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Abstract. We consider a financial equilibrium model which deals with m economic sectors and n fi-
nancial instruments. In the classical derivation the equilibrium prices of the financial instruments are
exogenous, since the maximization of the utility functions of the sectors is performed with respect to the
assets and liabilities only and, as a consequence, the associated KKT system does not yield the equilibrium
prices, which are subsequently fixed with the help of an independent economic argument. Instead, we
consider both the sectors and the instruments as players of a game whose Nash equilibria provide assets,
liabilities and prices. We investigate the Nash equilibria using the variational inequality associated to
the pseudogradient of the game. Since the pseudogradient is monotone, but not strictly monotone, we
expect multiple solutions and under additional assumptions we find out a relationship between any two
solutions. We then compute the solution whose price vector has minimum norm, and also study the price
of anarchy of our game. At last, we perform a scenario analysis based on different taxation regimes.

Keywords. Financial equilibrium; Variational inequalities; Nash equilibrium; pseudogradient; price of
anarchy.
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1. Introduction

In this paper we provide a Game Theory formulation of a financial equilibrium problem previously
proposed by Nagureny et al. (see e.g. [10, 12] and [11, Chapter 8]). In the mentioned references, the
authors develop a variational inequality approach to a classical model of financial markets. Their work
was inspired by the influential papers of Markowitz [8] and Sharpe [15], but instead of using stan-
dard optimization tools their approach was based on the theory of variational inequalities. The model
consists of a certain number of economic sectors which buy different financial instruments, so as to
maximize their utilities, while satisfying the balance law. The equilibrium price of each instrument is
considered as given and its value is inserted in the KKT system corresponding to the maximization of
the utility of each sector. A variational inequality formulation is then proposed, which is proved to
be equivalent to the KKT system, augmented with an additional equilibrium condition involving the
prices. In our approach, we put forward a Game Theory model where the players are both the eco-
nomic sectors and the instruments, and look for the Nash equilibria of the game. While the variational
inequality associated to the pseudogradient of the game is the same as in [13], the merit of our for-
mulation is that the equilibrium prices are not exogenous, but are a component of the Nash equilibria
of the game, that is the game provides an explanation of the price formation mechanism. Within this
framework, it is natural to investigate the so called price of anarchy [14], and under mild assumptions
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1

Figure 1. Bipartite graph which illustrates the relationship between sectors and in-
struments.

we prove that the price of anarchy is equal to 1. Moreover, we deal with the issue of non-uniqueness of
equilibrium prices and provide a strategy to find the solution whose price vector has minimum norm.

This paper is organized as follows. In Section 2, we outline the economic model, provide some
notation, and briefly describe the previous formulation. In Section 3 we put forward our Game Theory
formulation whose properties are investigated in the subsequent Section 4, which includes a theorem
on the non-uniqueness of the equilibrium prices, a theorem on the price of anarchy, and a Tikhonov
regularization procedure which yields the minimum norm equilibrium price. Section 5 is then devoted
to some numerical examples, where we also perform a scenario analysis of different taxation regimes.
In the concluding section we summarize our findings and outline future research perspectives.

2. The Economic Model

The economic model under investigation consists ofm economic sectors and n financial instruments.
We denote with xij the volume of instrument j which is present in the portfolio of sector i as an
asset, and with yij the volume of instrument j in the portfolio of sector i as liability. The relationship
between sectors and instruments is depicted in Figure 1. The assets and liabilities of each sector i are
grouped into vectors xi ∈ Rn and yi ∈ Rn, respectively, while the vectors x = (x1, . . . , xm) and
y = (y1, . . . , ym) describe the assets and liabilities of all sectors. The uncertainty about the future
financial values is embodied, for each sector i, in a variance-covariance matrix Qi corresponding to the
assets and liabilities of sector i. We denote with rj the price of instrument j and with r ∈ Rn the price
vector of all financial instruments. The scalar product between any two vectors a and b is denoted with
a⊤b, while if A is a matrix, Al will denote its l-th column. Each sector wishes to maximize its assets
and minimize its liabilities, while reducing the associated risk which is described by the term:(

xi yi
)
Qi

(
xi

yi

)
.

