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Abstract
The properties of random trees (Galton–Watson trees) with scale-free
(power-like) probability distribution of coordinations are investigated in the
thermodynamic limit. The scaling form of volume probability is found, and
the connectivity dimensions are determined and compared with other exponents
which describe the growth. The (local) spectral dimension is also determined
through the study of the massless limit of the Gaussian model on such trees.

PACS numbers: 02.50.−r, 05.40.−a, 46.65.+g

1. Introduction and summary

Graph theory and its applications play an important role in many areas of scientific research,
from pure mathematics, to physics, statistics, biology and social sciences. In particular random
graphs, that is graphs extracted with some probability from a suitable statistical ensemble, are
interesting as a means to implement the intrinsic complexity and/or chaotic nature of many
physical, biological and social systems [1].

Among graphs, trees (that is graphs without loops) play a distinguished role: they retain
a deep interest and wide applicability while still being amenable to detailed analytic studies.
Random trees appear in several distinct contexts, such as polymer physics, critical percolation
[2] and two-dimensional quantum gravity (branched polymers [3]).

Generically, in a random graph the local coordination is itself a random variable taking
values according to some probability distribution; while in the classical Erdo′′s–Rényi theory
of random graphs [4] this distribution is Poissonian, and in several examples of ‘experimental’
complex networks it turns out to be ‘scale-free’, that is with a long power-law tail [5].
This implies that on an infinite scale-free graph nodes with diverging coordination are rather
frequent, causing some subtleties in the application of the law of large numbers.

In this paper we concentrate our attention on homogeneous scale-free random trees subject
only to the physically natural constraint of being embeddable in a finite-dimensional Euclidean
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space. This class of random trees has been studied already in [6, 7], although from a viewpoint
different from ours: while in these works only some statistical averages relevant to characterize
the geometry of these trees were analysed, we study here in depth the probability distributions
of the basic observables which specify the intrinsic geometry. Our results apply therefore to
any single ‘generic’ (infinite) scale-free random tree and not just to their statistical ensemble.

The outline of this paper is as follows. First of all we recall some definitions of graph
theory and introduce the algorithm used to build homogeneous random trees, summarizing
known results. The local connectivity dimension is then obtained from the scaling properties of
the probability distributions for the volume and the surface of the spheres centred at the origin
of the tree-constructing algorithm. Details of the scaled probabilities are studied and their
asymptotic behaviour is determined. Then the probability distributions for the graph-averaged
volume and the surface are considered; the average connectivity dimension is extracted from
their scaling properties.

Our results for the growth properties of a random tree can be summarized in very concise
heuristic formulae as follows: consider a sphere (intrinsically defined in terms of the chemical
distance alone) of radius r centred on some node; for large r the volume v of the sphere and
the coordination fluctuation �z within the sphere are random variables simply related as

v � (�z)2r2.

This relation applies to all random trees with bounded growth rate (see below) regardless of
whether �z has a finite limit as v → ∞ or not. In the former case, as happens for instance
on trees with bounded coordination, one reads out immediately the connectivity dimension
dc = 2. In the latter case, one needs to estimate the asymptotic dependence of �z on v. For
scale-free trees with tail exponent 2 < β < 3 (see below for the proper definitions), one finds
�z ∼ v(3−β)/(β−1), yielding the β-dependent connectivity dimension

dc = β − 1

β − 2
.

Suppose instead that one is interested in the graph-averaged volume v obtained by averaging
over all locations of the centre of the sphere (for a finite tree with large volume V ). The
random variable v is related to the coordination fluctuation �z over the whole tree just as
before, that is

v � (�z)2r2.

Now the behaviour in r is always quadratic, regardless of the way the coordinations are
distributed. Of course, in the scale-free trees with 2 < β < 3 one has �z ∼ V (3−β)/(β−1),
making it impossible to consider the standard thermodynamic limit V → ∞. Nonetheless, we
find that a well-defined limit exists for the ‘renormalized’ volume v V (β−3)/(β−1). Therefore,
in all cases we conclude for the average connectivity dimension

d̄c = 2.

Finally, in the last section, the analysis of the probability distribution for the effective squared
mass, defined through the Gaussian model on the tree, allows us to rigourously determine also
the local spectral dimension ds. It fulfils the long-conjectured [8] relation ds = 2dc/(dc + 1)

already verified in [7] through a general but completely different argument.

2. Random trees

2.1. Generalities about graphs

A graph G is defined by a set of nodes (finite or countable), pairwise connected by a set
of unordered links. If the set of nodes is finite, its cardinality will be denoted by |G|. The
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coordination number (or degree, or simply coordination) of a node x is the number of its
nearest neighbours and is denoted by zx . The intrinsic properties of the graph are determined
only by the connections between the nodes; the metric is given by the so-called chemical
distance: the distance d(x, y) is equal to the number of links of the shortest connected path
between x and y. This distance is used to define spheres; the ‘volume’ vr(x) is defined as the
number of nodes of the radius r sphere centred at node x and the ‘surface’ sr (x) is the number
of nodes of the corresponding spherical shell. Here we shall consider connected graphs in the
limit of infinitely many nodes.

Given a function F defined on the nodes, its average value F is defined as the infinite
radius limit of the average over spheres; if such a limit exists, it does not depend on the centre
of the spheres provided F is bounded from below and the graph has a bounded growth rate
[9], that is the surface vanishes with respect to the volume in the infinite size limit.

The properties of graphs can be described by various parameters; here we consider the
connectivity dimension [10] and the spectral dimension [11]. The connectivity dimension
describes how the volume of spheres scales with their radius r for r → ∞; we can define a
local connectivity dimension dc using the spheres centred on any given node x

vr(x) ∼ rdc . (1)

It is not difficult to show that dc does not depend on x when the graph has a bounded growth
rate. We can define also an average dimension d̄c if the average volume is used (provided the
limit defining it exists finite)

vr ∼ rd̄c . (2)

These two connectivity dimensions usually coincide, but on strongly inhomogeneous graphs
they can be different [12].

The spectral dimension is related to long time properties of random walks on the graph,
as well as to many other physical properties such as the infrared behaviour of the Gaussian
model [13]. On a generic connected graph G this model is defined by assigning a real-valued
random variable φx to each node x ∈ G with the Hamiltonian

H = 1

2
µ0

∑
x

φ2
x +

1

2

∑
〈x,y〉

(φx − φy)
2 (3)

where 〈x, y〉 denotes nearest neighbour pairs of nodes and µ0 > 0 is a free parameter (the
squared mass in the field-theoretic sense). The spectral dimension is determined by the infrared
µ0 → 0 singularity of the diagonal element of the covariance

