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Abstract
Multi-class predictive models are generally evaluated averaging binary classification
indicators without a distinction between nominal and ordinal dependent variables.
This paper introduces a novel approach to assess performances of predictive models
characterized by an ordinal target variable and a new index for model evaluation
is proposed. The new index satisfies mathematical properties and it can be applied
to the evaluation of parametric and non parametric models. In order to show how
our performance indicator works, empirical evidences obtained on toy examples and
simulated data are provided. On the basis of the results achieved, we underline that our
approach can be a more suitable criterion for model selection than the performance
indexes currently suggested in the literature.

Keywords Classification · Ordinal data · Performance index · Model assessment

1 Introduction

Evaluationmeasures arewidely used in predictivemodels in order to compare different
algorithms, thus providing the selection of the best model.

Performance indicators can be used to assess the performance of a model in terms
of accuracy, discriminatory power and stability of the results. The choice of indicators
to performmodel selection is essential and many approaches have been proposed over
the years (see e.g. Bradley 1997; Adams and Hand 2000; Hand 2009).
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Concerning binary target variables, different criteria to compare the performance
of classification models are available (see Hand 1997, 2001; Sokolova et al. 2006;
Hossin and Sulaiman 2015).

Multi-class classification models are generally evaluated averaging binary classifi-
cation indicators (see Hand and Till 2001; Sokolova and Lapalme 2009; Hossin and
Sulaiman 2015) and in the current literature there is not a clear distinction among them
with respect to multi-class nominal and ordinal targets (e.g. Frank andHall 2001; Pang
and Lee 2005; Gaudette and Japkowicz 2009).

Concerningordinal responsevariablesmodelling, different approaches are described
in literature, both parametric (seeTorra et al. 2006;Kotłowski et al. 2008;Agresti 2010)
and non-parametric (see Piccarreta 2004; Galimberti et al. 2012; Ahmad and Brown
2015; Morrone et al. 2019; Hornung 2020), but for the model selection stage the tools
are inadequate.

This leads us to propose a newclass ofmeasures to select the bestmodel in predictive
contexts characterized by a multi-class ordinal target variable, using the misclassifi-
cation errors coupled with a measure of uncertainty on the prediction.

The paper is structured as follows: Sect. 2 reviews themetricsmost used in literature;
Sect. 3 shows ourmethodological proposal and provesmathematical properties; Sect. 4
explains how our proposed index works in two toy examples; Sect. 5 reports the
empirical evidence obtained on simulated data. Conclusions and further research ideas
are summarized in Sect. 6.

2 Review of the literature for ordinal dependent variables

The most popular measures of performance in ordinal predictive classification models
are based on AUC (Area Under the Receiver Operating Characteristic (ROC) Curve),
accuracy (expressed in terms of correct classification) and MSE (Mean Square Error),
see Gaudette and Japkowicz (2009) and Huang and Ling (2007) among others. The
accuracy,measured as percentage of correct predictions over total instances, is themost
used evaluation metric for binary and multi-class classification problems (Sokolova
et al. 2006), assuming that the costs of the different misclassifications are equal.

The AUC for multi-class classification is defined in Hand and Till (2001) as a
generalization of the AUC (based on the probabilistic definition of AUC); it suffers
of weaknesses also in the binary classification problem (Gigliarano et al. 2014) and it
is cost-independent, assumption that can be viewed as a weakness when the target is
ordinal.

The mean square error (MSE) measures the difference between prediction values
and observed values in regression problems using an Euclidean distance. MSE can be
used in ordinal predictive models, converting the classes of the ordinal target variable
y in integers and computing the difference between them; it does not take into account
the ordering in a predictive model characterized by ordinal classes in the response
variable.

Furthermore, it is well known that in imbalanced data characterized by under-
fitting or over-fitting the mean square error could provide trivial results (see Hossin
and Sulaiman 2015).
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3 A new index for model performances evaluation and comparison
for ordinal target

Let y = {y1, . . . , yN } be a test set for the ordinal target variable Y , where yi ∈
{1, . . . , M} (with M number of classes ordered of the target variable) and let X be
the N × p data matrix, where N is the number of observations and p the number of
covariates.

