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Chapter 1

Introduction

1.1 Molecular electronics

Physics has been driven very often by the fascinating idea of pushing things to the limit.

In some cases the word limit is intended in an extensive way. Just think about many fields

in physics: astrophysics and cosmology deal with the limit in the large scale, trying to give

an answer to questions which regard the whole universe as an “unicuum”. On the opposite

side, particle physics focuses on the first constituents of matter, looking for an insight into

the reality when objects get smaller and smaller. In some cases, the limit can assume a more

conceptual meaning which does not directly involve the idea of length scales, even if often

it implicitly does. For instance, it is enough to mention some recurrent words like “classical

limit”, “thermodinamical limit”, “inelastic limit” and so on. That is, another key issue in

physics is to understand what happens when we cross different regimes, or when we stress

a property to its limit. In this framework, it is impossible not to mention a word that has

recently become of common use, that is nanotechnology. The term itself has acquired a broad

meaning and encompasses a wide range of fields in many disciplines, but a common denom-

inator of whatever falling within the scope of nanotechnology exists: it concerns the design,

characterization and production of structures, devices and systems by controlling their shape

and size at lowest possible scale, the nanometer scale. Here, the limit is both conceptual

and technical. The idea is to reproduce structures that already exists on the large scale

by shrinking their dimensions to the atomic one, that is by using a limited amount of the

constituents of matter. This is not straightforward, since at those scales novel phenomena

may arise due to the quantum laws that governs matter in this regime so that one has to face

very challenging conceptual issues.

Molecular electronics (ME) is a perfect example of the quest to explore a macroscopic phe-

nomenum, the electrical current, into its minimum terms, that is electrons propagating

through a small amount of atoms. If we think at the common electronic devices, current

flows through metallic stuctures (wires, contacts, etc.) which are made of at least 1020 atoms.

Pushing the situation to its limit involves the question: how does the electrical current flow

1



2 Introduction

through a single atom or molecule? Can a molecule mimic the behaviour of an ordinary mi-

croelectronics component or provide a new functionality? Namely, ME can be defined as the

field of science that investigates the electronic and thermal transport properties of circuits in

which individual molecules (or an assembly of them) are used as basic building blocks. Of

course, being molecular circuits of the order of nanometers, ME is a subfield of nanotechnol-

ogy. Dealing with systems that are composed by semi-infinite metallic leads, which belong to

the realm of the systems investigated by physicists, and molecules, historically the object of

study of chemists, ME is a field where different disciplines like physics, chemistry, materials

science, biology, electrical engeneering merge down.

It seems unlikely that ME will replace silicon-based electronics, but there are good reasons to

believe that it may complement it in terms of novel functionalities emerging at the nanoscale

which can integrate the standard ones. It should also be stressed that, from the point of

view of fundamental science, molecular junctions are ideal systems to investigate electronic

conduction at a scale dominated by quantum effects, and shed new light into the fundamental

electron transfer mechanisms that play a key role both in chemistry and biology. The science

of molecular electronics has been driven by the need to find ways to exploit the beauty and

complexity of the molecular world within solid-state settings. Moreover, one should be forget

that the history of science proves that the exploration of new territories and the subsequent

discovery of novel phenomena often leads to unexpected technological applications.

All these reasons make ME, which is now a well established discipline, an intriguing and

worth-to-explore field of research.

1.2 Fabrication of nanoscale contacts

The experimental realization of metal-molecule-metal junctions has been provided by the de-

velopment of both adequate chemical methods for preparation of molecule/electrode interfaces

appropriate for forming metal-molecule contacts and nanoscale characterization techniques.

Vital to experimental studies of metal-molecular junctions is the ability to form atomic-sized

metallic contacts. A common way to create such contacts is by means of scanning tunneling

microscope (STM) [1]. While in the standard application of an STM a fine metallic tip is

held at distance from the counter electrode (in general a metallic surface) by making use of

the exponential distance dependence of the tunneling current, the tip can also be indented

into the surface and carefully withdrawn until an atomic size contact is formed. Thus, STM

molecular contacts (Fig. 1.1) can be achieved in two ways, namely upon withdrawing and

approaching the tip from/to the substrate. While in the former case the exact contact con-

figuration is not accessible by experiments, in the latter it can be controlled more precisely.

The main advantages of STM are its scanning speed, its versatility, and the possibility to

use different metals for the two electrodes. On the other hand, the main drawbacks are its

limited stability with respect to the change of external parameters such as the temperature

or magnetic fields and the short lifetimes of the contacts in general, due to the sensitivity of
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STM to vibrations.

Since the exact arrangement of atoms in the nanocontact cannot be controlled during the

Figure 1.1: Schematic illustration of STM break junction measurement.

formation and breaking of a molecular junction, usually experiments suffer from a lack of

reproducibility. Therefore several repetitions of the contact formation/breaking cycle are

performed so that the conductance can be averaged over the atomic configurations of the

nanocontact. The averaged conductance is more representative of the system under exam,

rather than of a particular realization of the nanocontact. An experimental technique which

allows for fast formation and breaking of the SMJ is the mechanically controllable break junc-

tion (MCBJ) technique [2, 3]. The working mechanism of MCBJ is illustrated in Fig. 1.2: a

metallic wire is notched in the middle in order to reduce its cross section in the central region

and it is then glued on the substrate. Alternatively, a metallic junction can be patterned over

a substrate by means of litography. The bending beam can be curved by pushing upwards

the extensible central support, causing an expansion of the upper surface of the beam and a

thinning of the contact in proximity of the notch, where the strain is concentrated. After the

rupture of the contact, the two cleanly exposed surfaces thus created can be brought together

to form a new contact by retracting the extensible support. The two surfaces generated after

contact breaking can be quite irregular, therefore the junction formed after coming back to

contact is expected to be composed of a single atom.
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Figure 1.2: Schematic view of the MCBJ operation. The MCBJ set up (bottom) is comprised

of a free-standing metal junction formed on bronze substrate by electron beam lithography

and metal deposition processes (middle). The narrowest constriction at the center is usually

sub-micrometer size. The substrate is deflected by the pushing rod in a three-point bending

configuration, which induces the tensile force on the free-standing junction to break it. After

breaking, an electrode gap of size d is formed (top). Thereafter, the electrode gap distance

can be finely tuned by the vertical displacement of the pushing rod D by d = rD, where r is

the attenuation factor roughly determined by the device configuration as r = 3ut/L2 [4].

1.3 Metallic point contacts

The STM and MCBJ techniques allow for the rupture of a macroscopic metallic wire with

only a few atoms remaining in the smallest cross section before the complete breakage. In

this way, one can measure the conductance as the contact between two metals is broken

and eventually a single atom (point contact) junction is formed at the last stretching stage.

The typical evolution of the conductance during such a controlled elongation is shown in

the left panel of Fig. 1.3. These so-called conductance traces present subsequent plateaus,

which become pronounced before the contacts completely break. The plateaus are separated

by sharp jumps, which have an intensity in the order of the conductance quantum (2e2/h).

This step-like structure can be explained by the subsequent rearrangement of the atomic

configuration during the elongation. Upon stretching of the contact, the stress accumulates

elastic energy in the atomic bonds over the length of a plateau, then at a certain stage the

configuration becomes unstable and the contact jumps to an other atomic arrangement, to

which correspond a lower number of conduction channel . The direct experimental evidence of

this explanation was given by the simultaneous conductance and force measurements of Rubio

et al. [6]. In general, the conductance trace changes from realization to realization, as it is
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Figure 1.3: Left panel: typical recordings of conductance measured in atomic-size Au con-

tacts, using the MCBJ technique. The conductance is measured as a function of the voltage

applied to the piezo elements, which is proportional to the junction elongation. Right panel:

typical conductance hystogram. [5]

very sensitive to the experimental procedure. However, certain features are reproducible, like

the last plateau in gold contacts which corresponds to atomic-sized contact. These features

can be captured by analyzing the statistical conductance histograms. Such conductance

histograms are presented in right panel of Fig. 1.3. The peaks in the histogram indicate the

conductance values where plateaus are frequently situated during the elongation. For some

metals, like the noble ones, several preferred conductance values are found in the histogram

but the conductance histogram of each metal shows one common feature: a peak appears

right at the edge of the conductance region where the contact is broken and only tunnelling

current flows. The position of this peak varies for different metals in the conductance range

of G ∼ 0.8 − 3.0 · 2e2/h, e.g. for the noble metals it is situated at one quantum unit. This

peak is attributed to the conductance of a single metallic atom. During the elongation the

last atomic configuration prior to the complete breakage generally contains only a single atom

between the electrodes. The conductance is mainly determined by the smallest cross section,

and the conductance value of a single atom contact is essentially independent of the atomic

arrangement of the electrodes, thus the frequent occurrence of the same conductance value

determines a peak in the histogram.

A simple scheme to account for the conductance in atomic-sized contacts is that the number

of channels is determined by the number of valence orbitals of the contacting atom. This

means in practice that the number of conduction channels for monovalent metals is limited

to one, it is four for sp-like metals like Al or Pb, and it may be up to 6 for transition metals

due to the contribution of the s and d bands.

1.4 Single molecular junctions

In the last decade substantial progress have been done towards the ultimate goal of building

single molecular junctions (SMJ) [7, 8, 9, 10, 11]. For a comprehensive discussion on the
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experimental aspects of SMJ, see Refs. [4, 12]. The electron transport in molecular junctions

is characterized by charge injection barriers at the electrode-molecule interfaces, which is

determined by energy alignment between the electrode Fermi level and a single discrete energy

level of the molecule; either the highest occupied molecular orbital (HOMO) or the lowest

unoccupied molecular orbital (LUMO) levels. Electronic coupling of the junction individual

molecules with the macroscopic electrodes via the overlap of the molecular wavefunctions and

those of the electrodes also affects the charge transmissivity by broadening the frontier orbital

levels. In Fig. 1.4 the two main effects upon allowing the interaction between a molecule and

metallic substrates are illustrated. First, the molecular electronic levels renormalize and the

HOMO-LUMO gap reduces due to charge rearrangement between the molecule and the leads.

Consequently, the electronic levels attain a finite lifetime, thus called molecular resonances.

The alignment between the resonances and the Fermi level will determine the conductive

properties of the junction.

Figure 1.4: Diagram of the energy levels of a single molecule approaching a metallic lead,

indicating the polarization shifts of the HOMO and LUMO orbitals [13].

The study of the transport properties of molecular junctions constitues a formidable chal-

lenge, both due to the intrinsic limitations of experiments (as seen before) and theory. Since

the pioneering experiments of Reed et al. [14] on benzenedithiol, several types of molecules

have been investigated with progressive complexity. However, each of the experiments has

to face the problem of the reproducibility. The electronic transport depends crucially on the

exact coupling between the molecule and the leads, i.e. on the precise atomic arrangement

of the contacts. As a result the lead-molecule contact can differ from realization to realiza-

tion and remarkable variations are observed. As explained before, a statistical analysis is

needed to average out the individual experimental realization. Understanding the physics

behind such structures is still a major challenge, since the microscopic atomistic details of

the junction are inaccessible from the point of view of experiments. Thus theoretical models

can give a fundamental support to interpret the electronic and transport properties of these

structures, in particular under non-equilibrium conditions imposed by an external voltage.

From the theoretical side, in recent years several methods have been developed to describe

the transport properties of materials. Due to the complexity of describing a junction with
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semi-infinite leads, earlier approaches rely on phenemenological tight-binding models [15]. A

pioneering approach by Lang [16] uses ab initio methods to describe the molecular part of

the junction and the jellium model for the electrodes. However, the jellium model is known

to give a poor description of the electron density on the surface region perturbed by the

molecule, and the atomistic details of the molecule-lead contact are not taken into account.

Presently, the most advanced method to describe electron transport is the combination of

density functional theory (DFT) with the Landauer theory formulated in terms of Green’s

functions. The latter ones can be derived by the Keldysh non-equilibrium Green’s function

formalism [17]. This method has many advantages with respect to previous ones: namely,

a reliable description of the electronic properties of the atoms in the junction and of those

in the leads, the absence of adjustable parameters, and a self-consistent calculation of the

charge redistribution due to the application of a bias voltage. Although this method is the

most widely used one and it succeeded in many cases to correctly describe transport exper-

iments, it often provides results that are only qualitatively correct. In particular, standard

DFT functionals lack of derivative discontinuity and suffer from the self-interaction error, so

they are often insufficient to treat molecules weakly coupled to the leads [18]. At present,

there is no simple way to predict in which case this approach is reliable and accurate. Some

approximations have been developed to overcome its limitations, like many body GW ap-

proach or time-dependent DFT [18], but they are only applied to the study of small systems

due to their high computational demand.

1.5 Thesis outline

This thesis focuses on the theoretical description of coherent electronic transport in organic

molecular junctions.

In Chap. 2 the complex problem of describing interacting electrons and nuclei is intro-

duced, showing how the Born Oppenheimer approximation provides a useful framework to

solve it. The electronic structure problem will be addressed within DFT. So overview of

the theory as well as some aspects related to its numerical implementation are given. The

theoretical methods used to study ballistic electronic transport are illustrated in detail in

Chap. 3. The Landauer theory is introduced with a discussion about its assumptions and

regime of validity. Then, the formalism of non-equilibrium Green’s function, at the basis of

transport calculation, is developed. The original contribution of this thesis is developed from

Chap. 4, which is devoted to an analysis of electronic transport by means of an extremely

simplified model for the junction. The chapter starts with a theoretical discussion of the

embedding approach, which is a practical method to study the interaction between a finite

and an infinite system. Electrons will be considered as moving in a one-dimensional modu-

lated potential introduced to simulate resonant tunneling junctions. Results will be shown by

considering both jellium and metallic electrodes. Chap. 5 shows applications of electronic

transport in two dimensional systems. In the first part, we investigate a hybrid graphene
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junction, where the linkers between graphene electrodes are graphene nanoribbons. We aim

at performing a systematic investigation of how the nanoribbon aspect ratio affects the trans-

port properties of these heterojunctions. Next the conductance properties of photoswitching

molecular junctions with graphene electrodes are investigated, calculating the conductance

for different diarylethene isomers also in presence of an applied bias. Chap. 6 is devoted

to the investigation of a highly conductive single molecule (pyrazine) junction with Pt leads

showing bi-stable states. Our investigation addresses the complex problem of determining

which is the physical origin of the different conducting regimes appearing in experiments. We

fully characterize pyrazine/Pt junctions presenting a comprehensive study of the structural,

conductive and vibrational properties as a function of the electrode stretching. Our find-

ings shed light on the mechanism behind transitions between bi-stable states and contribute

to proving the reversibility of the switching process. Apart from the transport properties

of nanojunctions, the non-equilibrium Green’s function formalism can be also applied to the

study of the resonant charge transfer of adsorbates on semi-infinite substrates. In Chap. 7 we

develop a methodology to calculate the resonant lifetimes of the electronic states of molecules

adsorbed on metallic or insulating surfaces. After showing how our method works for the

test system Cs-p(2x2)-Cu(111), we present our preliminar results for triarylamine molecules

on TiO2 rutile (110), which are relevant for dye sensitized solar cell applications. Our study

helps to clarify how the charge transfer is affected by the length of the spacer between the

acceptor and donor ends of this class of dyes.



Chapter 2

Electronic Structure Methods

2.1 Born Oppenheimer approximation

The many-body Hamiltonian describing a system of interacting electrons and nuclei is

Ĥ =T̂e + T̂n + V̂ee + V̂nn + V̂en =

−
∑

i

~
2

2me
∇2

i −
∑

I

~
2

2MI
∇2

I

+
1

2

∑

i 6=j

e2

|ri − rj |
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
−
∑

i,I

ZIe
2

|ri −RI |
,

(2.1)

which represents a sum of kinetic energy terms T̂ as well as Coulomb interactions between

electrons (V̂ee), nuclei (V̂nn), and electron and nuclei (V̂en). In the above expression ri rep-

resents the coordinates of the ith electron (with mass me and charge −e), and RI are the

coordinates of the Ith nucleus (with mass MI and charge ZIe). The properties of the interact-

ing system may in principle be determined from the time-independent Schrödinger equation

ĤΨ(r,R) = EΨ(r,R) , (2.2)

where E is the total energy of the interacting electron-nuclei system described by the eigen-

function Ψ. Here, r = {ri} and R = {RI} are the full set of nuclear and electronic coor-

dinates. The full time-independent Schrödinger equation is, by pratical means, impossible

to solve exactly and approximations are required. One powerful way to solve Eq. (2.2) is

to adopt the so-called Born-Oppenheimer approximation. It assumes that the nuclei are in-

finitely heavy as compared to the electrons so that the ionic and electronic motions can be

decoupled from each other. The nuclear coordinates are described as external parameters

which vary infinitely slowly. From a mathematical point of view, this consists in writing the

full wavefunction in separable form:

Ψ(r,R) = Φ(R)ψ(r,R) , (2.3)

9



10 Electronic structure methods

where the electronic wavefunction ψ(r,R) is a solution ψi(r,R) of the following electronic

equation:

[T̂e + V̂ee + V̂en]ψi(r,R) = εiψi(r,R) . (2.4)

In the latter expression i represents the set of quantum numbers characterizing a given

N -electrons eigenstate with energy εi. The electronic wavefunction ψi(r,R) describes an

electronic eigenstate corresponding to a given geometrical configuration R of the nuclei,

and its R-dependence is purely parametric (i.e. there is no ∇R operator in (2.4)). The as-

sumption behind the factorization defined by Eqs. (2.3), (2.4), known as the adiabatic or

Born-Oppenheimer scheme, is that, once an initial electronic state has been selected, the nu-

clei move slowly enough not to induce transitions to different electronic states. The Eq. (2.4)

can be derived by substituting the wavefunction expression (2.3) in (2.1). First, one should

consider that T̂e (which contains the operator ∇2
r) does not act on the R coordinates. Then,

the non-adiabatic terms should be neglected, that is those terms which involves derivatives

∇R of the electronic wavefunction ψi(r,R) a. The details of the formal derivation are de-

scribed in Refs. [19, 20]. Once the electronic problem is solved, the adiabatic motion of the

nuclei is governed by the following equation:

[T̂n + V̂nn + εi(R)]Φ(R) = Ei(R)Φ(R) . (2.5)

Note that (V̂nn + εi) plays the role of the potential acting on the nuclear wavefunction,

and that for each energy εi(R) there is a full orthonormal basis set {Φi,α(R)} of nuclear

wavefunctions. To study the electronic properties of a system we solve (2.4) by introducing

various methods: for the ground state, the Hartree-Fock approach or the Density Functional

Theory (DFT), if we work within an ab initio method. In the next Section we shall outline

the main properties of DFT, which is nowadays the most used first principles approach.

2.2 Density Functional Theory

Density Functional Theory (DFT) is a method which determines the ground state of a system

of N electrons. In DFT the system charge density is the relevant physical quantity. DFT

has proved to be succesful in accounting for structural and electronic properties of a vast

class of materials, ranging from atoms and molecules to crystals and other complex extended

systems.

In this Section we introduce the two basic theorems of DFT, the Kohn Sham equations, the

Local Density Approximation and Gradient Corrected Approximation. Also, we mention how

DFT is implemented by using a localized basis set.

2.2.1 The Hohenberg-Kohn Theorem

Let us consider a system of N interacting electrons in an external potential Vext(r). If the

system has a nondegenerate ground state, it is obvious that there is only one ground-state

aThe adiabatic approximation consists precisely in neglecting these terms.
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charge density n(r) that corresponds to a given Vext(r). In 1964, Hohenberg and Kohn (HK)

[21] demonstrated the inverse, far less obvious result: there is only one external potential

V (r) that yields a given ground-state charge density n(r). The demonstration is very simple

and uses a reductio ad absurdum argument.

First HK theorem. Given the external potential Vext(r), the total energy of a N -electron

system is a unique functionalb of the ground state (GS) electron density ρ(r).

The total energy can be written as:

E[ρ(r)] = Vext[ρ(r)] + T [ρ(r)] + Uee[ρ(r)] :=

∫

ρ(r)Vext(r)dr + FHK[ρ(r)]. (2.9)

The term FHK[ρ] is the so called Hohenberg-Kohn functional, which depends only on the

density and whose form is universal. The second Hohenberg and Kohn theorem provides the

variational principle to determine the energy of the system:

Second HK theorem. The GS energy can be obtained variationally: the density that

minimizes the total energy is the exact GS density.

That is, given a trial density ρ′(r) so that ρ′(r) ≥ 0 and
∫

ρ′(r)dr = N , it follows that

EGS[ρ0] ≤ E[ρ′]. The GS energy is given by the functional of the exact GS charge density

ρ0. In this way, DFT exactly reduces the N -body problem to the determination of a 3 -

dimensional function ρ(r) which minimizes the functional E[ρ(r)] in (2.9). Unfortunately

this functional is unknown, since we do not know the exact form of FHK[ρ].

2.2.2 The non-interacting system

One year later, Kohn and Sham (KS) reformulated the problem and opened the way to

practical applications of DFT [22]. They proved that the system of interacting electrons can

be mapped on to an auxiliary system of non-interacting electrons having the same ground

bA functional is the generalization of the concept of a function: a function associates a value with another

value, while a functional associates a value with a given function. The functional dependence is indicated by

square brackets so, if f(r) is a simple function, it can be written in a generical way like this:

F [f ] =

∫
g (f(r)) dr (2.6)

The differential of a functional is the term coming from F [f + df ]− F [f ] which depends linearly by df :

δF =

∫
δF [f ]

δf(x)
δf(x)dx , (2.7)

where the quantity δF [f ]
δf(x)

is the functional derivative of F with respect to f at the point x. Functional

derivatives obeys some simple rules similar to those of normal derivatives: the chain rule and the rule for the

derivations of a product still hold when dealing with functionals. Here we only recall that, if f(x) is a function,

δf(x)

δf(y)
= δ(x− y) . (2.8)
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state charge density ρ(r). This can be done thanks to the first HK Theorem: we consider a

system whose density is the same of the interacting system, but without interaction between

particles. In this way we can compute exactly the kinetic energy functional. For a system of

non-interacting electrons the ground-state charge density can be represented as a sum over

one-electron orbitals (the KS orbitals) ψi(r)

ρ(r) =

occ.
∑

j

|ψj(r)|2 . (2.10)

In general j runs fron 1 to N/2 if we assume double occupancy of all states, and the KS

orbitals are the solution of the Schrödinger-like equation

(

− ~
2

2m
∇2 + VKS(r)

)

ψj(r) = ǫjψj(r) (2.11)

with the orthonormality constraint:

∫

ψ∗
i (r)ψj(r)dr = δij . (2.12)

2.2.3 The Kohn-Sham equations

The problem is now to determine VKS(r) for a given ρ(r). The problem is solved by considering

the variational property of the energy, as specified in the second HK theorem. The condition

to be verified is that the functional derivative with respect to the ψi of the constrained

functional

E′ = E −
∑

ij

λij

(
∫

ψ∗
i (r)ψj(r)dr− δij

)

(2.13)

where λij are Lagrange multipliers, must vanish:

δE′

δψ∗
j (r)

=
δE′

δψj(r)
= 0 (2.14)

The energy functional can be written as follows:

E = Ts[ρ(r)] + EH[ρ(r)] + Exc[ρ(r)] +

∫

ρ(r)Vext(r)dr (2.15)

The first term is the kinetic energy of non-interacting electrons:

Ts[ρ(r)] = − ~
2

2m
2
∑

j

∫

ψ∗
j (r)∇2ψj(r)dr . (2.16)

The second term (called the Hartree energy) contains the electrostatic interactions between

clouds of charge:

EH[ρ(r)] =
e2

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ . (2.17)
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The third term, called the exchange-correlation energy, contains all the remaining terms, and

its exact form is unknownc. It is defined as:

Exc[ρ] = T [ρ] − Ts[ρ] + Uee[ρ] − EH[ρ] (2.18)

Taking into account that
δρ(r)

δψ∗
i (r′)

= ψi(r)δ(r − r′) (2.19)

one can easily compute the functional derivatives of each term appearing in the energy func-

tional and solve out explicitly the equation (2.14) [22]. In this way, one then finds:

ĤKSψi =
∑

j

λijψj (2.20)

where the operator ĤKS, called KS Hamiltonian, is defined as

ĤKS = − ~
2

2m
∇2 + VH(r) + Vxc(r) + Vext(r) = − ~

2

2m
∇2 + VKS(r) . (2.21)

Here we have introduced the Hartree potential

VH(r) = e2
∫

ρ(r′)

|r− r′|dr
′ (2.22)

and an exchange-correlation potential

Vxc(ρ(r)) =
δExc

δρ(r)
. (2.23)

The Lagrange multipliers λij are obtained by multiplying both sides of (2.20) by ψ∗
k(r) and

integrating:

λik =

∫

ψ∗
k(r)

(

− ~
2

2m
∇2 + VH(r) + Vxc(r) + Vext(r)

)

ψk(r)dr (2.24)

By doing a subspace rotation in the {ψ} space leaving the charge density invariant, one

obtains the so-called Kohn-Sham equations:

(HKS − ǫi)ψi(r) = 0 , (2.25)

where λij = δijǫj .