Thus, for each fixed price vector r, every sector i wants to solve the problem:

min
xi,yi

Ui(x
i, yi, r) =

(
xi yi

)
Qi

(
xi

yi

)
−

n∑
j=1

rj(xij − yij) (2.1)

subject to:
n∑

j=1

xij = si,
n∑

j=1

yij = si, i = 1, 2, . . . ,m, (2.2)

xij ≥ 0, yij ≥ 0, i = 1, . . . ,m, j = 1, 2, . . . , n, (2.3)
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where constraint (2.2) represents the well known accounting identity of sector i, and si denote the total
financial volume of sector i. In the sequel, it will be convenient to split Qi into four blocks:

Qi =

[
Qi

11 Qi
12

Qi
21 Qi

22

]
and denote with

(
qiab

)
lj

the element (l, j) of matrix Qi
ab, a, b = 1, 2. Moreover, being Qi a variance-

covariance matrix, it is symmetric and positive definite, which also implies that Qi
11 and Qi

22 are sym-
metric, while (Qi

12)
⊤ = Qi

21. Thus, if we set

Ai =
(
xi yi

)
Qi

(
xi

yi

)
,

we can write the Lagrangian and the KKT system for each sector, for a fixed price. Thus, let

Ai := xi
T
Qi

11x
i + yiQi

21x
i + xiQi

12y
i + yi

T
Qi

22y
i,

Li =
(
xi yi

)
Qi

(
xi

yi

)
−

n∑
j=1

rj (xij − yij)− µ1
i

 n∑
j=1

xij − si

− µ2
i

 n∑
j=1

yij − si


−

n∑
j=1

λijxij −
n∑

j=1

γijyij .

For l = 1, . . . , n and for each fixed i we get:

∂A

∂xil
=

n∑
j=1

(
qi11

)
lj
xij +

n∑
j=1

(
qi11

)
jl
xij +

n∑
j=1

(
qi21

)
jl
yij +

n∑
j=1

(
qi12

)
lj
yij

= 2
n∑

j=1

(
qi11

)
lj
xij + 2

n∑
j=1

(
qi12

)
lj
yij = 2

n∑
j=1

(
qi11

)
lj
xij + 2

n∑
j=1

(
qi21

)
jl
yij

= 2
(
Qi

11

)⊤
l
xi + 2

(
Qi

21

)⊤
l
yi.

∂A

∂yrl
=

n∑
j=1

(
qi22

)
lj
yij +

n∑
j=1

(
qi22

)
jl
yij +

n∑
j=1

(
qi21

)
jl
xij +

n∑
j=1

(
qi12

)
lj
xij

= 2

n∑
j=1

(
qi22

)
lj
yij + 2

n∑
j=1

(
qi21

)
lj
xij = 2

n∑
j=1

(
qi22

)
lj
yij + 2

n∑
j=1

(
qi12

)
jl
xij

= 2
(
Qi

22

)
l
yi + 2

(
Qi

12

)⊤
l
xi.

The KKT system corresponding to problem (2.1)–(2.3) satisfied by (x∗, y∗) is then:

2
(
Qi

11

)⊤
l
xi

∗
+ 2

(
Qi

21

)⊤
l
yi

∗ − r∗l − µ1
i ≥ 0

2
(
Qi

22

)⊤
l
yi

∗
+ 2

(
Qi

12

)⊤
l
xi

∗
+ r∗l − µ2

i ≥ 0

x∗l

[
2
(
Qi

11

)⊤
l
xi

∗
+ 2

(
Qi

21

)⊤
l
yi

∗ − r∗l − µ1
i

]
= 0

yi
∗
l

[
2
(
Qi

22

)⊤
l
yi

∗
+ 2

(
Qi

12

)⊤
l
xi + r∗l − µ2

i

]
= 0.

(2.4)

Let us remark that the price r∗ has been fixed before solving the system, which means that it is consid-
ered exogenous. The authors in [10] provide an additional condition that must be satisfied at equilibrium
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and that they consider simultaneously with the KKT system for each j = 1, . . . , n:
m∑
i=1

(
x∗ij − y∗ij

) {
= 0, if r∗j > 0,

≥ 0, if r∗j = 0.
(2.5)

The KKT system, complemented with the additional condition (2.5) is then reformulated as a variational
inequality. In the following section, we formulate a game whose solutions coincide with (x∗, y∗, r∗),
thus proving that the equilibrium price can be though of as the outcome of a competition between the
sectors and the financial instruments.

3. The Game Theory Model

For each sector i = 1, . . . ,m, consider the problem:

min
xi,yi

Ui(x
i, yi, r) =

(
xi yi

)
Qi

(
xi

yi

)
−

n∑
j=1

rj(xij − yij) (3.1)

subject to:
n∑

j=1

xij = si,

n∑
j=1

yij = si, i = 1, 2, . . . ,m, (3.2)

xij ≥ 0, yij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (3.3)

Furthermore, for any instrument j = 1, . . . , n consider the problem

min
rj≥0

Vj(x, y, rj) = rj

m∑
i=1

(xij − yij). (3.4)

Each instrument j minimizes the function Vj , with respect to rj ≥ 0, for each value of xij and yij
which is compatible with (3.2), (3.3).