Sing
〈〈
φ2

x

〉〉 ∼ µ
ds/2−1
0 (4)

where 〈〈·〉〉 denotes standard Gibbs expectation values weighted with exp(−H). One can show
that ds does not depend on the choice of the node x [13]. As for the connectivity dimension, it
is possible to split the spectral dimension into a local one and an average one. The definition
in equation (4) evidently corresponds to the local one; the average spectral dimension d̄s

characterizes in the same way the singularity of the graph average of
〈〈
φ2

x

〉〉
. Again, the two

dimensions usually coincide, but on strongly inhomogeneous graphs they can be different [12].
Suppose now that a certain statistical ensemble G of (infinite) graphs is given. As a

consequence, connectivity and spectral dimensions become in principle random variables
with probability distributions derived from the ‘microscopic’ one specifying G. Consider the
connectivity dimension: if the graphs of G are rooted, we can use the root, denoted by o, as
the centre of the spheres whose growth defines dc; then the corresponding volumes vr(o) are
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random variables distributed with some probability Pr[vr(o) = v]. If this probability has a
well-defined scaling behaviour for r → ∞, that is

Pr[vr(o) = v] � 1

rd
p
( v

rd

)
then the random variable vr(o)r−d has a well-defined probability distribution in the limit
r → ∞ and we may write again

vr(o) ∼ rd

as in equation (1), identifying d with a non-fluctuating local connectivity dimension dc. In
other words dc is a property of a ‘generic’ specimen of the ensemble, that is a property of G
itself. A similar argument applies to the average connectivity dimension d̄c and to the spectral
dimensions using the random variable

〈〈
φ2

x

〉〉
and its graph average.

An alternative approach is used in [6], where averages in the canonical or grand-canonical
ensembles of certain random trees (i.e. graphs without loops) are studied rather than a single
‘generic’ sample tree. Two parameters are introduced to describe the intrinsic geometry of
these trees, also called ‘branched polymers’: the Hausdorff dimensions dH and dL. The
former is related to how the average two-point distance on graphs with V nodes scales with the
size V :

〈d(x, y)〉V ∼ V 1/dH . (5)

The latter (called local Hausdorff dimension in [6]) is related to the behaviour of the two-point
correlation function g

(2)
V (r) (proportional to the number of couples of nodes which are at

distance r) for distances which are large, but much smaller than V 1/dH :

g
(2)
V (r)

V →∞∼ rdL−1 1 	 r 	 V 1/dH . (6)

It is claimed in [6] that dH and dL differ on a certain class of ‘exotic’ random trees characterized
by unbounded local coordinations.

Actually, it is not a priori obvious if and how parameters such as dH and dL are connected
to the connectivity dimensions dc and d̄c, although it is common lore to identify the Hausdorff
dimension with the connectivity dimension when no distinction is made about local or average
dimensions. One of the aims of the present work is just to fully answer this question in the
case of homogeneous random trees, as we shall see below.

2.2. Generalities about random trees

Homogeneous random trees are built by the random independent extraction of every node’s
degree from a given distribution fz. This process can be formulated as a Galton–Watson
branching process [14]; in particular, since we are interested in trees with bounded growth
rate, we must consider the critical Galton–Watson case. The given coordination distribution
must be properly normalized∑

z

fz = 1 (7)

and the average coordination must be equal to 2 because of the condition of bounded growth
rate (see [9])

〈z〉 =
∑

z

zfz = 2. (8)

Clearly these sums have a finite number of addends if the coordination is bounded, while they
become a series if it is unbounded as in the scale-free case. The series, however, must be
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properly convergent in order for equations (7) and (8) to hold, so that fz must vanish faster
than z−2 for z → ∞. Let us also introduce the probability generating function g(λ),

g(λ) =
∑

z

fzλ
z−1 = f1 + f2λ + f3λ

2 + · · · (9)

which enjoys the properties

g(1) = 1 g′(1) = 1 (10)

easily derived from those of fz.
A branching process effectively ends when a shell (that is a given generation of sibling

branches) is made only by nodes with coordination 1, so that the next shell is empty. The
trees produced in this way are all finite because the surviving probability after r generations
vanishes for r → ∞ in the critical Galton–Watson process [14]. Since we are interested in the
thermodynamic limit we have two possibilities [9]. The first one is an explicit preconditioning
on non-extinction: this means that modified branching probabilities are used to avoid finite
trees, while keeping unaltered the properties of the infinite trees [15]. This is achieved if the
root coordination is chosen with probability fz while on every successive shell the coordination
of the first node is extracted with a modified probability distribution f̃ z = (z − 1)fz. The
other possibility consists in calculating probabilities conditioned on the number of nodes V

of the resulting trees, and then take the limit V → ∞. In this latter case the root coordination
must be extracted with the refined probability

f̂ z = N1
fz

z

1

N1
=
∑

z

fz

z
(11)

since the root has as many branches as its coordination while every other node has one branch
less than its coordination (see section 3.1 of [9] for details).

2.3. Trees with bounded coordination

In [9] and [16] the geometrical and spectral properties of bounded random trees were
determined using non-extinction preconditioning. The surface and volume probability, in
the large radius limit, are shown to be functions only of the scaled variables s/r and v/r2,
respectively. Moreover, after the discussion of the auto-averaging property, also average
surface and volume are fully analysed. These results allow the rigourous determination of the
connectivity dimension, both local and average: dc = d̄c = 2. The study of the Gaussian
model on such trees leads also to the determination of the spectral dimension ds = 4/3. Using
a simple scaling hypothesis it is shown that the relation ds = 2dc/(dc + 1) should hold on a
wider class of random trees.

An important universality property is also found: all the average values and probability
distributions in the large radius limit depend on the fz distribution only through its second
moment or, equivalently, g′′(1). This parameter quantifies the coordination fluctuations, since

g′′(1) =
∑

z

fz[z − 〈z〉]2

and characterizes all asymptotic behaviour. Altogether, these results can be summarized as

v � g′′(1)r2 (12)

meaning that v/[g′′(1)r2], as r → ∞, is a random variable with a well-defined universal
probability distribution.

The approach based on the grand-canonical ensemble of branched polymers yields the
result dH = dL = 2 when the coordination of each node is bounded. This corresponds to the
‘generic phase’ of random trees according to [6].
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2.4. Scale-free trees

In this paper we turn to scale-free trees, that is trees whose coordination distribution has a long
power-law tail:

fz � Az−β for z → ∞
where β > 2. When the coordination is unbounded, the function g(λ) may have singularities;
in the scale-free case it becomes singular for λ = 1. For any non-integer exponent1, its
expansion contains a term proportional to (1 − λ)β−1, that is

g(λ) = ga(λ) + c∗(1 − λ)β−1 (13)

where ga(λ) is analytic in λ = 1

ga(λ) = 1 − (1 − λ) + c2(1 − λ)2 + · · · + ck(1 − λ)k + · · · (14)

and c∗ = A�(1 − β). Therefore, if 2 < β < 3, g′′(λ) diverges for λ → 1; since we
found g′′(1) to be an important parameter in the bounded coordination case, we expect this
divergence to have many important consequences. As a first example it causes the divergence
of 〈vr(o)〉, the expected volume of the balls around the root of the branching process. This
can be intuitively explained, using non-extinction preconditioning, because on every shell the
coordination of one node is chosen with the probability distribution f̃ z, whose first moment
is infinite. If auto-averaging holds, then also vr would diverge on a single scale-free tree and
the definition (2) of average connectivity dimension appears troublesome for scale-free trees.
Thus, in order to deal with finite graph-averaged quantities, we will also use the finite volume
approach, considering the volume V as a regulator.