2.2.4 Approximation functionals for the exchange-correlation energy

The KS equations are similar to the Hartree-Fock (HF) equations. Both are derived from a

variational principle and have to be solved out self consistently, which correspond to minimize

the energy functional (KS) of the energy for a single Slater determinant (HF). It is important

cThe logic behind such procedure is to subtract out easily computable terms which account for a large

fraction of the total energy.
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to point out that, while the HF equations are derived starting from an approximation, that

is taking the GS total electron wavefunction as a Slater determinant, while the derivation of

KS equations is exact. In the HF equations the non-local exchange term appears in the place

of the local exchange-correlation potential of the KS equations:
(

− ~
2

2m
∇2 + VH(r) + Vext(r)

)

ψj(r) + e2
∑

j,||

∫

ψ∗
j (r′)ψj(r)

|r− r′| ψi(r
′)dr′ = ǫjψj(r) , (2.26)

where the sum over j extends only to states with parallel spins. The exchange-correlation

energy contains three contributions: the exchange energy (that is present also in HF), the

correlation energy, and a contribution coming from the difference between the true many-

body kinetic energy 〈Ψ|T |Ψ〉 and the kinetic energy Ts[ρ] of the non-interacting electrons.

The exchange term in the HF equations is a nonlocal operator, acting on a function ψ as

(Vxψ)(r) =
∫

Vx(r, r′)ψ(r′)dr′. In earlier calculations, an approximated form was often used.

In the homogeneous electron gas, the exchange energy ǫx and exchange potential vx for an

electron are

〈ǫx〉 = −3

4

e2kF
π

(2.27)

〈vx〉 = −3

2

e2kF
π

(2.28)

where kF is the Fermi wavevector: kF = (3π2ρ)1/3. In 1951 Slater proposed to replace the

nonlocal exchange potential with the above form valid for the homogeneous electron gas, but

with kF evaluated at the local density ρ(r). This procedure yields a local (multiplicative)

exchange potential

Vx(r) = −3

2

e2

π

[

3π2ρ(r)
]1/3

. (2.29)

Eq. (2.29) was the first attempt to find an explicit (approximated) form for the exchange

potential Vx.

Local density approximation

On the basis of this idea, one of the most used approximations for the exchange-correlation

potential has been introduced by Kohn and Sham in 1965, the so called Local Density Ap-

proximation (LDA). They approximated the exchange-correlation energyfunctional Exc[ρ(r)]

introducing the exchange-correlation energy of the homogeneous electron gas locally depend-

ing on ρ(r):

Exc[ρ(r)] =

∫

ǫxc(ρ(r))ρ(r)dr , (2.30)

with
δExc

δρ(r)
= µxc(ρ(r)) =

(

ǫxc(ρ) +
dǫxc
dρ

)

ρ=ρ(r)

. (2.31)

In the LDA approximation the exchange potential (appearing in the KS equations) is equal

to

V KS
x (r) = −e

2

π

[

3π2ρ(r)
]1/3

, (2.32)
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that is exactly 2/3 of the Slater local exchange, Eq. (2.29) [23].

Local Spin Density Approximation

So far the KS equations have been considered independent of spin. DFT can be also extended

to calculate ground-state properties of spin-polarized systems; in this case the electronic

density is split into two parts polarized in opposite way, ρ = ρ↑ + ρ↓, and the energy is a

functional of both these components, E = E[ρ↑, ρ↓]. In fact, we limit ourselves to study

collinear systems and perturbations with magnetic fields only oriented along the z-axis, we

can consider only the diagonal terms of the spin-density matrix ρα,β. So in the Local Spin

Density Approximation (LSDA)the exchange and correlation potential can be written as

V LSD
xc =

∫

ρ(r)ǫxc (ρ↑(r), ρ↓(r)) dr , (2.33)

where ǫxc is the exchange and correlation energy per particle of the homogeneus electron gas

at densities (ρ↑, ρ↓). An important quantity is the relative polarization

ς =
ρ↑ − ρ↓
ρ

.

If it is equal to one, all the spins are oriented along the same direction or, equivalently, the

system is completely polarized. The LSDA is constructed using the following parametrization

for the exchange and correlation energy:

ǫxc(ρ, ς) = ǫxc(ρ, ς = 0) + [ǫxc(ρ, ς = 1) − ǫxc(ρ, ς = 0)] g(ς) , (2.34)

whre g(ς) is an interpolation function [24]:

g(ς) =
(1 + ς)4/3 + (1 − ς)4/3 − 2

2(21/3 − 1)
. (2.35)

Generalized Gradient Approximation

In order to improve the LDA, the so-called Generalized Gradient Approximation (GGA),

where the gradient of the density is also considered, has been introduced [25]. In comparison

with LDA, GGA tends to improve total energies, atomization energies, energy barriers and

structural energy differences [26]. In GGA, the exchange-correlation energy depends both on

the homogeneous electron gas density and on its gradient:

EGGA
xc [ρ(r)] =

∫

f(ρ(r),∇ρ(r))dr , (2.36)

where f is a parametrized analytic function. To obtain reasonable results the function f must

be chosen with care, because the expression (2.36) does not derive from a physical system. The

xc-functional used for most of the calculations presented in this thesis is the Perdew-Burke-

Ernzerhof (PBE) functional [26]. The PBE functional is based on earlier PW91, but avoiding

cumbersome features. It contains a unified real space cutoff for exchange and correlation
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holes [27] to avoid spurious long range parts in the second order gradient expansion of density.

PBE does not have any fitting parameters, retains correct features of LSDA, combines them

with the most energetically important features of gradient-corrected nonlocality.

2.3 SIESTA method

In order to use DFT for numerical calculations one needs to consider many technical details

and further approximations related to the implementation. Besides the inevitable approxima-

tion for the xc-functional discussed above, some of the main aspects in the SIESTA (Spanish

Initiative for Electronic Simulations with Thousands of Atoms) code, used in this work, are

briefly described below. For a complete description the reader is referred to Refs. [28, 29, 30].

In order to solve differential equations such as the Kohn-Sham equations one needs to specify

appropriate boundary conditions (BCs). In SIESTA, as in many other DFT codes, one uses

periodic BCs corresponding to a supercell with periodicity in all three dimensions. This is

convenient for treating infinite systems such as crystals, but can also handle finite systems

by making the supercell sufficiently large separating the objects. The framework in the su-

percell approach is Bloch’s theorem, which states that for a periodic system the electronic

wavefunction can be written as a product of a wavelike part and a cell-periodic part, i.e.,

ψj,k(r) = eikruj,k(r) (2.37)

where j is a discrete band index and k a reciprocal lattice vector belonging to the first Brillouin

zone (BZ) corresponding to the supercell. The theorem allows for mapping the KS eigenvalue

problem into the reciprocal space, where one can separately obtain for each k-point a discrete

set of eigenstates of the Hamiltonian. The expectation value of some one-body operator Ô is

then calculated as

〈Ô〉 =
1

ΩBZ

∫

BZ
dkO(k) ≈

∑

k∈BZ

wkO(k) (2.38)

where the integral over the first Brillouin zone (BZ), with volume ΩBZ , for practical purposes

is approximated by a sum over k-points with weight factors wk (adding up to one). In

SIESTA this discrete BZ sampling is based on the so-called Monkhorst-Pack [31]. Note at

this point that the larger the supercell the smaller the corresponding BZ. For sufficiently

large supercells this BZ sampling becomes less critical and using only the Γ-point might be a

reasonable approximation. In most DFT implementations one uses pseudopotentials to get

rid of the core electrons. The idea is to replace the true atomic potential and the chemically

inert core electrons with an effective potential (the pseudopotential) that provides the same

description for the valence electrons. As a result the computations simplify since one just has

to solve for the valence electronic structure. In SIESTA one generally uses norm-conserving

pseudopotentials according to the Troullier-Martins parameterization [32]. For a numerical

solution of the Kohn-Sham equations one typically chooses a finite basis by which to represent

the wave functions. In SIESTA one uses atomic-like localized orbitals that guarantee the
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Hamiltonian and overlap matrix to be sparse. For each atom I positioned at RI one defines

a set of atom-centered orbitals

φI,lmn(r) = φI,ln(rI)Ylmn(r̂I) (2.39)

where φI,ln(rI) and Ylmn(rI) are radial and angular components, respectively. Distances

are conveniently written in terms of rI = r −RI and the angular momentum is labeled by

l,m. With a multiple-ζ basis there will be several orbitals (labeled n) corresponding to the

same angular momentum but with different radial dependence. The basis orbitals are strictly

confined in the sense that they are zero beyond a certain radius (which may be different for

each of the radial functions). This cutoff radius is usually specified indirectly in terms of a

confinement energy. The SIESTA basis implies that the calculation of the overlap matrix

and most matrix elements of the Hamiltonian are two-center integrals, which are effectively

calculated within Fourier space where the convolution becomes a simple product. However,

the density and some Hamiltonian matrix elements are calculated on a real-space grid. The

fineness of this grid is conveniently described by an energy “grid cutoff”d.

dThe grid cutoff to represent the density is not directly comparable to the energy cutoff in the context of

plane-wave codes, which usually refers to the wavefunctions.
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Chapter 3

Electronic Transport

3.1 Transport regimes

The electrical conduction in macroscopic metallic wires is described by Ohm’s law i = GV ,

which establishes that the current is proportional to the applied voltage. The constant of

proportionality is the conductance, G, which for a sample with cross-section S and length L

reads G = σS/L, where σ is the conductivity of the material. However, concepts like Ohm’s

law are not applicable at the atomic scale. Atomic-size conductors are a limiting case of

systems in which quantum coherence plays a central role in the transport properties.

We can define different transport regimes according to the relative size of the various length

scales [5]. A fundamental length scale is the phase coherence length, Lφ, which measures the

distance over which the phase of the electron wave function is preserved. Phase coherence

can be destroyed by inelastic scattering mechanisms like electron-electron or electron-phonon

interactions. A typical value of Lφ for Au at T =1K is around 1µm, while at room temper-

ature it lowers to few tens of nm. The mesoscopic regime is determined by the condition

L < Lφ, where L is the sample length.

Another important length scale is the elastic mean free path Lm which measures the distance

between static collision with static scatterers. This quantity can be also referred to as the

momentum relaxation length. The regime Lm ≪ L is called diffusive. In a semiclassical pic-

ture the electron motion in this regime is a random walk of steps Lm among the impurities.

On the other hand, when Lm ≫ L we reach the ballistic regime in which the electron momen-

tum can be assumed to be constant and only limited by the scattering with the geometric

boundaries of the sample. The two regimes are schematically illustrated in Fig. 3.1.

So far, we have assumed that the typical dimensions of the sample are larger than the electron

Fermi wavelength λF . However, in the case of atomic-scale junctions we have that the cross

section W of the junction is so small that λF ∼ W . We thus enter the full quantum limit,

where semiclassical arguments fail, and we need a full quantum picture of transport at those

scales.

19
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Figure 3.1: Schematic illustration of a diffusive (left) and ballistic (right) conductor [3].

3.2 Assumptions

Calculating the electronic current flowing in a system due to the application of a bias voltage

is one of the most challenging problems in solid state physics. Actually, electrical transport

is a non-equilibrium statistical problem. We are interested in systems whose dimensions

are in the range of the nanoscale, for example nanotubes, atomic wires, small molecules

sandwiched between metal electrodes. On the macroscopic scale one can define different

quantities describing the system like current and charge density or the applied electric field.

However, it is very difficult to trace these quantities down to the microscopic scale due to

the complicated thermodynamical averaging taking place. On the other hand, even the very

microscopic view of transport contains many important physical processes which are hard to

describe. A very simple system to generate a current is the discharge of a capacitor. In this

case, if we wait enough no current (in a time-averaged sense) will flow in the system, which

will reach an equilibrium state. However, we can make the decay time longer by increasing

the capacitance of the system (for example by increasing the size of the electrodes), while

keeping the resistance fixed. If we extend this idea to the limit, we reach the concept of

reservoir : a reservoir is an ideal systems that can supply and receive an arbitraty amount of

carriers and energy without changing its internal statea.

We will describe a very powerful method to calculate the conductance of small systems, the

so-called Landauer approach. This approach rests on specific physical assumptions that may

or not may satisfied in experimental realizations of transport in nanoscale systems.

1. Open quantum system. The main principle of this approach is the assumption that

the system under study is coupled to large reservoirs where all inelastic processes take

place. Since the reservoirs may represent a battery, the energy required to extract an

electron from one reservoir and bring it into the system can be different from the energy

required to bring it into the second reservoir. We thus assume that the electrochemical

potentials associated to the two reservoirs differ by the bias:

V =
µL − µR

e
. (3.1)

aIf the external system exchanges only energy and not particles, it is called a “bath”
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Figure 3.2: Scattering setup: we work with a close but infinite quantum system composed of

the device region sandwiched between two leads.

As a consequence, the transport through the systems can be formulated as a quantum

mechanical scattering problem. Hence one can reduce the non-equilibrium transport

problem to a quantum mechanical one.

2. Ideal steady state. It is possible to wait long enough so that the system reach a steady

state, that is its density operator does not depend on time.

3. Openess vs. boundary conditions. Since we are in a steady state, the role of the

reservoirs is just to continuously supply electrons to be injected into the junction. Thus

the open system can be mapped to a finite one with suitable boundary conditions.

Electrons are prepared in the distant past and far away from the junction into wave-

packets. These wave-packets move towards the junction from the leads, scatter on the

junction potential, and move away propagating in the opposite lead.

4. Mean-field approximation. Let us assume that the Hamiltonian of the scattering region

ĤS can be separed into at least two components:

ĤS = Ĥmf + V̂ ,

where Ĥmf is the Hamiltonian describing independent electrons in the presence of

the ions that do not belong to the junction, and V̂ is the interaction energy between

electrons -beyond mean field- in the nanojunction, and the interaction energy of these

electrons with the ions of the junction. To practical purpose, we adopt mean-field

approximation and we will consider DFT Hamiltonian ĤS as in Eq. (2.21) to describe

the full lead-nanojunction-lead system.

5. Independent channels. After the previous assumptions, we are left with a static and de-

terministic single-particle problem, that is easier to solve than the true non-equilibrium

statistical one. We assume that the initial electronic state can be expanded into differ-

ent channels, that are a set of quantum numbers that describes a scattering solution.

The initial state reads:

|Ψ(t)〉 =
∑

Ei,α

cEi,α|ΨEi,α〉e−
i
~
Eit , (3.2)
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where ĤS |ΨEi,α〉 = Ei|ΨEi,α〉 and α is any set of quantum nunbers necessary to describe

the system. We will also assume that electrons are injected from the left (right) reservoir

(right (left) moving electrons) with a local distribution function appropriate to the

corresponding chemical potential:

fL(R)(E) =
1

e(E−µL(R))/kBΘ + 1
, (3.3)

where Θ is the temperature. With these hypoteses, the basic idea of the scattering approach

is to relate the transport properties (conductances) with the transmission and reflection prob-

abilities for carriers incident on the sample. In this one-electron approach phase-coherence

is assumed to be preserved on the entire sample and inelastic scattering is restricted to the

electron reservoirs only. Instead of dealing with complex processes taking place inside the

reservoirs they enter into the description as a set of boundary conditions. Why is the Lan-

dauer approach different from other ones like the Drude Model, the Kubo formalism, and the

Maxwell equations [17]? The conceptual difference is the following: even if we have a bias

represented by the chemical potential difference, we do not use that bias as a perturbation

to some Hamiltonian. Instead, the bias here is a boundary condition on the system, where

wave-packets with given momenta carry the current across the nanojunction. Due to the

scattering of those wavepackets with the potential V̂ of the junction, each electron has a

finite probability to be transmitted in any given direction, and consequently a probability to

be reflected.

3.3 Landauer Theory

Here we illustrate the Landauer theory, which will be derived more rigorously in the next

Section. We outline the derivation proposed in Ref. [17]. To simplify, we will consider two

identical left and right leads to define the scattering states and the subsequent definition of

channels. We suppose that the system is subject to a given confinement potential along the

(x, y = r⊥) plane and the transport occurs along the z direction. The eigenstates of the L,R

asymptotic Hamiltonians can be easily found:

HL,Rψα,k(r) ≡
[−~

2

2m
∇2 + VL,R(r⊥)

]

ψα,k(r) = Eα(k)ψα,k(r) , (3.4)

which can be separated into longitudinal and transverse equations giving solutions like

ψα,k(r) ∼ uα(r⊥)eikz (3.5)

with energies (subbands)

Eα(k) = ǫα +
~
2k2

2m
(3.6)

Given an energy E, the number of channels (transverse modes) at that energy is Nc(E) =
∑

α Θ(E − Eα). We have determined the solutions at the boundaries. We now need to de-

termine the general solution for ĤS, which corresponds to the full lead-nanojunction system.
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That is, we need a solution of

ĤSΨα,k(r) ≡
[−~

2

2m
∇2 + V (r)

]

Ψα,k(r) = EΨα,k(r) . (3.7)

The solutions Ψα,k(r) have to asymptotically merge with the eigenstates of HL and HR.

Consider an electron with energy Ei that for z → −∞ was in an initial eigenstate ψi,ki(r) of

the asymptotic Hamiltonian at the same energy. Hence this electron has a positive momentum

~ki such that

Ei(ki) = ǫi +
~
2k2i
2m

. (3.8)

At the nanojunction, this state solution of (3.7) may be very complicated. Anyway, we expect

that deep into the right lead it is a linear combination of eigenstates of the asymptotic HR:

Ψ+
iki

(r) →
NR

c
∑

f=1

Tifψfkf (r), x→ +∞ , (3.9)

where Tif are complex numbers.

Deep into the left lead the eigenfunction will be the sum of the incoming wave and contribu-

tions due to reflection at the interface:

Ψ+
iki

(r) → ψiki(r) +

NL
c
∑

f=1

Rifψfkf (r), x→ −∞ , (3.10)

where kf are negative momenta which correspond to the same energy Ei of the incoming

wave, and again Rif are complex numbers. We now calculate the current across a given

surface S (perpendicular to z) carried by the wave Ψ+
iki

(r). The current operator is defined

as

Î = e

∫

S
dS · ĵ(r, t) . (3.11)

We make the usual change p → −i~∂/∂r and evaluate first the expectation value of the

current density operator:

ĵ(r, t) =
1

2m

∑

i

{δ(r − r̂i), p̂i} =

〈Ψ+
iki

|̂j(r)|Ψ+
iki

〉 =

~

2im

[

[Ψ+
iki

(r)]∗
∂Ψ+

iki
(r)

∂z
− Ψ+

iki
(r)

∂[Ψ+
iki

(r)]∗

∂z

]

=

~

m

{

[Ψ+
iki

(r)]∗
∂Ψ+

iki
(r)

∂z

}

.

(3.12)

If we integrate this expression over a plane perpendicular to the z direction and multiply by

e we get the average current I(Ei) carried by the state at energy Ei. Since we are considering
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the system in an ideal steady state, the current I(Ei) cannot depend on the position of the

surface at which we evaluate it. We can evaluate it deep into the left (right) lead:

IL(Ei) =Ii(Ei) +

NL
c
∑

f=1

|Rif |2If (Ei) = Ii(Ei) −
NL

c
∑

f=1

|Rif |2|If (Ei)| =

Ii(Ei)



1 −
NL

c
∑

f=1

Rif (Ei)



 ,

(3.13)

where we have defined

Ii(Ei) =
e~

2im

∫

dx

∫

dy

[

ψ∗
iki(r)

∂ψiki(r)

∂z
− ψ∗

iki(r)
∂ψ∗

iki
(r)

∂z

]

∝

~ki/m ∝ vi(ki) .

(3.14)

In a similar way, If , the currents reflected back into the left lead, are

If (Ei) ∝ ~kf/m ∝ vf (kf ) , (3.15)

which have opposite sign with respect to Ii(Ei) as the vector kf points toward the negative

z versus. The quantity

Rif (Ei) ≡ |Rif |2
|If (Ei)|
|Ii(Ei)|

(3.16)

is known as the reflection probability for a wave incident with momentum ~ki to be scattered

back into the left lead in a state with momentum ~kf , while the energy is conserved.

In the same way one obtains that the transmission probability for the wave function with

momentum ~ki to be transmitted in the right lead with final momentum ~kf reads:

Tif (Ei) ≡ |Tif |2
|If (Ei)|
|Ii(Ei)|

. (3.17)

3.3.1 Total current

The total current across the junction can be calculated as the sum of all currents carried by

all states at all energies. This can be done by multiplying by the density of states for each

momentum direction, and summing over all incident channels. If one defines the transmission

coefficients at a given energy:

TRL(E) =

NR
c
∑

i=1

NL
c
∑

f=1

Tif (E) from R to L , (3.18)

TLR(E) =

NL
c
∑

i=1

NR
c
∑

f=1

Tif (E) from L to R , (3.19)

it is possible to obtain an expression of the total current:

I =
e

π~

∫

dE {TLR(E) − TRL(E)} . (3.20)
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If the left and right channels are equally populated, the total current is zero, as the same

amount of carriers flow in the two directions. In fact, since the particle flux must be conserved,

we it must be

TLR(E) = TRL(E) ≡= T (E) . (3.21)

Anyway, if the left and right leads are populated with two different local distribution functions

(and thus have two different electrochemical potentials), the total currents differs from zero

and Eq. (3.20) becomes:

I =
G0

e

∫ +∞

−∞
dE [fL(E) − fR(E)] T (E) , (3.22)

where we define the quantity G0 = 2e2/h as the quantum of conductance. The latter equation

is usually called the Landauer equation. Considering that the voltage drop is defined as

V = µL−µR

e , it is possible to calculate the conductance G from Eq. (3.22) assuming for

semplicity that the temperature is zero:

G(E) =
dI

dV
=

d

dV

[

G0

e

∫ µR

µL

dE T (E)

]

=
G0

e
eT (E) = G0T (E) . (3.23)

3.3.2 Zero bias limit

In the zero bias limit, namely if (µL − µR) → 0, Eq. (3.22) can be simplified. If we Taylor-

expand the local distribution function:

fL(E) = fR(E) − ∂fR(E)

∂E
|µR

(µL − µR) + O[(µL − µR)2] (3.24)

we can insert the latter expression in Eq. (3.22):

I =
2e

h
(µL − µR)

∫

dE

(

−∂fR(E)

∂E
|µR

)

T (E), (µL − µR) → 0 . (3.25)

If we set the electronic temperature to zero, the Fermi dirac distribution fR becomes a step

function, and its energy derivative is a δ-function centered at µR. Thus

I =
2e

h
(µL − µR)T (E = µR) =

2e2

h
T (EF )∆V ; µL − µR → 0, Θ → 0 , (3.26)

where ∆V = µL−µR is the applied bias. For this reason, very often we focus on the zero-bias

transmission function near the Fermi level, that is the region where the real transport takes

place at low biases.

