(x′n,Γ) and define sn = rn + d(x′n,Γ) ≤ (K + 1)rn, then there
holds

1
sNn

∫
Bsn (yn)

(|∇u|2 + |∇v|2) ≥ 1
(K + 1)rn

∫
Brn (x′n)

(|∇u|2 + |∇v|2) → +∞,

but this, as we just noticed, is in contradiction with Lemma 4.7, and hence (u, v) is Lipschitz in
Ω̃.

(4.8) Remark. Following [13], one can see that all the Almgren–type formulae can in fact be
proved in a more general setting, that is when the Laplace operator is replaced with uniformly
elliptic operators of the type

−Lu = −div (A(x)∇u) ,
where A is smooth (at least C1). The key ingredient is to replace the usual polar coordinates with
coordinates which are polar with respect to the geodesic distance associated to A. Of course the
energies in the Almgren’s quotient must be defined in a suitable way. We refer to [13] for further
details.

(4.9) Remark. Once suitable Almgren’s formulae are settled as in the previous remark, one can
treat the Lipschitz continuity of u and v up to ∂Ω in the following way: with a local change of
coordinates, and hence changing the differential operator, it is possible to assume that ∂Ω is locally
a hyperplane, and reflect u and v with respect to this hyperplane. It turns out that we find new
functions ũ, ṽ which satisfy a new system of equations, with different differential operators, in a
larger domain Ω′ ⊃⊃ Ω. We can then prove Lipschitz regularity of (ũ, ṽ), locally in Ω′, and deduce
Lipschitz regularity of (u, v) in Ω.
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