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J.A. Dieudonne of the Universitè Sophia-Antipolis in Nice, where part of
the work concerning traffic flow was completed.

During my PhD program I followed several courses; a particular mention
deserves at Milano-Bicocca University the classes given by Arrigo Cellina,
Graziano Guerra, Rinaldo M. Colombo, Stefano Meda and Susanna Ter-
racini. Outside I followed several courses by Professor Constantine Dafermos
about conservation laws: in Cortona, Roma, L’Aquila and Minneapolis. The
courses by Alberto Bressan in Cetraro and in Minneapolis and the CIME
course on traffic flow organized by Benedetto Piccoli have been particularly
useful for the subject of this thesis. Finally I mention the courses by Vin-
cenzo Vespri in Firenze.

A special support came to me from my colleagues and friends of the
PhD studies: in particular Davide Borrello, Francesca Monti, Benedetta
Noris and Hugo Tavares. I had a really nice time with them.





Contents

Introduction 1

Description of the problems . . . . . . . . . . . . . . . . . . . . . . 1

Articles and Preprints . . . . . . . . . . . . . . . . . . . . . . . . . 5

Communications and Advanced Courses . . . . . . . . . . . . . . . 6

1 Junctions in the p-System 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Notation and Main Results . . . . . . . . . . . . . . . . . . . 10

1.2.1 A Pipe with a Single Junction . . . . . . . . . . . . . 11

1.2.2 A Pipe with Piecewise Constant Section . . . . . . . . 14

1.2.3 A Pipe with a W1,1 Section . . . . . . . . . . . . . . . 17

1.3 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Proofs Related to Section 1.2.1 . . . . . . . . . . . . . 19

1.3.2 Proofs Related to Section 1.2.2 . . . . . . . . . . . . . 20

1.3.3 Proofs Related to Section 1.2.3 . . . . . . . . . . . . . 29

2 Integrable Unbounded Sources 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Application to gas dynamics . . . . . . . . . . . . . . . . . . . 38

2.3 Existence of BV entropy solutions . . . . . . . . . . . . . . . 41

2.3.1 The non homogeneous Riemann-Solver . . . . . . . . . 42

2.3.2 Existence of a Lipschitz semigroup . . . . . . . . . . . 46

2.4 Uniqueness of BV entropy solutions . . . . . . . . . . . . . . 51

2.4.1 Some preliminary results . . . . . . . . . . . . . . . . . 51

2.4.2 Characterisation of the semigroup’s trajectories . . . . 54

2.5 Proofs related to Section 2.2 . . . . . . . . . . . . . . . . . . . 61

3 Coupling Conditions for the Euler System 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Basic Well Posedness Results . . . . . . . . . . . . . . . . . . 66

3.2.1 A Junction and two Pipes . . . . . . . . . . . . . . . . 67

3.2.2 n Junctions and n+ 1 Pipes . . . . . . . . . . . . . . . 68

3.2.3 A Pipe with a W1,1 Section . . . . . . . . . . . . . . . 70

i



ii CONTENTS

3.3 Coupling Conditions . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Blow-Up of the Total Variation . . . . . . . . . . . . . . . . . 72
3.5 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Proofs of Section 3.2 . . . . . . . . . . . . . . . . . . . 77
3.5.2 Computation of χ in (3.4.5) . . . . . . . . . . . . . . . 81

4 A 2–Phase Traffic Model 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Notation and Main Results . . . . . . . . . . . . . . . . . . . 87
4.3 Comparison with Other Macroscopic Models . . . . . . . . . 91

4.3.1 The LWR Model . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 The Aw-Rascle Model . . . . . . . . . . . . . . . . . . 92
4.3.3 The Hyperbolic 2-Phase Model . . . . . . . . . . . . . 93
4.3.4 A Kinetic Model . . . . . . . . . . . . . . . . . . . . . 94

4.4 Connections with a Follow-The-Leader Model . . . . . . . . . 95
4.5 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . 96



Introduction

Description of the problems

This PhD thesis is concerned with applications of nonlinear systems of con-
servation laws to gas dynamics and traffic flow modeling.

The first result is contained in (1) and is here presented in Chapter 1.
It is devoted to the analytical description of a fluid flowing in a tube with
varying cross section. When the section a(x) varies smoothly, a classical
model is based on the p–system

(p)





∂tρ+ ∂xq = − q
a
∂xa

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= − q2

aρ
∂xa

t∈R
+ time

x∈R space
ρ=ρ(t, x) fluid density
q=q(t, x) linear momentum

density
a=a(x) pipe section
p=p(ρ) pressure.

Here, the source term takes into account the inhomogeneities in the tube
geometry, see for instance [40, Remark 2.7]. In this case, the regularity of
the pipe automatically selects the appropriate definition of weak solution.

The mathematical problem related to a junction has been widely con-
sidered in the recent literature, see [11, 21, 26] and the references therein.
Analytically, it consists of a sharp discontinuity in the pipe’s geometry, say
sited at x = 0. More precisely, it corresponds to the section a(x) = a− for
x < 0 and a(x) = a+ for x > 0. Thus, in each of the two pipes, the model
reads 




∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= 0

where the coupling condition

Ψ
(
a−, (ρ, q)(t, 0−); a+, (ρ, q)(t, 0+)

)
= 0

imposes suitable physical requirements, such as the conservation of mass and
the equality of the hydrostatic pressure, see [11], or the partial conservation

1
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of momentum, see [21]. In (1) we introduce a choice of Ψ motivated as limit
of the smooth case, see Figure 1.

Figure 1: The unique concept of solution in the case of a smooth section
induces a definition of solution in the case of the junction.

With this definition, we first prove the well posedness of the resulting
model, also in the case of a piecewise constant pipe’s section. The bounds
on the total variation obtained in this construction allow to pass, through a
suitable limit, to the case of a pipe’s section a of class W1,1, see Figure 2.
In particular, by means of this latter limit, we also prove the well posedness
of the smooth case.

Figure 2: The construction for a single jump is first extended to general
piecewise constant sections and then, through an approximating procedure,
to a section function a of class W1,1.

Above, as usual in the theory of conservation laws, by well posedness we
mean that we construct an L1 Lipschitz semigroup whose orbits are solutions
to the Cauchy problem. Moreover, the formal convergence of the problem
with piecewise constant section to that one with W1,1 section is completed
by the rigorous proof of the convergence of the corresponding semigroups.

In (1), a careful estimate on the total variation of the solution shows
that, at lower fluid speeds, higher total variations of the pipe’s section are
acceptable for the solution to exist. On the contrary, an explicit example
computed in the case of the isothermal pressure law shows that, if the fluid
speed is sufficiently close to the sound speed, a shock entering a pipe may
have its strength arbitrarily magnified due to its interaction with the pipe’s
walls. In other words, near to the sonic speed and with a having large total
variation, the total variation of the solution may grow arbitrarily in finite
time.

A key role in the result above is played by wave front tracking solu-
tions to conservation laws and by the operator splitting method. The former
technique allows the construction of very accurate piecewise constant ap-
proximations. In general, properties of solutions are first proved on these
approximations, then passing to the limit we show that they hold on the
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exact solutions too. In the present case, the standard wave front track-
ing procedure [16, Chapter 7] needs to be adapted to the presence of the
junction.

In (2), presented in Chapter 2, as a first result we study the Cauchy
problem for an n × n strictly hyperbolic system of balance laws. More
precisely, we consider





∂tu+ ∂xf(u) = g(x, u)

u(0, x) = uo(x)

t∈R
+

x∈R

u∈R
n

uo ∈L1 ∩BV(R; Rn)

with each characteristic field being genuinely nonlinear or linearly degenerate
(see [16, Definition 5.2, Chapter 7]. Under the nonresonance assumption

∣∣λi(u)
∣∣ ≥ c > 0 for all i ∈ {1, . . . , n} and for all u ,

and the boundedness condition

∥∥g(x, ·)
∥∥
C2 ≤M(x) with M ∈ L1(R; R),

we prove the global existence, uniqueness and regularity of entropy solu-
tions with bounded total variation provided, as usual, that the L1 norm of
‖g(x, ·)‖C1 and TV(uo) are small enough. In [1] an analogous result was
proved, but under the stronger condition M ∈

(
L∞(R; R) ∩ L1(R; R)

)
.

This general result allows to compute the limit considered in (1) and
illustrated in Figure 1, also in the case of the full 3×3 Euler system. Indeed,
in (2), we derive existence and uniqueness of solutions in the case of a
discontinuous pipe’s section as limit of solutions corresponding to smooth
pipe’s section.

Among the results in (2) there is also a characterization of solutions
in the case of a general balance law. When applied in the 2 × 2 case of
the p–system, it ensures that the solutions constructed in [26, Theorem 3.2]
coincide with those in (1), whenever the coupling condition induced by the
smooth junction is considered.

Here, the technique is again based on the wave front tracking algorithm
but, differently from (1), we do not use the operator splitting procedure.
On the contrary, as in [1] here the source is approximated by a sequence of
Dirac deltas; careful estimates allow us to use the L1 norm on the bound on
M instead of its L∞ norm, so that we can go to the limit as in the scheme
of Figure 1.

In (3), presented in Chapter 3, the basic analytical properties of the
equations governing a fluid flowing in a pipe with varying section, proved
in (1) for the case of the p-system, are extended to the full 3 × 3 Euler
equations.
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In particular, we consider two tubes separated by a junction sited at,
say, x = 0. In each pipe, the fluid dynamics is described by the full 3 × 3
Euler system:

(e)





∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ
+ p(ρ, e)

)
= 0

∂tE + ∂x

(
q

ρ

(
E + p(ρ, e)

))
= 0

ρ=ρ(t, x) fluid density
q=q(t, x) linear momentum
e=e(t, x) internal energy

density
p=p(ρ, e) pressure

E=1
2
q2

ρ +ρe total energy density.

We extend the results proved for the p-system in [26, Theorem 3.2] to the
3 × 3 case of a general coupling condition at the junction, that is

Ψ
(
a−, (ρ, q,E)(t, 0−); a+, (ρ, q,E)(t, 0+)

)
= 0 .

This framework comprises various choices of the coupling condition found in
the literature, such as for instance in [11, 21], once they are extended to the
3 × 3 case and [31] for the full 3 × 3 system. We also extend the condition
inherited from the smooth case introduced in (1).

Within this setting, we prove the well posedness of the Cauchy problem
for (e) and, then, the extension to pipes with several junctions and to pipes
with a W1,1 section.

As in the 2×2 case of the p-system, here a key assumption is the bound-
edness of the total variation of the pipe section. We provide explicit exam-
ples to show that this bound is necessary for each of the different coupling
conditions considered.

The analytical techniques used here are the same to that ones in (1).
To show the necessity of the bound on the total variation, in a part of the
proof, we used a software for symbolic computations.

Concerning traffic flow, in (4), presented in Chapter 4, we introduce
a new macroscopic traffic model, based on a non-smooth 2 × 2 system of
conservation laws. Consider the classical LWR model

{
∂tρ+ ∂x (ρV ) = 0
V = wψ(ρ)

ρ=ρ(t, x) traffic density
V=V (w, ρ) traffic speed
w>0 maximal traffic speed.

Here, ψ describes the attitude of drivers to choose their speed depending on
the traffic density at their location. First, we assume that each driver has
his proper maximal speed, so that the constant w above becomes a variable
quantity transported by traffic. Then, we assume that there exists an overall
maximal speed Vmax. Therefore, we obtain the following model, which can
be seen as a development of those presented in [6, 18]:

(t)

{
∂tρ+ ∂x

(
ρ v(ρ,w)

)
= 0

∂tw + v(ρ,w) ∂xw = 0
with v(ρ,w) = min

{
Vmax, w ψ(ρ)

}
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and can be rewritten as a 2×2 system of conservation laws with a C0,1 flow:
{
∂tρ+ ∂x

(
ρ v(ρ,w)

)
= 0

∂t(ρw) + ∂x
(
ρw v(ρ,w)

)
= 0

with v(ρ,w) = min
{
Vmax, w ψ(ρ)

}
.

A different approach leads to a similar model in [14].
In (4), we study the Riemann problem for (t) and the qualitative prop-

erties of its solutions that are relevant from the point of view of traffic.
It is remarkable that the introduction of the speed bound Vmax induces

the formation of two distinct phases, similarly to the model in [18] and
coherently with common traffic observations. The former one corresponds
to the free phase, i.e. high speed and low density, while the latter describes
the congested phase, i.e. low speed and high density. The first one is 1D in
the density–flow plane (ρ, ρv), but 2D in the plane of the conserved variables
(ρ, ρw). The second one is 2D in both planes, as it has to be expected from
the traffic point of view.

Moreover, we establish a connection between this model and other ap-
proaches found in the literature, considering also kinetic and microscopic
descriptions. In the case of other macroscopic models, we compare the var-
ious fundamental diagrams among each other and with the experimentally
observed ones. In particular, we develop a rigorous connection between (t)
and the microscopic Follow-The-Leader class of models, based on ordinary
differential equations. As a result, we show directly that (t) can be viewed
as the limit of the microscopic model when the number of vehicles increases
to infinity. Our approach is different from others found in the literature,
see for instance [5]; in our approach neither the Lagrangian description, nor
Godunov scheme are considered.
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Chapter 1

Smooth and Discontinuous
Junctions in the p-System

1.1 Introduction

Consider a gas pipe with smoothly varying section. In the isentropic or
isothermal approximation, the dynamics of the fluid in the pipe is described
by the following system of Euler equations:





∂t(aρ) + ∂x(aq) = 0

∂t(aq) + ∂x


a
(
q2

ρ
+ p(ρ)

)
 = p (ρ) ∂xa,

(1.1.1)

where, as usual, ρ is the fluid density, q is the linear momentum density,
p = p(ρ) is the pressure and a = a(x) is cross-sectional area of the tube.
We provide a basic well posedness result for (1.1.1), under the assumptions
that the initial data is subsonic, has sufficiently small total variation and
the oscillation in the pipe section a = a(x) is also small. We provide an
explicit bound on the total variation of a. As it is physically reasonable, as
the fluid speed increases this bound decreases and vanishes at sonic speed,
see (1.2.14).

As a tool in the study of (1.1.1) we use the system recently proposed for
the case of a sharp discontinuous change in the pipe’s section between the
values a− and a+, see [10, 21, 26]. This description is based on the p-system




∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ + p(ρ)
)

= 0
(1.1.2)

equipped with a coupling condition at the junction of the form

Ψ
(
a−, (ρ, q)(t, 0−); a+, (ρ, q)(t, 0+)

)
= 0 (1.1.3)

9



10 CHAPTER 1. JUNCTIONS IN THE P -SYSTEM

whose role is essentially that of selecting stationary solutions.
Remark that the introduction of condition (1.1.3) is necessary as soon as

the section of the pipe is not smooth. The literature offers different choices
for this condition, see [10, 21, 26]. The construction below does not require
any specific choice of Ψ in (1.1.3), but applies to all conditions satisfying
minimal physically reasonable requirements, see (Σ0)–(Σ2).

On the contrary, if a ∈ W1,1 the product in the right hand side of the
second equation in (1.1.1) is well defined and system (1.1.1) is equivalent to
the 2 × 2 system of conservation laws





∂tρ+ ∂xq = − q
a ∂xa

∂tq + ∂x

(
q2

ρ + p(ρ)
)

= − q2

aρ ∂xa .
(1.1.4)

Systems of this type were considered, for instance, in [17, 35, 40, 52, 56,
65, 74]. In this case the stationary solutions to (1.1.1) are characterized as
solutions to




∂x(a(x) q) = 0

∂x

(
a(x)

(
q2

ρ + p(ρ)
))

= p(ρ) ∂xa
or




∂xq = − q

a ∂xa

∂x

(
q2

ρ + p(ρ)
)

= − q2

aρ ∂xa ,

(1.1.5)
see Lemma 1.2.6 for a proof of the equivalence between (1.1.4) and (1.1.1).

Thus, the case of a smooth a induces a unique choice for condition (1.1.3),
see (1.2.3) and (1.2.19). Even with this choice, in the case of the isothermal
pressure law p(ρ) = c2ρ, we show below that a shock entering a pipe can
have its strength arbitrarily magnified, provided the total variation of the
pipe’s section is sufficiently high and the fluid speed is sufficiently near to
the sound speed, see Section 1.2.2. Recall, from the physical point of view,
that the present situation neglects friction, viscosity and the conservation of
energy. Moreover, this example shows the necessity of a bound on the total
variation of the pipe section in any well posedness theorem for (1.1.1).

The next section is divided into three parts, the former one deals with a
pipe with a single junction, the second with a pipe with a piecewise constant
section and the latter with a pipe having a W1,1 section. All proofs are
gathered in Section 1.3.

1.2 Notation and Main Results

Throughout this chapter, u denotes the pair (ρ, q) so that, for instance,
u± = (ρ±, q±), ū = (ρ̄, q̄), . . .. Correspondingly, we denote by f(u) =(
q, P (ρ, q)

)
the flow in (1.1.2). Introduce also the notation R

+ = [0,+∞[,

whereas R̊
+ = ]0,+∞[. Besides, we let a(x±) = limξ→x± a(ξ). Below,

B(u; δ) denotes the open ball centered in u with radius δ.
The pressure law p is assumed to satisfy the following requirement:
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(P) p ∈ C2(R+; R+) is such that for all ρ > 0, p′(ρ) > 0 and p′′(ρ) ≥ 0.

The classical example is the γ-law, where p(ρ) = k ργ , for a suitable γ ≥ 1.
Recall the expressions of the eigenvalues λ1,2 and eigenvectors r1,2 of the

p-system, with c denoting the sound speed,

λ1(u) = q
ρ − c (ρ) , c (ρ) =

√
p′(ρ) , λ2(u) = q

ρ + c (ρ) ,

r1(u) =

[
−1

−λ1(u)

]
, r2(u) =

[
1

λ2(u)

]
.

(1.2.1)

The subsonic region is given by

A0 =
{
u ∈ R̊

+ × R:λ1(u) < 0 < λ2(u)
}
. (1.2.2)

For later use, we recall the quantities

flow of the linear momentum: P (u) =
q2

ρ
+ p(ρ)

total energy density: E(u) =
q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr

flow of the total energy density: F (u) =
q

ρ
·
(
E(u) + p(ρ)

)

where ρ∗ > 0 is a suitable fixed constant. As it is well known, see [33, for-
mula (3.3.21)], the pair (E,F ) plays the role of the (mathematical) entropy
- entropy flux pair.

1.2.1 A Pipe with a Single Junction

This paragraph is devoted to (1.1.2)–(1.1.3). Fix the section ā > ∆, with
∆ > 0 and the state ū ∈ A0.

First, introduce a function Σ = Σ(a−, a+;u−) that describes the effects
of the junction when the section changes from a− to a+ and the state to the
left of the junction is u−. We specify the choice of (1.1.3) writing

Ψ(a−, u−; a+, u+) =

[
a+q+ − a−q−

a+P (u+) − a−P (u−)

]
− Σ(a−, a+;u−) . (1.2.3)

We pose the following assumptions on Σ:

(Σ0) Σ ∈ C1
(
[ā− ∆, ā+ ∆] ×B (ū; δ) ; R2

)
.

(Σ1) Σ(a, a;u−) = 0 for all a ∈ [ā− ∆, ā+ ∆] and all u− ∈ B(ū; δ).

Condition (Σ0) is a natural regularity condition. Condition (Σ1) is aimed
to comprehend the standard “no junction” situation: if a− = a+, then the
junction has no effects and Σ vanishes.

Conditions (Σ0)–(Σ1) ensure the existence of stationary solutions to
problem (1.1.2)–(1.1.3).



12 CHAPTER 1. JUNCTIONS IN THE P -SYSTEM

Lemma 1.2.1 Let (Σ0)–(Σ1) hold. Then, for any ā ∈ R̊
+, ū ∈ A0, there

exists a positive δ̄ and a Lipschitz map

T :
]
ā− δ̄, ā+ δ̄

[
×
]
ā− δ̄, ā+ δ̄

[
×B

(
ū; δ̄
)
→ A0 (1.2.4)

such that

Ψ(a−, u−; a+, u+) = 0
a− ∈

]
ā− δ̄, ā+ δ̄

[

a+ ∈
]
ā− δ̄, ā+ δ̄

[

u−, u+ ∈ B
(
ū; δ̄
)





⇐⇒ u+ = T (a−, a+;u−) .

In particular, T (ā, ā, ū) = ū. We may now state a final requirement on Σ:

(Σ2) Σ(a−, a0;u−) + Σ
(
a0, a+;T (a−, a0;u−)

)
= Σ(a−, a+;u−) .

With T as in Lemma 1.2.1. Alternatively, by (1.2.3), the above condi-
tion (Σ2) can be restated as

Ψ(a−, u−; a0, u0) = 0
Ψ(a0, u0; a+, u+) = 0

}
⇒ Ψ(a−, u−; a+, u+) = 0 .

Condition (Σ2) says that if the two Riemann problems with initial states
(a−, u−), (a0, u0) and (a0, u0), (a+, u+) both yield the stationary solution,
then also the Riemann problem with initial state (a−, u−) and (a+, u+) is
solved by the stationary solution.

Remark that the “natural” choice (1.2.19) implied by a smooth section
satisfies (Σ0), (Σ1) and (Σ2).

Denote now by û a map satisfying

û(x) =

{
û− if x < 0
û+ if x > 0

with
Ψ
(
a−, û−; a+, û+

)
= 0,

û−, û+ ∈ A0.
(1.2.5)

The existence of such a map follows from Lemma 1.2.1. Recall first the
definition of weak Ψ-solution, see [21, Definition 2.1] and [26, Definition 2.1].

Definition 1.2.2 Let Σ satisfy (Σ0)–(Σ2). A weak Ψ-solution to (1.1.2)–
(1.1.3) is a map

u ∈ C0

(
R

+; û+ L1(R+; R̊+ × R)
)

u(t) ∈ BV(R; R̊+ × R) for a.e. t ∈ R
+

(1.2.6)

such that

(W) for all ϕ ∈ C1
c(R̊

+ × R; R) whose support does not intersect x = 0
∫

R+

∫

R

(
u∂tϕ+ f(u) ∂xϕ

)
dx dt = 0 ;



1.2. NOTATION AND MAIN RESULTS 13

(Ψ) for a.e. t ∈ R
+ and with Ψ as in (1.2.3), the junction condition is met:

Ψ
(
a−, u(t, 0−); a+, u(t, 0+)

)
= 0 .

It is also an entropy solution if

(E) for all ϕ ∈ C1
c(R̊

+ × R; R+) whose support does not intersect x = 0

∫

R+

∫

R

(
E(u) ∂tϕ+ F (u) ∂xϕ

)
dx dt ≥ 0 .

In the particular case of a Riemann Problem, i.e. of (1.1.1) with initial datum

u(0, x) =

{
u− if x > 0
u+ if x < 0 ,

Definition 1.2.2 reduces to [26, Definition 2.1].
To state the uniqueness property in the theorems below, we need to

introduce the following integral conditions, following [16, Theorem 9.2], see
also [45, Theorem 8] and [1]. Given a function u = u(t, x) and a point (τ, ξ),

we denote by U ♯(u;τ,ξ) the solution of the homogeneous Riemann Problem

consisting of (1.1.2)–(1.1.3)–(1.2.3) with initial datum at time τ

w(τ, x) =

{
limx→ξ− u(τ, x) if x < ξ
limx→ξ+ u(τ, x) if x > ξ .

(1.2.7)

and with Σ satisfying (Σ0), (Σ1) and (Σ2). Moreover, define U ♭(u;τ,ξ) as the
solution of the linear hyperbolic Cauchy problem with constant coefficients

{
∂tω + ∂xÃω = 0 t ≥ τ
w(τ, x) = u(τ, x) ,

(1.2.8)

with Ã = Df
(
u(τ, ξ)

)
.

The next theorem applies [26, Theorem 3.2] to (1.1.2) with the choice (1.2.3)
to construct the semigroup generated by (1.1.2)–(1.1.3)–(1.2.3). The unique-
ness part follows from [45, Theorem 2].

Theorem 1.2.3 Let p satisfy (P) and Σ satisfy (Σ0)–(Σ2). Choose any
ā > 0, ū ∈ A0. Then, there exist a positive ∆ such that for all a−, a+ with∣∣a− − ā

∣∣ < ∆ and
∣∣a+ − ā

∣∣ < ∆, there exist a map û as in (1.2.5), positive
δ, L and a semigroup S: R+ ×D → D such that

1. D ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. For all u ∈ D, S0u = u and for all t, s ≥ 0, StSsu = Ss+tu.
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3. For all u, u′ ∈ D and for all t, t′ ≥ 0,
∥∥Stu− St′u

′
∥∥
L1

≤ L ·
(∥∥u− u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. If u ∈ D is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at the
junction at x = 0.

5. For all u ∈ D, the orbit t→ Stu is a weak Ψ-solution to (1.1.2).

6. Let λ̂ be an upper bound for the moduli of the characteristic speeds in
B̄
(
û(R), δ

)
. For all u ∈ D, the orbit u(t) = Stu satisfies the integral

conditions

(i) For all τ > 0 and ξ ∈ R,

lim
h→0

1

h

∫ ξ+hλ̂

ξ−hλ̂

∥∥∥u(τ + h, x) − U ♯(u;τ,ξ)(τ + h, x)
∥∥∥ dx = 0 . (1.2.9)

(ii) There exists a C > 0 such that for all τ > 0, a, b ∈ R and
ξ ∈ ]a, b[,

1

h

∫ b−hλ̂

a+hλ̂

∥∥∥u(τ + h, x) − U ♭(u;τ,ξ) (τ + h, x)
∥∥∥dx

≤ C
[
TV

{
u(τ); ]a, b[

}]2
.

(1.2.10)

7. If a Lipschitz map w: R → D satisfies (2.1.8)–(2.1.9), then it coincides
with the semigroup orbit: w(t) = St

(
w(0)

)
.

The proof is deferred to Paragraph 1.3.1. Note that, similarly to what
happens in the standard case of [16, Theorem 9.2], condition (2.1.9) is always
satisfied at a junction.

1.2.2 A Pipe with Piecewise Constant Section

We consider now a tube with piecewise constant section

a = a0 χ]−∞,x1] +
n−1∑

j=1

aj χ[xj,xj+1[ + an χ[xn,+∞[

for a suitable n ∈ N. The fluid in each pipe is modeled by (1.1.2). At each
junction xj , we require condition (1.1.3), namely

Ψ(aj−1, u
−
j ; aj , u

+
j ) = 0

for all j = 1, . . . , n, where
u±j = lim

x→xj±
uj(x) . (1.2.11)

We omit the formal definition of Ψ-solution to (1.1.2)–(1.1.3) in the present
case, since it is an obvious iteration of Definition 1.2.2.
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Theorem 1.2.4 Let p satisfy (P) and Σ satisfy (Σ0)–(Σ2). For any ā >
0 and any ū ∈ A0 there exist positive M,∆, δ, L,M such that for any profile
satisfying

(A0) a ∈ PC
(
R; ]ā− ∆, ā+ ∆[

)
with TV(a) < M ,

there exists a piecewise constant stationary solution

û = û0χ]−∞,x1[ +
n−1∑

j=1

ûjχ]xj ,xj+1[ + ûnχ]xn,+∞[

to (1.1.2)–(1.2.11) satisfying

ûj ∈ A0 with
∣∣ûj − ū

∣∣ < δ for j = 0, . . . n

Ψ
(
aj−1, ûj−1; aj , ûj

)
= 0 for j = 1, . . . , n

TV(û) ≤ MTV(a) (1.2.12)

and a semigroup Sa: R+ ×Da → Da such that

1. Da ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. Sa0 is the identity and for all t, s ≥ 0, Sat S
a
s = Sas+t.