3.4 Non Equilibrium Green’s functions

What we have discussed so far is a standard derivation of the Landauer formula. In solid

state physics, non equilibrium Green’s function methods are used to calculate current and

charge densities in nanoscale (both molecular and semiconductor) conductors under bias. In
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Figure 3.3: Schematic setup used to study phase coherent transport. The system is divided

in three regions: a central scattering region (S) between two left (L) and right (R) leads

connected to thermal reservoir with chemical potentials µL and µR. The leads are perfectly

periodic and can be represented as a sequence of periodically repeated principal layers [34].

this Section we will summarize such methods [33], showing how the Landauer approach can

be recast in terms of Green’s functions, which is a practical way to calculate the transmission

properties in many realistic cases. Let us suppose to be able to divide the space into three

regions: two semi infinite left and right (L,R) leads connected to a central scattering region

(S), as depicted in Fig. 3.3. The leads are assumed to be perfect conductors and thus the

electron move ballistically in these regions and can scatter only on the potential inside S.

We separate the Hamiltonian and the wavefunction of the system into contact (HL,R, |ψL,R〉)
and scattering region(HS , |ψS〉) subspaces:







HL τL 0

τ †L HS τ †R
0 τR HR













|ψL〉
|ψS〉
|ψR〉






= E







|ψL〉
|ψS〉
|ψR〉






(3.27)

where τL,R are the hopping terms describing the interaction between device and contacts.

Here we will assume that the contacts are independent, i.e., there are no cross terms τ

between the different L and R contacts. We can define the Green’s function of the system as

the resolvent of H [35]:

(E −H)G(E) = I . (3.28)

The Green’s function gives the response of a system to a constant perturbation |ν〉 in the

Schrödinger equation

H|ψ〉 = E|ψ〉 + |ν〉 . (3.29)

The response to this perturbation is

(E −H)|ψ〉 = −|ν〉 ,

|ψ〉 = −G(E)|ν〉 .
(3.30)

For example, from third row of Eq. 3.27:

HR|ψR〉 + τR|ψS〉 = E|ψR〉
(E −HR)|ψR〉 = τR|ψS〉

⇒|ψR〉 = gR(E)τR|ψS〉 ,

(3.31)
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where gR is the Green’s function of the isolated R electrode: (E−HR)gR = I. It is important

to note that since we have an infinite system, we obtain two types of solutions for the

Green’s functions, the retarded and the advanced solutions corresponding to outgoing and

incoming waves in the contacts. These two solutions are usually obtained by respectively

adding an infinitesimal positive or negative imaginary part to the energy. We will denote the

retarded Green’s function with G and the advanced one with G†. Here, capital G denotes

the full Green’s function and its sub-matrices GR, GRS etc. Lowercase is used for the Green’s

functions of the isolated subsystems, e.g., (E − HL)gL = I. By using the retarded Green’s

function of the isolated contact (gR) in Eq. (3.31) we obtain the solution corresponding to an

outgoing wave in the contact. Using the advanced Green’s function (g†R) would produce the

solution corresponding to an incoming wave.

3.4.1 Self-energy

Calculating the Green’s function is easier than solving the full Schrödinger equation. Also,

the Green’s function of the scattering region can be calculated separately without calculating

the Green’s function of the full region.

From the definition of the Green’s function one obtains:






E −HL −τL 0

−τ †L E −HS −τ †R
0 −τR E −HR













GL GLS GLR

GSL GS GSR

GRL GRS GR






=







I 0 0

0 I 0

0 0 I






. (3.32)

From the set of three equations in the second column:

(E −HL)GLS − τLGS = 0

−τ †LGLS + (E −HS)GS − τ †RGRS = I

(E −HR)GRS − τRGS = 0 .

(3.33)

From the first and third row of Eq 3.33 we obtain:

GLS = gLτLGS

GRS = gRτRGS .
(3.34)

Now, if we substitute these expression into the central equation of Eq (3.33):

−τ †LgLτLGS + (E −HS)GS − τ †RgRτRGS = I , (3.35)

from which we can find GS :

GS = ((E + iη) −HS − ΣL − ΣR)−1 , (3.36)

where we have explicitely written the imaginary part η of the energy. The terms ΣL = τ †LgLτL

and ΣR = τ †RgRτR are the self-energies of the left and right leads. So the effect of the

semi-infinite contacts to the central region is replaced by adding the two self-energies to
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the Hamiltonian. Now the matrices in Eq. (3.36) have all a finite size. It may seem that

we have not gained much, since to obtain the self energies one needs to calculate gL,R and

thus to invert infinite matrices. However, assuming the leads to be periodic, in all practical

calculations this can be easily overcome by using recursive methods [36].

3.4.2 The spectral function

The spectral function is defined as:

A = i(G−G†) . (3.37)

This is one of the most important quantities we will use, since it contains information about

the density of states (DOS) and all solutions to the Schrödinger equation. In fact, we note

that for any perturbation |ν〉 we get two solutions |ψr〉 and |ψa〉 to the Schrödinger equation:

(E −H)|ψ〉 = −|ν〉 (3.38)

from the advanced and retarded Green’s functions:

|ψr〉 = −G|ν〉
|ψa〉 = −G†|ν〉

(3.39)

The difference of these solutions is a solution to the Schrödinger equation:

(E −H)(|ψr〉 − |ψa〉) = (E −H)(G −G†)|ν〉 = (I − I)|ν〉 = 0 , (3.40)

which means that |ψ〉 = A|ν〉 is a solution to the Schrödinger equation for any vector |ν〉. To

show that the spectral function actually gives all solutions to the Schrödinger equation we

expand the Green’s function in the basis set of the eigenvectors {|k〉}:

G =
1

E + iη −H
=
∑

k

|k〉〈k|
E + iδ − ǫk

, (3.41)

where we have added a small imaginary part η to the energy as discussed above, and |k〉
are all the eigenvectors of H with eigenenergies ǫk. Expanding the spectral function in the

eigenbasis gives:

A = i

(

1

E + iη −H
− 1

E − iη −H

)

= i
∑

k

|k〉〈k|
(

1

E + iη − ǫk
− 1

E − iη − ǫk

)

=
∑

k

|k〉〈k| 2η

(E − ǫk)2 + η2
.

(3.42)

In the limit η → 0 we get

A = 2π
∑

k

δ(E − Ek)|k〉〈k| , (3.43)

which is the spectral density of states. Integrating over k one obtains the total density of

states.
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3.4.3 Response to an incoming wave

In the non-equilibrium case, reservoirs with different chemical potentials will inject electrons

which will occupy the states corresponding to incoming waves in the contacts. Therefore, we

want to find the solutions corresponding to these incoming waves. Consider contact L isolated

from the other contacts and the device. At a given energy we have solutions corresponding

to an incoming wave that is totally reflected at the end of the contact. We will denote these

solutions with |ψL,n〉 where L is the contact label and n is a quantum number. We can find all

these solutions from the spectral function aL of the isolated contact, which can be calculated

by Eq. (3.42). Connecting the contacts to the device we can calculate the wavefunction on

the whole system caused by the incoming wave in contact L. To do this we note that a

wavefunction should be of the form

|ψL,n〉 + |ψr〉

where |ψL,n〉 is the totally reflected wave and |ψr〉 is the retarded response of the whole

system. In particular, |ψr〉 has also contributions in region L, otherwise the solution in

that region would remain |ψL,n〉. We will adopt the ansatz of considering the scattering state

|ψL,n〉+ |ψr〉 as a solution of the Hamiltonian. If we substitute that state into the Schrödinger

equation we get:







HL τL 0

τ †L HS τ †R
0 τR HR






(|ψL,n〉 + |ψr〉) = E(|ψL,n〉 + |ψr〉)







E|ψL,n〉
τ †L|ψL,n〉

0






+







HL τL 0

τ †L HS τ †R
0 τR HR






|ψr〉 = E(|ψL,n〉 + |ψr〉)

H|ψr〉 = E|ψr〉) − τ †L|ψL,n〉

(3.44)

We see that |ψr〉 is the response of the whole system to a perturbation of −τ †L|ψL,n〉 (by a

comparison of last row of Eq (3.31)):

|ψr〉 = (E −H)−1τ †L|ψL,n〉 = Gτ †L|ψL,n〉 , (3.45)

with G being the Green’s function of the infinite (L+ S +R) system. The scattering states

generated from Eq. (3.45), using all possible incoming waves from each contact, form a

complete orthonormal set of solutions of the full Schrödinger equation. Note that we have

chosen the retarded response which means that the incoming wave (part of |ψL,n〉) is traveling

towards the device. We will make full use of this fact below. The full wavefunction can thus

be expressed as:

|ψ〉 = |ψL,n〉 +Gτ †L|ψL,n〉 . (3.46)
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We would like to calculate the expressions for the wavefunction in the scattering region |ψS〉
and in the contact region |ψL,R〉. The scattering region part is simply derived from Eq. (3.46)

by noting that |ψL,n〉 has not contribution in that region:

|ψS〉 = GSτ
†
L|ψL,n〉 , (3.47)

and from Eq. (3.31) and Eq. (3.34)

|ψR〉 = gRτR|ψS〉 = gRτRGSτ
†
L|ψL,n〉 . (3.48)

Note that to calculate the wavefunction in the contact containing the incoming wave (contact

L) we need to add the incoming wave, giving the following expression:

|ψL〉 = (1 + gLτLGSτ
†
L)|ψL,n〉 . (3.49)

Knowing the wavefunctions corresponding to incoming waves in different contacts enables us

to fill up the different solutions according to the electron reservoirs filling the contacts.

3.4.4 Charge density matrix

We now calculate the charge density when the system is in a non-equilibrium state (otherwise,

it can be easily derived from the spectral function aS). The charge density matrix is defined

as:

ρ =
∑

k

f(k, µ)|ψk〉〈ψk| , (3.50)

where the sum runs over all states with the occupation number f(Ek, µ). The occupation

number is determined by the reservoirs filling the incoming waves in the contacts such that:

f(Ek, µL) =
1

1 + e(Ek−µL)/kBΘ
(3.51)

is the Fermi-Dirac function with the chemical potential µL and the temperature Θ of the

reservoir responsible for injecting the electrons into the contacts. From Eq. (3.47), the wave-

function in the scattering region given by an incoming wave in contact L is:

|ψS,k〉 = GSτ
†
L|ψL,k〉 . (3.52)

Adding up all states from contact L and using Eq. (3.43) gives:

ρS(contact L) =

∫

dE
∑

k

f(E,µL)δ(E − Ek)|ψS,k〉〈ψS,k|

=

∫

dE
∑

k

f(E,µL)δ(E − Ek)GSτ
†
L|ψL,k〉〈ψL,k|τLG†

S

=

∫

dEf(E,µL)GSτ
†
L

(

∑

k

δ(E − Ek)|ψL,k〉〈ψL,k|
)

τLG
†
S

= [vd. 3.43] =

∫

dEf(E,µL)GSτ
†
L

aL
2π
τLG

†
S ,

(3.53)
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which, after defining the quantity ΓL = τ †LaLτL = i
(

ΣL − Σ†
L

)

can be rewritten as:

ρS(contact L) =
1

2π

∫

dEf(E,µL)GSΓLG
†
S . (3.54)

Note that this is the density operator on the scattering region which has contributions only

from the states incident from the left side. The total charge density thus becomes a sum over

all contacts:

ρS(contact L) =
2 (spin)

2π

∫

dE
∑

i

f(E,µi)GSΓiG
†
S (3.55)

3.4.5 Probability current

In presence of a bias the chemical potential difference between L,R leads gives rise to a finite

current. In the next section we will calculate this current in a similar way as the charge

density. In order to do this we need an expression for the current from the wavefunction. In

the continuum case we can calculate the current from the velocity operator. However, for a

discrete Hamiltonian it is not straightforward how to define a velocity operator. Therefore,

we derive an expression for the current from the continuity equation (using two contacts). In

steady-state, the probability to find an electron on the scattering region S (
∑

i∈S |〈i|ψ〉|2 =
∑

i∈S |ψ|2, where the sum runs over the device subspace) is conserved:

0 =
∂
∑

i |ψ|2
∂t

=
∑

i

∂〈ψ|i〉〈i|ψ〉
∂t

=
∑

i

(

∂〈ψ|i〉
∂t

〈i|ψ〉 + 〈ψ|i〉〈∂〈i|ψ〉
∂t

)

=
i

h

∑

i

(〈ψ|H|i〉〈i|ψ〉 − 〈ψ|i〉〈i|H|ψ〉) =
i

h
(〈ψ|H|ψS〉 − 〈ψS |H|ψ〉)

=
i

h

(

〈ψ|HS + τL + τRψS〉 − 〈ψS |HS + τ †L + τ †Rψ〉
)

=
i

h

([

〈ψL|τL|ψS〉 − 〈ψS |τ †L|ψL〉
]

+
[

〈ψR|τR|ψS〉 − 〈ψS |τ †R|ψR〉
])

(3.56)

We interpret the term in the first (square) bracket as the incoming probability current into

the device from contact L and the second bracket from contact R. Generalizing to an arbitrary

contact j gives us the electric current (at one energy) as the charge (−e) times the probability

current:

ij = − ie
~

(

〈ψj |τj |ψS〉 − 〈ψS |τ †j |ψj〉
)

, (3.57)

where ij is defined as positive for a current from the contacts into the device. We can now

put in the expressions for the wavefunctions in the same way as for the density matrix.

3.4.6 Electrical current

To calculate the total current through the device we only need to put in the wavefunction of

the device and the contacts (ψS , ψL, ψR) from Eqs. (3.47), (3.49) and (3.31) and adding
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all the contributions together. Thus the current into the device from a incoming wave of one

energy (E) in contact L (|ψL,n〉) through the coupling defined by τR is:

i(2 from 1) = − ie
~

[

〈ψR|τR|ψS〉 − 〈ψS |τ †R|ψR〉
]

= − ie
~

[

〈ψL,n|τLG†
Sτ

†
Rg

†
RτRGSτ

†
L|ψL,n〉 − 〈ψL,n|τLG†

Sτ
†
RgRτRGSτ

†
L|ψL,n〉

]

= − ie
~
〈ψL,n|τLG†

Sτ
†
R

(

g†R − gR

)

τRGSτ
†
L|ψL,n〉

= − e
~
〈ψL,n|τLG†

SΓRGSτ
†
L|ψL,n〉

(3.58)

Adding over the states n and noting that the levels are filled from the reservoir connected to

contact L gives (2 for spin):

I(2 from 1) = 2
e

~

∫ +∞

E=−∞
dEf(E,µL)

∑

n

δ(E − En)〈ψL,n|τLG†
SΓRGSτ

†
L|ψL,n〉

= 2
e

~

∫ +∞

E=−∞
dEf(E,µL)

∑

m,n

δ(E − En)〈ψL,n|τL|m〉〈m|G†
SΓRGSτ

†
L|ψL,n〉

= 2
e

~

∫ +∞

E=−∞
dEf(E,µL)

∑

m

〈m|G†
SΓRGSτ

†
L

(

∑

n

δ(E − En)|ψL,n〉〈ψL,n|
)

τL|m〉

= 2
e

~

∫ +∞

E=−∞
dEf(E,µL)

∑

m

〈m|G†
SΓRGSτ

†
L

aL
2π
τL|m〉

=
e

π~

∫ +∞

E=−∞
dEf(E,µL)Tr

(

G†
SΓRGSΓL

)

(3.59)

To get the total current through the device the current from contact R have to be subtracted

away:

I =
e

π~

∫ +∞

E=−∞
dE (f(E,µL) − f(E,µR)) Tr

[

G†
SΓRGSΓL

]

(3.60)

The quantity

T (E) = Tr
[

G†
SΓRGSΓL

]

(3.61)

is the transmission function of the system.

3.4.7 Practical Calculations

The formalism presented so far can be used in combination with DFT calculations. The

general scheme is the following. By using a localized basis set, it is possible to do a partition

of the system in a left, scattering, and right region as in Fig. 3.3. The self-energies ΣL,R

are provided by a self consistent calculation of the electrode principal layer, with periodic

boundary conditions along all the three direction. Then, it is possible to compute the scat-

tering Green’s function (3.36) with the Hamiltonian evaluated at a given charge density ρ0
b.

bFor example, the starting ρ0 can be the one obtained by a preliminar self-consistent calculation of the

scattering region with periodic boundary conditions along z.
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With the expression in Eq (3.55) we can compute the non-equilibrium charge in the device

region of a junction. In practice, this integral is performed by splitting it into two parts:

an equilibrium part which can be integrated along a contour in the complex plane and a

nonequilibrium part which has to be integrated along the real energy axis [37]. This is due to

the fact that the L,R spectral densities ρL,R = 1
πGSΓL,RG

∗
S (which appear as the arguments

of the energy integral) are not analytical. Afterwards, from the Green’s function G a new

charge density ρ1 can be calculated, which is then used to construct the new Hamiltonian

HS(ρ1). This procedure is iterated until reaching self-consistency, that is when ρn+1 = ρn.

A fundamental requirement is that the final self-consistent density matrix matches exactly

that of the leads at the boundaries. Therefore one tipically enlarges the scattering region to

contain a few principal layers of the leads (those where the electronic structure is different

from that of the bulk)c as depicted in Fig. 3.3. Finally, the converged Green’s function can

be used to calculate (i) the transmission function T(E) and (ii) the current I through the

device as shown in Eq. (3.60).

All the transport calculations presented in this thesis work are performed with the TranSI-

ESTA code [38].

cThe exact number of such planes depends on the screening length of the material considered.
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Chapter 4

Transport on a 1D system: a

simplified model

Before applying the NEGF technique to study conductance of realistic systems, we study the

Landauer theory for a simplified model. Here, our interest is not to perform a conductance

calculation for a realistic system, but rather to grasp the main features of electronic transport

across interfaces by using a very simple model and a formally exact approach for the calcu-

lation of the Green’s function. At a basic level, the simplest example of a nanoscale junction

is an atom/molecule embedded between two leads. Of course, this is a 3-dimensional system,

but the underlying physics can be understood by considering a one dimensional potential,

which properly simulates the effects of the two semi-infinite leads and the presence of the

atom/molecule discrete energy levels. We will consider one dimensional potentials which can

be of any shape inside a well defined scattering region, while they remain constant outside

that region in order to reproduce jellium electrodes. Inside the scattering region, we will con-

sider single barrier as well as double barrier potentials which yield electronic resonances. The

Green’s function of the infinite system will be numerically calculated by means of the embed-

ding theory, which will be summarized before showing the results. Except when differently

specified, along this chapter we will make use of the atomic units (e = me = ~ = 1).

4.1 Embedding approach

Embedding is a theory that allows one to calculate the Green’s function in a limited region

of space (region I), taking into account the effect of the rest of the space (region II) to region

I [39]. This is done by adding to the Hamiltonian an embedding potential defined over the

interface between regions I and II, which includes the effect of the infinite substrate. This

potential ensures that the wave functions have the correct boundary conditions on the surface

between I and II, allowing them to match with the wavefunctions of the substrate.

This method is perfectly suitable to reproduce an interface potential between two infinite

leads. In fact, we may solve the Schrödinger equation only in a region containing the junc-

35
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tion between the leads and, to a first approximation, we may consider two jellium leads with

constant potential, initially set to zero. In this case, the embedding potential is calculated

on the two surfaces (left and right), which in one dimension reduce to two points, zl and zr

(Fig. 4.1).

If we call S the surface separating regions I and II, and if nS is a normal vector pointing out-

0
z (a.u.)

0

1

2

V
 (

a.
u.

) z
 l

z
 r

Figure 4.1: Example of embedding surfaces in one dimension, situated at z = zl and z = zr.

ward S, we denote the embedding potentials for the left and right half spaces by Σ(rS , r
′
S ;E).

Σ is a complex matrix defined on the surface S giving a generalized logarithmic derivative

on S of solutions ψ of the Schrödinger equation in region II satisfying the outgoing boundary

condition at z = ±∞ [39]: the embedding potential

∂ψ(rS)

∂nS
= −2

∫

S
drSΣ(rS , r

′
S;E)ψ(rS) , (4.1)

where the normal n points outwards region I. The equation for the Green’s function G in the

embedding formalism is:

− 1

2
∇2

rG(r, r′;E) +
1

2
δ(n − nS)

∂G(r, r′;E)

∂nS
+ V (r)G(r, r′;E)

+ δ(n − nS)

∫

S
dr′′SΣ(rS , r

′′
S;E)G(r′′, r′;E) − EG(r, r′;E)

= δ(r − r′) r, r′ in I.

(4.2)

The reader may notice that, unlike the formalism described in Chap. 3, now we are expanding

all the equations in real space. We will work in real space only in this chapter.

4.1.1 Numerical solution

In order to solve Eq. (4.2), we cast it in a matrix form.

First, we expand the Green’s function G on a basis set χi:

G(z, z′;E) =
∑

i,j

χi(z)χj(z
′)Gij(E). (4.3)
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Then, Eq. (4.2) reduces to a matrix equation (see Appendix A):

∑

j

(Hij + Σij(E) − ESij)Gjk = δik, (4.4)

where the Hamiltonian matrix is given by [40]:

Hij =
1

2

∫ zr

zl

dz
dχi(z)

dz

dχj(z)

dz
+

∫ zr

zl

dzχi(z)V (z)χj(z), (4.5)

the embedding matrix by:

Σij(E) = Σl(E)χi(zl)χj(zl) + Σr(E)χi(zr)χj(zr), (4.6)

and the overlap matrix S by:

Sij =

∫ zr

zl

dzχi(z)χj(z) . (4.7)

We use a trigonometric basis functions,

χn(z) =

{

cos(mπζ
2D ) n even

sin(mπζ
2D ) n odd

(4.8)

where ζ is measured from the mid point of region I,

ζ = z − zr + zl
2

(4.9)

and where D > (zr − zl)/2. With this approach, one obtains the 1D Green’s function

G(z, z′, E). In the case of translational invariance in the (x, y) plane, one can extend this

result and obtain the full Green’s function G(r, r′, E) (see Appendix B) and then compute

the relevant physical quantities such as the density of states or the charge density.