We may then find a heuristic argument based on equation (12) to determine the connectivity
dimensions dc and d̄c for scale-free random trees. First of all, if β > 3 nothing changes
because g′′(1) is still finite, so that dc = d̄c = 2. In contrast, if 2 < β < 3, we have to face the
divergence of g′′(1). But coordination fluctuations are finite for a finite number N of nodes,
and diverge with N in a way fixed by the long tail of fz, since all coordination extractions are
independent. Let zmax(N) be the largest coordination extracted, estimated from

∞∑
z=zmax

fz ∼ z1−β
max = 1

N

then we may estimate fluctuations by
zmax(N)∑

z=1

(z − 〈z〉)2fz ∼ [zmax(N)]3−β = Nν

where we defined the exponent ν as

ν = (3 − β)/(β − 1).

Thus for the local growth we have the consistency relation

vr � vν
r r

2

which implies

vr � r2/(1−ν) = r(β−1)/(β−2) ⇒ dc = β − 1

β − 2
.

When the graph-averaged vr is considered for trees of V nodes, the coordination fluctuation

1 For integer β the singularity has a different, logarithmic, form; however, since the final results will be analytic
in β, one is able to extend them also to integer values of β.
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over the whole graph should be used instead:

vr � r2V (3−β)/(β−1).

From this we read the scaling exponent 2 independently of V , but without the standard
thermodynamic limit. Of course this is not a real proof and a more rigorous approach
confirming these results is adopted in the following sections (see also appendix A); at any
rate, these exponents are the same as those calculated for scale-free branched polymers with
2 < β < 3 in the grand-canonical approach: dH = (β − 1)/(β − 2) [7] and dL = 2 [6].

3. Growth statistics

3.1. Scaling probabilities for local surface and volume

The probability Pr[sr(o) = s] (Pr[vr(o) = v]) for the surface (volume) of the radius r sphere
around the root of an infinite tree can be found, recursively on r, using the modified probabilities
given by explicit preconditioning (see [9], where a slightly different notation is used). The
corresponding generating functions

Gs
r(λ) =

∑
s

λs Pr[sr(o) = s]

Gv
r (λ) =

∑
v

λv Pr[vr(o) = v]

satisfy functional recursion rules easier to analyse, given by equations (15) and (16) in [9],
that is

Gs
r+1(λ) = λgr+1(λ)g′

r (λ)

Gv
r+1(λ, 1)

Gv
r (λ, 1)

= λg′(hr−1(λ))
hr+1(λ)

hr(λ)

where
gr+1(λ) = g(gr(λ)) g0(λ) = λ (15)

hr+1(λ) = λg(hr(λ)) h0(λ) = λ. (16)

These recursions involve only g(λ) and g′(λ), which are finite for 0 � λ � 1 for every value
of β > 2, and therefore can be solved numerically with high accuracy for any r (subject only
to computational limits), thus providing a solution of our problem from a practical point of
view. In figure 1 the r = 10 volume probability corresponding to a tree with β = 2.5 is
plotted against the ‘experimental’ frequency distribution; this is obtained by sampling, over
1000 different graphs of 8 × 106 nodes each, the volume of 2000 balls centred on randomly
chosen nodes. The agreement is good, and we notice the power-law tail with exponent that
can be estimated as � −1.5. In other cases (not shown) this is always equal to 1 − β.

Analytically, upon substitution of equations (13) and (14) for g(λ), one can solve the
recursion rules (15), (16) for the first terms of the expansions of gr(λ) and hr(λ) as λ → 1:

gr(λ) � 1 − (1 − λ) + c2r(1 − λ)2 + · · · + c∗r(1 − λ)β−1

hr(λ) � 1 + r(1 − λ) +
c2

3
r3(1 − λ)2 + · · · +

c∗
β

rβ(1 − λ)β−1 (17)

where only the leading order term in r is shown for every power of (1 − λ). Similarly for
Gs

r(λ) and Gv
r (λ) one finds

Gs
r(λ) � 1 − 2c2r(1 − λ) + · · · − (β − 1)c∗r(1 − λ)β−2

Gv
r (λ) � 1 − c2r

2(1 − λ) + · · · − c∗rβ−1(1 − λ)β−2.
(18)
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Figure 1. Numerically calculated volume distribution versus simulation histogram.

Through the rules of (inverse) discrete Laplace transform, the singular terms with noninteger
powers in 1 − λ determine power-law tails in the probability distributions at fixed r:

Pr[sr(o) = s]
s→∞� Ars−(β−1) Pr[vr(o) = v]

v→∞� A

β − 1
rβ−1v−(β−1)

in agreement with numerical data. The local connectivity dimension dc is determined if we
find scaling forms of these probabilities such that, as s → ∞ or v → ∞ and r → ∞,

Pr[sr(o) = s] � 1

rdc−1
φ
( s

rdc−1

)
Pr[vr(o) = v] � 1

rdc
�
( v

rdc

)
.

This means that dc must be such that Gs
r(exp(−u/rdc−1) and Gv

r (exp(−ξ/rdc) have finite
non-trivial limits for r → ∞. The right scaling exponent is found by examining
equation (18): if β > 3 the leading order term in (1 − λ) is the linear one so that the finite
functions of u and ξ are obtained with

dc = 2 for β > 3

while if 2 < β < 3 the most important term is the singular one so that the correct scaling is
given by

dc = β − 1

β − 2
for 2 < β < 3. (19)

In appendix A we present all explicit calculations about the surface and volume probability
distributions, for the two cases β > 3 and β < 3, which confirm this simple scaling analysis.

3.2. Fixed volume expectation values

In this section we study the local growth properties of scale-free random trees of finite
volume V . We shall reconstruct the dependence on V of the surface and volume probability
distributions from the expectation values of sr(o) and vr(o) and their powers. We are led
to consider expectation values over finite-size trees, regarding their volume V as a regulator,
because the power-law tails with exponent 1−β found in the previous section for Pr[sr(o) = s]
and Pr[vr(o) = v] imply the divergence with V of high enough moments of sr(o) or vr(o).
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Let us observe that in this context the average is made over all possible rooted trees with
V nodes; this can also be seen as the graph average over all nodes of an unrooted tree, which
is then further averaged over all possible realizations of the unrooted tree, that is

〈O〉V = 〈O〉V (20)

for every observable O. In particular

〈sr (o)n〉V = 〈
sn
r

〉
V

with a similar relation for the volumes. No dependence on the root o survives and we shall
drop it from the expectation values.

Let us start by studying the probability P̂ (V ) that any rooted tree T with V nodes is
produced by the branching process without the non-extinction precondition

P̂ (V ) = Pr[|T | = V ].