We now consider a game where the players are both the sectors and the instruments, and write the
related pseudogradient:

F (x, y, r) =

(
∇(x1,y1)U1, . . . ,∇(xm,ym)Um,

∂V1

∂r1
, . . . ,

∂Vn

∂rn

)
, (3.5)

where we have made a slight abuse of a notation, writing F (x, y, r) = F (x1, y1, x2, y2, . . . , xm, ym, r),
that is reordering the variables.

Definition 3.1. A vector (x∗, y∗, r∗) is a Nash equilibrium if r∗ ≥ 0, x∗, y∗ satisfy (3.2), (3.3), and for
every i = 1, . . . ,m j = 1, . . . , n:

Ui(x
i∗, yi∗, r∗) ≤ Ui(x

i, yi, r∗), ∀ (xiyi) such that (3.2), (3.3) hold, (3.6)
Vj(x

∗, y∗, r∗j ) ≤ Vj(x
∗, y∗, rj), ∀ rj ≥ 0. (3.7)

It is well known that Nash equilibrium problems, under standard differentiability and convexity
assumptions, can be formulated by means of an equivalent variational inequality [2, 7, 9, 13]. The
interested reader can consult [4] or [11], for the variational inequality approach to equilibrium prob-
lems. Thus, (3.6)–(3.7) can be solved investigating the variational inequality V I(F,K), where F is the
pseudogradient defined in (3.5) and K is the closed, convex set defined as

K =

(x, y, r) ∈ R2mn+n
+ :

n∑
j=1

xij = si,
n∑

j=1

yij = si, ∀i = 1, . . . ,m,

 .
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Thus, the variational inequality V I(F,K) consists in finding (x∗, y∗, r∗) ∈ K such that
m∑
i=1

∇xiUi(x
i∗, yi∗, r∗)⊤(xi − xi∗) +

m∑
i=1

∇yiUi(x
i∗, yi∗, r∗)⊤(yi − yi∗)

+

n∑
j=1

∂Vj(x
∗, y∗, r∗j )

∂rj
(rj − r∗j ) ≥ 0, ∀(x, y, r) ∈ K.

(3.8)

Let us mention that it has been proved in [10] that variational inequality (3.8) is equivalent to condi-
tions (2.4)–(2.5).

The previous model can be extended in some directions. First of all, under financial regulations, a
maximum value r̄j can be imposed on the price of each instrument. This is a natural assumption that
will be kept throughout the paper. Moreover, the government can decide to impose a tax τij ∈ [0, 1) on
the revenue of instrument j of sector i. At last, instead of considering the quadratic expression in (3.1),
we can assume that the utility of each sector i (still denoted by Ui) is given by

Ui(x
i, yi, r) = ui(x

i, yi) +
n∑

j=1

(1− τij)rj(xij − yij) (3.9)

where ui is a strictly concave and continuously differentiable function and the constraints on assets
and liabilities are described by a general convex and compact set Pi. Thus, each sector i wishes to solve
the problem

max
(xi,yi)∈Pi

Ui(x
i, yi, r), (3.10)

while each financial instrument j wishes to solve the problem

min
rj∈[0,r̄j ]

Vj(x, y, rj) = rj

m∑
i=1

(1− τij)(xij − yij). (3.11)

The solution concept of our general Game Theory model is given by the following definition.

Definition 3.2. A vector (x∗, y∗, r∗) ∈ ∏m
i=1 Pi ×

∏n
j=1[0, r̄j ] is a Nash equilibrium if

Ui(x
i∗, yi∗, r∗) ≥ Ui(x

i, yi, r∗), ∀ (xiyi) ∈ Pi, ∀ i = 1, . . . ,m, (3.12)
Vj(x

∗, y∗, r∗j ) ≤ Vj(x
∗, y∗, rj), ∀ rj ∈ [0, r̄j ], ∀ j = 1, . . . , n. (3.13)

Having written for theUi a maximum problem, the corresponding components of the pseudogradient
will be negative. We can easily compute:

∇xiUi(x
i, yi, r) = ∇xiui(x

i, yi) +∇xi

n∑
j=1

(1− τij)rj(xij − yij),

∇yiUi(x
i, yi, r) = ∇yiui(x

i, yi) +∇xi

n∑
j=1

(1− τij)rj(xij − yij),

∂

∂xil

n∑
j=1

(1− τij)rj(xij − yij) = (1− τil)rl,

whence

∇xi

n∑
j=1

(1− τij)rj(xij − yij) = [(1− τi1)r1, . . . , (1− τil)rl, . . . , (1− τin)rn] = (I − τi)r
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where τi = diag(τi1, . . . , τin). Therefore,
∇xiUi(x

i, yi, r) = ∇xiui(x
i, yi) + (I − τi)r,

∇yiUi(x
i, yi, r) = ∇iui(x

i, yi)− (I − τi)r.

