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Ultraviolet cascade in the thermalization of the classical �4 theory in 3� 1 dimensions
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We investigate the dynamics of thermalization and the approach to equilibrium in the classical �4

theory in 3� 1 spacetime dimensions. The nonequilibrium dynamics is studied by numerically solving
the equations of motion in a light-cone-like discretization of the model for a broad range of initial
conditions and energy densities. A smooth cascade of energy towards the ultraviolet is found to be the
basic mechanism of thermalization. After an initial transient stage, at a time scale of several hundred
inverse masses, the squared magnitude of the field spatial gradient becomes larger than the nonlinear term
and there emerges a stage of universal cascade, independent of the details of the initial conditions. As the
cascade progresses, the modes with higher wave numbers, but well behind the forefront of the cascade,
exhibit weaker and weaker nonlinearities well described by the Hartree approximation, while the infrared
modes retain strong self-interactions. As a consequence, two time scales for equilibration appear as
characteristic of two time-dependent wave number regions. For k2 * �2�t�, we observe an effective
equilibration to a time-dependent powerlike spectrum with a time scale in the hundreds of inverse masses;
cutoff effects are absent and the Hartree approximation holds for k2 � �2�t�. On the other hand, infrared
modes with k2 & �2�t� equilibrate only by time scales in the millions of inverse masses when the cutoff
effects become dominant and complete thermalization is setting in. Accordingly, we observe in the field
correlator a relatively large and long-lived deviation from the Hartree behavior of a nonperturbative
character. There corresponds an effective mass governing the long distance behavior of the correlator
which turns out to be significantly smaller than the Hartree mass which is exhibited by the modes with
k2 * �2�t�. Virialization and the equation of state start to set in much earlier than thermalization. The
applicability of these results in quantum field theory for large occupation numbers and small coupling is
analyzed.
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I. INTRODUCTION

The understanding of the dynamics of thermalization
and relaxation in a field theory is a subject of critical
importance both in early cosmology as well as in ultrarela-
tivistic heavy ion collisions.

Pioneering work in this topic was initiated by Fermi,
Pasta, and Ulam [1] for a chain of coupled oscillators.
Since then, this problem has been studied within a variety
of models [2] with the goal of answering fundamental
questions on ergodicity, equipartition, and in general the
approach to equilibrium in nonlinear theories with a large
but finite number of degrees of freedom.

By understanding the dynamics of thermalization we
mean to uncover in detail the mechanisms that lead to
thermal states starting from arbitrary initial conditions as
well as to determine the time scales of these phenomena. In
cosmology the inflationary paradigm assumes that after the
inflationary stage a period of particle production and re-
laxation leads to a state of local thermal equilibrium thus
merging inflation with the standard hot big bang cosmol-
ogy [3,4].
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Inflationary scenarios lead to particle production either
via parametric amplification of fluctuations of the inflaton
(in the case of an oscillating inflaton) or by spinodal
instabilities during phase transitions [5–8]. In both cases
the nonequilibrium dynamics is nonperturbative and re-
sults in a large population of soft quanta whose dynamics is
nearly classical. The nonequilibrium dynamics of particle
production and eventual thermalization are nonperturba-
tive and the resulting fluctuations contribute to the evolu-
tion of the scale factor, namely, the backreaction from the
fluctuations becomes important in the evolution of the
cosmological spacetime [5–8]. Both parametric amplifica-
tion and spinodal decomposition lead to nonperturbative
particle production of a band of wave vectors, typically for
soft momenta [5–8]. This nonperturbative large population
allows a classical treatment of the nonequilibrium evolu-
tion. Thermalization may be described in this classical
framework or one can implement the quantum 2-particles
irreducible (2PI) framework in cosmological spacetimes.

In this article we study the nonequilibrium dynamics
going towards thermalization in the classical �4 theory in
3� 1 dimensions. As mentioned above the initial stages of
nonequilibrium dynamics either in cosmology or in ultra-
relativistic heavy ion collisions is mainly classical.
Classical field theory must be understood with an ultravio-
-1 © 2006 The American Physical Society
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let cutoff, or equivalently an underlying lattice spacing, to
avoid the Rayleigh-Jeans catastrophe.

The advantage of studying the classical field theory is
that the equation of motion can be solved exactly. Contrary
to quantum theory, there is no need for making approx-
imations. Classical field theory is expected to be a good
approximation to the quantum theory for large occupation
numbers and small coupling as we argue in this paper.

We provide a detailed understanding of the main dy-
namical mechanisms that lead to thermalization and to
study the approach to thermalization by several different
observables. We address several questions on the equilib-
rium and nonequilibrium aspects: (i) what are the criteria
for thermalization in an interacting theory, (ii) what is the
mechanism that leads to thermalization, (iii) what is the
dynamics for different observables, how do they reach
thermal equilibrium, and which are the relevant time
scales?

We focus our study on these issues within the context of
classical field theory, which is an interesting and timely
problem all by itself. It is also likely to describe the initial
stages of evolution strongly out of equilibrium in quantum
theory for the relevant cases of very large occupation
numbers and small coupling.

The main results of this work are the following:

(i) W
e implement a discretization of the ’4 model in

any number of spacetime dimensions which is very
accurate and stable, maintains the relativistic sym-
metry between space and time, and conserves en-
ergy exactly (that is to machine accuracy on a
computer). The same discretization scheme, re-
stricted to space alone, can be used to study the
model at canonical equilibrium through
Monte Carlo simulations.
(ii) W
e provide the main physical properties of the
classical ’4 model in thermal equilibrium using
low temperature perturbative expansions as well
as Monte Carlo simulations. These simulations
show that the leading order perturbative results
have a large domain of validity, further extended
by the Hartree approximation, except for infrared
modes, which retain a strong nonperturbative
character.
(iii) W
e extensively investigate the dynamics of the ’4

model for a wide range of (infrared supported)
initial conditions and energy densities. After a first
stage with relatively important fluctuations whose
precise structure depends on the details of the
initial conditions, the model evolves towards a
universal stage where energy transfer from low to
high wave numbers becomes steady and very ef-
fective, resulting in a steady smooth ultraviolet
cascade. Namely, the power spectrum of the field
� and its canonical momentum � acquire support
in a monotonic and slow way over larger and larger
values of the wave vectors. This ultraviolet cascade
025014-2
leads to an efficient transfer of energy from �2,�2,
and the interaction terms �4 to the spatial gradient
�r��2 which grows monotonically. Therefore,
there is a crossover during this stage from a strong
to a weak interacting theory since the nonlinear
term �4 becomes much smaller than the spatial
gradients. The average wave number k�t� of the
modes grows monotonically with time approxi-
mately as t1=3. The universal stage is well estab-
lished by a time t0 ’ 500 (in inverse mass units)
which does not depend on the lattice spacing and
depends weakly on the energy density E=V as long
as E=V is not very small. The study of the � and
� � _� correlators allows us to obtain the power
spectrum of � and � which exhibits universal
scaling properties during the smooth cascade. We
find that virialization sets rather fast at times t * t0.
Parallel to virialization, the equation of state ap-
proaches the radiation equation. Namely, the ratio
of the pressure divided by the energy density ap-
proaches 1

3 for energy densities not too small as the
nonlinearities weaken. The ultraviolet cascade con-
tinues till the lattice cutoff is reached and therefore
the universal properties with respect to the discre-
tization method are lost. These cutoff effects be-
come important long before full thermalization of
the power spectra sets in, but late enough for small
enough lattice spacing for the window of the uni-
versal cascade to be clearly visible.
(iv) T
he infrared modes with k2 & �2�t� exhibit a much
slower dynamics than the rest of the modes. The
modes with k�t� � k2 � �2 are well described by
the Hartree approximation and equilibrate effec-
tively by times �t0 ’ 500 (in inverse mass units)
while the infrared modes reach an equilibrium state
only by times t� 106, when k�t� is very close to the
UV cutoff. In this equilibrium state a rather large
deviation from Hartree behavior remains for low
wave numbers. In configuration space the correla-
tion length turns out to be 1=Meff�t� where the
effective mass of the infrared modes Meff�t� is
substantially smaller than the Hartree mass.
Therefore, there are two scales for equilibration:
the shorter one t0 characterizes the UV cascade
evolution, the local magnitudes as the time average
�2�t� and the modes with k2 * �2�t�, while the
longer scale governs the evolution of the infrared
modes k2 & �2�t�.
(v) T
he thermalization process in 3� 1 dimensions is
quite different from that in 1� 1, studied with the
same light-cone-like discretization approach in
Ref. [9], although a universal smooth ultraviolet
cascade is present in both cases. In the 1� 1 case
the cascade of the � power spectrum is character-
ized by a single universal shape function with the
time evolution reducing to a scale transformation



ULTRAVIOLET CASCADE IN THE THERMALIZATION . . . PHYSICAL REVIEW D 73, 025014 (2006)
on such a function. On the contrary, in D � 3� 1,
one can still define a shape function for the cascade
but it turns out to be time dependent; in particular,
there exists a window at intermediate values of the
scaled wave number k=k�t� with a powerlike be-
havior, but the power depends markedly on time
even when cutoff effects are fully negligible. Most
remarkably, the shape function is almost flat near
the origin in 1� 1 dimensions, allowing one to
consistently define an effective thermalization
which, starting from the deep infrared where power
is concentrated at zero time, progresses to higher
wave numbers with a well-defined effective tem-
perature monotonically decreasing in time. In D �
3� 1 instead, the deep infrared is the last to ther-
malize and the mode equilibration in the bulk of the
cascade, where powerlike spectra are observed,
cannot be characterized only by a time-dependent
effective temperature.
Nonetheless, the notion of a time-dependent effec-
tive temperature keeps its sense for specific (sim-
ple) observables also in 3� 1 dimensions. For
instance, from the late time behavior of �2, �2,
�4, and �r��2 one can read off an effective tem-
perature which monotonically decreases with time
approximately as �t�1=3. This effective tempera-
ture reaches the proper nonzero limit in the lattice
for very late times showing that true thermalization
has been achieved. In the continuum this effective
temperature would always vanish for infinite time.
(vi) A
lthough all our present work (and in Ref. [9])
deals with classical field theory, some of the main
features such as the ultraviolet cascade and the slow
thermalization dynamics of the infrared modes
should be relevant in quantum field theory (QFT)
for large occupation numbers and small coupling.
The main message to early cosmology and ultrarelativ-
istic heavy ion collision physics from the present work is
that thermalization proceeds very slowly in classical field
theory (at least for unbroken symmetry in scalar models).
However, a state of effective equilibration is soon reached
and is characterized by a steady, smooth, and relatively
simple cascade of energy flowing towards the ultraviolet.
The natural interpretation is that the ‘‘fast’’ degrees of
freedom have indeed reached some sort of statistical equi-
librium defined by a few macroscopic parameters (such as
the temperature, but not the temperature alone) which are
slowly varying in time. On the continuum, without any
cutoff effect for arbitrary long time, this effective tempera-
ture should become the only relevant slow-varying quan-
tity for late enough time; it would eventually vanish for
infinite time in classical theory, while in quantum theory it
should reach a finite nonzero value necessarily involving @.

Thermalization has been reached in quantum field theo-
ries by numerical studies in 3� 1 and 2� 1 dimensions in
Refs. [10–12], respectively. In these works the 2PI expan-
025014
sion to lowest order and the analogous Kadanoff-Baym
approximation are used, respectively. The couplings con-
sidered are quite strong and do not allow a direct connec-
tion with the classical dynamics investigated in the present
paper. The numerical studies previously reported on the
dynamics of classical and quantum field theories [13–17]
have not yet focused on studying the mechanism of energy
transfer from long to short wavelengths as a function of
time. In Ref. [13] the emergence of spatiotemporal struc-
tures is reported for a symmetry breaking �4 model.
Reference [14] studies the evolution of the classical 1�
1-dimensional �4 model. For further work in this domain
see Refs. [18–20].

It would indeed be interesting to study if the universal
cascade found in the classical theory [9] remains at least
during some early and intermediate stages in the quantum
theory.

Reference [21] investigates the classical in the 3�
1-dimensional massless �4 model. The ultraviolet cascade
is present in their numerical results. In addition, an analytic
scenario for the scaling behavior is proposed following the
transport treatment of weak wave turbulence [22].
However, this heuristic treatment does not fully capture
the thermalization dynamics found in 1� 1 dimensions in
[9] as well as in 3� 1 dimensions in the present paper.

This paper is organized as follows: in Sec. II we present
the classical �4 model in the continuum and in the lattice
and our way to perform suitable coarse grainings.
Section III discusses the classical �4 model in thermody-
namic equilibrium and its properties both from perturba-
tive as well as Monte Carlo calculations. Section IV is the
core of the article where the dynamics of thermalization is
presented. We study the time evolution of local observables
as well as the correlators whose Fourier transforms yield
the power spectra of the field � and its conjugate momen-
tum �. The early virialization and the late thermalization
of the infrared modes are discussed. Section V contains
discussions and conclusions while four appendixes deal
with more specific topics.

II. THE MODEL IN THE CONTINUUM AND ON
THE LATTICE

Besides defining the classical �4 model, we present in
this section its lattice version simultaneously discretizing
space and time in such a way that an exactly conserved
lattice energy can be defined. The average procedure over
the basic physical observables is presented too.

A. Basic definitions and notations

The Lagrangian density of the �3� 1�-dimensional ’4

field theory reads

L m;��’� �
1

2
@�’@�’�

m2

2
’2 �

�
4
’4;

where @� � @=@x�, � � 0; 1; 2; 3. This leads to the clas-
-3
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sical equation of motion

@�@
�’�m2’� �’3 � 0: (2.1)

In 3� 1 spacetime dimensions and standard units @ � c �
1, the coupling � is dimensionless while ’ has the dimen-
sions of a mass.

At the classical level one can always rescale the coor-
dinates and the field using some reference mass M and
absorb the coupling � in the field. Thus setting

’�x� �
M����
�
p ��Mx� (2.2)

and renaming �Mt;Mx� as �t; x� yields for the dimension-
less field � the equation

���r2�� ����3 � 0;

where _� � @�=@t, rj� � @�=@xj, and � � m2=M2. If
m2 > 0, then we can choose M � m and study the
parameter-free equation

���r2�����3 � 0: (2.3)

This is our choice, having assumed a massive ’. At any
rate, the important point here is that, unlike in QFT, the
notion of a coupling constant at the classical level is not
absolute as it can be scaled out.