By the tree-producing algorithm, P̂ (V ) satisfies the identity

P̂ (V ) =
∑

z

f̂ z

∑
V1,...,Vz

δ

V − 1 −
z∑

j=1

Vj

 z∏
j=1

P(Vj )

where P(V ) = Pr[|B| = V ] is the same probability relative to a branch B, that is a tree whose
root has an incoming link (and z − 1 branches) and whose coordination is extracted with
probability fz; it satisfies a similar equation with z − 1 instead of z and fz instead of f̂ z:

P(V ) =
∑

z

fz

∑
V1,...,Vz−1

δ

V − 1 −
z−1∑
j=1

Vj

 z−1∏
j=1

P(Vj ).

The generating functions Ĝ(λ) = ∑
V P̂ (V )λV and G(λ) = ∑

V P (V )λV satisfy

G(λ) = λg(G(λ)) Ĝ(λ) = λĝ(G(λ)) (21)

where g(λ) is the usual probability generating function defined in equation (9), while

ĝ (λ) =
∑

z

λzf̂ z.

Normalization of f̂ z implies ĝ(1) = 1 and from the definition it easily follows that ĝ(λ)

derivatives are proportional to those of g(λ); more precisely we have

ĝ (k)(λ) = N1g
(k−1)(λ).

Since we are interested in the V → ∞ limit, which corresponds to λ → 1, we can use
expansions (13) and (14) to obtain the asymptotic behaviour of G(λ) and Ĝ(λ). For different
values of β we have different situations depending on which term, the singular one or the
quadratic one, is of lower order.

For β > 3 we have

G(λ) � 1 − c
−1/2
2 (1 − λ)1/2

Ĝ(λ) � 1 − N1c
−1/2
2 (1 − λ)1/2

so that, in the V → ∞ limit, the probability P̂ (V ) reads

P̂ (V ) � N1
1

2
√

c2π
V −3/2.
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For 2 < β < 3, instead, the singular term produces

G(λ) � 1 − c−1/(β−1)
∗ (1 − λ)1/(β−1)

Ĝ(λ) � 1 − N1c
−1/(β−1)
∗ (1 − λ)1/(β−1).

Thus we have, for V → ∞

P̂ (V ) � N1
−c

−1/(β−1)
∗

�(−1/(β − 1))
V −β/(β−1). (22)

Let us now turn to the calculation of the expected size of a shell of radius r in trees with
volume V . First of all, let us introduce the joint probability P̂ r (s, V ) that the size of the tree
is V and the rth shell has s nodes:

P̂ r (s, V ) = Pr[sr(o) = s, |T | = V ].

It is related to the same probability relative to branches Pr(s, V ) as

P̂ r (s, V ) =
∑

z

f̂ z

∑
V1,...,Vz

∑
s1,...,sz

δ

V − 1 −
z∑

j=1

Vj

 δ

s −
z∑

j=1

sj

 z∏
j=1

Pr−1(sj , Vj )

while Pr(s, V ) satisfies a similar recursion which is obtained from the previous one by
replacing z with z − 1 and f̂ z with fz,

Pr(s, V ) =
∑

z

fz

∑
V1,...,Vz−1

∑
s1,...,sz−1

δ

V − 1 −
z−1∑
j=1

Vj

 δ

s −
z−1∑
j=1

sj

 z−1∏
j=1

Pr−1(sj , Vj ).

(23)

Clearly the expectation value of sr (o) on trees with V nodes is now given by

〈sr〉V =
∑

s sP̂ r (s, V )

P̂ (V )
= ÊV

r [s]

P̂ (V )
(24)

where ÊV
r [s] is defined as the weighted sum in the first numerator. Analogously we can define

EV
r [s] as

EV
r [s] =

∑
s

sPr(s, V )

and the two generating functions

Êλ
r [s] =

∑
V

λV ÊV
r [s] Eλ

r [s] =
∑
V

λV EV
r [s].

A recursion equation for the latter can be found using equation (23)

Eλ
r [s] =

∑
V

λV
∑

s

sPr(s, V )

= λ
∑

z

fz

∑
V1,...,Vz−1

∑
s1,...,sz−1

(
z−1∑
k=1

sk

)
z−1∏
j=1

λVj Pr−1(sj , Vj )

= λ
∑

z

fz(z − 1)Eλ
r−1[s]G(λ)z−2

= λg′(G(λ))Eλ
r−1[s]

and one for Êλ
r [s] is similarly obtained

Êλ
r [s] = λĝ ′(G(λ))Eλ

r−1[s] = N1λg(G(λ))Eλ
r−1[s].
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Since s0(o) = 1, EV
0 [s] is equal to P(V ), so that the initial condition reads

Eλ
0 [s] = G(λ).

Then, for r � 0, the solutions read

Eλ
r [s] = G(λ)[λg′(G(λ))]r

Êλ
r [s] = N1λG(λ)g(G(λ))[λg′(G(λ))]r−1.

(25)

Now 〈sr〉V can be easily found, but we have to consider the cases β > 3 and β < 3 separately.
For β > 3 the λ → 1 asymptotic expansion of Êλ

r [s] reads

Êλ
r [s] � N1

[
1 − (2 + 2c2(r − 1))c

−1/2
2 (1 − λ)1/2

]
which implies the large V limit of 〈sr〉V

〈sr〉V � 2 + 2c2(r − 1).

For 2 < β < 3 we have, instead,

Êλ
r [s] � N1[1 − (r − 1)(β − 1)c1/(β−1)

∗ (1 − λ)(β−2)/(β−1)]

and

〈sr〉V � k1(β)(r − 1)V ν (26)

where

k1(β) = (β − 1)c2/(β−1)
∗

�(−1/(β − 1))

�(−(β − 2)/(β − 1))
.

In the first case the V → ∞ limit is finite, while in the second one we find a divergence,
as expected. To understand how equation (26) relates with the known dc, we now calculate
higher moments of sr . First of all, we generalize the notation P̂ r (O, V ), ÊV

r [O] and Êλ
r [O]

to every observable O

P̂ r (O, V ) = Pr[Or(x) = O, |T | = V ]

ÊV
r [O] =

∑
O

OP̂ r(O, V )

Êλ
r [O] =

∑
V

λV ÊV
r [O]

together with their branch counterparts Pr(O, V ),EV
r [O] and Eλ

r [O]. Now it is easy to show
that the recurrence rule for Êλ

r [s2] reads

Êλ
r [s2] = λĝ ′(G(λ))Eλ

r−1[s2] + λĝ ′′(G(λ))
(
Eλ

r−1[s]
)2

.

Thus for 2 < β < 3 the second moment is found to read〈
s2
r

〉
V

� k2(β)(r − 1)V ν+1/(β−1)

where k2(β) is some function of β only.
For all higher moments Êλ

r [sn] we find, as a general rule, that the single Eλ
r−1[sn] on the

right-hand side is multiplied by λĝ ′(G(λ)) while the products of kEλ
r−1[·] are multiplied by

λĝ (k)(G(λ)). Moreover the equations for Eλ
r [O] are the same as those for Êλ

r [O] with ĝ(·)
substituted by g(·). Therefore we obtain for all higher moments, up to the leading terms in
the λ → 1 limit,

Êλ
r [sn] � λĝ ′(G(λ))Eλ

r−1[sn] + · · ·
Eλ

r [sn] � λg′(G(λ))Eλ
r−1[sn] + λg(n)(G(λ))Eλ

r−1[s]
n

+ · · · . (27)
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Figure 2. The symbols correspond to all possible combinations of r = 10, 20, 30, 40, 50 (using
the same symbol) and V = 1, 2, 4, 8 × 106 (using different symbols as explained in the legend).

