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(a) (b)

Figure S1. Two models of the amorphous phase of a slab initially made of nine bilayers of α-GeTe encapsulated by capping
layers. The capping layers are made of a frozen bilayer of crystalline GeTe at the lattice constant of TiTe2 aiming at mimicking
the confining slabs of TiTe2 in GeTe/TiTe2 superlattices. (a) In the first model, the TiTe2-like bilayer was oriented in such a
way that Ge on one side and Te on the other side face the crystalline GeTe block with a interplanar distance between the
capping layer and the outermost plane of the GeTe block of 3.03 Å. (b) In the second model, the TiTe2-like bilayer was oriented
in such a way as to expose the Te layer to the crystalline GeTe block on both sides. The distance between the capping layer and
outermost layer of GeTe slab is 3.40 Å for the Te layer and 2.74 Å for the Ge layer. The color code is the same of Fig. 1 in the
article.
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Figure S2. Snapshots of crystalline atoms of the GeTe/TiTe2-like superlattice identified by the bond parameter Qdot
4 at 650 K.

Different crystalline nuclei are shown with different colors. The snapshots are shown for (a) 0.25 ns (b) 0.5 ns (c) 0.75 ns and
(d) 1 ns.
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(a) (b)

(c) (d)

Figure S3. Snapshots of crystalline atoms of the GeTe/TiTe2-like superlattice identified by the bond parameter Qdot
4 at 700 K.

Different crystalline nuclei are shown with different colors. The snapshots are shown for (a) 0.25 ns (b) 0.5 ns (c) 0.75 ns and
(d) 1 ns.
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Figure S4. Number of crystalline atoms identified with the order parameter Qdot
4 (see article) as a function of time at different

temperatures for (a) GeTe/TiTe2-like superlattice (b) bulk a-GeTe (model Bulk28, see article) with crystal growth from the
crystal/liquid interface and (c) bulk a-GeTe with homogeneous crystal nucleation and growth.
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Figure S5. Instantaneous crystal growth velocity as a function of time for the model of the GeTe/TiTe2-like superlattice at
different temperatures. The region highlighted in gray corresponds to the time interval over which we estimated the average
crystal growth velocities reported in Table 2 in the article. We start computing the instantaneous velocity when all the
crystalline nuclei become overcritical.
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Figure S6. (a) The evolution in the time of the crystalline volume (Vc) and of (b) the area of the amorphous-crystal interface
(Sac) at different temperatures in bulk a-GeTe for crystal growth from the amorphous/crystal interface (model Bulk28, see
article). (c)-(h) instantaneous crystal growth velocities computed as vg = dVc/dtS−1

ac as described in Ref. 1. The region
highlighted in gray in panels (c)-(h) corresponds to the time interval over which we estimated the average crystal growth
velocities reported in Table 2 in the article. We started computing vg at a later time after proper thermalization of the system.
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Figure S7. (a) The evolution in time of the crystalline volume (Vc) and of (b) the area of the amorphous-crystal interface (Sac)
at different temperatures in the 4096-atom model of bulk a-GeTe for homogeneous crystal nucleation and growth (see article).
(c)-(h) instantaneous crystal growth velocities computed as vg = dVc/dtS−1

ac as described in Ref. 1. The region highlighted in
gray in panels c)-h) corresponds to the time interval over which we estimated the average crystal growth velocities reported in
Table 2 (Bulkhomo) in the article. We start computing the instantaneous velocity when all the crystalline nuclei become
overcritical.
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Table S1. Two-dimensional diffusion coefficient D as a function of time of the confined GeTe slab in GeTe/TiTe2-like
superlattice extracted from NVE simulations at the average temperatures given in the first column. We computed D from the
two dimensional mean square displacement in the plane perpendicular to the slab thickness in the superlattice as
< x2 >+< y2 >= 4Dt. The diffusion coefficient in the slab is compared to those in the bulk at the experimental density of the
amorphous phase from Ref. 2. The values for D in the bulk at the density of the slab which is close to that of crystalline
α-GeTe are expected to be lower than those reported in the last column of the table which correspond to the experimental
density of the amorphous phase.

Temperature (K) D (10−6cm2/s)
GeTe/TiTe2-like superlattice Bulk from Ref. 2

512 0.6 1.5
561 1.2 2.6
614 2.8 4.5
652 4.9 6.2
709 8.2 9.4
750 12.9 12.3

Figure S8. Two-dimensional mean square displacement (MSD) as a function of time from NVE simulations at the average
temperatures given in the inset.
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Figure S9. The normalized distribution of the Qdot
4 order parameter for amorphous GeTe overheated at 600 K (red curve) and

for crystalline α-GeTe at 600 K (blue curve). The vertical dashed line sets the threshold to identify crystalline atoms.
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