In terms of � and its canonical conjugate momentum
� � _�, the Hamiltonian is the standard sum of a kinetic
plus a potential term

H	�;�
 � T 	�
 �V 	�
; T 	�
 �
1

2

Z
d3x�2;

V 	�
 �
1

2

Z
d3x

�
�r��2 ��2 �

1

2
�4

�
:

(2.4)

This Hamiltonian is dimensionless; the energy of the origi-
nal field ’ in the standard dimension-full coordinates is
given by �m=��H	�;�
.

We consider the model restricted to a finite volume,
which we take to be the cube of side L (in units of m�1)
and volume V � L3; we assume periodic boundary con-
ditions (PBC), namely, ��x� Ln; t� � ��x; t� for any
n � �n1; n2; n3� 2 Z3.

In terms of standard Fourier mode amplitudes,

~�k�
Z
V

d3x

V1=2
e�ik�x��x�� ~���k;

~�k�
Z
V

d3x

V1=2
e�ik�x��x�� ~���k; k�

2�
L
n; n2Z3;

(2.5)

the Hamiltonian reads

H	�;�
 �
1

2

X
k

�
j ~�kj

2 � �1� k2�j ~�kj
2

�
1

2V

X
qq0

~�q ~�q0 ~�k ~��q�q0�k

�
:
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The wave numbers k are dimensionless; their dimension-
full counterparts are given by mk.

B. Regularization on a finite space lattice

For any numerical treatment it is necessary to discretize
space and time over some lattice. This obviously introduce
an ultraviolet cutoff � over the wave numbers of the order
of the inverse of the lattice spacing. To discretize the space
we consider the cubic lattice �2aZ�3, a being half the
lattice spacing. Taking into account the finite size L, we
obtain regularized fields

�n ���x�; �n ���x�; x� 2an; n2CN;

where CN is the cubic subset of Z3 formed by integer
triples �n1; n2; n3� satisfying �N=2� 1 
 nj 
 N=2, j �
1; 2; 3. HereN � L=�2a� is assumed even andN3 is clearly
the total number of degrees of freedom of the regularized
fields.

Owing to PBC, to the cube 2aCN in x space there
corresponds the dual cube �2�=L�CN (the so-called first
Brillouin zone) of wave numbers k fulfilling

k �
2�
L
n; �N=2� 1 
 nj 
 N=2; j � 1; 2; 3:

The largest value of each component of k, � � �2�=L��
�N=2� � �=�2a�, is the UV cutoff.

The lattice form of the Hamiltonian is not unique, being
restricted solely by the requirement to formally reduce to
the continuum expression Eq. (2.4) in the a! 0 limit. For
all ultralocal terms, with fields at coincident points, one
could assume the simplest discretization as sums of one-
site terms. Thus the kinetic energy T would read on the
lattice

T 	�
 �
1

2

X
n2CN

�2a�3�2
n; (2.6)

and similarly for the space integrals of �2 and �4. The
integral of the gradient term �r��2 is converted, through
integration by parts, to the integral of��r2�, withr2 the
Laplacian. Then, in order to define the theory on the lattice,
r2 is replaced by a discretized Laplacian. The simplest
choice is the nearest-neighbor form that leads to the well-
known replacement of the spectrum k2 on the continuum

k2 ! k̂2; k̂ �
sinka
a

:

However, our choice of discretization is different, as we
show in the next section.

C. Discretized dynamics on a spacetime lattice

In order to solve numerically the evolution equations for
the �4 theory, it is necessary to discretize time besides
space. In most approaches, space and time discretization
are performed separately. As discussed in the previous
-4



ULTRAVIOLET CASCADE IN THE THERMALIZATION . . . PHYSICAL REVIEW D 73, 025014 (2006)
section, space discretization turns the field theory into a
classical dynamical problem with finitely many ‘‘coordi-
nates’’ and ‘‘momenta.’’ Their evolution is governed by
ordinary differential equations which eventually require
some discretization of time to be solved numerically.
Here we proceed in a different way, treating space and
time in a symmetric way. This generalizes the scheme
introduced in 1� 1 dimensions [9,23].

In our approach space and time are simultaneously dis-
cretized, with the same lattice spacing 2a, in a staggered
fashion over the lattice ZD�1 [ �Z� 1=2�D�1 (for the sake
of generality, we consider here a space of generic dimen-
sionality D). In other words the discretized spacetime
points are

�x; t� � a�n; s�;

where the integer components of �n; s� are either all even
or all odd. This allows, as we shall see, to protect to a large
extent the relativistic invariance of the continuum field
equation (2.3) and to provide an exactly conserved energy
on the lattice.

Let us first of all define the averages over local cubes of
field powers

��p��x; t� �
1

2D
X
�

	��x� a�; t�
p; p � 0; 1; 2; . . . ;

(2.7)

where � � ��1; �2; . . . ; �D�, �i � �, i � 1; 2; . . . ; D. We
then construct two lattice versions of relevant continuum
observables through the correspondences

_��x;t����x;t� ���x;t�

��a�1	��x;t�a����1��x;t�
;

�2�x;t� �2
��x;t��

1
2	�

2�x;t�a����2��x;t�
;

�4�x;t� �4
��x;t���

2�x;t�a���2��x;t�;

�r��2�x;t� �D��2�x;t��a�2f��2��x;t��	��1��x;t�
2g:

(2.8)

By construction, the lattice quantities on the right-hand
side tend to the continuum expressions in the limit a! 0.
Therefore the lattice energy densities

E ��x; t� �
1
2�2a�

D	�2
� � �D��

2 ��2
� �

1
2�

4
�


both tend to the continuum energy density as a! 0,

E � ’ E � 1
2d
Dx	 _�2 � �r��2 ��2 � 1

2�
4


upon the natural identification �2a�D ’ dDx. Notice that
E� can be explicitly written as
025014
E��x; t� �
1

2
aD�2

X
�

	��x; t� a� ���x� a�; t�
2

�
1

4
�2a�D	1��2�x; t� a�


�

�
1�

1

2D
X
�

�2�x� a�; t�
�
�

1

4
�2a�D; (2.9)

which shows that only diagonal, spacetime symmetric
finite differences are present.

To higher orders in a, E and E� do differ; in fact

E��x; t� � E��x; t� � 4�2a�D�2	��x; t� a�

���x; t� a�
Q�x; t�;

where

Q�x; t� � 1
2	��x; t� a� ���x; t� a�


� f1� 1
2a

2	1��2�x; t�
g ��1�x; t�:

Hence, if Q�x; t� � 0, then E��x; t� � E��x; t� also on the
lattice. In this case the total lattice energy

E �
X

x22aZD
E��x; t� (2.10)

is exactly conserved in time, since it can also be written

E �
X

x22a�Z�1=2�D
E��x; t� a�: (2.11)

All this holds exactly on infinite space. If space is restricted
to the (hyper)cube of side L, suitable boundary conditions
on ��x; t� are necessary; PBC are of this type if L � 2Na
with N an integer.

In conclusion, we may regard Q�x; t� � 0 as a discrete
field equation which conserves the total energy E.
Explicitly, Q�x; t� � 0 reads

��x; t� a� ���x; t� a�

�

21�DP
�
��x� a�; t�

1� 1
2a

2	1� 2�D
P
�
�2�x� a�; t�


; (2.12)

which evidently allows one to evolve in time any configu-
ration known on two consecutive time slices, say t � 0 and
t � a.

It is easy to check that Q�x; t� � 0 indeed becomes
Eq. (2.3) in the continuum a! 0 limit. The order a0 is
trivially satisfied; odd powers of a vanish identically as a
consequence of the symmetry of Eq. (2.12) under a! �a,
while the order a2 produces Eq. (2.3).

Keeping up to O�a4� in Eq. (2.12) yields

���r2�����3 � a2Q2 �O�a4�;
-5
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Q2 � �
1

2
�1��2�r2��

1

12
�
::::
�

1

4

�
r2r2�

�
2

3

XD
i�1

@4�

@x4
i

�
��	�r��2 ��r2�
: (2.13)

To cast Eq. (2.12) in a form suitable for numerical calcu-
lations, we define the lattice arrays F�n; s� and G�n; s� as

F�n; s� � ��2na; 2sa�;

G�n; s� � ��2na� ��a; 2sa� a�;
(2.14)

where n 2 ZD, s 2 Z, and �� � �1; 1; ; . . . ; 1�.
We then obtain the iterative system

F�n; s� 1� � �F�n; s�

�

P
�
G�n� �; s�

2D�1 � 1
4a

2	2D �
P
�
G2�n� �; s�


;

G�n; s� 1� � �G�n; s�

�

P
�
F�n� �; s� 1�

2D�1 � 1
4a

2	2D �
P
�
F2�n� �; s� 1�


;

(2.15)

where � � ��1; �2; . . . ; �D�, with �i � 0; 1 and, according
to the PBC, F�n� N�; s� � F�n; s� and G�n� N�; s� �
G�n; s� for any �.

As initial conditions we have to specify F�n; 0� and
G�n; 0� for 0 
 ni 
 N � 1, i � 1; 2; . . . ; D. Once these
values of the fields are provided, the iteration rules
Eqs. (2.15) uniquely define F�n; s� and G�n; s� for all s >
0. A comparison of this discretized dynamics with other
more traditional numerical treatments of hyperbolic partial
differential equations was performed in 1� 1 dimensions
[24]. Here we notice only that this approach is particularly
efficient, stable, and accurate, especially when the contin-
uum limit a! 0 and very long evolution times are of
interest.

All observables of the continuum can be rewritten on the
lattice in terms of the basic fields F�n; s� and G�n; s�,
according to the correspondences rules Eqs. (2.8) and the
identification Eq. (2.14). In the sequel, while referring to
observables discretized as above, whenever possible we
shall keep using the notation corresponding to continuum
observables for simplicity. Particular care must be taken
for �4, since its lattice definition in Eqs. (2.8) uses a
product of fields over different lattice sizes. This is harm-
less in the continuum limit for smooth fields, but makes a
difference for fields with large ultraviolet support, as we
shall see shortly. For this reason, we shall keep the notation
�4
��x; t� given in Eqs. (2.8) distinct from the ultralocal

definition �4�x; t� � 	��x; t�
4.
025014
D. Averaged observables

The key observables in our investigation are the basic
quantities

�; �2; �4; _�2; �r��2; (2.16)

as well as the power spectra of� and�, that is j ~�k�t�j2 and
j ~�k�t�j

2, where ~�k�t� and ~�k�t� are given by Eq. (2.5). Let
us recall again that we are using here the continuum
notation also for the Fourier transforms, although they
actually are discrete Fourier transforms.

The fluctuations of all these observables do not vanish
upon time evolution. Hence for generic initial conditions
they do not have any limit as t! 1. These are fine-grained
or microscopic observables. Typically there are several
spatiotemporal scales: the microscopic scales correspond
to very fast oscillations and short distance variations that
are of no relevance to a thermodynamic description. We are
interested in longer, macroscopic scales that describe the
relaxation of observables towards a state of equilibrium.

In particular, the ergodic postulate states that ensemble
averages must be identified with long time averages as well
as spatial averages over macroscopic-sized regions. Hence
to make contact between the time evolution and the ther-
mal averages we need to properly average the microscopic
fluctuations.

First of all, for local quantities such as those in Eq. (2.16)
we take the spatial average. Secondly, we take suitable
time averages of all key observables in the following way:

�2�t� �
1

�

Z t

t��
dt0

1

V

Z
V
d3x�2�x; t0�; (2.17)

where �� a fixes a limit to our resolution power in time.
� need not be constant throughout the time evolution. For
instance, we find that a practical and efficient choice is

��t� � ��0� � Ct; (2.18)

where C is small and positive with typical values �0:1. In
this way we still keep t� ��t� while the dependence on
the initial values becomes negligible for practically acces-
sible times. This method is quite effective in revealing
general features of the (logarithmic) time evolution such
as the presence of distinct stages characterized by well-
separated macroscopic time scales.

Besides the time average, for more detailed observables
such as the power spectra we performed an average over
the discrete directions in space as discussed in Appendix A.
Moreover, we sometimes averaged also over several initial
conditions. Altogether, we denote the results of all these
coarse grainings simply with an overbar to avoid cluttering
of notation. For example, assuming equiprobable initial
conditions

� 2�t� �
1

M

XM
i�1

1

�

Z t

t��
dt0

1

V

Z
V
d3x	�2�x; t0�
�i�;
-6
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where the superscript �i� labels the M different choices of
smooth initial conditions, all with the same energy density
E=V. Likewise, recalling the wave-vectors quantization
k � �2�=L�n, we have

j ~�kj
2�t� �

1

M

XM
i�1

1

Sn

X
n

��n 
 jnj< n� 1�

�
1

�

Z t

t��
dt0j ~��i�k �t

0�j2; (2.19)

where the discrete radial wave number k is the average jkj
over the shell of all Sn wave vectors k � �2�=L�n satisfy-
ing n 
 jnj< n� 1 (see Appendix A for more details).
Analogous expressions hold for �, �2, �4, �2, �r��2,
j ~�kj2, and j ~�kj2.

In particular, due to the linearity of these averages, we
have the sum rules:

Z ��

��

d3k

�2��3
j ~�kj

2�t� � �2�t�;

Z ��

��

d3k

�2��3
j ~�kj

2�t� � �2�t�;

(2.20)

where � � �=�2a� is the UV cutoff on the lattice and we
write the wave numbers as continuous although they are
discrete in all actual calculations.

Finally, let us recall that the power spectra are just the
Fourier transforms of space-averaged correlation func-
tions. For instance,

j ~�kj2�t� �
Z
V
d3xe�ik�x���x; t�; (2.21)

where, according to our general rules,

���x;t��
1

M

XM
i�1

1

�

Z t

t��
dt0

1

V

Z
V
d3y��i��y;t0���i��x�y;t0�:
III. THERMAL EQUILIBRIUM

We present in this section the basic properties of the �4

theory in thermal equilibrium. These results will be com-
pared in the subsequent sections with the time averages in
order to asses whether and how thermalization is
approached.