(This figure is in colour only in the electronic version)

This entails the final result〈
sn
r

〉
V

� kn(β)(r − 1)V ν+(n−1)/(β−1)

which is compatible with a scaling form for the sr probability just given by a finite-size scaling
of the one found in section 3.1, that is

P̂ r (s|V ) = P̂ r (s, V )

P̂ (V )
� 1

rdc−1
q

(
s

rdc−1
,
rdc

V

)
where dc is the already known local connectivity dimension

dc = β − 1

β − 2

and the function q(x, y) is such that∫
xnq(x, y) dx � y(β−2−n)/(β−1).

Similarly it is possible to calculate the finite volume moments of the volume vr(o) which
read 〈

vn
r

〉
V

∼ rn+1V (n+2−β)/(β−1). (28)

The proper scaling compatible with this result is

P̂ r (v|V ) � 1

rdc
p

(
v

rdc
,
rdc

V

)
(29)

if the moments of the scaling function p(x, y) behave as∫
xnp(x, y) dx � y(β−2−n)/(β−1).

Scaling (29) agrees with numerical simulations as shown in figure 2. For several different
values of r and V , we built 720 trees and calculated the volume v of radius r balls around 1000
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(for each tree) randomly chosen nodes. Thus different ‘experimental’ probability distributions
are found; we considered the integrated probability Qr(v|V ) = ∑

v′�v P̂ r (v|V ) and plotted the
values of v corresponding to Qr(v|V ) = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 (after the proper rescaling
by rdc ) versus rdc/V . For every one of the six values of Qr(v|V ), the points corresponding to
different values of r and V fall roughly on a curve, apart from statistical errors (fluctuations
are especially large for Qr(v|V ) = 0.9, due to the long power-law tail of P̂ r (v|V )), so that
the form (29) of the probability scaling is supported.

3.3. Probability of the average surface

In the bounded coordination case we were able to prove the auto-averaging property for every
local observable: the graph average O is non-fluctuating on infinite trees and coincides with
the expectation value 〈O〉 in the branching process around the origin [9, 16]. This implies
immediately that local and average connectivity dimensions coincide.

In the scale-free case the situation is more involved because many relevant expectation
values do not even exist on infinite trees, so that we cannot prove the auto-averaging property
in the same way. Thus, to determine the average connectivity dimension d̄c we will try to
directly investigate the probability distribution of the average surface sr in the large r limit. In
particular, we look for a scaling form of the type

Pr[sr = s] � 1

rd̄c−1
f

(
s

rd̄c−1

)
.

A very close approach is possible also for the average volume vr , but it is more involved and
will not be reported here.

The results of the previous section, together with equation (20), allow us to calculate only
the first moments of such a probability distribution. We now reconstruct it (at least its scaling
form) through the calculation of higher moments.

This can be done by introducing Sr , defined as the sum of sr (x) over all nodes x of a tree:

Sr =
∑
x∈T

sr (x).

Then on a finite-sized tree, the average surface sr is given by

sr = Sr

V

and its (finite-volume) moments are simply obtained,

〈(sr )n〉V =
〈
Sn

r

〉
V

V n
.

The recursive nature of the trees allows us again to find the composition rule for Sr in
terms of the values of Sr,j and the local surface sk,j (with k < r) relative to the j th branch
around the root o. It reads

Sr =
∑

j

Sr,j + 2sr−1,j +
r−2∑
k=0

∑
j ′ =j

sk,j sr−k−2,j ′

 . (30)

The recursion rule for the joint probability of Sr, s1, . . . , sr−1 and V easily follows from (30)
and the recursion rules for sr and V . With calculations similar to those of the previous section
one obtains

Êλ
r [S] = λĝ ′(G(λ))Eλ

r [S] + 2λĝ ′(G(λ))Eλ
r−1[s] + λĝ ′′(G(λ))

r−2∑
k=0

Eλ
k [s]Eλ

r−k−2[s]
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and, as usual, the equation for Eλ
r [S] which is equal to this one with all ĝ(·) substituted by

g(·). The expectation value

〈sr〉V = Êλ
r [S]

V P̂ (V )

is then obtained by straightforward calculations in the V → ∞ limit, and the result is equal
to the large V limit of 〈sr〉V , as expected (recall equation (20)).

The differences of course emerge when higher moments are considered, since sn
r = (sr )n

for n > 1. 〈(sr )2〉V can be obtained using the equations (only the leading terms are displayed)

Êλ
r [S2] � λĝ ′(G(λ))Eλ

r [S2] + · · ·
Eλ

r [S2] � λg′(G(λ))Eλ
r [S2] + λg′′(G(λ))Eλ

r [S]
2

+ λg(4)(G(λ))

r−2∑
k=0

r−2∑
k′=0

Eλ
k [s]Eλ

k′[s]Eλ
r−k−2[s]Eλ

r−k′−2[s] + · · ·

and turns out to read

〈(sr )2〉V �
{

(2 + 2c2(r − 1))2 for β > 3

k̄2(β)(r − 1)2V 2ν for 2 < β < 3

where k̄2(β) does not depend on r or V .
Then all the following moments can be calculated through the equations

Êλ
r [Sn] � λĝ ′(G(λ))Eλ

r [Sn] + · · ·
Eλ

r [Sn] � λg′(G(λ))Eλ
r [Sn] + λg′′(G(λ))

1

2

∑
j

n!

j !(n − j)!
Eλ

r [Sj ]Eλ
r

[
Sn−j

r

]
+ λg′′′(G(λ))

1

3!

∑
j,j ′

n!

j !j ′!(n − j − j ′)!
Eλ

r [Sj ]Eλ
r [Sj ′

]Eλ
r [Sn−j−j ′

]

+ · · · + λg(n)(G(λ))Eλ
r [S]

n

+ λg(2n)(G(λ))
∑

k1,...,kn

Eλ
k1

[s]Eλ
r−k1−2[s] · · ·Eλ

kn
[s]Eλ

r−kn−2[s] + · · · . (31)

From the leading singularity in 1 − λ, we read their asymptotic behaviour for large V :

〈(sr )n〉V �
{

(2 + 2c2(r − 1))n for β > 3

k̄n(β)(r − 1)nV nν for 2 < β < 3.
(32)

For β > 3, since all moments are powers of the same finite quantity, the probability
distribution for sr must be a delta function in the V → ∞ limit

Pr[sr = s] = δ(s − (2 + 2c2(r − 1)) = δ(s − 〈sr〉).
Thus in the thermodynamic limit the average does not fluctuate and coincides with the
expectation value for the surface around the root of the tree and the auto-averaging property is
verified for the observable sr . In particular we can extract the average connectivity dimension

d̄c = dc = 2.

Similarly the auto-averaging property can be verified for the volume; we expect it to hold in
general for every observable with a finite expectation value.