3. For all u, u′ ∈ Da and for all t, t′ ≥ 0,

∥∥Sat u− Sat′u
′
∥∥
L1

≤ L ·
(∥∥(u) − u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. If u ∈ Da is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at each
junction xj.

5. For all u ∈ Da, the orbit t → Sat u is a weak Ψ-solution to (1.1.2)–
(1.2.11).

6. The semigroup satisfies the integral conditions (2.1.8)–(2.1.9) in 6. of
Theorem 1.2.3.

7. If a Lipschitz map w: R → D satisfies (2.1.8)–(2.1.9), then it coincides
with the semigroup orbit: w(t) = St

(
w(0)

)
.

Remark that δ and L depend on a only through ā and TV(a). In particular,
all the construction above is independent from the number of points of jump
in a. For every ū, we provide below an estimate of M at the leading order
in δ and ∆, see (1.3.11) and (1.3.8). In the case of Σ as in (1.2.19) and with
the isothermal pressure law, which obviously satisfies (P),

p(ρ) = c2ρ , (1.2.13)
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the bounds (1.3.11) and (1.3.8) reduce to the simpler estimate

M =





ā

4e
if v̄/c ∈

]
0, 1/

√
2
]
,

ā

4e

1 − (v̄/c)2

(v̄/c)2
if v̄/c ∈

]
1/
√

2, 1
[
,

(1.2.14)

where v̄ = q̄/ρ̄. Note that, as it is physically reasonable, M is a weakly
decreasing function of v̄, so that at lower fluid speeds, higher values for the
total variation of the pipe’s section can be accepted.

Furthermore, the estimates proved in Section 1.3.2 show that the total
variation of the solution to (1.1.2)–(1.2.11) may grow unboundedly if TV(a)
is large. Consider the case in Figure 1.1. A wave σ−2 hits a junction where

x

x

∆a

a

σ−2

σ+
2

σ++
2

t
u+

(u)

2ll

Figure 1.1: A wave σ−2 hits a junction, giving rise to σ+
2 which hits a second

junction.

the pipe’s section increases by ∆a > 0. From this interaction, the wave σ+
2

of the second family arises, which hits the second junction where the section
diminishes by ∆a. At the leading term in ∆a, we have the estimate

∣∣∣σ++
2

∣∣∣ ≤
(

1 + K(v̄/c)

(
∆a

a

)2
)∣∣∣σ−2

∣∣∣ , where (1.2.15)

K(ξ) =
−1 + 8 ξ2 − 7 ξ4 + 2 ξ6

2(1 − ξ)3 (1 + ξ)3
, (1.2.16)

see Section 1.3.2 for the proof. Note that K(0) = −1 whereas limξ→1−K(ξ) =
+∞. Therefore, for any fixed ∆a, if v̄ is sufficiently near to c, repeating the
interactions in Figure 1.1 a sufficient number of times makes the 2 shock
waves arbitrarily large.
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1.2.3 A Pipe with a W1,1 Section

In this paragraph, the pipe’s section a is assumed to satisfy

(A1)





a ∈ W1,1
(
R; ]ā− ∆, ā+ ∆[

)
for suitable ∆ > 0, ā > ∆

TV(a) < M for a suitable M > 0
a′(x) = 0 for a.e. x ∈ R \ [−X,X] for a suitable X > 0 .

For smooth solutions, the equivalence of (1.1.1) and (1.1.4) is immediate.
Note that the latter is in the standard form of a 1D conservation law and
the usual definition of weak entropy solution applies, see for instance [68,
Definition 3.5.1] or [32, Section 6]. The definition below of weak entropy
solution to (1.1.1) makes the two systems fully equivalent also for non smooth
solutions.

Definition 1.2.5 A weak solution to (1.1.1) is a map

u ∈ C0

(
R

+; û+ L1(R; R̊+ × R)
)

such that for all ϕ ∈ C1
c(R̊

+ × R; R)

∫

R+

∫

R



[
aρ
aq

]
∂tϕ+

[
aq

aP (u)

]
∂xϕ+

[
0

p(ρ)∂xa

]
ϕ


dx dt = 0 . (1.2.17)

u is an entropy weak solution if, for any ϕ ∈ C1
c(R̊

+ × R; R), ϕ ≥ 0,

∫

R+

∫

R

(
aE(u) ∂tϕ+ aF (u) ∂xϕ

)
dx dt ≥ 0 . (1.2.18)

Lemma 1.2.6 Let a satisfy (A1). Then, u is a weak entropy solution
to (1.1.1) in the sense of Definition 1.2.5, if and only if it is a weak entropy
solution of (1.1.4).

The proof is deferred to Section 1.3.3.

Now, the section a of the pipe is sufficiently regular to select stationary
solutions as solutions to either of the systems (1.1.5), which are equivalent
by Lemma 1.2.6. Hence, the smoothness of a also singles out a specific choice
of Σ, see [45, formula (14)].

Proposition 1.2.7 Fix a−, a+ ∈ ]ā− ∆, ā+ ∆[ and u− ∈ A0. Choose a
function a strictly monotone, in C1, that satisfies (A1) with a(−X−) = a−

and a(X+) = a+. Call ρ = Ra(x;u−) the ρ-component of the correspond-
ing solution to either of the Cauchy problems (1.1.5) with initial condition
u(−X) = u−. Then,



18 CHAPTER 1. JUNCTIONS IN THE P -SYSTEM

1. the function

Σ(a−, a+, u−) =




0∫ X

−X
p
(
Ra(x;u−)

)
a′(x) dx


 (1.2.19)

satisfies (Σ0)–(Σ2);

2. if ã is a strictly monotone function satisfying the same requirements
above for a, the corresponding map Σ̃ coincides with Σ.

The basic well posedness theorem in the present W1,1 case is stated similarly
to Theorem 1.2.4.

Theorem 1.2.8 Let p satisfy (P). For any ā > 0 and any ū ∈ A0 there
exist positive M,∆, δ, L such that for any profile a satisfying (A1) there
exists a stationary solution û to (1.1.1) satisfying

û ∈ A0 with
∥∥û(x) − ū

∥∥ < δ for all x ∈ R

and a semigroup Sa: R+ ×Da → Da such that

1. Da ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. Sa0 is the identity and for all t, s ≥ 0, Sat S
a
s = Sas+t.

3. for all u, u′ ∈ Da and for all t, t′ ≥ 0,

∥∥Sat u− Sat′u
′
∥∥
L1

≤ L ·
(∥∥u− u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. for all u ∈ Da, the orbit t→ Sat u is solution to (1.1.2) in the sense of
Definition 1.2.5.

5. Let λ̂ be an upper bound for the moduli of the characteristic speeds in
B̄
(
û(R), δ

)
. For all u ∈ D, the orbit u(t) = Stu satisfies the integral

conditions

(i) For all τ < 0 and ξ ∈ R,

lim
h→0

1

h

∫ ξ+hλ̂

ξ−hλ̂

∥∥∥u(τ + h, x) − U ♯(u;τ,ξ)(τ + h, x)
∥∥∥ dx = 0 . (1.2.20)

(ii) There exists a C > 0 such that, for all τ > 0, a, b ∈ R and
ξ ∈ ]a, b[,

1

h

∫ b−hλ̂

a+hλ̂

∥∥∥u(τ + h, x) − U ♭(u;τ,ξ) (τ + h, x)
∥∥∥dx

≤ C
[
TV

{
u(τ); ]a, b[

}
+ TV

{
a; ]a, b[

}]2
.

(1.2.21)
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6. If a Lipschitz map w: R → D solves (1.1.1), then it coincides with the
semigroup orbit: w(t) = St

(
w(0)

)
.

Thanks to Theorem 1.2.4, the proof is obtained approximating a with a
piecewise constant function an. The corresponding problems (1.1.2)–(1.2.11)
generate semigroups defined on domains characterized by uniform bounds
on the total variation and with a uniformly bounded Lipschitz constants for
their time dependence. Then, we pass to the limit (see Section 4 for the
proof) and we follow the same procedure as in [16, Theorem 9.2] and [45,
theorems 2 and 8] to characterize the solution.

As a byproduct of the proof of Theorem 1.2.8, we also obtain the follow-
ing convergence result, relating the construction in Theorem 1.2.4 to that of
Theorem 1.2.8.

Proposition 1.2.9 Under the same assumptions of Theorem 1.2.8, for ev-
ery n ∈ N, choose a function βn such that:

(i) βn is piecewise constant with points of jump y1
n, . . . , y

mn
n , with y1

n =
−X, ymn

n = X, and maxj(y
j+1
n − yjn) ≤ 1/n.

(ii) βn(x) = 0 for all x ∈ R \ [−X,X].

(iii) βn → a′ in L1(R; R) with ‖βn‖L1 ≤M , with M as in Theorem 1.2.8.

Define αn(x) = a(−X−) +
∫ x
−X βn(ξ) dξ and points xjn ∈

]
yjn, y

j+1
n

[
for

j = 1, . . . ,mn − 1 and let

an = a(−X−)χ
]−∞,x1

j [
+

mn−1∑

j=1

αn(y
j+1
n )χ

[xj
n,x

j+1
n [

+ a(X+)χ
[xmn

n ,+∞[

(see Figure 1.2) . Then, an satisfies (A0) and the corresponding semigroup
Sn constructed in Theorem 1.2.4 converges pointwise to the semigroup S
constructed in Theorem 1.2.8.

1.3 Technical Proofs

1.3.1 Proofs Related to Section 1.2.1

The following equalities will be of use below:

∂ρP = −λ1 λ2 and ∂qP = λ1 + λ2 . (1.3.1)

Proof of Lemma 1.2.1. Apply the Implicit Function Theorem to the
equality Ψ = 0 in a neighborhood of (ā, ū, ā, ū), which satisfies Ψ = 0
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by (Σ1). Observe that ∂uΣ(a, a;u−) = 0 by (Σ1). Using (1.3.1), compute

det ∂u+Ψ(ā, ū, ā, ū) = det

[
−∂ρ+Σ1 ā
ā ∂ρ+P ā ∂q+P

]

= det

[
0 ā

ā ∂ρ+P ā ∂q+P

]

= ā2 λ1(ū)λ2(ū)

6= 0 ,

completing the proof. �

Proof of Theorem 1.2.3. Let ∆ be defined as in Lemma 1.2.1. Assump-
tion (F) in [26, Theorem 3.2] follows from (P), thanks to (1.2.1) and to the
choices (1.2.2)–(1.2.5). We now verify condition [26, formula (2.2)]. Recall
that Du−Σ(ā, ā; ū) = 0 by (Σ1). Hence, using (1.3.1),

det
[
Du−Ψ(ā, ū; ā, ū) · r1(ū) Du+Ψ(ā, ū; ā, ū) · r2(ū)

]

= det

[
āλ1(ū) + ∂ρ−Σ1(ā, ā; ū) + λ1∂q−Σ1(ā, ā; ū) āλ2(ū)

ā
(
λ1(ū)

)2
+ ∂ρ−Σ2(ā, ā; ū) + λ−1 ∂q−Σ2(ā, ā; ū) ā

(
λ2(ū)

)2

]

= det

[
ā λ1(ū) ā λ2(ū)

ā
(
λ1(ū)

)2
ā
(
λ2(ū)

)2

]

= ā2 λ1(ū)λ2(ū)
(
λ2(ū) − λ1(ū)

)

6= 0 .

The proof of 1.–5. is completed applying [26, Theorem 3.2]. The obtained
semigroup coincides with that constructed in [45, Theorem 2], where the
uniqueness conditions 6. and 7. are proved. �

1.3.2 Proofs Related to Section 1.2.2

We now work towards the proof of Theorem 1.2.4. We first use the wave
front tracking technique to construct approximate solutions to the Cauchy
problem (1.1.2)–(1.2.11) adapting the wave front tracking technique intro-
duced in [16, Chapter 7].

Fix an initial datum uo ∈ û + L1(R;A0) and an ε > 0. Approximate
uo with a piecewise constant initial datum uεo having a finite number of
discontinuities and so that limε→0

∥∥uεo − uo
∥∥
L1

= 0. Then, at each junction
and at each point of jump in uεo along the pipe, we solve the corresponding
Riemann Problem according to Definition 1.2.2. If the total variation of the
initial datum is sufficiently small, then Theorem 1.2.3 ensures the existence
and uniqueness of solutions to each Riemann Problem. We approximate
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each rarefaction wave with a rarefaction fan, i.e. by means of (non entropic)
shock waves traveling at the characteristic speed of the state to the right of
the shock and with size at most ε.

This construction can be extended up to the first time t̄1 at which two
waves interact in a pipe or a wave hits the junction. At time t̄1 the functions
so constructed are piecewise constant with a finite number of discontinuities.
At any subsequent interaction or collision with the junction, we repeat the
previous construction with the following provisions:

1. no more than 2 waves interact at the same point or at the junction;

2. a rarefaction fan of the i-th family produced by the interaction between
an i-th rarefaction and any other wave, is not split any further;

3. when the product of the strengths of two interacting waves falls below
a threshold ε̌, then we let the waves cross each other, their size being
unaltered, and introduce a non physical wave with speed λ̂, with λ̂ >
sup(u) λ2(u); see [16, Chapter 7] and the refinement [9].

We complete the above algorithm stating how Riemann Problems at the
junctions are solved. We use the same rules as in [21, § 4.2] and [26, § 5].
In particular, at time t = 0 and whenever a physical wave with size greater
than ε̌ hits the junction, the accurate solver is used, i.e. the exact solution
is approximated replacing rarefaction waves with rarefaction fans. When a
non physical wave hits the junction, then we let it be refracted into a non
physical wave with the same speed λ̂ and no other wave is produced.

Repeating recursively this procedure, we construct a wave front tracking
sequence of approximate solutions uε in the sense of [16, Definition 7.1].

At interactions of waves in a pipe, we have the following classical result.

Lemma 1.3.1 Consider interactions in a pipe. Then, there exists a positive
K with the properties:

1. An interaction between the wave σ−1 of the first family and σ−2 of the
second family produces the waves σ+

1 and σ+
2 with

∣∣∣σ+
1 − σ−1

∣∣∣+
∣∣∣σ+

2 − σ−2

∣∣∣ ≤ K ·
∣∣∣σ−1 σ−2

∣∣∣ . (1.3.2)

2. An interaction between σ′i and σ′′i both of the same i-th family produces
waves of total size σ+

1 and σ+
2 with

∣∣∣σ+
1 − (σ′′1 + σ′1)

∣∣∣+
∣∣∣σ+

2

∣∣∣ ≤ K ·
∣∣σ′1σ′′1

∣∣ if i = 1 ,
∣∣∣σ+

1

∣∣∣+
∣∣∣σ+

2 − (σ′′2 + σ′2)
∣∣∣ ≤ K ·

∣∣σ′2σ′′2
∣∣ if i = 2 .
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3. An interaction between the physical waves σ−1 and σ−2 produces a non
physical wave σ+

3 , then
∣∣∣σ+

3

∣∣∣ ≤ K ·
∣∣∣σ−1 σ−2

∣∣∣.

4. An interaction between a physical wave σ and a non physical wave σ−3
produces a physical wave σ and a non physical wave σ+

3 , then
∣∣∣σ+

3

∣∣∣−
∣∣∣σ−3

∣∣∣ ≤ K ·
∣∣∣σσ−3

∣∣∣.

For a proof of this result see [16, Chapter 7]. Differently from the construc-
tions in [21, 26], we now can not avoid the interaction of non physical waves
with junctions. Moreover, the estimates found therein do not allow to pass
to the limit n→ +∞, n being the number of junctions.

Lemma 1.3.2 Consider interactions at the junction sited at xj. There exist
positive K1,K2,K3 with the following properties.

1. The wave σ−2 hits the junction. The resulting waves σ+
1 , σ

+
2 satisfy

∣∣∣σ+
1

∣∣∣ ≤ K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ ,
∣∣∣σ+

2

∣∣∣ ≤
(
1 +K2

∣∣aj − aj−1

∣∣
) ∣∣∣σ−2

∣∣∣

≤ eK2|aj−aj−1|
∣∣∣σ−2

∣∣∣ .
σ−2

σ+
1

xj

σ+
2

ū

2. The non-physical wave σ− hits the junction. The resulting wave σ+

satisfies

∣∣∣σ+
∣∣∣ ≤

(
1 +K3

∣∣aj − aj−1

∣∣
) ∣∣∣σ−

∣∣∣

≤ eK3|aj−aj−1|
∣∣∣σ−

∣∣∣ .
σ−

xj

σ+
ū

Proof. Use the notation in the figure above. Recall that σ+
1 and σ+

2 are
computed through the Implicit Function Theorem applied to a suitable com-
bination of the Lax curves of (1.1.2), see [21, Proposition 2.4] and [26,
Proposition 2.2]. Repeating the proof of Theorem 1.2.3 one shows that
the Implicit Function Theorem can be applied. Therefore, the regularity

of the Lax curves and (P) ensure that σ+
1 = σ+

1

(
σ−2 , aj − aj−1; ū

)
and

σ+
2 = σ+

2

(
σ−2 , aj − aj−1; ū

)
. An application of [16, Lemma 2.5], yields

σ+
1

(
0, aj − aj−1; ū

)
= 0

σ+
1

(
σ−2 , 0; ū

)
= 0



 ⇒

∣∣∣σ+
1

∣∣∣ ≤ K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ ,
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σ+
2

(
0, aj − aj−1; ū

)
= 0

σ+
2

(
σ−2 , 0; ū

)
= σ−2



 ⇒

∣∣∣σ+
2 − σ−2

∣∣∣ ≤ K2

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ (1.3.3)

⇒
∣∣∣σ+

2

∣∣∣ ≤
[
1 +K2

∣∣aj − aj−1

∣∣
]∣∣∣σ−2

∣∣∣ ,

completing the proof of 1. The estimate at 2. is proved similarly. �

We now aim at an improvement of (1.3.3). Solving the Riemann problem
at the interaction in case 1. amounts to solve the system

L2

(
T
(
L1(ū;σ+

1 )
)

;σ+
2

)
= T

(
L2(ū;σ−2 )

)
. (1.3.4)

By (1.2.1), the first order expansions in the wave’s sizes of the Lax curves
exiting u are

L1(u;σ) =

[
ρ− σ + o(σ)

q − λ1(u)σ + o(σ)

]
and L2(u;σ) =

[
ρ+ σ + o(σ)

q + λ2(u)σ + o(σ)

]
,

while the first order expansion in the size’s difference ∆a = a+ − a− of the
map T defined at (1.2.4), with v = q/ρ, is

T (a, a+ ∆a;u) =




(
1 +H ∆a

a

)
ρ+ o(∆a)(

1 − ∆a
a

)
q + o(∆a)


 , where (1.3.5)

H =
v2 +

∂
a+Σ−p(ρ)

ρ

c2 − v2
.

Inserting these expansions in (1.3.4), we get the following linear system for
σ+

1 , σ
+
2 :




−
(

1 + H̄
∆a

ā

)
σ+

1 + σ+
2 =

(
1 + H̄∆a

ā

)
σ−2

−
(

1 − ∆a

ā

)
λ̄1 σ

+
1 +

(
1 + Ḡ∆a

ā

)
λ̄2 σ

+
2 =

(
1 − ∆a

ā

)
λ̄2σ

−
2

where

H̄ =
v̄2 +

(
∂a+Σ(ā, ā, ū) − p(ρ̄)

)
/ρ̄

c2 − v̄2
and Ḡ =

(c′(ρ̄)ρ̄− v̄)H̄ − v̄

v̄ + c

and all functions are computed in ū. The solution is

σ+
1 = − λ̄2

2c
(1 + Ḡ+ H̄)

∆a

a
σ−2 (1.3.6)

σ+
2 =

(
1 − λ̄1H̄ + λ̄2(1 + Ḡ)

2c

∆a

a

)
σ−2 (1.3.7)
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which implies the following first order estimate for the coefficients in the
interaction estimates of Lemma 1.3.2:

K1 =
1

2a

∣∣∣∣∣∣∣

1 + c′ρ
c

(
v
c

)2
+ 1

c2

(
c′ρ
c + 1

)
∂

a+Σ−p(ρ)
ρ

1 −
(
v
c

)2

∣∣∣∣∣∣∣
,

K2 =
1

2a

∣∣∣∣∣∣∣

1 − 2
(
v
c

)2
+ c′ρ

c

(
v
c

)2
+ 1

c2

(
c′ρ
c − 1

)
∂

a+Σ−p(ρ)
ρ

1 −
(
v
c

)2

∣∣∣∣∣∣∣
.

(1.3.8)

The estimate (1.3.7) directly implies the following corollary.

Corollary 1.3.3 If
∣∣aj − aj−1

∣∣ is sufficiently small, then σ+
2 and σ−2 are

either both rarefactions or both shocks.

Denote by σji,α the wave belonging to the i-th family and sited at the
point of jump xα, with xα in the j-th pipe Ij, where we set I0 = ]−∞, x1[,
Ij =

]
xj, xj+1

[
for j = 1, . . . , n − 1 and In = ]xn,+∞[. Aiming at a bound

on the Total Variation of the approximate solution, we define the Glimm-like
functionals, see [16, formulæ (7.53) and (7.54)] or also [33, 38, 58, 70],

V =

n∑

j=0

∑

xα∈Ij

(∣∣∣σj1,α
∣∣∣eC

Pj
h=1 |ah−ah−1| +

∣∣∣σj2,α
∣∣∣eC

Pn−1

h=j |ah+1−ah|
)

+

n∑

j=0

eC
Pn−1

h=j |ah+1−ah| ∑

σ non physical in Ij

|σ| ,

Q =
∑

(σj
i,α,σ

j′

i′,α′ )∈A

∣∣∣σji,ασ
j′

i′,α′

∣∣∣ ,

Υ = V +Q , (1.3.9)

where C is a positive constant to be specified below. A is the set of pairs

(σji,α, σ
j′

i′,α′) of approaching waves, see [16, Paragraph 3, Section 7.3]. The

i-wave σji,α sited at xα and the i′-wave σj
′

i′,α′ sited at xα′ are approaching

if either i < i′ and xα > xα′ , or if i = i′ < 3 and min{σji,α, σ
j′

i′,α′} < 0,
independently from j and j′. As usual, non physical waves are considered
as belonging to a fictitious linearly degenerate 3rd family, hence they are
approaching to all physical waves to their right.

It is immediate to note that the weights exp
(
C
∑j

h=1 |ah − ah−1|
)

and

exp
(
C
∑n−1

h=j |ah+1 − ah|
)

in the definition of V are uniformly bounded:

∀ j





1 ≤ exp
(
C
∑j

h=1 |ah − ah−1|
)

≤ exp
(
C TV(a)

)
,

1 ≤ exp
(
C
∑n−1

h=j |ah+1 − ah|
)

≤ exp
(
C TV(a)

)
.

(1.3.10)
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Below, the following elementary inequality is of use: if a < b, then
ea − eb < −(b− a)ea.

Lemma 1.3.4 There exists a positive δ such that if an ε-approximate wave
front tracking solution u = u(t, x) has been defined up to time t̄, Υ

(
u(t̄−)

)
<

δ and an interaction takes place at time t̄, then the ε-solution can be extended
beyond time t̄ and Υ

(
u(t̄+)

)
< Υ

(
u(t̄−)

)
.

Proof. Thanks to (1.3.10) and Lemma 1.3.1, the standard interaction es-
timates, see [16, Lemma 7.2], ensure that Υ decreases at any interaction
taking place in the interior of Ij, for any j = 0, . . . , n.

Consider now an interaction at xj . In the case of 1 in Lemma 1.3.2,

∆Q

≤
∑

(σ+

1
,σi,α)∈A

∣∣∣σ+
1 σi,α

∣∣∣+
∑

(σ+

2
,σi,α)∈A

∣∣σi,α
∣∣
(∣∣∣σ+

2

∣∣∣−
∣∣∣σ−2

∣∣∣
)

≤


K1

∣∣aj − aj−1

∣∣∑

i,α

∣∣σi,α
∣∣+
(
eK2|aj−aj−1| − 1

)∑

i,α

∣∣σi,α
∣∣


∣∣∣σ−2

∣∣∣

≤ (K1 +K2)Υ(t̄−)
∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣

≤ (K1 +K2) δ
∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣ .
∆V

≤ eC
Pj−1

h=1 |ah−ah−1|
∣∣∣σ+

1

∣∣∣+ eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ+

2

∣∣∣− eC
Pn−1

h=j−1 |ah+1−ah|
∣∣∣σ−2

∣∣∣

≤ eC
Pj−1

h=1 |ah−ah−1|
(
K1

∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣
)

+

(
eC

Pn−1

h=j |ah+1−ah|eK2|aj−aj−1| − eC
Pn−1

h=j−1 |ah+1−ah|
) ∣∣∣σ−2

∣∣∣

≤
(
K1|aj − aj−1|eC

Pj−1

h=1 |ah−ah−1|
) ∣∣∣σ−2

∣∣∣

+ eC
Pn−1

h=j |ah+1−ah| (eK2|aj−aj−1| − eC|aj−aj−1|
) ∣∣∣σ−2

∣∣∣

≤
(
K1

∣∣aj − aj−1

∣∣eC
Pj−1

h=1 |ah−ah−1|
) ∣∣∣σ−2

∣∣∣

−(C −K2)
∣∣aj − aj−1

∣∣ eK2|aj−aj−1| eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ−2

∣∣∣

≤
(

(K1 +K2)
(
1 + eK2|a+−a−|) eCTV(a) −C

) ∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣.

∆Υ

≤
(

(K1 +K2)
(
1 + eK2|a+−a−|) eCTV(a) + (K1 +K2)δ − C

)∣∣aj − aj−1

∣∣
∣∣∣σ−2

∣∣∣.
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Choosing now, for instance,

δ < 1 , C =
1

TV(a)
,
∣∣∣a+ − a−

∣∣∣ ≤ ln 2

K2
and TV(a) <

1

4(K1 +K2)e
(1.3.11)

the monotonicity of Υ in this first case is proved.
Consider an interaction as in 2. of Lemma 1.3.2. Then, similarly,

∆Q ≤
∑

(σ+,σi,α)∈A

∣∣σi,α
∣∣
(∣∣∣σ+

∣∣∣−
∣∣∣σ−

∣∣∣
)

≤
(
eK3|aj−aj−1| − 1

)∑

i,α

∣∣σi,α
∣∣
∣∣∣σ−

∣∣∣

≤ K3 Υ(t̄−)
∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣

≤ K3 δ
∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣ .

∆V ≤ eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ+

∣∣∣− eC
Pn−1

h=j−1 |ah+1−ah|
∣∣∣σ−

∣∣∣

≤
(
eC

Pn−1

h=j |ah+1−ah|eK3|aj−aj−1| − eC
Pn−1

h=j−1 |ah+1−ah|
) ∣∣∣σ−

∣∣∣

≤ eC
Pn−1

h=j |ah+1−ah| (eK3|aj−aj−1| − eC|aj−aj−1|
) ∣∣∣σ−

∣∣∣

≤ (K3 − C)
∣∣aj − aj−1

∣∣ eK3|aj−aj−1| eC
Pn−1

h=j |ah+1−ah|
∣∣∣σ−

∣∣∣ .

∆Υ ≤
(
K3e

K3|a+−a−|eCTV(a) +K3δ − C
) ∣∣aj − aj−1

∣∣
∣∣∣σ−

∣∣∣

and the choice δ < 1 and C > 2K3 ensures that ∆Υ < 0. �

Proof of Theorem 1.2.4. First, observe that the construction of the sta-
tionary solution û directly follows from an iterated application of Lemma 1.2.1.
The bound (1.2.12) follows from the Lipschitz continuity of the map T de-
fined in Lemma 1.2.1. Define

D̃ =
{
u ∈ û+ L1(R;A0):u ∈ PC and Υ(u) ≤ δ

}
,

where PC denotes the set of piecewise constant functions with finitely many
jumps. It is immediate to prove that there exists a suitable C1 > 0 such
that 1

C1
TV(u)(t) ≤ V (t) ≤ C1TV(u)(t, ·) for all (u) ∈ D̃. Any initial data

in D̃ yields an approximate solution to (1.1.2) attaining values in D̃ by
Lemma 1.3.4.

We pass now to the L1-Lipschitz continuous dependence of the approx-
imate solutions from the initial datum. Consider two wave front tracking
approximate solutions u1 and u2 and define the functional

Φ (u1, u2) =
n∑

j=1

2∑

i=1

∫ +∞

0

∣∣∣sji (x)
∣∣∣W j

i (x) dx , (1.3.12)
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where sji (x) measures the strengths of the i-th shock wave in the j-th pipe

at point x (see [16, Chapter 8]) and the weights W j
i are defined by

W j
i (x) = 1 + κ1A

j
i (x) + κ1 κ2

(
Υ(u1) + Υ(u2)

)

for suitable positive constants κ1, κ2 chosen as in [16, formula (8.7)]. Here
Υ is the functional defined in (1.3.9), while the Aji are defined by

Aji (x) =
∑

{∣∣∣σjkα,α

∣∣∣: xα < x, i < kα ≤ 2
xα > x, 1 ≤ kα < i

}

+





∑
{∣∣∣σji,α

∣∣∣: xα < x, α ∈ Jj(u1)
xα > x, α ∈ Jj(u2)

}
if sji (x) < 0,

∑
{∣∣∣σji,α

∣∣∣: xα < x, α ∈ Jj(u2)
xα > x, α ∈ Jj(u1)

}
if sji (x) ≥ 0;

see [16, Chapter 8]. Here, as above, σji,α is the wave belonging to the i-th

family, sited at xα, with xα ∈ Ij. For fixed κ1, κ2 the weights W j
i (x) are

uniformly bounded. Hence the functional Φ is equivalent to L1 distance:

1

C2
· ‖u1 − u2‖L1 ≤ Φ (u1, u2) ≤ C2 · ‖u1 − u2‖L1

for a positive constant C2. The same calculations as in [16, Chapter 8] show
that, at any time t > 0 when an interaction happens neither in u1 or in u2,

d

dt
Φ
(
u1(t), u2(t)

)
≤ C3 ε

where C3 is a suitable positive constant depending only on a bound on the
total variation of the initial data.

If t > 0 is an interaction time for u1 or u2, then, by Lemma 1.3.4,

∆
[
Υ
(
u1(t)

)
+ Υ

(
u2(t)

)]
< 0 and, choosing κ2 large enough, we obtain

∆Φ
(
u1(t), u2(t)

)
< 0 .

Thus, Φ
(
u1(t), u2(t)

)
− Φ

(
u1(s), u2(s)

)
≤ C2 ε (t − s) for every 0 ≤ s ≤ t.

The proof is now completed using the standard arguments in [16, Chapter 8].
The proof that in the limit ε → 0 the semigroup trajectory does indeed

yield a Ψ-solution to (1.1.2) and, in particular, that (1.2.11) is satisfied on
the traces, is exactly as that of [19, Proposition 5.3], completing the proof
of 1.–5.

Due to the local nature of the conditions (2.1.8)–(2.1.9) and to the finite
speed of propagation of (1.1.2), the uniqueness conditions 6. and 7. are
proved exactly as in Theorem 1.2.3. �
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Proof of estimate (1.2.14). We first compute ∂a+Σ, with Σ defined
in (1.2.19). To this aim, by 2. in Proposition 1.2.7 (in Paragraph 2.3), we
may choose

a(x) =





a− if x ∈ ]−∞,−X[ ,
a+ − a−

2X
(x+X) + a− if x ∈ [−X,X] ,

a+ if x ∈ ]X,+∞[ ,

so that we may change variable in the integral in (1.2.19) to obtain

∂a+Σ = ∂a+

(∫ a+

a−
p
(
Ra(α, u)

)
dα

)
= p(ρ) +O(∆a) . (1.3.13)

Now, estimate (1.2.14) directly follows inserting (1.2.13) and (1.3.13) in (1.3.11)
and (1.3.8). �

Proof of estimates (1.2.15)–(1.2.16). Refer to the notation in Fig-
ure 1.1, where the pipe’s section is given by

a(x) =





a if x ∈ ]−∞, l[ ,
a+ ∆a if x ∈ [l, 2l] ,
a if x ∈ ]2l,+∞[ ,

where ∆a > 0. The wave σ+
2 arises from the interaction with the first junc-

tion and hence satisfies (1.3.7). Using the pressure law (1.2.13) and (1.3.13),
we obtain

σ+
2 =

(
1 + ψ (u, a) ∆a

)
σ−2 , where

ψ(a, u) = −1

a

(
1 − 1/2

1 − (v/c)2

)
.

Now we iterate the previous bound to estimate the wave σ++
2 which arises

from the interaction with the second junction, i.e.

σ++
2 =

(
1 − ψ(a+ ∆a, u+)∆a

)
σ+

2 ,

where, by (1.3.5),

ψ(a+ ∆a, u+) = ψ


a+ ∆a,


1 +

1

1 −
(
v
c

)2
∆a

a


 ρ,

(
1 − ∆a

a

)
q


 .
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Introduce η = 1/
(
1 − (v/c)2

)
and ϑ = ∆a/a to get the estimate

σ++
2 =

(
1 +

(
ψ(a, u, ) − ψ(a+ ∆a, u+)

)
∆a

)
σ−2

=


1 +

∆a

a

(
−1 +

η

2

)
+

∆a

a+ ∆a


1 − 1/2

1 −
(

1−ϑ
1+ηϑ

v
c

)2





σ−2

=




1 +
∆a

a


−1 +

η

2
+

1

1 + ϑ


1 − 1/2

1 −
(

1−ϑ
1+ϑη

v
c

)2









σ−2

and a further expansion to the leading term in ∆a gives (1.2.15)–(1.2.16).
�

1.3.3 Proofs Related to Section 1.2.3

Proof of Lemma 1.2.6. If a ∈ C1
(
R; [a−, a+]

)
and u is a weak entropy

solution of (1.1.4). Then,

0 =

∫

R+

∫

R



[
ρ
q

]
∂tϕ+

[
q

P (u)

]
∂xϕ−

[
q
a∂xa
q2

aρ∂xa

]
ϕ


 dx dt

=

∫

R+

∫

R



[
aρ
aq

]
∂t
ϕ

a
+

[
aq

aP (u)

]
1

a
∂xϕ−

[
aq

a q
2

ρ

]
ϕ

a2
∂xa


 dx dt

=

∫

R+

∫

R



[
aρ
aq

]
∂t
ϕ

a
+

[
aq

aP (u)

]
∂x
ϕ

a
+

[
0

p(ρ)∂xa

]
ϕ

a


 dx dt

showing that (1.2.17) holds. Concerning the entropy inequality, compute
preliminarily

∇(aE(u))

[
q
a∂xa
q2

aρ∂xa

]
= a

[
− q2

2ρ2
+

∫ ρ∗

ρ

p(r)

r2
dr +

p(ρ)

ρ
,

q

ρ

][
q
a∂xa
q2

aρ∂xa

]

=

(
− q3

2ρ2
+ q

∫ ρ∗

ρ

p(r)

r2
dr +

q

ρ
p(ρ) +

q3

ρ2

)
∂xa

=
q

ρ

(
E(u) + p(ρ)

)
∂xa

= F (u) ∂xa .
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Consider now the entropy condition for (1.1.4) and, by the above equality,

0 ≤
∫

R+

∫

R


E(u) ∂tϕ+ F (u) ∂xϕ−∇E(u)

[
q
a∂xa
q2

aρ∂xa

]
ϕ


 dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

+


F (u)∂xa−∇(aE(u))

[
q
a∂xa
q2

aρ∂xa

]
 ϕ

a

)
dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

+
(
F (u)∂xa− F (u)∂xa

) ϕ
a

)
dx dt

=

∫

R+

∫

R

(
aE(u) ∂t

ϕ

a
+ aF (u) ∂x

ϕ

a

)
dx dt,

showing that (1.2.18) holds. The extension to a ∈ W1,1 is immediate. �

Proof of Proposition 1.2.7. The regularity condition (Σ0) follows from
the theory of ordinary differential equations. Condition (Σ1) is immediate.

Consider now the item 2. If a1 and a2 both satisfy (A1), are strictly
monotone, smooth and have the same range, then a1 = a2 ◦ϕ for a suitable
strictly monotone ϕ with, say ϕ′ ≥ 0, the case ϕ′ ≤ 0 is entirely similar.
Note that if u =

(
Ri(x;u

−), Qi(x;u
−)
)

solves (1.1.5) with a = ai, then
direct computations show that R1(x, u

−) = R2

(
ϕ(x), u−

)
and Q1(x, u

−) =
Q2

(
ϕ(x), u−

)
. Hence

Σ1(a
−, a+;u−) =

∫ X

−X
p
(
R1(x;u

−)
)
a′1(x) dx

=

∫ X

−X
p

(
R2

(
ϕ(x);u−

))
a′2
(
ϕ(x)

)
ϕ′(x) dx

=

∫ X

−X
p
(
R2(ξ;u

−)
)
a′2(ξ) dξ

= Σ2(a
−, a+;u−) .

Having proved (Σ0) and (Σ1), we use the map T defined in Lemma 1.2.1.
We first prove that Σ satisfies Σ(a−, a+;u−)+Σ

(
a+, a−;T (a+, a−;u−)

)
= 0,

given a satisfying (A1), strictly monotone and with a(−X) = a−, a(X) =
a+, let ã(x) = a− + a+ − a(x). Then, using 2. proved above, and integrat-
ing (1.1.5) backwards, we have

Σ
(
a+, a−;T (a−, a+;u−)

)
=

∫ X

−X
p
(
R̃(x;T (a−, a+;u−)

)
ã′(x) dx
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= −
∫ X

−X
p
(
R(x; a−, a+;u−

)
a′(x) dx

= −Σ(a−, a+;u−) .

Finally, condition (Σ2) follows from the the flow property of R and the
additivity of the integral. Indeed, by 2. and 3. we may assume without loss
of generality that a− < a0 < a+. Then, let q = Q(x;u−) be the q component
in the solution to (1.1.5) with initial condition u(0) = u−. Then, if T is the
map defined in Lemma 1.2.1, we have

T (a−, a+;u−) =
(
R(a−1(a+);u−), Q(a−1(a+);u−)

)

so that

Σ(a−, a+;u−)

=

∫ X

−X
p
(
R(x, u−)

)
a′(x) dx

=

∫ a−1(a0)

−X
p
(
R(x, u−)

)
a′(x) dx+

∫ X

a−1(a0)
p
(
R(x, u−)

)
a′(x) dx

=

∫ a−1(a0)

−X
p
(
R(x, u−)

)
a′(x) dx

+

∫ X

a−1(a0)
p

(
R
(
x,R(a−1(a0), u−), Q(a−1(a0), u−)

))
a′(x) dx

= Σ(a−, a0;u−) + Σ
(
a0, a+;T (a−, a+;u−)

)

proving 1. �

Proof of Theorem 1.2.8. Fix ā > 0, and ū ∈ A0. Choose M,∆, L, δ as in
Theorem 1.2.4. With reference to these quantities, let a satisfy (A1). For
n ∈ N, let an, αn, βn be as in Proposition 1.2.9. Note that αn is piecewise
linear and continuous. By (iii), we have that αn → a and an → a in L1.
Moreover, TV(αn) ≤ M and TV(an) ≤ M and, for n sufficiently large,
an(R) ⊆ ]ā− ∆, ā+ ∆[. Hence, for n large, an satisfies (A0). Call Sn the
semigroup constructed in Theorem 1.2.4 and denote by Dn its domain.

Let u0
n be a sequence of initial data in Dn. The Sn are uniformly Lipschitz

in time and Snt u
0
n have total variation in x uniformly bounded in t. Hence,

by [16, Theorem 2.4], a subsequence of un(t) = Snt u
0
n converges pointwise

a.e. to a limit, say, u. For any ϕ ∈ C1
c(R̊+ × R; R) and for any fixed n, let

ε > 0 be sufficiently small and introduce a C∞
c (R; R) function ηε such that

ηε(x) = 0 for all x ∈ ⋃mn−1
j=1 [xjn − ε, xjn + ε] ,

ηε(x) = 1 for all x ∈ ⋃mn−2
j=1 [xjn + 2ε, xj+1

n − 2ε] .
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−X Xxjnyjn yj+1
n

x

Figure 1.2: The thick line is the graph of a = a(x), the dotted line represents
an while the polygonal line is αn

Thus, we have

∫

R+

∫

R



[
anρn
anqn

]
∂tϕ+

[
anqn

anP (un)

]
∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R



[
anρn
anqn

]
ηε ∂tϕ+

[
anqn

anP (un)

]
ηε ∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R



[
anρn
anqn

]
∂t(ηε ϕ) +

[
anqn

anP (un)

]
∂x(ηε ϕ)


dx dt

− lim
ε→0

∫

R+

∫

R

[
anqn

anP (un)

]
ϕ∂xηε dx dt .

The first summand in the latter term above vanishes by Definition 1.2.2
applied in a neighborhood of each xjn. The second summand, by the BV
regularity of un, converges as follows:

−
∫

R+

∫

R



[
anρn
anqn

]
∂tϕ+

[
anqn

anP (un)

]
∂xϕ


dx dt

= lim
ε→0

∫

R+

∫

R

[
anqn

anP (un)

]
ϕ∂xηε dx dt

=

mn−1∑

j=1

∫

R+

[
an(x

j
n+)qn(x

j
n+) − an(x

j
n−)qn(x

j
n−)

an(x
j
n+)Pn(x

j
n+) − an(x

j
n−)Pn(x

j
n−)

]
ϕ(t, xjn) dt

=
mn−1∑

j=1

∫

R+


 0

Σ
(
an(x

j
n−), an(x

j
n+), u(t, xjn−)

)

ϕ(t, xjn) dt .
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We proceed now considering only the second component. Using the map

ϕn(t, x) = ϕ(t, x)χ
]−∞,y1n[

(x) +

mn−1∑

j=1

ϕ(t, xjn)χ[yj
n,y

j+1
n [

(x)

+ϕ(t, x)χ
]ymn

n ,+∞[
(x) ,

we obtain

mn−1∑

j=1

∫

R+

Σ
(
an(x

j
n−), an(x

j
n+), u(t, xjn−)

)
ϕ(t, xjn) dt

=

mn−1∑

j=1

∫

R+

Σ
(
an(y

j
n), an(y

j+1
n ), u(t, xjn−)

)
ϕ(t, xjn) dt

=

mn−1∑

j=1

∫

R+

Σ
(
αn(y

j
n), αn(y

j+1
n ), u(t, xjn−)

)
ϕ(t, xjn) dt

=

mn−1∑

j=1

∫

R+

∫ yj+1
n

yj
n

p

(
Rαn

(
x;un(t, x

j
n−)

))
α′
n(x) dx ϕ(t, xjn) dt

=

∫

R+

mn−1∑

j=1

∫ yj+1
n

yj
n

p

(
Rαn

(
x;un(t, x

j
n−)

))
α′
n(x) dx ϕ(t, xjn) dt

=

∫

R+

∫

R

mn−1∑

j=1

p

(
Rαn

(
x;un(t, x

j
n−)

))

×α′
n(x)ϕ(t, xjn)χ[yj

n,y
j+1
n [

(x) dx dt

→
∫

R+

∫

R

p
(
ρ(x)

)
∂xa(x)ϕ(t, xjn) dx dt as n→ +∞ ,

where we used (i) in the choice of the approximation αn.
We thus constructed a solution to (1.1.1), for any initial datum in D.

Note that this solution satisfies (1.2.20)–(1.2.21), as can be proved using
exactly the techniques in [45, Theorem 8]. Therefore, the whole sequence
un converges to a unique limit u, which is Lipschitz with respect to time.
This uniqueness implies the semigroup property 2. in Theorem 1.2.8. The
Lipschitz continuity with respect to the initial datum follows from the uni-
form Lipschitz regularity of the approximate solutions un, completing the
proof of 3. Finally, 6. is proved exactly as in [45, Theorem 8]. �
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Chapter 2

Balance Laws with Integrable
Unbounded Sources

2.1 Introduction

We consider the Cauchy problem for a n × n strictly hyperbolic system of
balance laws





∂tu+ ∂xf(u) = g(x, u), x ∈ R, t > 0
u(0, x) = uo ∈ L1 ∩ BV(R; Rn),

|λi(u)| ≥ c > 0 for all i ∈ {1, . . . , n},∥∥g(x, ·)
∥∥
C2 ≤ M̃(x) ∈ L1,

each characteristic field being genuinely nonlinear or linearly degenerate. As-
suming that the L1 norm of ‖g(x, ·)‖C1 and ‖uo‖BV(R) are small enough, we
prove the existence and uniqueness of global entropy solutions of bounded
total variation extending the result in [1] to unbounded (in L∞) sources.
Furthermore, we apply this result to the fluid flow in a pipe with discontin-
uous cross sectional area, showing existence and uniqueness of the underlying
semigroup. The recent literature offers several results on the properties of
gas flows on networks. For instance, in [20, 25, 26, 31] the well posedness is
established for the gas flow at a junction of n pipes with constant diameters.
The equations governing the gas flow in a pipe with a smooth varying cross
section a = a(x) are given by (see for instance [63]):





∂tρ+ ∂xq = − q
a∂xa

∂tq + ∂x(
q2

ρ + p) = − q2

aρ∂xa

∂te+ ∂x

(
q
ρ(e+ p)

)
= −

“

q
ρ
(e+p)

”

a ∂xa.

The well posedness of this system is covered in [1] where an attractive uni-
fied approach to the existence and uniqueness theory for quasilinear strictly

35
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hyperbolic systems of balance laws is proposed. The case of discontinuous
cross sections is considered in the literature inserting a junction with suitable
coupling conditions at the junction, see for example [20, 25, 26, 31]. One
way to obtain coupling conditions at the point of discontinuity of the cross
section a is to take the limit of a sequence of Lipschitz continuous cross sec-
tions aε converging to a in L1 (for a different approach see for instance [28]).
Unfortunately the results in [1] require L∞ bounds on the source term and
well posedness is proved on a domain depending on this L∞ bound. Since in
the previous equations the source term contains the derivative of the cross
sectional area one cannot hope to take the limit aε → a. Indeed when a
is discontinuous, the L∞ norm of (aε)′ goes to infinity. Therefore the pur-
pose of this paper is to establish the result in [1] without requiring the L∞

bound. More precisely, we consider the Cauchy problem for the following
n× n system of equations

∂tu+ ∂xf(u) = g(x, u), x ∈ R, t > 0, (2.1.1)

endowed with a (suitably small) initial data

u(0, x) = uo(x), x ∈ R, (2.1.2)

belonging to L1 ∩ BV (R; Rn), the space of integrable functions with
bounded total variation (Tot.Var.) in the sense of [72]. Here u(t, x) ∈
(R)n is the vector of unknowns, f : Ω → R

n denotes the fluxes, i.e. a
smooth function defined on Ω which is an open neighbourhood of the origin
in R

n. The system (2.1.1) is supposed to be strictly hyperbolic, with each
characteristic field either genuinely nonlinear or linearly degenerate in the
sense of Lax [57]. We recall that if zero does not belong to to the domain Ω
of definition of f , as in the case of gas dynamics away from vacuum, then
a simple translation of the density vector u leads back the problem to the
case 0 ∈ Ω. Concerning the source term g, we assume that it satisfies the
following Caratheodory–type conditions:

(P1) g : R×Ω → R
n is measurable with respect to (w.r.t.) x, for any u ∈ Ω,

and is C2 w.r.t. u, for any x ∈ R;

(P2) there exists a L1 function M̃(x) such that
∥∥g(x, ·)

∥∥
C2

≤ M̃(x);

(P3) there exists a function ω ∈ L1(R) such that ‖g(x, ·)‖C1 ≤ ω(x).

Remark 2.1.1 Note that the L1 norm of M̃(x) does not have to be small
but only bounded differently from ω(x) whose norm has to be small (see
Theorem 2.1.4 below). Furthermore condition (P2) replaces the L∞ bound
of the C2 norm of g in [1]. Finally observe that we do not require any L∞
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bound on ω. On the other hand we will need the following observation: if
we define

ε̃h = sup
x∈R

∫ h

0
ω(x+ s) ds, (2.1.3)

by absolute continuity one has ε̃h → 0 as h→ 0.

Moreover, we assume that a nonresonance condition holds, that is the
characteristic speeds of the system (2.1.1) are bounded away from zero:

λ̂ ≥ |λi(u)| ≥ c > 0, ∀ u ∈ Ω, i ∈ {1, . . . , n}, (2.1.4)

for some λ̂ > c > 0.
Before stating the main theorem of this paper we need to recall the

Riemann problem for the homogeneous system associated to (2.1.1):

∂tu+ ∂xf(u) = 0, u(o, x) =

{
uℓ if x < x0

ur if x > x0
(2.1.5)

and we need following two definitions.

Definition 2.1.2 Given a BV function u = u(x) and a point ξ ∈ R, we

denote by U ♯(u;ξ) the solution of the homogeneous Riemann Problem (2.1.5)
with data

uℓ = lim
x→ξ−

u(x), ur = lim
x→ξ+

u(x), xo = ξ. (2.1.6)

Definition 2.1.3 Given a BV function u = u(x) and a point ξ ∈ R, we
define U ♭(u;ξ) as the solution of the linear hyperbolic Cauchy problem with
constant coefficients

∂tw + Ã∂xw = g̃(x), w(0, x) = u(x), (2.1.7)

with Ã = ∇f
(
u(ξ)

)
, g̃(x) = g

(
x, u(ξ)

)
.

Theorem 2.1.4 Assume (P1)–(P3) and (2.1.4). If the norm of ω in L1(R)
is sufficiently small, there exist a constant L > 0, a closed domain D of
integrable functions with small total variation and a unique semigroup P :
[0,+∞) ×D → D satisfying

i) P0u = u, Pt+su = Pt ◦ Psu for all u ∈ D and t, s ≥ 0;

ii) ‖Psu−Ptv‖L1(R) ≤ L
(
|s−t|+‖u−v‖L1(R)

)
for all u, v ∈ D and t, s ≥ 0;

iii) for all uo ∈ D the function u(t, ·) = Ptuo is a weak entropy solution
of the Cauchy problem (2.1.1)–(2.1.2) and for all τ > 0 satisfies the
following integral estimates:
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(a) For every ξ, one has

lim
ϑ→0

1

ϑ

∫ ξ+ϑλ̂

ξ−ϑλ̂

∣∣∣u(τ + ϑ, x) − U ♯(u(τ);ξ) (ϑ, x)
∣∣∣ dx = 0. (2.1.8)

(b) There exists a constant C such that, for every a < ξ < b and
0 < ϑ < b−a

2λ̂
, one has

1

ϑ

∫ b−ϑλ̂

a+ϑλ̂

∣∣∣u(τ + ϑ, x) − U ♭(u(τ);ξ) (ϑ, x)
∣∣∣ dx ≤ C

[
TV

{
u(τ); (a, b)

}
+

∫ b

a

ω(x) dx
]2
.

(2.1.9)

Conversely let u : [0, T ] → D be Lipschitz continuous as a map with
values in L1(R,Rn) and assume that u(t, x) satisfies the integral conditions
(a), (b). Then u(t, ·) coincides with a trajectory of the semigroup P .

The proof of this theorem is postponed to sections 2.3 and 2.4, where ex-
istence and uniqueness are proved. Before these technical details, we state
the application of the above result to gas flow in section 2.2. Here we apply
Theorem 2.1.4 to establish the existence and uniqueness of the semigroup
related to pipes with discontinuous cross sections. Furthermore, we show
that our approach yields the same semigroup as the approach followed in
[26] in the special case of two connected pipes. The technical details of
section 2.2 can be found at the end of the paper in section 2.5.

2.2 Application to gas dynamics

Theorem 2.1.4 provides an existence and uniqueness result for pipes with
Lipschitz continuous cross section where the equations governing the gas
flow are given by





∂tρ+ ∂xq = − q
a∂xa

∂tq + ∂x(
q2

ρ + p) = − q2

aρ∂xa

∂te+ ∂x

(
q
ρ(e+ p)

)
= −

“

q
ρ
(e+p)

”

a ∂xa.

(2.2.10)

Here, as usual, ρ denotes the mass density, q the linear momentum, e is
the energy density, a is the area of the cross section of the pipe and p is
the pressure which is related to the conserved quantities u = (ρ, q, e) by the
equations of state. In most situations, when two pipes of different size have
to be connected, the length l of the adaptor is small compared to the length
of the pipes. Therefore it is convenient to model these connections as pipes
with a jump in the cross sectional area. These discontinuous cross sections
however do not fulfil the requirements of Theorem 2.1.4. Nevertheless, we
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can use this Theorem to derive the existence of solutions to the discontinuous
problem by a limit procedure. To this end, we approximate the discontinuous
function

a(x) =

{
a−, x < 0
a+, x > 0

(2.2.11)

by a sequence al ∈ C0,1(R,R+) with the following properties

al(x) =





a−, x < − l
2

ϕl(x), x ∈
[
− l

2 ,
l
2

]

a+, x > l
2

(2.2.12)

where ϕl is any smooth monotone function which connects the two strictly
positive constants a−, a+. One possible choice of the approximations al as
well as the discontinuous pipe with cross section a are shown in figure 2.1.

a
−

a
+

l

a
−

a
+

Figure 2.1: Illustration of approximated and discontinuous cross-sectional
area

With the position Al(x) = ln al(x), we can write (2.2.10) in the following
form

∂tu+ ∂xf(u) = A′
l(x)g(u). (2.2.13)

Observe that ‖A′
l‖L1 = |A+ −A−| = | ln a+ − ln a−|, hence, the smallness of

|a+ − a−| (away from zero) implies the smallness of ‖A′
l‖L1 .