The components of the pseudogradient associated with the financial instruments are given by

∂Vj

∂rj
=

m∑
i=1

(1− τij)(xij − yij).

If we denote the set of feasible prices by
Q = {r ∈ Rn : 0 ≤ r ≤ r̄},

then the new feasible set of assets liabilities and prices is

C =

m∏
i=1

Pi ×Q.

We continue to denote with F the pseudogradient of this general game. The variational inequality
V I(F,C) reads as follows: find (x∗, y∗, r∗) ∈ C such that

−
m∑
i=1

[∇xiui(x
i∗, yi∗) + r∗⊤(I − τi)]

⊤(xi − xi∗)

−
m∑
i=1

[∇yiui(x
i∗, yi∗)− r∗⊤(I − τi)]

⊤(yi − yi∗) (3.14)

+

n∑
j=1

[ m∑
i=1

(1− τij)(x
i∗ − yi∗)

]
(rj − r∗j ) ≥ 0, ∀(x, y, r) ∈ C.

Since the pseudogradient F is continuous and the set C is compact and convex, the existence of solu-
tions of (3.14) is ensured (see, e.g., [6]).

We conclude this section by briefly recalling the concept of price of anarchy [14]. Assume we are
given a noncooperative game in standard form, and compute the Welfare function W , which is the sum
of the utility functions of all players. Let us also assume that the game has a unique Nash equilibrium
zN and that the Welfare function has a unique maximum point zO (also called social optimum). The
price of anarchy, defined as

γ =
W (zN )

W (zO)
, (3.15)

is a measure of how much the selfish behavior of players affect the social welfare. In the following
we also show that even if our model yields multiple Nash equilibria, the price of anarchy is still well
defined.

4. Features of the Game Theory Model

The utility functions in (3.9) and (3.11) produce a pseudogradient that is monotone, but not strictly
monotone (see [10]):

[F (x′, y′, r′)− F (x′′, y′′, r′′)]⊤[(x′, y′, r′)− (x′′, y′′, r′′)] ≥ 0, ∀(x′, y′, r′), (x′′, y′′, r′′) ∈ C,

so that we can expect that the solution is not unique. We recall that F is called strictly monotone if
in the above inequality, the equality sign only holds for (x′, y′, r′) = (x′′, y′′, r′′). The structure of the
solution set is investigated in the following theorem.

Theorem 4.1 (Equilibrium prices). The following statements hold:
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a) If (x∗, y∗, r∗) and (x∗∗, y∗∗, r∗∗) are two different Nash equilibria, then r∗ ̸= r∗∗.
b) Suppose the taxes only depend on the sectors, i.e., τij = σi for any i = 1, . . . ,m and j = 1, . . . , n. If

(x∗, y∗, r∗) is a Nash equilibrium, then (x∗, y∗, r∗∗) is a Nash equilibrium as well, where

r∗∗j =


0 if r∗j = 0,

r̄j if r∗j = r̄j ,

r∗j + α if r∗j ∈ (0, r̄j),

for any j = 1, . . . , n and

−min{r∗j : r∗j ∈ (0, r̄j)} ≤ α ≤ min{r̄j − r∗j : r∗j ∈ (0, r̄j)}. (4.1)

c) Suppose the taxes only depend on the sectors, i.e., τij = σi for any i = 1, . . . ,m and j = 1, . . . , n. If
(x∗, y∗, r∗) and (x∗, y∗, r∗∗) are Nash equilibria and there is a sector i such that x∗ij > 0 holds for any
j = 1, . . . , n or y∗ij > 0 holds for any j = 1, . . . , n, then there exists α ∈ R such that r∗j − r∗∗j = α
for any j = 1, . . . , n.