4.1.2 Ballistic transport

The conductance G (see Eq. (3.23)) can be expressed in an efficient way by using the em-

bedding approach [41, 42]. With a derivation similar to what shown in the previous chapter,

it can be shown that the conductance may be written in terms of the embedding potentials

as [42]:

G = 2G0Tr [G12ImΣ2G
∗
21ImΣ1] , (4.10)

where G is the outgoing (retarded) Green’s function of the system, the indices (1, 2) refer

to two boundary surfaces S1,2, G12 = G(r1, r2) is evaluated with one argument on the first

surface and the other on the second one (the integral on the repeated variables is implicit),

and Σ is the embedding potential defined in Eq. (4.1). Eq. (4.10) is the same as Eq. (3.61):

here, the embedding potential plays the role of the self-energy derived quantity Γ. Having

an expression for the conductance, it is then possible to calculate the current. If we assume

near-zero temperatures, we can approximate the Fermi functions f with step functions and
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the current is approximated by the integral between the two leads chemical potentials (see

Eqs. (3.22), (3.23)):

I(V ) =
1

e

∫ µ2

µ1

G(E,V )dE . (4.11)

We have explicitly shown the dependence of the conductance on the voltage V . In fact, the

Green’s function is computed at any given voltage V , and thus G is updated to calculate

I(V ).

4.2 Resonant Tunneling

A strategy to investigate the effects to the conductance due to the presence of an atom or

a molecule between two leads is to study a simple system which reproduces the presence of

discrete levels. Our choice is to study the conductance of a double barrier potential: the two

barriers represent the vacuum regions between the molecule/atom and the two electrodes,

while in the mid-region a set of quasi-localized levels is present. The fact that a potential

well yields discrete electronic levels is an elementary quantum physics exercise. The same

happens for a double barrier potential, where the height of the barriers is infinite. If we

immagine to reduce the barriers height from infinite to a finite value, localized electron states

in the interface hybridize with the continuum of electron states at the left and right sides

of the resulting well, forming electronic resonances. By using the embedding formalism, the

resonance width due to the coupling with semiinfinite substrates is correctly calculated.

-4 -2 0 2 4
z (a.u.)
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)
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V
 0L

Figure 4.2: Double rectangular barrier potential.

In the following, we will consider a double rectangular barrier (Fig. 4.2). But note that

with our approach we can simulate whatever potential profile we prefer. Let us call a the

semiamplitude of the resulting well, V0 the intensity of the two barriers, and L their width.

In Fig. 4.3 the local density of states (LDOS) is shown for a potential profile with V0 = 1Ha

and a = 1a0. We see that for z ≃ 0 the LDOS has a sharp peak for E ∼= 0.4Ha due to

the bound state of the well. The peak is not perfectly localized in energy, but it has a
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Figure 4.3: LDOS for an electron in a double potential barrier (V0 = 1 Ha, a = 1 a0),

calculated versus several points z.

broadening that is due to the hybridization with the continuum of states of the substrate,

as described before. For values of z which are far from the barriers, the energy dependence

of the LDOS approaches that of the free particle (∝ 1/
√
E) with an oscillatory behaviour.

If we increase the distance between the two barriers, i.e. if we increase the well’s width, we
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Figure 4.4: LDOS for an electron in a double potential barrier (V0 = 1 Ha, a = 2 a0),

calculated versus several points z .

find more bound states. For example, Fig. 4.4 shows the LDOS in the case of two barriers

with a = 2a0: here two resonances are clearly visible, the second having zero probability
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at z = 0 since its wavefunction has an odd-symmetry. The first peak has a lower energy

in this case, as expected for a wider well potential, and it is less broadened if compared to

the case of a = 1a0 (Fig. 4.3): the first bound state is less hybridized with the substrate

because the barriers are wider and so its wavefunction may decay closer to zero inside them.

In both cases we also notice the presence of continuum resonances corresponding to energies

E > V0, whose wavefunctions display opposite parity with respect to the higher bound state.

In Fig. 4.5 we show the LDOS at the position z = 0 and the k‖ = 0 conductance for

several configurations of double square potentials, changing the geometrical parameters that

characterize it (L, V0, and a). In panel a) we see that if we increase the distance between

the two barriers, the resonances shift to lower energies and their width is narrowed. As

expected, by increasing V0 the peak moves to higher energies (panel c). Finally, if the barrier

width L is increased, the resonance energy remains unchanged, but it gets sharper because

the electron has a lower probability to escape from the well (panel e). The behaviour of the

conductance in a one dimensional double square potential follows that of the LDOS (panels

b-d-f). In corrispondence of the resonance energies, the conductance G yields high peaks.

Such features are broadened as well as the resonances in the potential well. For energies

approaching V0, G starts to oscillate in the same way as the case of a single potential barrier,

the oscillations getting narrower the higher the energy (see Fig. 4.6). In conclusion, the main

difference between the conductance for a single and a double barrier potential is shown in

Fig. 4.6. The presence of discrete levels in the scattering region causes sharp peaks to appear

in the conductance before the usual edge situated at E ≃ V0. This is an example of resonant

tunneling [43]: only electrons with specific energies (corresponding to resonances) are allowed

to transfer through the double barrier without being reflected.

We calculated the current, as a function of the applied bias, for the one dimensional double

potential barrier. We arbitrarly set an equilibrium Fermi level equal to µ = 0.23a.u., which is

lower than the resonance energya, Er = 0.32 a.u. The bias voltage is applied symmetrically

across the device. The calculation is done by evaluating the integral of Eq. (4.11), where

the integration is computed for each value of the applied bias. With zero bias, we assign the

same value to the Fermi levels on the left and right leads (µL, µR). The procedure is thus the

following: we set a bias value V and compute the Green’s functions for the resulting potential,

calculate the conductance (Eq. (4.10)) which is thus integrated from µR to µL = µR + V .

Thus, we obtain the current for a given bias V . In Figs. 4.8 we show the potentials resulting

under the application of different bias, the respective DOS and the conductance, while in

Fig. 4.7 we show the current versus bias, for a double barrier potential with one resonant

state. It is clear that when the resonance remains outside the bias window (µR ≤ E ≤ µL)

there are no states in the interface which support charge transport (panel a) of Fig. 4.8), thus

the current is zero. The current remains nearly equal to zero until a bias of about 0.19Ha

is applied. As shown in panel b), µL aligns with the resonant state and a large resonant

current takes place. Here the current reaches its maximum value, since the electronic states

aNote that the resonance energy grows as the bias increases.
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Figure 4.5: LDOS in z = 0 and conductance for several configurations of double square

potential (default values: L = 1, V0 = 1Ha, a = 1a0, η = 10−4). The parameters in the

captions are intended in a.u.

that transport current from the left lead lie at about the resonant state inside the juction and

therefore they have a larger probability to overcome the barriers. When the bias increases

(panel c) the current reduces because the states that transmit are progressively far from

resonance. The current persists until the resonant state is pushed below the occupied states

in the left lead. Then, for a bias larger than 1.2 a.u. (panel d), the left band edge overcomes
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Figure 4.6: Conductance for single and double potential barriers.

the energy of the right barrier, and the current slowly increases again.

It is interesting to note that the energy integral of the resonant state is fairly independent of

V , while this state is broader when it better hybridize with the right electrode.
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Figure 4.7: Current versus applied bias for a double barrier potential.
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Figure 4.8: Potential (black), DOS (red) and conductance (bue) for different applied biases:

∆V = 0.1, 0.19, 0.6, and 1.4 Ha. The filled areas at the left and right represent the electron

filling of the left and right electrodes up to the chemical potentials.

4.3 Modulated potential

We apply the approach described above for the case of junction formed by Cu electrodes. We

study the properties of these systems as we change the Cu surface exposed in the junction: we

consider jellium Cu, Cu(111) and Cu(100). In order to reproduce the metal properties, we use

a modulated potential in the direction normal to the surfaces, as developed by E.V. Chulkov

and coworkers [44], which is able to reproduce the surface potential of a variety of metals.

We add a gaussian well contribution in between two of these potentials, in order to obtain

tunable ad hoc resonant states in the interface section (see Fig. 4.9). In the following, results

are shown for three fixed values of the gaussian depth V0, which give shallow, medium, and

deep resonances. Namely, those values are 2.7 eV, 10.8 eV and 21.7 eV. In Fig. 4.11 we show

the DOS of the clean surface (panels a-b), the DOS in the interface region (panels c-d), the

conductance (panels e-f) and the I/V characteristic (panels g-h) for Cu(111) and Cu(100)

on the left and right, respectively. These quantities are shown only considering k‖ = 0. In

the case of Cu(111) and Cu(100) the modulation of the potential creates a band structure
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Figure 4.9: Example of potential at the interface of two Cu(111) surfaces with the addition

of potential wells of three different depths.

and eventually surface states: for the former, the surface state lies inside the band gap

(Fig. 4.11,a), while for the latter it lies on the edge of the lower (k‖ = 0) band (Fig. 4.11,b).

We report the DOS for the interfaces (Fig. 4.11,c-d). Note that, when an interface is formed

between two surfaces, the surface state splits into two states with opposite parity. The even

state hybridizes with the ad-hoc resonant one in the gaussian well, determining two states

which are the symmetric and antisymmetric combinations of the resonant and surface states.

One of these states is pushed inside the lower band when the resonant state energy is deep in

the well. The other state does not change its position as the well depth is changed, because

of its odd parity. We calculate the Landauer conductance for normal incident (i.e. for k‖ = 0)

electrons (Fig. 4.11,e-f). In the energy gap the conductance is zero, because no propagating

states are available at those energies in the leads. We have instead large contributions at

the resonance positions that are split into the electronic valence bands. Of course we can

directly relate the feature of the conductance to those of the DOS. In order to calculate the

current, we need to compute the conductance at different increasing biases. In Fig. 4.10 we

show the DOS and the conductance G in the case of Cu(100) at different applied voltages

∆V . If we look at the DOS, we notice that its contribution due to the left electrode shifts

in energy according to ∆V . The resonant state localized in the gaussian well is also shifted.

The conductance behaves in the same way: its contribution in the bias window decreases as a

consequence of the progressively lower overlap between the portions of the left/right electrode

bands within the bias window. Eventually it will increase at sufficiently higher biases as a

consequence of the overlap between the left electrode’s valence band with the right one higher

band. The resonant state doesn’t contribute to the conductance since it is localized within

a gap energy region. We compare the currents for the two interfaces (Fig. 4.11,g-h). The

Cu(111) interface is an insulator at k‖ = 0. Therefore the current is zero until the bias is

large enough to permit the left lower band overlap with the right higher one. The I/V shape
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Figure 4.10: DOS (upper panel) and conductance (lower panel) for Cu(100) interface cal-

culated at different voltages (V0 = 10.8 eV). The black vertical lines represent the voltage

applied to the junction.

differs significantly when the junction resonant level is shifted in energy. For these structures,

the current at low biases can be enhanced by selecting the value of V0 for which the resonance

is aligned with the Fermi level. If we consider Cu(100), we can see that the highest current

is found for V0 = 2.7 eV, since the resonance is localized near EF.

In conclusion, this simplified model is a tool to play with the relevant quantities which are

basic in the transport properties of nanostructured interfaces.
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Figure 4.11: From top panel to lower panel: surface, DOS of the interface region, conductance

and I/V charachteristic for Cu(111) (left) and Cu(100) (right). Note that the energy scales

are referred to the Fermi level.



Chapter 5

Transport on 2D systems

Organic electronics has rapidly grown into a fundamental field whose potential is still to be

fully developed and exploited. Research focuses on novel functional organic materials and

existing applications already comprise, among others, nanoscale electronic devices such as

thin film transistors and diodes, solar cells, integrated circuits on flexible substrates, carbon

nanotube field effect transistors and molecular switches.

Graphene, a perfect carbon monolayer sp2−hybridized, has attracted a huge interest since

its discovery in 2004 [45, 46]. Besides a pure theoretical interest, its possible applications

in carbon-based electronics represent a very exciting perspective. Graphene displays a very

peculiar electronic structure, determined by the confinement of electrons in two dimensions

and its geometrical symmetries. Being a zero gap semiconductor, its specific linear electronic

band dispersion near the Brillouin zone corners (Dirac points) makes the electrons and holes to

propagate as massless fermions [47, 48, 49, 50]. Therefore, graphene is a very good candidate

to build transparent conducting electrodes to be incorporated in potential electronic and

optoelectronic devices. Several studies have proven the potential of graphene to replace

traditional electrode materials (such as tin-indium oxide) in electrical devices [51]. Being the

incorporation of graphene in electronic circuits a feasible solution, the next logical step is

to pattern graphene in order to obtain miniaturized circuits which mimic the behaviour of

standard electronic components (gates, switches, diodes, sensors, etc.). For instance, one can

think of a way to link different graphene electrodes. A possible and straightforward solution

is to use carbon derived systems like graphene nanoribbon which preserve the nature of

electrodes. Another way is to use components which are activated by an external stimulus,

which can be mechanical, electrical or optical.

In this chapter, we first devote a Section to show the main properties of graphene and

graphene nanoribbons based on DFT calculations. In the following two sections we will

discuss two different graphene-based molecular junction which address the issues discussed

so far. We first investigate a hybrid graphene junction, where the linkers between graphene

electrodes are small stripes of carbon atoms. Our interest is to do a systematic investigation

of how the basic geometrical features affect the transport properties of these heterojunctions.

47
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Next, the second system under study is a photocromic molecular junction, composed of a

particular class of molecules, named diarylethenes, which are embedded between graphene

electrodes. The latter two sections will be opened by a discussion of the experimental and

theoretical state-of-the art in the field, and the main motivations that drove us carry on these

investigations.

5.1 Pristine graphene and GNR

5.1.1 Graphene

Graphene is the ideal 2D allotropic form of carbon where the atoms are periodically arranged

in an infinite honeycomb network. Such an atomic structure is characterized by two kinds of

bonds and exhibits the so-called planar sp2 hybridization. Indeed, among the four valence

orbitals of the carbon atom (2s, 2px, 2py and 2pz orbitals, where ẑ is perpendicular to

the graphene sheet), the (s, px, py) orbitals combine to form the inplane σ (bonding or

occupied) and σ∗ (anti-bonding or unoccupied) orbitals. Such orbitals are strong covalent

bonds responsible for most of the binding energy. The remaining pz orbital, pointing out of

the graphene sheet, is odd with respect to the planar symmetry and cannot couple with the σ

states, which are instead even. The lateral interaction among neighboring pz orbitals creates

the delocalized π (bonding) and π∗ (anti-bonding) orbitals. If different layers of graphene

are coherently stacked, the π orbitals are responsible of a weak inter-planar interaction and

graphite is formed.

The graphene plane is an hexagonal lattice with two atoms per unit cell (A and B) and a

Figure 5.1: Graphene: basis vectors and Brillouin zone.
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basis defined by the vectors (~a1 and ~a2):
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2

)

,

(5.1)

where aCC is the distance between two neighboring carbon atoms.

We performed DFT electronic structure calculations of pristine graphene using the SIESTA

code [29, 30]. The exchange-correlation energy and electron−ion interaction are described

by the Perdew-Burke-Ernzerhof (PBE) [52] generalized gradient approximation (GGA) and

norm-conserving pseudopotentials [32] in the fully nonlocal form, respectively. A double-ζ

polarized (DZP) basis set of numerical atomic orbitals is used and the energy cutoff for real-

space mesh is set to 300 Ry [29] after convergence tests. We verified that a 40×40 k-mesh

(821 points) is enough to obtain convergent results. The basis set for C includes DZP 2s

and 2p orbitals, and we fix the radii of the orbitals by imposing an energy shift of 0.02 Ry.

The resulting cutoff radii of the different species are then r2s = 4.08 Bohr and r2p = 4.87

Bohr. The unit cell is composed by two atoms, while periodic boundary conditions are used

and the periodic replica of the graphene planes are separated by 11 Å in order to avoid

direct coupling. In Fig. 5.2 we show how the energy changes with the lattice parameter: we

obtained a converged value of aCC=2.48 Å in good agreement with the experimental one

aexpCC=2.46 Å. The calculated electronic bands are reported on Fig. 5.3 (left panel) along high

symmetry points M − Γ −K −M . The typical feature of graphene is the crossing of the π

and π∗ bands at the K points, i.e. at all the vertices of the hexagonal Brillouin zone. In the

neighbourhood of these special points the energy-momentum dispersion is quasi-linear (giving

rise to the so-called Dirac cones), and electrons actually can be described as massless Dirac

fermions. Consequently, graphene exhibits electronic properties that are distinctive for a 2D

gas of particles described by the relativistic Dirac equation rather than the non-relativistic

Schrödinger equation (only valid for non-relativistic electrons with a finite mass). Indeed, in

graphene, charge carriers mimic relativistic particles with zero mass and an effective speed

of light c ≃ 106m/s.

In the inset, we show the transmission function of pristine graphene in a shorter range near

the Fermi level EF, calculated along the armchair direction. We obtain the same result along

the zigzag direction. As expected for perfect systems, the transmission function reflects the

DOS and tends linearly to zero approaching EF.

5.1.2 Graphene Nanoribbons

Graphene nanoribbons (GNR) are strips of graphene with a finite width that can be ob-

tained by patterning graphene along preferential directions. Due to the honeycomb structure
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antibonding π and σ bands are indicated. In the inset the transmission function of pristine
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of graphene, only two preferential directions can be considered: the resulting GNR have

armchair or zigzag edges. In Fig. 5.4 such structures are illustrated, along with the usual

convention for their nomenclature. N-aGNR (N-zGNR) are defined as the ribbon having N

zigzag dimers (lines) along the transverse direction. If not otherwise stated, the dangling

bonds on the edge sites of GNR will be assumed to be terminated by hydrogen atoms. The

presence of edges in GNR entails the quantum mechanical constriction of electronic wave-
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functions in the direction perpendicular to the axis of the ribbon and, as a consequence, a

confinement-induced gap can open. This lateral confinement causes a discretization of the

electronic quantum levels and breaks the spectrum into subbands. The Brillouin zone foldes

to a rectangular zone, inscribed in the original Brillouin zone of graphene.

In Fig. 5.5 we show the electronic band structure and transmission function of 10-aGNR a,

taken as a reference system. In these two cases, an energy gap opens at EF . It has been

demonstrated that the aGNR electronic properties sensibly vary by changing the width of

the ribbon [53, 54, 55, 56]. In particular, the width and the electron energy gap ∆N are

inversely proportional. Moreover, the electronic gap ∆N (and thus the transport properties)

of N -aGNR strongly depend on the value of N defining three different categories of aGNR:

∆3p+1 > ∆3p > ∆3p−1, with p integer [56] . If we restrict to each of these classes, the energy

gap decreases as p increases. The origin of the gap can be understood by considering the

confinement imposed by the boundary conditions at ribbon edges, plus the perturbation in-

duced by the presence of passivated edges (which can not be taken into account with simple

tight-binding models). Also, this is a good test system to interpret the Landauer theory.

Looking at the transmission function, we can notice that it increases by integer steps in cor-

rispondence to each subband, i.e. to each channel that is open at a given energy.

The case of zGNR is a little more complicated. In fact, their ground state is predicted to be

magnetic, with magnetic moments on the two edges. We calculated the electronic properties

for the cases of ferromagnetic (FM) and anti-ferromagnetic (AF) structures of a reference

zGNR, namely the 4-zGNR ( Fig. 5.6). The energy difference between these two electronic

configurations is ∼0.3 eV: the AF is more stable, because of the interaction between spins

on opposite edges in the FM. The energy difference between AF and FM decreases as N

increases due to progressive lower coupling between the edges. From the spin-resolved band

structure, we see that the AF configuration conserve the semiconducting behaviour of aGNR

with a 0.5 eV gap around EF . On the contrary, the FM system is metallic as both the ↑ and

↓ bands cross the Fermi level.

aDetails of the computations presented in Sect. 5.1.2
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Figure 5.4: Carbon N-zGNR (a) and N-aGNR (b) composed of N armchair and zigzag lines,

respectively. Black and white dots identify carbon atoms belonging to the two different

graphene sublattices (A and B). The red rectangle represents the 1D unit cell of the corre-

sponding GNR [48]
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Figure 5.5: Electronic band structure and transmission function of 10-aGNR.

5.2 Graphene-GNR heterojunctions

5.2.1 Experiments and motivation

As discussed above, GNR are one dimensional graphene strips that are considered as promis-

ing candidate building blocks for future electronic applications [57, 58, 59]. Several methods
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Figure 5.6: Electronic band structure and DOS for 4-zGNR in ferromagnetic (left) and anti-

ferromagnetic (right) electronic configurations.

allow the production of GNR, including mechanical cutting of exfoliated graphene [46], pat-

terning of epitaxially grown graphene [60], bottom-up chemical methods [61], and carbon

nanotubes unzipping [62]. The finite size of the GNR gives rise to a large variety of electronic

behaviors that can be relevant in transport. Transport properties of pristine GNR have been

studied both for the ideal [63, 64, 65] and defective [66, 67, 68] case. Electronic transport

has also been studied, by a tight-binding approach, for junctions connecting zGNR of dif-

ferent widths [69, 70, 71] revealing the crucial role played by corner edge structures [72]. A

challenging technological issue would be to exploit the high mobility properties of graphene

and the finite-size characteristics of GNR, by creating heterostructures which make use of

both these properties. These systems may be used as interconnections to transmit signals

in future pure-C-based electronic devices. In fact, the effects of quantum confinement in

graphene nanoconstrictions have been studied showing their analogy with optics phenom-

ena [73] as well as their exploitation for valley filter applications [74]. Recently a quantized

ballistic conductance has been measured in such structures [75]. Although a chemical pre-

cise production of small nanoribbons and graphene nanojunctions is a significant challenge,

a lot of progress has been made in recent years by means of different techniques. While a

bottom-up approach has been proposed to build atomically precise GNR [61], graphene nano-

junctions stable at room temperature can be produced by forming nanogaps in graphene by

controlled electroburning [76]. Furthermore, the chirality of GNR edges can be selectively

controlled by optical annealing enabling the realization of GNR and heterostructures with

purified edges [77]. Even more complex junctions have been experimentally built, with car-

bon nanotubes as interconnections between graphene bilayers [78]. However, due to their flat

structure, GNR seem easier to pattern than carbon nanotubes. Owing to the large zoology of

hybrid graphene interconnections it is of great importance to perform a systematic investiga-
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tion of their transport properties at the simplest level of configurational complexity, in order

to clarify how the basic geometrical parameters affect the conductance. Most of the previous

works investigating GNR junctions and graphene nanoconstrictions rely on standard tight-

binding calculations. It has been shown by Louie and co-workers [56] that the predictions of

simple tight-binding models on GNR may lead to incorrect band structures and energy gaps

since the bonding characteristics between atoms substantially change at the edges. An ab

initio study of GNR junctions avoids such these difficulties, providing an accurate description

of their transport properties [79], which are directly related to the underlying electronic band

structure.

In this Section, we present a first-principles study, by means of the non-equilibrium Green’s

functions (NEGF) technique described in previous chapters, of the electronic and transport

properties of systems consisting of two semi-infinite graphene layers interconnected by an

hydrogen-passivated armchair graphene nanoribbon. The transport properties of such junc-

tions are predicted to strongly depend on the GNR geometry, while are quite robust to changes

of the graphene’s edges geometry. These structures combine the high mobility of graphene

electrodes [80, 81, 82] with the intrinsic semiconducting behavior of GNR. We show that these

semiconducting hybrid graphene-GNR junctions have a significant gap in the transmission

spectrum, which may be exploited to build logic devices which require a large on-off ratio in

the current [78].