When 2 < β < 3 instead, from equation (32) we can read the following scaling form for
the average surface probability:

P̂ r (s |V ) � 1

rV ν
q

(
s

rV ν

)
. (33)
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This shows that for every V there exists a scaling form of the probability distribution of s for
all scale-free trees of size V , but it does not have a non-trivial standard thermodynamic limit.
Although sr diverges on infinite trees and the standard definition of average connectivity
dimension cannot be applied, we see that a V -independent probability exists for the
‘renormalized’ average surface s V −ν and that this scales according to the average connectivity
dimension d̄c = 2.

For finite trees a comparison can be made with the definition of dL (equation (6)): since
the average surface differs from the two-point function only through a normalization factor

g
(2)
V (r) ∝ 〈sr〉V ∝ r

our calculation not only confirms the value dL = 2; it also shows that this is not a property of
the first moment only, but it holds ‘in probability’, that is for every ‘generic’ scale-free random
tree.

4. Spectral dimension

In order to find the (local) spectral dimension of scale-free trees, we may repeat the approach
of [16] substituting fixed radius averages with fixed volume averages. The quantity

〈〈
φ2

x

〉〉
is given by a normalized Gaussian integral over all variables φy, y ∈ G; if we perform all
integrations except the one over φx , we are left with a last integral which is also Gaussian and
normalized, thanks to the self-reproducing property of Gaussian integrals. Therefore we can
define the effective squared mass µ(x) from the width of this last integral:〈〈

φ2
x

〉〉 = √
µ(x)

2π

∫
dφx φ2

x e−µ(x)φ2
x /2 = 1

2µ(x)
.

On a tree produced by a branching process the rules of Gaussian integration allow us to express
the effective squared mass of the root as a function of those of the branches [16]:

µ(x) = µ0 +
∑

y branches
of x

µ(y)

1 + µ(y)
. (34)

Similarly the effective squared mass of a branch can be expressed as a function of those of its
sub-branches, in a recursive way. Since the recursion rule for µ(x) is highly nontrivial we are
not able to find directly its probability distribution or its moments; instead we expand µ(x) in
powers of µ0 and consider the coefficients Vn

µ(x) =
∞∑

n=1

(−1)n+1Vn(x)µn
0.

Substituting this expansion in equation (34), recursion rules for the coefficients are obtained:

V1(x) = 1 +
∑

y branches
of x

V1(y)

V2(x) =
∑

y branches
of x

[V2(y) + V1(y)2]

and, in general

Vn(x) = δn,1 +
∑

y branches
of x

[Vn(y) + Fn(V1(y), V2(y), . . . , Vn−1(y))]
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where Fn is explicitly given in appendix B. The important feature which allows the calculation
of Vn moments is that the expression of Vn(x) is linear in the Vn(y).

Clearly V1 is just the volume V so that

〈V1〉V = V and
〈
V n

1

〉
V

= V n.

Now we need the averages 〈Vn〉V for n � 2. We use the same notation as in the previous
sections (P̂ (·), ÊV [·], Êλ[·], P (·), . . . ) with the only difference that now observables do not
depend on r.

Let us start with the expectation value of V2; equations for Êλ[V2] and Eλ[V2] can be
easily obtained in the same way as before,

Êλ[V2] = λĝ ′(G(λ))
[
Eλ[V2] + Eλ

[
V 2

1

]]
Eλ[V2] = λg′(G(λ))

[
Eλ[V2] + Eλ

[
V 2

1

]]
= [1 − λg′(G(λ))]−1λg′(G(λ))Eλ

[
V 2

1

]
. (35)

This is valid for any fz distribution, but now the 2 < β < 3 and β > 3 cases must be examined
separately.

When 2 < β < 3 we can read the asymptotic behaviour of 〈V2〉 from the leading 1 − λ

singularity in equation (35):

〈V2〉V = ÊV [V2]

P̂ (V )
∼ V (3β−4)/(β−1) V → ∞.

In a similar way it can be proved that (see appendix B for details)

〈Vn〉V = ÊV [Vn]

P̂ (V )
∼ V 1+(n−1)(2β−3)/(β−1) V → ∞. (36)

We can then write

〈µ〉V � µ0V F1(µ0V
(2β−3)/(β−1)). (37)

The existence of the thermodynamic limit [13] requires that F1(t) ∼ t−(β−1)/(2β−3) for t → ∞
so that the powers of V cancel out and a finite limit is obtained. After the V → ∞ limit, for
µ0 → 0 we have (see section 5 of [16] for a discussion on the order of the limits)

〈µ〉∞ = lim
V →∞

〈µ〉V ∝ µ
(β−2)/(2β−3)

0 µ0 → 0.

Equation (B3) in appendix B can be used to show that the higher moments of µ follow similar
scaling laws:

〈µn〉V � µn
0V

nFn(µ0V
(2β−3)/(β−1))

so that

〈µn〉∞ ∼ µ
n(β−2)/(2β−3)

0 µ0 → 0.

Since all moments are proportional to powers of the same quantity, we can say that there exists
a limit probability distribution for the scaled variable µµ

−(β−2)/(2β−3)

0 so that the local spectral
dimension reads

ds = 2
β − 1

2β − 3
for 2 < β < 3.

When β > 3 equation (35) allows us to write

〈V2〉V = ÊV [V2]

P̂ (V )
∼ V 5/2 V → ∞.
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All other moments are calculated in appendix B and, following the same steps as before, we
can write

〈µn〉∞ ∼ µ
n/3
0 µ0 → 0

so that

ds = 4
3 for β > 3

as in the bounded coordination case [16].
Finally, we note that in both cases the relation

ds = 2
dc

dc + 1
between the connectivity and the spectral dimension is fulfilled.

Appendix A. Details on probability distributions

In order to find the probability distributions for surface and volume we can follow the same
steps of [9]. If the proper scaling forms of the surface and volume generating functions
are substituted in their recursion rules, differential equations are obtained by consistency
requirements. The solutions are the Laplace transform of the scaled surface and volume
probability distributions. For β > 3 both Laplace transforms can be calculated, while for
2 < β < 3 only the surface probability Laplace transform and the asymptotic behaviour of
the volume can be obtained.

A.1. β > 3

When β > 3, dc is equal to 2 and we can write gr(λ) as

gr(e
−u/r ) = 1 − a(u)

r
+ · · · +

a∗(u)

rβ−2
+ · · · (A1)

with the condition

a(0) = 0 a′(0) = 1 (A2)

which follows from gr(1) = g′
r (1) = 1 and

a∗(u) � c∗uβ−1 for u → 0 (A3)

derived from equation (17). This expansion implies those of Gs
r(λ) and Pr[sr(o) = s]:

Gs
r(e

−u/r ) = a′(u) + · · · − a′
∗(u)

rβ−3
+ · · ·

Pr[sr(o) = s] = 1

r
φ
( s

r

)
+ · · · +

1

rβ−2
φ∗
( s

r

)
+ · · ·

(A4)

where φ(x) and φ∗(x) are the inverse Laplace transforms of a′(u) and a′
∗(u), respectively. The

analytic term φ(x) is the same as in the bounded case; the singular term φ∗(x), even if it is
suppressed by powers of r, is essential in order to reproduce the power-law tail. The functions
a(u) and a∗(u) are determined by inserting equation (A1) in the recurrence (15), and equating
the coefficients of the corresponding powers of r. Thus two coupled differential equations are
obtained (see [9] for details on the method in the case of bounded trees, when only a(u) is
required):

ua′(u) = a(u) − c2a(u)2

ua′
∗(u) = (β − 2)a∗(u) − 2c2a(u)a∗(u) + c∗a(u)β−1.
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The solution of the former, obtained with the use of the initial condition (A2), reads

a(u) = u

1 + c2u

while the general solution of the latter reads

a∗(u) = c∗
c2(β − 4)

uβ−2

[
k

(1 + c2u)2
− 1

(1 + c2u)β−2

]
.