Proof. a) Assume, by contradiction, that r∗ = r∗∗. Since (x∗, y∗, r∗) and (x∗∗, y∗∗, r∗∗) are different
Nash equilibria, there exists k ∈ {1, . . . ,m} such that xk∗ ̸= xk∗∗ or yk∗ ̸= yk∗∗. Moreover,
(x∗, y∗, r∗) and (x∗∗, y∗∗, r∗∗) solve V I(F,C), hence the following inequalities hold:

−
m∑
i=1

[∇xiui(x
i∗, yi∗) + r∗⊤(I − τi)]

⊤(xi∗∗ − xi∗)

−
m∑
i=1

[∇yiui(x
i∗, yi∗)− r∗⊤(I − τi)]

⊤(yi∗∗ − yi∗) ≥ 0,

−
m∑
i=1

[∇xiui(x
i∗∗, yi∗∗) + r∗⊤(I − τi)]

⊤(xi∗ − xi∗∗)

−
m∑
i=1

[∇yiui(x
i∗∗, yi∗∗)− r∗⊤(I − τi)]

⊤(yi∗ − yi∗∗) ≥ 0.

If we sum the latter inequalities, we get

−
m∑
i=1

[∇xiui(x
i∗, yi∗)−∇xiui(x

i∗∗, yi∗∗)]⊤(xi∗∗ − xi∗)

−
m∑
i=1

[∇yiui(x
i∗, yi∗)−∇yiui(x

i∗∗, yi∗∗)]⊤(yi∗∗ − yi∗) ≥ 0. (4.2)

On the other hand, each functionui is strictly concave, hence the operator−∇ui is strictly monotone
and we have

[∇xiui(x
i∗, yi∗)−∇xiui(x

i∗∗, yi∗∗)]⊤(xi∗∗ − xi∗)

+ [∇yiui(x
i∗, yi∗)−∇yiui(x

i∗∗, yi∗∗)]⊤(yi∗∗ − yi∗) ≥ 0 ∀ i ̸= k,

[∇xkuk(x
k∗, yk∗)−∇xkuk(x

k∗∗, yk∗∗)]⊤(xk∗∗ − xk∗)

+ [∇ykuk(x
k∗, yk∗)−∇ykuk(x

k∗∗, yk∗∗)]⊤(yk∗∗ − yk∗) > 0.
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Therefore, we get
m∑
i=1

[∇xiui(x
i∗, yi∗)−∇xiui(x

i∗∗, yi∗∗)]⊤(xi∗∗ − xi∗)

+

m∑
i=1

[∇yiui(x
i∗, yi∗)−∇yiui(x

i∗∗, yi∗∗)]⊤(yi∗∗ − yi∗) > 0,

that contradicts (4.2). Therefore, we proved that r∗ ̸= r∗∗.
b) Since problems (3.10),(3.11) are concave and convex, respectively, (x∗, y∗, r∗) is a Nash equilibrium

if and only if it solves the following KKT system:

− ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗
j + λ∗

i − ν∗ij = 0 ∀ i, j,

− ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗
j + µ∗

i − ρ∗ij = 0 ∀ i, j,

m∑
i=1

(1− σi)(x
∗
ij − y∗ij)− β∗

j + γ∗j = 0 ∀ j,

ν∗ijx
∗
ij = 0 ∀ i, j,

ρ∗ijy
∗
ij = 0 ∀ i, j,

β∗
j r

∗
j = 0 ∀ j,

γ∗j (r
∗
j − r̄j) = 0 ∀ j,

n∑
j=1

x∗ij = si,
n∑

j=1

y∗ij = si ∀ i,

x∗ij ≥ 0, y∗ij ≥ 0, ν∗ij ≥ 0, ρ∗ij ≥ 0 ∀ i, j,

0 ≤ r∗j ≤ r̄j , β∗
j ≥ 0, γ∗j ≥ 0 ∀ j,

where multipliers λ∗
i and µ∗

i are associated to constraints (2.2), ν∗ij and ρ∗ij to constraints (2.3), while
β∗
j and γ∗j to the constraints on rj . The latter system is equivalent to the following system of equal-

ities and inequalities:

− ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗
j + λ∗

i ≥ 0 ∀ i, j, (4.4a)

− ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗
j + µ∗

i ≥ 0 ∀ i, j, (4.4b)

m∑
i=1

(1− σi)(x
∗
ij − y∗ij) + γ∗j ≥ 0 ∀ j, (4.4c)

x∗ij

[
− ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗
j + λ∗

i

]
= 0 ∀ i, j, (4.4d)

y∗ij

[
− ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗
j + µ∗

i

]
= 0 ∀ i, j, (4.4e)

r∗j

[
m∑
i=1

(1− σi)(x
∗
ij − y∗ij) + γ∗j

]
= 0 ∀ j, (4.4f)