A. General aspects

The thermal average of any physical quantity � �
�	�;�
 in the canonical ensemble is written as

h�	�;�
i �

RR
D�D�e�	H	�;�
�	�;�
RR

D�D�e�	H	�;�

; (3.1)

where
RR
D�D� stands for functional integration over the

classical phase space and 	 � 1=T is the inverse (dimen-
sionless) temperature in the dimensionless variables. In
terms of the physical temperature, here defined as Tp, T
025014
is given by

T �
1

	
�
�
m
Tp: (3.2)

As a consequence of the field redefinition available in the
classical theory, the relevant variable for equilibrium ther-
modynamics is T. Therefore, for a fixed physical tempera-
ture Tp we see from Eq. (3.2) that the low temperature limit
T � 1 corresponds to the weak coupling limit and/or
Tp � m. This will be relevant in the analysis below.

Translation invariance (which is preserved by PBC)
implies that averages of local observables ��x� which
depend on � and � only at one point x, do not depend
on x, that is h��x�i � h��0�i � h�i.

Furthermore, the fact that the Hamiltonian is the sum of
a kinetic and a potential term [see Eq. (2.4)] entails that the
average of observables which are of the form

�	�;�
 � �1	�
�2	�
;

factorize as

h�	�;�
i � h�1	�
i�h�2	�
i�

with

h�1	�
i� �

R
D�e�	V 	�
��	�
R

D�e�	V 	�

;

h�2	�
i� �

R
D�e�	T 	�
��	�
R

D�e�	T	�

:

Moreover, since the � integration is Gaussian and ultra-
local, it can be performed quite easily in most cases,
leaving the configurational integral over� � ��x� for x 2
V to be computed.

It follows from Eqs. (2.4) and (3.1) that the two-point
correlation function of the canonical momentum ��x� in
the classical theory in equilibrium is given by

h��x���x0�i � T
�x� x0�; (3.3)

which leads to a flat power spectrum for �

hj ~�kj
2i � T; (3.4)

where we used the Fourier transform Eq. (2.5). This is of
course a consequence of equipartition and gives a criterion
to identify the temperature: the height of the flat region in
the power spectrum of � if such a flat region shows up.

Equation (3.4) implies that h�2i � T
�0� where 
�0� is
to be understood as made finite by some UV cutoff proce-
dure. If a rotationally invariant sharp cutoff �� is used, then

�0� � ��3=�6�2�. In case of the lattice regularization of
Sec. II B, with ��x� entering only in the kinetic energy
converted to a sum as in Eq. (2.6), we have instead 
�0� �
1=�2a�3. Thus,
-7
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h�2i�sharp ��� �
T ��3

6�2 ; h�2i�lattice;2a� �
T

�2a�3
: (3.5)

Equating these two regularized averages would yield the
identification �� � �6=��1=3�2�=a� � �6=��1=3�; this
connection between cutoffs is however not universal; it is
valid only for h�2i and in general different for other UV-
divergent quantities. Moreover, we will see below that the
discretized dynamics described in Sec. II C provides a
slightly different UV regularization even for hj ~�kj2i.

At equilibrium, the classical virial theorem takes the
form

h _�2i � h�r��2i � h�2i � h�4i; (3.6)

where we have trivially generalized to three spatial dimen-
sions the derivation in Ref. [9]. When combined with the
energy functional H	�;�
 given in Eq. (2.4), it yields

hH	�;�
i
V

�
E
V
� h�2i �

1

4
h�4i; (3.7)

where E is the average energy in the canonical ensemble.
Since N � V=�2a�3 is the total number of degrees of free-
dom in the simplest lattice regularization, we find using
Eq. (3.5) that the temperature T is related to the (average)
energy per degree of freedom as

T �
E
N
� 2a3h�4i: (3.8)

Therefore, for a� 1, close to the continuum limit where
one finds a2h�4i to be finite as a! 0 (see below), the
temperature is identified with the energy per site.
Furthermore,

T � �2a�3	�� 1
4h�

4i
; (3.9)

where � � E=V is the energy density, while the pressure p
is given in general (not necessarily at thermal equilibrium)
by

p � 1
2	

_�2 � 1
3�r��

2 ��2 � 1
2�

4
: (3.10)

At thermal equilibrium we find from Eqs. (3.6), (3.9), and
(3.10) the equation of state

hpi � 1
3��

1
3h�

2i (3.11)

that is a radiation-dominated equation of state hpi ’ �=3,
since h�2i is of order a�1, much smaller than hpi and �
which are both of order a�3 for fixed T.

B. Perturbation theory, Hartree resummation
and beyond

The continuum configurational functional integrals

h�	�
i �

R
D�e�	V	�
�	�
R
D�e�	V	�


(3.12)

can be computed in a perturbative expansion in powers of
025014
T. In order to do that one changes the functional integration
variable ��x� to

��x� �
1����
T
p ��x�:

Equation (3.12) takes thus the form

h�	�
i �

R
D�e�1=2

R
d3x	�r��2��2��T=2��4
�	

����
T
p

�
R
D�e�1=2

R
d3x	�r��2��2��T=2��4


:

(3.13)

We read from Eq. (3.13) the associate Feynman rules. The
Euclidean � propagator in three space dimensions takes in
momentum space the form

�� �
1

k2 � 1
;

and the quadrilinear � vertex has ��6T� as a coefficient.
As already recalled above, this defines a superrenorma-

lizable field theory with only two divergent diagrams: the
one-loop tadpole and the two-loop sunset. Recall that in
classical statistical mechanics the regularized (bare) theory
is the physical one. The ultraviolet divergences are physi-
cal and cannot be eliminated by counterterms as in quan-
tum field theory.

The two-point function h��x���x0�i can be written as

h��x���x0�i �
Z d3k

�2��3
hj ~�kj

2ieik��x�x
0�;

hj ~�kj
2i �

T

k2 � 1� ��k2�
;

(3.14)

where ��k2� stands for the self-energy.
To lowest order in T the tadpole takes then the form

h�2i � T
Z
k< ��

d3k

�2��3
1

k2 � 1
�

���1 T ��

2�2 	1�O� ���1�
;

(3.15)

while the self-energy reads to lowest order

� � 3h�2i �
���1 3T ��

2�2 	1�O� ���1�
:

Here we are using the sharp spherically symmetric UV
cutoff, to be compared later on to the lattice regularization
method with cutoff � � �=�2a�.

To next order � contains the two-loop sunset diagram,
which is only logarithmically divergent; therefore the tad-
pole dominates the effective mass in the limit ��! 1.
Hence, in this limit the two-point function is dominated
by the Hartree approximation (the sum of all daisy dia-
grams)

hj ~�kj2i ’
T

k2 � 1� 3h�2i
; (3.16)

where the self-consistent h�2i fulfills
-8
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h�2i �
Z d3k

�2��3
hj ~�kj

2i �
Z d3k

�2��3
T

k2 � 1� 3h�2i

’
T

2�2

�
���

���������
3
8T

��
q

� � � �

�
: (3.17)

We analogously find for the gradient squared �r��2, at
lowest order

h�r��2i �
T

12�

�
��2 �

6

�2
��
�
�O� ��0�; (3.18)

and for h�4i using Wick’s theorem,

h�4i � 3h�2i2	1�O� ���1�
 �
3T2

4�4 	
��2 �O� ���
:

(3.19)

By construction, the Hartree resummation does not change
the first order result h�4i � 3h�2i2. One may also check
that it provides the correct next-to-leading term of order����

��
p

to h�4i= ��2, since the first, three-loop divergent dia-
gram not of a daisy type is only linearly divergent.

Beyond the Hartree approximation the self-energy ��k2�
receives a k-independent logarithmically diverging contri-
bution (from the sunset diagram with dressed propagators)
plus a k-dependent UV finite contribution. All these cor-
rections can be conveniently parametrized through a suit-
able function Z�k2� by writing

hj ~�kj
2i �

TZ�k2�

k2 � 1� 3h�2i
; (3.20)

where h�2i is now the exact expectation value and Z�k2� is
of course a function also of T and of the UV cutoff ��, that
is Z�k2� � Z�k2;T; ���.1 By construction Z�k2;T; ��� de-
pends at most logarithmically on the cutoff.

We have from Eqs. (3.14) and (3.20),

1

Z�k2�
�
k2 � 1���k2�

k2 � 1� 3h�2i
� 1�

~��k2�

k2 �M2 ;

where M2 � 1� 3h�2i and ~��k2� � ��k2� � 3h�2i.
Notice that ~��k2� can also be written as a sum of
Feynman diagrams with dressed propagators �k2 �
M2��1 and no tadpole insertion of any order. Thus, the
lowest order contribution to ~��k2� comes from the sunset
diagrams with dressed propagators. Now, since the renor-
malized �4 QFT is asymptotically free in the ultraviolet
(that is the ultraviolet is controlled by the Gaussian fixed
point), the exact� two-point function must behave as 1=k2

in the ultraviolet (even in the presence of the cutoff ��,
1Here �� need not be a sharp cutoff as in the lowest perturba-
tive order or in the Hartree approximation; our only request is
that it is the UV cutoff in some spherically symmetric regulari-
zation procedure. For instance, one could use free-field propa-
gators smeared in the ultraviolet by some smooth function of
k= �� dying at infinity faster than any power.
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provided k remains much smaller than ��). Thus we expect
Z�k2� to tend to unity for large k (and from above, since the
two-loop sunset diagram enters in ~� with a minus sign),
while h�2i still diverges linearly with ��. Since the only
divergence in ~��k2� comes from the sunset diagrams and is
only logarithmic, Z�k2;T; ��� tends to 1 for all k in the limit
��! 1 to any finite order of perturbation theory. A differ-
ent behavior in �� would signal a nonperturbative effect.

To know more about Z�k2�, in a nonperturbative way, we
resort to Monte Carlo simulations in Sec. III D. In prepa-
ration, we need to reexpress some relevant equilibrium
quantities with the lattice regularization which corresponds
to the discrete dynamics of Sec. II C.

C. Equilibrium on the lattice

Thermal expectation values on the lattice are written as
their continuum counterparts, Eq. (3.1), in terms of stan-
dard multiple integrals over phase-space degrees of free-
dom and the statistical weight exp��H=T� whereH is now
the lattice Hamiltonian. As phase-space degrees of free-
dom we take ���x; 0� � ���x� and ��x� a��; 0� �
��x� a��� with x 2 2aZ3, or better x 2 2aCN after
the restriction to a finite volume (see Sec. II B). As a lattice
Hamiltonian we take the total conserved energy of
Eqs. (2.9) and (2.10) with D � 3, namely,

H	��; �
 �
X

x22aCN

E��x; 0�

�
1

2

X
x

�2a�3
�
�2
� � �D��

2 ��2
� �

1

2
�4
�

�

�
1

2

X
x

�2a�3
�
�2
� � �D��

2 �
1

2
��2�

�
1

2
���1� � a���

2�1���2��
�
; (3.21)

where we used the first of Eqs. (2.8) to express ��x; a� as
��1��x; 0� � a���x; 0�. We see that the momentum field
�� enters the lattice Hamiltonian in a way definitely more
involved than in the continuum, Eq. (2.4), or in the naive
lattice regularization where only space is discretized and �
enters only the kinetic energy as in Eq. (2.6). However,
H	��; �
 still depends on �� only ultralocally, so that ��
plays the role of a Gaussian auxiliary field which could be
integrated away to produce an effective Hamiltonian for �
alone with a nonpolynomial local self-interaction. This
self-interaction reproduces the standard continuum �4 po-
tential V 	�
 in the limit a! 0. However, it is simpler not
to integrate over �� and keep working with the quartic
Hamiltonian Eq. (3.21).

We discuss first the Gaussian approximation to the ther-
mal equilibrium on the lattice. This is valid for the linea-
rization around classical solutions (zero field and the
cnoidal) as well as for the self-consistent Hartree
approximation.
-9
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Consider the lattice equation of motion (2.12) and the
first of the correspondence rules Eq. (2.8) written in Fourier
space, that is

~��;k�t� � �
1

a
	 ~�k�t� a� � ~�k�t�
;

C�ka� �
YD
j�1

coskja:
(3.22)

Next we take the free-field limit of Eq. (2.12) by linearizing
it. Details are reported in Appendix B, where linearization
is performed more generally over the uniform time-
dependent solution of the discrete dynamics (the discrete
cnoidal). Free-field dynamics is decoupled in Fourier space
and the harmonic also on the lattice, so that the standard
virial theorem for harmonic oscillations (which holds true
for phase-space averages as well as for time averages)
yields, as in Eq. (B6) specialized to D � 3,

hj ~�kj
2i � a2

�
1�

1� 1
2a

2

1� 1
2a

2
C�ka�

�
�1
hj ~��;kj

2i

�
a2T

	1� 1
2a

2 � �1� 1
2a

2�C2�ka�

� G0�k; a�

(3.23)

having used equipartition, that is hj ~��;kj2i � T=�1� 1
2a

2�,
as follows from the quadratic part of the Hamiltonian
Eq. (3.21). G0�k; a� in Eq. (3.23) is the tree level (Fourier
transform) of the � two-point function on the lattice and
can be seen to coincide with the result obtained by inte-
grating �� away within a quadratic approximation. Notice
that hj ~�0j

2i � 1 as its continuum counterpart. The small
a-dependent tree-level correction in hj ~��;kj2i �
T=�1� 1

2a
2� with respect to the continuum hj ~�kj2i � T

is evidently a first effect of our specific lattice regulariza-
tion. Similarly, the finite lattice version of the tree-level
tadpole reads

h�2i �
1

L3

X
k2�2�=L�CN

G0�k; a� �
L!1T

a
	1�O�a�


�
Z ��=2

��=2

d3q

�2��3
1

1� C2�q�

� 0:1741 � � �
T
a
	1�O�a�


� 0:1108 � � �T�	1�O���1�
 (3.24)

to be compared with the infinite-volume continuum ex-
pression Eq. (3.15). If these two expressions are identified,
one obtains the tree-level relation �� � 2:187 � � ��, which
differs from that implied by h�2i (see Sec. III A).