The output of a predictive model is a matrix P = {pi j }, where 0 ≤ pi j ≤ 1, which
contains the probability that observation i belong to the class j estimated by the model
under evaluation.

Standard multi-class classification rules assign the observation i to the class j =
argmaxl{pi,l}.

In order to introduce our proposal, the definitions of classification function and
error interval are required.

Definition 1 (Classification function) Let observations {1, . . . , N } be grouped by the
estimated classes ŷi = j . For each class, sort the observations in a non-increasing
order with respect to pi, j . The vector of indexes i of the observations is a permutation
of the original vector, according to the ordering defined above. For a given model, the
classification function is a piecewise constant function fmod : [0, 1] → {1, . . . , M}
such that fmod([ i−1

N , i
N )) = yi for i ∈ {1, . . . , N }.

As a special case, the perfect classification function, is a piecewise constant function
fexact : [0, 1] → {1, . . . , M} such that each estimated class corresponds to the real
class identified by y.

Note that the function fexact is unique except for permutation of the observations
in the same estimated class.

The error interval in each class can be derived as the interval between the first
misclassified observation and the end of the observations in that estimated class.

Definition 2 (Error Interval)
Consider the vector of observations ordered as described in Definition 1. Suppose

that the range corresponding to the estimated class j in that vector has indexes in
[n j−1, n j ). Let ĩ j ∈ {n j−1, . . . , n j } be the index of the first misclassified observation.

The error interval is defined as [ ˜i j
N ,

n j
N ), i.e. the interval between the first misclassified

observation and the last observation of the estimated class j ; its length is defined as

e j = n j− ˜i j
N .

If no misclassification occurs in [n j−1, n j ), the error interval is defined as an empty
set with a length e j = 0.

Consider an artificial example. Let N = 10 be the number of observations and each
of these belongs to a class defined by a three levels target variable (M = 3). Suppose
that a (hypothetical) predictive model returns the predictions as in Table 1.

The classification function is derived grouping the observations in the estimated
class as: {3,6,7,8} in Class 1, {2,9,10} in Class 2 and {1,4,5} in Class 3. In each group
the observations are sortedwith respect to the probability of the estimated class. For the
group 1 the probabilities are 0.828, 0.426, 0.849, 0.520 respectively, then the ordered
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Table 1 Example

Observation Probabilities Estimated class Real class

Class 1 Class 2 Class 3

1 0.288 0.174 0.538 3 1

2 0.325 0.478 0.197 2 2

3 0.828 0.013 0.159 1 1

4 0.310 0.106 0.584 3 3

5 0.120 0.262 0.618 3 3

6 0.426 0.167 0.407 1 3

7 0.849 0.126 0.025 1 2

8 0.520 0.401 0.079 1 1

9 0.147 0.670 0.183 2 2

10 0.142 0.593 0.265 2 3

The probabilities are randomly generated, the estimated class is the class with the maximum of probability
assigned, the real class are generated starting from the estimated class with some classification errors
artificially introduced

Table 2 Index construction i 7 3 8 6 9 10 2 5 4 1

i 1 2 3 4 5 6 7 8 9 10

y 2 1 1 3 2 3 2 3 3 1

ŷ 1 1 1 1 2 2 2 3 3 3

group is: {7,3,8,6}. Following the same rule the group 2 becomes {9,10,2} and group
3 is {5,4,1}.

The final sequence of observations can be written as in Table 2. The classification
function and the corresponding perfect classification function are depicted in Figs. 1
and 2 respectively.

In order to define the three error intervals, as a preliminary step we identify the
intervals of observations related to each estimated class: [0, 0.4) for Class 1, [0.4, 0.7)
for Class 2, [0.7, 1) for Class 3. From Table 2, in the estimated Class 1 the first error
corresponds to the first observation, so the error interval is [0, 0.4); in the estimated
Class 2 the first error corresponds to the observation 6, then the error interval is
[0.5, 0.7) and in the estimated Class 3 the first error corresponds to the observation 10
and the error interval is [0.9, 1).