γ∗j (r
∗
j − r̄j) = 0 ∀ j, (4.4g)
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n∑
j=1

x∗ij = si,

n∑
j=1

y∗ij = si ∀ i, (4.4h)

x∗ij ≥ 0, y∗ij ≥ 0 ∀ i, j, (4.4i)
0 ≤ r∗j ≤ r̄j , γ∗j ≥ 0 ∀ j. (4.4j)

We prove that (x∗, y∗, r∗∗) is a Nash equilibrium since it solves system (4.4) with multipliers

λ∗∗
i = λ∗

i + (1− σi)α ∀ i = 1, . . . ,m,

µ∗∗
i = µ∗

i − (1− σi)α ∀ i = 1, . . . ,m,

γ∗∗j = γ∗j ∀ j = 1, . . . , n.

In fact, we have

− ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗∗
j + λ∗∗

i = − ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗
j − (1− σi)α+ λ∗

i + (1− σi)α

= − ∂ui
∂xij

(x∗, y∗)− (1− σi)r
∗
j + λ∗

i ,

thus (4.4a) and (4.4d) hold. Moreover, we have

− ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗∗
j + µ∗∗

i = − ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗
j + (1− σi)α+ µ∗

i − (1− σi)α

= − ∂ui
∂yij

(x∗, y∗) + (1− σi)r
∗
j + µ∗

i ,

thus (4.4b) and (4.4e) hold. If r∗∗j = 0, then (4.4f) trivially holds, while if r∗∗j > 0, then, by definition,
we have r∗j > 0, thus

∑m
i=1(1 − σi)(x

∗
ij − y∗ij) + γ∗j = 0 and hence (4.4f) holds. Moreover, if

r∗∗j = r̄j , then (4.4g) holds, while if r∗∗j < r̄j , then, by definition, r∗j < r̄j , thus γ∗j = 0 and (4.4g)
holds. Finally, condition (4.1) guarantees that r∗∗ ∈ [0, r̄].

c) Since (x∗, y∗, r∗) and (x∗, y∗, r∗∗) are Nash equilibria, they satisfy system (4.4) with multipliers
(λ∗, µ∗, γ∗) and (λ∗∗, µ∗∗, γ∗∗), respectively. Suppose that x∗ij > 0 holds for any j = 1, . . . , n and
define α = (λ∗

i − λ∗∗
i )/(1− σi). Then, we get from (4.4d) the following equations:

(1− σi)r
∗
j = − ∂ui

∂xij
(x∗, y∗) + λ∗

i ∀ j = 1, . . . , n,

(1− σi)r
∗∗
j = − ∂ui

∂xij
(x∗, y∗) + λ∗∗

i ∀ j = 1, . . . , n,

hence r∗j − r∗∗j = α for any j = 1, . . . , n. If y∗ij > 0 holds for any j = 1, . . . , n, then we can get the
thesis with α = (µ∗∗

i − µ∗
i )/(1− σi) by exploiting (4.4e).

□

Theorem 4.2 (Price of Anarchy). Consider the general model where the utility functions of the sectors are
given as in (3.9), those of the financial instruments by (3.11), and the price of each financial instrument j
is nonnegative and bounded from above by r̄j . If (x∗, y∗, r∗) is a Nash equilibrium and r∗j < r̄j for any
j = 1, . . . , n, then the Price of Anarchy is equal to 1.

Proof. Let us notice that in our model the welfare function is given by:

W (x, y, r) =
m∑
i=1

ui(x
i, yi).
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It is also convenient to consider the function:

W̃ (x, y) =
m∑
i=1

ui(x
i, yi).

Since W̃ is strictly concave and continuous in the compact set
∏

i Pi, we get that it exists a unique
point (x̄, ȳ) such that:

W̃ (x̄, ȳ) = max
(x,y)∈

∏
i Pi

W̃ (x, y). (4.5)

Under our convexity and differentiability hypotheses, the necessary and sufficient condition for (4.5) is
that for all (x, y) ∈ ∏n

i=1 Pi:

−
m∑
i=1

[∇xiui(x̄, ȳ)]
⊤ · (xi − x̄i)−

m∑
i=1

[∇yiui(x̄, ȳ)]
⊤ · (yi − ȳi) ≥ 0. (4.6)

Let us now consider the further set of constraints:

S =

{
(x, y) ∈

n∏
i=1

Pi :

m∑
i=1

(1− τij)(xij − yij) ≥ 0, ∀j = 1, . . . , n

}
and let (x∗, y∗, r∗) be a Nash equilibrium of the game. Thus, (x∗, y∗, r∗) satisfies (3.14), where we can
choose rj = r∗j for any j = 1, . . . , n, so as to obtain:

