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SUMMARY  

The sample mean difference ∆̂ is an unbiased estimator of Gini’s mean difference ∆. It is well 
known that ∆̂ is asymptotically normally distributed (Hoeffding, 1948). In order to obtain 
confidence intervals for ∆, ∆̂ must be standardized and hence its variance Var( ∆̂ ) must be 
estimated. In this paper we study the effective coverage of the confidence intervals for ∆, when 
using a specific unbiased estimator )ˆ(arV̂ ∆  for the variance of ∆̂ , in a non-parametric 
framework. The empirical determination of the minimum sample size required to reach a good 
approximation of the nominal coverage is analyzed through a new approach. The reported results 
show that this threshold is critically related to the asymmetry and the tail heaviness in the 
underlying distribution.  
 
Keywords: Gini’s Mean Difference, asymptotic confidence interval, U-statistic, minimum sample 
size, heavy tails. 

1. INTRODUCTION  

The mean difference, defined as the average of the absolute differences of all pairs 
of values in a population, is a measure of dispersion suggested in 1912 by C. 
Gini.  Among variability measures, Gini’s mean difference, denoted in the 
following by ∆, is not so widely employed as the standard deviation σ is. The broad 
diffusion of the standard deviation, in effect, is mainly due to some well-known 
interesting properties of its square, the variance 2σ , from both descriptive and 
inferential points of view.  

The remarkable work due to Hoeffding (1948) opened a new perspective for the 
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mean difference ∆: the author derived the normal asymptotic distribution of its 
natural estimator ∆̂ , under the sole condition of the existence of the second 
moment of the underlying distribution F. The variance of ∆̂  was first obtained by 
Nair (1936) by means of the order statistics; successively Lomnicki (1952) derived 
it in a more straightforward way. The variance of ∆̂  can be expressed as a function 
of the sample size n and of some regular functionals of F. Moreover an unbiased 
estimator ( )∆̂arV̂  of Var( ∆̂ ) is known (Hoeffding (1948), Cowell 1989 and, 
through a different approach, Zenga, Polisicchio and Greselin, 2004). 

The literature about confidence intervals for concentration and inequality 
measures1 is wide (see Mills and Zandvakili (1997), Sendler (1979), Xu (2000), 
among many others). The use of bootstrap resampling techniques -  which estimate 
the standard error and the sample distribution of inequality estimators directly 
through the empirical distribution function of the sampled data - is often compared 
to some asymptotic methods (Biewen (2002)), where the variance of the indexes is 
estimated by the delta method, obtaining a strongly consistent estimator (see, 
among many others, Sendler (1979), Cowell and Flachaire (2002), Zitikis (2002)). 
To our best knowledge, in the wider context of variability indexes, Gini’s mean 
difference has not received an analogous attention. 

The specific contribution of the present work is hence to provide, in a non 
parametric framework and through an original methodology, the minimum samples 
sizes such that the coverage of the asymptotic confidence intervals for ∆ is close to 
the nominal value. The paper is organized as follows: in section 2 some definitions 
and notations are introduced; in section 3 and 4 the methodology is presented in 
detail; section 4 deals also with the results of some simulation and their 
interpretation; section 5 shows some further analyses and finally section 6 
concludes and points out some possible developments.  

2. NOTATIONS AND DEFINITIONS 

Let X  be a continuous random variable (c.r.v.)  with probability density function 
f(x), for x ∈R. Gini’s mean difference ∆ is defined by: 

 ∫ ∫
+∞

∞−

+∞

∞−

−=∆ dydx)y(f)x(fyx  (1) 

Let D(x) be the mean deviation of the c.r.v. X about x:  

                                                 
1 As it is well known, concentration is a specific branch of variability, concerning transferable 

variables. 
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It is easy to show that: 

 ∫
+∞

∞−

=∆ dx)x(f)x(D  (3) 

Moreover, the following functional, as a population characteristic:  

 ∫= .dx)x(f)x(D2F  (4) 

will be useful for the expression of Var( ∆̂ ). 
Let µ and σ2 denote, respectively, the expectation and the variance of the c.r.v. X. 

In this paper, it is assumed that σ2 is finite. 
 
Denote by (X1,..,Xi,..,Xn) a random sample of size n (n > 3) from the c.r.v. X.  Let 

∆̂  denote the sample mean difference without repetition, unbiased estimator of ∆: 

 .XX
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The variance of ∆̂ , when sampling from a c.r.v., is given by: 

 ( ) 

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 ∆−−−+
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)n(n
ˆVar Fσ  (7) 

as derived in Nair (1936) and in Lomnicki (1952). ∆̂ is hence a mean squared 
error consistent estimator of ∆.  

In (7) the variance of ∆̂  is expressed as a function of the sample size n, the 
variance σ2, the functional F and the square of Gini’s mean difference. An unbiased 
estimator ( )∆̂arV̂  for ( )∆̂Var  was proposed by Michetti and Dall’Aglio (1957) 
(successively Cowell (1989) and, recently, Zenga et al. (2004) derived it through a 
different methodology):  
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where  S2 and F̂  are unbiased estimators of 2σ and F,  respectively given by: 
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3. CONFIDENCE INTERVALS FOR DELTA  

Confidence intervals for ∆ can be obtained by the sample statistic: 
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(11) 

Like the variance σ2, Gini’s mean difference ∆ and F are regular functionals, 
hence the corresponding U-statistics, respectively given by S2, ∆̂  and F̂ , converge 
almost surely to their mean values, by the U-statistics convergence theorem, 
generalizing the strong law of large numbers, in Lee (1990). This fact assures the 
strong convergence of ( )∆̂arV̂  to Var( ∆̂ ), so that, for Slustky’s theorem,  T has a 
standard normal asymptotic distribution. 

4. A NEW METHODOLOGY FOR CONFIDENCE INTERVALS FOR DELTA   

We are interested in distribution free confidence intervals for ∆, as an unbiased 
estimator ∆̂  for ∆, with normal asymptotic distribution, is available. Under these 
circumstances, the pivotal quantity method provides confidence intervals having – 
asymptotically – the chosen confidence level.  