Starting from Definitions 1 and 2, Definition 3 introduces a new index for model
performance evaluation in predictive models characterized by an ordinal target vari-
able.

Definition 3 (Index) Consider for each class {1, . . . M} the corresponding weight
w j = e j

l j
, where e j is the j th error interval length and l j = n j − n j−1 is the length of

the j th estimated class in the domain, such that 0 ≤ w j ≤ 1. We define the new index
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Fig. 1 Classification function

Fig. 2 Perfect classification function
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as:

I =
M∑

j=1

w j

∫ n j
N

n j−1
N

|( fmod(x) − fexact (x))|dx

i.e. the new index is defined as the weighted sum of the distance between classification
function and perfect classification function.

On the basis of the previous example, we can compute the value for the index intro-
duced in Definition 3: the three integral results are (0.3, 0.1, 0.2) and the corresponding
weights are (1, 0.67, 0.33), thus I = 0.433.

The index satisfies the following properties.

Property 1 I ∈ [0,+∞). I = 0 if and only if fmod = fexact .

Proof

I =
M−1∑

j=0

w j

∫ n j
N

n j−1
N

|( fmod − fexact )(x)|dx ≥
M−1∑

j=0

n j − ĩ j
N

| fmod − fexact |n j − n j−1

N

and

– n j ≥ ĩ j ,
– n j > n j−1

by definition, than we can conclude that I ≥ 0.
We prove also that I = 0 if and only if fmod = fexact .

I = 0 �⇒ w j = 0 or
∫ n j

N
n j−1
N

|( fmod − fexact )(x)|dx = 0 ∀ j in {1, . . . , M − 1}.

– w j = 0 ⇐⇒ ĩ j = n j , i.e there are not classification errors, so fmod = fexact in
class j .

–
∫ n j

N
n j−1
N

|( fmod − fexact )(x)|dx = 0 ⇐⇒ fmod = fexact in the class j .

We can underline that I = 0 �⇒ fmod = fexact .
The other implication is trivial. ��

Property 2 I has a sharp upper bound M − 1
The upper bound M − 1 is reached if and only if M = 2 (binary classification).

Proof

I =
M−1∑

j=0

w j

∫ n j
N

n j−1
N

|( fmod − fexact )(x)|dx ≤
M−1∑

j=0

1 ·
∫ n j

N

n j−1
N

|( fmod − fexact )(x)|dx

≤ max
x

|( fmod − fexact )(x)|
M−1∑

j=0

n j − n j−1

N
≤ M − 1
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If M = 2 we obtain |( fmod − fexact )(x)| = 1 ∀x ∈ [0, 1] so that I = M − 1. If
M > 2, |( fmod − fexact )(x)| > 1 for at least one class (by construction) the inequality
is strict. ��

Proposition 1 I ≤ K,
where K is defined as

K =
M∑

i=1

li max{M − i, i − 1}

Proof The maximum value is reached when the worst classification is obtained, i.e.
when all observations are associated to the farthest class. If this happens, the error
interval is as long as the class domain, so w j = 1∀ j = 1, . . . , M and each integral is
the area of a rectangle with basis the class domain l j and height the maximum height
reachable. ��

Definition 4 (Normalized index)

In = 1

K

M−1∑

j=0

w j

∫ n j
N

n j−1
N

|( fmod − fexact )(x)|dx

where K is the maximum defined in the Proposition 1.
So 0 ≤ In ≤ 1.

In the previous example, K = 1.7 and the corresponding value of the defined
normalized index is 0.255.

Proposition 2 The accuracy is a special case of the index introduced in Definition 3.