The value of k is found by comparison with condition (A3) and turns out to be k = 1. The
inverse Laplace transforms φ(x) of a′(u) is

φ(x) = x

c2
2

e−x/c2

while only the asymptotic x → ∞ behaviour of φ∗(x) can be explicitly calculated:

φ∗(x) � Ax−(β−1).

Therefore, even if the contribution of φ∗(x) in equation (A4) is suppressed by powers of r, it is
the most important one for large x because of its power-law tail compared with the exponential
one of φ(x). Moreover, if β > 4 there are other lower order corrections before the singular
one; however, since their contribution in the Laplace transform Gs

r(exp(u/r)) is analytic for
u → 0, they are exponentially vanishing for large s/r . The large s tail is therefore due to the
singular term.

Similar calculations can also be done for the volume probability. The first step consists
in writing the expansion of hr(λ) with the proper scaling:

hr

(
e−ξ/r2) = 1 − b(ξ)

r
+ · · · +

b∗(ξ)

rβ−2
+ · · · (A5)

with the condition

b(0) = 0 b′(0) = 1 (A6)

which comes from hr(1) = 1 and h′
r (1) = r and

b∗(ξ) � c∗
β

uβ−1 (A7)

derived from equation (17). Inserting equation (A5) in the recurrence for hr(λ) (equation (16))
and equating the coefficients of corresponding powers of r, we obtain

2ξb′(ξ) = b(ξ) − c2b(ξ)2 + ξ

2ξb′
∗(ξ) = (β − 2)b∗(ξ) − 2c2b(ξ)b∗(ξ) + c∗b(ξ)β−1.

Their solutions, imposing conditions (A6) and (A7), can be found to read

b(ξ) =
√

ξ

c2
tanh

√
c2ξ

b∗(ξ) = c∗
2ξ

(√
ξ

c2
tanh

√
c2ξ

)β [
1 − β − 2

β

2F1(1, β/2; 1 + β/2; (tanh
√

c2ξ)2)

(cosh
√

c2ξ)2

]
where 2F1(a, b; c; z) is the hyper-geometric function; in our case it can also be written as

2F1(1, b; 1 + b; z) =
∞∑

n=0

b

b + n
zn. (A8)
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The volume probability Pr[vr(o) = v] and its generating function Gv
r (λ) now can be

written as

Gv
r

(
e−ξ/r2) = l(ξ)

(
1 + · · · − l∗(ξ)

rβ−3
+ · · ·

)
Pr[vr(o) = v] = 1

r2
�
( v

r2

)
+ · · · +

1

rβ−1
�∗

( v

r2

)
+ · · ·

where �(x) and �∗(x) are the inverse Laplace transforms of l(ξ) and l(ξ)l∗(ξ), respectively.
Probability normalization requires l(0) = 1 and l∗(0) = 0; the functions l(ξ) and l∗(ξ) are
related to b(ξ) and b∗(ξ) by the differential equations:

ξ l′(ξ) = −c2b(ξ)l(u)

2ξ l′∗(ξ) = (β − 3)l∗(ξ) − 2c2b∗(ξ) + c∗(β − 1)b(ξ)β−2.

The solution of the former is found in [9] and reads

l(ξ) = 1

(cosh
√

c2ξ )2

while for the latter we obtain

l∗(ξ) = c∗
c2

(
ξ

c2

)(β−3)/2 [
tβ−1

2F1

(
1,

β − 1

2
; β + 1

2
; t2

)
+ tβ+1 β − 1

β + 1
2F1

(
1,

β + 1

2
; β + 3

2
; t2

)
− tβ+1 β − 2

β
2F1

(
1,

β

2
; 1 +

β

2
; t2

)]
where t = tanh

√
c2ξ . The solution l∗(ξ) can also be written as a power series using

equation (A8),

l∗(ξ) = c∗
c2

(
ξ

c2

)(β−3)/2
[
(β − 1)

∑
n

tβ−1+2n

β − 1 + 2n
+
∑

n

tβ+1+2n(2n + 2)

(β + 2n)(β + 1 + 2n)

]
from which we can extract the asymptotic behaviour for vanishing ξ

l∗(ξ) � c∗ξβ−2.

These results imply �(x) has an exponentially vanishing x → ∞ tail (see [9])

�(x) � π2x

c2
2

e−π4x/(4c2)

while �∗(x) has a power-law one

�∗(x) � Ax−(β−1).

Therefore we may repeat the same consideration as in the surface probability calculation: even
if �∗(x) is suppressed by powers of r, it is the most important term for large v/r2.

A.2. 2 < β < 3

In this case the expansion of gr(λ) reads

gr

(
exp

(
− u

r1/(β−2)

))
= 1 − a(u)

r1/(β−2)
+ · · · (A9)

with the conditions

a(0) = 0 and a′(0) = 1. (A10)
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The surface probability distribution and its generating function Gs
r(λ) can then be written as

functions of scaled variables as

Pr[sr(o) = s] = 1

rdc−1
φ
( s

rdc−1

)
+ · · ·

Gs
r(exp(−u/rdc−1)) = a′(u) + · · ·

where φ(x) is the inverse Laplace transform of a′(x). As before, by substituting equation (A9)
in the recurrence equation for gr(λ) and by equating the numerators of the subleading terms,
we obtain the differential equation

ua′(u) = a(u) − c∗(β − 2)a(u)β−1.

The solution, using conditions (A10), reads

a(u) = u

[1 + c∗(β − 2)uβ−2]1/(β−2)
. (A11)

Now, from the asymptotic behaviour of a′(u)

a′(u) = [1 + c∗(β − 2)uβ−2]−(β−1)/(β−2) �
{

1 − c∗(β − 1)uβ−2 for u → 0

[c∗(β − 2)]−(β−1)/(β−2)u−β+1 for u → ∞
we can determine that of the scaling function φ(x)

φ(x) ∼
{

x−(β−1) for x → ∞
xβ−2 for x → 0

which has the expected power-law behaviour.
Let us now turn to the volume probability. The conditions hr(1) = 1 and h′(r) = r lead

to the expansion

hr(exp(−ξr−dc)) = 1 − b(ξ)

rdc−1
+ · · ·

with

b(0) = 0 b′(0) = 1. (A12)

The differential equation for b(ξ) is found by substituting this expansion in the recurrence
(16); it reads

(β − 1)ξb′(ξ) = b(ξ) − c∗(β − 2)b(ξ)β−1 + (β − 2)ξ. (A13)

By direct substitution one can easily verify that

b(ξ) = (ξ/c∗)1/(β−1)

is a solution, but does not satisfy the second condition of equation (A12). However, we obtain
a separable differential equation if we let b(ξ) = ξ 1/(β−1)b̄(ξ),

b̄′(ξ) = β − 2

β − 1
(1 − c∗b̄(ξ)β−1)ξ

− 1
β−1 .