−
m∑
i=1

[∇xiui(x
i∗, yi∗) + r∗⊤(I − τi)]

⊤(xi − xi∗)

−
m∑
i=1

[∇yiui(x
i∗, yi∗)− r∗⊤(I − τi)]

⊤(yi − yi∗) ≥ 0, ∀(x, y, r) ∈ C,

which yields:

−
m∑
i=1

[∇xiui(x
i∗, yi∗)]⊤(xi − xi∗)−

m∑
i=1

[∇yiui(x
i∗, yi∗)]⊤(yi − yi∗)

≥ r∗⊤(I − τi) · (xi − yi)− r∗⊤(I − τi) · (xi∗ − yi∗)

=
n∑

j=1

m∑
i=1

r∗j (1− τij)(xij − yij)−
n∑

j=1

m∑
i=1

r∗j (1− τij)(x
∗
ij − y∗ij).

(4.7)

We now investigate the sign of the second summand of the right-hand side, i.e.,
∑n

j=1

∑m
i=1 r

∗
j (1 −

τij)(x
∗
ij − y∗ij). If in (3.14) we choose xi = xi∗, yi = yi∗ for any i = 1, . . . ,m and, if 0 < r∗k < r̄k,

rk = r∗k ± ε with ε > 0 small enough and rj = r∗j for any j ̸= k, then we obtain
m∑
i=1

(1− τik)(x
∗
ik − y∗ik) = 0.

On the other hand, if r∗k = 0, we get
∑m

i=1(1 − τik)(x
∗
ik − y∗ik) ≥ 0. We can then conclude that

(x∗, y∗) ∈ S and

−
m∑
i=1

[∇xiui(x
∗, y∗)]⊤(xi − xi∗)−

m∑
i=1

[∇yiui(x
∗, y∗)]⊤(yi − yi∗) ≥ 0, ∀(x, y) ∈ S, (4.8)

which is the necessary and sufficient condition for (x∗, y∗) to be the (unique) maximum point of W̃
in S. Thus, x∗ = xS and y∗ = yS , where (xS , yS) is the unique maximum point of W̃ in S, which
entails that any two Nash equilibria can differ only for the price components, provided that none of
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them reaches its upper bound. We have also proved that, if the Welfare function W is considered in
S × [0, r̄], instead of

∏m
i=1 Pi × [0, r̄], the price of anarchy is 1. □

Corollary 4.3 (Tikhonov regularization). Let I be the identity matrix in R2mn+n, ε > 0, and consider
the variational inequality V I(F +εI, C). Denote with (x∗ε, y

∗
ε , r

∗
ε) its unique solution. We then have that,

for ε → 0, (x∗ε, y
∗
ε , r

∗
ε) converges to a point (x∗, y∗, r∗) ∈ C , which represents the solution of V I(F,C)

with the price vector of minimum norm, among all the solutions (x′, y′, r′) which satisfy r′ < r̄.

Proof. The well known elliptic (or Tikhonov) regularization procedure for monotone variational in-
equalities (see, e.g., [6]) ensures that that if F is monotone then for each ε > 0, F + εI is a strictly
monotone operator on the compact set C and hence, there is a unique solution to V I(F +εI, C) which
converges to the minimum norm solution of V I(F,C). However, according to the previous theorem,
every two solutions of V I(F,C) with r < r̄ may only differ for the price vector. It then follows that
the solution thus obtained is the solution which yields a price vector of minimum norm, among all the
solutions (x′, y′, r′) which satisfy r′ < r̄. □

5. Numerical Experiments

In this section we report some numerical experiments on the game theory model described in Sec-
tion 3. The variational inequality (3.14) has been numerically solved by implementing in MATLAB the
optimization reformulation proposed in [1]. We consider the same setting as in the example described
in [10]: there are two sectors (m = 2) and three financial instruments (n = 3), with s1 = 1, s2 = 2 and
the variance-covariance matrices defined as follows:

Q1 =



1 0.15 0.3 −0.2 −0.1 0
0.15 1 0.1 −0.1 −0.2 0
0.3 0.1 1 −0.3 0 −0.1
−0.2 −0.1 −0.3 1 0 0.3
−0.1 −0.2 0 0 1 0.2
0 0 −0.1 0.3 0.2 1

 ,

Q2 =



1 0.4 0.3 −0.1 −0.1 0
0.4 1 0.5 0 −0.05 0
0.3 0.5 1 0 0 −0.1
−0.1 0 0 1 0.5 0
−0.1 −0.05 0 0.5 1 0.2
0 0 −0.1 0 0.2 1

 .