Proof The accuracy is acc = perr = #{misclassified observations}
N i.e. the proportion of

misclassified observations.
Setting M = 2, from the Proposition 1, K = 1.
maxx | fmod(x) − fexact (x)| = 1, each weight is w j = 1

N if w1 = w2 = 1 and
In = perr . ��

Property 3 (Monotonicity) Consider a classification C with ε misclassifications and
N observations. Operating a transformation of the classification C in C ′ where an
observation right classified is changed in a misclassification, the index In becomes
higher.

Proof In the classification C ′, ε′=ε + 1 are misclassified observations: the ε obser-
vations misclassified in C plus a new misclassification. Suppose that the new
misclassification is the observation i that is classified in the class j ′ instead of the
real class j .
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Table 3 Confusion matrix
Model 1

Predict Actual

1 2 3

1 5 0 1

2 0 7 0

3 0 0 7

All the components in the sum of the index In remain unchanged except for the
j th, thus obtaining I jn . So

I jn = w j

∫ n j
N

n j−1
N

| fmod(x) − fexact (x)|dx

Looking at each of the two elements in the product:

– w′
j ≥ w j Two different cases are possible: if the probability associated to the i th

observations is less or equal than the probability of the first error, the error interval
w′

j = w j ; on the other hand, the error interval become larger, thus w′
j > w j .

– | f ′
mod − fexact | > | fmod − fexact | In C ′ there is one misclassification more than

in C , so the distance between fmod and fexact increases.

We can conclude that I
′ j
n ≥ I jn . ��

We remark that in the Property 3 the vice versa does not hold, i.e. if Imod1 ≥ Imod2
we can not make conclusions on the number of misclassified observations in the two
classifications.

4 Toy examples

In order to show how our index works with respect to the indexes proposed in the
literature, toy examples are reported in this section with the main aim of discussing
the behavior in terms of model selection of our index with respect to AUC, accuracy
and MSE.

Y is a target variable characterized by M = 3 levels yi ∈ {1, 2, 3} and Model 1
and Model 2 are two competitive models under comparison. The numerical setting of
both examples is stated in “Appendix”.

4.1 First toy example

In the first toy example we take into account the ordinal structure of the target variable
Y . Tables 3 and 4 are the corresponding confusion matrices for Model 1 and Model
2. It is clear that the Model 2 makes a better classification than Model 1.

For the sake of comparison, for each model the AUC, the accuracy, the MSE and
our index are computed as summarized in Table 5.
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Table 4 Confusion matrix
Model 2

Predict Actual

1 2 3

1 5 1 0

2 0 6 0

3 0 0 8

Table 5 Results

Model Proposed index Normalized index AUC Accuracy MSE

1 0.08 0.05 0.95 0.95 0.20

2 0.04 0.03 0.95 0.95 0.05

Table 6 Confusion matrix Predict Actual

1 2 3

1 5 0 1

2 0 7 0

3 0 0 7

We remark that looking at Table 5 the values obtained for the AUC and the accuracy
indexes for Model 1 and Model 2 are exactly equal, thus, in terms of model choice,
Model 1 and Model 2 are not different. Our index highlights a difference in terms of
performance between the two models under comparison and it selects Model 2 as the
best one. Further details about the settings are given in Table 11 in “Appendix”.

4.2 Second toy example

The second toy example considers the probability assigned to each observation. In
practical applications where we need also to evaluate how much uncertainty is associ-
ated to a prediction, the starting point considers the probability that the newobservation
belongs to the estimated class.

From Table 6, both Model 1 and Model 2 assign an observation of the third class
to the first one. The first classification assigns a higher probability to the misclassified
observation than the second (p = 0.866 vs p = 0.4004), see Table 12 in “Appendix”.
Table 12 reports set probabilities and consequent assigned classes. Then we can con-
clude that Model 2 is better than Model 1 for data at hands.

From Table 7 both models are equivalent in terms ofMSE and accuracy, thus on the
basis of classical measures Model 1 and Model 2 are not different. Our index reports
different values for the models under comparison and select Model 2 as the best one.