Let Φ(a, ū) be the solution to the Cauchy problem

{
d
dau(a) =

[
Duf(u(a))

]−1
g(u(a))

u(0) = ū.
(2.2.14)

and define

Ψ
(
u−, u+

)
= u+ − Φ(A+ −A−, u−). (2.2.15)

Definition 2.2.1 A solution to the Riemann problem with a junction in
x = 0 described by the function Ψ:

∂tu+ ∂xf(u) = 0, x 6= 0
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u(0, x) =

{
ul if x < x0

ur if x > x0

Ψ(u(t, 0−), u(t, 0+)) = 0 (2.2.16)

is a function u : [0,+∞) × R → R
2 such that

i) the function (t, x) → u(t, x) is self similar and in x > 0 coincides
with a fan of Lax entropic waves with positive velocity outgoing from
(t, x) = (0, 0) while in x < 0 coincides with a fan of a Lax entropic
waves of negative velocity outgoing from (t, x) = (0, 0);

ii) The traces u(t, 0−), u(t, 0+) satisfy (2.2.16) for all t > 0.

With the help of Theorem 2.1.4 and the techniques used in its proof,
we are now able to derive the following Theorem (see also [28] for a similar
result obtained with different methods).

Theorem 2.2.2 Let ū a non sonic state. If |a+ − a−| is sufficiently small,
the semigroups P l (defined on a domain of functions which take value in a
small neighborhood of ū) related with the smooth section al converge to a
unique semigroup P .

Moreover let U ♭ be defined for all ξ as in Definition 2.1.3 (here the
hyperbolic flux f is the gas dynamic flux (2.2.10) ). Let U ♯ be defined for
all ξ 6= 0 as in Definition 2.1.2 and in the point ξ = 0 as the solution of
the Riemann problem defined in Definition 2.2.1. Then the limit semigroup
satisfies and is uniquely identified by the integral estimates (2.1.8), (2.1.9).

Observe that the same Theorem holds for the 2 × 2 isentropic system
(see Section 2.5) {

∂tρ+ ∂xq = − q
a∂xa

∂tq + ∂x(
q2

ρ + p) = − q2

aρ∂xa.
(2.2.17)

In [26] 2×2 homogeneous conservation laws at a junction are considered for
given admissible junction conditions. In the 2 × 2 case, the function Ψ in
(2.2.15) depends only on four real variables:

Ψ
(
(ρ−, q−), (ρ+, q+)

)
= (ρ+, q+) − Φ(A+ −A−, (ρ−, q−)). (2.2.18)

It fulfils the determinant condition in [26, Proposition 2.2] since it satisfies
Lemma 2.3.4. Condition (2.2.16) is now given by

(ρ+, q+) − Φ(A+ −A−, (ρ−, q−)) = 0. (2.2.19)

The result in [26, Theorem 3.2] for the case of a junction with only two
pipes with different cross sections and the function Ψ given by (2.2.19) can
be stated in the following way
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Theorem 2.2.3 Given a subsonic state ū = (ρ̄, q̄), there exist a constant
L > 0, a closed domain D ⊂ ū + L1(R,R2) of functions with small total
variation and a unique semigroup S : [0,+∞) ×D → D satisfying

i) S0u = u, St+su = St ◦ Ssu for all u ∈ D and t, s ≥ 0;

ii) ‖Ssu−Stv‖L1(R) ≤ L
(
|s−t|+‖u−v‖L1(R)

)
for all u, v ∈ D and t, s ≥ 0;

iii) for all uo ∈ D the function u(t, ·) = Stuo=̇(ρ, q)(t, ·) is a weak entropy
solution to {

∂tρ+ ∂xq = 0

∂tq + ∂x(
q2

ρ + p) = 0,
(2.2.20)

for x 6= 0, equipped with the condition at the junction in x = 0

Ψ((ρ, q)(t, 0−); (ρ, q)(t, 0+)) = 0, (2.2.21)

for almost every t > 0, where Ψ is given by (2.2.19);

iv) If u ∈ D is piecewise constant, then for t > 0 sufficiently small, Stu co-
incides with the juxtaposition of the solutions to homogeneous Riemann
Problems centered at the points of jumps of u in x 6= 0 and the solution
of the Riemann problem at the junction as defined in Definition 2.2.1
for the point x = 0.

We will prove in Section 2.5 that the semigroup obtained in [26] and re-
called in Theorem 2.2.3 satisfies the same integral estimate (see the following
proposition) as our limit semigroup hence they coincide.

Proposition 2.2.4 The semigroup defined in [26] with the junction condi-
tion given by (2.2.19) satisfies the integral estimates (2.1.8),(2.1.9) with U ♯

substituted by the solution of the Riemann problem described in Definition
2.2.1.

The proof is postponed to Section 2.5.

Remark 2.2.5 Note that Proposition 1 justifies the coupling condition (2.2.19)
as well as the condition used in [40] to study the Riemann problem for the
gas flow through a nozzle.

2.3 Existence of BV entropy solutions

Throughout the next two sections, we follow the structure of [1]. We recall
some definitions and notations in there, and also the results which do not
depend on the L∞ boundedness of the source term. We will prove only the
results which in [1] do depend on the L∞ bound using our weaker hypotheses.
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2.3.1 The non homogeneous Riemann-Solver

Consider the stationary equations associated to (2.1.1), namely the system
of ordinary differential equations:

∂xf(v(x)) = g(x, v(x)). (2.3.22)

For any xo ∈ R, v ∈ Ω, consider the initial data

v(xo) = v. (2.3.23)

As in [1], we introduce a suitable approximation of the solutions to (2.3.22),
(2.3.23). Thanks to (2.1.4), the map u 7→ f(u) is invertible inside some
neighbourhood of the origin; in this neighbourhood, for small h > 0, we can
define

Φh(xo, u) =̇ f−1

[
f(u) +

∫ h

0
g (xo + s, u) ds

]
. (2.3.24)

This map gives an approximation of the flow of (2.3.22) in the sense that

f
(
Φh(xo, u)

)
− f(u) =

∫ h

0
g (xo + s, u) ds. (2.3.25)

Throughout the paper we will use the Landau notation O(1) to indicate
any function whose absolute value remains uniformly bounded, the bound
depending only on f and ‖M̃‖L1 .

Lemma 2.3.1 The function Φh(xo, u) defined in (2.3.24) satisfies the fol-
lowing uniform (with respect to xo ∈ R and to u in a suitable neighbourhood
of the origin) estimates.

‖Φh(xo, ·)‖C2 ≤ O(1) ,

limh→0 supxo∈R |Φh(xo, u) − u| = 0, (2.3.26)

limh→0 ‖Id−DuΦh(xo, u)‖ = 0

Proof. The Lipschitz continuity of f−1 and (2.1.3) imply

∣∣Φh(xo, u) − u
∣∣ =

∣∣∣Φh(xo, u) − f−1
(
f(u)

)∣∣∣ ≤ O(1)
∣∣∣
∫ h
0 g(xo + s, u) ds

∣∣∣

≤ O(1)
∣∣∣
∫ h
0 ω(xo + s) ds

∣∣∣ ≤ O(1) ε̃h → 0,

for h→ 0. Next we compute

DuΦh(xo, u) = Df−1
[
f(u) +

∫ h
0 g(xo + s, u) ds

]

·
(
Df(u) +

∫ h
0 Dug(xo + s, u) ds

)
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which together to the identity u = f−1
(
f(u)

)
implies

∥∥DuΦh(xo, u) − Id
∥∥ =

∥∥∥DuΦh(xo, u) −Df−1
(
f(u
))

‖

≤
∥∥∥∥Df−1

[
f(u) +

∫ h
0 g(xo + s, u) ds

]
−Df−1

(
f(u)

)∥∥∥∥

·
(
‖Df(u)‖ +

∫ h
0 ‖Dug(xo + s, u)‖ ds

)

+
∥∥∥Df−1

(
f(u)

)∥∥∥ ·
∫ h
0 ‖Dug(xo + s, u)‖ ds

≤ O(1) ε̃h → 0,

for h → 0. Finally, denoting with Di the partial derivative with respect
to the i component of the state vector and by Φh,ℓ the ℓ component of the
vector Φh, we derive

DiDjΦh,l(xo, u) =
∑

k,k′

(
DkDk′f

−1
ℓ

(
f(u) +

∫ h
0 g(xo + s, u) ds

)

·
(
Difk(u) +

∫ h
0 Digk(xo + s, u) ds

)

·
(
Djfk′(u) +

∫ h
0 Djgk′(xo + s, u) ds

))

+
∑

kDkf
−1
ℓ

(
f(u) +

∫ h
0 g(xo + s, u) ds

)

·
(
DjDifk(u) +

∫ h
0 DjDigk(xo + s, u) ds

)

so that
∥∥∥D2Φh(xo, u)

∥∥∥ ≤ O(1)
(
1 +

∫ h
0 M̃(xo + s) ds

)
≤ O(1)

(
1 + ‖M̃‖L1

)
≤ O(1) .

�

For any xo ∈ R we consider the system (2.1.1), endowed with a Riemann
initial datum:

u(0, x) =

{
uℓ if x < xo
ur if x > xo.

(2.3.27)

If the two states uℓ, ur are sufficiently close, let Ψ be the unique entropic
homogeneous Riemann solver given by the map

ur = Ψ(σ)(uℓ) = ψn(σn) ◦ . . . ◦ ψ1(σ1)(uℓ), (2.3.28)

where σ = (σ1, . . . , σn) denotes the (signed) wave strengths vector in R
n,

[57]. Here ψj, j = 1, . . . , n is the shock–rarefaction curve of the jth family,
parametrised as in [16] and related to the homogeneous system of conserva-
tion laws

∂tu+ ∂xf(u) = 0. (2.3.29)
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Observe that, due to (2.1.4), all the simple waves appearing in the solu-
tion of (2.3.29), (2.3.27) propagate with non-zero speed.

To take into account the effects of the source term, we consider a sta-
tionary discontinuity across the line x = xo, that is, a wave whose speed
is equal to 0, the so called zero-wave. Now, given h > 0, we say that the
particular Riemann solution:

u(t, x) =

{
uℓ if x < xo
ur if x > xo.

∀ t ≥ 0 (2.3.30)

is admissible if and only if ur = Φh(xo, uℓ), where Φh is the map defined
in (2.3.24). Roughly speaking, we require uℓ, ur to be (approximately)
connected by a solution of the stationary equations (2.3.22).

Definition 2.3.2 Let p be the number of waves with negative speed. Given
h > 0 suitably small, xo ∈ R, we say that u(t, x) is a h–Riemann solver for
(2.1.1), (2.1.4), (2.3.27), if the following conditions hold

(a) there exist two states u−, u+ which satisfy u+ = Φh(xo, u
−);

(b) on the set {t ≥ 0, x < xo}, u(t, x) coincides with the solution to
the homogeneous Riemann Problem (2.3.29) with initial values uℓ, u

−

and, on the set {t ≥ 0, x > xo}, with the solution to the homogeneous
Riemann Problem with initial values u+, ur;

(c) the Riemann Problem between uℓ and u− is solved only by waves with
negative speed (i.e. of the families 1, . . . , p);

(d) the Riemann Problem between u+ and ur is solved only by waves with
positive speed (i.e. of the families p+ 1, . . . , n).

u url

u u- +

Figure 2.2: Wave structure in an h–Riemann solver.
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Lemma 2.3.3 Let xo ∈ R and u, u1, u2 be three states in a suitable neigh-
bourhood of the origin. For h suitably small, one has

∣∣Φh(xo, u) − u
∣∣ = O(1)

∫ h

0
ω(xo + s) ds, (2.3.31)

∣∣Φh(xo, u2) − Φh(xo, u1) − (u2 − u1)
∣∣ = (2.3.32)

O(1) |u2 − u1|
∫ xo+h

xo

ω(s)ds.

The proof can be found in [1, Lemma 1].

Lemma 2.3.4 For any M > 0 there exist δ′1, h
′
1 > 0, depending only on M

and the homogeneous system (2.3.29), such that for all maps ϕ ∈ C2(Rn,Rn)
satisfying

‖ϕ‖C2 ≤M, |ϕ(u) − u| ≤ h′1, ‖I −Dϕ(u)‖ ≤ h′1

and for all uℓ ∈ B(0, δ′1), ur ∈ B(ϕ(0), δ′1) there exist n+2 states w0, . . . , wn+1

and n wave sizes σ1, . . . , σn, depending smoothly on uℓ, ur which satisfy, with
the previous notations:

i) w0 = uℓ, wn+1 = ur;

ii) wi = Ψi(σi)(wi−1), i = 1, . . . , p;

iii) wp+1 = ϕ(wp);

iv) wi+1 = Ψi(σi)(wi), i = p+ 1, . . . , n.

Here p is the number of waves with negative velocity as in Definition 2.3.2.

The proof can be found in [1, Lemma 3].
The next lemma establishes existence and uniqueness for the h–Riemann

solvers (see Fig.2.2).

Lemma 2.3.5 There exist δ1, h1 > 0 such that for any xo ∈ R, h ∈ [0, h1],
uℓ, ur ∈ B(0, δ1), there exists a unique h–Riemann solver in the sense of
Definition 2.3.2.

Proof. By Lemma 2.3.1 if h1 > 0 is chosen sufficiently small then for any
h ∈ [0, h1], xo ∈ R the map u 7→ Φh(xo, u) meets the hypotheses of Lemma
2.3.4. Finally taking h1 eventually smaller we can obtain that there exists
δ1 > 0 such that B(0, δ1) ⊂ B(0, δ′1) ∩ B(Φh(xo, 0), δ

′
1), for any h ∈ [0, h1].

�
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In the sequel, E stands for the implicit function given by Lemmas 2.3.4
and 2.3.5:

σ=̇E(h, uℓ, ur;xo),

which plays the role of a wave–size vector. We recall that, by Lemma 2.3.4,
E is a C2 function with respect to the variables uℓ, ur and its C2 norm is
bounded by a constant independent of h and xo.

In contrast with the homogeneous case, the wave–size σ in the h–Riemann
solver is not equivalent to the jump size |uℓ−ur|; an additional term appears
coming from the “Dirac source term” (see the special case uℓ = ur).

Lemma 2.3.6 Let δ1, h1 be the constants in Lemma 2.3.5. For uℓ, ur ∈
B(0, δ1), h ∈ [0, h1], set ß = E[h, uℓ, ur;xo]. Then it holds:

|uℓ − ur| = O(1)

(
|σ| +

∫ h

0
ω(xo + s) ds

)
,

|σ| = O(1)

(
|uℓ − ur| +

∫ h

0
ω(xo + s) ds

)
.

(2.3.33)

The proof can be found in [1, Lemma 4].

2.3.2 Existence of a Lipschitz semigroup

Note that as shown in [1] we can identify the sizes of the zero waves with
the quantity

σ =

∫ h

0
ω(jh + s) ds. (2.3.34)

With this definition all the Glimm interaction estimates continue to hold
with constants that depend only on f and on ‖M̃‖L1 , therefore all the
wave front tracking algorithm can be carried out obtaining the existence
of ε, h-approximate solutions. Here we first give a precise definition of ε, h-
approximate solutions and then outline the algorithm which allows to obtain
them. The detailed proof that the algorithm can be carried out for all times
t ≥ 0 is in [1].

Definition 2.3.7 Given ε, h > 0, we say that a continuous map

uε,h : [0,+∞) → L1
loc (R,Rn)

is an ε, h–approximate solution of (2.1.1)–(2.1.2) if the following holds:

– As a function of two variables, uε,h is piecewise constant with discon-
tinuities occurring along finitely many straight lines in the x, t plane.
Only finitely many wave-front interactions occur, each involving ex-
actly two wave-fronts, and jumps can be of four types: shocks (or con-
tact discontinuities), rarefaction waves, non-physical waves and zero-
waves: J = S ∪ R ∪NP ∪ Z.



2.3. EXISTENCE OF BV ENTROPY SOLUTIONS 47

– Along each shock (or contact discontinuity) xα = xα(t), α ∈ S, the
values of u− = uε,h(t, xα−) and u+ = uε,h(t, xα+) are related by
u+ = ψkα

(σα)(u−) for some kα ∈ {1, ..., n} and some wave-strength
σα. If the kath family is genuinely nonlinear, then the Lax entropy
admissibility condition σα < 0 also holds. Moreover, one has

|ẋα − λkα
(u+, u−)| ≤ ε

where λkα
(u+, u−) is the speed of the shock front (or contact disconti-

nuity) prescribed by the classical Rankine-Hugoniot conditions.

– Along each rarefaction front xα = xα(t), α ∈ R, one has u+ =
ψkα

(σα)(u−), 0 < σα ≤ ε for some genuinely nonlinear family kα.
Moreover, we have: |ẋα − λkα

(u+)| ≤ ε.

– All non-physical fronts x = xα(t), α ∈ NP travel at the same speed
ẋα = λ̂ > supu,i |λi(u)|. Their total strength remains uniformly small,
namely:

∑

α∈NP

|uε,h(t, xα+) − uε,h(t, xα−)| ≤ ε, ∀t > 0.

– The zero-waves are located at every point x = jh, j ∈ (− 1
hε ,

1
hε) ∩ Z.

Along a zero-wave located at xα = jαh, α ∈ Z, the values u− =
uε,h(t, xα−) and u+ = uε,h(t, xα+) satisfy u+ = Φh(xα, u

−) for all
t > 0 except at the interaction points.

– The total variation in space TVuε,h(t, ·) is uniformly bounded for all

t ≥ 0. The total variation in time TV
{
uε,h(·, x); [0,+∞)

}
is uni-

formly bounded for x 6= jh, j ∈ Z.

Finally, we require that ‖uε,h(0, .) − uo‖L1(R) ≤ ε.

Outline of the wave front tracking algorithm (see Figure 2.3) For
notational convenience, we shall drop hereafter the ε, h superscripts as there
will be no ambiguity. Now, given any small value for these parameters, let
us build up such an approximate solution.

• In order for our approximate solutions to be piecewise constant, we
need to discretize the rarefactions; following [16], for a fixed small parameter
δ, each rarefaction of size σ, when it is created for the first time, is divided
into m =

[
σ
δ

]
+ 1 wave-fronts, each one with size σ/m ≤ δ.

• Given the initial data uo, we can define a piecewise constant approxi-
mation u(0, ·) satisfying the requirements of Definition 2.3.7; moreover, it is
possible to guarantee that

TVu(0, ·) ≤ TVuo.
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αx  = j  hαh

Figure 2.3: Illustration of the wave front tracking algorithm

Then, u(t, x) is constructed, for small t, by applying the h–Riemann solver

at every point x = jh with j ∈
(
− 1
hε ,

1
hε

)
∩ Z (even if in that point u(0, ·)

does not have a discontinuity), and by solving the remaining discontinuities
in u(0, ·) using a classical homogeneous Riemann solver for (2.3.29).

• At every interaction point, a new Riemann problem arises. Notice that
because of their fixed speed, two non-physical fronts cannot interact with
each other; neither can the zero-waves. Moreover, by a slight modification
of the speed of some waves (only among shocks, contact discontinuities and
rarefactions), it is possible to achieve the property that not more than two
wave-fronts interact at a point.

After an interaction time, the number of wave-fronts may well increase.
In order to prevent this number to become infinite in finite time, a particular
treatment has been proposed for waves whose strength is below a certain
threshold value ρ by means of a simplified Riemann solver [16]. We shall use
similar trick in our construction, in the same spirit as in the homogeneous
case;
Suppose that two wave-fronts of strengths σ, σ′ interact at a given point
(t, x). If x 6= xα, for any α ∈ Z, we use the classical accurate or simplified
homogeneous Riemann solver as in [16]. Assume now that x = xα = jαh
with α ∈ Z, different situations can occur:

– if the wave approaching the zero wave is physical and it holds |σσ′| ≥ ρ
we use the (accurate) h–Riemann solver;

– if the wave incoming to the zero wave is physical and it holds |σσ′| < ρ
we use a simplified one. Assume that the wave-front on the right is a
zero–wave (the other case being similar): let uℓ, um = ψj(σ)(uℓ), ur =
Φh(x, um) be the states before the interaction.
We define the auxiliary states

ũm = Φh(x, uℓ), ũr = ψj(σ)(ũm).
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Then three fronts propagate after interaction: the zero-wave (uℓ, ũm),
the physical front (ũm, ũr) and the non-physical one (ũr, ur).

– Suppose now that the wave on the left belongs to NP . Again we use
a simplified solver: let uℓ, um, ur = Φh(x, um) be the states before
the interaction, and define the new state ũℓ = Φh(x, uℓ).
After the interaction time, only two fronts propagate: the zero–wave
(uℓ, ũℓ) and the non-physical (ũℓ, ur).

Keeping h > 0 fixed, we are about to first let ε tend to zero. Hence we
shall drop the superscript h for notational clarity.

Theorem 2.3.8 Let uε be a family of ε, h–approximate solutions of (2.1.1)–
(2.1.2). There exists a subsequence uεi converging as i→ +∞ in L1

loc

(
(0,+∞) × R

)

to a function u which satisfies for any ϕ ∈ C1
c

(
(0,+∞) × R

)
:

∫ ∞

0

∫

R

[
uϕt + f(u)ϕx

]
dxdt+

∫ ∞

0

∑

j∈Z

ϕ(t, jh)

(∫ h

0
g
[
jh+ s, u(t, jh−)

]
ds

)
dt = 0.

(2.3.35)
Moreover TVu(t, ·) is uniformly bounded and u satisfies the Lipschitz prop-
erty

∫

R

∣∣u(t′, x) − u(t′′, x)
∣∣ dx ≤ C ′|t′ − t′′|, t′, t′′ ≥ 0; (2.3.36)

Now we are in position to prove [1, Theorem 4] with our weaker hypothe-
ses. As in [1] we can apply Helly’s compactness theorem to get a subsequence
uhi converging to some function u in L1

loc whose total variation in space is
uniformly bounded for all t ≥ 0. Moreover, working as in [2, Proposition
5.1], one can prove that uhi(t, ·) converges in L1 to u(t, ·), for all t ≥ 0.

Theorem 2.3.9 Let uhi be a subsequence of solutions to Equation (2.3.35)
with uniformly bounded total variation converging as i→ +∞ in L1 to some
function u. Then u is a weak solution to the Cauchy problem (2.1.1)–(2.1.2).

We omit the proofs of Theorem 2.3.8 and 2.3.9 since they are very similar
to the proofs of [1, Theorem 3 and 4]. We only observe that, in those proofs,
the computations which rely on the L∞ bound on the source term have to
be substituted by the following estimates.

• Concerning the proof of Theorem 2.3.8:

∫ h
0

∣∣∣g
(
jh + s, uε(t, jh−)

)
− g

(
jh+ s, u(t, jh−)

)∣∣∣ ds

≤
∫ h
0

∥∥g(jh + s, ·)
∥∥
C1

·
∣∣uε(t, jh−) − u(t, jh−)

∣∣ ds
≤ ε̃h ·

∣∣uε(t, jh−) − u(t, jh−)
∣∣ .
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• Concerning the proof of Theorem 2.3.9:

∫ h
0

∣∣∣∣g
(
jh+ s, uh(t, jh−)

)∣∣∣∣ ds ≤
∫ h
0

∥∥g(jh + s, ·)
∥∥
C1

ds ≤ ε̃h

and

∫ h
0

∣∣∣∣g
(
jh + s, uh(t, jh−)

)
− g

(
jh+ s, u(t, jh + s)

)∣∣∣∣ ds

≤
∫ h
0

∥∥g(jh + s, ·)
∥∥
C1

·
∣∣∣uh(t, jh−) − u(t, jh + s)

∣∣∣ ds

≤ ε̃h · TV
{
uh(t, ·), [(j − 1)h, (j + 1)h]

}

+
∫ (j+1)h
jh ω(x)

∣∣∣uh(t, x) − u(t, x)
∣∣∣ .

We observe that all the computations done in [1, Section 4] rely on the
source g only through the amplitude of the zero waves and on the interac-
tion estimates. Therefore the following two theorems still hold in the more
general setting.

Theorem 2.3.10 There exists δ > 0 such that if ‖ω‖
L1(R) is sufficiently

small, then for any (small) h > 0 there exist a non empty closed domain Dh().
and a unique uniformly Lipschitz semigroup P h : [0,+∞) ×Dh(δ) → Dh(δ)
whose trajectories u(t, .) = P ht uo solve (2.3.35) and are obtained as limit of
any sequence of ε, h–approximate solutions as ε tends to zero with fixed h.
In particular the semigroups P h satisfy for any uo, vo ∈ Dh(δ), t, s ≥ 0

P h0 uo = uo, P ht ◦ P hs uo = P hs+tuo, (2.3.37)

∥∥∥P ht uo − P hs vo

∥∥∥
L1(R)

≤ L
[
‖uo − vo‖L1(R) + |t− s|

]
(2.3.38)

for some L > 0, independent on h.

Theorem 2.3.11 If ‖ω‖
L1(R) is sufficiently small, there exist a constant

L > 0, a non empty closed domain D of integrable functions with small
total variation and a semigroup P : [0,+∞) × D → D with the following
properties

i) P0u = u, ∀u ∈ D; Pt+su = Pt ◦ Psu, ∀u ∈ D, t, s ≥ 0.

ii) ‖Psu− Ptv‖L1(R) ≤ L
(
|s− t| + ‖u− v‖L1(R)

)
, ∀u, v ∈ D, t, s ≥ 0.

iii) For all uo ∈ D, the function u(t, ·) = Ptuo is a weak entropy solution of
system (2.1.1).

iv) For all h > 0 small enough D ⊂ Dh.



2.4. UNIQUENESS OF BV ENTROPY SOLUTIONS 51

v) There exists a sequence of semigroups P hi such that P hi
t u converges in

L1 to Ptu as i→ +∞ for any u ∈ D.

Remark 2.3.12 Looking at [1, (4.6)] and the proof of [1, Theorem 7] one
realises that the invariant domains Dh and D depend on the particular source
term g(x, u). On the other hand estimate [1, (4.4)] shows that all these do-
mains contain all integrable functions with sufficiently small total variation.
Since the bounds O(1) in Lemma 2.3.6 depend only on f and on ‖M̃‖L1 ,
also the constant C1 in [1, (4.4)] depends only on f and on ‖M̃‖L1 . There-
fore there exists δ̃ > 0 depending only on f and on ‖M̃‖L1 such that Dh and
D contain all integrable functions u(x) with TV {u} ≤ δ̃.

2.4 Uniqueness of BV entropy solutions

The proof of uniqueness in [1] strongly depends on the boundedness of the
source, therefore we have to consider it in a more careful way.

2.4.1 Some preliminary results

As in [1] we shall make use of the following technical lemmas whose proofs
can be found in [16].