In applications, as a real sample has a finite size n, the issue of a possible 
difference between the nominal asymptotical confidence level (1-α) and the 
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effective coverage np might be raised. Depending on how far the sample 

distribution of the statistic n∆̂ is from its asymptotic approximation, the confidence 
interval based on the normal distribution may give a coverage far from (often lower 
than) the nominal confidence level. 

 
Hence, a methodology to evaluate the minimum sample size allowing a good 

approximation of the nominal confidence level seems to be very useful in 
applications. In this paper, simulations from different underlying distributions will 
be generated to explore whether the above discussed convergence is uniform or not. 
 

The methodology can be described as follows: 
• a sample size n is chosen; 
• a series of N samples of size n is generated, from a given underlying 

distribution; 
• for each sample, the (1-α)-confidence interval ( )∆±∆ −

ˆˆzˆ σα 21  is computed, 

denoting by ( )∆̂σ̂  the square root of ( )∆̂arV̂ . A point estimation np̂  of the 
effective coverage np , defined as the ratio of the number of intervals 
containing  ∆ over N, is also evaluated. 

 
In general, the effective unknown coverage np , estimated by np̂ , depends on the 

chosen sample size n, the (1-α)-confidence level and the underlying distribution. In 
any case, =

∞→ nn
plim (1-α).  

Relying on the assumption that (as in most applications) some coverage error 
with respect to the nominal confidence level 1-α  is tolerable, hence, according to 
the needs of the researcher, an interval of values can be defined: 

 ( )21 11 γαγα +−−− ;                for ∈21 γγ , R+ (12) 

so that an effective coverage that falls in it can be considered as a satisfactory 
approximation of the nominal coverage 1-α.  

 
The estimator np̂ , being defined as a sample frequency, is such that: 

 ( ) nn pp̂E =          and            ( ) ( ) N/ppp̂Var nnn −= 1 . (13) 

When large values for N are chosen (for example N=5000), np̂ can then be 
approximated by a normal distribution. 

 
The issue is now to distinguish good values np̂ from unacceptable ones. As the 
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estimates np̂ arise from simulations, they vary among different runs. Therefore a 
testing procedure is needed, in order to distinguish fluctuations of np̂  due to 
sampling variability from substantial differences in estimation.  

Our aim is to identify the sample size n assuring that the effective coverage is 
higher than the minimum acceptable value, so we want to test: 

 
H0 : np ≥ 11 γα −−   
 
against the alternative: 
 
H1 : np < 11 γα −− . 
 
The choice of Ho and H1 relates to the need of preventing undercoverage, due to 

some skewness observed in the sample mean difference distribution (Greselin and 
Zenga, 2006). 

A critical region of size δ  for the chosen set of hypotheses is given by: 

 ( )( )






 +−−−−−−=< − N/z

N
c|cp̂n 1111 1

2
11 γαγαγα δ  (14) 

where the threshold c can be also obtained by the continuity correction 
(Newcombe, 1998).  

From now on, after setting γ1 = kα  and choosing k = 0.10 and δ  = 0.05, the 
threshold c takes the values highlighted in Table 1, for some fixed values of the 
coefficient 1-α. 

TABLE 1.  Critical thresholds c for the test of size δ  to verify H0 (where γ1=kα) 

  1-α 
k δ 0.9 0.925 0.95 0.975 0.99 

0.05 0.10 0.8893 0.9163 0.9434 0.9708 0.9876 
0.10 0.10 0.8842 0.9124 0.9408 0.9694 0.9870 
0.15 0.10 0.8791 0.9086 0.9382 0.9681 0.9865 
0.20 0.10 0.8740 0.9047 0.9356 0.9668 0.9859 
0.05 0.05 0.8878 0.9149 0.9422 0.9699 0.9870
0.10 0.05 0.8826 0.9110 0.9396 0.9686 0.9865
0.15 0.05 0.8775 0.9071 0.9370 0.9673 0.9859
0.20 0.05 0.8723 0.9032 0.9344 0.9659 0.9854
0.05 0.01 0.8848 0.9123 0.9401 0.9684 0.9860
0.10 0.01 0.8796 0.9083 0.9374 0.9670 0.9855
0.15 0.01 0.8744 0.9044 0.9347 0.9657 0.9849
0.20 0.01 0.8692 0.9005 0.9321 0.9643 0.9844

 
The reported simulations were obtained by a software program written in C++, 

using pseudorandom numbers generated by the IMSL statistical library. For each 
continuous population, N = 5000 random samples, of different sample sizes from  
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n = 50 up to 2500, were generated. Simulations given by 5000 runs have been 
performed, to ensure a negligible Monte Carlo error. With reference to the s.q.m of 
the estimator np̂ , the approximation error is of order N-1/2, so that, throughout all 

our simulations, the worst mean MC relative error resulted in estimating, say F̂ , is 
1,7%, attained for the Pareto distribution with the heaviest tail. 

The results of the obtained simulations are summarized in a separate table, for 
each chosen continuous population. Each row of a table shows the Monte Carlo 
coverages of confidence intervals for ∆  and for µ, for a fixed sample size n and 
some selected confidence levels.  

Our study deals with six underlying distributions: the normal, the uniform, the 
exponential, the lognormal, the Pareto, and the Dagum distribution. This choice is 
justified by their wide employment as models for real data and by the aim of 
considering different conditions of asymmetry and tail heaviness in the underlying 
distributions. 

For the normal, uniform and exponential distribution, only one set of parameters 
is considered, as their shape indicators (i.e. the third and fourth standardized 
moments) do not depend on them. It is easy to show that any choice for their values 
would then yield the same results on the true (and estimated) coverages. 

Along with the exponential, a second asymmetric case is represented by the 
lognormal distribution, whose density function is here recalled: 

 
.e

x
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Three sets of parameters are examined in this case:  
- the first set is obtained by considering a real economic distribution, i.e. the 

Italian income and expenses data (Banca d’Italia, 2002), giving γ = 10 and δ = 0.5.  
- the second set, γ = 10 and δ = 0.35829, is chosen so that Gini’s concentration 

ratio R is close to 0.2. This choice, along with the first and the third set (respectively 
giving R~0.3 and R~0.4) provides hence a wide view of real distributions.  