5 Empirical evaluation on simulated data

In order to show how our proposal works in model selection, this section reports the
empirical results achieved on a simulated database.
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Table 7 Results

Model Proposed index Normalized index AUC Accuracy MSE

1 0.083 0.051 0.956 0.950 0.200

2 0.017 0.010 0.983 0.950 0.200

Table 8 Simulated data
structure

y 1 2 3 4 5

x1 N(2,1.5) N(3,1) N(4,1.5) N(5,1) N(6,1)

x2 N(1,2.5) N(5,2) N(7,2.5) N(8.5,2) N(9.5,2)

x3 U(0,3)

The simulated database is composed of three covariates obtained by a Monte Carlo
simulation and an ordinal target variable with M = 5, as reported in Table 8. The
sample size is N = 7500. The database is exactly balanced in terms of response
variable: 1500 observations are generated for each level of y.

Five different models are under comparison:

– Ordinal logistic regression (Ord Log),
– Conditional inference tree (Tree),
– Support vector machine (SVM),
– Ordinal Random forest (RFor),
– k- Nearest Neighbour with k=20 (kNN-20),
– k- Nearest Neighbour with k=50 (kNN-5),
– Naive Bayes (NaiveB),
– Classification tree for ordinal response (OrdTree).

For each model AUC, accuracy, MSE and our index are computed using a 10-fold
cross validation. More specifically, the database is randomly partitioned into 10 equal
sized sub-samples (of 750 observations), each one retained as validation data and the
remaining 9 sub-samples are used as training data. The process is then repeated 10
times, with each of the sub-samples used exactly once for validation. The resulting
metrics are averaged and than reported in Table 9.

For the sake of clarity, Table 10 shows the resulting ranks for the models, using the
results obtained for the four metrics under comparison.

We can see that the k-nearest neighbor with k = 5 is classified as the best model
according to all the indexes employed for model choice except for the AUCmetric, but
the values of AUC are extremely similar to the best model (the difference is less than
0.001). Furthermore, from Table 9 k-nearest neighbor outperforms the other models
(with both choices of k). TheNaiveBayes is ranked as the second-bestmodel after kNN
with respect to all performance indicators except for MSE (with minimum differences
from Ord Log and SVM).

The classification tree for ordinal responses (OrdTree) as presented in Galimberti
et al. (2012) show lower performances of the other methods, but performs better than
the standard classification tree in terms of MSE and the proposed index.
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Table 9 Model comparison

Model Proposed index Normalized index AUC Accuracy MSE

Ord log 0.450 0.141 0.864 0.581 0.580

Tree 1.569 0.491 0.875 0.586 0.643

SVM 0.446 0.137 0.869 0.592 0.581

RFor 0.469 0.143 0.875 0.589 0.643

kNN-20 0.003 0.0009 0.999 0.976 0.025

kNN-5 0.002 0.0006 0.999 0.993 0.008

NaiveB 0.434 0.132 0.877 0.604 0.594

OrdTree 0.494 0.150 0.818 0.580 0.635

Table 10 Results in terms of ranking

Model Proposed index/normalized AUC Accuracy MSE

Ord log 5 7 7 3

Tree 7 4 6 8

SVM 4 6 4 4

RFor 6 5 5 7

kNN-20 2 1 2 2

kNN-5 1 2 1 1

NaiveB 3 3 3 5

OrdTree 7 8 8 6

When the performance differences between models are macroscopic all the indexes
agree in model selection. The interest of a new metric comes out when other indexes
can not individuate differences between performances, then the natural structure of
data and prediction probabilities become fundamental for the selection of the best
model.

6 Conclusions

A new performance indicator is proposed to compare predictive classification models
characterized by ordinal target variable.

Our index is based on the definition of a classification function and an error inter-
val. A normalized version of the index is derived. The empirical evidence at hands
underlined that our index discriminates better among different models with respect to
classical measures available in literature.

Our index can be used coupledwith othermetrics for assessingmodel performances
for model selection.