The solution is now implicitly given by

b̄2F1

(
1,

1

β − 1
; β

β − 1
; c∗b̄β−1

)
= ξ

β−2
β−1

∞∑
k=0

1

1 + k(β − 1)
ck
∗b̄

1+k(β−1) = ξ
β−2
β−1 .
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This allows us to determine the asymptotic behaviour of the solution b(ξ)

b(ξ) ∼
{

ξ − (c∗/β)ξβ−1 for ξ → 0

ξ 1/(β−1) for ξ → ∞.

The volume probability and its scaled generating function can now be written as

Gv
r (exp(−ξ/rdc)) = l(ξ) + · · ·

Pr[vr(o) = v] = 1

rdc
�
( v

rdc

)
+ · · ·

where l(ξ) is the Laplace transform of �(x). As before l(0) = 1 by normalization and l(ξ) is
obtained from the differential equation

ξ l′(ξ) = −c∗(β − 2)l(ξ)b(ξ)β−2. (A14)

The small and large ξ asymptotic behaviour of l(ξ) can be obtained from that of b(ξ),
and read

l(ξ) �
{

1 − c∗ξβ−2 for ξ → 0

exp(−c∗(β − 1)ξ (β−2)/(β−1)) for ξ → ∞.
(A15)

Therefore the asymptotic behaviour of �(x) reads

�(x) ∼
{
x−(β−1) for x → ∞
x−β/2 exp(−kx2−β) for x → 0

with

k = cβ−1
∗ (β − 2)β−2.

The probability distribution is exponentially vanishing for small volumes and it has a power-
law tail with exponent 1 − β, as expected.

Appendix B. Vn moments

First of all, let us write the explicit form of Fn(V1, V2, . . . , Vn−1),

Fn(V1, V2, . . . , Vn−1) =
n∑

k=2

n−1∑
n1=1

. . .

n−1∑
nk=1

δ

n −
k∑

j=1

ni

 k∏
j=1

Vnj
.

Now we can write an expression for EV [Vn] and its generating function Eλ[Vn] involving only
V1, V2, . . . , Vn−1:

EV [Vn] =
∑

z

fz

∑
{Vk,j }

δ

V1 − 1 −
∑

j

V1,j


×
∑

j

{Vn,j + Fn(V1,j , V2,j , . . . , Vn−1,j )}
∏
j

P ({Vk,j })

=
∑

z

fz

∑
V1,j

δ

V1 − 1 −
∑

j

V1,j


×
∑

j

{
EV1,j [Vn] + EV1,j [Fn(V1, V2, . . . , Vn−1)]

} ∏
j ′ =j

P (V1,j ′)
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Eλ[Vn] = λ
∑

z

fz(z − 1){Eλ[Vn] + Eλ[Fn(V1, V2, . . . , Vn−1)]}G(λ)z−2

= λg′(G(λ)){Eλ[Vn] + Eλ[Fn(V1, V2, . . . , Vn−1)]}
= [1 − λg′(G(λ))]−1λg′(G(λ))Eλ[Fn(V1, V2, . . . , Vn−1)].

This shows that Eλ[Vn] is more singular than Eλ[Fn(V1, V2, . . . , Vn−1)], which has now
to be calculated. To do this we need an expression for the generic multiple moment
Eλ
[
V

k1
1 V

k2
2 · · ·V kn

n

]
. First of all, note that powers of V1 can be extracted, that is

EV
[
V

k1
1 V

k2
2 · · ·V kn

n

] = V k1EV
[
V

k2
2 · · ·V kn

n

]
.

The recurrence rule for Eλ
[
V

k2
2 · · ·V kn

n

]
reads

Eλ
[
V

k2
2 · · · V kn

n

] = [1 − λg′(G(λ))]−1

λg′(G(λ))

n∑
j=2

Eλ
[
V

k2
2 . . . kjV

kj −1
j Fj · · · V kn

n

]
+ λg′′(G(λ))

∑
kj,1,kj,2

Eλ
[
V

k2,1

2 · · · V kn,1
n

]
Eλ
[
V

k2,2

2 · · · V kn,2
n

]
+ · · ·

+ λg(N)(G(λ))
∑

kj,1,...,kj,N

N∏
l=1

Eλ
[
V

k2,l

2 · · · V kn,l

n

] (B1)

where N = ∑
j kj , the sums over kj,l are such that

∑
l kj,l = kj , and only most singular terms

are kept. Equation (B1) can be recursively used; the moments on the right-hand side involve
either products with fewer terms or lower j Vj so that we end with moments of V1, which are
trivial.

The general expression of Eλ
[
V

k2
2 · · ·V kn

n

]
for both 2 < β < 3 and β > 3 cases

Eλ
[
V

k1
1 V

k2
2 · · ·V kn

n

] �
{

(1 − λ)[1−∑j kj ((2β−3)j−β+2)]/(β−1) 2 < β < 3

(1 − λ)
1
2 − 1

2

∑
j kj (3j−1) β > 3

(B2)

can now be proved by induction. Substituting equation (B2) on the right-hand side of
equation (B1), we see that all terms have the same singular behaviour when 2 < β < 3,
while the g′(G(λ)) and g′′(G(λ)) terms are the leading order ones for β > 3.

The branch probability moments just calculated are related to the tree probability ones by

Êλ[Vn] = λĝ ′(G(λ))[Eλ[Vn] + Eλ[Fn(V1, V2, . . . , Vn−1)]]

= λĝ ′(G(λ))Eλ[Vn] + · · ·
and

Êλ
[
V

k2
2 · · · V kn

n

] = λĝ ′(G(λ))Eλ
[
V

k2
2 · · · V kn

n

]
+ · · · .

Therefore Êλ
[
V

k1
1 · · · V kn

n

]
has the same asymptotic behaviour (equation (B2)) as

Eλ
[
V

k1
1 · · · V kn

n

]
. This implies the following asymptotic behaviour of ÊV

[
V

k1
1 V

k2
2 · · ·V kn

n

]
ÊV

[
V

k1
1 V

k2
2 · · ·V kn

n

] �
{

V [
∑

j kj ((2β−3)j−β+2)−β]/(β−1) 2 < β < 3

V
1
2

∑
j kj (3j−1)− 3

2 β > 3

and finally 〈
V

k1
1 V

k2
2 · · ·V kn

n

〉
V

�
{

V
∑

j kj ((2β−3)j−β+2)/(β−1) 2 < β < 3

V
1
2

∑
j kj (3j−1) β > 3.

(B3)
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