Lemma 2.4.1 Let (a, b) a (possibly unbounded) open interval, and let λ̂ be
an upper bound for all wave speeds. If ū, v̄ ∈ Dh then for all t ≥ 0 and
h > 0, one has

∫ b−λ̂t

a+λ̂t

∣∣∣∣
(
P ht ū

)
(x) −

(
P ht v̄

)
(x)

∣∣∣∣ dx ≤ L

∫ b

a

∣∣ū(x) − v̄(x)
∣∣ dx. (2.4.39)

Remark 2.4.2 Observe that in the ε, h-approximate solutions, the waves
do not travel faster than λ̂, therefore the values of the function P ht v̄ in the

interval
(
a+ λ̂t, b− λ̂t

)
depend only on the values that v̄ assumes in the

interval (a, b). Therefore, estimate (2.4.39) is only a localisation of (2.3.38),
in particular the Lipschitz constant L is the same and depends on g only
through ‖M̃‖L1 .

Lemma 2.4.3 Given any interval I0 = [a, b], define the interval of deter-
minacy

It = [a+ λ̂t, b− λ̂t], t <
b− a

2λ̂
. (2.4.40)

For every Lipschitz continuous map w : [0, T ] 7→ Dh and h > 0:

∥∥∥w(t) − P ht w(0)
∥∥∥
L1(It)

≤ L

∫ t

0





lim inf
η→0

∥∥∥w(s + η) − P hη w(s)
∥∥∥
L1(Is+η)

η




ds.

(2.4.41)
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Remark 2.4.4 Lemmas 2.4.1, 2.4.3 hold also substituting P h with the op-
erator P . In this case we have obviously to substitute the domains Dh(δ)
with the domain D of Theorem 2.3.11.

Let now uℓ, ur be two nearby states and λ < λ̂; we consider the function

v(t, x) =

{
uℓ if x < λt+ xo
ur if x ≥ λt+ xo.

(2.4.42)

Lemma 2.4.5 Call w(t, x) the self-similar solution given by the standard
homogeneous Riemann Solver with the Riemann data (2.3.27).

(i) In the general case, one has

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx = O(1) |uℓ − ur|; (2.4.43)

(ii) Assuming the additional relations ur = Ri(σ)(uℓ) and λ = λi(ur) for
some σ > 0, i = 1, . . . , n one has the sharper estimate

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx = O(1) σ2; (2.4.44)

(iii) Let u∗ ∈ Ω and call λ∗1 < . . . < λ∗n the eigenvalues of the matrix
A∗ = ∇f(u∗). If for some i it holds A∗(ur − uℓ) = λ∗i (ur − uℓ) and
λ = λ∗i in (2.4.42), then one has

1

t

∫ +∞

−∞

∣∣v(t, x) −w(t, x)
∣∣ dx = O(1) |uℓ − ur|

(
|uℓ − u∗| + |u∗ − ur|

)
;

(2.4.45)

The proof can be found in [16, Lemma 9.1].

We now prove the next result which is directly related to our h-Riemann
solver.

Lemma 2.4.6 Call w(t, x) the self-similar solution given by the h–Riemann
Solver in xo with the Riemann data (2.3.27).

(i) In the general case one has

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx = O(1)

(
|uℓ − ur| +

∫ h

0
ω(xo + s) ds

)
;

(2.4.46)
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(ii) Assuming the additional relation

ur = uℓ + [∇f ]−1 (u∗)

∫ h

0
g(xo + s, u∗)ds

with λ = 0 in (2.4.42) one has the sharper estimate

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx (2.4.47)

= O(1)
(∫ h

0
ω(xo + s) ds+ |uℓ − u∗|

)
·
∫ h

0
ω(xo + s) ds.

Proof. Suppose λ ≥ 0 (the other case being similar) and compute

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx

=
1

t

∫ 0

−λ̂t

∣∣uℓ − w(t, x)
∣∣ dx+

1

t

∫ λt

0

∣∣uℓ − w(t, x)
∣∣ dx+

1

t

∫ λ̂t

λt

∣∣ur − w(t, x)
∣∣ dx

= O(1)

p∑

ι=1

|σι| +
1

t

∫ λt

0

∣∣uℓ − w(t, x)
∣∣ dx+ O(1)

n∑

ι=p+1

|σι|

= O(1) |σ| + 1

t

∫ λt

0

∣∣uℓ − w(t, x)
∣∣ dx,

where σ = E [h, uℓ, ur;xo]. Since w(t, x) is the solution to the h–Riemann

problem, Lemma 2.3.6 implies |uℓ−w(t, x)| = O(1)
(
|σ| +

∫ h
0 ω(xo + s) ds

)
.

Therefore using again Lemma 2.3.6 we get (i).

Let us prove now (ii). Setting λ = 0 in the previous computation gives

1

t

∫ +∞

−∞

∣∣v(t, x) − w(t, x)
∣∣ dx = O(1) |σ|.

This leads to

|ß| =
∣∣∣E [h, uℓ, ur;xo] − E

[
h, uℓ,Φh(xo, uℓ);xo

] ∣∣∣

= O(1)
∣∣ur − Φh(xo, uℓ)

∣∣ .

To estimate this last term, we define b(y, u) = f−1
(
f(u) + y

)
and compute

for some y1, y2:

∣∣∣uℓ + [∇f ]−1 (u∗)y1 − b(y2, uℓ)
∣∣∣ ≤ O(1) |y1| · |u∗ − uℓ| + O(1) |y1 − y2|

+
∣∣∣uℓ + [∇f ]−1 (uℓ)y2 − b (y2, uℓ)

∣∣∣ .
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The function z(y2) = uℓ + [∇f ]−1 (uℓ)y2 − b (y2, uℓ) satisfies z(0) = 0,
Dy2z(0) = 0, hence we have the estimate
∣∣∣uℓ + [∇f ]−1 (u∗)y1 − b(y2, uℓ)

∣∣∣ ≤ O(1)
[
|y1| · |u∗ − uℓ| + |y1 − y2| + |y2|2

]
.

If in this last expression we substitute

y1 =

∫ h

0
g(xo + s, u∗)ds, y2 =

∫ h

0
g(xo + s, uℓ)ds

then, we get

∣∣ur − Φh(xo, uℓ)
∣∣ = O(1)

( ∫ h

0
ω(xo + s) ds+ |uℓ − u∗|

)∫ h

0
ω(xo + s) ds

which proves (2.4.47). �

2.4.2 Characterisation of the semigroup’s trajectories

In this section we are about to give necessary and sufficient conditions for a
function u(t, ·) ∈ D to coincide with a semigroup’s trajectory. To this end,
we prove the uniqueness of the semigroup P and the convergence of all the
sequence of semigroups P h towards P as h→ 0.

We will need the following approximations of U ♭(u;ξ) (see Definition 2.1.3).

Let v be a piecewise constant function. We will call wh the solution of the
following Cauchy problem:

∂t(w
h) + ∂xÃ(wh) =

∑

j∈Z

(.x− jh)

∫ h

0
g̃(jh+ s) ds, wh(0, x) = v(x).

Define u∗=̇u(ξ) and let λi = λi(u
∗), ri = ri(u

∗), li = li(u
∗) be respec-

tively the ith eigenvalue, the ith right/left eigenvectors of the matrix Ã (see
Definition 2.1.3). As in [1] w and wh have the following explicit representa-
tion

w(t, x) =
n∑

i=1

{
〈
li, u (x− λit)

〉
+

1

λi

∫ x

x−λit

〈
li, g̃(x

′)
〉
dx′

}
ri,

wh(t, x) =
n∑

i=1

{〈
li, v (x− λit)

〉
+

1

λi

〈
li, G

h(t, x)
〉}

ri, (2.4.48)

where the function Gh(t, x) =
n∑

i=1

Ghi (t, x)ri is defined by

Ghi (t, x) =





∑

j: jh∈(x−λit,x)

∫ h

0

〈
li, g̃ (jh + s)

〉
ds if λi > 0

−
∑

j: jh∈(x,x−λit)

∫ h

0

〈
li, g̃ (jh+ s)

〉
ds if λi < 0.

(2.4.49)
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Using (2.1.3) we can compute
∣∣∣∣∣G

h
i (t, x) −

∫ x

x−λit

〈
li, g̃(x

′)
〉
dx

∣∣∣∣∣ = O(1) ε̃h. (2.4.50)

Hence, for any a, b ∈ R with a < b, we have the error estimate

∫ b−λ̂t

a+λ̂t

∣∣∣w(t, x) − wh(t, x)
∣∣∣ dx ≤ O(1)

[∫ b

a

∣∣u(x) − v(x)
∣∣ dx+ (b− a)ε̃h

]
.

(2.4.51)
From (2.4.48), (2.4.49), it is easy to see that wh(t, x) is piecewise constant
with discontinuities occurring along finitely many lines on compact sets in
the (t, x) plane for t ≥ 0. Only finitely many wave front interactions occur
in a compact set, and jumps can be of two types: contact discontinuities or
zero waves. The zero waves are located at the points jh, j ∈ Z and satisfy

wh(t, jh+) − wh(t, jh−) = [∇f ]−1 (u∗)

∫ (j+1)h

jh

g̃ (jh+ s) ds. (2.4.52)

Conversely a contact discontinuity of the ith family located at the point
xα(t) satisfies ẋα(t) = λi(u

∗) and

wh(t, xα(t)+) − wh(t, xα(t)−) = σri(u
∗) (2.4.53)

for some σ ∈ R.
Now, we apply a technique introduced in [15] to state and prove the

uniqueness result in our more general setting.

Theorem 2.4.7 Let P : D × [0,+∞) → D be the semigroup of Theorem
2.3.11, let λ̂ be an upper bound for all wave speeds (see (2.1.4)) and let U ♯

and U ♭ the functions defined in Definitions 2.1.2 and 2.1.3. Then every
trajectory u(t, ·) = Ptu0, u0 ∈ D, satisfies the integral estimates (2.1.8) and
(2.1.9) at every τ ≥ 0.

Viceversa let u : [0, T ] → D be Lipschitz continuous as a map with values
in L1(R,Rn) and assume that the conditions (2.1.8), (2.1.9) hold at almost
every time τ . Then u(t, ·) coincides with a trajectory of the semigroup P .

Remark 2.4.8 The difference with respect to the result in [1] is the presence
of the integral in the right hand side of formula (2.1.9). If ω is in L∞, the
integral can be bounded by O(1) (b− a) and we recover the estimates in [1].
Note also that the quantity

µ
(
(a, b)

)
= TV

{
u(τ); (a, b)

}
+

∫ b

a

ω(x) dx

is a uniformly bounded finite measure and this is what is needed for proving
the sufficiency part of the above Theorem.
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Proof. Part 1: Necessity Given a semigroup trajectory u(t, ·) = Ptū,
ū ∈ D we now show that the conditions (2.1.8), (2.1.9) hold for every
τ ≥ 0.

As in [1] we use the following notations. For fixed h, ϑ, ε > 0 we define
Jt = J−

t ∪ Jot ∪ J+
t with

J−
t =

(
ξ − (2ϑ− t+ τ) λ̂, ξ − (t− τ)λ̂

)
; (2.4.54)

Jot =
[
ξ − (t− τ)λ̂, ξ + (t− τ)λ̂

]
; (2.4.55)

J+
t =

(
ξ + (t− τ)λ̂, ξ + (2ϑ − t+ τ) λ̂

)
. (2.4.56)

Let U ♯,ε(u(τ);ξ) (ϑ, x) be the piecewise constant function obtained from U ♯(u(τ);ξ) (ϑ, x)
dividing the centered rarefaction waves in equal parts and replacing them
by rarefaction fans containing wave fronts whose strength is less than ε.
Observe that:

1

t

∫ +∞

−∞

∣∣∣U ♯,ε(u(τ);ξ) (ϑ, x) − U ♯(u(τ);ξ) (ϑ, x)
∣∣∣ dx = O(1) ε. (2.4.57)

Applying estimate (2.4.41) to the function U ♯,ε(u(τ);ξ) we obtain

∫

Jτ+ϑ

∣∣∣∣U
♯,ε
(u(τ);ξ)(ϑ, x) −

(
P hϑU

♯,ε
(u(τ);ξ)(0)

)
(x)

∣∣∣∣ dx (2.4.58)

≤ L

∫ τ+ϑ

τ

lim inf
η→0

∥∥∥U ♯,ε(u(τ);ξ)(t− τ + η) − P hη U
♯,ε
(u(τ);ξ)(t− τ)

∥∥∥
L1(Jt+η)

η
dt.

The discontinuities of U ♯,ε(u(τ);ξ) do not cross the Dirac comb for almost all

times t ∈ (τ, τ + ϑ). Therefore we compute for such a time t:

1

η

∫

Jt+η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx (2.4.59)

1

η

∫

J−

t+η∪J
o
t+η∪J

+

t+η

∣∣∣∣U
♯,ε
(u(τ);ξ)

(t− τ + η, x) −
(
P hη U

♯,ε
(u(τ);ξ)

(t− τ)
)

(x)

∣∣∣∣ dx.

Define Wt the set of points in which U ♯,ε(u(τ);ξ)(t−τ) has a discontinuity while
Zh is the set of points in which the zero waves are located. If η is sufficiently
small, the solutions of the Riemann problems arising at the discontinuities
of U ♯,ε(u(τ);ξ)(t− τ) do not interact, therefore

1

η

∫

Jo
t+η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx
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=




∑

x∈Jo
t ∩Wt

+
∑

x∈Jo
t ∩Zh




1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, y) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(y)

∣∣∣∣ dy

Note that the shock are solved exactly both in U ♯,ε(u(τ);ξ) and in P hU ♯,ε(u(τ);ξ)
therefore they make no contribution in the summation. To estimate the
approximate rarefactions we use the estimate (2.4.44) hence

∑

x∈Jo
t ∩Wt

1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx

≤ O(1)
∑

x∈Jo
t
∩Wt

rarefaction

|σ|2 ≤ O(1) εTV
{
U ♯,ε(u(τ);ξ)(t− τ);J0

t

}
(2.4.60)

≤ O(1) ε
∣∣u(τ, ξ+) − u(τ, ξ−)

∣∣

Concerning the zero waves, recall that t is chosen such that U ♯,ε(u(τ);ξ) is con-

stant there, and P h is the exact solution of an h–Riemann problem, hence
we can apply (2.4.46) with uℓ = ur and obtain

∑

x∈Jo
t ∩Zh

1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx

≤ O(1)
∑

jh∈Jo
t

∫ h

0
ω(jh+ s) ds ≤ O(1)

(∫

Jo
t

ω(x) dx+ ε̃h

)
(2.4.61)

Finally using (2.4.61) and (2.4.60) we get in the end

1

η

∫

Jo
t+η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx (2.4.62)

= O(1)

{∫

J0
t

ω(x) dx+ ε̃h + ε

}
.

Moreover, following the same steps as before and using (2.4.43) and (2.4.46)
with uℓ = ur we get

1

η

∫

J+

t+η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx (2.4.63)

= O(1)

{∫

J+
t

ω(x) dx+ ε̃h

}
.
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Note that here there is no total variation of U ♯,ε(u(τ);ξ) since in J+
t it is constant.

A similar estimate holds for the interval J−
t+η . Putting together (2.4.59),

(2.4.62), (2.4.63), one has

1

η

∫

Jt+η

∣∣∣∣U
♯,ε
(u(τ);ξ)(t− τ + η, x) −

(
P hη U

♯,ε
(u(τ);ξ)(t− τ)

)
(x)

∣∣∣∣ dx

= O(1)
( ∫

Jτ

ω(x) dx+ ε̃h + ε
)
.

Hence, setting ṽ = U ♯,ε(u(τ);ξ)(0) = U ♯(u(τ);ξ)(0) by (2.4.58), we have

∫

Jτ+ϑ

∣∣∣∣U
♯,ε
(u(τ);ξ)(ϑ, x) −

(
P hϑ ṽ

)
(x)

∣∣∣∣ dx (2.4.64)

= O(1) (ϑ
(∫

Jτ

ω(x) dx+ ε̃h + ε
)
.

Finally we take the sequence P hi converging to P . Using (2.4.39) we have

1

ϑ

∥∥∥P hi

ϑ u(τ) − P hi

ϑ ṽ
∥∥∥
L1(Jτ+ϑ)

≤ 1

ϑ
L
∥∥u(τ) − ṽ

∥∥
L1(Jτ )

(2.4.65)

=
L

ϑ

∫ ξ+2λ̂ϑ

ξ−2λ̂ϑ

∣∣u(τ, x) − ṽ(x)
∣∣ dx

=̇ ε̄ϑ,

where ε̄ϑ tends to zero as ϑ tends to zero due to the fact that u(τ) has right
and left limit at any point: for any given ε > 0 if ϑ is sufficiently small
|u(τ, x) − ṽ(x)| = |u(τ, x) − u(τ, ξ−)| ≤ ε for x ∈ (ξ − 2λ̂ϑ, ξ).

Therefore by (2.4.57), (2.4.64), we derive:

1

ϑ

∫ ξ+ϑλ̂

ξ−ϑλ̂

∣∣∣u(τ + ϑ, x) − U ♯(u(τ);ξ) (ϑ, x)
∣∣∣ dx

=

∥∥∥Pϑu(τ) − P hi

ϑ u(τ)
∥∥∥
L1(R)

ϑ
+ ε̄ϑ + O(1)

[∫

Jτ

ω(x) dx+ ε̃hi

]
.

The left hand side of the previous estimate does not depend on ε and hi,
hence

1

ϑ

∫ ξ+ϑλ̂

ξ−ϑλ̂

∣∣∣u(τ + ϑ, x) − U ♯(u(τ);ξ) (ϑ, x)
∣∣∣ dx = O(1)

∫

Jτ

ω(x) dx+ ε̄ϑ.

Note that the intervals Jτ depend on ϑ (see 2.4.55). So taking the limit as
ϑ→ 0 in the previous estimate yields (2.1.8).
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To prove (2.1.9) let ϑ > 0 and a point (τ, ξ) be given together with an
open interval (a, b) containing ξ. Fix ε > 0 and choose a piecewise constant
function v̄ ∈ D satisfying v̄(ξ) = u(τ, ξ) together with

∫ b

a

∣∣v̄(x) − u(τ, x)
∣∣ dx ≤ ε, TV

{
v̄; (a, b)

}
≤ TV

{
u(τ); (a, b)

}
(2.4.66)

Let now wh be defined by (2.4.48) (u∗ = v̄(ξ) = u(τ, ξ)). From (2.4.51),
(2.4.66) we have the estimate

∫ b−ϑλ̂

a+ϑλ̂

∣∣∣U ♭(u(τ);ξ) (ϑ, x) − wh(ϑ, x)
∣∣∣ dx ≤ O(1)

(
ε+ ε̃h(b− a)

)
. (2.4.67)

Using (2.4.40), (2.4.41) we get

∫ b−ϑλ̂

a+ϑλ̂

∣∣∣∣w
h(ϑ, x) −

(
P hϑw

h(0)
)

(x)

∣∣∣∣ dx (2.4.68)

≤ L

∫ τ+ϑ

τ

lim inf
η→0

∥∥∥wh(t− τ + η) − P hη w
h(t− τ)

∥∥∥
L1(Ĩt+η)

η
dt

where we have defined Ĩt+η = It−τ+η. Let t ∈ (τ, τ + ϑ) be a time for which
there is no interaction in wh; in particular, discontinuities which travel with
a non-zero velocity do not cross the Dirac comb (this happens for almost all
t). We observe that by the explicit formula (2.4.48):

TV
{
wh(t− τ); Ĩt

}
= O(1)

(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)
(2.4.69)

∣∣∣wh(t− τ, x) − v̄(ξ)
∣∣∣ = O(1)

(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)
. (2.4.70)

As before for η sufficiently small we can split homogeneous and zero waves

1

η

∫

Ĩt+η

∣∣∣∣w
h(t− τ + η, x) −

(
P hη w

h(t− τ)
)

(x)

∣∣∣∣ dx

=




∑

x∈Ĩt∩Wt

+
∑

x∈Ĩt∩Zh




1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣w
h(t− τ + η, x) −

(
P hη w

h(t− τ)
)

(x)

∣∣∣∣ dx

The homogeneous waves in wh satisfy (2.4.53), with v̄(ξ) in place of u∗,
hence we can apply (2.4.45) which together with (2.4.69), (2.4.70) leads to

∑

x∈Ĩt∩Wt

1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣w
h(t− τ + η, x) −

(
P hη w

h(t− τ)
)

(x)

∣∣∣∣ dx
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≤ O(1)
∑

x∈Ĩt∩Wt

|∆wh(t− τ, x)|
(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)

≤ O(1) TV
{
wh(t− τ), Ĩt

}(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)

≤ O(1)
(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)2

where ∆wh(t− τ, x) denotes the jump of wh(t− τ) at x.
The zero waves in wh satisfy (2.4.52), hence we can apply (2.4.47) which

together with (2.4.70) leads to

∑

x∈Ĩt∩Zh

1

η

∫ x+λ̂η

x−λ̂η

∣∣∣∣w
h(t− τ + η, x) −

(
P hη w

h(t− τ)
)

(x)

∣∣∣∣ dx

≤ O(1)
∑

x∈Ĩt∩Zh

∫ h

0
ω(x+ s) ds ·

(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)

≤ O(1)

(∫

Ĩt

ω(x) dx+ ε̃h

)(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)

≤ O(1)
(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃h

)2

Let now P hi be the subsequence converging to P . Since wh(0) = v̄ using
(2.4.67), (2.4.68), (2.4.66), and the last estimates we get

1

ϑ

∫ b−ϑλ̂

a+ϑλ̂

∣∣∣u(τ + ϑ, x) − U ♭(u(τ);ξ) (ϑ, x)
∣∣∣ dx

≤
‖Pϑu(τ) − P hi

ϑ u(τ)‖L1(R)

ϑ
+ L

‖u(τ) − v̄‖L1(R)

ϑ

+O(1)

{
ε+ ε̃hi

· (b− a)

ϑ
+
(
TV

{
v̄; (a, b)

}
+

∫ b

a

ω(x) dx+ ε̃hi

)2
}
.

So for ε, hi → 0 we obtain the desired inequality.
Part 2: Sufficiency By Remark 2.4.4 we can apply (2.4.41) to P and

hence the proof for the homogeneous case presented in [16], which relies on
the property recalled in Remark 2.4.8, can be followed exactly for our case,
hence it will be not repeated here. �

�

Proof of Theorem 2.1.4 It is now a direct consequence of Theorems
2.3.11 and 2.4.7. �
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2.5 Proofs related to Section 2.2

Consider the equation
ut + f(u)x = a′g(u)

for some a ∈ BV. Equation (2.2.10) is comprised in this setting with the
substitution a 7→ ln a. For this kind of equations we consider the exact
stationary solutions instead of approximated ones as in (2.3.24). Therefore
call Φ(a, ū) the solution of the following Cauchy problem:

{
d
dau(a) =

[
Duf(u(a))

]−1
g(u(a))

u(0) = ū
(2.5.71)

If a is sufficiently small, the map u 7→ Φ(a, u) satisfies Lemma 2.3.4. We
call a-Riemann problem the Cauchy problem





∂tu+ ∂xf(u) = a′g(u)

(a, u)(0, x) =

{
(a−, ul) if x < 0
(a+, ur) if x > 0

(2.5.72)

its solution will be the function described in Definition 2.3.2 using the map
Φ(a+ − a−, u−) instead of the Φh in there. Observe that if a+ = a− the
a-Riemann solver coincides with the usual homogeneous Riemann solver.

Definition 2.5.1 Given a function u ∈ BV and two states a−, a+, we
define Ū ♯u (t, x) as the solution of the a-Riemann solver (2.5.72) with ul =
u(0−) and ur = u(0+).

Proof of Theorem 2.2.2: Since ‖a′l‖L1 = |a+ − a−|, hypothesis (P2) is
satisfied uniformly with respect to l, moreover the smallness of |a+ − a−|
ensures that the L1 norm of ω in (P3) is small. Therefore the hypotheses of
Theorem 2.1.4 are satisfied uniformly with respect to l.

Let P l be the semigroup related with the smooth section al. By Remark
2.3.12, if TV {u} is sufficiently small, u belongs to the domain of P l for
every l > 0. Since the total variation of P ltu is uniformly bounded for a
fixed initial data u, Helly’s theorem guarantees that there is a converging
subsequence P lit u. By a diagonal argument one can show that there is a
converging subsequence of semigroups converging to a limit semigroup P
defined on an invariant domain (see [1, Proof of Theorem 7]).

For the uniqueness we are left to prove the integral estimate (2.1.8) in
the origin with U ♯ substituted by Ū ♯.

Therefore we have to show that the quantity

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣u(τ + ϑ, x) − Ū ♯
u(τ) (ϑ, x)

∣∣∣ dx (2.5.73)
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converges to zero as ϑ tends to zero. We will estimate (2.5.73) in several

steps. First define v̄ = Ū ♯
u(τ) (0, x) and compute

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣(Pϑu(τ))(x) − (Pϑv̄)(x) (ϑ, x)
∣∣ dx ≤ ε̄ϑ. (2.5.74)

as in (2.4.65). Then we consider the approximating sequence P li correspond-
ing to the source term ali and the semigroups P li,h which converge to P li in
the sense of Theorem 2.3.11. Hence we have

lim
i→∞

lim
h→0

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣(P li,hϑ v̄)(x) − (Pϑv̄)(x)
∣∣∣ dx = 0

For notational convenience we skip the subscript i in li. As in (2.4.57)

we approximate rarefactions in Ū ♯
u(τ) introducing the function Ū ♯,ε

u(τ). Then

we define (see Figure 2.4)

Ū ♯,ε,l,h
u(τ)

(t− τ, x) =





Ū ♯,ε
u(τ)(t− τ, x+ l

2 ) x < −l/2
Ũ(x) − l/2 ≤ x ≤ l/2

Ū ♯,ε
u(τ)(t− τ, x− l

2 ) x > l/2

where Ũ(x) is piecewise constant with jumps in the points jh satisfying

Ũ(jh+) = Φ(jh, Ũ (jh−)). Furthermore Ũ(−l/2−) = Ū ♯,ε(u;τ)(t − τ, 0−) and

Ū ♯,ε,l,h

x

h

t

u(τ, 0−) = ul u(τ, 0+) = ur

Ũ

− l
2

l
2

x = λ̂t

x = l
2 + λ̂t

Figure 2.4: Illustration of Ū ♯,ε,l,h in the (t, x) plane
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Φ is defined as in (2.3.24) using the source term g(x, u) = a′l(x)g(u). Observe

that the jump between Ũ(l/2−) and Ū ♯,ε,l,h
u(τ) (t−τ, l/2+) does not satisfy any

jump condition, but as Ũ(x) is an “Euler” approximation of the ordinary

differential equation f(u)x = a′lg(u), this jump is of order ε̃h. Since Ū ♯,ε
u(τ)

and Ū ♯,ε,l,h
u(τ) have uniformly bounded total variation we have the estimate

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣Ū ♯,εu(τ) (ϑ, x) − Ū ♯,ε,l,h
u(τ) (ϑ, x)

∣∣∣ dx ≤ O(1)
l

ϑ

the bound O(1) not depending on h. We apply Lemma 2.4.3 on the remain-
ing term

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣(P l,hϑ v̄)(x) − Ū ♯,ε,l,h
u(τ) (ϑ, x)

∣∣∣ dx

≤ L

∫ τ+ϑ

τ

lim inf
η→0

‖Ū ♯,ε,l,h
u(τ) (t− τ + η) − P l,hη Ū ♯,ε,l,h

u(τ) (t− τ) ‖L1(Jt+η)

η

To estimate this last term we proceed as before. Observe that P l,h does not
have zero waves outside the interval [− l

2 −h, l2 +h] since outside the interval

[− l
2 ,

l
2 ] the function a′l is identically zero. If η is small enough, the waves

in P l,hη Ū ♯,ε,l,h
u(τ) (t− τ) do not interact, therefore the computation of the L1

norm in the previous integral, as before can be splitted in a summation on
the points in which there are zero waves in P l,h or jumps in Ū ♯,ε,l,h

u(τ) (t− τ).

