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Abstract. The choice of stabilization term is a critical component of the
virtual element method (VEM). However, the theory of VEM provides
only asymptotic guidance for selecting the stabilization term, which en-
sures convergence as the mesh size approaches zero, but does not provide
a unique prescription for its exact form. Thus, the selection of a suitable
stabilization term is often guided by numerical experimentation and anal-
ysis of the resulting solution, including factors such as stability, accuracy,
and efficiency. In this paper, we establish a new link between VEM and
generalized barycentric coordinates, in particular isoparametric finite el-
ements as a specific case. This connection enables the interpretation of
the stability as the energy of a particular function in the discrete space,
commonly known as the ‘hourglass mode.’ Through this approach, this
study sheds light on how the virtual element solution depends on the
stabilization term, providing insights into the behavior of the method in
more general scenarios.

Keywords: generalized barycentric coordinates, finite element method,
virtual element method, hourglass modes, stabilization

1 Introduction

The virtual element method (VEM) [1,2] is a stabilized Galerkin method that
is accurate and robust on polygonal and polyhedral meshes. The first-order
VEM on simplices is identical to linear finite elements. Polygonal finite elements
(see [3]) are based on generalized barycentric coordinates such as Wachspress
basis (shape) functions [4] and mean value coordinates [5,6]. On a quadrilateral,
isoparametric finite element shape functions are also an instance of GBCs.

In this paper, we present new results over the quadrilateral that provide
clearer connections of the finite element method (FEM) and polygonal FEM to
the virtual element method. A stabilization parameter is needed to ensure that
the stiffness matrix in the VEM is consistent and stable (invertible). As noted
in [7], this mirrors the development of hourglass finite elements over the four-
node quadrilateral [8,9]. We first show that the stiffness matrix for the diffusion
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2 Alessandro Russo et al.

equation on any (convex or nonconvex) quadrilateral can be written as the sum
of two contributions: a consistency matrix A that is exactly computable and
a stabilization matrix that has the form τB, where B is known and the scalar
τ is in fact the hourglass function associated with the shape functions of the
four-node quadrilateral [7] (see Section 2). In Section 3, we compute values for τ
on the square and parallelogram for isoparametric FEM and Wachspress shape
functions. The decomposition of the element stiffness matrix in the VEM is
precisely of the form A + τB, where τ is set to 1, which is elaborated in Section
4. We present two numerical examples in Section 5, and show that the standard
value of τ in the VEM leads to a convergent scheme for the diffusion equation.

2 GBCs on a quadrilateral for the diffusion equation

Let Q be a quadrilateral with vertices Vi = (xi, yi), i = 1, 2, 3, 4, and let {ϕi}4i=1

be a set of generalized barycentric coordinates such as isoparametric bilinear
FEM, harmonic, Wachspress or mean value coordinates. Let κ be a constant

Vi+1

Vi−1

Vi

i.

ei

ei−1

ni−1

ni

Fig. 1: The quadrilateral Q.

symmetric positive-definite 2 × 2 matrix on the element Q. Then the element
stiffness matrix for the diffusion operator is defined by

Kij :=

∫
Q

κ∇ϕj · ∇ϕi dx. (1)

We will prove the following structure theorem:

Theorem 1. The matrix K can be written as

K = A + τB, (2)

where
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• A is a 4× 4 matrix that depends only on the geometry of the quadrilateral Q
and on the diffusion matrix κ;

• B is a 4× 4 matrix that depend only on the geometry of the quadrilateral Q;
furthermore, B is the same matrix for all parallelograms;

• τ is the energy of the function Ψh of our local space whose value at vertex Vi

is
(−1)i

2
, and is defined by

τ :=

∫
Q

κ∇Ψh · ∇Ψh dx. (3)

Note that

Ψh =
1

2
(−ϕ1 + ϕ2 − ϕ3 + ϕ4). (4)

The function Ψh is an hourglass mode (see [7]). The coefficient τ is the only
term in (2) that depends on the explicit form of the basis functions.

Proof. Let Π0
0 be the L2 projection onto constants:

Π0
0w :=

1

|Q|

∫
Q

w dx.

When the argument is a vector, Π0
0 is applied componentwise. We start from the

identity∫
Q

κ∇u ·∇v dx =

∫
Q

κΠ0
0∇u ·Π0

0∇v dx+

∫
Q

κ(I−Π0
0)∇u · (I−Π0

0)∇v dx, (5)

which holds true for u, v ∈ H1(P ) (recall that κ is constant on Q).