- the third set is given by γ = 10 and δ = 0.74161. 
The results obtained for the exponential and the lognormal distribution are then 

related to an increasing asymmetry, in some distributions owning all moments.  
Many parametric distributions are heavy tailed, by which is meant that the upper 

tail decays like a power function. The Dagum and the Pareto distributions provide a 
framework in which the existence of moments, depending on the choice of the 
related parameters, can influence the coverage of confidence intervals for ∆.  

The Dagum distribution has density function: 

 
( )
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In a first case, the parameters are chosen by fixing a coefficient of variation close 
to  0.6 - as in real economic distributions - so that  λ = 1, β = 1 and θ  = 3.6. The 
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second case is given by λ = 1, β = 1 and θ = 5, to obtain a coefficient of variation 
σ/µ ~ 0.4 (also in the range of values observed in real economic distributions) and a 
heavier right tail.  

For the Pareto distribution, with density function: 

 )1(
0)( +−= θθθ xxxf    for x ≥ x0 , where x0 >0 and θ >0,  

the parameters were set as follows: x0 = 1 and θ = 3, in a first case, and x0 = 1 and 
θ = 4 in a second set, respectively yelding  R = 0.2 and R = 0.33, give the chance to 
evaluate how the existence of moments can influence the coverage. 

4.1. Symmetric distributions: normal and uniform  

Table 2 shows the estimated coverage of confidence intervals for ∆  and for 
µ, based on N = 5000 random samples drawn from the normal distribution2 N(µ = 
0.0; σ = 5.0).  

TABLE 2.  Simulated percent coverage for different sample sizes n  and confidence 
levels (1−α) (normal distribution) 

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8844 0.9078 0.9346 0.9618 0.9756 0.8962 0.9156 0.9488 0.9692 0.9864 
100 0.8926 0.9106 0.9400 0.9626 0.9862 0.8918 0.9188 0.9410 0.9754 0.9894 
150 0.8914 0.9232 0.9428 0.9706 0.9844 0.8966 0.9194 0.9534 0.9758 0.9910 
250 0.8958 0.9220 0.9454 0.9704 0.9868 0.8918 0.9222 0.9476 0.9800 0.9896 
500 0.8982 0.9220 0.9442 0.9736 0.9876 0.8998 0.9234 0.9522 0.9722 0.9890 
750 0.8914 0.9232 0.9472 0.9736 0.9912 0.9078 0.9250 0.9530 0.9738 0.9902 

1000 0.8960 0.9208 0.9514 0.9746 0.9900 0.9020 0.9234 0.9464 0.9742 0.9882 
1250 0.9050 0.9274 0.9482 0.9756 0.9910 0.9060 0.9234 0.9482 0.9712 0.9894 
1500 0.9008 0.9210 0.9470 0.9760 0.9866 0.9006 0.9216 0.9514 0.9792 0.9918 
1750 0.8972 0.9264 0.9468 0.9744 0.9888 0.8988 0.9206 0.9468 0.9752 0.9924 
2000 0.9060 0.9260 0.9486 0.9786 0.9904 0.8960 0.9266 0.9478 0.9768 0.9904 
2250 0.9042 0.9226 0.9490 0.9704 0.9890 0.8954 0.9250 0.9498 0.9766 0.9892 
2500 0.8988 0.9276 0.9484 0.9736 0.9908 0.9032 0.9160 0.9504 0.9786 0.9904 
 
In the tables presented in this Section, every simulated coverage is highlighted 

whenever it falls in the acceptance region for H0, as described in Section 3.  
Almost all the entries in Table 2 are highlighted: the coverage of confidence 

intervals based on X  are hence satisfactory from a threshold of n = 100, while n = 

                                                 
2 For comparability reasons, the proposed methodology is applied to all the considered 
distributions, although in the normal case exact confidence intervals based on the studentized 
mean are well known. However, notice that as n increases, the difference between the two 
approaches becomes negligible.  
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150 is suggested for a good coverage of intervals based on ∆̂ . 
Table 3 shows, in the case of sampling from the uniform distribution, the 

estimation of the effective coverage: the threshold of 150 is here confirmed, for 
both confidence intervals. 

TABLE 3.  Simulated percent coverage for different sample sizes n and confidence 
levels (1−α) (uniform distribution)  

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8838 0.9088 0.9394 0.9674 0.9830 0.8942 0.9240 0.9454 0.9664 0.9858 
100 0.8948 0.9128 0.9488 0.9660 0.9854 0.8958 0.9244 0.9450 0.9710 0.9862 
150 0.8994 0.9294 0.9458 0.9730 0.9906 0.9024 0.9286 0.9512 0.9744 0.9868 
250 0.9016 0.9222 0.9452 0.9742 0.9898 0.8960 0.9198 0.9466 0.9724 0.9922 
500 0.8892 0.9266 0.9496 0.9724 0.9890 0.9050 0.9234 0.9468 0.9724 0.9906 
750 0.8960 0.9224 0.9500 0.9720 0.9910 0.9010 0.9292 0.9478 0.9750 0.9904 

1000 0.8924 0.9266 0.9488 0.9794 0.9888 0.8958 0.9296 0.9500 0.9784 0.9910 
1250 0.8978 0.9230 0.9426 0.9776 0.9908 0.9012 0.9260 0.9542 0.9752 0.9914 
1500 0.9034 0.9204 0.9542 0.9760 0.9916 0.8958 0.9274 0.9478 0.9754 0.9892 
1750 0.9034 0.9256 0.9466 0.9726 0.9896 0.9026 0.9248 0.9460 0.9752 0.9904 
2000 0.8972 0.9200 0.9536 0.9746 0.9904 0.9056 0.9272 0.9492 0.9766 0.9908 
2250 0.8974 0.9290 0.9482 0.9728 0.9912 0.8994 0.9214 0.9518 0.9744 0.9916 
2500 0.9048 0.9230 0.9542 0.9738 0.9884 0.9018 0.9244 0.9508 0.9752 0.9900 

4.2. Asymmetric distributions: exponential and lognormal  

The estimated coverages in Table 4  were obtained through simulations on the 
exponential distribution with λ = 0.2.  