Observe that the jumps of Ū ♯,ε,l,h
u(τ) (t− τ + η) in the interval (− l

2 ,+
l
2 ), are

defined exactly as the zero waves in P l,h so we have no contribution to the
summation from this interval. Outside the interval [− l

2 − h, l2 + h], P h

coincides with the homogeneous semigroup, hence we have only the second
order contribution from the approximate rarefactions in Ū ♯,ε,l,h

u(τ)
(t− τ) as in

(2.4.60). Furthermore we might have a zero wave in the interval [− l
2−h,− l

2 ]

and a discontinuity of Ū ♯,ε,l,h
u(τ) in the point x = l

2 of order ε̃h. Using (2.4.46)

for the zero wave and (2.4.43) for the discontinuity (since P h is equal to the
homogeneous semigroup in x = l

2), we get

lim inf
η→0

‖Ū ♯,ε,l,h
u(τ) (t− τ + η) − P l,hη Ū ♯,ε,l,h

u(τ) (t− τ) ‖L1(Jt+η)

η
≤ O(1) (ε+ ε̃h)

Which completes the proof if we first let ε tend to zero, then let h tend to
zero, then l tend to zero and finally ϑ tend to zero. As in the previous proof,
the sufficiency part can be obtained following the proof for the homogeneous
case presented in [16]. �
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Proof of Proposition 2.2.4: Call S the semigroup defined in [26]. The
estimates for this semigroup outside the origin are equal to the ones for
the Standard Riemann Semigroup see [16]. Concerning the origin we first
observe that the choice (2.2.19) implies that the solution to the Riemann

problem in [26, Proposition 2.2] coincides with Ū ♯
u(τ). We need to show that

lim
ϑ→0

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣u(τ + ϑ, x) − Ū ♯
u(τ) (ϑ, x)

∣∣∣ dx = 0. (2.5.75)

with u(t, x) = (Stuo)(x). As before, we first approximate Ū ♯
u(τ) with Ū ♯,ε

u(τ)

and u(τ) with Ū ♯
u(τ)(0)=̇v̄ then we apply Lemma 2.4.3 (which holds also for

the semigroup S) and compute

1

ϑ

∫ +ϑλ̂

−ϑλ̂

∣∣∣(Sϑv̄)(x) − Ū ♯,ε
u(τ) (ϑ, x)

∣∣∣ dx

≤ L
1

ϑ

∫ τ+ϑ

τ

lim inf
η→0

‖Ū ♯,ε
u(τ) (t− τ + η) − SηŪ

♯,ε
u(τ) (t− τ) ‖L1(Jt+η)

η

The discontinuities of Ū ♯,ε
u(τ) are solved by Sη with exact shock or rarefaction

for x 6= 0 and with the a–Riemann solver in x = 0 therefore the only
difference between Ū ♯,ε

u(τ) (t− τ + η) and SηŪ
♯,ε
u(τ) (t− τ) are the rarefactions

solved in an approximate way in the first function and in an exact way in
the second. Recalling (2.4.44) we know that this error is of second order in
the size of the rarefactions.
To show that (2.5.75) holds, proceed as in (2.4.60). �



Chapter 3

Coupling Conditions for the
3 × 3 Euler System

3.1 Introduction

We consider Euler equations for the evolution of a fluid flowing in a pipe
with varying section a = a(x), see [74, Section 8.1] or [40, 64]:





∂t(aρ) + ∂x(aq) = 0
∂t(aq) + ∂x

[
aP (ρ, q,E)

]
= p (ρ, e) ∂xa

∂t(aE) + ∂x
[
aF (ρ, q,E)

]
= 0

(3.1.1)

where, as usual, ρ is the fluid density, q is the linear momentum density and
E is the total energy density. Moreover

E(ρ, q,E) =
1

2

q2

ρ
+ ρe, P (ρ, q,E) =

q2

ρ
+ p, F (ρ, q,E) =

q

ρ
(E + p) ,

(3.1.2)
with e being the internal energy density, P the flow of the linear momentum
density and F the flow of the energy density. The above equations express
the conservation laws for the mass, momentum, and total energy of the fluid
through the pipe. Below, we will often refer to the standard case of the ideal
gas, characterized by the relations

p = (γ − 1)ρe, S = ln e− (γ − 1) ln ρ , (3.1.3)

for a suitable γ > 1. Note however, that this particular equation of state
is necessary only in case (p) of Proposition 3.3.1 and has been used in the
examples in Section 3.4. In the rest of this work, the usual hypothesis [70,
formula (18.8)], that is p > 0, ∂τp(τ, S) < 0 and ∂2

ττp(τ, S) > 0, are suffi-
cient.

The case of a sharp discontinuous change in the pipe’s section due to
a junction sited at, say, x = 0, corresponds to a(x) = a− for x < 0 and

65
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a(x) = a+ for x > 0. Then, the motion of the fluid can be described by





∂tρ+ ∂xq = 0
∂tq + ∂xP (ρ, q,E) = 0
∂tE + ∂xF (ρ, q,E) = 0,

(3.1.4)

for x 6= 0, together with a coupling condition at the junction of the form:

Ψ
(
a−, (ρ, q,E)(t, 0−); a+ , (ρ, q,E)(t, 0+)

)
= 0. (3.1.5)

Above, we require the existence of the traces at x = 0 of (ρ, q,E). Var-
ious choices of the function Ψ are present in the literature, see for in-
stance [10, 22, 26, 28] in the case of the p-system and [31] for the full 3 × 3
system (3.1.4). Here, we consider the case of a general coupling condition
which comprises all the cases found in the literature. Within this setting,
we prove the well posedness of the Cauchy problem for (3.1.4)–(3.1.5). Once
this result is obtained, the extension to pipes with several junctions and to
pipes with a W1,1 section is achieved by the standard methods considered
in the literature. For the analytical techniques to cope with networks having
more complex geometry, we refer to [37].

The above statements are global in time and local in the space of the
thermodynamic variables (ρ, q,E). Indeed, for any fixed (subsonic) state
(ρ̄, q̄, Ē), there exists a bound on the total variation TV(a) of the pipe’s
section, such that all sections below this bound give rise to Cauchy problems
for (3.1.4)–(3.1.5) that are well posed in L1. We show the necessity of this
bound in the conditions found in the current literature. Indeed, we provide
explicit examples showing that a wave can be arbitrarily amplified through
consecutive interactions with the pipe walls, see Figure 3.1.

This chapter is organized as follows. The next section is divided into
three parts, the former one deals with a single junction and two pipes, then
we consider n junctions and n+1 pipes, the latter part presents the case of a
W1,1 section. Section 3.3 is devoted to different specific choices of coupling
conditions (3.1.5). In Section 3.4, an explicit example shows the necessity
of the bound on the total variation of the pipe’s section. All proofs are
gathered in Section 3.5.

3.2 Basic Well Posedness Results

Throughout, we let u = (ρ, q,E). We denote by R
+ the real halfline [0,+∞[,

while R̊
+ = ]0,+∞[. Following various results in the literature, such as [10,

11, 22, 26, 28, 31, 45], we limit the analysis in this paper to the subsonic
region given by λ1(u) < 0 < λ3(u) and λ2(u) 6= 0, where λi is the i−th
eigenvalue of (3.1.4), see (3.5.1). Without any loss of generality, we further



3.2. BASIC WELL POSEDNESS RESULTS 67

restrict to

A0 =
{
u ∈ R̊

+ × R
+ × R̊

+:λ1(u) < 0 < λ2(u)
}
. (3.2.6)

Note that we fix a priori the sign of the fluid speed v, since λ2(u) = q/ρ =
v > 0.

3.2.1 A Junction and two Pipes

We now give the definition of weak Ψ−solution to the Cauchy Problem
for (3.1.4) equipped with the condition (3.1.5), extending [22, Definition 2.1]
and [28, Definition 2.2] to the 3×3 case (3.1.4) and comprising the particular
case covered in [31, Definition 2.4].

Definition 3.2.1 Let Ψ: (R̊+ × A0)
2 → R

3, uo ∈ BV(R;A0) and two posi-
tive sections a−, a+ be given. A Ψ-solution to (3.1.4) with initial datum uo
is a map

u ∈ C0
(
R

+;L1

loc
(R+;A0)

)

u(t) ∈ BV(R;A0) for a.e. t ∈ R
+ (3.2.7)

such that

1. for x 6= 0, u is a weak entropy solution to (3.1.4);

2. for a.e. x ∈ R, u(0, x) = uo(x);

3. for a.e. t ∈ R
+, the coupling condition (3.1.5) at the junction is met.

Below, extending the 2 × 2 case of the p-system, see [10, 20, 22, 26, 28], we
consider some properties of the coupling condition (3.1.5), which we rewrite
here as

Ψ(a−, u−; a+, u+) = 0 . (3.2.8)

(Ψ0) Regularity: Ψ ∈ C1

(
(R̊+ ×A0)

2; R3
)
.

(Ψ1) No-junction case: for all a > 0 and all u−, u+ ∈ A0, then

Ψ(a, u−; a, u+) = 0 ⇐⇒ u− = u+ .

(Ψ2) Consistency: for all positive a−, a0, a+ and all u−, u0, u+ ∈ A0,

Ψ(a−, u−; a0, u0) = 0
Ψ(a0, u0; a+, u+) = 0

=⇒ Ψ(a−, u−; a+, u+) = 0 .
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Moreover, by an immediate extension of [28, Lemma 2.1], (Ψ0) ensures that
(3.2.8) implicitly defines a map

u+ = T (a−, a+;u−) (3.2.9)

in a neighborhood of any pair of subsonic states u−, u+ and sections a−, a+

that satisfy Ψ(a−, u−; a+, u+) = 0.

The technique in [24] allows to prove the following well posedness result.

Theorem 3.2.2 Assume that Ψ satisfies conditions (Ψ0)-(Ψ2). For every
ā > 0 and ū ∈ A0 such that

det
[
Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)

]
6= 0 (3.2.10)

there exist positive δ, L such that for all a−, a+ with
∣∣a+ − ā

∣∣+
∣∣a− − ā

∣∣ < δ
there exists a semigroup S: R+ ×D → D with the following properties:

1. D ⊇
{
u ∈ ū+ L1(R;A0): TV(u) < δ

}
.

2. For all u ∈ D, S0u = u and for all t, s ≥ 0, StSsu = Ss+tu.

3. For all u, u′ ∈ D and for all t, t′ ≥ 0,

∥∥Stu− St′u
′
∥∥
L1

≤ L ·
(∥∥u− u′

∥∥
L1

+
∣∣t− t′

∣∣
)

4. If u ∈ D is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at the
junction at x = 0.

5. For all uo ∈ D, the orbit t → Stuo is a Ψ-solution to (3.1.4) with
initial datum uo.

The proof is postponed to Section 3.5. Above ri(u), with i = 1, 2, 3, are
the right eigenvectors of Df(u), see (3.5.1). Moreover, by solution to the
Riemann Problems at the points of jump we mean the usual Lax solution,
see [16, Chapter 5], whereas for the definition of solution to the Riemann
Problems at the junction we refer to [26, Definition 2.1].

3.2.2 n Junctions and n + 1 Pipes

The same procedure used in [28, Paragraph 2.2] allows now to construct the
semigroup generated by (3.1.4) in the case of a pipe with piecewise constant
section

a = a0 χ]−∞,x1] +
n−1∑

j=1

aj χ[xj,xj+1[ + an χ[xn,+∞[
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with n ∈ N. In each segment
]
xj , xj+1

[
, the fluid is modeled by (3.1.4). At

each junction xj , we require condition (3.1.5), namely

Ψ(aj−1, u
−
j ; aj , u

+
j ) = 0

for all j = 1, . . . , n, where
u±j = lim

x→xj±
uj(x) . (3.2.11)

We omit the formal definition of Ψ-solution to (3.1.4)–(3.1.5) in the present
case, since it is an obvious iteration of Definition 3.2.1. The natural exten-
sion of Theorem 3.2.2 to the case of (3.1.4)–(3.2.11) is the following result.

Theorem 3.2.3 Assume that Ψ satisfies conditions (Ψ0)-(Ψ2). For any
ā > 0 and any ū ∈ A0, there exist positive M,∆, δ, L,M such that for any
pipe’s profile satisfying

a ∈ PC
(
R; ]ā− ∆, ā+ ∆[

)
with TV(a) < M (3.2.12)

there exists a piecewise constant stationary solution

û = û0χ]−∞,x1[ +

n−1∑

j=1

ûjχ]xj ,xj+1[ + ûnχ]xn,+∞[

to (3.1.4)–(3.2.11) satisfying

ûj ∈ A0 with
∣∣ûj − ū

∣∣ < δ for j = 0, . . . n

Ψ
(
aj−1, ûj−1; aj , ûj

)
= 0 for j = 1, . . . , n

TV(û) ≤ MTV(a) (3.2.13)

and a semigroup Sa: R+ ×Da → Da such that

1. Da ⊇
{
u ∈ û+ L1(R;A0): TV(u− û) < δ

}
.

2. Sa0 is the identity and for all t, s ≥ 0, Sat S
a
s = Sas+t.

3. For all u, u′ ∈ Da and for all t, t′ ≥ 0,

∥∥Sat u− Sat′u
′
∥∥
L1

≤ L ·
(∥∥(u) − u′

∥∥
L1

+
∣∣t− t′

∣∣
)
.

4. If u ∈ Da is piecewise constant, then for t small, Stu is the gluing of
solutions to Riemann problems at the points of jump in u and at each
junction xj.

5. For all u ∈ Da, the orbit t → Sat u is a weak Ψ-solution to (3.1.4)–
(3.2.11).

We omit the proof, since it is based on the natural extension to the present
3 × 3 case of [28, Theorem 2.4]. Remark that, as in that case, δ and L
depend on a only through ā and TV(a). In particular, all the construction
above is independent from the number of points of jump in a.
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3.2.3 A Pipe with a W1,1 Section

In this paragraph, the pipe’s section a is assumed to satisfy




a ∈ W1,1
(
R; ]ā− ∆, ā+ ∆[

)
for suitable ∆ > 0, ā > ∆

TV(a) < M for a suitable M > 0
a′(x) = 0 for a.e. x ∈ R \ [−X,X] for a suitable X > 0 .

(3.2.14)

The same procedure used in [28, Theorem 2.8] allows to construct the semi-
group generated by (3.1.1) in the case of a pipe which satisfies (3.2.14).
Indeed, thanks to Theorem 3.2.3, we approximate a with a piecewise con-
stant function an. The corresponding problems to (3.1.4)–(3.2.11) generate
semigroups Sn defined on domains characterized by uniform bounds on the
total variation and that are uniformly Lipschitz in time. Here, uniform
means also independent from the number of junctions. Therefore, we prove
the pointwise convergence of the Sn to a limit semigroup S, along the same
lines in [28, Theorem 2.8].

3.3 Coupling Conditions

This section is devoted to different specific choices of (3.2.8).

(S)-Solutions We consider first the coupling condition inherited from the
smooth case. For smooth solutions and pipes’ sections, system (3.1.1) is
equivalent to the 3 × 3 balance law





∂tρ+ ∂xq = − q
a
∂xa

∂tq + ∂xP (ρ, q,E) = − q2

aρ
∂xa

∂tE + ∂xF (ρ, q,E) = −F
a
∂xa.

(3.3.1)

The stationary solutions to (3.1.1) are characterized as solutions to




∂x(a(x) q) = 0
∂x
(
a(x)P (ρ, q,E)

)
= p(ρ, e) ∂xa

∂x
(
a(x)F (ρ, q,E)

)
= 0

or





∂xq = − q
a ∂xa

∂xP (ρ, q,E) = − q2

aρ ∂xa

∂xF (ρ, q,E) = −F
a ∂xa .

(3.3.2)

As in the 2× 2 case of the p-system, the smoothness of the sections induces
a unique choice for condition (3.2.8), see [28, (2.3) and (2.19)], which reads

(S) Ψ =




a+q+ − a−q−

a+P (u+) − a−P (u−) +

∫ X

−X
p
(
Ra(x), Ea(x)

)
a′(x)dx

a+F (u+) − a−F (u−)


 (3.3.3)
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where a = a(x) is a smooth monotone function satisfying a(−X) = a− and
a(X) = a+, for a suitable X > 0. Ra, Ea are the ρ and e component in the
solution to (3.3.2) with initial datum u− assigned at −X. Note that, by
the particular form of (3.3.3), the function Ψ is independent both from the
choice of X and from that of the map a, see [28, 2. in Proposition 2.7].

(P)-Solutions The particular choice of the coupling condition in [31, Sec-
tion 3] can be recovered in the present setting. Indeed, conditions (M), (E)
and (P) therein amount to the choice

(P) Ψ(a−, u−, a+, u+) =




a+q+ − a−q−

P (u+) − P (u−)
a+F (u+) − a−F (u−)


 , (3.3.4)

where a+ and a− are the pipe’s sections. Consider fluid flowing in a hori-
zontal pipe with an elbow or kink, see [51]. Then, it is natural to assume
the conservation of the total linear momentum along directions dependent
upon the geometry of the elbow. As the angle of the elbow vanishes, one
obtains the condition above, see [31, Proposition 2.6].

(L)-Solutions We can extend the construction in [10, 11, 20] to the 3× 3
case (3.1.4). Indeed, the conservation of the mass and linear momentum
in [20] with the conservation of the total energy for the third component
lead to the choice

(L) Ψ(a−, u−, a+, u+) =




a+q+ − a−q−

a+P (u+) − a−P (u−)
a+F (u+) − a−F (u−)


 , (3.3.5)

where a+ and a− are the pipe’s sections. The above is the most immedi-
ate extension of the standard definition of Lax solution to the case of the
Riemann problem at a junction.

(p)-Solutions Following [10, 11], motivated by the what happens at the
hydrostatic equilibrium, we consider a coupling condition with the conser-
vation of the pressure p(ρ) in the second component of Ψ. Thus

(p) Ψ(a−, u−, a+, u+) =




a+ q+ − a− q−

p(ρ+, e+) − p(ρ−, e−)
a+F (u+) − a−F (u−)


 , (3.3.6)

where a+ and a− are the pipe’s sections.
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Proposition 3.3.1 For every ā > 0 and ū ∈ A0, each of the coupling condi-
tions Ψ in (3.3.3), (3.3.4), (3.3.5), (3.3.6) satisfies the requirements (Ψ0)-
(Ψ2) and (3.2.10). In the case of (3.3.6), we also require that the fluid is
perfect, i.e. that (3.1.3) holds.

The proof is postponed to Section 3.5. Thus, Theorem 3.2.2 applies,
yielding the well posedness of (3.1.4)–(3.1.5) with each of the particular
choices of Ψ in (3.3.3), (3.3.4), (3.3.5), (3.3.6).

3.4 Blow-Up of the Total Variation

In the previous results a key role is played by the bound on the total variation
TV(a) of the pipe’s section. This requirement is intrinsic to problem (3.1.4)–
(3.1.5) and not due to the technique adopted above. Indeed, we show below
that in each of the cases (3.3.3), (3.3.4), (3.3.5), (3.3.6), it is possible to
choose an initial datum and a section a ∈ BV(R; [a−, a+]) with a+ − a−

arbitrarily small, such that the total variation of the corresponding solution
to (3.1.4)–(3.1.5) becomes arbitrarily large.

Consider the case in Figure 3.1. A wave σ−3 hits a junction where the

x

∆a

a

x

σ−3

σ+
3

σ++
3

t

u+

u

2ll

Figure 3.1: A wave σ−3 hits a junction where the pipe’s section increases by
∆a. From this interaction, the wave σ+

3 arises, which hits a second junction,
where the pipe section decreases by ∆a.

pipe’s section increases by, say, ∆a > 0. The fastest wave arising from
this interaction is σ+

3 , which hits the second junction where the section
diminishes by ∆a.
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Solving the Riemann problem at the first interaction amounts to solve
the system

L3

(
L2

(
T
(
L1(u;σ

+
1 )
)

;σ+
2

)
;σ+

3

)
= T

(
L3(u;σ

−
3 )
)
, (3.4.1)

where u ∈ A0, see Figure 3.2 for the definitions of the waves’ strengths σ+
i

and σ−3 . Above, T is the map defined in (3.2.9), which in turn depends
from the specific condition (3.2.8) chosen. In the expansions below, we
use the (ρ, q, e) variables, thus setting u = (ρ, q, e) throughout this section.
Differently from the case of the 2 × 2 p-system in [28], here we need to

σ−3

σ+
1 σ+

2

σ+
3

u

u+

Figure 3.2: Notation used in (3.4.1) and (3.4.4).

consider the second order expansion in ∆a = a+ − a− of the map T ; that is

T (a, a+ ∆a;u) = u+H(u)
∆a

a
+G(u)

(
∆a

a

)2

+ o

(
∆a

a

)2

(3.4.2)

The explicit expressions of H and G in (3.4.2), for each of the coupling
conditions (3.3.3), (3.3.4), (3.3.5), (3.3.6), are in Section 3.5.2.

Inserting (3.4.2) in the first order expansions in the wave’s sizes of (3.4.1),
with r̃i for i = 1, 2, 3 as in (3.5.3), we get a linear system in σ+

1 , σ
+
2 , σ

+
3 . Now,

introduce the fluid speed v = q/ρ and the adimensional parameter

ϑ =

(
v

c

)2

=
v2

γ(γ − 1)e
,

a sort of “Mach number”. Obviously, ϑ ∈ [0, 1] for u ∈ A0. We thus obtain
an expression for σ+

3 of the form

σ+
3 =

(
1 + f1(ϑ)

∆a

a
+ f2(ϑ)

(
∆a

a

)2
)
σ−3 . (3.4.3)

The explicit expressions of f1 and f2 in (3.4.3) are in Section 3.5.2.
Remark that the present situation is different from that of the 2 × 2

p-system considered in [28]. Indeed, for the p-system f2(ϑ) = f2(ϑ
+) = 0,

while here it is necessary to compute the second order term in (∆a)/a.
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Concerning the second junction, similarly, we introduce the parameter
ϑ+ = (v+/c+)2 which corresponds to the state u+. Recall that u+ is defined

by u+ = L−
3

(
T
(
L3(u;σ

−
3 );σ+

3

))
, see Figure 3.2 and Section 3.5.2 for the

explicit expressions of ϑ+. We thus obtain the estimate

σ++
3 =

(
1 − f1(ϑ

+)
∆a

a
+ f2(ϑ

+)

(
∆a

a

)2
)
σ+

3 , (3.4.4)

where ϑ+ = ϑ+
(
ϑ, σ−3 , (∆a)/a

)
. Now, at the second order in (∆a)/a and

at the first order in σ−3 , (3.4.3) and (3.4.4) give

σ++
3 =

(
1 − f1(ϑ

+)
∆a

a
+ f2(ϑ

+)

(
∆a

a

)2
)

×
(

1 + f1(ϑ)
∆a

a
+ f2(ϑ)

(
∆a

a

)2
)
σ−3

=

(
1 + χ(ϑ)

(
∆a

a

)2
)
σ−3 . (3.4.5)

Indeed, computations show that f1 (ϑ) − f1

(
ϑ+
)

vanishes at the first order
in (∆a)/a, as in the case of the p-system. The explicit expressions of χ are
in Section 3.5.2.

It is now sufficient to compute the sign of χ. If it is positive, then
repeating the interaction in Figure 3.1 a sufficient number of times leads to
an arbitrarily high value of the refracted wave σ3 and, hence, of the total
variation of the solution u.

Below, Section 3.5 is devoted to the computations of χ in the different
cases (3.3.3), (3.3.4), (3.3.5) and (3.3.6). To reduce the formal complexities
of the explicit computations below, we consider the standard case of an ideal
gas characterized by (3.1.3) with γ = 5/3.

The results of these computations are in Figure 3.3. They show that in
all the conditions (3.1.5) considered, there exists a state u ∈ A0 such that
χ(ϑ) > 0, showing the necessity of condition (3.2.12). However, in case (L),
it turns out that χ is negative on an non trivial interval of values of ϑ. If
ū is chosen in this interval, the wave σ3 in the construction above is not
magnified by the consecutive interactions. The computations leading to the
diagrams in Figure 3.3 are deferred to Section 3.5.2.
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Figure 3.3: Plots of χ as a function of ϑ. Top, left, case (S); right, case (P);
bottom, left, case (L); right, case (p). Note that in all four cases, χ attains
strictly positive values, showing the necessity of the requirement (3.2.12).
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3.5 Technical Details

We recall here basic properties of the Euler equations (3.1.1), (3.1.4). The
characteristic speeds and the right eigenvectors have the expressions

λ1 = q
ρ − c λ2 = q

ρ λ3 = q
ρ + c

r1 =




−ρ
ρc− q

qc−E − p


 r2 =




ρ
q

E + p− ρ2c2

∂ep


 r3 =




ρ
q + ρc

E + p+ qc




(3.5.1)

whose directions are chosen so that ∇λi · ri > 0 for i = 1, 2, 3. In the case
of an ideal gas, the sound speed c =

√
∂ρp+ ρ−2 p ∂ep becomes

c =
√
γ(γ − 1)e . (3.5.2)

The shock and rarefaction curves curves of the first and third family are:

S1(uo, σ) =





ρ = −σ + ρo

v = vo −
√

− (p− po)
(

1
ρ − 1

ρo

)

e = eo − 1
2 (p+ po)

(
1
ρ − 1

ρo

)
for

σ ≤ 0
ρ ≥ ρo
v ≤ vo
S ≥ So

S3(uo, σ) =





ρ = σ + ρo

v = vo −
√

− (p− po)
(

1
ρ − 1

ρo

)

e = eo − 1
2 (p+ po)

(
1
ρ − 1

ρo

)
for

σ ≤ 0
ρ ≤ ρo
v ≤ vo
S ≤ So

R1(uo, σ) =





ρ = −σ + ρo

v = vo −
∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≤ ρo
v ≥ vo
e ≤ eo

R3(uo, σ) =





ρ = σ + ρo

v = vo +

∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≥ ρo
v ≥ vo
e ≥ eo

The 1,2,3-Lax curves have the expressions

L1(σ; ρo, qo, Eo) =

{
S1(σ; ρo, qo, Eo), σ < 0
R1(σ; ρo, qo, Eo), σ ≥ 0

L2(σ; ρo, qo, Eo) =





ρ = σ + ρo
v = vo
p(ρ, e) = p(ρo, eo)

L3(σ; ρo, qo, Eo) =

{
S3(ρ; ρl, ql, El), σ < 0
R3(σ; ρo, qo, Eo), σ ≥ 0
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Their reversed counterparts are

S−
1 (uo, σ) =





ρ = σ + ρo

v = vo +

√
− (p− po)

(
1
ρ − 1

ρo

)

e = eo − 1
2 (p+ po)

(
1
ρ − 1

ρo

)
for

σ ≤ 0
ρ ≤ ρo
v ≥ vo
S ≤ So

S−
3 (uo, σ) =





ρ = −σ + ρo

v = vo +

√
− (p− po)

(
1
ρ − 1

ρo

)

e = eo − 1
2 (p+ po)

(
1
ρ − 1

ρo

)
for

σ ≤ 0
ρ ≥ ρo
v ≥ vo
S ≥ So

R−
1 (uo, σ) =





ρ = σ + ρo

v = vo −
∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≥ ρo
v ≤ vo
e ≥ eo

R−
3 (uo, σ) =





ρ = −σ + ρo

v = vo +

∫ p

po

[(ρ c)(p, So)]
−1 dp

S(ρ, e) = S(ρo, eo)

for

σ ≥ 0
ρ ≤ ρo
v ≤ vo
e ≤ eo

and

L−
1 (σ; ρo, qo, Eo) =

{
S−

1 (σ; ρo, qo, Eo), σ < 0
R−

1 (σ; ρo, qo, Eo), σ ≥ 0

L−
2 (σ; ρo, qo, Eo) =





ρ = −σ + ρo
v = vo
p(ρ, e) = p(ρo, eo)

L−
3 (σ; ρo, qo, Eo) =

{
S−

3 (σ; ρo, qo, Eo), σ < 0
R−

3 (σ; ρo, qo, Eo), σ ≥ 0 .