2.1 The matrix A

The matrix A of (2) is simply given by the first term of (5) with u = ϕj , v = ϕi:

Aij =

∫
Q

κΠ0
0∇ϕj · Π0

0∇ϕi dx =
1

|Q|
κ

[∫
Q

∇ϕj dx

]
·
[∫

Q

∇ϕi dx

]
.

Observe that Aij is readily computable and does not depend on the explicit form
of the basis functions, since by Gauss’s formula∫

Q

∇ϕi dx =

∫
∂Q

ϕin ds =
1

2
d⊥i , (6)

where i. is the vector joining Vi−1 with Vi+1 (a diagonal of the quadrilateral, see
Fig. 1) and ⊥ denotes clockwise rotation of 90◦. Hence,

Aij =
1

4|Q|
κd⊥j · d

⊥
i . (7)
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Since in a quadrilateral we have 3. = −1. and 4. = −2. , the matrix A has a nice
block structure:

A =

[
+C −C
−C +C

]
with C :=

[
κd⊥1 · d

⊥
1 κd

⊥
1 · d

⊥
2

κd⊥1 · d
⊥
2 κd

⊥
2 · d

⊥
2

]
.

Remark 1. Note that if κ = κI, then we can remove the rotation:

Aij =
1

4|Q|
κ j. · i..

2.2 The matrix B

Now we turn our attention to the second term of (5). The key idea is to write

Π0
0∇w as ∇Π∇1 w,

where Π∇1 w is a projection of w onto linear polynomials. More precisely, given
any function vh in our local space (i.e., a linear combination of the basis functions
ϕi) we want to define a projection Π∇1 vh onto linear polynomials such that:

• the gradient of Π∇1 vh is the L2 projection of the gradient of vh, i.e.,

∇Π∇1 vh = Π0
0∇vh =

1

|Q|

∫
Q

∇vh dx; (8)

• Π∇1 vh depends only on the value of vh on the boundary of Q (hence it is the
same for all generalized barycentric coordinates).

We start by noting that (8) defines the value of the gradient of Π∇1 vh, and so it
determines Π∇1 vh up to a constant:

Π∇1 vh =

(
1

|Q|

∫
Q

∇vh dx

)
· x+ P̃0vh, (9)

where P̃0 is a projection onto constant functions to be fixed. Now we impose
that Π∇1 is a projection onto linear polynomials, i.e.,

if `(x) := a · x+ b then Π∇1 ` = `.

Since ∇` = a, we have

Π∇1 ` = a · x+ P̃0` = a · x+ P̃0(a · x+ b) = a · x+ P̃0(a · x) + b = `+ a · P̃0x.

Hence the projection P̃0 must satisfy

P̃0x = 0, i.e., P̃0x = 0 and P̃0y = 0.
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A way to impose this condition is to start from an arbitrary projection onto
constants, say P0, and then define

P̃0vh := P0vh −
(

1

|Q|

∫
Q

∇vh dx

)
· P0x. (10)

We end up with the explicit formula

Π∇1 vh =

(
1

|Q|

∫
Q

∇vh dx

)
· (x− P0x) + P0vh, (11)

where P0 is an arbitrary projection onto constants.

Remark 2. An alternative way to define P̃0 from P0 is to start from (9) and
impose the condition

P0(Π∇1 vh − vh) = 0.

In fact, from (9) we have

P0(Π∇1 vh) =

(
1

|Q|

∫
Q

∇vh dx

)
· P0x+ P0P̃0vh

=

(
1

|Q|

∫
Q

∇vh dx

)
· P0x+ P̃0vh = P0vh

from which we get (10).

In order to be able to compute Π∇1 vh without actually knowing vh in the
interior of P , the projector P0vh must be computable from the boundary values
of vh only. The two most natural choices are:

• P0vh :=
1

NP

∑4
i=1 vh(Vi) (mean on the vertices of Q).

We have

P0x =
1

4

4∑
i=1

Vi =: V (vertex center).

On taking vh = ϕi, recalling (6) and observing that

P0ϕi =
1

4
,

we have

Π∇1 ϕi =
1

2|Q|
(x− V ) · d⊥i +

1

4
. (12)

• P0vh =
1

|∂Q|

∫
∂Q

vh ds (mean on the boundary of Q).