In the following, we show the properties of aGNR junctions considering one representative

for each class according to their width: we will take into account 3-aGNR, 5-aGNR, and

7-aGNR. In the case of 3-aGNR, we will consider ribbons of three different lengths, namely

those consisting of four (4L), six (6L), and eight (8L) zigzag lines along their axis. The 8L

3-aGNR will be considered as an illustrative model to study the effects of the application of

a bias. We will discuss the effect of the rotation of a phenyl ring, and show how different

edge configurations affect the transport properties.

5.2.2 Model and methods

The system setup for a 4L 7-aGNR junction is shown in Fig. 5.7 as a representative case.

This open system is constituted by three parts: the left (L) and right (R) semi-infinite

graphene leads, and an extended-molecule (EM) region. The junction is constructed so that

the periodic replicas of the aGNR along the direction parallel to the electrode edge are

separated by 7.43 Å. This corresponds to three unit cells of graphene and we verified that

the interactions among the replica are negligible. The width of the leads part included inside

the EM region is chosen after converging the transmission function: six carbon zigzag lines

per side are sufficient to reach stable results.

The electronic structure calculations are carried out using the first-principles self-consistent

method implemented in SIESTA package [29, 30]. The exchange-correlation energy and

electron−ion interaction are described by the Perdew-Burke-Ernzerhof (PBE) [52] general-

ized gradient approximation (GGA) and norm-conserving pseudopotentials[83] in the fully
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Figure 5.7: System setup for 4L 7-aGNR. The left and right electrodes and the extended-

molecule region are highlighted.

nonlocal form, respectively. A double-ζ polarized basis set of numerical atomic orbitals is

used and the energy cutoff for real-space mesh is set to 200 Ry [29]. Preliminary tests in-

dicated that the relaxation of the carbon atoms in the leads did not affect the transport

properties of the systems under study, so in most cases we considered non-relaxed geome-

tries. The edges of semi-infinite leads are saturated with one relaxed hydrogen per carbon

atom. We also verified that the relaxation of the aGNR does not affect significantly the

electronic and transport properties of the system. For the calculation of the transmission

coefficients, 60 k-points along the transverse direction in the 2D first Brillouin zone are used.

Periodic images of the graphene layer are separated by 15 Å along the normal direction. The

electronic transport is studied with the TranSIESTA code.

5.2.3 Results

We first investigate in detail the electronic properties and the transmission function of the

4L 3-aGNR junction [84]. For the other systems, similar considerations can be done. In

Fig. 5.8 we show the density of states (DOS) in the EM region and the projected density of

states (PDOS) on the ribbon region, in comparison with the transmission function. Around

the Fermi energy (EF), the DOS resembles that of graphene, in fact it goes to zero almost

linearly with a deviation due to the presence of vacuum portions in the molecular bridge

region. The signature of the molecular energy levels is clear both in the DOS and PDOS,

and the transmission function has higher intensity in correspondence to those peaks. We also

consider the isolated molecule obtained by cutting the bonds between the 4L 3-aGNR and the

graphene leads, and saturating them with hydrogen atoms. The red triangles represent the

eigenvalues of the isolated molecule, which correlate well with the position of the resonances

in the DOS, PDOS, and transmission. The (P)DOS for the other studied systems have a

similar behavior, and are not reported here.
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Figure 5.8: Electronic and transport properties of 4L 3-aGNR. Upper panel (a): DOS (solid

line) of the junction and PDOS (shaded grey area) on the ribbon region. Red triangles

represent the eigenstates of the isolated (unconnected and hydrogenated) 4L 3-aGNR linker.

Lower panel (b): transmission function.

Figure 5.9: 4L 3-aGNR junction: isosurface plot of the wavefunctions at energies correspond-

ing to the LUMO and HOMO resonant transmission peaks, calculated at k‖ = 0.
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Figure 5.10: Transmission function of 3-aGNR junctions for three different lengths: 4L (red),

6L (green), and 8L (blue). The dotted line is the transmission function of the pristine infinite

3-aGNR.

Moving away from EF, the transmission function increses up to significant values in

correspondence to the two peaks at −1.4 and 1.3 eV; these peaks are generated by the

hybridization of the molecule’s highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) states with the leads, playing the role of channels

between the two graphene electrodes. The corresponding wavefunctions of the interacting

system (shown in Fig. 5.9) calculated at k‖ = 0, have the same shape and symmetry of

that of the isolated molecule (see Fig. 5.14). These wavefunctions represent good conducting

states, as they are delocalized along the molecule and propagate inside the electrodes with

the same symmetry. Some other states farther from EF contribute to the transmission. All

these states are generated from the π orbitals of the C atoms and they are delocalized along

the junction.

Length dependence

We now discuss the dependence on the length of the ribbon forming the junction. The

transmission functions for the 4L, 6L, and 8L 3-aGNR junctions, reported in Fig. 5.10, show

some general trends. The peaks become denser when the length of the junction increases,

because they are related to the discrete structure of the electronic states of the nanostructured

ribbon. Thus, the effective gap of the junction decreases as the length increases. As expected,

the transmission function of the pristine infinite 3-aGNR acts like an envelope curve for the
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Figure 5.11: Transmission function of 4L N -aGNR junctions for N = 3, 5, and 7. Dotted

line: transmission function of the infinite pristine N -aGNR.

other curves; it has an energy gap of ≃1.5 eV [56]. This aspect confirms that the contacts

between the graphene sheets and the nanoribbon do not represent significant barriers to the

transport of electrons, as one can naively expect due to the chemical identity of the different

subsystems. Within the energy gap of the nanoribbon, the transmission function is very low

and decreases rapidly as the length of the ribbon increases. This behavior is clearly due to

the tunneling mechanism dominating the transmission at those energies. The states of the

graphene lead decay exponentially along the ribbon because there are no states in the junction

supporting the conductance. This metal-semiconductor-metal device presents an effective gap

for transport, since the conductance inside the gap is several orders of magnitude lower than

that outside it [76].

Width dependence

In order to analyze the effects of the aGNR width, we consider a representative aGNR for

each of the three classes, i.e. junctions made of 4L 3-aGNR, 4L 5-aGNR, and 4L 7-aGNR.

As illustrated in Fig. 5.11, the aGNR junctions have different gaps in the transmission spec-

trum consistently with the previously reported results [56]. In miniaturized graphene-based

electronic devices these structures may act both as linkers and as active components, and it

would be useful to finely tune their width in order to have different conductive behaviors.

Within each class, we expect the energy gap to decrease as the width of the junction in-

creases. We notice that the intensity of the transmission function is higher for wider ribbons,
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as more electronic channels are open. Moreover, as the width of the ribbon increases the

spike features of the transmission function become less marked, since the system approaches

the limit of graphene. In this case, the transmission functions of the pristine aGNR is a good

reference only for those junctions where the aspect ratio between the length and the width

is reasonably high. This because the contribution to the conductance of the infinite aGNR

comes from k‖ = 0 only. For finite nanoribbons this restriction is relaxed and the passage of

electrons with a finite k‖ is allowed, with k‖ within an interval that increases as the width to

length ratio increases. This is clearly reflected in the transmission function, which departs

from an exponential decay within the energy gap for short and wide ribbons. This is more

evident for the 4L 7-aGNR in Fig. 5.11. For this ribbon the conductance is linear in the gap

region, reflecting the underlying electronic structure of the graphene electrodes, and depart-

ing from a strictly tunneling behavior dominated by the energy dependence of the effective

tunneling barrier.

Effects of applied bias

We now discuss the effects of the application of a bias to the junction. We consider the

junction with the 8L 3-aGNR as a representative case; this is the longest junction considered

here, thus being that in which the edges of the two graphene leads are less interacting. In

Fig. 5.12 the transmission functions for different biases up to 1.0 V are shown. For any given

bias voltage, the chemical potentials of the two leads are well recognizable, as they correspond

to the left and right Dirac points where the DOS tends to zero. Within the bias window,

the intensity of the transmission function increases with the bias. This is expected since it is

determined by the number of electron tunneling through the leads, and the DOS of graphene

shows a linear energy dependence in that region. Thus, the shape of the transmission function

within the gap region can be interpreted in terms of the product of the DOS of the left an

right graphene leads and a modulation function determined by the size of the gap of the

nanoribbons. We notice two small peaks near the Dirac points of the two electrodes, which

we assign to the edge states appearing at the two zigzag electrodes [85]. In fact, in presence

of zigzag edges there is a band near EF which corresponds to a state localized at the edge.

At small applied bias, the probability for an electron lying in an edge state to be transferred

to the opposite lead is very small since the DOS at that energy is negligible. However, at

finite bias, the situation is different and we can find distinct features in the transmission

curves related to the presence of edge states. We can also see that the resonances originated

by the HOMO and LUMO of the aGNR slightly shift as the bias is applied. As a result,

the energy gap reduces by approximatively 10% when a bias of 1.0 V is applied. In the

lowest panel of Fig. 5.12 we report the current as a function of the applied bias, computed

with Eq. (3.60). The data of the current are calculated in two ways. We present fully

self-consistent results obtained using different transmission curves for different voltages (the

corresponding transmission curves are also shown in Fig. 5.12). We also present the current

obtained using the transmission curve calculated at zero bias. Both calculations show very
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Figure 5.12: Upper panels: transmission function of 8L 3-aGNR junction for five selected

values of the bias voltage, as indicated in labels. The bias window is delimited by two

vertical lines. Lower panel: SCF (black) and non-SCF (red) current-voltage characteristics

of 8L 3-aGNR junction.

similar behavior and reasonably agree in the order of magnitude of the calculated current.

However, the non-self-consistent current clearly overestimates the value of the current as

compared to the selfconsistent result. The current remains low (less that 0.1 µ), although it

shows non-linear behavior with the onset of a sharp increase as we approach the position of

the resonances of the junction. Unfortunately, for voltages above 1.5 V, the self-consistent

process becomes very unstable and it was not possible to accurately converge results at higher
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molecular states shown in Fig. 5.14.

voltages. However, we can explore the behavior of the currentvoltage characteristics with the

non-self-consistent calculation and estimate the values of the current at higher voltages. The

current sharply increases when the two main peaks enter the bias window, and for a bias of

3.0 V we estimate a current of 3.3 µ. Our calculated values of the current are consistent with

recent measurements performed in graphene molecular junctions [76].

Torsion of the central phenyl ring

When considering junctions made of 3-aGNR, the system is actually a chain of phenyl rings.

In this case, it has been shown that the stable configuration consists of neighboring rings

lying on different planes [86, 87]. We can thus take into account one more degree of freedom,

that is the relative torsion angle between the phenyl rings of the linkers. We show the effect

of the ring rotation by taking the 4L 3-aGNR as test system. According to our calculations,

the most stable configuration corresponds to a rotation of ≃ 45◦ [88]. In fact, the central ring

tends to rotate with respect to its planar configuration due to steric repulsion between its

hydrogen atoms and those of the neighboring rings. By looking at the transmission function

in Fig. 5.13 we note a general trend. As the ring rotates from 0◦ to 90◦, the peak H (HOMO)

shifts towards lower energies, while the peak L (LUMO) shifts towards higher energies. As

a result, the energy gap of the system increases. In fact, the wavefunctions related to these

peaks (see Fig. 5.14) are extended along all the molecular backbone and they feel a distortion

as the central ring is rotated, thus their energies are expected to change. Both HOMO and

LUMO are even with respect to the mirror plane that bisects the 3-aGNR molecule. As a
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Figure 5.14: Isosurface plots of the selected molecular orbitals of the isolated 3-aGNR linker:

HOMO (H), HOMO-1 (H-1), LUMO (L) and LUMO+1 (L+1).

consequence of this symmetry, when the rotation is by 90◦ these two peaks disappear: the

linear combinations of the pz orbitals of the central carbon atoms are orthogonal to those

of the remaining carbon atoms, resulting in the closure of the corresponding conduction

channels. The situation is different for the HOMO−1 and LUMO+1, whose wavefunctions

are mainly localized on the central phenyl ring. In fact, they are at the same energy position

regardless of the torsion angle. These considerations may be extended to the case of longer

aGNR.

Passivation of the graphene edges

Concerning the passivation of the graphene edges, all the results presented so far refer to

what we can call “standard saturation”. That is, each edge carbon atom is passivated by

a single hydrogen (panel d in Fig. 5.15). In a real system, subject to different hydrogen

partial pressures, one may guess that the edge saturation may change [85]. In order to

validate our results, we show the effect of four different edge passivations on the transmission

function. The first case we consider is the formation of pentagon-heptagon reconstruction of

the graphene edges, where no H atoms are present on the edge (panel a). Then, we considered

the case in which each carbon edge atom is passivated by two hydrogens (panel c). One may

also guess a more complicated connection between the aGNR and the leads, and we modeled

it as shown in the inset of panel b. Figure 5.15 also shows the transmission function for these

four cases. Our results are very robust with respect to these changes of the geometry and
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Figure 5.15: Zero bias transmission function of 4L 3-aGNR junctions with four different

passivations of the graphene edges. The inset show the linking geometries.

passivation of the graphene lead edges, as we see only minor differences among these cases,

mainly a sharpening of the peaks derived from the HOMO and LUMO resonances. This is

evident in particular for the double H and shaped edges, in which the orbitals of the aGNR

are less hybridized with the leads. The reason is that in both cases less charge is present on

the graphene layer edge.
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5.3 Graphene-diarylethene junctions

5.3.1 Diarylethene

Before showing the detailed results of this study, it is necessary to briefly introduce pho-

tochromism and what diarylethene molecules are. Photochromism is defined as the reversible

change of color upon photoirradiation which is typical of certain molecules in gas, liquid or

solid phase. Diarylethenes is a novel class of photochromic molecules which have been proved

to be photochemically reversible and thermally irreversible [89, 90]. Most of diarylenthene

derivatives exhibit light induced switching both in solution and as single crystals [89, 91, 92]

by changing reversibly in aromaticity during the closed-open (open-closed) configuration tran-

sition, determined by visible and ultraviolet light, respectively [93]. In the upper panel of

Fig. 5.16 the chemical structure of the diarylenthene molecule is shown. In the left-side

open-ring isomer two thiophene rings present an open bond. On the other hand, in the

right-side closed-ring isomer π-electrons are delocalized throughout the molecule and the

HOMO−LUMO gap becomes small. More precisely, the photocyclization process (i.e. the

process of transition from open to closed isomer) causes a transition from a cross-conjugated

system to a fully conjugated one. In addition to the change in the electronic structure, a

photocyclization induces a geometrical structural change. In the lower panel of Fig. 5.16 we

show the relaxed molecule geometries that we calculated with DFT. While in the open isomer

the two thiophene rings lie in two planes forming a dihedral angle of 40◦, in the closed isomer

it reduces to 5◦. We also notice a 2% shrinking of the molecule length upon photocyclization.

The electronic ground states of the two isomers are separated by a large potential barrier

which prevents the cyclization at standard temperature conditions. It has been shown that

the cyclization proceeds via excitation of an electron to one or more excited states, where

the energy barriers become considerably lower. For a more detailed discussion of the pho-

tochromic reactions see Ref. [89]. In the same reference, it has been shown that diarylethene

molecules fulfill some key requirements for photo-switching devices application:

• Thermal stability of both isomers

• Fatigue resistent properties

• High sensitivity

• Rapid response

• Reactivity in solid state.

These properties have motivated the investigation on diarylethene junctions with metal and

semiconducting electrodes as we will discuss in the next Section.
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Figure 5.16: Open- and close-ring isomers of 1,2-bis(2,5-dimethyl-3-

theinyl)perfluorocyclopentene: chemical structures (upper panel) and top-side view of

the geometry relaxed with DFT (lower panel).

5.3.2 Experiments and motivation

The exciting properties of diarylenthenes raised much interest and stimulated research on

diarylethene derivatives as suitable photochromic molecular switches [94, 95]. Investigations

of diarylenthene junctions with gold electrodes showed that conductivity increases by two

orders of magnitude in the closed isomer compared to that of the open one [96]. Nonetheless

several diarylethene derivatives on gold leads only display photochromic switching from the

closed to the open state after irradiation with visible light but not the reverse process by

UV [97, 98] owing to the fast quenching of the photo-excited hole of the HOMO state of the

open isomer into gold [99]. By connecting the metal anchoring sulfur atom by a phenyl group

spacer reversible light-induced switching resulted both on Au(111) [100] and gold nanopar-

ticles [101]. Photochromic diarylethene derivatives are also investigated on single walled

carbon nanotube (SWCNT) as perspective single molecule devices with a more accurately

defined contacts to the electrodes [102]. For such system it was found that switching from

insulating to conducting, i.e. from open to closed molecular configuration occurs, but not

the reverse, unlike in the case of Au [103]. The timely character of this topic is confirmed

by the wealth of theoretical studies on the conductance of photochromic switches both with

gold [90, 99, 104, 105, 106, 107, 108] and SWCNT electrodes [109].

In this Section, we investigate the conductance of a diaylethene switch sandwiched between

two semiinfinite graphene electrodes [110]. As explained in Sect. 5.1, the two-dimensional



66 Transport on 2D systems

(2D) form of carbon has just revealed several intriguing fundamental properties and huge

potential in nanoelectronics. In particular, high chemical stability, low resistivity and me-

chanical strength suggest graphene, a more cost-effective material than carbon nanotubes, as

an alternative component for electrodes in electronic devices [111]. Furthermore in graphene

electrons can travel ballistically up to a µm [112], and electron-phonon scattering intensity

is very weak [113]. This implies a carrier mobility larger than that of the inorganic semi-

conductor with the largest mobility, i.e. InSb, and that of carbon nanotubes. If defects and

impurities are eliminated, such mobility is about 2·105 cm2/Vs [112], but in practice graphene

sheets have irregular shapes and contain impurities and defects. To overcome this difficulty

we point out a promising bottom up experimental technique capable to synthetize graphene

starting from small corenene blocks and to build well defined molecule electrode contacts

[114]. Transparent, conductive, and ultrathin graphene films, have been demonstrated to be

alternative metal-oxide electrodes for solid-state dye-sensitized solar cells [115].

5.3.3 Model and Methods

We studied the open and closed structures of two different diarylethene molecules, shown in

Fig. 5.17. The central dithienylethene part is the same for each molecule, and it is attached

to the electrodes through −R− with R=CH2 (we call this A1) and R=CO−NH (referred to

as A2). We also considered longer isomers, with two phenyl linkers connected in the same

fashion, namely B1 and B2. We started with optimized structures of the molecules with the

two R groups connected to H atoms. Then the two H atoms were removed and the molecules

were embedded between two graphene sheets. The graphene electrodes were taken to have

zig-zag edges with the valencies of the edge C atoms satisfied by H atoms. This structure was

chosen because C atoms at zig-zag terminations display stronger affinity towards radicals,

and hence form stronger bonds with H atoms. Graphene with zig-zag edges displays an edge

state near the Fermi level [116].

First, we optimized the energy of the system by varying the electrode-electrode distance.

We remark that in the optimized geometry, the plane of the molecule is approximately per-

pendicular to the plane of the two graphene sheets. This minimizes the coupling of π states

of the molecule with those of graphene, which can be advantageous in certain cases. In

fact, it would be interesting to tune the orientation of the molecular plane with respect to

that of graphene, by linking the molecule to more than one carbon of the graphene. In

this way, one could adjust the hybridization of the molecular levels by changing the rela-

tive orientation of the molecule with respect to the graphene plane. The system may thus

be thought of comprising of three separate parts: the left and right semi-infinite graphene

leads, and an extended-molecule region. For each electrode, six layers of carbon atoms are

included in the extended molecule region in order to screen the perturbation from the cen-

tral region. With this, the final geometry with the contacts is relaxed again. The graphene

electrodes are constructed so that the periodic replicas of the contact region are separated

by four unit cells (i.e. 7.436 Å), and the interaction among them is negligible. Our electronic
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Figure 5.17: Structures of the closed and open forms of the two diarylethene derivatives

studied in this work. Here, R is the functional group that links the molecule to graphene,

which is −CH2− in the first case (A1 and B1) and −CO−NH− (amide linking) in the second

case (A2 and B2).

structure calculations are carried out using the DFT self-consistent pseudopotential method

implemented in SIESTA package [117]. The exchange-correlation effect and electron-ion in-

teraction is described by the Perdew-Burke-Ernzerhof generalized gradient approximation

and the norm-conserving pseudopotential in the fully nonlocal form, respectively. A double-ζ

plus polarization basis set is used to describe the localized atomic orbitals and an energy

cutoff for real space mesh size is set to be 200 Ry. The ionic positions of carbon atoms are

the ideal positions of a previously relaxed graphene sheet, while the hydrogen positions are

relaxed for each junction. We performed all relaxations with a force tolerance of 0.04 eV/Å.

For the self-consistent calculations, 12 K-points are used in the transversal direction (that of

the electrode’s edge), while for the calculations of the transmission function 60 K-points are

taken into account. The vacuum portions between two neighboring layers are set to be 15 Å.

The electronic and transport properties are similar for the four molecules shown in Fig. 5.17

and we choose to first discuss those of B1 in depth.

5.3.4 Results

In the upper panels of Fig. 5.18 we present the total DOS (solid line) of the extended system

and the projected density of states (PDOS) (shaded area) onto the molecular region, as

function of the electron energy, the left and the right one for the closed and open isomer,

respectively. The transmission function dependence on the injected electron energy is shown

in logarithmic scale in the lower panels of Fig. 5.18. The total DOS is reminescent of that of

the electrodes, since near EF it displays a linear dispersion following that of an ideal, infinite

graphene sheet. Of course, very close to EF the dispersion is not perfectly linear due to the

vacuum region between two graphene sheets. Furthemore we remark the presence of two low

peaks very near EF, one slightly above and the other just below it. They are states mainly

localized at the molecule-electrode interface whose origin stems from the zig-zag termination
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Figure 5.18: PDOS and transmission function for the closed (left) and open (right) isomers of

B1 diarylethene. Upper panel: DOS (line) and PDOS (shaded area) on the molecular region.

Lower panels: zero-bias transmission functions.

Figure 5.19: Real part of some representative wavefunctions of the junction with molecule

B1: the LUMO of the closed isomer (upper panel), the LUMO of the open isomer (middle

panel), and one edge state for the open isomer (lower panel).
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edge states of the two graphene sheets interacting with the orbitals of the molecule in the

coupled system. We point out that, as a consequence of the perturbation due to the junction,

such states lie within the continuum graphene spectrum and they become resonant conducting

states.Apart from the edge states, all peaks in the PDOS refer to molecular orbitals broadened

by the interaction with the electrodes and a corresponding feature at the same energy appears

in the transmission function. We concentrate on the two main peaks of conductance for each

isomer that appear on the left and on the right side of EF. They are due to the hybridization

of the HOMO and LUMO states of the molecule with the graphene substrate. For the closed

isomer such states are closer to EF, and their intensity is lower, if compared with that of

other molecular states, since the DOS of the underlying graphene sheets tends to zero as the

energy approaches EF. However, considering small enough energy deviations from EF, the

transmission function is always larger for the closed isomers than for the open ones. The

lower conductance of the open isomers is due to their distorted geometry: the breaking of

the central C−C bond due to the closed-open transition affects the π-conjugation of the

structure reducing it [118]. Hence, the electrons are less delocalized along the molecular

backbone reducing transmission. In Fig. 5.19 we display the real part of the wavefunction for

three representative states of the system, namely the LUMO of the closed isomer, the LUMO

of the open isomer, and one edge state of the open molecule. We observe that the former

LUMO is more widely spread than the latter one, reflecting its more extended π conjugation.

