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Abstract
We review and elaborate on recent work of Chang and Rabinowitz on scaling asymptotics
of Poisson and Szegö kernels on Grauert tubes, providing additional results that may be
useful in applications. In particular, focusing on the near-diagonal case, we give an explicit
description of the leading order coefficients, and an estimate on the growth of the degree
of certain polynomials describing the rescaled asymptotics. Furthermore, we allow rescaled
asymptotics in a range O

(
λδ−1/2

)
in all the variables involved, where λ → +∞ is the

asymptotic parameter, rather than rescale according to Heisenberg type.

1 Introduction

It was shown by Bruhat andWhitney [6] that a real-analytic compact and connected manifold
M has an essentially unique complexification (M̃, J ), that is, a complexmanifold inwhichM
sits as a totally real submanifold. If furthermore κ is a real-analytic Riemannian metric on M ,
it was proved independently byGuillemin and Stenzel [17, 18] and byLempert and Szöke [22,
23, 39] that M̃ can be endowed with a canonically determined Kähler structure (M̃, J ,�),
with the following twoproperties. First, the symplecticmanifold (M̃,�) is symplectomorphic
to a tubular neighbourhood of the zero section in the cotangent bundle T∨M of M , endowed
with its canonical symplectic structure (and the symplectomorphism, of course, is the identity
on M). Second, the square norm of κ pulls back on M̃ to a Kähler potential for �, while
the norm pulls back on M̃\M to a solution of the complex homogeneous Monge–Ampère
equation. Viewed the other way, this construction endows the cotangent bundle of M , near
the zero section, with a canonical compatible complex structure, with the property that the
Riemannian and Monge–Ampère foliations coincide. This intrinsic complex structure was
called adapted by Lempert and Szöke. The sphere bundles of sufficiently small radii τ > 0
in T∨M correspond to boundaries X τ of strictly pseudoconvex domains in Mτ ⊆ M̃ , so-
calledGrauert tubes, corresponding to disc bundles in T∨M ; furthermore, the homogeneous
geodesic flow on the sphere bundles is closely related to the flow of the Reeb vector field on
X τ .
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The analysis and geometry of the Grauert tubes and their boundaries have been studied
extensively in recent years, giving rise to a vast literature. Obviously with no pretense of
completeness, let us mention a few foundational references most relevant to the present
discussion: [2, 3, 7, 8, 10, 11, 16–18, 21–23, 31, 32, 37–39, 43–48].

A basic problem in this context, partly motivated by certain analogies with the setting of
positive line bundles on complex projective manifolds, is to study the asymptotic concen-
tration behaviour of the eigenfunctions of the generator of the homogeneous geodesic flow
(transported to X τ ). This involves the local study of certain smoothed spectral projectors,
which are the Toeplitz counterpart of commonly studied objects in spectral theory (see e.g.
[12, 15]). However, in sharp contrast to the line bundle setting, the latter flow is generally not
CR-holomorphic. This is a source of difficulty in the adaptation to the Grauert tube setting
of the Szegö kernel techniques that have proved successful in the line bundles setting [1, 35,
42].

A related issue, which is instead genuinely intrinsic to the Grauert tube setting, concerns
analytic continuation of the eigenfunctions of the non-negative Laplacian � of (M, κ). Let
(ϕ j )

∞
j=1 be a complete orthonormal system of L2(M) composed of eigenfunctions of �.

Being real-analytic, each ϕ j extends to a holomorphic function ϕ̃ j to some sufficiently small
Grauert tube Mτ ⊆ M̃ ; here in principle τ depends on j . It was a deep discovery of Boutet
de Monvel [2, 3] that for sufficiently small τ > 0 every ϕ j extends to Mτ (see also [18,
20, 37, 38, 44, 47] for discussions and different proofs). As explained in [43, 44, 48], the
relation between the eigenfunctions ϕ j and their analytic continuations ϕ̃ j is governed by the
so-called Poisson-wave operator, obtained by analytically continuing the Schwartz kernel of
the wave operator on M (in both time and space). The study of the asymptotic distribution of
the analytic continued eigenfunctions, pioneered by Zeldtich, involves certain ‘complexified
spectral projectors’, bearing resemblance to the smoothed spectral projectors above.