We have

P0x =
1

|∂Q|

4∑
i=1

Vi + Vi+1

2
|ei| =

1

|∂Q|

4∑
i=1

|ei−1|+ |ei|
2

Vi =: Ṽ .
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On taking vh = ϕi, recalling (6) and observing that

P0ϕi =
1

|∂P |
|ei−1|+ |ei|

2
,

we have

Π∇1 ϕi =
1

2|P |
(x− Ṽ ) · d⊥i +

1

|∂P |
|ei−1|+ |ei|

2
. (13)

It is clear that if all edges have the same length the two definitions of P0 coincide.
In what follows, we will assume that P0 is defined either by (12) or by (13).

Remark 3. Observe that we cannot take as P0vh the mean value of vh on Q,
because we want that Π∇1 vh depends only on the boundary value of vh and not
on its actual variation inside Q.

We now show that the function Ψh defined in (4) is in the kernel of Π∇1 ;
actually, it turns out that kerΠ∇1 = span {Ψh}. Recall that the function Ψh is

defined as the (unique) function in our local space such that Ψh(Vi) =
(−1)i

2
.

We observe that Ψh has zero mean value on each edge, and hence∫
Q

∇Ψh dx =

∫
∂Q

Ψhn ds =

4∑
i=1

[∫
ei

Ψh ds

]
ni = 0.

Furthermore, P0(Ψh) = 0 for any of the two choices of P0 given above. Hence,
from (11), we have Π∇1 Ψh = 0.

The function Ψh is linearly independent of the standard first-degree mono-
mials {1, x, y}; hence the four functions {1, x, y, Ψh} are a basis for our local
space so that in particular any ϕi can be written as a linear combination of
1, x, y, Ψh. To find the coefficients, we exploit the fact that the ϕi are generalized
barycentric coordinates, that is

4∑
i=1

ϕi = 1,

4∑
i=1

xiϕi = x,

4∑
i=1

yiϕi = y

plus the equation defining Ψh:

Ψh =
1

2
(−ϕ1 + ϕ2 − ϕ3 + ϕ4).

In matrix form, we have
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
− 1

2
1
2 −

1
2

1
2



ϕ1

ϕ2

ϕ3

ϕ4

 =


1
x
y
Ψh

 . (14)

Let us denote by Ti the signed area of the triangle obtained by removing the
vertex Vi from the quadrilateral Q and joining vertex Vi−1 with vertex Vi+1 (see
Fig. 2). Therefore,
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V2

V4

V1

V3

T1

Fig. 2: Signed area T1.

T1 =
1

2
det

 1 1 1
x2 x3 x4
y2 y3 y4

 , T2 =
1

2
det

 1 1 1
x1 x3 x4
y1 y3 y4

 ,
T3 =

1

2
det

 1 1 1
x1 x2 x4
y1 y2 y4

 , T4 =
1

2
det

 1 1 1
x1 x2 x3
y1 y2 y3

 .
Now, let us consider the coefficient matrix of the linear system in (14). Carrying
out the expansion with respect to the last row, it can be directly verified that its
determinant is equal to 2|Q|. By directly solving system (14) through Cramer’s
rule, and expanding the determinant with respect to the i-th column, we obtain

ϕi = (ai + bix+ ciy) + (−1)i
Ti
|Q|

Ψh, i = 1, . . . , 4,

where

ai =
(−1)iTi + (xi+1yi−1 − xi−1yi+1)

2Q
,

bi =
yi+1 − yi−1

2|Q|
=

(i.)y
2|Q|

, ci = −xi+1 − xi−1
2|Q|

= − (i.)x
2|Q|

.

We conclude that

ϕi(x) = ai +
d⊥i

2|Q|
· x+ (−1)i

Ti
|Q|

Ψh(x).

On defining the non-dimensional quantities

T ′i := (−1)i
Ti
|Q|

,

we have

ϕi(x) = ai +
d⊥i

2|Q|
· x+ T ′i Ψh(x).
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Hence we have the following identities:

(I− Π∇1 )ϕi = T ′i Ψh, (15)

and
(I− Π0

0)∇ϕi = ∇ϕi −∇Π∇1 ϕi = ∇(ϕi − Π∇1 ϕi) = T ′i ∇Ψh. (16)

The second term of (5) can then be written as∫
Q

κ(I− Π0
0)∇ϕj · (I− Π0

0)∇ϕi dx = T ′i T
′
j

∫
Q

κ∇Ψh · ∇Ψh dx

and the matrix B of (2) is identified by

Bij = T ′i T
′
j .