Another important issue about lattice effects concerns
the equilibrium expectation value of �4. We have already
commented at the end of Sec. II C on two different lattice
regularizations of �4, the slightly nonlocal �4

� of
025014
Eqs. (2.8) and the ultralocal �4�x� � 	��x�
4. They do
not yield the same values due to ultraviolet effects. At
equilibrium this appears quite evident already at tree level:
the application of the Wick theorem to the expectation
value of the ultralocal �4 yields

h�4i � 3h�2i2; h�2i �
1

V

X
k

G0�k; a�

as in the continuum, only with a sum over wave vectors in
the first Brillouin zone rather than a rotation invariant
integral as in Sec. III B. The same Wick rules on
Gaussian integration plus translation invariance give in-
stead for �4

�

h�4
�i � h��

�1� � a���
2��2�i

�
Th��2�i

8a�1� 1
2a

2�
�
h	��1�
2��2�i

�1� 1
2a

2�2

�
h�2i

1� 1
2a

2

�
T
8a
�

I2

1� 1
2a

2

�
�

2I2
2

�1� 1
2a

2�2
;

I2 �
1

V

X
k

C2�ka�G0�k; a�:

A straightforward numerical integration yields the tree-
level ratio

h�4
�i=h�

2i2 � 1:154 748 � � � (3.25)

for L � 12:8 and a � 0:0125.
When the interaction is turned on both hj ~��;kj2i and

hj ~�kj
2i gets modified. The relations between hj ~��;kj2i and

the temperature T get new corrections in terms of expec-
tation values of �-dependent observables. A look at
Eq. (3.21), with the knowledge that the Euclidean �4

QFT is superrenormalizable (so that UV divergences can
be fully assessed from perturbation theory as in the pre-
vious section), reveals that these corrections all vanish at
least linearly as a! 0, so that the continuum result
hj ~�kj

2i � T is recovered. At any rate, here we are only
seeking a convenient parametrization for hj ~�kj2i in terms
of hj ~��;kj2i and h�2i.

Again, we may resort to the linearization of the discrete
equation of motion, this time over a uniform nonzero
background ��t�, as detailed in Appendix B. First of all
we learn how to obtain the Hartree resummation on the
lattice: we replace the background �2�t� with the equilib-
rium expectation value h�2i in the dispersion relation
Eq. (B4), obtaining

cos	!ka
 � B�h�2i�C�ka�;

B�u� �
1� 1

2a
2�1� u�

	1� 1
2a

2�1� u�
2
(3.26)

and invoke the virial theorem (the Hartree approximation is
Gaussian, that is it describes harmonic oscillations) to
write
-10
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hj ~�kj
2i �

a2hj ~��;kj2i

1� �1� 1
4a

4�cos2!ka
’

a2hj ~��;kj2i

1� 	B�h�2i�C�ka�
2
:

(3.27)
We have neglected the term a4 cos2!k in the last step since
it is of order a4 for all k. Beyond the Hartree approxima-
tion, we promote Eq. (3.27) to an exact relation by intro-
ducing the k-dependent lattice analog of Z�k2�; that is
Zk � Zk�T; a�

hj ~�kj2i �
a2Zkhj ~��;kj

2i

1� 	B�h�2i�C�ka�
2
;

Zk �
def 1� 	B�h�2i�C�ka�
2

a2hj ~��;kj
2i

hj ~�kj2i:

(3.28)
By construction Zk�T; a� is as much as possible free from
lattice effects (such as the deformation of the free-field
propagator at large jkj due to the replacement of contin-
uum derivatives with finite differences) and, once averaged
over discrete directions to Zk�T; a�, it should provide a
rather accurate representation of its continuum counterpart
Z�k2;T; ���, if a universal relation between �� and � �
�=�2a� could be determined. As we have seen above, in the
case of UV-divergent quantities like h�2i and h�2i this is
not possible, but should be possible for renormalized or
UV finite observables. Perturbation theory suggests this to
be the case for Z�k2;T; ���. In the next section we shall
follow a different, nonperturbative strategy, based on the
simple observation that the agreement of lattice calcula-
tions with their continuum ��-cutoffed counterparts is guar-
anteed for all observables in a different limit; that is
�! 1 first, at fixed large ��, rather than �, ��! 1
with � � O� ���. For k-dependent quantities this means
agreement for jkj & ��� �.

D. Monte Carlo simulations

Monte Carlo simulations allow one to compute thermo-
dynamical averages beyond perturbation theory and
Hartree resummation. We performed Metropolis simula-
tions for the �4 model discretized on the lattice as in
Sec. II C.

Consider the lattice Hamiltonian H	��; �
 of
Eq. (3.21). In this context it is more convenient to revert
to the notation with the single field �, using both ��x; 0�
and ��x; a�. We may drop the distinction between the two
time slices by considering the degrees of freedom attached
to a cell-centered cubic lattice. There are therefore the
points of 2aZ3, labeled by x � 2an, n having integer
coordinates, and the points of 2a�Z� 1=2�3 labeled x�
a��, where �� � �1; 1; 1�. The Hamiltonian can then be
written as
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H � 2a�2� a2�
X

x22aZ3

	�2�x� ��2�x� a���


� a
X

x22aZ3

X
�

��x���x� a��

�

�
1�

1

4
a2��x���x� a��

�
: (3.29)

This Hamiltonian contains local terms and couplings be-
tween nearest neighbors along the main diagonals. The
quartic term contributes to these couplings and there is
no quartic local term. However, to perform Monte Carlo
simulations is more convenient to add and subtract a
quartic local piece. In this way one can change the local
integration variables �1<��x�<�1 in Eq. (3.1) to a
new variable C�x� ranging from zero to 1 as in [25].

We therefore split our Hamiltonian Eq. (3.29) as

H�H1�H2;

H1�
X

x22aZ3

fh1	��x�
�h1	��x�a���
g;

h1	�
�4a�2�a2��2�2a3�4;

H2��a
X

x22aZ3

X
�

��x���x�a���
a3

4

X
x22aZ3

X
�

�2�x�

�	�2�x�a����2�x�
: (3.30)

The functional integral in Eq. (3.1) can be written as

h�i�

R
�1
1 ���

R
�1
�1	

Q
x
d��x�e�	h1	��x�

�	����
e�	H2	����


R
�1
1 ���

R
�1
�1	

Q
x
d��x�e�	h1	��x�

e�	H2	����


�

R
1
0 ���

R
1
0	
Q
x
dC�x�
�	C���
e�	H2	C���


R
1
0 ���

R
1
0	
Q
x
dC�x�
e�	H2	C���


; (3.31)

where the new field C is defined as

C��� ��

R�
�1 dxe�	h1	x
R
�1
�1 dxe

�	h1	x

: (3.32)

In this way the classical �4 model is mapped into a
classical continuous Ising-like model where the dynamical
variables C�x� run between zero and 1. The Ising-like
Hamiltonian is given by H2 [Eq. (3.30)].

Following the Metropolis method we generate a se-
quence of configurations for the whole cell-centered cubic
lattice, as follows. We start by choosing random values at
each point of the lattice for the variables C�x�. Then, we
choose one point in the lattice x at random and consider a
new value C0 for it picked at random between zero and 1.
We then have to go back from the variables C�x� to the
variables ��x� in order to compute the energy of the old
and new configurations. Notice that the inverse function
� � ��C� is unique since dC=d�> 0 as one sees from
Eq. (3.32). Their energy change is given by
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� � H2�new� �H2�old�

� 2a	�0 ���x�

�X
�

�2�x� a�� � 4	�02 ��2�x�


�
;

where we used Eq. (3.30) and �0 � ��C0�.
We now follow the standard Metropolis procedure. That

is, we compare e�	� with a random number r with 0<
r < 1. If r < e�	� we pick the new configuration.
Otherwise, for r > e�	� we keep the old one. We repeat
this process many times producing in this way a sequence
of configurations on which we can compute the values of
any observable �.

It can be shown [25] that the average of these values of
� converges to the thermodynamical phase average in the
limit when the number of iterations N goes to infinity The
expectation value is then given by

h�i �
1

N

XN
n�1

�n:

In the continuous limit a! 0 we see from Eq. (3.30) that
the quartic terms become negligible and hence all quanti-
ties will be functions of 	a � a=T. In addition, gradients
of the fields scale as 1=a.

In Fig. 1 we plot h�2i, h�r��2i, and the ratio
h�4i=	h�2i
2 as functions of T=a from Monte Carlo simu-
lations. We see that h�2i and h�r��2i follow the linear
behavior predicted by low temperature perturbation theory
Eq. (3.15) while the ratio h�4i=	h�2i
2 takes the value 3
predicted by Wick’s theorem in low temperature perturba-
tion theory Eq. (3.19) or in Hartree approximation. As for
the nonlocal lattice version of �4, that is �4

�, we find from
the Monte Carlo simulations h�4

�i=	h�
2i
2 ’ 1:1 � � � for

a � 0:05 and L � 3:2 in agreement with Eq. (3.25).
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FIG. 1. h�2i, h�r��2i, and the ratio h�4i=h�2i2 as a function
of T=a in thermal equilibrium from Monte Carlo simulations.
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As a matter of fact, by measuring also the two-point
function h��x���x0�i, we verified that the Hartree approxi-
mation is indeed quite accurate for a very wide range of
wavelengths which extends to the ultraviolet (this explains
why UV-divergent quantities like h�2i, h�r��2i, and h�4i
are well approximated by Hartree). This is apparent from
Fig. 2 which shows an almost perfect linear behavior of the
inverse (of the direction-averaged) � power spectrum,
1=hj ~�kj2i, as a function of the lattice-artifact corrected k2

which includes also the Hartree contribution to the mass,
that is a�2	1� 	B�h�2i�C�ka�
2
 (see previous section).
The behavior seems linear also at small wave numbers (see
the inset in the same figure), but the overall large scale does
not allow one to appreciate a small but important deviation
from linearity at small k2.

This deviation is much better visible if we plot Zk vs k
instead. Now the accuracy of the Hartree approximation is
evident in the rapid drop of Zk to unity as k grows, while at
small k we observe a significant deviation of Z�k2� from
unity, with values of Z�k2� � 1 of order 1 on lattices with
lattice spacings down to a � 0:0125 and for temperatures
of order 1. As an example, in the upper part of Fig. 3 we
plot Zk, the average over directions of Zk defined by
Eq. (3.28), versus the radial wave number k, for T �
0:343 and a � 0:0125. In the lower part we plot the
(direction-averaged) � power spectrum j ~�kj2�t� to check
that it is indeed almost constant and very close to its
continuum limit T � 0:343.
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a−2[1 − [B(〈φ2〉)C(ka)]2]

1�
〈|φ̃

k
|2
〉

FIG. 2 (color online). 1=hj ~�kj
2i, the inverse of the direction-

averaged � power spectrum, as a function of a�2	1�
	B�h�2i�C�ka�
2
, which reproduces k2 � 1� 3h�2i for small
ka while including the lattice artifacts when ka becomes of
order 1. In the present case the UV cutoff is � � 125:6637. The
almost linear behavior of 1=hj ~�kj

2i down to relatively small ka
(see the inset) supports the accuracy of the Hartree approxima-
tion.
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FIG. 3 (color online). Zk vs the radial wave number (in the
upper plot) and the power spectrum hj ~�kj2i (lower plot), which is
indeed almost flat and equal to the temperature T.

ULTRAVIOLET CASCADE IN THE THERMALIZATION . . . PHYSICAL REVIEW D 73, 025014 (2006)
IV. DYNAMICS OF THERMALIZATION

We present here the exact evolution of the lattice �4

theory defined in Sec. II C and the development of the
ultraviolet cascade. We considered three system sizes, L �
6:4, 12.8, and 25.6 and several lattice spacings, a � 0:1,
0.064, 0.05, 0.025, 0.0125, and 0.006 25. The largest system
contains 10243 lattice sites. We worked with the largest
volume 25:62 only for a � 0:05 and E=V � 89:5, verify-
ing that the change from L � 12:8 to L � 25:6 does not
change any observable in a significant way. Therefore L �
12:8 has been our preferred choice.

A. Initial conditions

We used a large variety of initial conditions in our
calculations. In these studies the initial power is concen-
trated in the infrared; that is, j ~�kj2�0� and j ~�kj2�0� are
significant only for wave numbers well below the cutoff
� � �=2a. In particular, we considered superpositions of
infrared plane waves, when the initial fields have the form

��x; 0� � �0 � A
XK
i�1

ci cos�ki � x� 2��i�;

��x; 0� � B
XK
i�1

di cos�ki � x� 2�
i�

(4.1)

as well as superpositions of localized wave packets of the
form

��x; 0� � �0 � A
X
i

ciw�x� xi�;

��x; 0� � B
X
i

diw�x� x
0
i�;

(4.2)
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where

w�x� �
X
n2Z3

w0�kmax	x� Ln
�

and w0�x� is either the Gaussian, w0�x� � e�x
2
, or the

Lorentzian, w0�x� � �1� x
2��1. The sum over n in the

last equation is needed by PBC, but in practice, with our
choice L� 10, only a few terms in the sum are needed.
These fields have support throughout Fourier space, but
peaked as Gaussians or simple exponentials at low wave
numbers k & kmax.

In Eqs. (4.1) and (4.2), �0 is a uniform background, or
homogeneous condensate, while the wave vectors ki �
2�ni=L in Eq. (4.1) have nonzero modulus jkj 
 kmax &

30�=L � 15�=�Na� � �=�2a�. The number K in
Eq. (4.1) is chosen within the range 10–100, proportional
to kmax, and the specific ki in Eq. (4.1) or the xi and xi in
Eq. (4.2) are chosen at random. The phases �i, 
i in
Eq. (4.1) and the relative amplitudes ci; di in both cases
are chosen at random in the interval 	0; 1
. Finally, for any
given realization of these random numbers, the background
�0 and the overall amplitudes A and B are constrained in
such a way that the energy density E=V takes a given,
predefined value. Typically, we further restricted the re-
maining freedom by choosing either B � 0 or B � A, so
that the ‘‘macroscopic’’ part of the initial state is entirely
characterized by the values of E=V, of the condensate �0,
and of kmax. In principle, one should then regard the
randomly chosen numbers as ‘‘microscopic,’’ or fine-
grained properties providing the initial entropy; one should
then average all measured observables over these random
choices, as described in Sec. II D, to reduce the fluctuations
in the measures. Actually, we performed such an average
(over 20 to 40 initial conditions) only rarely, since fluctua-
tions were kept under control already by the 3D space
average, by the sliding time average, and/or by the average
over discrete directions of Appendix A.

It should be noticed that all our initial configurations
have vanishing total momentum

R
d3x��x�r��x�, which

is a conserved quantity for PBC.

