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Figure S1. Two models of the amorphous phase of a slab initially made of nine bilayers of a-GeTe encapsulated by capping
layers. The capping layers are made of a frozen bilayer of crystalline GeTe at the lattice constant of TiTe; aiming at mimicking
the confining slabs of TiTe; in GeTe/TiTe, superlattices. (a) In the first model, the TiTe;-like bilayer was oriented in such a
way that Ge on one side and Te on the other side face the crystalline GeTe block with a interplanar distance between the
capping layer and the outermost plane of the GeTe block of 3.03 A. (b) In the second model, the TiTe,-like bilayer was oriented
in such a way as to expose the Te layer to the crystalline GeTe block on both sides. The distance between the capping layer and
outermost layer of GeTe slab is 3.40 A for the Te layer and 2.74 A for the Ge layer. The color code is the same of Fig. 1 in the
article.
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Figure S2. Snapshots of crystalline atoms of the GeTe/TiTe,-like superlattice identified by the bond parameter Qﬁ"’ at 650 K.

Different crystalline nuclei are shown with different colors. The snapshots are shown for (a) 0.25 ns (b) 0.5 ns (¢) 0.75 ns and
(d) 1 ns.
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Figure S3. Snapshots of crystalline atoms of the GeTe/TiTe,-like superlattice identified by the bond parameter Qj‘f‘” at 700 K.
Different crystalline nuclei are shown with different colors. The snapshots are shown for (a) 0.25 ns (b) 0.5 ns (¢) 0.75 ns and

(d) 1 ns.
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Figure S4. Number of crystalline atoms identified with the order parameter fo‘” (see article) as a function of time at different

temperatures for (a) GeTe/TiTe;-like superlattice (b) bulk a

crystal/liquid interface and (c) bulk a-

-GeTe (model Bulk28, see article) with crystal growth from the

GeTe with homogeneous crystal nucleation and growth.
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Figure S5. Instantaneous crystal growth velocity as a function of time for the model of the GeTe/TiTe;-like superlattice at
different temperatures. The region highlighted in gray corresponds to the time interval over which we estimated the average
crystal growth velocities reported in Table 2 in the article. We start computing the instantaneous velocity when all the

crystalline nuclei become overcritical.
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Figure S6. (a) The evolution in the time of the crystalline volume (V..) and of (b) the area of the amorphous-crystal interface
(Sqc) at different temperatures in bulk a-GeTe for crystal growth from the amorphous/crystal interface (model Bulk28, see
article). (¢)-(h) instantaneous crystal growth velocities computed as v, = dV. / dz‘S;c1 as described in Ref. 1. The region
highlighted in gray in panels (c)-(h) corresponds to the time interval over which we estimated the average crystal growth
velocities reported in Table 2 in the article. We started computing v, at a later time after proper thermalization of the system.
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Figure S7. (a) The evolution in time of the crystalline volume (V,) and of (b) the area of the amorphous-crystal interface (S,)
at different temperatures in the 4096-atom model of bulk a-GeTe for homogeneous crystal nucleation and growth (see article).
(c)-(h) instantaneous crystal growth velocities computed as v, = dV,./ dtS;.! as described in Ref. 1. The region highlighted in
gray in panels ¢)-h) corresponds to the time interval over which we estimated the average crystal growth velocities reported in
Table 2 (Bulky,,,) in the article. We start computing the instantaneous velocity when all the crystalline nuclei become

overcritical.
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Table S1. Two-dimensional diffusion coefficient D as a function of time of the confined GeTe slab in GeTe/TiTe,-like
superlattice extracted from NVE simulations at the average temperatures given in the first column. We computed D from the
two dimensional mean square displacement in the plane perpendicular to the slab thickness in the superlattice as

< x? > + < y? >=4Dt. The diffusion coefficient in the slab is compared to those in the bulk at the experimental density of the
amorphous phase from Ref. 2. The values for D in the bulk at the density of the slab which is close to that of crystalline
a-GeTe are expected to be lower than those reported in the last column of the table which correspond to the experimental

density of the amorphous phase.

Temperature (K)

D (10~%cm?/s)

GeTe/TiTe;-like superlattice

Bulk from Ref. 2

512 0.6 1.5
561 1.2 2.6
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Figure S8. Two-dimensional mean square displacement (MSD) as a function of time from NVE simulations at the average

temperatures given in the inset.
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Figure S9. The normalized distribution of the Qj'{"’ order parameter for amorphous GeTe overheated at 600 K (red curve) and
for crystalline ¢t-GeTe at 600 K (blue curve). The vertical dashed line sets the threshold to identify crystalline atoms.
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