Setting γ :=
[
T ′1 T

′
2 T
′
3 T
′
4

]′
, the matrix B can be written as B = γγT. Note that

if Q is a parallelogram, we have

T ′i = (−1)i
1

2

so that B is independent on Q:

B =
1

4


+1 −1 +1 −1
−1 +1 −1 +1
+1 −1 +1 −1
−1 +1 −1 +1

 .
We end up with the formula:∫

Q

κ∇ϕj · ∇ϕi dx =
1

4|Q|
κd⊥j · d

⊥
i +

[∫
Q

κ∇Ψh · ∇Ψh dx

]
γγT = A + τB.

Clearly, the only term that depends on the variation of the generalized barycen-
tric coordinates inside Q is the coefficient

τ =

∫
Q

κ∇Ψh · ∇Ψh dx,

which is the energy of the hourglass mode Ψh.

3 Value of τ for some GBCs

For a general quadrilateral usually the value of τ does not have an expression
in closed form. In this Section, we report the value of τ for isoparametric fi-
nite element shape functions and Wachspress coordinates over rectangles and
parallelograms.
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3.1 Rectangles

For a rectangle, isoparametric FEM, harmonic generalized barycentric coordi-
nates [10] and Wachspress shape functions coincide. If Q = [0, a] × [0, b], the
value of τ for a general κ is given by

τ =
b2κ11 + a2κ22

3ab
. (17)

3.2 Parallelograms

For a parallelogram, isoparametric FEM and Wachspress GBCs coincide. In this
case, the value of τ is given by:

• When κ = κI, and Q is a parallelogram of sides a and b with angle θ:

τ = κ
a2 + b2

3ab sin θ
.

• For general κ, and if Q is a parallelogram of sides a and b with angle θ, with
side a parallel to the x-axis:

τ =
a2κ22 + b2κ11

3ab sin θ
+
b
(
(κ22 − κ11) cos2 θ − 2κ12 cos θ sin θ

)
3a sin θ

.

4 Connection with Virtual Element Method

The virtual element method is a fairly recent methodology that in particular
extends classical finite elements to polygonal and polyhedral meshes, see [11]
and the references therein. The keys ideas in VEM are:

• the local space is ‘virtual’ in the sense that functions are known only through
their degrees of freedom;
• the element stiffness matrix is split into a ‘consistency’ term that takes care

of the accuracy plus a ‘stability’ term that ensures stability without violating
consistency:

KVEM = KC + KS.

4.1 Linear virtual element on a polygon

In the case of linear virtual elements for the diffusion equation, the ‘basic’ lo-
cal space coincides with harmonic GBCs, whereas the ‘enhanced’ version [2] is
still a GBC, but the local functions are no longer harmonic. The consistency
and stability matrices in the VEM are built upon the construction of the Π∇1
projection, which can be extended to a general polygon P with NP vertices by
following the above construction, and is still given by (11) (see [1,2,12] for the
details).
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In the case κ is a constant matrix, for the diffusion problem the local VEM
consistency matrix KC concides with the matrix A of the decomposition (2):

(KC)ij = Aij =

∫
P

κΠ0
0∇ϕj ·Π0

0∇ϕj dx =

∫
P

κ∇Π∇1 ϕj ·∇Π∇1 ϕj dx =
1

4|P |
κd⊥j ·d

⊥
i .

The VEM stability matrix KS for a polygon P is built in the following way.
Let S be a symmetric bilinear form defined on the local space that ‘scales’ on
the kernel of Π∇1 like the bilinear form associated with the differential equation,
i.e., there exist two constants α∗ and α∗ independent of the element P such that

α∗

∫
P

κ∇vh · ∇vh dx ≤ S(vh, vh) ≤ α∗
∫
P

κ∇vh · ∇vh dx for all vh ∈ kerΠ∇1 .

Then if we define

(KS)ij := S
(
(I− Π∇1 )ϕj , (I− Π∇1 )ϕi

)
, (18)

we have a convergent method (see Theorem 3.1 and 4.1 of [1]).
In order to construct a computable S satisfying the hypotheses above, we

proceed in the following way. Define dofi(vh) as the i-th degree of freedom of vh
in the linear case, that is

dofi(vh) := vh(Vi), i = 1, . . . , NP

and then set

S(uh, vh) := τVEM

NP∑
i=1

dofi(uh) dofi(vh) (dofi-dofi stabilization)

where τVEM is a parameter to be fixed (see Section 4.2 of [13]). Under reasonable
assumptions on the mesh sequence (quadrilaterals are not degenerate) to have
convergence when the mesh size goes to zero, we can take any non-zero constant
for τVEM, provided that all τVEM’s for all polygons and for all meshes are uniformly
bounded from below and above. In other words, we can say that τVEM must scale
like 1. If we are in three dimensions we require that τVEM scales like h.