In the (ρ, q, e) space, for a perfect ideal gas, the tangent vectors to the
Lax curves are:

r̃1 =




−1

− q
ρ −

√
γ(γ − 1)e

−(γ − 1) eρ


 r̃2 =




1
q
ρ

− e
ρ


 r̃3 =




1
q
ρ −

√
γ(γ − 1)e

(γ − 1) eρ


(3.5.3)

3.5.1 Proofs of Section 3.2

The following result will be of use in the proof of Proposition 3.2.2.
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Proposition 3.5.1 Let σi 7→ Li(u0, σi) be the i-th Lax curve and σi 7→
L−
i (u0, σi) be the reversed i-th Lax curve through u0, for i = 1, 2, 3. The

following equalities hold:

∂L1

∂σ1 |σ1=0
=




1
λ1(uo)

Eo + po
ρo

− qo
ρo
co


 ,

∂L2

∂σ2 |σ2=0
=




1
λ2(uo)

Eo + po
ρo

− ρo c
2
o

∂epo


 ,

∂L3

∂σ3 |σ3=0
=




1
λ3(uo)

Eo + po
ρo

+
qo
ρo
co


 ,

for i = 1, 2, 3
∂L−

i

∂σi |σi=0
= −∂Li

∂σi |σi=0
,

∂Li
∂ρo |σi=0

=




1
0
0


 ,

∂Li
∂qo |σi=0

=




0
1
0


 ,

∂Li
∂Eo |σi=0

=




0
0
1


 ,

+
∂L−

i

∂ρo |σi=0

=
∂Li
∂ρo |σi=0

,
∂L−

i

∂qo |σi=0

=
∂Li
∂qo |σi=0

,
∂L−

i

∂Eo |σi=0
=
∂Li
∂Eo |σi=0

.

The proof is immediate and, hence, omitted.

Proof of Theorem 3.2.2. Following [25, Proposition 4.2], the 3 × 3 sys-
tem (3.1.4) defined for x ∈ R can be rewritten as the following 6× 6 system
defined for x ∈ R

+:
{
∂tU + ∂xF(U) = 0 (t, x) ∈ R

+ × R
+

b
(
U(t, 0+)

)
= 0 t ∈ R

+ (3.5.4)

the relations between U and u = (ρ, q,E), between F and the flow in (3.1.4)
being

U(t, x) =




ρ(t,−x)
q(t,−x)
E(t,−x)
ρ(t, x)
q(t, x)
E(t, x)




and F(U) =




U2

P (U1, U2, U3)
F (U1, U2, U3)

U5

P (U4, U5, U6)
F (U4, U5, U6)




with x ∈ R
+ and E,P, F defined in (3.1.2); whereas the boundary condition

in (3.5.4) is related to (3.1.5) by

b(U) = Ψ
(
a−, (U1, U2, U ;3 ); a+, (U4, U5, U6)

)
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for fixed sections a− and a+.

The thesis now follows from [24, Theorem 2.2]. Indeed, the assump-
tions (γ), (b) and (f) therein are here satisfied. More precisely, condi-
tion (γ) follows from the choice (3.2.6) of the subsonic region A0. Simple
computations show that condition (b) reduces to

det

[
Du−Ψ · ∂L1

∂σ1 |σ1=0
Du+Ψ · ∂L

−

2

∂σ2 |σ2=0
Du+Ψ · ∂L

−

2

∂u+ |σ2=0
· ∂L

−

3

∂σ3 |σ3=0

]

= det
[
Du−Ψ · r1(ū) −Du+Ψ · r2(ū) −Du+Ψ · r3(ū)

]

= det
[
Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)

]
,

which is non zero for assumption if ū ∈ A0 and ā > 0. Condition (f) needs
more care. Indeed, system (3.5.4) is not hyperbolic, for it is obtained gluing
two copies of the Euler equations (3.1.4). Nevertheless, the two systems are
coupled only through the boundary condition, hence the whole wave front
tracking procedure in the proof of [24, Theorem 2.2] applies, see also [25,
Proposition 4.5]. �

Proof of Proposition 3.3.1. It is immediate to check that each of
the coupling conditions (3.3.3), (3.3.4), (3.3.5), (3.3.6) satisfies the require-
ments (Ψ0) and (Ψ1).

To prove that (Ψ2) is satisfied, we use an ad hoc argument for condi-
tion (S). In all the other cases, note that the function Ψ admits the rep-
resentation Ψ(a−, u−; a+, u+) = ψ(a−, u−) − ψ(a+, u+). Therefore, (Ψ2)
trivially holds.

We prove below (3.2.10) in each case separately. Note however that for
any of the considered choices of Ψ,

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā = −Du−Ψ(a−, u−, a+, u+)|u=ū, a=ā (3.5.5)

so that (3.2.10) reduces to

det
[
Du−Ψ · r1(ū) Du+Ψ · r2(ū) Du+Ψ · r3(ū)

]

= − detDu+Ψ · det
[
r1(ū) r2(ū) r3(ū)

]
.

Thus, it is sufficient to prove that detDu+Ψ(a−, u−, a+, u+)|u=ū, a=ā 6= 0.

(S)-solutions To prove that the coupling condition (3.3.3) satisfies (Ψ2),
simply use the additivity of the integral and the uniqueness of the solution
to the Cauchy problem for the ordinary differential equation (3.3.2).

Next, we have

Du

(∫ X

−X
p
(
Ra(x), Ea(x)

)
a′(x) dx

)

|u=ū, a=ā

= 0 ,
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since a′(x) = 0 for all x, because a− = a+ = ā. Thus, Ψ in (3.3.3) satisfies

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= ā3 det




0 1 0

− q̄2

ρ̄2
+ ∂ρp̄+ ∂ep̄

ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
q̄
ρ̄

(
2 − ∂ep̄

ρ̄

)
∂ep̄
ρ̄

− q̄
ρ̄

(
∂ρp̄+ ∂ep̄

ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
− Ē+p̄

ρ̄

)
Ē+p̄
ρ̄ − ∂ep̄

ρ̄
q̄2

ρ̄2
− q̄
ρ̄

(
∂ep̄
ρ̄ + 1

)




= −ā3 λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(P)-solutions Concerning condition (3.3.4), we have

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= det




0 ā 0

− q̄2

ρ̄2
+ ∂ρp̄+ ∂ep̄

ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
q̄
ρ̄

(
2 − ∂ep̄

ρ̄

)
∂ep̄
ρ̄

−ā q̄ρ̄
(
∂ρp̄+ ∂ep̄

ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
− Ē+p̄

ρ̄

)
ā Ē+p̄

ρ̄ − ā∂ep̄
ρ̄
q̄2

ρ̄2
−ā q̄ρ̄

(
∂ep̄
ρ̄ + 1

)




= −ā2λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(L)-solution For condition (3.3.5) the computations very similar to the
above case:

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā = −ā3λ1(ū)λ2(ū)λ3(ū),

which is non zero if ū ∈ A0.

(p)-solution Finally, concerning condition (3.3.6),

Du+Ψ(a−, u−, a+, u+)|u=ū, a=ā

= det




0 ā 0

∂ρp̄+ ∂ep̄
ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
− q̄
ρ̄2
∂ep̄

∂ep̄
ρ̄

−ā q̄ρ̄
(
∂ρp̄+ ∂ep̄

ρ̄

(
q̄2

ρ̄2
− Ē

ρ̄

)
− Ē+p̄

ρ̄

)
ā Ē+p̄

ρ̄ − ā∂ep̄
ρ̄
q̄2

ρ̄2
−ā q̄ρ̄

(
∂ep̄
ρ̄ + 1

)




= ā2λ2(ū)
(
c2 + λ2

2(ū)∂ep̄
ρ̄

)
,

which is non zero if ū ∈ A0 and if the fluid is perfect, i.e. (3.1.3) holds. �
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3.5.2 Computation of χ in (3.4.5)

The Case of Condition (S) Let Ψ be defined in (3.3.3) and set

Σ(a−, a+, u) =

∫ X

−X
p
(
Ra(x), Ea(x)

)
a′(x)dx

where the functions Ra, Ea have the same meaning as in (3.3.3). A per-
turbative method allows to compute the solution to (3.3.2) with a second
order accuracy in (∆a)/a. Then, long elementary computations allow to get
explicitly the terms H and G in (3.4.2) of the second order expansion of T :

H(ρ, q, e) =




− ϑ3 − 4ϑ2 + 5ϑ− 2

ϑ3 − 3ϑ2 + 3ϑ− 1
ρ

−q

− 2
(
−ϑ3 + 2ϑ2 − ϑ

)

3
(
ϑ3 − 3ϑ2 + 3ϑ− 1

) e




G(ρ, q, e) =




− 4
(
ϑ3 − 2ϑ2

)

3
(
ϑ3 − 3ϑ2 + 3ϑ− 1

) ρ

q

−70ϑ4 − 257ϑ3 + 342ϑ2 − 207ϑ + 36

18
(
ϑ3 − 3ϑ2 + 3ϑ − 1

) e



.

Moreover, the coefficients f1, f2 in (3.4.3) read

f1(ϑ) = − −3ϑ + (ϑ− 3)
√
ϑ− 3

6
√
ϑ (ϑ− 1) − 6 (ϑ− 1)

f2(ϑ) =

√
ϑ
(
126ϑ4 − 505ϑ3 + 758ϑ2 − 489ϑ + 270

)

72
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ− 1

)
− ϑ3 + 3ϑ2 − 3ϑ + 1

)

+
42ϑ4 − 183ϑ3 + 278ϑ2 + 33ϑ + 54

72
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ − 1

)
− ϑ3 + 3ϑ2 − 3ϑ + 1

) .

Next, χ is given by

χ =

√

ϑ
“

126 ϑ4
− 506 ϑ3 + 773 ϑ2

− 480 ϑ + 279
”

+ 42 ϑ4
− 174 ϑ3 + 311 ϑ2 + 96 ϑ + 45

36
“√

ϑ (ϑ3
− 3 ϑ2 + 3 ϑ − 1) − ϑ3 + 3 ϑ2

− 3 ϑ + 1
” .

The Case of Condition (P) Let Ψ be defined in (3.3.4). With reference
to (3.4.2), we show below explicitly the terms H and G in (3.4.2) of the
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second order expansion of T ,

H(ρ, q, e) =




8
(
−ϑ3 + 2ϑ2 − ϑ

)

3
(
ϑ3 − 3ϑ2 + 3ϑ − 1

) ρ

−q

−2
(
5ϑ4 − 7ϑ3 − ϑ2 + 3ϑ

)

9
(
ϑ3 − 3ϑ2 + 3ϑ − 1

) e




G(ρ, q, e) =




64
(
ϑ3 + 3ϑ2

)

27
(
ϑ3 − 3ϑ2 + 3ϑ− 1

) ρ

q

−565ϑ4 − 1599ϑ3 + 927ϑ2 − 405ϑ

81
(
ϑ3 − 3ϑ2 + 3ϑ− 1

) e



.

Moreover, the coefficients f1, f2 in (3.4.3) read

f1(ϑ) =

√
ϑ
(
9ϑ2 + 2ϑ − 27

)
+ 3ϑ2 − 42ϑ − 9

18
√
ϑ (ϑ− 1) − 18 (ϑ− 1)

f2(ϑ) =

√
ϑ
(
154ϑ5 + 931ϑ4 − 4416ϑ3 + 6570ϑ2 + 990ϑ + 891

)

324
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ − 1

)
− ϑ3 + 3ϑ2 − 3ϑ + 1

)

+
86ϑ5 − 311ϑ4 − 752ϑ3 + 7038ϑ2 + 1026ϑ + 81

324
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ − 1

)
− ϑ3 + 3ϑ2 − 3ϑ + 1

) .

Next, χ is given by

χ =

√
ϑ
(
407ϑ5 + 1931ϑ4 − 7858ϑ3 + 14766ϑ2 + 1179ϑ + 1863

)

324
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ− 1

)
− ϑ3 + 3ϑ2 − 3ϑ + 1

)

+
−23ϑ5 + 141ϑ4 + 2002ϑ3 + 15714ϑ2 + 2565ϑ + 81

324
(√

ϑ
(
ϑ3 − 3ϑ2 + 3ϑ− 1

)
− ϑ3 + 3ϑ2 − 3ϑ+ 1

) .

The Case of Condition (L) Let Ψ be defined in (3.3.5). Then,

H(ρ, q, e) =




−ρ
−q
0


 and G(ρ, q, e) =




− 4ϑ

3 (ϑ− 1)
ρ

q

−35ϑ2 − 9 (4ϑ − 1)

9 (ϑ− 1)
e



.

The coefficients f1, f2 in (3.4.3) read

f1(ϑ) = 0

f2(ϑ) =

√
ϑ
(
63ϑ2 − 106ϑ + 27

)
+ 21ϑ2 − 78ϑ + 9

36
(√

ϑ (ϑ− 1) − ϑ+ 1
) ,
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so that χ is

χ =

√
ϑ
(
63ϑ2 − 106ϑ + 27

)
+ 21ϑ2 − 78ϑ + 9

18
(√

ϑ (ϑ− 1) − ϑ+ 1
) .

The Case of Condition (p) Let Ψ be defined in (3.3.6). With reference
to (3.4.2),

H(ρ, q, e) =




− 2
(
4ϑ3 + 12ϑ2 + 9ϑ

)

4
(
2ϑ3 + 9ϑ2

)
+ 27 (2ϑ+ 1)

ρ

−q
2
(
4ϑ3 + 12ϑ2 + 9ϑ

)

4
(
2ϑ3 + 9ϑ2

)
+ 27 (2ϑ + 1)

e




G(ρ, q, e) =




− 4
(
ϑ3 + 3ϑ2

)

4
(
2ϑ3 + 9ϑ2

)
+ 27 (2ϑ+ 1)

ρ

q
12
(
ϑ3 + 2ϑ2

)

4
(
2ϑ3 + 9ϑ2

)
+ 27 (2ϑ + 1)

e



,

with f1 and f2 given by

f1(ϑ) =
−2ϑ2 + 4ϑ

3

2 + 3ϑ − 9

2
(
4ϑ2 + 12ϑ + 9

)

f2(ϑ) =
32ϑ4 + 8

√
ϑ
(
4ϑ3 + 9ϑ2 − 9ϑ

)
+ 316ϑ3 + 558ϑ2 + 216ϑ + 81

6
(
16ϑ4 + 96ϑ3 + 216ϑ2 + 216ϑ + 81

) ,

so that

χ =
60ϑ4 + 96

√
ϑ
(
ϑ3 + ϑ2 − 3ϑ

)
+ 700ϑ3 + 1107ϑ2 − 54ϑ + 81

6
(
16ϑ4 + 96ϑ3 + 216ϑ2 + 216ϑ + 81

) .



ϑ
+ = ϑ −
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ϑ
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√
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48 (2ϑ4 + 12 ϑ3 + 27 ϑ2 + 27 ϑ + 12)

„
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a

«2

Above are the values of ϑ+ in the cases (S), (P), (L) and (p).



Chapter 4

A 2–Phase Traffic Model
Based on a Speed Bound

4.1 Introduction

We present here a new macroscopic traffic model displaying 2 phases, based
on a non-smooth 2× 2 system of conservation laws. We extend the classical
LWR traffic model allowing different maximal speeds to different vehicles.
Then, we add a uniform bound on the traffic speed.

Several observations of traffic flow result in underlining two different
behaviors, sometimes called phases, see [18, 36, 39, 53]. At low density and
high speed, the flow appears to be reasonably described by a function of the
(mean) traffic density. On the contrary, at high density and low speed, flow
is not a single valued function of the density.

Figure 4.1: Experimental fundamental diagrams. Left, [55, Figure 1] and,
right, [53, Figure 1], (see also [48]).

Here we present a model providing an explanation to this phenomenon,
its two key features being:

1. At a given density, different drivers may choose different velocities;
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2. There exists a uniform bound on the speed.

By “bound”, here we do not necessarily mean an official speed limit. On the
contrary, we assume that different drivers may have different speeds at the
same traffic density. Nevertheless, there exists a speed Vmax that no driver
exceeds. As a result from this postulate, we obtain a fundamental diagram
very similar to those usually observed, see Figure 4.1 and Figure 4.2, left.
Besides, the evolution prescribed by the model so obtained is reasonable and
coherent with that of other traffic models in the literature. In particular,
we verify that the minimal requirements stated in [6, 34] are satisfied.

Recall the classical Lighthill-Whitham [62] and Richards [67] (LWR)
model

∂tρ+ ∂x (ρV ) = 0 (4.1.1)

for the traffic density ρ. Assume that the speed V is not the same for all
drivers. More precisely, different drivers differ in their maximal speed w,
so that V = wψ(ρ), with w ∈ [w̌, ŵ] , w̌ > 0, being transported along the
road at the mean traffic speed V . We identify the different behaviors of the
different drivers by means of their maximal speed, see also [12, 13]. One is
thus lead to study the equations

{
∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = wψ(ρ) . (4.1.2)

Here, the role of the second equation is to let the maximal velocity w be
propagated with the traffic speed. Indeed, w is a specific feature of every
single driver, in other words is a Lagrangian marker. Therefore this model
falls into the class of models introduced in [6], and later on extended in [60],
see also [8, formula (1.2)].

Introducing a uniform bound Vmax on the speed, we obtain the model
{
∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = min
{
Vmax, w ψ(ρ)

}
. (4.1.3)

We choose to reformulate the above quasilinear system in conservation form,
similarly to [54, formula (1)], [7, formula (2.2)], [60, formula (1)], see also [71],
as follows:

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

with v(ρ, η) = min

{
Vmax,

η

ρ
ψ(ρ)

}

(4.1.4)
see the Remark 4.5.3 for further comments on this choice. This model
consists of a 2× 2 system of conservation laws with a C0,1 but not C1 flow.
Note in fact that η/ρ = w ∈ [w̌, ŵ]. A 2 × 2 system of conservation laws
with a flow having a similar C0,1 regularity is presented in [46] and studied
in [3].
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From the traffic point of view, we remark that, under mild reasonable
assumptions on the function ψ, the flow in (4.1.4) may vanish if and only
if ρ = 0, i.e the road is empty, or ρ = R, i.e. the road is fully congested.
It is also worth noting the agreement between experimental fundamental
diagrams often found in the literature and the one related to (4.1.4), see
Figure 4.2, left.

From the analytical point of view, we can extend the present treat-
ment to the more general case of a maximal speed Vmax that depends on ρ,
i.e. Vmax = Vmax(ρ). However, we prefer to highlight the main features of
the model (4.1.4) in its simplest analytical framework.

As we already said, the model studied here, inspired from [18], falls into
the class of “Aw-Rascle” models. So we could use the approach and the
theoretical results of [5], which should apply here with minor modifications.

However, our approach is different: here, contrarily to the above ref-
erence, we establish directly a connection between the Follow-The-Leader
model in Section 4.4 and the macroscopic system (4.1.4), without viewing
both systems as issued from a same fully discrete system (Godunov scheme)
with different limits, and without passing in Lagrangian coordinates. For
related works, including vacuum, see also [4, 41, 42].

This chapter is arranged in the following way: in the next section we
study the Riemann Problem for (4.1.4) and present the qualitative properties
of this model from the point of view of traffic. In Section 4.3 we compare
the present model with others in the current literature and in Section 4.4
we establish the connection with a microscopic Follow-The-Leader model
based on ordinary differential equations. We also show rigorously that the
macroscopic model (4.1.4) can be viewed as the limit of the microscopic
model as the number of vehicles increases to infinity. All proofs are gathered
in the last section.

4.2 Notation and Main Results

We assume throughout the following hypotheses:

a. R, w̌, ŵ, Vmax are positive constants, with w̌ < ŵ.

b. ψ ∈ C2
(
[0, R]; [0, 1]

)
is such that

ψ(0) = 1, ψ(R) = 0,

ψ′(ρ) ≤ 0,
d2

dρ2

(
ρψ(ρ)

)
≤ 0 for all ρ ∈ [0, R] .

c. w̌ > Vmax.

Here, R is the maximal possible density, typically R = 1 if ρ is normalized as
in Section 4.4; w̌, respectively ŵ, is the minimum, respectively maximum,
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of the maximal speeds of each vehicle; Vmax is the overall uniform upper
bound on the traffic speed. At b., the first three assumptions on Ψ are the
classical conditions usually assumed on speed laws, while the fourth one is
technically necessary in the proof of Theorem 4.2.1. The latter condition
means that all drivers do feel the presence of the speed limit.

Moreover, we introduce the notation

F =
{
(ρ,w) ∈ [0, R] × [w̌, ŵ]: v(ρ, ρw) = Vmax

}
(4.2.1)

C =
{
(ρ,w) ∈ [0, R] × [w̌, ŵ]: v(ρ, ρw) = wψ(ρ)

}
(4.2.2)

to denote the Free and the Congested phases. Note that F and C are closed
sets and F ∩C 6= ∅. Note also that F is 1–dimensional in the (ρ, ρv) plane of

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

ŵ

w̌

0

η

ρR

F
C

Figure 4.2: The phases F and C in the coordinates, from left to right, (ρ, ρv),
(ρ,w) and (ρ, η).

the fundamental diagram, while it is 2–dimensional in the (ρ,w) and (ρ, η)
coordinates, see Figure 4.2. See also Figure 4.3 to have a vision in three
dimensions.

ρ

ρv w

ul

um
ur

F C
ŵ

w̌

R

Figure 4.3: The phases F and C in the coordinates (ρ, ρv,w). Note that F
is contained in a plane. This figure shows an example of Riemann Problem
when ul = (ρl, ρlvl, wl) ∈ F and ur = (ρr, ρrvr, wr) ∈ C.
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Let ρ∗ be the maximum of the points of maximum of the flow, i.e. ρ∗ =

max
{
ρ ∈ [0, R]: ρψ(ρ) = maxr∈[0,R] r ψ(r)

}
. Then, the condition

ŵψ (ρ∗) ≥ Vmax (4.2.3)

is a further reasonable assumption. Indeed, it means that the maximum flow
is attained in the free phase, coherently with the capacity drop phenomenon,
see for instance [47]. However, (4.2.3) is not necessary in the following
results.

Our next goal is to study the Riemann Problem for (4.1.4).

Theorem 4.2.1 Under the assumptions a., b. and c., for all states (ρl, ηl),
(ρr, ηr) ∈ F ∪C, the Riemann problem consisting of (4.1.4) with initial data

ρ(0, x) =

{
ρl if x < 0
ρr if x > 0

η(0, x) =

{
ηl if x < 0
ηr if x > 0

(4.2.4)

admits a unique self similar weak solution (ρ, η) = (ρ, η)(t, x) constructed as
follows:

(1) If (ρl, ηl), (ρr, ηr) ∈ F , then

(ρ, η)(t, x) =

{
(ρl, ηl) if x < Vmaxt
(ρr, ηr) if x > Vmaxt .

(4.2.5)

(2) If (ρl, ηl), (ρr, ηr) ∈ C, then (ρ, η) consists of a 1–Lax wave (shock or
rarefaction) between (ρl, ηl) and (ρm, ηm), followed by a 2–contact dis-
continuity between (ρm, ηm) and (ρr, ηr). The middle state (ρm, ηm) is
in C and is uniquely characterized by the two conditions ηm/ρm = ηl/ρl

and v(ρm, ηm) = v(ρr, ηr).

(3) If (ρl, ηl) ∈ C and (ρr, ηr) ∈ F , then the solution (ρ, η) consists of a
rarefaction wave separating (ρr, ηr) from a state (ρm, ηm) and by a linear
wave separating (ρm, ηm) from (ρl, ηl). The middle state (ρm, ηm) is in
F∩C and is uniquely characterized by the two conditions ηm/ρm = ηr/ρr

and v(ρm, ηm) = V .

(4) If (ρl, ηl) ∈ F and (ρr, ηr) ∈ C, then (ρ, η) consists of a shock be-
tween (ρl, ηl) and (ρm, ηm), followed by a contact discontinuity between
(ρm, ηm) and (ρr, ηr). The middle state (ρm, ηm) is in C and is uniquely
characterized by the two conditions ηm/ρm = ηl/ρl and v(ρm, ηm) =
v(ρr, ηr).