In two striking recent papers [10, 11], Chang and Rabinowitz have made significant
progress in pushing forward the analogy between the line bundle and theGrauert tube settings.
Their analysis rests on two pillars. One is the description, due to Zelditch, of certain unitary
groups of Toeplitz operators as ‘dynamical Toeplitz operators’[41, 44, 48]; another is a clever
use of the Heisenberg (or normal) local coordinates adapted to a hypersurface in a complex
manifold introduced by Folland and Stein in [13] and [14].

The goal of the present paper is partly to present a gentle introduction to the promising
and efficient approach of Chang and Rabinowitz, and partly to provide some complementary
results that may be useful in future applications. We shall restrict the present discussion to
the near-diagonal situation. In particular, we shall give near-diagonal scaling asymptotics for
the smoothing kernels hinted at above, in a range O

(
λδ−1/2

)
in all variables involved, rather

than according to Heisenberg type. More precisely, in an appropriate set of local coordinates
centered at x ∈ X τ , we shall consider rescaled displacements of the form x+ (θ/

√
λ, v/

√
λ)

with ‖(θ, v)‖ ≤ C λδ (here δ ∈ (0, 1/6), say). Furthermore, we shall provide an explicit
numerical determination of the leading order factor in the asymptotic expansion. Also, we
shall give a bound in the degree of the polynomials in the rescaled variables (θ, v) that
appear in the lower order terms of the expansion; this is useful in ensuring that, when (θ, v)
are allowed to expand at a controlled pace as above, one actually obtains an asymptotic
expansion.

In order to give a more precise description of the content of this paper, it is in order to
premise a more detailed account of the geometric setting involved.
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Poisson and Szegö kernel scaling asymptotics…

Let M be a d-dimensional compact connected real-analytic (in the following, C
 )
manifold. As mentioned, there is a complex manifold (M̃, J ), the Bruhat–Whitney com-
plexification of M [6], in which M embeds as a totally real submanifold. If j : M ↪→ M̃
is the inclusion, then M̃ is uniquely determined locally along j (M), up to unique biholo-
morphism. Therefore, since (M̃, J ) and (M̃,−J ) are both complexifications of M , there is
an anti-holomorphic involution σ : M̃ → M̃ with fixed locus j (M) [6, 17, 21]. We shall
identify M with j (M) in the following.

Furthermore, the choice of a C
 Riemannianmetric κ onM determines a canonical Kähler
structure on (M̃, J ), with a canonical Kähler potential [17, 23, 32]. More precisely, perhaps
after replacing M̃ with some smaller tubular neighborhood of M , there exists a unique C

function ρ : M̃ → [0,+∞) with the following properties:

1. ρ−1(0) = M and ρ ◦ σ = ρ;
2. ρ is strictly plurisubharmonic, that is, � := ı ∂ ∂ρ is a Kähler form on (M̃, J ), whose

associated associated Riemannian metric on M̃ will be denoted by κ̂ = �
(·, J (·));

3. κ̂ restricts to κ along M , i.e. κ = j∗
(
κ̂
)
;

4.
√
ρ satisfies the homogeneous–Ampère equation on M̃\M : in local holomorphic

coordinates (z j ),

det

(
∂2

∂zi ∂z j

√
ρ

)
= 0.

Remark 1 The proof of the existence of ρ given in [17] uses an appealing conceptual descrip-
tion, which we shall only briefly touch upon below (see also the discussions in [46], §14.1
of [47] or [10]).

Namely, let M̃ denote the conjugate manifold to M̃ (that is, M̃ with the opposite complex
struture −J ). Thus the diagonal � of M̃ is a complex submanifold of M̃ × M̃ , but it is a

totally real submanifold of M̃× M̃ . Hence M̃× M̃ has two natural totally real submanifolds:
M × M and �.

Let r : M×M → R be the Riemannian distance function for κ . Then r2 is real-analytic on
some neighourhoodU of the real diagonal�M inM×M . Therefore, r2 admits a holomorphic

extension r2
C
: Ũ → C to some open neighbourhood Ũ of U in M̃ × M̃ . The intersection

Ũ ∩� is an open neighbourhood of �M in �; hence, upon identifying � with M̃ and �M

with M in the natural manner, we may view the restriction of r2
C
to Ũ ∩� as being defined

on a neighbourhood of M in M̃ . In local holomorphic coordinates ζ on M̃ , we shall denote
this restriction by r2

C
(ζ, ζ ). Then one has ρ(ζ ) = −r2

C
(ζ, ζ )/4.