TABLE 4.  Simulated percent coverage for different sample sizes n and confidence 
levels (1-α) (exponential distribution)  

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8512 0.8742 0.9028 0.9284 0.9508 0.8792 0.9122 0.9314 0.9548 0.9772 
100 0.8720 0.8926 0.9282 0.9514 0.9684 0.8858 0.9150 0.9446 0.9670 0.9814 
250 0.8836 0.9118 0.9402 0.9652 0.9780 0.8912 0.9206 0.9436 0.9698 0.9854 
500 0.8910 0.9176 0.9436 0.9706 0.9838 0.9006 0.9254 0.9454 0.9728 0.9892 
750 0.8986 0.9216 0.9490 0.9664 0.9876 0.8944 0.9262 0.9488 0.9702 0.9900 

1000 0.8996 0.9200 0.9442 0.9732 0.9848 0.9052 0.9192 0.9458 0.9750 0.9866 
1250 0.8978 0.9228 0.9458 0.9744 0.9894 0.9004 0.9246 0.9508 0.9732 0.9892 
1500 0.8924 0.9216 0.9460 0.9722 0.9864 0.8918 0.9270 0.9524 0.9704 0.9892 
1750 0.8966 0.9256 0.9488 0.9718 0.9892 0.8998 0.9224 0.9502 0.9712 0.9880 
2000 0.9042 0.9236 0.9476 0.9752 0.9882 0.9014 0.9306 0.9486 0.9756 0.9900 
2250 0.8936 0.9240 0.9486 0.9782 0.9874 0.8940 0.9236 0.9518 0.9792 0.9870 
2500 0.8970 0.9278 0.9482 0.9712 0.9890 0.8932 0.9306 0.9480 0.9716 0.9888 
 
For the exponential distribution, the minimum sample size for the Gini mean 
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difference confidence interval is of 250 units at the lowest nominal confidence level 
0.9, and it raises to 750 units for higher confidence levels. The threshold sample 
size for the mean confidence interval is also increasing from 100 to 500 units as the 
nominal confidence level ranges from 0.9 to 0.99.  

 
Tables 5, 6 and 7 (below) report the results obtained for another asymmetric 

distribution still possessing all moments, the lognormal distribution. Recall that, as 
described in the previous Section, three sets of parameters deserve here our 
attention.  

 
For these three cases, as the parameter δ  ranges from δ = 0.35829 to δ = 0.5 and 

to δ = 0.74161, the coefficient of skewness, given by the third standardized moment 
3

31 σµβ = , increases from =1β 0.6555 to =1β 0.9658 and to =1β 1.6545. As 
asymmetry increases, larger samples are hence required for a satisfactory 
approximation of the nominal coverage.  

 
This happens also in the interval estimation of the mean µ  where, for example, a 

sample size of n = 500 is not enough to get good confidence intervals with (1-α) = 
0.99. 

TABLE 5. Simulated percent coverage for different sample sizes n and confidence 
levels (1-α) (lognormal distribution γ=10, δ=0.35829)  

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8630 0.8816 0.9170 0.9422 0.9640 0.8748 0.9122 0.9456 0.9692 0.9840 
100 0.8762 0.9058 0.9314 0.9584 0.9766 0.8932 0.9198 0.9474 0.9706 0.9874 
250 0.8852 0.9158 0.9338 0.9680 0.9832 0.9010 0.9266 0.9424 0.9742 0.9878 
500 0.8952 0.9124 0.9462 0.9710 0.9814 0.8928 0.9240 0.9508 0.9764 0.9892 
750 0.9010 0.9272 0.9466 0.9760 0.9842 0.9044 0.9318 0.9452 0.9736 0.9888 

1000 0.8996 0.9206 0.9492 0.9714 0.9896 0.8972 0.9222 0.9446 0.9778 0.9922 
1250 0.8994 0.9234 0.9512 0.9740 0.9908 0.9084 0.9194 0.9514 0.9766 0.9912 
1500 0.8980 0.9236 0.9438 0.9728 0.9880 0.8990 0.9290 0.9510 0.9756 0.9878 
1750 0.8992 0.9206 0.9504 0.9748 0.9872 0.9036 0.9258 0.9532 0.9736 0.9904 
2000 0.8984 0.9266 0.9516 0.9782 0.9888 0.9006 0.9312 0.9414 0.9762 0.9920 
2250 0.8998 0.9256 0.9442 0.9680 0.9904 0.9024 0.9242 0.9432 0.9744 0.9886 
2500 0.8966 0.9264 0.9500 0.9760 0.9912 0.8992 0.9234 0.9476 0.9726 0.9892 
 
Generally speaking, in all results shown in these two subsections, the confidence 

intervals for ∆ have an acceptable coverage almost for every sample size leading to 
good results for µ. When this general rule does not hold, however, the maximum 
relative deviation between the effective coverage of intervals for ∆ and the 
threshold c of the acceptance region is less than 2.8%. 
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TABLE 6. Simulated percent coverage for different sample sizes n and confidence 
levels (1-α) (lognormal distribution γ=10, δ=0.5)  

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8482 0.8658 0.9014 0.9318 0.9550 0.8716 0.9060 0.9374 0.9634 0.9786 
100 0.8698 0.8988 0.9224 0.9524 0.9700 0.8904 0.9172 0.9462 0.9678 0.9838 
250 0.8816 0.9116 0.9302 0.9640 0.9798 0.8966 0.9262 0.9416 0.9752 0.9866 
500 0.8918 0.9130 0.9440 0.9686 0.9796 0.8928 0.9212 0.9502 0.9760 0.9896 
750 0.8974 0.9270 0.9440 0.9738 0.9826 0.9040 0.9346 0.9428 0.9736 0.9882 