B. Time evolution of local observables

Here we show the time evolution of the basic local
observables of Eq. (2.16) averaged in space and time
according to Sec. II D. As mentioned above, we considered
many different initial conditions, with several values of the
energy density ranging from E=V � 0:1 up to E=V �
5000.

Figures 4–7 display the local observables �2�t�,
�r��2�t�, �2�t�, and �4

��t� as functions of time for differ-
ent values of the relevant parameters. When an initial zero-
mode condensate is present [�0 in Eqs. (4.1) and (4.2)], we
quantify its weight with the ratio E0=E between the energy
built solely from the zero mode and the total energy.
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FIG. 4 (color online). Log-log plot of the time evolution of
local observables with sliding time average. Initial conditions are
localized wave packets of Lorentzian shape without any zero-
mode condensate. No average is performed over initial packet
amplitudes or positions.
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FIG. 6 (color online). Log-log plot of the time evolution of
local observables. The time averaging interval is � � 40 and the
initial conditions are plane waves with a large zero-mode con-
densate. No average is performed over initial amplitudes or
phases.
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These plots clearly reveal the main qualitative feature of
the thermalization process in 3� 1 dimensions. Initially
�r��2�t� is small reflecting the fact that the initial con-
ditions determine a power spectrum localized at wave
vectors with k� 1=a. The mode mixing entailed by the
interaction is transferring power to larger wave vectors,
thus effectively transferring energy from the interaction
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log t
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log π2

FIG. 5 (color online). Log-log plot of the time evolution of
local observables. The time averaging interval is quite small,
� � 2, and the initial conditions are plane waves with a large
zero-mode condensate. No average is performed over initial
amplitudes or phases.
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and �2 terms, which decrease, to the spatial gradient
term which increases. As is clear from these figures,
�2�t� and �r��2�t� tend to a limit for late time. �2�t�
and �4

��t� show a clear limiting behavior only for E=V
large enough.
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FIG. 7 (color online). Log-log plot of the time evolution of
local observables. Initial conditions are plane waves without a
zero-mode condensate. The time averaging interval is � � 200
and an extra average is performed over 40 random choices of
initial amplitudes and phases. This explains why the curves in
this picture are smoother than those in Figs. 5 and 6.
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average is performed over initial packet amplitudes or positions.
Time averaging is performed here as by Eqs. (2.17) and (2.18).
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The steady growth of �r��2�t� at the expense of the
interaction term �4

��t�, the kinetic energy �2�t�, and the
mass term �2�t� shows that the basic mechanism leading
towards thermalization is a rather uniform flow of energy
towards larger k modes, namely, the ultraviolet cascade.
We can associate a time scale t0 to the onset of this
ultraviolet cascade by looking at the point when �r��2�t�
overtakes �4

��t�, if such a point exists. For E=V too small,
implying small field amplitudes and very small initial
�4
��0�, �r��

2�t� might be larger than �4
��t� from the

beginning. In this case we can take the point where the
rise of �r��2�t� is the steepest. From Figs. 4–7, as well as
from the rest of our data, we see that t0 does depend on
E=V and on the condensate, but stays within the range
100 & t0 & 400 for E=V in the range from 10 to 5000,
with t0 decreasing as E=V increases at a fixed value of the
condensate.

We are interested in somehow large energy densities
E=V which are the relevant regime both for the early
universe and the ultrarelativistic heavy ion collisions.
However, it is physically interesting to also study the low
energy density regime. We find that thermalization hap-
pens for small values of E=V. No threshold to a nonergodic
behavior was found. However, the thermalization dynam-
ics slows down dramatically when E=V is reduced well
below a value�10 and t0 grows substantially. We depict in

Fig. 8 �r��2�t�, _�2�t�, �2�t�, and �4
��t� for E=V � 0:1,

a � 0:1, and L � 6:4. We see that the ultraviolet cascade
only starts in this case for much later times lnt ’ 11, t ’
50 000.

Figure 9 displays logj��t�j as a function of the logarithm
of time for E=V � 1000, 10, and E=V � 0:1 for L � 6:4
and a � 0:1, respectively. We see that the relaxation of �
towards its thermal equilibrium value (� � 0) is different
from the other physical quantities previously discussed.
This is due to the fact that the vanishing of � is connected
to a symmetry of the model. We find that ��t� relaxes as
�1=t for lnt > lnt0 ’ 6, t > t0 ’ 500 in the universal
stage. This can be seen from Fig. 9.

We plot in Fig. 10 h�4
�i vs h�2i in thermal equilibrium

(obtained from Monte Carlo simulations) as well as �4
��t�

vs �2�t� from time averages. We see that the curve ob-
tained from the lattice Monte Carlo calculations is in
agreement with the ones from time averages. Since both
�4
��t� and �2�t� vary with time, the agreement with the

thermal curve implies that, at least for these observables,
we are in a situation of effective thermalization with a time
depending temperature. As in Ref. [9] the effective tem-
perature decreases with time. The small disagreement (less
than 10%) between the thermal equilibrium curve (from
Monte Carlo simulations) and the time averages in Fig. 10
comes from the low k modes contribution. As will be
discussed below, infrared modes are much slower to ther-
025014
malize than the modes with k2 >�2�t�. Actually, the dis-
agreement decreases with increasing time [decreasing
�4
��t� and �2�t�] showing that the IR modes are getting

thermalized equilibrating with the modes with k2 >�2�t�.
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C. Virialization and equation of state

We depict in Fig. 11 the quantity

��t� �
h _�2i�t� � h�r��2i�t� � h�2i�t� � h�4

�i�t�

h _�2i�t�
: (4.3)

This quantity vanishes when the virial theorem is fulfilled
[see Eq. (3.6)]. It turns out to be negative for finite times
and nonzero a. We see from Fig. 11 that j��t�j starts to
decrease at times earlier than t0. Therefore, the model
starts to virialize before it starts to thermalize. j��t�j keeps
-0.15

-0.1

-0.05

 0

 0.05

 0.1

 2  4  6  8  10  12  14  16

E/ V = 0.1
E/ V = 1

E/ V = 10
E/ V = 100

E/ V = 1000

FIG. 11. The normalized left-hand side of the virial theorem
��t� vs the logarithm of the time t for E=V � � � 1, 10, 100,
and 1000 for a � 0:1 and L � 6:4 [see Eq. (4.3)]. No average is
performed over initial packet amplitudes or positions. Time
averaging is performed here as by Eqs. (2.17) and (2.18).
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decreasing with time and tends to a nonzero value which is
of the order O�a2� for t! 1. This is to be expected since
Eq. (3.6) holds only in the continuum limit and receives
corrections in the lattice O�a2� as shown in Eq. (2.13).

We computed the pressure as a function of time from
Eq. (3.10) as

p � 1
2	

_�2 � 1
3�r��

2 ��2 � 1
2�

4
�
:

Notice that we are not using the virial theorem.
We depict in Fig. 12 p=� as a function of time. We see

that

p
�

&
1

3
; t! 1;

for the whole range of � considered. This inequality is in
agreement with Eq. (3.11). That is, Fig. 12 shows that the
equation of state approaches approximately the radiation-
dominated equation of state unless � is too small.

Notice from Figs. 4–7 and 12 that the approach to the
radiation-dominated equation of state parallels the de-
crease of �4

� since both are governed by the UV cascade.
We see that the virial as well as the equation of state

reaches stationary values despite the fact that thermaliza-
tion is not achieved. As already noticed in Ref. [8] the
equation of state follows by taking a time average over the
period for the cnoidal solution. Moreover, as we show in
Appendix D, the virial theorem is exactly fulfilled by the
cnoidal solution averaging over one period. This type of
phenomena has been recently highlighted in Ref. [26].
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performed over initial packet amplitudes or positions. Time
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D. Evolution of power spectra and UV cascade

We now turn our attention to the study of correlation
functions.

According to the Fourier transform relationship

Eq. (2.21) between the power spectrum j ~�kj
2�t� and the

equal-time correlation function ���x; t�, there are two
approaches to the numerical evolution of such quantities
(we specialize now on � but the discussion applies equally
well to �). We extract the field ��x; t� from the lattice
fields F�n; s� and G�n; s� [see the first line in Eq. (2.8) and
Eq. (2.14)], Fourier transform it to ~�k�t�, and then perform
all needed averages on j ~�k�t�j2. Or we directly compute
averages of the correlations of F�n; s� and G�n; s� and
extract from them the correlations ���x; t�. We found
that both methods yield the same results.

Moreover, when using the approach with growing time
averages as in Eq. (2.18) with a unique initial condition,
one realizes that the simply time-averaged correlation

1

�

Z t

t��
dt0��x; t0���x0; t0� (4.4)

very soon (in the logarithm of time) becomes translation
invariant, that is a function only on the distance jx� x0j,
making the time consuming space average unnecessary.

Figures 13 and 14 show the average power j ~�kj2�t�,
multiplied by the spherical measure 4�k2, for five values
of the lattice spacing and one given choice of all other
parameters. The region where the power is significant is
spreading towards the UV cutoff.
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FIG. 13 (color online). The power 4�k2j ~�kj
2�t� vs k � jkj at

20 different times ranging, in an approximately exponential way,
from t � 0 to t � 12:75 (left panel) and from t � 12:75 to t �
2948 (right panel). The time averaging interval is � � 2 and the
initial conditions are infrared random plane waves, as apparent
from the IR peaks at early times. The front of the UV cascade
arrives close to the cutoff � for the latest times.
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The chosen initial conditions Eqs. (4.1) and (4.2) are
such that the power is concentrated in long wavelength
modes with k well below the ultraviolet cutoff � �

�=�2a�. Therefore, j ~�kj2�0� is concentrated on small k.
During the time evolution the nonlinearity gradually trans-
fers energy off to higher k modes leading to the ultraviolet
cascade as discussed above.

It is important to observe the effects of the finite UV
cutoff �. At the given value E=V � 89:5 of the energy
density, when � � 62:832 (Fig. 13), which corresponds to
a lattice with 2563 sites, the shape as a function of k and the
time evolution of the power spectrum are still markedly
distorted by the presence of the cutoff, although much less
than for the smaller values � � 15:708 and � � 31:416
(Fig. 14). Only when doubling the cutoff from 125.664 to
251.328 (corresponding respectively to 5123 and 10243

lattices) the effect of the cutoff in j ~�kj2�t� does not appear
significant.

That is, the cascades shown in the lower panels of
Fig. 14 are cutoff independent since they are evolving
well below the cutoff �.

Plots analogous to Figs. 13 and 14 can be drawn for the

field power k2j ~�kj
2�t�. However, since unlike k2j ~�kj

2�t�,

k2j ~�kj
2�t� never grows with k [at thermal equilibrium and

in the continuum j ~�kj
2�t� goes like k�2, see Sec. III B], the

UV cascade for k2j ~�kj
2�t� is not as evident as for

k2j ~�kj
2�t�. The time evolution of both powers can be better

appreciated in Figs. 15 and 16. One can see a rather
complicated behavior in the strongly interacting infrared,
while the rest of the modes exhibit a rather orderly evolu-
tion which indicates a weakly interacting dynamics.
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FIG. 15 (color online). Log-log plot of j ~�kj
2�t� vs time. Initial

conditions are as in Fig. 13. The four thicker lines correspond to
the modes initially filled (after averaging over directions). The
zero-mode (dashed line) was not filled at t � 0. Notice the
peculiar behavior of the lowest k modes compared with the
rest of the k modes.
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One sees from Figs. 15 and 16 that modes with low k
decrease in amplitude with time except for k � 0 and the
first two nonzero modes. Modes with larger k grow in
amplitude monotonically with time showing the existence
of the smooth UV cascade. Since total energy is conserved
the larger k modes grow in amplitude at the expense of the
lower kmodes. Notice that only a restricted number of low
k modes have a significant initial amplitude. They feed the
growth of a large number of modes with larger k which
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FIG. 16 (color online). As in Fig. 15, but for j ~�kj2�t� vs time.
Notice the peculiar behavior of the lowest k modes compared
with the rest of the k modes.
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start with very small initial amplitudes. Later, for t * t0 all
IR modes decrease with time.

As said before, the k � 0 mode and the first two nonzero
modes in Figs. 15 and 16 behave differently to the rest of
the modes. They start by growing with time and they stay
larger than all the other modes for a while. Actually, as we
shall see below in Sec. IV I, the modes with 0 
 k &������
�2

q
�t� behave differently to the rest keeping a significant

coupling among them while modes with k *

������
�2

q
�t� ex-

hibit weak nonlinearities for late times in the lattice model.
More precisely, these latter modes obey the Hartree ap-
proximation and exhibit effective equilibration much ear-
lier than the infrared modes.

A single parameter that efficiently measures the UV
cascade for j ~�kj2�t� is the average wave number k�t�,
defined [in continuum notation and recalling the sum rules
Eq. (2.20)] as

1

�2�t�

Z �

��

d3k

�2��3
jkjj ~�kj2�t�: (4.5)

However, it will be more appropriate to exclude from the
integration in Eq. (4.5) the infrared modes. More precisely,
since for the evolution time considered, a large portion of
energy lingers on the IR modes filled at t � 0 (see Fig. 16),
one should restrict the averaging over the modes not filled
at t � 0 and define more properly, after averaging over
discrete directions,

k�t� �
1

P

Z �

k0

k2dk

2�2 kj ~�kj
2�t�; P �

Z �

k0

k2dk

2�2 j ~�kj
2�t�;

(4.6)

where k0 is the smallest unfilled radial wave number larger
than all wave numbers of the modes filled at t � 0. This
procedure applies directly when the initial conditions are a
superposition of IR plane waves. In the case of superposi-
tion of localized wave packets, k0 may be defined as the
value of k at which j ~�kj2�0� drops below some fixed small
value.