90 CHAPTER 4. A 2–PHASE TRAFFIC MODEL

(If d2

dρ2

(
ρψ(ρ)

)
vanishes, then the words “shock” and “rarefaction” above

have to be understood as “contact discontinuities”).
We now pass from the solution to single Riemann problems to the prop-

erties of the Riemann Solver, i.e. of the map R: (F ∪ C)2 → BV(R;C ∪ F )

such that R
(
(ρl, ηl), (ρr , ηr)

)
is the solution to (4.1.4)–(4.2.4) computed at

time, say, t = 1.
To this aim, recall the following definition, see [18]:

Definition 4.2.2 A Riemann Solver R is consistent if the following two
conditions hold for all (ρl, ηl), (ρm, ηm), (ρr, ηr) ∈ F ∪ C, and x̄ ∈ R:

(C1) If R
(
(ρl, ηl), (ρm, ηm)

)
(x̄) = (ρm, ηm) and R

(
(ρm, ηm), (ρr, ηr)

)
(x̄)

= (ρm, ηm), then

R
(
(ρl, ηl), (ρr, ηr)

)
=





R
(
(ρl, ηl), (ρm, ηm)

)
,if x < x̄ ,

R
(
(ρm, ηm), (ρr, ηr)

)
,if x ≥ x̄ ,

(C2) If R
(
(ρl, ηl), (ρr, ηr)

)
(x̄) = (ρm, ηm), then

R
(
(ρl, ηl), (ρm, ηm)

)
=





R
(
(ρl, ηl), (ρr, ηr)

)
, if x ≤ x̄ ,

(ρm, ηm) , if x > x̄ ,

R
(
(ρm, ηm), (ρr, ηr)

)
=





(ρm, ηm) , if x < x̄ ,

R
(
(ρl, ηl), (ρr, ηr)

)
, if x ≥ x̄ .

Essentially, (C1) states that whenever two solutions to two Riemann prob-
lems can be placed side by side, then their juxtaposition is again a solution
to a Riemann problem. Condition (C2) is the vice-versa.

t

x

(ρl,ηl)

(ρm,ηm)

t

x

(ρr ,ηr)

(ρm,ηm)

t

x

(ρr ,ηr)

(ρm,ηm)

(ρl,ηl)

Figure 4.4: The conditions (C1) and (C2).

The next result characterizes the Riemann Solver defined above.

Proposition 4.2.3 Let the assumptions a., b. and c. hold. The Riemann
Solver R defined in Theorem 4.2.1 enjoys the following three conditions
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1. It is consistent in the sense of Definition 4.2.2.

2. If (ρl, ηl), (ρr, ηr) ∈ F , then R
(
(ρl, ηl), (ρr, ηr)

)
is the standard solution

to the linear system

{
∂tρ+ ∂x (ρVmax) = 0
∂tη + ∂x (ηVmax) = 0,

(4.2.6)

3. If (ρl, ηl) ∈ F ∪ C and (ρr, ηr) ∈ C, then R
(
(ρl, ηl), (ρr, ηr)

)
is the

standard Lax solution to




∂tρ+ ∂x
(
η ψ(ρ)

)
= 0

∂tη + ∂x

(
η2

ρ ψ(ρ)
)

= 0 .
(4.2.7)

Moreover, the conditions (C1), 2. and 3. uniquely characterize the Rie-
mann Solver R.

The above properties are of use, for instance, in using model (4.1.4) on traffic
networks, according to the techniques described in [37].

The next result presents the relevant qualitative properties of the Rie-
mann Solver defined in Theorem 4.2.1 from the point of view of traffic.

Proposition 4.2.4 Let the assumptions a., b. and c. hold. Then, the
Riemann Solver R enjoys the following properties:

1. If the initial datum attains values in F , C, or F ∪C then, respectively,
the solution attains values in F , C, or F ∪ C.

2. Traffic density and speed are uniformly bounded.

3. Traffic speed vanishes if and only if traffic density is maximal.

4. No wave in the solution to (4.1.4)–(4.2.4) may travel faster than traffic
speed, i.e. information is carried by vehicles.

4.3 Comparison with Other Macroscopic Models

This section is devoted to compare the present model (4.1.4) with a sample
of models from the literature. In particular, we consider differences in the
number of free parameters and functions, in the fundamental diagram and
in the qualitative structures of the solutions. Recall that the evolution de-
scribed by model (4.1.4) and the corresponding invariant domain depends on
the function ψ and on the parameters Vmax, R, w̌ and ŵ. The fundamental
diagram of (4.1.4) is in Figure 4.2, left.
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4.3.1 The LWR Model

In the LWR model (4.1.1), a suitable speed law has to be selected, analogous
to the choice of ψ in (4.1.4). Besides, in (4.1.4) we also have to set Vmax, R
and the two geometric positive parameters w̌ and ŵ.

The fundamental diagram of (4.1.4) seems to better agree with experi-
mental data than that of (4.1.1), shown in Figure 4.5, left. Indeed, compare

ρ v

0 R
ρ

ρ v

0 R
ρ

ρ v

0 R
ρ

F
C

Figure 4.5: Fundamental diagrams, from left to right, of the (LWR)
model (4.1.1), of the (AR) model (4.3.1) and of the 2-phase model (4.3.2).

Figure 4.2, left with the measurements in Figure 4.1.

As long as the data are in F , the solutions to (4.1.4) are essentially the
same as those of (4.1.1). In the congested phase, the solutions to (4.1.4)
obviously present a richer structure, for they generically contain 2 waves
instead of 1. In particular, the (LWR) model (4.1.1) may not describe the
”homogeneous-in-speed” solutions, i.e. a type of synchronized flow, see [53,
Section 2.2] and [48, 73], which is described by the 2-waves in (4.1.4).

Finally, note that if in (4.1.4) the two geometric parameters w̌ and ŵ co-
incide, then we recover the LWR (4.1.1) model with V (ρ) = min{Vmax, ŵ ψ(ρ)}.

4.3.2 The Aw-Rascle Model

Consider now the Aw–Rascle (AR) model

{
∂tρ+ ∂x

[
ρ v(ρ, y)

]
= 0

∂ty + ∂x
[
y v(ρ, y)

]
= 0

v(ρ, y) =
y

ρ
− p(ρ) (4.3.1)

introduced in [6] and successively refined in several papers, see for instan-
ce [5, 8, 39, 42, 43, 44, 49, 66, 69] and the references therein.

Note that w in (4.1.4) plays a role analogous to that of v+p (ρ) in (4.3.1).

In the (AR) model, R and the “pressure” function need to be selected,
similarly to R and ψ in (4.1.4). No other parameter appears in (4.3.1), but
the definition of an invariant domain requires two parameters, with a role
similar to that of w̌ and ŵ. Indeed, an invariant domain for (4.3.1) is

{
(ρ, y): ρ ∈ [0, R] and y ∈

[
ρ
(
v− + p(ρ)

)
, ρ
(
v− + p(ρ)

)]}
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see Figure 4.5, center, and depends on the speeds v− and v+. More recent
versions of (4.3.1) contain also a suitable relaxation source term in the right
hand side of the second equation; in this case one more arbitrary function
needs to be selected. The original (AR) model does not distinguish between
a free and a congested phase. However, it was extended to describe two
different phases in [39]. Further comments on (4.3.1) are found in [59].

Concerning the analytical properties of the solutions, the Riemann solver
for the (AR) model suffers lack of continuous dependence at vacuum, see [6,
Section 4]. However, existence of solutions attaining also the vacuum state
was proved in [42], while the 2-phase construction in [39] also displays con-
tinuous dependence.

A qualitative difference between the (AR) model and the present one is
property 3. in Proposition 4.2.4. Indeed, solutions to (4.3.1) may well have
zero speed while being at a density strictly lower than the maximal one.

4.3.3 The Hyperbolic 2-Phase Model

Recall the model presented in [18], with a notation similar to the present
one:

Free flow: (ρ, q) ∈ F, Congested flow: (ρ, q) ∈ C,

∂tρ+ ∂x
[
ρ · vF (ρ)

]
= 0,

{
∂tρ+ ∂x

[
ρ · vC(ρ, q)

]
= 0

∂tq + ∂x
[
(q − q∗) · vC(ρ, q)

]
= 0

vF (ρ) =
(
1 − ρ

R

)
· V vC(ρ, q) =

(
1 − ρ

R

)
· qρ

(4.3.2)
the phases being defined as

F = {(ρ, q) ∈ [0, R] × R
+: vf (ρ) ≥ Vf , q = ρ · V },

C =

{
(ρ, q) ∈ [0, R] × R

+: vc(ρ.q) ≤ Vc,
q−q∗
ρ ∈

[
Q1−q∗
R , Q2−q∗

R

]}
.

In (4.3.2) no function can be selected, on the other hand the evolution
depends on the parameters V , R and q∗ while the invariant domains F and
C depend on Vf , Vc, Q1 and Q2. A geometric construction of the solutions
to (4.3.2) in the congested phase is in [61].

The main difference between fundamental diagrams of (4.3.2), see Fig-
ure 4.5, right, and that of (4.1.4) is that (4.3.2) requires the two phases to
be disconnected : there is a gap between the free and the congested phase.
This restriction is necessary for the well posedness of the Riemann problem
for (4.3.2) and can be hardly justified on the basis of experimental data.
More recently, the global well-posedness of the model (4.3.2) was proved
in [23].

Note that in both models, as well as in that presented in [39], the free
phase is one dimensional, while the congested phase is bidimensional.
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The model (4.3.2) allows for the description of wide jams, i.e. of persistent
waves in the congested phase moving at a speed different from that of traffic.
Here, as long as d2

dρ2

(
ρψ(ρ)

)
< 0, persistent phenomena can be described

only through waves of the second family, which move at the mean traffic
speed. We refer to [59] for further discussions on (4.3.2) and comparisons
with other macroscopic models.

4.3.4 A Kinetic Model

Recall, with a notation adapted to the present case, the kinetic model in-
troduced in [13, Section 1]:

∂tr(t, x;w) + ∂x


w r(t, x;w)ψ

(∫ ŵ

w̌

r(t, x;w′) dw′

)
 = 0 . (4.3.3)

The function ψ and the speed w play the same role as here. The unknown
r = r(t, x;w) is the probability density of vehicles having maximal speed w
that at time t are at point x.

In (4.3.3) there is one function to be specified, ψ, as in (4.1.4). The
parameters are R (which is normalized to 1 in [13]), w̌ and ŵ, similarly
to (4.1.4). Since no limit speed is there defined, no parameter in (4.3.3) has
the same role as here Vmax.

Being of a kinetic nature, there is no real equivalent to a fundamental
diagram for (4.3.3).

From the analytical point of view, the existence of solutions to (4.3.3)
has not been proved, yet. The main result in [13] only states that (4.3.3)
can be rigorously obtained as the limit of systems of n×n conservation laws
describing n populations of vehicles, each characterized by their maximal
speed.

Let the measure r solve (4.3.3) and be such that for suitable functions ρ
and w

r(t, x; ·) = ρ(t, x) δw(t,x) (4.3.4)

where δ is the usual Dirac measure. Then, formally, (ρ,w) solves (4.1.4).
Indeed, for the first equation simply substitute (4.3.4) in (4.3.3) and inte-
grate; for the second equation substitute (4.3.4) in (4.3.3), multiply by w
and integrate over [w̌, ŵ].

Remark that (4.3.4) suggests a further interpretation of the quantity ρ
in (4.1.4). Indeed, in the present model, at (t, x) vehicles of only one species
are present, namely those with maximal speed w(t, x).
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4.4 Connections with a Follow-The-Leader Model

Within the framework of (4.1.3), a single driver starting from p̃ at time t = 0
follows the particle path p = p(t) that solves the Cauchy problem




ṗ = v

(
ρ
(
t, p(t)

)
, w
(
(t, p(t)

))

p(0) = p̃
v(ρ,w) = min

{
Vmax, w ψ(ρ)

}
,

(4.4.1)
refer to [30] for the well posedness of the particle path for the LWR model
(see also [5]). Recall now that w is a specific feature of every single driver,
i.e. w

(
t, p(t)

)
= w(0, p̃) for all p̃. On the other hand, from a microscopic

point of view, if n drivers are distributed along the road, then ρ is approxi-
mated by l/(pi+1 − pi), where l is a standard length of a car.

We fix L > 0 and assume that n drivers are distributed along [−L,L].
Then, the natural microscopic counterpart to (4.1.4) is therefore the Follow-
The-Leader (FTL) model defined by the Cauchy problem





ṗi = v
(

l
pi+1−pi

, wi

)
i = 1, . . . , n

ṗn+1 = Vmax

pi(0) = p̃i i = 1, . . . , n+ 1

(4.4.2)

where p̃1 = −L and p̃n+1 = L−l. Proposition 4.4.1 shows that (4.4.2) admits
a unique global solution defined for every t ≥ 0 and such that pi+1 − pi ≥ l
for all t ≥ 0.

Proposition 4.4.1 Let a., b. and c. hold. Fix L > 0. For any n ∈ N,
with n ≥ 2, choose initial data p̃ni for i = 1, . . . , n satisfying p̃ni+1 − p̃ni ≥ l.
Then, the Cauchy problem (4.4.2) admits a unique solution pni = pni (t), for
i = 1, . . . , n + 1, defined for all t ≥ 0 and satisfying pni+1(t) − pni (t) ≥ l for
all t ≥ 0 and for i = 1, . . . , n .

The proof is postponed to Section 4.5.

Our next aim is to rigorously show that in the limit n → +∞ with
n l = constant > 0, the microscopic model in (4.4.2) yields the macroscopic
one in (4.1.4). Given the position pi of every single vehicle and its maximal
speed wi, for i = 1, . . . , n+ 1, the macroscopic variables ρ,w are given by

ρ(x) =

n∑

i=1

l

pni+1 − pni
χ

[pn
i ,p

n
i+1

[
(x) and w(x) =

n∑

i=1

wni χ[pn
i ,p

n
i+1

[
(x) .

Note that necessarily pni+1 − pni ≥ l.

On the contrary, given (ρ,w) ∈ (L1∩BV)(R; [0, 1]× [w̌, ŵ]), with suppρ,
suppw ⊆ [−L,L], we reconstruct a microscopic description defining l =
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(∫
R
ρ(x) dx

)
/n and

pnn+1 = L− l

pni = max

{
p ∈ [−L,L]:

∫ pi+1

p

ρ(x) dx = l

}
for i = 1, . . . , n

wni = w(pni +) for i = 1, . . . , n+ 1 .

Note that
∫

R
ρ(x) dx = nl > 0. Now we are able to rigorously show that, as

the number of vehicles increases to infinity, the microscopic model in (4.4.2)
yields the macroscopic one in (4.1.4).

Proposition 4.4.2 Let a., b. and c. hold. Fix T > 0. Choose (ρ̃, w̃) ∈
(L1 ∩ BV)(R; [0, 1] × [w̌, ŵ]) with supp ρ̃, supp w̃ ⊆ [−L,L]. Construct the

initial data for the microscopic model setting l =
(∫

R
ρ̃(x) dx

)
/n and

p̃nn+1 = L− l

p̃ni = max

{
p ∈ [−L,L]:

∫ p̃i+1

p

ρ̃(x) dx = l

}
for i = 1, . . . , n

w̃ni = w̃(pni +) for i = 1, . . . , n+ 1 .

Let pni (t), for i = 1, . . . , n, be the corresponding solution to (4.4.2). Define

ρn(t, x) =

n∑

i=1

l

pni+1(t) − pni (t)
χ

[pn
i
(t),pn

i+1
(t)[

(x) (4.4.3)

wn(t, x) =
n∑

i=1

w̃ni χ[pn
i (t),pn

i+1
(t)[

(x) . (4.4.4)

If there exists a pair (ρ,w) ∈ L∞
(
[0, T ];L1(R; [0, 1] × [w̌, ŵ]

)
such that

lim
n→+∞

(ρn, wn)(t, x) = (ρ,w)(t, x) p.a.e.

then, the pair (ρ, ρw) is a weak solution to (4.1.4) with initial datum (ρ̃, ρ̃w̃).

The proof is postponed to Section 4.5.

4.5 Technical Details

We first prove an elementary consequence of our assumption b.

Lemma 4.5.1 Let ψ satisfy b. Then,

∃ ρ̄ ∈ [0, R[ such that

{
ψ is constant on [0, ρ̄],
ψ is strictly decreasing on [ρ̄, R].
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Proof. Call q(ρ) = ρψ(ρ). If ψ is strictly monotone, then ρ̄ = 0 and the
proof is completed. Otherwise, assume that ψ(ρ1) = ψ(ρ2) = c for suitable
ρ1, ρ2 ∈ ]0, R] and ρ1 6= ρ2. Then, by b., for all ρ ∈ [ρ1, ρ2] we have ψ(ρ) = c
and q(ρ) = cρ. If ψ(0) = c, then the proof is completed. Otherwise, note
that q′(0) = ψ(0) > c contradicts the convexity of q. �

Corollary 4.5.2 Let ψ satisfy b. and c. Then,

ρ̄ < min
{
ρ ∈ [0, R]:∃w ∈ [w̌, ŵ] such that (ρ,w) ∈ C

}
.

The proof is immediate and, hence, omitted.
In the sequel, for the basic definitions concerning the standard theory of

conservation laws we refer to [16].

Proof of Theorem 4.2.1. We consider different cases, depending on the
phase of the data (4.2.4).

1. (ρl, ηl), (ρr , ηr) ∈ F .
In this case, (4.1.4) reduces to the degenerate linear system (4.2.6) so

that the problem (4.1.4)–(4.2.4) is solved by (4.2.5). Remark, for later use,
that the characteristic speed is λF = Vmax.

2. (ρl, ηl), (ρr , ηr) ∈ C.
Now, v(ρ, η) = η ψ(ρ)/ρ. We show that C is invariant with respect to

the 2 × 2 system of conservation laws (4.2.7). To this aim, we compute the
eigenvalues, right eigenvectors and the Lax curves in C:

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η) λ2(ρ, η) = v(ρ, η)

r1(ρ, η) =

[
−ρ
−η

]
r2(ρ, η) =


 1

η
(

1
ρ −

ψ′(ρ)
ψ(ρ)

)



∇λ1 · r1 = − d2

dρ2

[
ρψ(ρ)

]
∇λ2 · r2 = 0

L1(ρ; ρo, ηo) = ηo
ρ

ρo
L2(ρ; ρo, ηo) =

ρ v(ρo, ηo)

ψ(ρ)
, ρo < R.

When ρo = R, the 2–Lax curve through (ρo, ηo) is the segment ρ = R,
η ∈ [Rw̌,Rŵ].

Shock and rarefaction curves of the first characteristic family coincide
by [7, Lemma 2.1], see also [16, Problem 1, Chapter 5]. The second charac-
teristic field is linearly degenerate. Hence, (4.2.7) is a Temple system and C
is invariant, since its boundary consists of Lax curves, see [50, Theorem 3.2].

Thus, the solution to (4.1.4) is as described in (2) and attains values in
C.

3. (ρl, ηl) ∈ C, (ρr, ηr) ∈ F .
Let ρm satisfy ψ(ρm) = Vmaxρ

r/ηr. Note that such ρm exists in ]0, 1[
by b and c., it is unique by Corollary 4.5.2. Define ηm = (ρm/ρr)ηr and
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note that (ρl, ηl), (ρm, ηm) are connected by a 1–rarefaction wave of (4.2.7)
having maximal speed of propagation λ1(ρ

m, ηm) < Vmax. Hence, a linear
wave, solution to (4.2.6), can be juxtaposed connecting (ρm, ηm) to (ρl, ηl)
and the solution to (4.1.4) is as described at (3).

4. (ρl, ηl) ∈ F , (ρr, ηr) ∈ C (see Figure 4.3).

Note that system (4.2.7) can be considered on the whole of F ∪C. Also
this set is invariant for (4.2.7), by [50, Theorem 3.2]. Then, in this case, we
let (ρ, η) be the standard Lax solution to (4.2.7), as described at (4). �

Proof of Proposition 4.2.3. We consider different cases depending on
the phase of the data (4.2.4).

If (ρl, ηl), (ρr, ηr) ∈ F , then R
(
(ρl, ηl), (ρr, ηr)

)
coincides with the Rie-

mann solver of a linear system, which satisfies (C1). Condition (C2) is
immediate since no nontrivial middle state is available.

Similarly, if (ρl, ηl), (ρr, ηr) ∈ C, then R
(
(ρl, ηl), (ρr, ηr)

)
coincides with

the standard Riemann solver of a 2 × 2 system, which is consistent. The
consistency of R then follows by the invariance of C, by 2. in the proof of
Theorem 4.2.1.

By the same argument, also the case (ρl, ηl) ∈ F and (ρr, ηr) ∈ C is
proved. Indeed, in (C2), note that the only possible nontrivial middles
states are in C.

Finally, if (ρl, ηl) ∈ C and (ρr, ηr) ∈ F , then R
(
(ρl, ηl), (ρr, ηr)

)
takes

values in F ∪C and is the juxtaposition of 2 consistent Riemann problems,
hence (C1) holds. Concerning (C2), note that the the only possible non-
trivial middles states are in C, and (C2) follows by the consistency of the
standard Riemann solver for (4.2.7).

Thus 1. is proved. Assertions 2. and 3. are immediate consequences of
the construction of Theorem 4.2.1.

Assume now that R satisfies 2 and 3. Then all Riemann problems with
data (ρl, ηl), (ρr, ηr) ∈ F , (ρl, ηl) ∈ F , (ρr, ηr) ∈ C and (ρl, ηl), (ρr, ηr) ∈ C
are uniquely solved. The solution to Riemann problems with (ρl, ηl) ∈ C
and (ρr, ηr) ∈ F is then uniquely constructed through (C1). �

Proof of Proposition 4.2.4. Consider the different statements separately.

1. The invariance of F , C and F ∪ C is shown in the proof of Theo-
rem 4.2.1.

2. By the invariance of F ∪ C, it is sufficient to observe that on the
compact set F ∪ C, the density ρ, respectively the speed v, is uniformly
bounded by R, respectively Vmax.

3. It is immediate, see for instance Figure 4.2, left.
4. In phase C we have

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η) ≤ v(ρ, η) and λ2(ρ, η) ≤ v(ρ, η).
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In the free phase the wave speed is Vmax = v(ρ, η). The only case left is that
of a phase boundary with left state in F and right state, say (ρr, ηr), in C.
Then, the speed Λ of the phase boundary clearly satisfies Λ ≤ λ1(ρ

r, ηr) <
v(ρr, ηr). �

Proof of Proposition 4.4.1. Note first that the functions ρ → v(ρ,wi)
in (4.4.2) are uniformly bounded and Lipschitz continuous for i = 1, . . . , n.
We extend them to functions with the same properties and defined on
[0,+∞[ setting

ui(ρ) =





Vmax if ρ < 0
v (ρ,wi) if ρ ∈ [0, 1]
0 if ρ > 1.

(4.5.1)

We also note that, for i = 1, . . . , n, the composite applications δ → ui(l/δ),
can be extended to uniformly bounded and Lipschitz continuous functions
on [0,+∞[. Now we consider the Cauchy problem





ṗni = ui

(
l

pn
i+1

−pn
i

)
i = 1, . . . , n

ṗnn+1 = Vmax

pni (0) = p̃i i = 1, . . . , n + 1 .

(4.5.2)

Note that p̃ni , for i = 1, . . . , n+1 are defined in Proposition 4.4.2 and satisfy
the condition p̃ni+1 − p̃ni ≥ l > 0, for every i = 1, . . . , n.

By the standard ODE theory, there exists a C1 solution pni defined as
long as pni+1 − pni > 0 for all i = 1, . . . , n. We now prove that in fact
pni+1(t) − pni (t) ≥ l for every t ≥ 0. To this aim we assume by contradiction
that there exist positive t̄ and t∗, with t̄ < t∗, such that pni+1(t̄) − pni (t̄) = l
and pni+1(t) − pni (t) < l for every t ∈

]
t̄, t∗

]
. Then,

pni (t) = pni (t̄) +

∫ t

t̄

ṗi(s) ds = pni (t̄) +

∫ t

t̄

ui

(
l

pni+1(s) − pni (s)

)
ds = pni (t̄).

This yields a contradiction, since for every t ∈
]
t̄, t∗

]

pni+1(t) − pni (t) ≥ pni+1(t̄) − pni (t̄) = l ,

completing the proof. �

Proof of Proposition 4.4.2. Recall first the definition of weak solution
to (4.1.4): for all ϕ ∈ C∞

c , setting v(ρ,w) = min{Vmax, w ψ(ρ)},
∫ T

0

∫

R



[
ρ
ρw

]
∂tϕ+

[
ρ v(ρ,w)
ρw v(ρ,w)

]
∂xϕ


dx dt+

∫

R

[
ρ̃
ρ̃ w̃

]
ϕ(0, x) dx = 0
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and consider the two components separately.

Below, O(1) denotes a constant that uniformly bounds from above the
modulus of ϕ and all its derivatives up to the second order. Insert first (4.4.3)
in the above equality and obtain:

In :=

∫ T

0

∫

R

(
ρn∂tϕ+ ρn v(ρn, wn) ∂xϕ

)
dx dt+

∫

R

ρ̃ ϕ(0, x) dx

=

n∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn
i+1

(t)

pn
i (t)


∂tϕ+ v

(
l

pni+1(t) − pni (t)
, wni

)
∂xϕ


dt

+

∫

R

ρn(0, x)ϕ(0, x) dx +

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx

=

n∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn
i+1

(t)

pn
i (t)

(
∂tϕ(t, x) + ṗni (t)∂xϕ(t, x)

)
dx dt

+

n∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x)dx +

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx.

Approximating ϕ (t, x) with ϕ
(
t, pni (t)

)
for every x in [pni (t), p

n
i+1(t)], we

obtain:

In =

n∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn
i+1

(t)

pn
i (t)

d

dt
ϕ
(
t, pni (t)

)
dx dt

+

n∑

i=1

∫ T

0

l

pni+1(t) − pni (t)

∫ pn
i+1

(t)

pn
i (t)

O(1)
(
pni+1(t) − pni (t)

)
dx dt

+
n∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x) dx +

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx

= l

n∑

i=1

∫ T

0

d

dt
ϕ
(
t, pni (t)

)
dt+ ∆x

n∑

i=1

∫ T

0
O(1)

(
pni+1(t) − pni (t)

)
dx dt

+

n∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

ϕ(0, x)dx +

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx

=
n∑

i=1

l

p̃ni+1 − p̃ni

∫ p̃i+1

p̃i

[
ϕ(0, x) − ϕ(0, p̃ni )

]
dx

+O(1) l
(
pnn+1(T ) − pn1 (T )

)
+

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx

= O(1) l (2L+ VmaxT ) +

∫

R

(
ρ̃− ρn(0, x)

)
ϕ(0, x) dx

and both terms in the latter quantity clearly vanish as n→ +∞.
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The computations related to the other component are entirely similar,
since w is constant along any set of the form

{
(t, x) ∈ [0, T ] × R:x ∈

[
pni (t), p

n
i+1(t)

[}

and the proof is completed. �

Remark 4.5.3 System (4.1.2) is not in conservation form. As far as smooth
solutions are concerned, it is equivalent to infinitely many 2 × 2 systems
of conservation laws. Indeed, introduce a strictly monotone function f ∈
C2
(
[w̌, ŵ]; ]0,+∞[

)
. Then, elementary computations show that, as long as

smooth solutions are concerned, system (4.1.2) is equivalent to

{
∂tρ+ ∂x

(
ρψ(ρ) g(η/ρ)

)
= 0

∂tη + ∂x
(
η ψ(ρ) g(η/ρ)

)
= 0

where
η = ρ f(w) and
g
(
f(w)

)
= w

(4.5.3)

Clearly, different choices of f yield different weak solutions to (4.5.3), but
they are all equivalent when written in terms of ρ and w.
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