1000 0.8986 0.9214 0.9462 0.9708 0.9892 0.8984 0.9230 0.9454 0.9774 0.9920 
1250 0.8982 0.9188 0.9486 0.9708 0.9898 0.9056 0.9154 0.9532 0.9738 0.9908 
1500 0.8962 0.9254 0.9446 0.9710 0.9874 0.8982 0.9286 0.9512 0.9750 0.9862 
1750 0.8996 0.9218 0.9506 0.9772 0.9872 0.9024 0.9242 0.9524 0.9738 0.9902 
2000 0.9010 0.9290 0.9488 0.9768 0.9876 0.8976 0.9322 0.9386 0.9778 0.9914 
2250 0.8986 0.9276 0.9432 0.9682 0.9892 0.9036 0.9222 0.9444 0.9716 0.9884 
2500 0.8958 0.9242 0.9498 0.9738 0.9914 0.9014 0.9242 0.9512 0.9732 0.9888 

 

TABLE 7. Simulated percent coverage for different sample sizes n and confidence 
levels (1-α) (lognormal distribution γ=10, δ=0.74161)  

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8198 0.8446 0.8762 0.9096 0.9328 0.8588 0.8930 0.9214 0.9486 0.9664 
100 0.8564 0.8854 0.9050 0.9354 0.9558 0.8814 0.9124 0.9366 0.9596 0.9784 
250 0.8798 0.9046 0.9206 0.9544 0.9722 0.8934 0.9218 0.9358 0.9692 0.9840 
500 0.8828 0.9062 0.9346 0.9646 0.9762 0.8880 0.9162 0.9480 0.9752 0.9854 
750 0.8960 0.9198 0.9382 0.9682 0.9804 0.9048 0.9294 0.9396 0.9736 0.9874 

1000 0.8948 0.9204 0.9436 0.9674 0.9860 0.8990 0.9216 0.9436 0.9758 0.9910 
1250 0.8962 0.9178 0.9448 0.9684 0.9870 0.9010 0.9206 0.9492 0.9736 0.9894 
1500 0.8918 0.9196 0.9414 0.9704 0.9844 0.9000 0.9224 0.9488 0.9714 0.9856 
1750 0.8986 0.9208 0.9486 0.9754 0.9862 0.8992 0.9270 0.9516 0.9738 0.9886 
2000 0.8956 0.9316 0.9454 0.9762 0.9868 0.8994 0.9326 0.9406 0.9762 0.9906 
2250 0.8986 0.9260 0.9424 0.9670 0.9872 0.9004 0.9252 0.9448 0.9706 0.9894 
2500 0.8984 0.9204 0.9454 0.9722 0.9898 0.8984 0.9252 0.9498 0.9718 0.9892 

4.3. Heavy-tailed distributions: Dagum and Pareto 

 This last subsection shows some results obtained for distributions that do not 
possess all moments. As above-mentioned, two cases for the Dagum and two cases 
for the Pareto distribution are considered, in Tables 8-11.  

 
As the number of existing moments decreases, particularly for high values of the 

confidence level, the estimated coverage moves away from the related acceptance 
thresholds. This fact is true even for very large sample sizes, for both confidence 
intervals for ∆ and for µ in the Dagum and in the Pareto distribution as well. 
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TABLE 8.  Simulated percent coverage for different sample sizes n and confidence 
levels (1−α)     (Dagum distribution θ=5.0, λ=1.0, β=1.0)   

 coverage of confidence intervals for ∆ coverage of confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8398 0.8690 0.8804 0.9228 0.9408 0.8800 0.9004 0.9356 0.9614 0.9786 
100 0.8668 0.8882 0.9038 0.9400 0.9564 0.8930 0.9194 0.9338 0.9688 0.9796 
250 0.8820 0.9070 0.9382 0.9568 0.9752 0.9032 0.9220 0.9480 0.9692 0.9872 
500 0.8856 0.9130 0.9336 0.9606 0.9844 0.8908 0.9168 0.9388 0.9756 0.9886 
750 0.8912 0.9188 0.9408 0.9656 0.9816 0.8956 0.9216 0.9566 0.9758 0.9902 

1000 0.8924 0.9178 0.9498 0.9700 0.9854 0.9032 0.9216 0.9488 0.9778 0.9876 
1250 0.8962 0.9184 0.9414 0.9720 0.9868 0.9010 0.9188 0.9510 0.9756 0.9884 
1500 0.8918 0.9250 0.9470 0.9692 0.9870 0.8978 0.9226 0.9494 0.9744 0.9884 
1750 0.8926 0.9210 0.9472 0.9690 0.9872 0.9014 0.9248 0.9510 0.9774 0.9898 
2000 0.8958 0.9250 0.9436 0.9714 0.9864 0.9046 0.9286 0.9466 0.9758 0.9876 
2250 0.8924 0.9178 0.9494 0.9772 0.9882 0.9106 0.9188 0.9480 0.9818 0.9912 
2500 0.8990 0.9210 0.9422 0.9680 0.9882 0.9002 0.9252 0.9474 0.9756 0.9886 
 
 
Table 9, 10 and 11 show the worst cases of coverage. The situation is somewhat 

better for confidence intervals for µ. Indeed, when the confidence intervals for µ 
have an estimated coverage leading to the acceptance of H0, the maximum relative 
deviation between the effective coverage of intervals for ∆ and the threshold for 
acceptance is less than 2.5% for the Dagum (1;1;5) case, 2.9% for the Dagum 
(1;1;3.6) case, 2.2% for the Pareto (1;4) case and 2.5% for the Pareto (1;3) case.  