We plot k�t� in Fig. 17 for the same context of Figs. 13
and 14. The cutoff effects at larger values of a and the
saturation in the continuum limit a! 0 are quite evident.
Still, in spite of the fact that the UV cascade has time to
fully develop, as evident from Figs. 13 and 14, Fig. 17
shows that the growth of k�t� with time is not a simple
power, not even for the latest times considered. However,

k�t� � k0t1=3 (4.7)

provides a rough estimate.
Let us now turn our attention to the behavior in k of

j ~�kj
2�t� during the UV cascade. From all our data, it is

clear that j ~�kj2�t� dies exponentially fast for k > k�t� as
long as k�t� � � (see Fig. 18 as an example). This ex-
ponential behavior is clearly time dependent. For k not too
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small nor too close to k�t�, j ~�kj2�t� exhibits a decreasing
powerlike behavior, as can be seen for instance in Fig. 19,
where the log-log plot of 4�k2j ~�kj2�t� vs k is shown. That
is, j ~�kj2�t� � k�
 at different times, where the values of
�
 are obtained subtracting 2 from the numbers indicated
in Fig. 19. 
 decreases monotonically from 1.12 at t � 812
to 0.17 at t � 48 385, when the forefront of the cascade is
reaching the cutoff �.
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FIG. 18 (color online). log	j ~�kj
2�t�
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conditions were random plane waves. j ~�kj2�t� starts decreasing
with k as �k�
 and later it dies exponentially for �> k> k�t�.
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In Figs. 20 and 21 we give some graphic examples of the
UV cascade in the presence of an initial zero-mode con-
densate [�0 in Eqs. (4.1) and (4.2)]. We notice the evidence
for the parametric resonance, whose location in k space
well agrees with the analytic prediction from the solution
of the Lamé equation for the linearized model [see
Eq. (B7)]. It is quite evident however, that such parametric
resonance plays practically no role in the UV cascade, as
already noticed in Ref. [21]. We also stress once more the
importance of UV cutoff effects when a is doubled from
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FIG. 20 (color online). The power 4�k2j ~�kj2�t� vs k � jkj at
several times, E=V � 89:5 and two lattice spacings. The initial
conditions are infrared random plane waves with a zero-mode
condensate dominating the energy. Notice the peaks due to
parametric resonance.
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a � 0:0125 to a � 0:025 (corresponding to a reduction of
the lattice from 5123 to 2563 sites). This is particularly
relevant since the zero mode (and a few lower k modes)
remains quite large for all times considered (see Fig. 21):
according to the scenario of Ref. [21], the regime should
then remain that of driven turbulence until the lattice effect
becomes dominant; thus, for the energy density of Figs. 20
and 21, no cutoff-independent regime of free turbulence is
observable in our evolution when a � 0:025 and L � 12:8.
(Notice that our lattices reach a size 43 times larger than
those in Ref. [21].)

It would indeed be very interesting to find this universal
UV cascade in quantum theory for large occupation num-
bers and small couplings. Most of the works consider other
regimes [10–12]. In Ref. [27] the small coupling regime in
quantum theory is investigated including the leading 1=N
corrections. However, thermalization is not reached in
Ref. [27] since the times considered are not long enough.
The classical evolution is compared with the quantum
evolution to first order in 1=N for the �4 model in 3� 1
dimensions in Ref. [17]. It is stated there that the classical
evolution is a good approximation to the quantum evolu-
tion for nonasymptotic times therefore supporting the rele-
vance for quantum field theory of the classical dynamics
studied here.

E. Thermalization of the power spectra

We present here the results of a long simulation yielding
to a very good approximation thermalized powers j ~�kj2�t�

and j ~�kj
2�t�, on a lattice cube CN with N � 100, a �

0:064, and L � 12:8. The energy density is E=V �
569:5, still relatively small compared to �3 ’ 14 785.
The initial conditions are random plane waves as in
025014
Eq. (4.1), with the initial powers of � and � exactly null
for k > 3:436. The rather large time averaging interval � �
200 is still negligible compared to the length t � 915 494
of the evolution. To further reduce fluctuations, in this case
we also performed an average of over 32 different random
initial mode amplitudes and phases.

In Fig. 22 we plot the basic one-point observables and
the average wave number k�t� as a function of time. The
system clearly reaches a time-independent stage for lnt *

12:5. In Fig. 23 we plot the power spectra j ~�kj2�t�, times
the spherical volume 4�k2, vs the wave number k at several
times: the UV cascade up to the cutoff is evident. We plot

in a log-log scale both j ~�kj2�t� and j ~�kj
2�t� vs k in Fig. 24

and vs time in Fig. 25. Again, the system shows an evident
limiting behavior: the large initial peaks in the IR modes
have almost completely disappeared for logt ’ 12:5 and at
the latest times logt ’ 14 the power spectrum j ~�kj2�t� is
flat, except for fluctuations and a small remnant of the
infrared peaks exactly at k � 0 (see top panel in Fig. 26).
From the height of j ~�kj2�t� in the plateau we read the
temperature T � 1:2, very close to E=N3 � 1:194 32 � � � .
The difference is almost completely accounted for by the
last value of �4

� � 10:264 � � � [see Eq. (3.8)].

To ascertain the thermalization of j ~�kj
2�t� is very con-

venient to consider the time-dependent analog Zk�t� of the
equilibrium Zk [see Eq. (3.28)] replacing the equilibrium
quantities by their time-dependent out-of-equilibrium
counterparts; that is
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Zk � t� �
def 1� 	B��2�t��C�ka�
2

a2j ~�kj
2�t�

j ~�kj2�t�: (4.8)

In the bottom panel of Fig. 26 we plot the (average over
discrete directions of) equilibrium Zk and Zk�t� for several
late times. It is evident that Zk�t� approaches its equilib-
rium value Zk earlier and much more closely than j ~�kj2�t�.

In other words, when both j ~�kj2�t� and j ~�kj
2�t� are still out

of equilibrium over a wide range of low wave numbers,
Zk�t� is practically already at equilibrium except for a very
narrow range of very small wave numbers. One can see that
this range is approximately given by k2 <�2�t�. These
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FIG. 24 (color online). Log-log plot of j ~�kj2�t� and j ~�kj
2�t� vs

k. Data points are explicitly indicated. All parameters are as in
Fig. 22. Comparison with Fig. 22 shows that modes with k2 <
�2�t� thermalize much slower than those with k2 >�2�t�.
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infrared modes are the last to effectively thermalize.
(Recall Figs. 15 and 16 and the discussion in Sec. IV D
about the peculiar behavior of these low k modes.)

In conclusion, the field does thermalize completely in
the lattice with a time scale of the order 106. For such times
j ~�kj2�t� is k independent as seen in Fig. 24. Contrary to the
1� 1 dimensional case [9], the infrared modes with k2 <
�2�t� thermalize here the last.
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Diamonds in the bottom panel represent equilibrium values.
All parameters are as in Fig. 22. We see that Zk�t� equilibrates
much earlier than j ~�kj2�t�.
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F. Equilibration in the cascade

The effectiveness of the Zk�t� in the study of the equili-
bration process for very late times suggests to use it also at
earlier times, during the universal UV cascade. As a matter
of fact, Eq. (4.8) is just the definition of Zk�t� and is
possible for any time, although it might very well turn
out to yield a function of k quite different from its equi-
librium counterpart Zk. What we find, however, is some-
thing very close to equilibrium already at times of order
t0 ’ 500, which are those proper of the universal cascade.
To have a cutoff-independent window wide enough, we
consider here a lattice spacing a � 0:0125, much smaller
than that of the previous section, and a smaller energy
density E=V � 89:5. Notice that this would correspond
to an equilibrium temperature of order E=N �
0:001 398 � � � , almost negligible as compared to that of
the previous section.

In Fig. 27, in the left column, we plot Zk�t�, the direction
averaged Zk�t�, for several times ranging from t � 135 to
t � 2978 and for 0:695 � � � 
 k 
 9:559 � � � in the top and
4:644 � � � 
 k 
 28:218 � � � in the bottom. In the left col-
umn, we plot Zk�t� vs the scaled wave number u �

k=
�����������
�2�t�

q
. The good collapse in the bottom left panel

shows that Zk�t� is an almost function only of u in the
range 3:430 � � � 
 u 
 20:843 � � � . The collapse for
0:513 
 u & 2:5 is definitely worse, in agreement with
the slower equilibration of the infrared modes. Most re-
markably, by direct comparison with Fig. 26, we observe
that Zk�t� is very similar, qualitatively and quantitatively, to
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FIG. 27 (color online). Scaling properties of the Zk�t� f

025014
its equilibrium counterpart at a temperature roughly
1000 times larger than the temperature the system will
eventually reach when t! 1. One could say that equili-
bration in the bulk of cascade has taken place with an
effective temperature of order 1. The precise time depen-
dence of this effective temperature as well as a check on its
universality (that is to say unicity when the studied ob-
servables are changed) requires a much more elaborate
analysis which is beyond the scope of the present work.
Here we stress only that, as a function of u, Zk�t� resembles
closely its equilibrium counterpart and, in particular, it
decreases to unity rather fast as u grows, that is when k2 �

�2�t�.

G. Effective frequency and particle number

The motion of each Fourier mode ~�k of the field is
characterized by fast oscillations into an envelope which
varies relatively slowly in time. In the linear approxima-
tion, the scale of fast oscillation is fixed by the frequency of
the free massive dispersion relation, that is !k � k2 � 1 in
the continuum. Of course on our staggered lattice one
should consider the lattice dispersion relation, which dif-
fers from the continuum form by power corrections in
a2k2. In Appendix B we show that the exact free dispersion
relation on our lattice reads

cos�!ka� �
1

1� 1
2a

2

Y3

j�1

coskja (4.9)
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or two low-lying ranges of the radial wave number k.
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which correctly reproduces k2 � 1 in the limit a! 0 at
fixed k.

On the continuum the modes ~�k obey the Fourier trans-
form of the exact field equation (2.3), namely,

d2

dt2
~�k � �!k

~�k � � ~�3�k; (4.10)

where � ~�3�k is the Fourier transform of �3�x�.
Now to disentangle fast and slow motions one can use

time averages over intervals large compared to the periods
of the fast oscillations but small compared to the time scale
of the slow motion. This is exactly what we did above,
revealing the smooth UV cascade. To give a quantitative
description of this scenario we can use the following
simple argument. Consider the quantity

Ik �
d
dt
�Re ~��k ~�k�:

If the motion of each mode were strictly periodic, the time
average over several periods of Ik would vanish. But this is
also true if the fast and slow motions are indeed separable,
at least after some coarse graining like averaging over
discrete directions. Then we may proceed as in the stan-
dard derivation of the virial theorem and obtain, by use of
the equation of motion (4.10),

j ~�kj2 � !2
kj

~�kj2 � Re	 ~��k� ~�3�k
:

We may now define the effective frequency �k as

�2
k �
j ~�kj

2

j ~�kj2
� !2

k � Re
� ~��k� ~�3�k

j ~�kj2

�
; (4.11)

where, with the exception of !2
k, everything depends on

time, but only according to the slow motion.
Our aim here is to derive a quasiparticle description for

the classical evolution. Quasiparticle pictures have been
successfully derived in the context of the Hartree approxi-
mation both classically and quantum mechanically (see,
for example, Refs. [7,8,18,19,28]).

On the staggered lattice there are purely kinematic
modifications to Eq. (4.11), since the fields satisfy discrete
recursion relations rather than differential equations. In
Appendix B we derive the virial theorem for the free
discrete dynamics on the staggered lattice. A comparison
of Eq. (B6) with Eq. (4.11) suggests the following lattice
relation for the effective frequency �k:

j ~�kj
2

j ~�kj2
�

1

a2

�
1�

�
1�

1

4
a4

�
cos2��ka�

�
: (4.12)

After averaging over discrete directions, we obtain the
following practical rule for calculating the lattice
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direction-independent effective frequency:

�
1�

1

4
a4

�
cos2��ka� ’ 1� a2 j ~�kj

2

j ~�kj
2
: (4.13)

Equation (4.13) suggests also a way to parametrize the
equilibrium two-point function hj ~�kj2i on the lattice in
terms of an equilibrium effective frequency �eq

k : replacing

j ~�kj2 by its equilibrium counterpart hj ~�kj2i � T and j ~�kj
2

by hj ~�kj2i yields

hj ~�kj
2i �

a2T

1� �1� 1
4a

4�cos2��eq
k a�

: (4.14)

Going back to the continuum, we recall that the Hartree
approximation for �k follows from the reduction of

� ~�3�k �
1

V

X
qq0

~�q ~�q0 ~�k�q�q0

to the sum of all terms proportional to ~�k, that is

� ~�3�Hk �
3

V

X
q

j ~�qj2 ~�k �
3

V
~�k
Z
V
d3x�2�x�:

Using Eq. (4.11) this yields the Hartree frequency,

��H
k �

2 � !2
k � 3�2�t�: (4.15)

It must be noticed that the same effective frequency fol-
lows by using the Whitham approach [29]. That is, con-
sidering a multiwave configuration as in Eq. (4.1), the first
nonlinear correction to the frequency in the Whitham
approach can be shown after some work to coincide with
the Hartree formula Eq. (4.15).

Taking into account the definition of Zk�t� as defined by
Eq. (4.8), we now have

Zk�t� �
j ~�kj

2

a2j ~�kj
2

�
1�

�
1�

1

4
a4

�
cos2�a�H

k �

�
�
��H

k �
2

�2
k�t�

:

(4.16)

Hence 1=Zk�t� is the renormalization which turns the ap-
proximated Hartree frequency into the exact effective fre-
quency. In the previous section we have provided
numerical evidence showing that Zk�t� takes a form quite
close to the equilibrium one (at some time-dependent
effective temperature) for t * t0 and, in particular, that it
approaches unity rather fast as k2 >�2�t�. As shown in
Sec. IV E and in more detail in Appendix C, this holds for
very late times of order 104t0, close to complete lattice
thermalization (necessarily cutoff dependent), with Zk�t�
almost constant in time much earlier than �2�t� or the
power spectra and the effective temperature very close to
the final equilibrium temperature. But it also holds for
much shorter times, of order t0 only, as soon as the uni-
versal cascade has set in, with Zk�t� almost constant as a
-23
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FIG. 28 (color online). The number of modes over spherical
shells, 4�k2nk�t�, vs k � jkj at the different times indicated. The
initial conditions are infrared random plane waves. The UV
cascade is clearly seen as k2nk�t� is depleted for low k while it
grows for large k as time grows.
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function of k=	�2�t�
1=2 and some time-dependent effec-
tive temperature much larger than the final equilibrium
temperature.

We tested the universality of this picture by studying the
changes of Zk (or absence thereof) upon changes of the
lattice spacing, physical size, energy density, initial con-
densate, and microscopic details of initial conditions in our
numerical evolutions.