From a computational point of view a further idea of research will consider the
implementation of our index in a new R package. In terms of application we think
that our index could be directly incorporate in the process of assessment for predictive
analytics.
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A Toy example settings

In order to clarify the toy examples, numerical settings are reported. Tables 11 and 12
contain the hypothetical output of the two models described in Sect. 4: a progressive
ID of observations, probabilities assigned for each class (p1, p2, p3) by Model 1
and Model 2, the resulting estimated class for each model and the real class assigned
arbitrary by the author.

Table 11 First toy example

Observation Model 1 Model 2 Estimated class
Model 1

Estimated class
Model 2

Real class

p1 p2 p3 p1 p2 p3

1 0.114 0.473 0.413 0.114 0.473 0.413 2 2 2

2 0.068 0.184 0.747 0.068 0.184 0.747 3 3 3

3 0.750 0.125 0.125 0.125 0.750 0.125 1 2 3

4 0.587 0.212 0.201 0.587 0.212 0.201 1 1 1

5 0.0583 0.623 0.319 0.0583 0.623 0.319 2 2 2

6 0.371 0.063 0.565 0.371 0.063 0.565 3 3 3

7 0.329 0.179 0.491 0.329 0.179 0.491 3 3 3

8 0.114 0.444 0.442 0.114 0.444 0.442 2 2 2

9 0.936 0.014 0.050 0.936 0.014 0.050 1 1 1

10 0.116 0.229 0.655 0.116 0.229 0.655 3 3 3

11 0.376 0.398 0.226 0.376 0.398 0.226 2 2 2

12 0.435 0.438 0.128 0.435 0.438 0.128 2 2 2

13 0.452 0.226 0.321 0.452 0.226 0.321 1 1 1

14 0.740 0.173 0.087 0.740 0.173 0.087 1 1 1

15 0.180 0.796 0.0243 0.180 0.796 0.0243 2 2 2
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Table 11 continued

Observation Model 1 Model 2 Estimated class
Model 1

Estimated class
Model 2

Real class

p1 p2 p3 p1 p2 p3

16 0.343 0.392 0.265 0.343 0.392 0.265 2 2 2

17 0.049 0.073 0.878 0.049 0.073 0.878 3 3 3

18 0.522 0.076 0.403 0.522 0.076 0.403 1 1 1

19 0.012 0.194 0.794 0.012 0.194 0.794 3 3 3

20 0.128 0.380 0.491 0.128 0.380 0.491 3 3 3

Table 12 Second toy example

Observation Model 1 Model 2 Estimated class Real class

p1 p2 p3 p1 p2 p3

1 0.114 0.473 0.413 0.114 0.473 0.413 2 2

2 0.068 0.184 0.747 0.068 0.184 0.747 3 3

3 0.866 0.012 0.121 0.400 0.300 0.300 1 3

4 0.587 0.212 0.201 0.587 0.212 0.201 1 1

5 0.0583 0.623 0.319 0.0583 0.623 0.319 2 2

6 0.371 0.063 0.565 0.371 0.063 0.565 3 3

7 0.329 0.179 0.491 0.329 0.179 0.491 3 3

8 0.114 0.444 0.442 0.114 0.444 0.442 2 2

9 0.936 0.014 0.050 0.936 0.014 0.050 1 1

10 0.116 0.229 0.655 0.116 0.229 0.655 3 3

11 0.376 0.398 0.226 0.376 0.398 0.226 2 2

12 0.435 0.438 0.128 0.435 0.438 0.128 2 2

13 0.452 0.226 0.321 0.452 0.226 0.321 1 1

14 0.740 0.173 0.087 0.740 0.173 0.087 1 1

15 0.180 0.796 0.0243 0.180 0.796 0.0243 2 2

16 0.343 0.392 0.265 0.343 0.392 0.265 2 2

17 0.049 0.073 0.878 0.049 0.073 0.878 3 3

18 0.522 0.076 0.403 0.522 0.076 0.403 1 1

19 0.012 0.194 0.794 0.012 0.194 0.794 3 3

20 0.128 0.380 0.491 0.128 0.380 0.491 3 3
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