 

TABLE 9.  Simulated percent coverage for different sample sizes n and confidence  
levels (1-α)        (Dagum distribution θ=3.6, λ=1.0, β=1.0 )  

 coverage of the confidence intervals for ∆ coverage of the confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.8184 0.8376 0.8622 0.8860 0.9152 0.8764 0.8934 0.9216 0.9488 0.9676 
100 0.8450 0.8602 0.8868 0.9166 0.9438 0.8818 0.9096 0.9316 0.9578 0.9752 
250 0.8632 0.8910 0.9128 0.9448 0.9652 0.8844 0.9150 0.9400 0.9658 0.9844 
500 0.8780 0.9070 0.9328 0.9592 0.9766 0.8856 0.9178 0.9426 0.9706 0.9866 
750 0.8792 0.9110 0.9344 0.9544 0.9748 0.8994 0.9174 0.9432 0.9708 0.9874 

1000 0.8854 0.9142 0.9334 0.9602 0.9802 0.8992 0.9222 0.9450 0.9676 0.9880 
1250 0.8938 0.9144 0.9344 0.9654 0.9806 0.8980 0.9212 0.9452 0.9726 0.9864 
1500 0.8892 0.9160 0.9420 0.9640 0.9844 0.8974 0.9210 0.9440 0.9710 0.9890 
1750 0.8870 0.9204 0.9378 0.9662 0.9846 0.9016 0.9230 0.9498 0.9740 0.9882 
2000 0.8952 0.9190 0.9412 0.9714 0.9850 0.9060 0.9212 0.9504 0.9760 0.9864 
2250 0.8968 0.9256 0.9350 0.9674 0.9836 0.9046 0.9330 0.9456 0.9722 0.9906 
2500 0.8908 0.9188 0.9442 0.9654 0.9844 0.8954 0.9214 0.9490 0.9704 0.9878 
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TABLE 10.  Simulated percent coverage for different sample sizes n and confidence 
levels (1-α )       (Pareto distribution   x0=1.0, θ=4.0)  

 coverage of confidence intervals for ∆ coverage of  confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.7978 0.8294 0.8508 0.8790 0.9092 0.8436 0.8762 0.8916 0.9292 0.9484 
100 0.8404 0.8578 0.8810 0.9106 0.9358 0.8686 0.8990 0.9188 0.9452 0.9626 
250 0.8632 0.8844 0.9068 0.9438 0.9596 0.8858 0.9062 0.9314 0.9638 0.9772 
500 0.8854 0.9076 0.9218 0.9542 0.9724 0.8932 0.9142 0.9392 0.9684 0.9814 
750 0.8864 0.9088 0.9320 0.9568 0.9762 0.8892 0.9218 0.9418 0.9678 0.9814 

1000 0.8862 0.9106 0.9372 0.9614 0.9764 0.8894 0.9194 0.9456 0.9662 0.9832 
1250 0.8944 0.9202 0.9380 0.9610 0.9806 0.8986 0.9292 0.9448 0.9690 0.9866 
1500 0.8858 0.9166 0.9424 0.9664 0.9798 0.8966 0.9208 0.9454 0.9704 0.9852 
1750 0.8926 0.9206 0.9368 0.9646 0.9796 0.8912 0.9256 0.9434 0.9700 0.9848 
2000 0.8924 0.9202 0.9468 0.9672 0.9830 0.8972 0.9268 0.9536 0.9708 0.9874 
2250 0.8974 0.9214 0.9412 0.9652 0.9860 0.9020 0.9238 0.9468 0.9684 0.9896 
2500 0.8986 0.9212 0.9436 0.9694 0.9844 0.8978 0.9254 0.9470 0.9710 0.9892 

 

TABLE 11.  Simulated percent coverage for different sample sizes n and confidence  
levels (1-α)        (Pareto distribution   x0=1.0, θ=3.0)  

 coverage of confidence intervals for ∆ coverage of  confidence intervals for µ 
 1−α 

n 
0.9 0.925 0.95 0.975 0.99 0.9 0.925 0.95 0.975 0.99 

50 0.7846 0.8012 0.8294 0.8558 0.8802 0.8362 0.8508 0.8812 0.9108 0.9340 
100 0.8198 0.8404 0.8658 0.8850 0.9240 0.8536 0.8776 0.9042 0.9244 0.9514 
250 0.8496 0.8648 0.8992 0.9224 0.9504 0.8778 0.8936 0.9212 0.9438 0.9696 
500 0.8602 0.8880 0.9218 0.9440 0.9610 0.8828 0.9068 0.9352 0.9586 0.9738 
750 0.8680 0.9008 0.9178 0.9500 0.9670 0.8906 0.9076 0.9332 0.9622 0.9784 

1000 0.8836 0.9028 0.9268 0.9476 0.9686 0.8934 0.9122 0.9386 0.9602 0.9794 
1250 0.8756 0.9078 0.9266 0.9526 0.9762 0.8938 0.9156 0.9360 0.9624 0.9836 
1500 0.8742 0.9090 0.9294 0.9546 0.9790 0.8850 0.9172 0.9404 0.9640 0.9880 
1750 0.8844 0.9152 0.9344 0.9604 0.9768 0.8934 0.9202 0.9436 0.9674 0.9836 
2000 0.8968 0.9088 0.9330 0.9590 0.9776 0.8964 0.9202 0.9414 0.9662 0.9854 
2250 0.8816 0.9152 0.9294 0.9600 0.9772 0.8882 0.9206 0.9380 0.9694 0.9850 
2500 0.8862 0.9148 0.9324 0.9640 0.9792 0.8904 0.9194 0.9376 0.9696 0.9846 
 
 
In order to get an overall view of the simulation results, the following plot of 

coverages, presented in Figure 1 below, can be helpful. It clearly depicts that the 
convergence of the studentized sample mean difference T to the normal distribution 
is not uniform. 

 
If the value 0.933 is considered as a satisfactory approximation of 0.95 it may be 

argued that a minimum threshold of n = 1500 allows us to use the asymptotic 
confidence intervals for ∆.  
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FIGURE 1.  Effective coverage of asymptotic confidence intervals for ∆, with (1-
α)=0.95, compared to  the threshold established by the test on H0 

 
Analogously, as it is well known, also the convergence of the sample mean 

assured by the central limit theorem is not uniform, as shown by Figure 2. 
A minimum value of n=1000 for the sample size guarantees an effective coverage 

of 0.935, for all underlying distributions. Whenever this coverage is accepted as a 
satisfactory approximation of the nominal value 0.95, n = 1000 could then be 
considered as a suitable threshold for broad application purposes, for confidence 
intervals for the mean. 