Hence, the final expression for the local stability KS is the following:

(KS)ij = τVEM

NP∑
k=1

dofk[(I− Π∇1 )ϕj ] dofk[(I− Π∇1 )ϕi].

In the next section, we examine a practical choice for τVEM.

4.2 Revisiting quadrilaterals

From now on we consider a polygon to be a quadrilateral Q. In this case, we
have

4∑
k=1

dofk[(I− Π∇1 )ϕj ] dofk[(I− Π∇1 )ϕi] = Bij ,
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where B is the matrix appearing in the decomposition (2). In fact, since (I −
Π∇1 )ϕi = T ′i Ψh (see (15)) and Ψh =

1

2

∑4
`=1(−1)`ϕk, we have

dofk[(I− Π∇1 )ϕi] = T ′i

4∑
`=1

(−1)`

2
dofk(ϕ`) = T ′i

4∑
`=1

(−1)`

2
δkl = T ′i

(−1)k

2

so that

4∑
k=1

dofk[(I− Π∇1 )ϕj ] dofk[(I− Π∇1 )ϕi] = T ′j T
′
i

4∑
k=1

[
(−1)k

2

]2
= T ′j T

′
i = Bij .

To summarize, the element VEM stiffness matrix for a quadrilateral can be
written as

KVEM = A + τVEMB. (19)

5 How to choose τVEM?

The decompositions in (2) and in (19) for GBCs and VEM, respectively are:

K = A + τB and KVEM = A + τVEMB,

which are formally equal, but very different in practice.

• In the case of GBCs, the value of the parameter τ is well defined as the
energy of a particular function (the hourglass mode Ψh) of the local space:

τ =

∫
Q

κ∇Ψh · ∇Ψh dx.

The value of τ can be computed by quadrature; actually, computing τ by a
quadrature formula and using the decomposition (2) is equivalent to approx-
imating directly K (as defined in (1)) with the same quadrature formula.

• For VEM, the parameter τVEM is left unspecified, and we only require that
convergence hypotheses are satisfied. In this very particular case (quadrilat-
erals, linear VEM, κ constant) the value of τVEM could be in principle identi-
fied with the energy of the corresponding houglass mode of the VEM space,
but the extremely wide range of applicability of VEM (general polygons and
polyhedra, polynomials of any order, elasticity, Navier–Stokes, magnetostat-
ics problems) prevents in most instances a constructive approach for the
computation of τVEM.

Here we will use the interpretation of the ‘correct’ τVEM as the energy of the
hourglass mode Ψh to draw some general conclusions about the design of τVEM

and the consequences of having employed an ‘incorrect’ τVEM.
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First of all, it seems natural to include in τVEM some information from κ. This
is not needed for convergence, but for a given mesh if κ is large we could have
a marked difference in the solution. We then set:

τVEM =
trκ

2
. (20)

Hence, regardless of the shape of the quadrilateral Q and of the local VEM space,
in the VEM the energy of the hourglass mode Ψh is always set to trκ/2.

As observed in many papers on VEM, the sensitivity with respect to the value
of τVEM is usually mild: the value in (20) works well for a wide range of polygonal
shapes. We now provide explanation and clarification for this observation.

5.1 The worst case for VEM

The worst scenario for VEM on a given mesh is the following:

• the value of τVEM is a bad approximation of the energy of Ψh;

• the exact solution of the PDE ‘contains’ the hourglass mode Ψh.

Note, however, that the hourglass mode Ψh depends on the mesh; hence upon
refinement we are led to a ‘better’ solution.

5.2 Effect of τVEM in a Laplace problem

Consider the following Laplace problem with inhomogeneous Dirichlet boundary
conditions: {

−∆u = 0 in Ω = (0, 1)2,

u = g on ∂Ω,
(21)

where g is a continuous, piecewise linear function that oscillates 20 times on each
edge from −1/4 to +1/4. The exact solution u decays very quickly to zero inside
the domain; see the reference solution shown in Fig. 3.