The plotted edge state shows a rapid decay inside the molecular region. The other edge state

just mirrors it on the opposite side of the junction. The transmission functions for the A1,

A2, B1, B2 diarylethene derivatives are compared in the upper panels of Fig. 5.20. We remark

that the intensity of T(E) in correspondence of the molecular resonances should approach

unity; here, for computational time saving reasons, we decided to use an energy sampling

lower than the optimal. The HOMO-LUMO gap of B molecules is lower with respect to the

shorter A molecules, because the extension of the π electronic system is larger. If we compare

the transmission functions of the diarylethene with different connecting groups (A1 vs. A2

and B1 vs. B2), we notice that the presence of the amide end-groups produces a slight shift

of the peaks toward higher energies. This effect is due to the creation of different dipole

moments at the interface, since the amide group is more electronegative than the methyl

group. The determines a better alignment of the HOMO of the closed isomer with the Fermi

level and, once a voltage is applied, we expect qualitatively a larger current in this case.

Apart from this shift, the structure of the transmission function is not appreciably affected

by the change of connecting groups.

Effect of applied bias

We now discuss the changes in the conductance for molecule B1 when the system is driven

out of equilibrium by the application of a bias V . In Fig. 5.21 the transmission functions are

reported for the closed (left panel) and open isomer (right panel) by increasing the voltage

from the bottom pictures. For the closed molecule a bias of 1 V allows one to include the
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Figure 5.20: Transmission function of the closed (solid) and open (dotted) isomers of the

A1,A2 (upper panel) and B1,B2 (lower panel) diarylethene derivatives.
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Figure 5.21: Transmission function of the closed (left) and open (right) isomers of the B1

diarylethene derivative at different applied biases (from bottom to top: 1V, 2V, 4V). The

bias window is delimited by two vertical lines.
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contribution of the HOMO in the admissible energy window (vertical lines), while a bias of

2 V is needed to contain the LUMO. We also observe two features from the edge resonances

near EF. In fact, as a finite bias is applied, edge states play a role, though small, in the

transmission curve. A non negligible conductance asks for a bias V = 4 V for the open

isomer. In both cases the HOMO-LUMO energy difference is unaffected by the applied

voltage.

In conclusion, diarylethene based molecules can be switched between the two states by

photochemical means. When used as a bridge between two Au electrodes, the switching

occurs, usually in one direction only, due to quenching by the electrodes. For CNT electrodes

too, the switching from open to closed isomers occurs through light, but the reverse does not

[103]. We suggest the use of graphene as the electrode as (i) it has a lower density of states

near the Fermi level in comparison with Au leading to lesser probability for quenching and (ii)

the orientation of the molecule with respect to the graphene sheet can be changed chemically,

tuning the interaction between the two components. In the polymeric state, the change from

closed state to the open state can be induced not only by light, but also by electron/hole

injection obtained by the application of a potential difference [90]. Consequently one may

anticipate that in the case of diarylethene molecules connected to graphene, the switching

from open to closed may be induced by light and the reverse by the application of a large

potential difference. Looking at the positions of the LUMO/HOMO orbitals energies in the

transmission curves given in Fig. 5.21, it seems possible to populate/depopulate them to a

sizeable extent by the application of about 2 and 4 volts for the closed and open configurations,

respectively. Thus one has the possibility of inducing switching in both directions, by the

application of such a potential difference for a short period of time, and hence light may be

avoided altogether.

Graphene versus CNT and Au contacts

A common problem of experimental realizations of diarylethene nanojunctions is that they

usually show only one-way switching. In fact, in several experiments with gold electrodes

the diarylethene derivatives switch from closed to open with visible light but not from open

to closed with UV [97, 101]. This has been explained as a consequence of the quenching of

the excited state of the open isomer by resonance energy transfer to the gold nanoparticles,

which prevents the ring closure process. Theoretical studies suggest that the HOMO of the

open isomer would be largely coupled with the 3d DOS of Au, resulting in a short lifetime of

the HOMO which would prevent its depopulation by photoexcitation [99, 119]. With CNT

electrodes, the situation is the opposite. Only the open-to-close reactions are allowed, but not

the inverse [103]. From theoretical investigations, a possible reason is that the photoexcited

electron has a high probability to transferring into the CNT leads before nuclear relaxation

can occur [120]. In fact, the estimated lifetime of HOMO resonances for both isomers ranges

from 230 to 360 fs, while the LUMO ones from 7 to 30 fs. These lifetimes should be compared

to the characteristic switching times after photon absorption of diarylethene molecules, which
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have been reported to range from sub-200 fs [121] to 900 fs [122]. Therefore, the lifetimes of

HOMO are shorter than the times required for the isomerization process, which is in turn

prevented. The molecule remains oxidized in the HOMO state for a time equal to its lifetime,

after which an electron from the leads is injected restoring the molecular charge [120].

We present here preliminary results of the lifetimes τ of the main HOMO and LUMO

resonances for B1 and B2 molecules with graphene leads as reported in Tab. 5.1. The life-

times are estimated by extracting the full width half maximum (FWHM) of the molecular

resonances in the PDOS calculated via the Green’s function of the infinite system. The pro-

cedure will be explained in more detail in Chap. 7. The lifetimes are calculated from the GS

orbitals, which for these system are a fair approximation of the photoexcited ones [120]. We

Table 5.1: Calculated resonance lifetimes for the open and closed isomers of B1 and B2.

–CH2– (B1) –CO−NH– (B2)

τ(fs) HOMO LUMO HOMO LUMO

Open 98 714 350 3138

Closed 387 134 631 8936

can notice that our calculated values are much larger than those in the case of CNT leads.

This may be understood in terms of the DOS of graphene, which is very small near the Fermi

level. As a consequence, the molecules hybridize poorly with the substrate, which may imply

that the resonance widths are very small (in all the cases we considered lower than 20 meV).

The resulting lifetimes appear therefore significantly larger than the characteristic switching

times of diarylethene. Hence, our calculations suggest that by using graphene electrodes the

probability of finding the photoexcited electron/hole on the molecule during the direct and

inverse cyclization reactions is high. Therefore, double-way switching may be favored by

using graphene electrodes. Finally, we notice that the lifetimes of the B2 isomer are larger

than those of the B1. In fact, the amine bonds reduce the conjugation of the graphene-

diarylenthene system, acting as resistive spacers between the molecule and the electrodes. In

this case one expect a reduction of the molecule/leads hybridization.

5.4 Closing remarks

Very simple prototypes of carbon-based molecular junctions have been investigated in order

to characterize their transport properties. In the first part of this chapter, aGNR have

been considered as linkers between two semiinfinite graphene electrodes. These systems

present a typical metal-semiconductor-metal behavior due to the electronic gap of the ribbons

which depends on the their width. The electronic properties of the isolated subsystems, i.e.

graphene electrodes and the nanoribbon, together with their interaction in contact regions

determine the transport properties of the junction. The coupling between the subsystems

is very efficient and the contacts do not create any appreciable barrier to transport due to
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the same chemical species constituting the subsystems. Hence the transport properties are

mainly determined by the shape (width and length) of the finite ribbon included in between

the graphene leads. In spite of the simple model considered, the reported results on the

electronic transport provide some parameters to control and engineer future carbon-based

electronic devices. In the second part, we have calculated the conductance of diarylethene-

based molecular junctions with graphene leads. Our calculations show that at zero bias the

peaks in conductance of the diarylethene moiety attached to two graphene electrodes reflect

not only the molecule electronic states broadened into resonances by the coupling to the leads,

but also the features of graphene edge states. Near the Fermi energy (EF) the conductance

of the closed isomer is much lower in the energy interval between the HOMO and the LUMO

resonances of the molecule, following the linear dependence of the electrode density of states

(DOS) proportional to |E − EF|. In the same range the conductance of the open isomer is

about zero. If we apply a finite bias we observe that conductance is allowed within different

energy windows for the open and closed isomers. Finally, we have discussed the advantage

of using graphene electrodes with respect to other materials, namely a reduced quenching of

the photoexcited state compared to gold electrodes.
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Chapter 6

Transport on a 3D system

6.1 Introduction

In this chapter we investigate the conductance properties of pyrazine single molecular junc-

tions (SMJ) with platinum electrodes. This system has been found to display features which

are critical to obtain reliable molecular switches. In fact, experiments suggest that it is a

highly conductive system and it shows bi-stable states. We will refer to a recent experimental

study carried on by M. Kiguchi and coworkers [123], who have performed MCBJ experiments

on such devices.

Molecule-based electronics have attracted wide attention due to their potential application for

ultra small electronic devices. Utilization of bi-stable states in SMJs as memory, switch, and

other components, is a key issue in the realization of molecular electronics. Recently, several

single molecular switches showing bi-stable states have been reported using photochromic

molecules, 1,6-hexanedithiol, 4,4-bipyridine, and other molecules, thanks to the recent de-

velopment of experimental techniques (e.g. STM break junction, MCBJ) [124, 107, 125].

Especially, single bipyridine molecule switches has been intensely studied, because Au-N or

Au-NH2 bonds provide fixed conductance values [107, 126, 127, 128, 129] which are critically

important to obtain reliable single molecular switches.

However, investigation on single molecular switch is still open to further research. First,

the conductance value of the on-state of single molecule switches is often too low (below

0.01 G0) [125, 107]. This can be a problem for the application of SMJ to realistic devices.

Second, all the evidence for switching behavior has been indirect because the experiments

are “blind”: the geometrical configuration of the device at the atomic scale is not known. In

view of this uncertainties, theoretical ab initio calculations can offer good insight into the

driving effects in molecular devices, giving light to the mechanism of the transition between

bi-stable states.

75
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Figure 6.1: (a) Conductance traces, (b) conductance histograms of the Pt contacts before

(black curve) and after (red curve) the introduction of pyrazine. The bias voltage is set to

300 mV. The conductance histogram is constructed from 1000 conductance traces of breaking

metal contacts. The intensity of the conductance histograms is normalized with the number

of the conductance traces.

6.2 Experiments: Pt/pyrazine junction

In order to improve the conductance of the single molecule junction (SMJ), one needs to focus

on the metal-molecule contact. In a conventional SMJ, the molecules are attached to the

metal electrodes via anchoring groups (e. g. thiol, amine) [130, 131, 132, 133, 134, 135, 136].

Although a stable SMJ can be prepared in this way, the anchoring group acts as a resistive

spacer, leading to a lower conductivity. Recently, the direct binding of the π conjugated

molecule to the metal electrode has been found to improve the conductance of SMJ [137, 138].

The efficient overlap between π orbitals of the molecule and the metal states leads to higher

conductivity. In fact, the π orbitals, including p orbital of nitrogen, can directly bind to the

metal electrodes. The introduction of nitrogen atoms in the molecule back-bone of pyrazine

could also fix the binding site with the metal electrodes, and σ bonds are formed between

lone pair of nitrogen atom and the metal, which in principle could lead to a decrease in the

variability of the conductance values owing to multiple stable configurations [132].

The choice of metal electrodes can also be critical to the performance of the junction. In a

simple tunneling model, the conductance of SMJ depends on the LDOS of the contact metal

atoms at the Fermi level [5]. In contrast with Au, which is the most commonly adopted metal,

Pt yields a narrow 5d band located at EF and a higher LDOS. In addition, molecular orbitals

can effectively hybridize with d orbitals of Pt. Thus, a higher conductivity is expected by

using Pt as metal electrodes. Actually, the increase in conductance of SMJ has been reported

for various molecules including benzene, H2 and benzenedithiol [136, 137, 139, 140, 141].

Fig. 6.1-(a) displays typical conductance traces as a function of the stretch length. Before

the introduction of pyrazine, the conductance decreases in a stepwise fashion, showing the
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Figure 6.2: Differential conductance spectra and its derivative of single pyrazine molecule

junction taken at (a) high and (b) low conductance regime.

last plateaus around 1.5 G0. The corresponding conductance histograms Fig. 6.1-(b) show a

peak around 1.5 G0, which corresponds to clean Pt atomic contacts [5]. After introducing the

pyrazine molecule, the peak at the position characteristic for Pt atomic contacts is suppressed,

and a large weight is added in the entire range below that value. On top of this background,

distinct features are found around 1.0 G0 and 0.3 G0. Their appearance indicates the existence

of two distinct states, namely a low conductance state (LC), and a high conductance one (HC).

It is noteworthy that the 0.3 G0 plateau appears after the 1 G0 plateau as shown in the last

two traces in Fig. 6.1-(a), which implies the distance between metal electrodes to be larger

for the low conductance state. In order to characterize the atomic configuration of the SMJ,

inelastic tunneling electron spectroscopy [142, 143, 144, 145, 146] (IETS) has been worked out

at both HC and LC regimes. In brief, in IETS measurements the electrodes are kept at a fixed

distance, while the voltage is increased. Above a certain voltage bias, the incoming electrons

have sufficient energy to excite a vibration mode of the SMJ. Fig. 6.2 displays differential

conductance and its derivative at HC (a) and LC (b) regimes. Symmetric upward kinks were

observed in differential conductance around 30 meV for the LC state and 60 meV for the HC

one (Fig. 6.2-(a)). Accordingly, clear symmetric peaks appear in the derivatives in Fig. 6.2-

(b). The conductance enhancement is explained by the opening of an additional tunneling

channel for electrons that lost energy to a vibration mode [140, 141, 142, 143, 144, 145, 146, 3].

The temperature dependence of the d2I
dV 2 curves confirms that the peaks originated from the

excitation of vibration mode. Since the phonon mode of Pt is below 20 meV (T mode: 6, 10

meV, L mode: 20 meV) [147], the observed modes correspond to vibrations of the Pt-molecule

bond or internal molecular vibrations, confirming the formation on the pyrazine bridge. The

different vibrational energy of HC and LC states clearly suggest that the two distinct states

display two different atomic configurations.
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6.3 Methods

We have carried out first-principles calculations for several model structures in order to shed

light on the experimental observations of bi-stable states in Pt/pyrazine junctions. The elec-

tronic structure calculations are carried out using the SIESTA package [29, 30]. The exchange-

correlation energy and electron-ion interaction are described by the Perdew-Burke-Ernzerhof

(PBE) generalized gradient approximation [52] and norm-conserving pseudopotentials in the

fully nonlocal form, respectively. A single-ζ polarized basis set of numerical atomic orbitals

is used, and the energy cutoff for real-space mesh is set to 200 Ry. We tested this basis for

Pt bulk. The calculated band structure and DOS are presented in Fig. 6.3. They are in good

agreement with those in Ref. [148]. The total DOS in the region shown is almost entirely

due to d states, except for the s contribution at the bottom of the d band, which indicates

the hybridization of the nearby empty s band with the valence d band. We verified that

using a double-ζ polarized basis set does not modify our results. With these parameters we

calculated an optimal lattice parameter for bulk Pt equal to 4.0 Å. For the other species (i.e.

N,C,H) we used a double-ζ polarized basis set.
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Figure 6.3: Band structure, DOS and projected DOS on (5d, 6s) orbitals of bulk Pt.

In order to describe the molecular junction we consider a periodic supercell, where the junc-

tion is oriented along the z axis, as represented in Fig. 6.4. In most cases, the contact is

modeled by considering a pyramidal Pt4 tip placed at the top of a Pt(111) 3×3 surface unit

cell. The slab contains 10 atomic layers. We define the length D as the distance between

the outermost Pt layers, as shown in Fig. 6.4. For the electronic structure calculations we

used a 3×3 k-mesh in the x, y plane; the transmission functions are instead calculated by

using a 5×5 k-mesh. We first relaxed the single electrode (5 Pt layers) containing the Pt4 tip

and then used the obtained geometry to build the junction configuration. All the subsequent

relaxations are performed by keeping all the atomic positions of the electrodes fixed and
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allowing for relaxing the 8 Pt cluster atoms as well as the pyrazine ones until residual forces

are smaller than 0.04eV/Å.

Figure 6.4: Molecular junction setup. The left and right electrodes portions and the electrode

distance D are pointed out by segments L, R, and D, respectively.
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6.4 Results

In order to determine the most suitable contact configuration to adopt, we calculated the

adsorption energies for different structures. We considered the adsorption on top of a pyra-

midal Pt4 cluster, on the hollow and bridge sites of a Pt3 cluster, and on the hollow and top

sites of the clean Pt(111) surface. In Fig. 6.5 the relaxed structure as well as the adsorption

energies for all five configurations are reported. The most stable contact configuration is the

pyramidal Pt4 electrode, placed on top of Pt(111). The surface top adsorption is unfavored

with respect to the Pt4 top one due to the steric repulsion between the molecule and the

surface Pt atoms. Our calculations also suggest that pyrazine adsorbed on a hollow site is

unstable, and that N selectively forms a bond on the top of a Pt atom. According to

Figure 6.5: Adsorption energies of pyrazine on different electrode geometries: a) on top of

Pt4 cluster, on b) hollow site and c) bridge site of a Pt3 cluster, on the d) top site and e)

hollow site of the clean Pt(111) surface.

these results we modeled the tips as composed by two Pt4 pyramids placed on top of a 3×3

Pt(111) surface (as described in the previous Section), which seems to be compatible with

the experimental setup.

Fig. 6.6 displays how the structural and transport properties of the junction change with

the stretching. We measure such properties as a function of D, the distance between the

Pt surfaces. Here, dTips is the distance between the apical Pt atoms, α1,2 are defined as

the angles between the straight line of the N-N molecular backbone and that defined by the

N-Pt bonds (as shown in the inset), Eform is the junction formation energy calculated as

Eform = EPt−molecule−Pt − 2EPt − Emolecule, and T (EF ) is the transmission function at the

Fermi level. By looking at Fig. 6.6-(a) two regimes can be distinguished. A high conductance

regime is observed for distances D lower than 14.5 Å, where the conductance is comprised in

a range between 1.3 G0 and 1.5 G0. In this regime the tilt angles α1,2 are lower than 120◦,

meaning that the molecule sits in a tilted configuration with respect to the junction axis.

The electronic coupling between the molecule π orbitals and the d orbitals of the Pt tip is

favored due to the orientation of the molecule, and correspondingly the transmission function

increases inversely by increasing α1,2. The transmission does not change in a range between

D=13.0 Å and 14.5 Å, and shows a HC plateau. In the range between 14.3 Å and 14.7 Å, we

assist to a rapid rotation of the molecule, which overcomes an energy barrier (Fig. 6.6-(b))
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Figure 6.6: Pyrazine/Pt junction properties plotted against the surface distance D: zero-bias

transmission function T (EF ) (a), junction formation energy Eform (b), bending angles α1,2

(c), distance dTips between the outermost Pt atoms (d) and its derivative d′ (red dashed).

The inset illustrates the bending angles α1,2.
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to reach a local energy minimum corresponding to a LC state. In this regime the pyrazine

is aligned with the junction axis, i.e. α1,2 are equal to 180◦; this reflects in a lower coupling

between the molecule orbitals and those of the Pt. As a consequence, we notice that the

transmission T (EF ) assumes fractional values and its intensity is fairly constant and equal

to 0.7 G0 for a range of about 2 Å. This is in agreement with the appearance of a low con-

ductance feature in the conductance histogram (Fig. 6.1-(b)). When D is larger than 16.5 Å

the Pt-N bond is broken causing an abrupt decay of T (EF ) to zero, while also the formation

energy tends to zero. During the junction elongation dTips increases almost linearly (Fig. 6.6-

(d)), while the peaks in its derivative give signal of transition between different regimes.

We assign the experimental high and low conductance states to the two regimes highlighted

by first-principles calculations. In agreement with the conductance traces, the low conduc-

tance plateau appears after the high conductance one and extends for a longer range. The

differences between theory and experiments regarding the conductance intensities are due

to the intrinsic limitations of ground-state DFT applied to electronic transport, as the un-

derestimation of the HOMO-LUMO gap and the self-interaction error [149]. In fact, even in

the prototypical case of benzenedithiol/Au junction, the DFT-NEGF approach overestimates

any experimental conductance by at least 1 order of magnitude [150]. In our case we don’t

find such a dramatic discrepacy, since the system shows a strong metal-molecule coupling.

We also point out that in our approach we have followed the molecule stretching along the

minimum energy path obtaining a bi-stable junction where conductance results are in fairly

good agreement with the experimental ones. For this reason we did not work out an average

over several molecular configurations.

In order to obtain a more comprehensive view of the electronic properties, in Fig. 6.7 we

show the projected density of states (PDOS) onto the basis orbitals associated with the

N,C species and the 5d orbitals of Pt for a representative state in each conductance regime

(D=13.5 Å solid line and D=15.3 Å dashed line). Calculations reveal that in both cases the

pyrazine HOMO orbital is highly hybridized with the Pt states and it is the main contri-

bution for the conductance at EF. At the same time, the D=15.3 Å junction shows more

pronounced peaks, which signals a lower hybridization of the molecular orbitals with respect

to the D=13.5 Å case. As mentioned, this is due to the different bending angles formed

by the pyrazine with the junction. Accordingly, in the upper panel, we see that the overall

conductance for D=13.5 Å is larger not only near EF, but also in a broader energy range.

In fact, the transmission coefficient depends on the metal-molecule coupling. For the bent

structure, the coupling is larger due to a higher hybridization of the pyrazine π orbitals,

polarized orthoghonally to the molecular plane, and the metal d orbitals which stem from

the undercoordination of the surface Pt atoms. The result of the bending is a higher overlap

between the respective wavefunctions, which leads to larger hybridization and conductance.

To obtain information about the individual channels contribution to the conduction, we have

calculated the eigenchannels [151] for these two reference configurations. The outcome is that

in the high conductance regime two channels are open and equally contribute to the charge
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transport, while only one is present in the low conductance regime. In Fig. 6.8 such transport

channels are depicted to provide an intuitive picture of transport. For D=15.3 Å the symme-

try and the spatial distribution of the channel has the same character of the π-type HOMO

of pyrazine, while for D=13.5 Å the two channels display a stronger interaction between the

states of Pt atoms and those of the molecule.
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Figure 6.7: Upper panel: transmission function T(E) of Pt/pyrazine junctions for HC and

LC structures calculated for two representative distances D, namely 13.5 Å (black solid line)

and 15.3 Å (blue dashed line). Lower panel: PDOS of the same structures on the C and N

orbitals and on the Pt 5d orbital.
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Figure 6.8: Isosurface plots of the most transmitting eigenchannels of the high and low

conductance structures at two representative distances D. a-b) first and second eigenchannel

for D=13.5 Å. c) single eigenchannel for D=15.3 Å. The real part of the scattering state is

shown.

Anchoring geometry

So far, we have considered that pyrazine is attached to the leads by its N atoms. This is

the most intuitive configuration, due to the natural directionality of the molecule. We also

explored the possibility of a different anchoring, namely by its two C atoms: in Fig 6.9 the

two anchoring configurations are sketched. In Tab. 6.1 we report the energy differences of

the relaxed C- and N- anchored molecular junctions at different electrode distances D. We

verified that the N- anchoring is always energetically favored. However, at low D the bending

of the molecule allows also for the C- anchoring, with an energy cost of less than 0.1 eV. On

the other hand, at larger electrodes separations (D>14.5 Å) the molecule sits coaxially with

the junction and the C- linking is unfavorable, as the steric repulsion between H and Pt costs

more than 1 eV. We calculated the transmission function for the C- anchoring in the case of

D=13.2 Å, and we found that T (EF ) is approximately 1.5 G0, that is even higher than in

the N- anchoring case. This further confirms that the HC regime can be attributed to a bent

contact configuration of the pyrazine.