 
With reference to the whole set of results, as it is well known in the literature, a 

reduction of the required sample size is observed if the confidence level decreases. 
Indeed, higher confidence levels are more sensitive to the exact nature of the tails of 
the sample distribution of the used estimator. 

In social sciences, where the sample sizes are usually high, nearly around the 
thousands (see, for instance and among many others, the income surveys of the 
Luxembourg Income Study and the Banca d’Italia surveys), asymptotic confidence 
intervals provides hence reasonable inference. Conversely, where the sample size is 
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lower than the proposed thresholds, bootstrap inference is to be advised, despite its 
computational complexity. 
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FIGURE 2.  Effective coverage of asymptotic confidence intervals for the mean, with  
(1-α)=0.95, and the threshold established by the test on H0 

5. A FURTHER ANALYSIS: LEFT AND RIGHT COVERAGE ERRORS 

In order to better understand the behaviour of the effective coverage, it might be 
interesting to evaluate also the left coverage and the right coverage, in all the 
considered distributions. To give a rough idea of the behaviour of the  tails of the 
estimator T in (11), only the nominal confidence 0.95 is here considered. All results 
have hence to be compared with the value α/2=0.025, that is the asymptotic 
proportion of intervals ( )∆±∆ −

ˆˆzˆ σα 21  not covering the true value of ∆. To this 

attempt, for each  confidence interval which fails to contain the true value ∆, it was 
checked whether ∆  lies on its left or on its right side. The proportion of intervals 
satisfying this condition provides an estimate for the left (respectively right) 
rejection probability (denoted by LRP, and, respectively, RRP).  
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Notice that the true value of Gini’s mean difference lies on the left side of the 
confidence interval if and only if a large value of the sample statistic has occurred. 
Therefore, the LRP actually describes the right tail of the sample distribution, 
whereas the RRP, conversely, refers to the left tail. 

TABLE 13.  Simulated LRP for different sample sizes n and for different underlying 
distributions,  with confidence level 0.95 

      n normal uniform expo 
nential 

lognorm
 10;0.36)

lognorm
 (10;0.5)

lognorm
(10;0.74)

Dagum
(1;1;5)

Dagum
(1;1;3.6)

 Pareto
(1;4) 

Pareto 
(1;3) 

50 0.0172 0.0332 0.0086 0.0118 0.0098 0.0062 0.0066 0.0028 0.0042 0.0016 
100 0.0164 0.0290 0.0100 0.0128 0.0110 0.0062 0.0076 0.0040 0.0042 0.0016 
250 0.0202 0.0310 0.0096 0.0154 0.0124 0.0078 0.0048 0.0066 0.0020 0.0026 
500 0.0256 0.0262 0.0142 0.0154 0.0136 0.0106 0.0110 0.0062 0.0078 0.0034 
750 0.0214 0.0272 0.0142 0.0202 0.0190 0.0146 0.0148 0.0078 0.0090 0.0058 

1000 0.0234 0.0248 0.0194 0.0184 0.0178 0.0136 0.0120 0.0106 0.0088 0.0072 
1250 0.0208 0.0288 0.0192 0.0170 0.0160 0.0130 0.0142 0.0106 0.0096 0.0094 
1500 0.0236 0.0224 0.0208 0.0210 0.0186 0.0144 0.0134 0.0108 0.0104 0.0068 
1750 0.0230 0.0264 0.0190 0.0158 0.0158 0.0138 0.0142 0.0102 0.0142 0.0090 
2000 0.0254 0.0240 0.0228 0.0220 0.0210 0.0176 0.0166 0.0134 0.0136 0.0112 
2250 0.0220 0.0250 0.0212 0.0242 0.0230 0.0184 0.0160 0.0150 0.0138 0.0082 
2500 0.0228 0.0252 0.0228 0.0194 0.0176 0.0168 0.0146 0.0138 0.0128 0.0096 
 
Notice that nearly all simulated LRPs are lower than 0.025 and that they improve 

as n increases. Furthermore, as asymmetry increases, the LRP goes far from its 
asymptotical value; as the tail heaviness increases LRP dramatically decreases, that 
is the right tail of the sample mean difference becomes thinner. 

By left coverage error we mean the difference between the LRP and its 
asymptotic value 0.025. Figure 3 offers a plot of the left coverage error for 0.95 
nominal confidence. 

 
The most relevant result is that the left coverage error is very large in moderate 

samples and decreases very slowly as the sample size increases. 
Since the LRP is mostly lower than its asymptotic value, the RRP is expected to 

be higher than 0.025, as Table 14 shows. 
 
It is noticeable that RRP behaves worse in the normal distribution than in the 

uniform, the latter being the distribution offering the best estimation of the RRP, for 
all the values of the sample size n. Furthermore, data from the lognormal 
distribution show that, as asymmetry increases, the RRP increases as well, even 
reaching values very far from 0.025. In addition, as the tail heaviness grows (see the 
last four columns of Table 14) the RRP increases dramatically, emphasizing the 
shape of the right tail of the studentized ∆̂ . 
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FIGURE 3.  Left coverage error for confidence level (1-α)=0.95 

 
Figure 3 offers a plot of the left coverage error (i.e. the difference between the 

RRP and its asymptotic value 0.025) for 0.95 nominal confidence. All left coverage 
error converges to zero as the sample size increases.Almost all of them are negative, 
only samples drawn from the uniform give positive values. A deeper understanding 
of this behaviour could be obtained by means of the exact distribution of the sample 
mean difference that, in this particular case, is known (see Ali 1969). 