Notice that we always use the exact classical time
evolution for the fields and never the Hartree approxima-
tion to it. However, this exact evolution of the modes with
k2 >�2�t� is well reproduced with an effective mass as
given by the Hartree approximation Eq. (4.15).

In quantum theory, as is well known the definition of the
number operator is not unique (see, for example,
Refs. [6,7]). However, we can introduce a classical number
of modes based in the correspondence principle. In the
classical limit the number of quanta is given by the phase-
space area encircled by the classical phase-space trajectory
divided by 2� (in units where @ � 1). In the Hartree
approximation both �k�t� and �k�t� oscillate with fre-
quency �H

k �t�. The phase-space area for a slow varying
frequency is then given by the ellipse area�j�kjmaxj�kjmax

where in addition for harmonic oscillations j�kjmax �

�2j ~�kj
2�1=2 and j�kjmax � �2j ~�kj

2�1=2. Therefore, the
number of modes is given by

n k�t� � 	j ~�kj
2�t�j ~�kj

2�t�
1=2: (4.17)

Also,

n k�t� �
1

2

�����������
Zk�t�

p
�H
k �t�
j ~�kj

2�t� �
1

2

�H
k �t������������
Zk�t�

p j ~�kj
2�t�;

where we used the continuum limit of Eq. (4.16), namely,

Zk�t�j ~�kj2�t� � 	�H
k �t�


2j ~�kj
2�t�: (4.18)

Although derived within the assumption of harmonic
oscillations with a slowly varying frequency, Eq. (4.17)
should have a more general validity, since nk provides in
any case a measure of the phase space occupied by the
trajectory of the k mode. The only important condition is
that the different modes are weakly coupled. This is true,
when the UV cascade has fully developed, for all k such
that 	�2�t�
1=2 < jkj & k�t�, where 	�2�t�
1=2 decreases

with time tending to a small equilibrium value
����������
h�2i

p
of

order
���������
T=a

p
� a

����������
E=V

p
. Furthermore, if t is not too large so

that k�t� � �, then the occupied modes do not feel the
lattice discretization and have the relativistic dispersion
relation. Therefore

n k�t� �

�����������
Zk�t�

p
�H
k �t�
j ~�kj

2�t�; (4.19)

where now 	�H
k �t�


2 � k2 � 1� 3�2�t�.
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We plot in Fig. 28 the number of modes over spherical
shells, 4�k2nk�t�, vs k � jkj at different times. Figure 28
should be compared with Figs. 13 and 14 since nk�t� and
j ~�kj2�t� are related through Eq. (4.19). One sees that the
main dependence of nk�t� on k comes from j ~�kj2�t�.

Notice that Eq. (4.19) can be written in terms of the
effective frequency �k�t� as

n k�t� �
j ~�kj2�t�
�k�t�

which is the classical equilibrium occupation number with
the temperature replaced by j ~�kj2�t�. In fact, in thermal
equilibrium the power spectrum and the temperature are
related by Eq. (3.4). During the UV cascade we are in a
situation of effective equilibration for times t later than
t0 � 500 as shown by Fig. 10 and the results of Sec. IV F.
However, j ~�kj2�t� depends both on time and on the wave
number as depicted in Figs. 16, 18, and 25. In addition, the
k modes with k2 <�2�t� only thermalize for times of the
order 106 as we see in Fig. 25. This makes it awkward to try
and interpret j ~�kj2�t� as a k-dependent effective tempera-
ture since an equilibrium or quasiequilibrium state should
depend only on a few macroscopic parameters (with one
playing the role of temperature) varying slowly in time.
Notice however that j ~�kj2�t� decreases both with time and
with the wave number k for k2 >�2�t� [see Figs. 16, 18,
and 25] and does that in a very smooth and regular way.
This suggests indeed the existence of a few slowly time-
dependent parameters, not dependent on the details of the
initial conditions, which govern the evolution of the cas-
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cade for k2 >�2�t�. Notice that instead j ~�kj2�t� increases
as well as decreases with k and t for the modes k2 <�2�t�
in a much more erratic way strongly dependent on the
detail of the initial conditions (see Figs. 16, 24, and 25).

H. Effective mass squared

The time averaging defined by Eq. (2.17) is intended to
eliminate the microscopic oscillations of the field. We
illustrate such microscopic behavior in Fig. 31 showing
the field ��x; t� averaged over the space. The frequency of
the time oscillation can be therefore considered as the
effective mass Meff�t� of the field. Moreover, by Fourier
transforming the field ��x; t� we obtain frequencies �k

numerically. This procedure is more costly than Eq. (4.13)
but we find an excellent agreement between both. We want
to stress that for this to happen it is necessary that the
space-time discretization scheme in the numerics treats
space and time on equal footing, as ours does (see
Sec. II C). Notice also that the use of lattice expressions
like Eq. (4.13), valid in principle to all orders in a, is very
efficient and convenient to compare results on lattices with
different lattice spacings.

It must be noticed that the fast oscillations displayed in
Fig. 31 are erased by the time averaging. Thanks to such
averaging the slow dynamics becomes visible through
Figs. 4–25.

We plot in Fig. 29 	M2
eff�t� � 1
 vs the logarithm of time

for different values of � � E=V. Notice that M2
eff�t�mono-

tonically decreases with time while the UV cascade devel-
ops. We see that M2

eff�t�> 1 and that it decreases with �.
Indeed, M2

eff�t� ! 1 (its linearized value) for �! 0. We
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FIG. 29. M2
eff�t� � 1 as a function of the logarithm of the time t

for E=V � 0:1, 10, 100, and 1000 with L � 6:4 and a � 0:1. No
average is performed over initial packet amplitudes or positions.
Time averaging is performed here as by Eqs. (2.17) and (2.18).
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find that M2
eff�t� � 1 is approximately proportional to

�2�t�.
We depict in Fig. 30 the ratio

R �
M2

eff�t� � 1

�2�t�
; (4.20)

as a function of logt. We see that R is approximately time
independent and that it decreases with E=V. It should be
noticed that R always stays below the value RH � 3 pre-
dicted by the Hartree approximation [9] and well above the
value RLarge N � 1 corresponding to the large number of
components limit.

In summary, we find that M2
eff�t� can be written as

M2
eff�t� � 1� R����2�t�; (4.21)

where 1:5<R���< 3 is approximately time independent
and decreases with �.

We analyze the cnoidal solution in Appendix C and
compute its effective mass. The parameter R for the cnoi-
dal solution turns out to be between 3

2 and �
2 and is depicted

in Fig. 33.
As discussed in Sec. IV G the modes with k2 � �2�t�

are governed by the Hartree mass 1� 3 �2�t� while the
k � 0 mode oscillates according to Meff�t�. The Hartree
mass and M2

eff�t� are substantially different as remarked
above.

Moreover, Meff�t� governs the long-range behavior of
the correlators as real space. The two-point correlator tends
to zero for long distances as
 1.55
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FIG. 30. R � 	M2
eff�t� � 1
=�2�t� as a function of the loga-

rithm of time t for E=V � 0:1, 10, 100, and E=V � 1000 with
L � 6:4 and a � 0:1. Notice that R varies in a much narrower
interval than M2

eff�t� depicted in Fig. 29. No average is performed
over initial packet amplitudes or positions. Time averaging is
performed here as by Eqs. (2.17) and (2.18).
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C�x� �
x�a

C0
e�Meff �t�x

x
;

where C0 is a constant.
In summary, modes with k2 below and above �2�t� are

governed by different masses. The former byM2
eff�t� ’ 1�

1:5 �2�t� and the latter by the Hartree mass 1� 3 �2�t�.
Clearly, the long-range behavior of the correlators is gov-
erned by the low momentum mass Meff�t�.

I. The slow dynamics of the infrared modes and
effective thermalization

The picture of the averaged dynamics for late times in
the lattice model is as follows:
(i) T
he modes with k2 >�2�t� effectively thermalize
with a time-dependent temperature while they obey
the Hartree approximation. That is, their dynamics
is weakly nonlinear.
(ii) T
he modes with 0 
 k2 & �2�t� keep interacting
quite strongly between them. They thermalize
much later than the rest of the modes.
(iii) B
oth sets of modes keep interacting with each
other.
There are definitely two time scales for thermalization.
The shorter one t0 � 500 describes the effective thermal-
ization of the Hartree modes while the time scale for the
effective thermalization of the infrared modes is much
longer than t0 and of the order �106.

The modes with 0 
 k2 & �2�t� manifest in the IR
behavior of the correlator as a long-lived inhomogeneous
condensate. This condensate keeps interacting with the
higher k modes which behave as a thermal bath in contact
025014
with it. Notice that the mode distribution becomes time
independent on the lattice for late times. Hence, the field
correlator is a static function described by the Fourier
transform of

j ~�kj
2 �

TZk

k2 � 1� 3�2�t�
; (4.22)

where T is the asymptotic time limit of j ~�kj2�t�.
WhileM2

eff decreases with a time scale�t0 (see Fig. 29),
Zk varies with an even longer time scale�106. It is akin to
a k-dependent wave function renormalization which be-
comes the unit for k2 � �2�t�.

It should be stressed that the inhomogeneous condensate
is not a classical solution of the �4 equations (2.3). It is a
classical statistical configuration that can be seen only
through the correlators like ���x; t�. Moreover, the aver-
age value of � just vanishes for late times as shown in
Fig. 9.

Notice that the local observables as �2�t�, �r��2�t�,
�2�t�, and �4

��t� are dominated by the modes with k2 *

�2�t�. This explains that the thermal equilibrium curve
approximately agrees (to 90%) with time averages in
Fig. 10 although the infrared modes are not yet completely
thermalized.

Extensive numerical calculations varying the initial con-
ditions showed us that the thermalization dynamics includ-
ing the UV cascade possess a universal character. That is,
the UV cascade exhibits the same features for different
kinds of initial conditions (plane waves, localized packets,
etc.) with initial power in the infrared modes (k &

30�=L� �=	2a
) and energy density not too small (� *

1).
In the continuum theory the ultraviolet cascade contin-

ues forever and therefore, for finite energy densities, the
system will reach thermal equilibrium for infinite times at
zero temperature. The inhomogeneous condensate thus
disappears for extremely long times in the continuum
theory.

As the inhomogeneous condensate is an infrared phe-
nomena, it should be present in quantum theory for large
occupation numbers and weak coupling. In other words,
the low k behavior of Zk should not change in quantum
theory when such conditions are fulfilled.
V. DISCUSSIONS AND CONCLUSIONS

The present work shows that a UV cascade enjoying
universal properties is the basic mechanism of thermaliza-
tion both in 3� 1 and 1� 1 dimensions [9]. Although we
are not in a position to derive the properties of this cascade
from the microscopic equation of motion (2.3), it is easy to
see from Eq. (2.3) that energy should flow towards higher
wave numbers. Assume we start from a plane wave initial
condition
-26
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��0; x� � A cos�k � x�; _��0; x� � A sin�k � x�;

where A is a constant. The nonlinear term �3 in Eq. (2.3)
will immediately generate higher harmonics: cos�3k � x�,
cos�9k � x�, cos�5k � x�, etc. That is, energy is moving to
higher wave numbers.

Moreover, if we consider a superposition of plane waves
as an initial condition,

��0; x� �
Xn
a�1

Aa cos�ka � x�;

_��0; x� �
Xn
a�1

Aa sin�ka � x�;

the interaction term �3 generates sums and differences:
ka � kb � kc etc., for a; b; c � 1; . . . ; n. This implies en-
ergy flowing both for increasing and for decreasing wave
numbers.

Notice that this mode mixing takes place very fast, at the
microscopic time scale, that is, a unit time scale in dimen-
sionless variables. The UV cascade we observe happens in
a much longer time scale. This means that these fast
microscopic processes combine in a nontrivial way result-
ing on a UV cascade with a slow time scale.

It is important to estimate to which extent the present
results can be applied in quantum theory. A necessary
condition for the validity of the classical approximation
is that the occupation numbers must be large. The relevant
occupation numbers decrease during the UV cascade due
to the modes flowing towards unoccupied high wave num-
ber slots. Hence, if the classical approximation is valid for
late times, it will be valid earlier (as is the case in 1� 1
dimensions [9]). A simple criterion for the validity of the
classical approximation in QFT at thermal equilibrium is
that

Tp � !p�kp�; (5.1)

where !p�kp� �
������������������������
k2
p �M

2
p;eff

q
are the dimension-full

frequencies.
In dimensionless variables Eq. (5.1) takes the form,

T
�
�

��������������������
k2 �M2

eff

q
>Meff : (5.2)

Following Eq. (4.21) we obtain as an estimate forM2
eff from

our numerical results

M2
eff � 1� A

����
�
p

; (5.3)

where � � E
V and A� 0:2–0:5.

For � * 1 we thus find that the classical approximation
applies for

�� �2a�3�3=4; (5.4)

where we used that T � �2a�3� for small a [Eq. (3.9)].
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For � & 1 we instead find that the classical approxima-
tion applies for

�� �2a�3�: (5.5)

Both Eqs. (5.4) and (5.5) lead to small values of the
coupling � since the spacing a must be itself small to
avoid lattice effects. However, in inflationary theories
very small values of �� 10�12 are customary (in order
to agree with the smallness of the CMB anisotropy) which
leaves room for the use of the classical approximation.

As stated above the validity of the classical approxima-
tion decreases with time. Let us estimate the time where it
ceases to be valid.

The total energy density can be estimated in terms of the
average occupation number nk (where the average is here
over the ~k modes) as follows:

�� k3nk
��������������������
k2 �M2

eff

q
:

The classical approximation holds if the occupation num-
bers are large for the relevant modes. Therefore, a neces-
sary condition is

nk
�
� 1;

since the coupling � has been absorbed in the field rede-
finition Eq. (2.2).

In the ultrarelativistic regime k� Meff we have

k 4 �
�
�

and therefore k�
�
�
�

�
1=4
; (5.6)

while in the nonrelativistic domain k� Meff we have

Meffk
3 �

�
�

and hence using Eq. (5.3)

k 3 �
�3=4

�
and therefore k�

�1=4

�1=3
: (5.7)

Since �� 1,

1

�1=3
�

1

�1=4
; thus

�
�
�

�
1=4
�

�1=4

�1=3
;

and the ultrarelativistic condition Eq. (5.6) is more strin-
gent than the nonrelativistic bound Eq. (5.7). We can there-
fore always use the condition Eq. (5.6) for the validity of
the classical approximation.