Table 6.1: Energy differences between C- and N- anchoring at different surface distances

D(Å) ∆E (eV)

13.20 0.07

13.50 0.05

14.10 0.20

15.3 1.19
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Figure 6.9: Chemical sketch of C- and N- anchoring.

Vibrational properties

The experimental measurements provided an estimate of the energy of the IETS-active vi-

bration modes of the SMJ, that is 60 meV and 30 meV for HC and LC configurations,

respectively. Theoretical calculations can help identifying which modes are activated in ex-

periments. We performed DFT calculations in order to calculate the vibrational modes of

pyrazine/Pt junctions for the geometries obtained at different D. We used finite Pt clusters

to represent the electrodes and we kept all the Pt atom fixed, which is justified by the large

difference between the mass of Pt and that of the other species involved. In Fig. 6.10 we show

the stretching dependence of the relevant vibration modes. The lowest three modes envolve

rigid vibrations of the entire molecule with respect to the Pt junction. As a consequence,

their energy is strongly affected by the stretching (D). At distances D> 15 Å, there are two

possible candidates for the LC mode observed with IETS. Namely, these modes consist in a

shuffling of the molecule in the z direction and in a frustrated rotation of the molecule with

respect to the axis of its plane. Unlike the third rigid mode shown, their energy dependence

on D is the same. Their vibrational energy increases while the molecule is progressively

rotated and slowly decreases once it is coaxial with the junction. On the other side, the

possible candidates for the HC mode are internal vibrations of the pyrazine. We display the

configuration of the two most likely ones in Fig. 6.11.
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Figure 6.10: Stretching dependence of the relevant vibration modes of pyrazine/Pt involved

in the experiments. The insets represent the character of the lowest 3 modes, which involve

a collective vibration of the molecule with respect to the Pt junction. The two dotted lines

correspond to the experimental vibrational energies for small and large stretching distances.

Figure 6.11: Internal vibrations with energy around 60 meV for the tilt molecule configura-

tion.

Bi-stable switching

After revealing the existence of bi-stable structures, and charactering their atomic configu-

rations, experiments demonstrated mechanically controlled conductance switching in single

pyrazine molecular junction. By imposing a repeated mechanical elongation/compression

by applying an AC voltage (triangle wave) to a piezo element. The resulting displacement
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Figure 6.12: Sample pyridine switching conductance traces. These trace were collected while

applying the linear ramps (dashed black line) shown measured at a 100 mV applied bias.

The displacement was 1.0 nm, and the modulation frequency was (a) 0.8 Hz and (b) 0.4 Hz.

Curve (a) shows the transition among high and low conductance states and breaking the

junction, while curve (b) shows the transition between high and low conductance states.

amounted to 1.0 nm at a modulation frequency of 0.4∼0.8 Hz. Fig. 6.12 shows some examples

of conductance switching of single pyrazine molecule junction. Curve (a) shows the transition

among high and low conductance states and breaking the junction, while curve (b) shows

the transition between high and low conductance states. Although the conductance gradu-

ally changed in the high or low conductance, a discrete change was observed between high

and low conductance states. Such a discrete change in response to the smooth triangle-wave

perturbations confirms that the conductance switching indeed occurs via transitions between

two particular metal-molecule contact configurations. Finally, the conductance traces in

Fig. 6.12 clearly show that the junction is controllably modulated between the high and low

conductance state by mechanical modulation.

6.5 Closing remarks

We investigated the bi-stable conductance of highly conductive single-molecule pyrazine/Pt

junctions. Break-junction measurements show two distinct conductance states of 1.0 G0 and

0.3 G0. As a support to experiments, first-principles calculations reveal that the two stable

states can be ascribed to different geometrical configurations in which the pyrazine axis is bent

and coaxial with the junction, to which correspond high and low couplings of the molecular

orbitals with the electrodes, respectively. IETS measurements and theoretical calculation of

the vibrations further characterized the configuration-specific conductance of such junctions.

These findings allow us to prove the reversibility of the process, which has ultimately been

achieved by only mechanical manipulation of the junction.



88 Transport on 3D systems



Chapter 7

Resonant charge transfer

7.1 Introduction

In this chapter, the Non Equilibrium Green’s function formalism described in Chap. 3 is

applied to study resonant charge transfer. In principle, this is a problem different from charge

transport, but which has a strong connection with it. Our interest is to study electronic charge

transfer in systems composed of a molecule/atom (or an overlayer of them) adsorbed on a

surface of a given substrate, which may be either metallic or insulating. This problem is

relevant in surface chemistry, catalysis and organic photovoltaics because the charge transfer

determines the time of localization of an electronic excitation and thus the reactivity of an

adsorbate. For instance, the dye-sensitized solar cell (DSSC) [152] harvest light energy by

utilizing a transition metal complex or an organic dye adsorbed on a substrate, which in most

cases is TiO2 or ZnO. Light irradiation excites an electron from an occupied state (usually

the HOMO) to an excited resonance of the dye, and it is then transferred to the continuum

of states of the substrate. The oxidized dye is restored to its reduced form by a redox pair in

solution, and a photocurrent can be generated in the circuit. Thus, one of the key ingredients

to improve the efficiency of DSSCs is to maximize the electron injection rate. A theoretical

method to predict the relative rates of charge transfer can be beneficial to determine which

molecule and which configurations are the more efficient ones.

Unless they lie within a projected band gap of the substrate the states of an adsorbed

molecule become resonances of the semiinfinite substrate/molecule system, i.e., they are no

more eigenstates of the system. Molecular resonances do not have well defined energies any

longer, rather they are broadened and display a finite width. The latter quantity can be

related to the time required for an electron to delocalize into the substrate, that is the time

needed to depopulate the molecular excited state. We refer to this width as the “elastic

linewidth” and to its inverse as the “elastic lifetime” [153]. These quantities are difficult to

calculate with DFT by a slab model. This model consists in representing the substrate with

a slab whose periodic replica along the direction normal to the surface are separated by a

vacuum region. Usually a slab model involves subbands whose energy difference is larger

89
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than the typical linewidths. Therefore, a model which takes into account the true infinite

substrate is necessary to resolve such quantities.

Our method relies on the Green’s function of the semiinfinite system, which can be ob-

tained in conjunction with DFT as explained in Chap. 3. From this quantity, one can then

extract the correct elastic width. In Sect. 7.2, we describe this method in detail. Then,

Sect. 7.3 is devoted to an application of the method to a test system, namely Cs-p(2x2)-

Cu(111). Finally, in Sect. 7.4, we discuss preliminar studies of charge transfer of organic dyes

on TiO2 surfaces.

7.2 Methods

We outline the details of our method. As shown in Sect. 2.3, a localized basis set is adopted

to describe the system Hamiltonian. We perform DFT calculations to obtain the electronic

structure of a symmetric slab in which an adsorbate is present on both surfaces. Then, the

ground-state Hamiltonian is used to compute the Green’s function G (see Eq. 3.36) of the

infinite system comprising the two surfaces separated by a vacuum region which prevents

their direct interaction, following the same scheme described in Sect. 3.4. In other words,

the scattering region is formed here by two decorated surfaces without direct interaction and

separated by a large vacuum gap. The effect of the two semiinfinite substrates is described by

the corresponding self-energies introduced in Sect. 3.4.1. Thus, the current flowing through

the system is negligible. One technical point which is worth commenting refers to the aling-

ment of the electronic structure of the periodic electrode calculation and that of the scattering

region. In the case of metal electrodes, they are aligned by taking the Fermi level as a com-

mon reference. Of course, this is not possible in the case of non-metallic electrodes, since the

Fermi level is no more a well defined quantity. An alternative way is thus to calculate the

planar average potential (PAV) along the direction normal to the surface, and to align the

PAVs of the different (electrode and scattering region) calculations. The latter procedure has

been used here for the TiO2 substrate calculations.

The matrix elements of the Green’s function are defined so that

G(r, r′;E,k‖) =
∑

ij

Gij(E,k‖)φi(k‖, r)φ∗j (k‖, r
′) , (7.1)

where k‖ is the crystalline momentum parallel to the surface plane, φi(k‖, r) are the basis

functions defined as Bloch combinations of the atomic orbitals ϕi(r) at the atomic positions

Rα:

φi(k‖, r) =
∑

α

e−ik‖·Rαϕi(r−Rα) . (7.2)

The Green’s function allows us to calculate the DOS and the PDOS onto selected orbitals. If

Sij(k‖) is the overlap matrix between the Bloch combinations of the localized basis orbitals
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{φi(k‖)} and Gij = 〈φi|G|φj〉, the PDOS over a set of orbitals Ω a can be calculated as:

ρ(E,k‖) = − 1

π
Im
∑

i∈Ω

∑

j

Sij(k‖)Gij(E,k‖) . (7.3)

The DOS can be also projected onto a given initial wavepacket. In fact, in the case of

an adsorbed molecule, the most intuitive picture is that the electron initially lies in a

state corresponding to a molecular eigenstate. By a preliminar calculation of the isolated

molecule/overlayer, we can extract the coefficients {ci(k‖)}i∈N corresponding to the expan-

sion of a given molecular orbital onto the basis, N being the dimension of the basis. Then,

the DOS can be projected onto this precise molecular orbital (MO):

ρ(E,k‖) = − 1

π
Im

∑

i,j∈MO

∑

k,l

ci(k‖)∗cj(k‖)S∗
ikGkl(E,k‖)Slj . (7.4)

In order to calculate the widths W of the surface resonances, we fit the projected density of

states at different k-points with a Lorentzian,

ρ(E,k‖) ≃
A(k‖)

(E − ǫ)2 + (Wfit(k‖)/2)2
. (7.5)

From this fit, we obtain the elastic width Wfit(k‖) as a function of k‖. To obtain the physical

width, we need to subtract the small imaginary part η added to the energy in the calculation of

the Green’s function (see Eq. 3.36): W (k‖) = Wfit(k‖)−η. In our case, η is always quite small,

of the order of 1.0 meV. Given the uncertainty relation ∆E∆τ ∼ ~, the inverse of W gives

the time constant for the decay of the resonance population due to elastic processes, i.e. the

resonant elastic lifetime: τk‖
= ~W−1

k‖
. The k‖-dependence of the width (and the lifetime) has

been explicitly written, as the width can change due to the dispersion of the resonance or to

the coupling of the resonance with states of the substrate with different character/symmetry

at different k‖ points (particularly when small cells along the lateral directions are used in

the calculations). In the present calculations, however, we will concentrate in the elastic

width calculated at the supercell Γ point. For our calculation of molecular dyes on TiO2,

where relatively large supercells are used, we consider that this can be taken as a reasonable

approximation to the total elastic width of the molecular resonances, i.e, W ≃WΓ.

Being DFT a ground state theory, the energy of the electron excited states as deduced

from the Kohn-Sham spectra does not necessarily have a good correspondance with the

experimental values. Therefore the molecular resonances may not lie in their real positions.

Fortunately some errors, like underestimating both the energy gap of the substrate and that

of the adsorbate, tend to calcel out. However, in certain cases we are interested in calculating

the elastic lifetime as we shift the molecular electronic states with respect to the substrate

bands (see Fig. 7.1) by means of a scissor-like operator. To do this, we add a small energy

shift ∆ε to the terms of the Hamiltonian matrix Hij belonging to the adsorbate:

Hij =

{

Hij i, j /∈ adsorbate

Hij + Sij∆ε i, j ∈ adsorbate
(7.6)

aTypically we take those of the adsorbed molecule.
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Figure 7.1: Diagram of the adsorbate resonances and substrate bands. The red arrow sym-

bolizes the energy shift of the resonances.

Accordingly, all the adsorbate resonances are shifted by the same energy amount ∆ε and

their position relative to the substrate states can be tuned.

7.3 Cs-p(2x2)-Cu(111)

We apply the method described in previous Section to evaluate the electronic properties

and electron dynamics of Cs-p(2x2)-Cu(111). This system has been already discussed in the

literature, and both the electronic structure and the electron dynamics have been explored

by means of the embedding theory[154] and recursive methods to obtain the surface Green’s

function [153, 155]. From experiments and theory it is well known that the (111) surfaces of

noble metals exhibit a projected band gap around Γ̄. As a consequence, the (111) surfaces

of Au, Ag and Cu exhibit a well-defined partially occupied surface state. This state has a

free-electron-like dispersion with its minimum at Γ̄. As we move to lower binding energies

we can also find the image state series in these surfaces. Electrons occupying surface states

close to the Fermi level (EF) extend far toward vacuum and, therefore, play an important role

in the adsorption of weakly physisorbed species. Adsorption of alkali overlayers introduces

a significant change in the electronic structure of the surface. Charge transfer from the

alkali layer to the metal reduces appreciably the work function and new states appear at

the interface, such as quantum well states (QWS). QWS are quasi two-dimensional states

confined between the substrate and the vacuum barrier. The adsorption of alkali atoms in

p(2x2) superstructures causes the folding of the projected bulk bands: as a consequence, the

gap near EF of Cu(111) is closed. In the case of Cs-p(2x2)-Cu(111), the presence of the

overlayer allows the QWS to couple with the substrate bands: the effective hybridization

results in a finite lifetime of the state. In the following, we will discuss the band structure of

the system and the elastic lifetime of the QWS.
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7.3.1 Model

The electronic structure calculations are carried out using the first-principles self-consistent

method implemented in SIESTA package [29, 30]. The exchange-correlation energy and

electron−ion interaction are described by the Perdew-Burke-Ernzerhof (PBE)[52] general-

ized gradient approximation (GGA) and norm-conserving pseudopotentials [32] in the fully

nonlocal form, respectively. The dynamic properties are calculated with the TranSIESTA

code [38], which combines the NEGF technique with density functional theory.

Our unit cell consists in a slab of 13 Cu layers, and a Cs adatom on both the upper and

lower surfaces. The vacuum space between the periodic replicas of the slab is set to 17 Å: this

guarantees that the overlaps of the basis functions of the atoms forming different surfaces are

zero, and therefore the periodic replicas are decoupled. We use a 2x2 surface unit cell, thus

the supercell is formed by 52 Cu atoms plus 2 Cs atoms. A double-ζ polarized (DZP) basis

set of numerical atomic orbitals is used and the energy cutoff for real-space mesh is set to

300 Ry. [29] For Cu our DZP basis set includes 4s, 4p and 3d orbitals, while for Cs 6s and 6p

orbitals are considered. We fix the radii of the orbitals by imposing an energy shift of 0.02 Ry.

The resulting cutoff radii of the different species are then r3d = 3.6, r4s,4p = 6.4 Bohr for

Cu and r6s,6p = 9.9 Bohr for Cs. The cell has been fully relaxed with a force tolerance of

0.04 eV/Å and by using a 10x10 k-mesh. We verified a 10x10 k-mesh is enough to obtain a

converged band structure. We also tested the convergence of the bands with respect to the

energy cutoff and found no noticeable differences from 150 Ry to 400 Ry. We opted for a

value of 300 Ry and used it for all the subsequent calculations.

7.3.2 Results

In the following, we will analyze the electronic properties of the structures obtained from

SIESTA calculations. In Fig. 7.2 we illustrate the band structure of Cs-p(2x2)-Cu(111) along

the Γ-M direction and the PDOS on the Cs orbitals at Γ. Also, the band structure of the clean

Cu(111) and of the Cs isolated layer are reported for a direct comparison. Below ∼ −1.4 eV

the band structure is characterized by a dense contribution of the 3d bands. Unlike the case of

the clean Cu(111), no energy gap is found around EF at Γ due to the p-(2x2) superstructure.

The gap only opens above ∼ 1.5 eV, in good agreement with previous results [155]. By

comparing the band structure of the surfaces with and without the Cs overlayers, we were

able to identify two main QWSs, which are marked by solid black symbols. The QWS1

is located at Γ ∼ −0.3 eV below the Fermi level, and it can interact with the bands of the

substrate. On the contrary, the QWS2 lies in the energy gap, at ∼ 3 eV above the Fermi level,

in agreement with [154]. If we compare the band structure of Cs-p(2x2)-Cu(111) with that of

the free-standing Cs layer, we notice the large shift of the QWS2. This upward shift can be

interpreted as a result of the confinement of this state with large pz character, associated with

the presence of the Cu surface. On the left side of Fig. 7.2, the PDOS over the Cs orbitals

calculated at the Γ point is shown. Two well defined peaks are found in correspondence to
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Figure 7.2: Band structure of Cs-p(2x2)-Cu(111) (green), and PDOS on the Cs orbitals at Γ

(black). Band structure of the clean Cu(111)-(1x1) (blue) and of the Cs unsupported layer

(pink). The QWS are highlighted by black symbols.

the QWSs. While the QWS1 has a finite width, QWS2 has a discrete character as it lies

within a gap. Below 1.4 eV we notice that there is also a (very small) contribution due to

the mixing of the Cs states with the 3d states of the substrate. After fitting of the QWS1

PDOS with a Lorentzian curve as in Eq. 7.5, we found an elastic linewidth W ≃7.0 meV.

This is in good agreement with previous results: Chis et. al. found a value of 2.4 meV [154],

while Sánchez-Portal et. al. found a value of 9.4 meV [155].

Our results show a discrepancy with respect to the previous ones: in our case the QWS1 lies

slightly below EF, while it has been previously found about 0.1 eV above EF. This can be

attributed to a different basis set effect and a slightly different relaxed geometry. Anyway, we

are interested in understanding what would be the change of W if the QWS1 were localized

at higher energies, and therefore we apply an energy shift ∆ε to the Cs states. In Tab.7.1 we

show the changes in W as ∆ε increases. We notice that W decreases as the QWS1 is shifted

at higher energies. This is probably related to the progressive change of the character of the

bands in the Cu substrate in that energy range, that include for 4p character as we move to

higher energies. The Cs QWS1 has a strong s character at Γ. When we shift the QWS at a

value close to the one found in previous results, we obtain W ≃5.10 meV, which is in closer

agreement with the results in Ref. [154].
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E-EF (eV) W (meV)

-0.31 7.00

0.02 5.56

0.10 5.10

0.19 4.65

0.27 4.16

Table 7.1: Resonances width W versus the quantum well state energy position (determined

by applying an energy shift ∆ε) for Cs-p(2x2)-Cu(111).

7.4 Organic dyes on TiO2

The scope of this Section is to show preliminary results obtained for the study of charge

transfer of physical systems relevant for organic photovaltaics. As mentioned in the introduc-

tion to this chapter, the lifetimes of resonant excited states of organic dyes on TiO2 surfaces

are basic quantities to control the efficiency of DSSCs. In this study, we consider organic

chromophores bound to the (110) surface of rutile TiO2.

In DSSCs, the mesoporous oxide layer is actually composed of TiO2 nanoparticles of

10 − 30 nm size [152]. Several crystal forms of TiO2 occur naturally: rutile, anatase, and

brookite. The study presented here is performed exclusively on the (110) surface of rutile

since (i) the rutile is the thermodinamically more stable form, (ii) the rutile (110) surface is

the most stable crystal face and (iii) the crystal structure of rutile reduces the complexity

of the supercell used in our approach. Two classes of dyes are used for DSSCs applica-

tions: organometallic complexes and organic chromophores. The latter ones exhibit many

advantages: easy design of diverse molecular structure forms, low cost, higher molar extinc-

tion coefficients and efficiences with respect to metallic complexes. Generally, organic dyes

display a donor–π-spacer–acceptor (D-π-A) structure. The HOMO wavefunction is usually

localized on the donor end side. On the contrary, the LUMO is more localized on the acceptor

part, the same one to which usually the molecule is anchored to the TiO2 surface. A good

localization of the LUMO near the surface improves the charge transfer to the substrate. The

π-spacer is a conjugated bridge usually composed of a sequence of C=C bonds, or thiophene

rings or a mixture of them. Its length and composition can be controlled experimentally,

influencing the efficiency of the device. In our study, we will consider triarylamine (TAA)

dyes. This class of organic sensitizers has been investigated widely due to the prominent

electrondonating ability and hole-transport properties of the triarylamine unit[152, 156]. To

date, a very large number of dyes with triarylamine as electron donor have been developed

and most of them have shown good power conversion efficiencies in DSCs. In fact, TAA

derivatives display efficiencies which range from 3.3% to 9.8% [152].

After calculating the electronic properties of the molecules in gas phase, we calculate

the ground-state of the dye-oxide interface by optimizing the adsorption structure. Then,

we compute the linewidth of the relevant molecular resonances. This can be in principle
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calculated as a function of different factors like the dye conjugation length, the adsorption

geometry, the functionalization, the defects in the surface, the effect of the electrolyte solution,

and eventually also the dye’s vibrations (by introducing a dynamics of the system). In the

present work, we will only focus on the first aspect, namely the influence of the spacer. Other

aspects, like those mentioned above, will be studied with the methodology presented as a

future development of the work described here.

7.4.1 Rutile TiO2

The unit cell of rutile TiO2 is tetragonal with two titanium and four oxygen atoms (Fig. 7.3).

We calculated the bulk structure of rutile by using a 15×15×25 k-grid, a mesh cutoff of

Figure 7.3: The unit cell of rutile TiO2.

400 Ry, and the PBE exchange-correlation functional. Rutile TiO2 is a wide band gap

semiconductor with a band gap of ∼ 3.02 eV. By inspecting the decomposed density of states

in Fig. 7.4, calculated with a DZP basis, we can see that the valence band is composed of O

2p states, while the conduction band consists mainly of contributions from Ti 3d orbitals. As

expected, the band gap is underestimated by DFT, with a value of 1.5 eV. In order to balance

the computational effort with the precision of the results, we tested our results with respect to

three different basis sets, namely double-ζ polarized (DZP), double-ζ (DZ) and single-ζ (SZ).

Minimal single-ζ are the more inexpensive with only 6 and 4 orbitals, respectively for Ti and

O. In the other extreme, DZP basis contain 15 orbitals for Ti and 13 for O. After relaxing

the structure, the two inequivalent lattice parameters along the [100] and [010] directions

assume the value of a=4.526 Å b=2.904 Å for SZ, a=4.588 Å b=2.958 Å for DZ, a=4.627 Å

b=2.990 Å for DZP, in good agreement with the experimental results of a=4.594 Å b=2.959 Å

(deviations are 1.66%, 0.08% and 0.88% respectively) [157]. In Fig. 7.5 the band structure of

bulk rutile is calculated with those three different basis sets. Our results are in fair agreement

with previous ones [157]. We notice that the DZ basis set provides results that are very close

to those obtained with DZP. Also, the SZ bands are in good agreement with the DZP ones

in the energy region relevant to our purpose, that is in a range of ∼ 2 eV below the valence

band (VB) maximum and above the conduction band (CB) minimum. Out of that region,

discrepancy increases even if the results are quite reasonable even for the SZ basis.
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Figure 7.5: Band structure of rutile TiO2 along high-simmetry directions of the first Brillouin

zone. The valence band maximum is taken as the energy zero.