TABLE 14.  Simulated RRP for different sample sizes n and for different underlying 
distributions,  with confidence level 0.95 

      n  normal uniform expo 
nential

logn. 
 10;0.36)

logn. 
 (10;0.5)

logn. 
(10;0.74)

Dagum
(1;1;5)

Dagum
(1;1;3.6)

 Pareto 
(1;4) 

Pareto 
(1;3) 

50 0.0482 0.0274 0.0886 0.0712 0.0888 0.1176 0.1130 0.1350 0.1450 0.1690 
100 0.0436 0.0222 0.0618 0.0558 0.0666 0.0888 0.0886 0.1092 0.1148 0.1326 
250 0.0344 0.0238 0.0502 0.0508 0.0574 0.0716 0.0570 0.0806 0.0912 0.0982 
500 0.0302 0.0242 0.0422 0.0384 0.0424 0.0548 0.0554 0.0610 0.0704 0.0748 
750 0.0314 0.0228 0.0368 0.0332 0.0370 0.0472 0.0444 0.0578 0.0590 0.0764 

1000 0.0252 0.0264 0.0364 0.0324 0.0360 0.0428 0.0382 0.0560 0.0540 0.0660 
1250 0.0310 0.0286 0.0350 0.0318 0.0354 0.0422 0.0444 0.0550 0.0524 0.0640 
1500 0.0294 0.0234 0.0332 0.0352 0.0368 0.0442 0.0396 0.0472 0.0472 0.0638 
1750 0.0302 0.0270 0.0322 0.0338 0.0336 0.0376 0.0386 0.0520 0.0490 0.0566 
2000 0.0260 0.0224 0.0296 0.0264 0.0302 0.0370 0.0398 0.0454 0.0396 0.0558 
2250 0.0290 0.0268 0.0302 0.0316 0.0338 0.0392 0.0346 0.0500 0.0450 0.0624 
2500 0.0288 0.0206 0.0290 0.0306 0.0326 0.0378 0.0432 0.0420 0.0436 0.0580 
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FIGURE 4.  Right coverage error for confidence level (1-α)=0.95 

 
It is worthwhile to notice that the scale in the vertical axis of Figure 4 is 5 times 

bigger than in Figure 3, this fact indicating the higher relevance of the right 
coverage error with respect to the left one. 

The knowledge of the LRP and the RRP gives more information on the 
distribution of the studentized sample Gini’s mean difference: it has always some 
asymmetry and a long right tail when sampling from heavy-tailed distributions. 
This behaviour has a great influence on the sample sizes required to attaining a 
good coverage for confidence intervals for ∆. 

6. CONCLUDING REMARKS 

The simulation results presented in this paper are encouraging. The outlined 
methodology to determine the effective coverage of confidence intervals for ∆ 
seems really useful. It gives a good approximation nearly in all cases in which the 
confidence intervals for µ are valid as well. The minimum sample sizes obtained 
throughout this work can be helpful from an operational point of view. As expected, 
in accordance with the literature, the effective coverages depends upon the 
population distribution and sometimes inaccuracies may risk to be quite serious on 
small sample sizes if one just relies upon the asymptotic approximation. In fact, in 
some of the considered cases, the minimal threshold indicated by the reported 
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simulations is rather high, but similar results hold also for the confidence intervals 
for µ, whenever the variance of the underlying population is unknown.  This fact is 
not a relevant issue in social sciences, where data usually consists of large samples 
drawn from populations. 

A careful inspection of the simulated results allows us to observe three main 
factors affecting the effective percent coverage of confidence intervals for ∆:  

- the existence of the r-th moments of the distribution, with r >2,  
- the degree of asymmetry of the underlying distribution, and  
- the value of the nominal risk α.  
The simulations from the Pareto and the Dagum distribution show that heavier 

tails produce a considerable decrease in coverages. According to the simulated data, 
furthermore, the approximation for the two considered continuous symmetric 
distributions (the uniform and the normal distributions, for which the minimum 
sample size is n = 150 for 1- α = 0.975) is better than the approximation obtained 
for the asymmetric ones. For the exponential and the lognormal distribution with 
slight asymmetry, the threshold is n = 500, while for the lognormal distribution with 
higher asymmetry n = 2000 is needed, and finally for the Pareto and the Dagum 
distribution, in case of heavy tails, n > 2500.  In particular, the analysis carried out 
on the lognormal distribution, with different sets of the parameters, indicates that 
increasing asymmetry in the underlying distribution has a worse effect on the 
coverage. 

Finally, as it is well known in literature, the coverage, in all cases, has a different 
behaviour for different values of the nominal risk α, so that the minimum sample 
sizes required for high values of α are always lower than those needed for lower 
values of the nominal risk: the approximation is worse in the tails when α is small. 

Remarkably, the simulated coverage is always lower than the nominal one, in all 
considered cases. This fact can be ascribed (as also LRP and RRP errors denote) to 
some asymmetry or/and tail heaviness in the distribution of ∆̂ , which tend to 
vanish for increasing values of the sample size n, as ∆̂  approaches the asymptotic 
normal distribution. More investigation can be done by producing further 
simulations from other continuous distributions. We hope that the new proposed 
methodology for determining minimum sample sizes for confidence intervals may 
be useful also in other contexts. 
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RIASSUNTO 

La differenza media campionaria ∆̂ è uno stimatore non distorto per la differenza media di Gini. 
ed ha distribuzione asintoticamente normale (Hoeffding, 1948). In questo lavoro, utilizzando uno 
specifico stimatore della varianza della differenza media campionaria  si studiano gli intervalli di 
confidenza per ∆, in ambito non-parametrico. Le coperture effettive sono state stimate mediante 
simulazioni ottenute da una varietà di modelli di fenomeni reali, considerando diversi set di 
parametri per ciascuno di essi. La determinazione empirica delle soglie minime necessarie ad 
assicurare una buona approssimazione della copertura nominale è ottenuta applicando un test 
d’ipotesi a dati ottenuti per via simulativa. I risultati raggiunti mostrano che tali soglie 
campionarie sono criticamente legate alla presenza di asimmetria e di code pesanti nella 
distribuzione da cui provengono i campioni. Esse sono comunque inferiori a quelle  usualmente 
reperibili  negli studi delle scienze sociali. 
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