Now we want to use a mesh such that the hourglass mode Ψh has a strong
component in the exact solution u. We divide Ω into 20 × 20 uniform squares,
in such a way that the boundary condition g oscillates precisely as Ψh. Hence,
if the numerical scheme does not adopt the correct value of the energy of Ψh,
it will propagate g inside the domain and lead to an incorrect solution. This is
similar to hourglass modes in a FEM mesh that can become communicable and
wreck the solution [9]. In the first experiment we consider isoparametric FEM
(see Fig. 4a) and VEM with τVEM = 1 (see Fig. 4b). Given that the mesh is coarse,
the numerical solutions are adequate; however, note that the two solutions are
distinct.

Remark 4. From (20), τVEM = trκ/2; here κ = I, so τVEM = 1. On a square,
VEM with τVEM = 2/3 is identical to isoparametric FEM (see (17)).
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Fig. 3: Reference finite element solution to the problem posed in (21).

(a) Isoparametric FEM (b) VEM (τVEM = 1)

Fig. 4: Numerical solution for isoparametric FEM and VEM on a 20× 20 mesh.

Now we take VEM with τVEM = 0.1, and we can see that the virtual element
solution worsens (see Fig. 5a). If we further decrease the value of τVEM to 0.01,
then the boundary data g is almost free to move in the domain since dissipation
is very small (Fig. 5b). The numerical solution is also unstable for τVEM = 10 and
τVEM = 100, as is observed in Figs. 5c and 5d.

However, if we refine and consider a 40 × 40 mesh of uniform squares, the
two values 0.1 and 10 for τVEM become acceptable, as is seen in Figs. 6a and 6b.
The reason for this observation is that now the hourglass mode Ψh has a smaller
component in the exact solution u, and even if its energy of Ψh is not precise, its
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(a) τVEM = 0.1 (b) τVEM = 0.01

(c) τVEM = 10 (d) τVEM = 100

Fig. 5: Numerical solution using different τVEM for the VEM on a 20× 20 mesh.

impact on the numerical solution is not severe. As the mesh is further refined, the
virtual element solution becomes more and more insensitive to τVEM, as shown in
Figs. 7a–7d.

5.3 Numerical comparison between isoparametric FEM and VEM

Consider the following diffusion problem in the unit square, Ω = (0, 1)2:{
−div (κ∇u) = f in Ω

u = g on ∂Ω
(22)

where κ(x, y) =

[
1 + y2 −xy
−xy 1 + x2

]
and f and g are chosen in such a way that

u(x, y) = x3−xy2 +x2y−xy+x2−x+ y−1 + sin(5x) sin(7y) + log(1 +x2 + y4)

is the exact solution. In each element, κ is approximated with its value at the
barycenter of the element. We compare isoparametric FEM and VEM on two
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(a) τVEM = 0.1 (b) τVEM = 10

Fig. 6: Numerical solution using different τVEM for the VEM on a 40× 40 mesh.

(a) τVEM = 0.01 (b) τVEM = 0.1

(c) τVEM = 10 (d) τVEM = 100

Fig. 7: Numerical solution using different τVEM for the VEM on a 80× 80 mesh.
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meshes of irregular quadrilaterals that are shown in Fig. 8. The numerical results
on the two meshes are presented in Figs. 9 and 10. We observe that the solutions
of FEM and VEM are indistinguishable with proximal errors in the L∞ norm.

(a) 10× 10 mesh; hmean = 0.16 (b) 40× 40 mesh; hmean = 0.04

Fig. 8: Finite element meshes used in the FEM and VEM to solve (22).

(a) FEM, |u− uh|∞ = 3.6× 10−2 (b) VEM, |u− uh|∞ = 2.4× 10−2

Fig. 9: Error at vertices for isoparametric FEM and VEM on the mesh shown in
Fig. 8a.

6 Conclusions

Our main conclusion from this study is that VEM is relatively insensitive with
respect to the stabilization parameter τVEM. A caveat in reaching this inference
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(a) FEM, |u− uh|∞ = 2.6× 10−3 (b) VEM, |u− uh|∞ = 2.5× 10−3

Fig. 10: Error at vertices for isoparametric FEM and VEM on the mesh shown
in Fig. 8b.

is that the mesh must be fine enough so that the hourglass modes are no longer
present in the exact solution. As we have shown in the numerical experiment,
coarse mesh accuracy and stability can be compromised if the hourglass function
is a Dirichlet boundary condition that is exactly imposed. As part of future work,
we plan to extend our analysis to distorted quadrilaterals, and to also include
mean value coordinates and harmonic coordinates in our study.
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