The (110) surface of rutile TiO2 is shown in Fig. 7.6 The surface consists of rows of

bridging oxygen atoms (Ob) that lie above the in-plane surface, which are 2-fold coordinated,

whereas the in-plane O atoms on the surface are 3-fold coordinated (O3f). The Ob atoms

are located directly on top of 6-fold coordinated Ti (Ti6f) rows, and Ti atoms not bound to

Ob atoms are 5-fold coordinated (Ti5f). Complexively, the structure is composed by trilayers

disposed along the [110] direction with different stacking. We calculated the properties of
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Figure 7.6: Side and top view of the rutile TiO2 (110) slab showing the 2 × 1 surface unit

cell.

rutile TiO2 (110) considering a slab with 7 trilayers showing the 1 × 1 surface unit cell,

with a total of 42 atoms. We set a 8×16×1 k-grid and a mesh cutoff of 350 Ry, we used

both DZP and SZ basis sets and let relaxing all the atoms in the supercell. The structural

parameters are in agreement with experiments [158] for both basis sets, since we correctly

predict positive upward shifts for Ti6f , Ob, Osub and a negative one for Ti5f . The band

structure along with the DOS are shown in Fig. 7.7. The DZP bands exhibit good agreement

with previous calculations [159]. The SZ basis set also provides a good estimate, even if the

gap at Γ is 0.1 eV lower than with DZP.
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7.4.2 Dyes on TiO2

Model

The supercell used to calculate the resonant lifetimes of dyes on rutile TiO2 is shown in

Fig. 7.8: it consists of 9 rutile trilayers with a 1x3 surface periodicity plus two symmetric

dyes, with a total number of 218 atoms. The left and right “electrode” regions are indi-

cated: periodic calculations of those structures provide the left and right self-energies used

to build the Green’s function of the infinite system. Test calculations have shown that using

symmetric slab with molecules attached to both the surfaces is necessary. In fact, using an

asymmetric slab with only a single molecule induces a spurious electric field across the slab,

which introduces problems regarding (i) the alignment of the molecular levels with the sub-

strate bands and (ii) the alignment of the electronic levels of the slab calculation with the

one of the electrodes. The molecules considered are TAA derivatives, which will be discussed

in more detail in the following.

In this work we choose to consider chromophores anchored to the TiO2 surface with a

carboxylic acid group bound to a pair of undercoordinated Ti atoms on the exposed surface,

as many chromophores reported are attached to the TiO2 surface in this way. The bidentate

bridging dissociative conformation, where the carboxylic acid binds to two Ti atoms and the

hydrogen is dissociated, is known to be the energetically most stable for rutile (110) [160,

161, 162, 163]. We considered the dissociate H to be adsorbed on the bridging O which is
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Figure 7.8: Scheme of the supercell. The TiO2 slab thickness is 9 rutile trilayers and we

have considered a 1× 3 surface periodicity. The left (L) and right (R) portions considered as

electrodes are indicated. Two TAA derivatives are anchored to the surfaces via the bidentate

dissociative conformation. The two molecules are separated by a vacuum region.

furthest from the molecule. However, preliminar tests show that a different choice for the H

adsorption site has no influence on the electronic properties.

A major difficulty in the calculations is given by the complexity the system. While accu-

rate calculations are needed to reliably describe the structural and electronic configuration,

the large dimensions of the systems to be studied substantially limit the viable level of ac-

curacy. Thus, we adopt the following procedure. The first stage is the search for the most

stable configuration. To this end, we relax the structure with high accuracy. In order to

obtain reliable structures, we use a DZP basis. We consider a symmetric slab with 5 trilayers

and relax the atoms of the molecules as well as those of the outermost two trilayers until

residual forces are below 0.04 eV/Å . After this procedure, we build the large supercell of

Fig. 7.8 by using the relaxed atomic coordinates. In order to combine accuracy and efficiency,

the calculations of the larger supercell are performed by considering a DZ basis for the TiO2

orbitals and a DZP basis for the molecule ones. In fact, we have shown in the previous Section

that the electronic properties of the TiO2 are well described by a DZ basis. After calculating

the system Green’s function, we follow the procedure described in Sect. 7.2 to calculate the

elastic linewidth and lifetime.

Molecules

We considered the TAA structure as the representative starting point for designing the dyes in

our work. A simple configuration of such molecules is the dye d1 of Fig. 7.9: the triarylamine

unit is well known for its ease in oxidation of the nitrogen center and acts as donor which is

connected via a conjugated spacer to the carboxylic endgroup. For reasons of computational

efficiency, we consider slight modifications of this molecule, namely the configuration d2 of

Fig. 7.9. In the latter, the two terminal phenyl rings are substitued by two methyl groups.

By doing so, a smaller TiO2 surface supercell can be employed (see Fig. 7.8) thus decreasing

significantly the computational effort. This substitution does not alterate significantly the
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Figure 7.9: Molecular structures of sensitizers d1–d4 with D-π-A configuration.

electronic structure of the dye. In fact, the energy gap varies from 2.2 eV to 1.9 eV, and

the spatial localization of the molecular orbitals relevant to our purpose is the same. In

particular, in Fig. 7.10 we can compare the HOMO and LUMO wavefunctions of d1 and d2

in gas phase. In both cases, we notice that the HOMO is delocalized along the whole molecule

with predominant weight on the donor part, while on the contrary the LUMO is localized on

the acceptor part, which facilitates the injection of photoelectrons into the substrate. The

configurations d3 and d4 differ from d2 by the length of the π-spacer: in the configuration d3

the donor and acceptor parts are separated by a polyenic chain which is longer with respect

to d1, while in the configuration d4 a thiophene is inserted in the π-spacer. In Fig. 7.10 the

HOMO and LUMO wavefunctions of all the molecules considered in this work are illustrated.

Far all four dyes d1–4, the HOMO is quite delocalized over the whole molecule with a larger

weight on the donor part, while the LUMO is mainly centered on the acceptor unit. The

lowest energy adsorption corresponds to the π − π∗ intramolecular transition [164].
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Figure 7.10: HOMO and LUMO wavefunction of the d1, d2, d4 and d4 dyes calculated with

DFT for the molecules in gas phase.
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Electronic properties of dye-TiO2 systems

In this Section we show the results of our calculations. In Fig. 7.11 we report the total DOS,

the PDOS onto the atomic species of the molecules, and the PDOS on the first TiO2 trilayer

of the slab for the three molecular configurations we studied. The energy axis is rescaled

with respect to the valence band maximum (VBM). In each case, the HOMO resonance lies

within the TiO2 bandgap, near the edge of the valence band, and it is completely filled b.

The HOMO has a large weight on the N of the triarylamine unit, as expected for this class of

organic dyes. On the other hand, the LUMO resonance lies inside the TiO2 conduction band,

and it is completely hybridized with the electronic states of the substrate. The main features

to be considered are the decreasing of its linewidth by increasing the π-spacer length, and its

corresponding shift towards the conduction band minimum (CBM). This can be explained

considering the increasing spacial extension (and the π system delocalization) of the molecules

from d2 to d4. This is also consistent with the increase of molecular resonances in the selected

energy region. The position of the LUMO resonance critically affects the electron injection

rate if the resonance lies near the CBM. Also, if the LUMO lies at the very edge of the

conduction band, the injection mechanism can change to a direct excitation of an electron

from the dye HOMO to the TiO2 states [164]. The exact position of the LUMO level is less

crucial if it is fairly above the CBM.

We calculated the elastic linewidths of these structures. The values of the LUMO resonant

linewidths W and resonant lifetimes τ are illustrated in Tab. 7.2. The resonant lifetime of

d4 is in excellent agreement with the value reported in Ref. [165], which has been calculated

with a different method. Our results indicate that the resonant lifetime increases from 3.3 fs

to 18.8 fs by increasing the π-spacer length. As a consequence, the electron injection in the

substrate occurs more slowly for systems with a large π-spacer. This is due to the increase

of the delocalization of the molecular states in the longer molecule, as well as to the smaller

density of states of the substrate approaching the CBM, which slows the electron transfer.

Eventually, longer spacer may shift the LUMO resonance inside the TiO2 bandgap, forcing

the injection mechanism to change. However, it is well known that once electrons are injected

into the substrate, they relax toward the bottom of the conduction band. In a DSSC system,

this effect reduces the open-circuit voltage. Therefore, the exact position of the LUMO level

might not influence the device performance unless the injection rate is largey affected by this

position. This will be studied in more detail in the following.

Theoretical studies based on DFT-PBE calculations can only provide qualitative predictions

of the position of the molecular levels with respect to the substrate ones. For this reason, we

are interested in evaluating the resonant linewidth as the LUMO assumes different energy

positions inside the conduction band. To this end, we focus on the molecule d4, whose LUMO

bIn other words, the Fermi level lies somewhere within the energy gap and above the HOMO resonance.
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Figure 7.11: From top to bottom: DOS, PDOS on the different species belonging to the dye

and PDOS on the central trilayer of the slab of the dyes d2, d3 and d4. The energy axis

has been rescaled by taking the VBM as zero.
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molecule W (meV) τ (fs)

d2 200.3 3.3

d3 41.7 15.8

d4 35.8 18.4

Table 7.2: LUMO resonant linewidth W and resonant lifetime τ for the molecules considered

in this work.

is the closest to the CBM, and shift its positions by different values ∆ε. In Fig. 7.12 the PDOS

on the LUMO is shown for different energy shifts. While for ∆ε = 0 the PDOS displays a

well defined peak, as ∆ε increases the LUMO interacts with the electronic states of the TiO2

substrate, giving rise to a split structure composed of two components that complicate the

analysis. We fitted these two (left/right) components with two different Lorentzian functions

as in Eq. 7.5 extracting two values of W (namely, left and right components). In Fig. 7.13 (a)

the variation of W for the left/right Lorentzian components are illustrated as a function of

∆ε. In Fig. 7.13 (b) one can find the center of the two Lorentzians as a function of ∆ε,

together with the relative weight of the two components. At zero and large values of ∆ε

the spectra consist mostly of a single peak (that clearly shifts with ∆ε), and the position

and width of the molecular resonance can be easily estimated. Comparing the results of the

width for zero and the largest shift we can see that there is only a very moderate increase

of the width with a shift of almost 1 eV. The region of intermediate shifts becomes more

complicated and points to the existence of a surface resonance in TiO2 in this energy range

that can couple to the LUMO resonance. As expected, the TiO2 resonance presents a larger

width than the LUMO level and does not significantly disperse with the applied shift (which

is restricted to orbitals residing in the molecular dye).
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7.5 Closing remarks

In this chapter we presented a scheme for the ab initio calculation of the resonant transfer

of excited electrons from adsorbed molecules on a semiinfinite substrate. We applied it to

triarylamine molecules on the (110) surface of rutile TiO2, a system which is relevant for dye

sensitized solar cells. Our results show how the LUMO resonant lifetime modifies with respect

to the π-spacer length between the electron-donor and electron-acceptor ends of the dyes. A

detailed analysis of the LUMO linewidth as a function of the resonance position inside the

TiO2 conduction band reveals the interaction with a surface feature that splits it into two

components. Progress in this work will involve the characterization of the charge transfer

with respect to other effects not included in this work, such as the molecular vibrations,

defects in the substrate, different dye’s functionalizations, and the presence of the electrolyte

solution.
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Conclusions

In recent years there has been a huge increase in the research on the electronic transport of

organic molecular junctions. A wealth of techniques has been developed to contact single

molecules to metallic electrodes and to measure the electronic and transport properties of

such systems. The existence of new complex phenomena motivated the need for a theoret-

ical description and interpretation. For these reasons this thesis focuses on the theoretical

investigation of electronic transport in organic molecular junctions.

As a first step towards a full understanding of these phenomena, we applied the Landauer

theory of coherent electronic transport to a simplified model. We considered a one dimensional

potential of any shape inside a well defined scattering region. Inside that region, we initially

took into account single barrier as well as double barrier potentials where the interaction

with the continuum of free particle states yields electronic resonances. To compute transport

with semi-infinite leads we made use of the embedding Green’s function formalism. Though

such a model is oversimplified, it still allowed us to capture the main features of resonant

electronic transport, considering both jellium and metallic electrodes.

We then focused on the realistic description of molecular junctions, by means of ab initio

calculations. Our approach relies on the combination of density functional theory and of the

non-equilibrium Green’s function technique. At the present, this is one of the most powerful

theoretical methods to calculate the conductive properties of nanojunctions. In this work,

this method has been applied to a number of different systems, which we categorize as two-

and three-dimensional ones.

Transport in two-dimensional systems has been investigated considering molecular junc-

tions with graphene electrodes. We first studied graphene junctions with armchair graphene

nanoribbon linkers. These systems present a metal-semiconductor-metal behavior due to the

electronic gap of the ribbons which depends on the their width. The electronic properties

of the isolated subsystems, i.e. the graphene electrodes and the nanoribbon, together with

their interaction in the contact regions, determine the transport properties of the junction.

The coupling between the various subsystems is very efficient and the contacts do not create

any appreciable barrier to transport mainly because the same chemical species constitute the

full junction. Hence the transport properties are mainly determined by the shape (width

and length) of the finite ribbon included between the graphene leads. The calculated results

of the electronic transport provide some relevant parameters to control and engineer future
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carbon-based electronic devices.

We also calculated the conductance of diarylethene-based molecular junctions sandwiched

between graphene leads with zigzag edges. Our calculations show that at zero bias the peaks

in the conductance show not only the molecule electronic states broadened into resonances by

the coupling to the leads, but also the features of graphene edge states. Near the Fermi energy

(EF) the conductance of the closed isomer drastically lowers in the energy interval between

the HOMO and the LUMO resonances of the molecule, following the linear dependence of the

electrode density of states (DOS) proportional to |E−EF|. In the same range the conductance

of the open isomer is about zero. If we apply a finite bias we observe that conductance is

allowed within different energy windows for the open and closed isomers. We have also

discussed the advantage of using graphene electrodes with respect to other materials, namely

a reduced quenching of the photoexcited state compared to gold electrodes.

Moving to transport in three-dimensional systems, we present a comprehensive study of

the conductance of a bi-stable pyrazine molecular junctions with Pt leads. We have calculated

both the structural and transport properties as a function of the junction elongation, by fol-

lowing the minimum energy path. Our calculations reveal that the high- and low-conductance

states found experimentally can be ascribed to different geometrical configurations in which

the pyrazine axis is bent and coaxial with the junction. In these situations higher and lower

couplings of the molecular orbitals with the electrodes occur, respectively. By a vibrational

analysis of the junction, performed as a function of molecule’s stretching, we were also able

to identify the active vibrations found in experiments.

The model used in this thesis describes ballistic transport; the effect of the electron-

phonon interaction is neglected and future development may concern such implementation.

Still when experiments are available for comparison as for the pyrazine Pt junction, our

results qualitatively describe the experimental conductance measurements.

Since the applied model well describes the electronic resonances of the junction coupled

to semiinfinite electrodes these findings motivated the development of a scheme for the study

of the resonant transfer of excited electrons from adsorbed molecules on metal or insulating

substrates. To this end, we decided to combine the density functional calculation of a slab

geometry with that of the bulk substrate, in order to obtain the Hamiltonian of the semi-

infinite system which an electron is injected into. To test the method, we have studied the

quantum-well state of Cs-p(2x2)-Cu(111). Our calculated elastic linewidth is fairly compa-

rable with previous theoretical values. In the final part of our thesis work we preliminarly

studied triarylamine molecules on TiO2 rutile (110), a system which is relevant for dye sen-

sitized solar cells. We were able to compute the elastic linewidths and lifetimes as a function

of the length of the π-spacer between the electron-donor and electron-acceptor ends of the

dyes. Further studies in this direction will help clarifying how charge transfer is affected

by molecular vibrations, defects in the substrate, different dye’s functionalizations, and the

presence of the electrolyte solution.
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Appendix A

Embedding formula in matrix form

We want to expand the embedding equation for the Green’s function:

−1

2

∂2G

∂z2
+ (V − E)G(z, z′;E) + δ(z − zR)

[

1

2

∂G

∂z
+ ΣR(E)G(zR, z

′;E)

]

+

δ(z − zL)

[

−1

2

∂G

∂z
+ ΣL(E)G(zL, z

′;E)

]

= δ(z − z′)

(A.1)

in matrix form. This will be done by expanding the Green’s function on a real-space basis:

G(z, z′;E) =
∑

i,j

Gij(E)χi(z)χj(z
′) (A.2)

where Gij(E) is an energy-dependent matrix, while {χi(z)} a suitable basis. By substitution

we obtain

∑

ij

Gij

{

−1

2
χi(z)

′′ + (V − E)χi(z) + δ(z − zR)

[

1

2
χ′
i(z) + ΣRχi(zR)

]

+ δ(z − zL)

[

−1

2
χ′
i(z) + ΣLχi(zL)

]}

χj(z
′) = δ(z − z′)

.

If we multiply both the sides to a quantity χk(z), we obtain:

∑

ij

Gij

{

−1

2
χi(z)

′′χk(z) + (V − E)χi(z)χk(z)

+ δ(z − zR)

[

1

2
χ′
i(z)χk(z) + ΣRχi(zR)χk(z)

]

+ δ(z − zL)

[

−1

2
χ′
i(z)χk(z) + ΣLχi(zL)χk(z)

]}

χj(z
′) = δ(z − z′)χk(z)

.

We now integrate between zL and zR, by exploiting the relation

χ′′
i χk = −χ′

iχ
′
k +

d

dz

[

χ′
iχk

]
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which can be obtained by the z-derivative of χ′
iχk. The terms χ′

i(zL/R)χk(zL/R) erase and

we obtain
∑

ij

Gij [Hij − E Sij + Σij ]χj(z
′) = χk(z′) , (A.3)

where the Hamiltonian is given by

Hij =

∫ zR

zL

1

2
χ′
i(z)χ

′
k(z)dz +

∫ zR

zL

V (z)χi(z)χk(z)dz

. The overlap matrix is

Sik =

∫ zR

zL

χi(z)χk(z)dz

and the embedding matrix is

Σik(E) = ΣL(E)χi(zL)χk(zL) + ΣR(E)χi(zR)χk(zR)

Since the functions χ form a basis, they are linearly independent. Therefore, in Eq. (A.3)

the coefficients of the j sum on the left will be zero, except if j = k. Thus,

∑

i

Gij [Hij − E Sij + Σij] = δjk (A.4)

The latter can be re-written in compact form:

G = [H − ES + Σ]−1 (A.5)



Appendix B

Extension from to 3D of a 1D

dependent potential

In presence of 1D potentials V (r) = V (z), one can solve the Schröedinger in 1D and extend

the solution to 3D.

The Green’s equation reads:

(

−∇2
r

2
+ V (z) − E

)

G(r, r′;E) = δ(r − r′) .

If we separe the variables into R and z, where R = (x, y), we obtain:

(

−1

2

∂2

∂z2
− ∇2

R

2
+ V (z) − E

)

G(R, z,R′, z′;E) = δ(R −R′)δ(z − z′quad.)

We can now apply the Fourier transform for R and R′, that is:

F [f(rx)] =

∫

e−ikxf(x)dx

F−1[f(k)] =
1

(2π)n

∫

eikxf(k)dk ,

where n equals to 2 in our case. We thus obtain:

(

−1

2

∂2

∂z2
+
k2‖

2
+ V (z) − E

)

G(k‖, z, k
′
‖, z

′;E) = δ(z − z′) .

By applying a coordinates change E⊥ = E − k2
‖

2 we obtain

(

−1

2

∂2

∂z2
+ V (z) − E⊥

)

G(k‖, z, k
′
‖, z

′;E⊥ +
k2‖

2
) = δ(z − z′) (B.1)

By comparing the latter equation with the monodimensional one

(

−1

2

∂2

∂z2
+ V (z) − E

)

G1D(z, z′;E) = δ(z − z′)
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we notice that Gk‖
(z, z′;E) = G1D(z, z′;E− k2

‖

2 ). Thus, the Green’s function G(r, r′;E) must

be invariant upon translations in the (x, y) plane. For this reason, k‖ = k′‖ in Eq. (B.1).

We can now write the Green’s function in 3D by the inverse Fourier transform:

G(r, r′;E) =
1

(2π)2

∫

dk‖e
−ik‖(R−R′)Gk‖

(z, z′;E) =

=
1

(2π)2

∫

dk‖e
−ik‖(R−R′)G1D(z, z′;E − k2

2
)

(B.2)

The 1D result is useful if we want to compute non-exthensive quantities (like the conductance)

in the direction normal to the surface (i.e. at the Γ point). For exthensive quantities (like

the charge) we need the 3D result. Eq. (B.2) can be used to compute the density of states

as well as the charge density in 3D. In therms of the Green’s function, the local density of

states is σ(r, E) = 1
π ImG(r, r, E + iδ). We can apply this formula and obtain:

σ(r, E) =
1

π
ImG3D(r, r;E) =

1

π
Im

1

(2π)2

∫

d2ke−ik(R−R)G1D(z, z;E − k2

2
) =

= − 1

π

2π

(2π)2
Im

∫ +∞

0
kdkG1D(z, z;E − k2

2
)

,

and by doing the substitution E⊥ = E − k2

2 ⇒ dE⊥ = −kdk, it follows:

σ(r, E) = − 1

2π2
Im

∫ −∞

E
dE⊥G

1D(z, z;E⊥) =
1

2π2
Im

∫ E

−∞
dE⊥G

1D(z, z;E⊥) =

=
1

2π

∫ E

−∞
dE⊥σ(z,E⊥)

(B.3)
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T. von Hofe, J. Kliewer, J. Kröger, and R. Berndt. Role of elastic scattering in electron

dynamics at ordered alkali overlayers on Cu(111). Phys. Rev. Lett., 95:176802, 2005.

[156] Z. Ning and H. Tian. Triarylamine: a promising core unit for efficient photovoltaic

materials. Chem. Commun., pages 5483–5495, 2009.

[157] K. M. Glassford and J. R. Chelikowsky. Structural and electronic properties of titanium

dioxide. Phys. Rev. B, 46(3):1284–1298, 1992.

[158] U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep., 48(5-8):53–229,

2003.

[159] A. Beltrán, J. Andrés, J. R. Sambrano, and E. Longo. Density functional the-

ory study on the structural and electronic properties of low index rutile surfaces

for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. J. Phys. Chem. A,

112(38):8943–8952, 2008.

[160] S.P. Bates, G. Kresse, and M. J. Gillan. The adsorption and dissociation of ROH

molecules on TiO2(110). Surf. Sci., 409(2):336–349, 1998.

[161] W. R. Duncan and O. V. Prezhdo. Theoretical studies of photoinduced electron transfer

in dye-sensitized TiO2. Annu. Rev. Phys. Chem., 58:143–184, 2007.



BIBLIOGRAPHY 129

[162] S.A. Chambers, S. Thevuthasan, Y.J. Kim, G.S. Herman, Z. Wang, E. Tober, Ynzunza,

J. Morais, C. H. F. Peden, K. Ferris, and C.S. Fadley. Chemisorption geometry of

formate on Ti2(110) by photoelectron diffraction. Chem. Phys. Lett., 267(12):51 – 57,

1997.

[163] K. Fukui, H. Onishi, and Y. Iwasawa. Imaging of individual formate ions adsorbed

on TiO2(110) surface by non-contact atomic force microscopy. Chem. Phys. Lett.,

280(34):296 – 301, 1997.

[164] N. Martsinovich and A. Troisi. Theoretical studies of dye-sensitised solar cells: from

electronic structure to elementary processes. Energy Environ. Sci., 4(11):4473, 2011.

[165] N. Martsinovich and A. Troisi. High-throughput computational screening of chro-

mophores for dye-sensitized solar cells. System, 115(23):11781–11792, 2011.