First, we show that the assumption r∗ < r̄ in Theorem 4.2 is necessary for the Nash equilibrium
(x∗, y∗, r∗) to have the price of anarchy equal to 1. In fact, if we set r̄j = 1 for any j = 1, . . . , 3
and the taxes τij are defined as follows:

τ11 = 0.28, τ12 = 0.27, τ13 = 0.28,

τ21 = 0.30, τ22 = 0.30, τ23 = 0.22,

then

x∗11 = 0.3136, x∗12 = 0.3774, x∗13 = 0.3091,

x∗21 = 0.8420, x∗22 = 0.4364, x∗23 = 0.7216,

y∗11 = 0.4475, y∗12 = 0.3792, y∗13 = 0.1733,

y∗21 = 0.7186, y∗22 = 0.4345, y∗23 = 0.8469,

r∗1 = 1.0000, r∗2 = 0.9843, r∗3 = 0.8717
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is a Nash equilibrium such that r∗1 = r̄1 and (x∗, y∗) does not belong to the set S since

(1− τ11) (x
∗
11 − y∗11) + (1− τ21) (x

∗
21 − y∗21) = −0.01 < 0.

Therefore, (x∗, y∗, r∗) cannot be the maximizer of the welfare function W in S × [0, r̄]. Moreover, if
W is considered in

∏m
i=1 Pi × [0, r̄], we have

W (x∗, y∗, r∗) = −4.2557, max∏m
i=1 Pi×[0,r̄]

W (x, y, r) = −4.0134,

thus the price of anarchy at the equilibrium (x∗, y∗, r∗) is equal to 1.06.
Subsequently, we consider 100 different randomly generated scenarios, with the upper bounds r̄j = 5

for any j = 1, . . . , 3 and each tax rate τij defined as a uniformly distributed random number between
0.2 and 0.3. The mean values and standard deviations of the Nash equilibria obtained by applying the
Tikhonov regularization method for each scenario are shown in Table 1 (columns 2-3).

Moreover, since the Nash equilibria of the game satisfy special properties in the case where the taxes
depend only on the sectors (see Theorem 4.1), we consider 100 additional randomly generated scenarios,
with r̄j = 5 for any j = 1, . . . , 3, and τij = σi, for any i = 1, 2, and j = 1, . . . , 3, where σi are
uniformly distributed random numbers between 0.2 and 0.3. The mean values and standard deviations
of the Nash equilibria obtained by applying the Tikhonov regularization method for each scenario are
shown in Table 1 (columns 4-5). Notice that the variability of equilibrium prices is much higher when
taxes τij are independent of each other than when they depend only on sectors (in accordance with the
results of Theorem 4.1 and 4.2).

Table 1. Mean values and standard deviations of the Nash equilibria obtained by ap-
plying the Tikhonov regularization method to 100 randomly generated scenarios in
taxes.

General τij τij = σi

Variable Mean values Std deviation Mean values Std deviation
x11 0.3267 0.0275 0.3117 0.0026
x12 0.3707 0.0164 0.3684 0.0005
x13 0.3026 0.0254 0.3199 0.0032
x21 0.8354 0.0261 0.8522 0.0012
x22 0.4415 0.0187 0.4499 0.0005
x23 0.7230 0.0346 0.6979 0.0017
y11 0.4369 0.0257 0.4529 0.0029
y12 0.3862 0.0164 0.3879 0.0004
y13 0.1769 0.0265 0.1592 0.0033
y21 0.7261 0.0259 0.7106 0.0012
y22 0.4271 0.0180 0.4304 0.0003
y23 0.8468 0.0170 0.8591 0.0008
r1 1.9112 1.9505 0.0934 0.0086
r2 1.9167 1.9813 0.0687 0.0055
r3 1.8361 1.9708 0.0000 0.0000

6. Conclusions

In this paper we have proved that a Game Theory formulation of a previously proposed economic
model can provide a mechanism which explains the equilibrium price formation in the market. Since
our problem has multiple solutions, we have investigated the relationship among them. Moreover, we
have computed the price of anarchy of the game and proved that it is equal to 1 provided that the
equilibrium prices are all below their upper bound. At last, we have explained how to compute the
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solution whose price vector has minimum norm, and illustrated our findings with a numerical example
with different taxation scenarios. Future research will deal with the extension of this approach to more
complex market structures, in particular, taking into account financial intermediaries. Another inter-
esting research perspective is to consider random perturbations of the taxes and, instead of generating
different scenarios, frame the problem within the theory of stochastic variational inequality [3].
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