Using now Eq. (4.7) for k�t� yields in both regimes that
the classical approximation is valid for times t

t� tmax ’
�3=4

�3=4k3
0

: (5.8)

The conditions Eqs. (5.5) and (5.6) are compatible since
k < �=2a. Therefore, Eq. (5.6) implies
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�
2a
�

�
�
�

�
1=4

and then

�2a�3�3=4 � �3�3=4or
�
�
�

�
�
2a

�
4
;

which is more stringent than Eq. (5.4).
In summary, the classical approximation is valid for

times earlier than tmax [given by Eq. (5.8)] provided

�
�
�

�
�
2a

�
4
; (5.9)

that is, high density (large occupation numbers) and/or
small coupling. This condition constrains the initial con-
ditions which fix �. Notice that the coupling � does have an
intrinsic meaning in the quantum theory.

A condition for the validity of the classical dynamics in
QFT is derived for high density in Ref. [11] in the context
of the 2PI-1=N approach. For further studies about the
validity of the classical approximation in different contexts
see [18,20,26].

Let us now comment on the character of the universal
stage. The dimensionality of the space plays a crucial role
in this phenomenon. In one space dimension effective
thermalization takes place much faster in analogous con-
ditions [9]. Here, in 3� 1 dimensions a second and even
longer time scale appears characterizing the thermalization

of infrared modes with k <
������
�2

q
�t�. The infrared modes

keep interacting for far longer times than the higher k
modes. In 3� 1 dimensions the infrared modes thermalize
the last while in 1� 1 dimensions they thermalize the first
[9].

The UV cascade is clearly less efficient in three space
dimensions to fill the higher kmodes pumping energy from
the low kmodes. Clearly, in one space dimension the phase
space is dramatically small making the UV cascade very
efficient.

The same phase-space effect (k2) in three space dimen-
sions makes the classical statistical mechanics of the �4

theory divergent due to the ultraviolet catastrophe.
All this suggests that thermalization is reached in quan-

tum theory too as recent works (including memory effects)
indicate [10–12]. Moreover, for large initial occupation
numbers and small coupling the classical regime should
correctly describe the evolution of the theory till a time tmax

[see Eq. (5.8)].
A remarkable feature of the thermalization mechanism

is that even starting from a completely classical regime
(large occupation numbers at low wave numbers), the UV
cascade depletes these modes and fills the high ones.
Therefore, at some time �tmax (that could be very long)
quantum physics unavoidably shows up. This is the out-of-
equilibrium counterpart to the fact that classical statistical
mechanics is ill defined due to the ultraviolet catastrophe
which can be cured only by the quantum treatment.
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Thermalization implies to forget everything about the
initial conditions except (obviously) the conserved quanti-
ties like energy, momentum, and angular momentum. The
thermalization is therefore expected to substantially
change for integrable theories where the number of con-
served quantities equals the number of degrees of freedom.

In this paper we solve the exact microscopic dynamics
and then we averaged on time intervals and space in order
to derive the slow dynamics we are interested in. This is
perfectly correct but a lot of information is first obtained
and then dumped in the averaging process. Alternatively a
transport approach could be followed deriving equations
for the observables in macroscopic time scales and then
solve them. We mean to derive transport equations of the
Boltzmann or Fokker-Planck type.
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APPENDIX A: AVERAGE OVER DISCRETE
DIRECTIONS

The space discretization and the finite size spoil the
rotational invariance of the continuum infinite-volume
Hamiltonian. This implies the same invariance for the
classical field equation and for the equilibrium averages
(see Sec. III). Rotational invariance should be recovered at
short distances when a! 0 and at long distances when
L! 1. Thus any lattice observable on the wave numbers
cube �2�=L�CN that corresponds to a rotational invariant
observable of the continuum infinite-volume theory should
depend only on k2 when a! 0 and kL� 1 or when L!
1 and ka� 1 (a similar argument would apply for the
x-space cube 2aCN). To verify the onset of rotational
invariance in nonperturbative or numerical lattice calcula-
tions is usually quite costly and often not even necessary. In
fact, by turning the argument around and assuming that
rotational invariance will be recovered in the appropriate
limits, one can greatly reduce fluctuations by performing
an average over all directions on discrete observables. This
can be done as follows.

Given any array fn over CN , we consider its average
over discrete directions �fn as

�f n �
1

Sn

X
n2CN

��n 
 jnj< n� 1�fn;

n � 0; 1; 2; . . . ;
���
3
p
N=2;

(A1)

where ��� � �� � 1 (0) if its arguments is true (false) and Sn
is the number of points of CN at a distance d from the
-28
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origin such that n 
 d < n� 1; that is

Sn �
X
n2CN

��n 
 jnj< n� 1�:

Up to purely geometrical fluctuations, Sn grows like 4�n2

for n up to N=2, while for N=2< n 

���
3
p
N=2, in the

corners of the cube, its shrinks to zero. To fix a specific
value of the radius of this spherical shell, we choose the
average distance of all lattice points within the shell

rn �
1

Sn

X
n2CN

��n 
 jnj< n� 1�jnj:

When plotted against rn, Sn still has purely geometrical
fluctuations with respect to the continuum expression, most
noticeably at n � 0, where S0 � 1 while 4�r2

0 � 0. Of
course, averaging over several consecutive shells would
reduce these geometric fluctuations. Such an average is in
fact automatic in the limit L! 1 of continuous wave
numbers, since in any physical realizable measure there
exists a finite resolution �k independent of L. On the other
hand the limit L! 1 is not feasible in numerical calcu-
lations and one has to find the correct balance between size
and control of fluctuations.

Suppose now that the array fn is the finite size version of
the continuous function f�k� over the first Brillouin zone at
infinite size [the argument would apply also if fn were the
lattice version of a continuous f�x� on the cubic volume V].
Then �fn provides a finite size version of the angle average
of �f�k� of f�k�, where k � jkj. In other words, the discrete
plot of �fn vs kn � �2�=L�rn provides an approximation of
the continuous plot of �f�k� vs k, if L! 1 at fixed a and fn
has indeed a continuous limit. If this limit is rotational
invariant all physical information is stored in f as a func-
tion of k only; thus the average over all solid angles in the
continuum has no effect at all, �f � f, while the average
over discrete shells Sn greatly reduces the statistical
fluctuations.
APPENDIX B: LINEARIZED DISCRETE
DYNAMICS

It is instructive to study first the discrete field equa-
tion (2.12) at the linearized level. Thus we consider the
case of a uniform field ��x; t� � ��t�, namely, the recur-
sion

��t� a� ���t� a� �
2��t�

1� 1
2a

2	1��2�t�

: (B1)

Given ��0� and ��a�, this recursion determines ��t� for
the discrete times t � na, n � 2; 3; . . . , yielding the dis-
crete version of the well-known cnoidal uniform solution
of the continuum equation (2.3).

We now linearize the generic ��x; t� around ��t� by
setting ��x; t� � ��t� � ��x; t�, where ��x; t� has vanish-
ing space integral; this yields the linear recursion
025014
��x; t� a� � ��x; t� a� �
1

4
B���

X
�

��x� a�; t�;

(B2)

where B��� is given by Eq. (3.26). In terms of Fourier
modes we have

��x; t� � V�1=2
X
k�0

~�k�t�e
ik�x

and Eq. (B2) entails, for k � 0,

~� k�t� a� � ~�k�t� a� � 2 ~�k�t� cos!k�t�; (B3)

where the instantaneous frequency !k�t� is fixed by the
dispersion rule

cos	!k�t�a
 � B	��t�

YD
j�1

coskja (B4)

as a function of the wave number vector k � 0.
Equation (B3) is our lattice version of the Lamé equation
governing the linearization of the continuum field equation
over the cnoidal. In fact, in the continuum limit a! 0, for
any fixed k we have

cos	!k�t�a
 � 1� 1
2a

2	k2 � 1� 3�2�t�
 �O�a4�

so that Eq. (B2) becomes indeed

�
d2

dt2
� k2 � 1� 3�2�t�

�
~�k�t� � 0 (B5)

with��t� solving now ������3 � 0 that is the cnoidal
solution.

In the trivial case � � 0, which corresponds to the free-
field case, the general solution of Eq. (B3) is straightfor-
ward and can be written

~� k�t� � Ake
�i!kt � A��ke

i!kt

in terms of the constant amplitudes Ak fixed by the initial
conditions. In this case !k solves Eq. (B4) with B�0� �
�1� a2=2��1 and is constant in time. Then recalling the
general relation Eq. (3.22) we obtain

~� k�t� ’ �i
sin�!ka�

a
�Ake�i!kt � A��ke

i!kt� �
a2

2
~�k�t�

� cos�!ka�:

Finally, since time averages over several mode oscillations
kill the interference between the positive frequency and the
negative frequency terms in the power spectra, we find in
this � � 0 case the following lattice version of the well-
known virial theorem for harmonic oscillations
-29
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Eq. (C2)] vs the radial wave number for the values of time and of
� indicated. All parameters are as in Fig. 22.
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j ~�kj2 �
1

a2

�
1�

�
1�

1

4
a4

�
cos2�!ka�

�
j ~�kj2

�
1

a2

�
1�

1� 1
2a

2

1� 1
2a

2

YD
j�1

cos2kja
�
j ~�kj

2; (B6)

where the dispersion relation Eq. (B4) was used with � �
0. In the limit a! 0 Eq. (B6) reduces to

j ~�kj2�t� � �k2 � 1�j ~�kj
2�t�

as expected.
When � � 0 we may still write the general solution of

the recursion (B2) as

~� k�t� � Akzk�t� � A��kz
�
k�t�;

where the amplitudes Ak are constant in time while zk�t� �
z�k�t� solves Eq. (B2) with initial conditions

zk�0� � 1; zk�a� � e�i!k�0�a:

Equation (B5) admits close form solutions when � is
given by the cnoidal solution Eq. (D1). In particular, the
forbidden band for k2 > 0 corresponds to

1
2�

2
0 � 3 
 k2 


��������������������������������
1
3�

4
0 � 2�2

0 � 4
q

� 1 (B7)

(see, for example, [30]).
APPENDIX C: THE HARTREE APPROXIMATION
FROM THE LATE TIME EXACT BEHAVIOR

We learn how to obtain the Hartree frequency on the
lattice: we consider the discrete dynamics linearized as in
Appendix B and replace the background �2

0�t� with �2�t�
in the dispersion relation Eq. (B4), obtaining

cos�a��H
k � � B	��2�t�


Y3

j�1

coskja; (C1)

where B��� is given by Eq. (3.26) and where for future use
we introduced the parameter � to control the coupling with
the background: if � � 1 we have the Hartree frequency; if
� � 0 we have the free massive frequency Eq. (4.9).
Intermediate values 0< �< 1 will actually be ruled out
below by fitting the numerical data.

��H
k is a function of time through the background �2�t�.

On the lattice �2�t� will tend to a nonzero limit as t! 1.
According to the Hartree dominance of the equilibrium
hj ~�kj

2i, from Eq. (4.14) we then see that �k ’ �H
k , pro-

vided the full effective frequency �k tends to �eq
k as t!

1. It is therefore very important to compare ��H
k with the

full effective frequency �k. Recall that the Hartree ap-
proximation is a good approximation if the modes are
weakly interacting, since it neglects direct wave scatterings
and allows energy transfer only through the uniform self-
consistent background �2�t�.
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To perform the comparison we numerically average over
discrete directions and study the ratio

Z���k �
j ~�kj

2

a2j ~�kj2

�
1�

�
1�

1

4
a4

�
cos2�a��H

k �

�
: (C2)

In Fig. 32 we plot Z�0�k , Z�0:5�k , Z�1�k , and Z�1:5�k for several late
times in the long evolution when � thermalized (see pre-
vious section). The Hartree value � � 1 clearly stands out
as the most accurate in the time dependence: the curves at
all different times almost perfectly collapse in a single
curve, except that for very small wave numbers. All curves
collapse for large k, regardless of the value of �, simply
because when k2 � �2�t� any effect on the dispersion
relation due to the background is negligible.
APPENDIX D: THE CNOIDAL SOLUTION

We discuss here the cnoidal solution of the �4 Eq. (2.3)
that is the space-independent solution of ������3 � 0
explicitly given by

��t� � �0 cn�t
���������������
1��2

0

q
; k� with k �

�0���������������������
2�1��2

0�
q ;

(D1)

where cn�x; k� stands for the Jacobi cosinus of module k.
This is a (doubly) periodic function satisfying ��t� �

���t� P�, where P � 2K�k�=
���������������
1��2

0

q
is the half-period

and K�k� stands for the complete elliptic integral.
The effective mass associated with this solution is there-

fore the basic frequency
-30
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Meff �
2�
2P
�
�

���������������
1��2

0

q
2K�k�

: (D2)

The average value of the squared field over a period can be
computed with the result [see Eq. (3.40) in Ref. [8]]

h�2i �
1

2P

Z 2P

0
dt�2�t� � �1��2

0�

�
2E�k�
K�k�

� 1
�
� 1:

(D3)
025014
We plot in Fig. 33 the ratio R��0� � �M
2
eff � 1�=h�2i

using Eqs. (D2) and (D3) [compare with Eq. (4.20)]. We
plot it as a function of the energy density � � 1

2�
2
0�1�

1
2�

2
0�.

We can compute analytically the function R��0� for
small and large arguments with the result

R��0� �
�0!0 3

2
�O��2

0�; R��0� �
�0!1�

2
:

In summary, R��0� grows slowly and monotonically from
the value 3

2 to the value �
2 when �0 varies from zero to

infinity.
The average value of _�2 can be computed analogously

with the result [see Eq. (3.60) in Ref. [8]]

h _�2i �
1

3
�1��2

0�

�
�2

0 � 2�
2E�k�
K�k�

�
: (D4)

We find from Eqs. (D3) and (D4) using energy conserva-
tion,

h�4i �
1

3
��4

0 � 6�2
0 � 8� �

8E�k�
3K�k�

�1��2
0�: (D5)

Inserting Eqs. (D3)–(D5), for this homogeneous solution
in the virial theorem Eq. (3.6) shows that this theorem is
identically satisfied.
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