Since ρ is strictly plurisubharmonic, for some maximal τmax ∈ (0,+∞] and for every
τ ∈ (0, τmax ),

M̃τ := ρ−1
([0, τ 2))

is a strictly pseudoconvex domain in M̃ ; its boundary is the compact smooth hypersurface

X τ := ρ−1(τ 2) ⊂ M̃\M .

One calls M̃τ the open Grauert tube of radius τ , and
√
ρ the tube function of (M, κ). We

shall generally also write J (rather than J τ ) for the the CR structure on X τ . We shall denote
by H(X τ ) ⊂ L2(X τ ) the Hardy space of X τ , and by

�τ : L2(X τ )→ H(X τ ) (1)
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the orthogonal projector, that is, the Szegö projector of the CR manifold X τ .1

The relation between the value of τmax and the geometry of (M, κ) has been elucidated
by Lempert and Szöke (see §1 and §2 of [23]). Namely, τmax = +∞ only if (M, κ) is non-
negatively curved. On the other hand, if (M, κ) has a negative sectional curvature of value
−a, then π/(2√a) ≥ τmax .

One also has the following alternative perspective. Rather than starting from the complex-
ification (M̃, J ), and then considering a Kähler structure � on (M̃, J ) canonically induced
by κ , one can start instead from the canonical symplectic structure �can on the cotangent
bundle T∨M , locally given by dq ∧ dp, where q denotes local coordinates on M and p the
induced fiberwise linear coordinates on the cotangent spaces; then one introduces a compat-
ible complex structure Jad on a suitable neighborhood of the zero section in (T∨M,�can),
again canonically induced by κ . In fact, Jad is uniquely determined by the condition that the
maps C → T M parametrizing the leaves of the Riemann foliation are holomorphic, when
suitably restricted. Lempert and Szöke call Jad adapted [17, 22, 23, 39].

More explicitly, if (m, v) ∈ T M and v �= 0, let γ : R → M denote the unique geodesic
with initial condition (m, v), and γ̇ : R → T M its velocity vector. For every b > 0, let
Nb : T M → T M denote dilation by b. Consider the smooth map

ψγ : a + ı b ∈ C �→ Nb (γ̇ (a)) ∈ T M . (2)

The submanifolds ψγ (C\R) are the leaves of the Riemann foliation of T M\M0 (here M0 ∼=
M is the image of the zero section); furthermore, the complex structure induced onψγ (C\R)
by declaringψγ : C\R→ ψγ (C\R) to be holomorphic is invariant under reparametrization
of γ .

If

T τM := {(m, v) : m ∈ M, v ∈ TmM, ‖v‖m < τ } ,
then Jad is characterized by the property that the maps ψγ are holomorphic from a suitable
strip Sτγ ⊆ C to T τM (see [32] and §3–4, [39]). More precisely, for τ ∈ (0, τmax ] let us set

Sτγ := {a + ı b ∈ C : a ∈ R, 0 < b < τ/‖γ̇ ‖} .
Then ψγ (Sτγ ) ⊆ T τM , and the restriction ψγ : Sτγ → T τM is a Jad -holomorphic curve.

After [23] and [21], the two approaches are related by the imaginary time exponential
map of κ (see also the discussions in [43, 44, 48] ). Let us identify T M and T∨M by κ ,
and view �can as a symplectic structure on T M . Given m ∈ M , let expm : Um → M be
the exponential map at m for κ; here Um ⊆ TmM is some neighborhood of the origin. Let
TC
m M := TmM ⊗R C be the complexified tangent space at m; being C
 , expm extends to a

holomorphic map Em : Ũm → M̃ , where Ũm ⊆ TC
m M is some open neighborhood of Um .

As M is compact, we may assume that for τ > 0 sufficiently small one has

Ũm ⊇ {(m, ı v) : v ∈ TmM, ‖v‖m < τ } ∀m ∈ M .

Therefore, for all such τ one obtains a C
 map

Eτ : (m, v) ∈ T τM �→ Em(ı v) ∈ M̃, (3)

such that Eτ (m, 0) = m, ∀m ∈ M ; Eτ has the following properties:

1. Eτ intertwines the square norm function ‖ · ‖2 : T M → R and ρ:

Eτ ∗(ρ) = ‖ · ‖2, (4)

1 For a precise description of the volume form on Xτ , see Sect. 3.2.3.
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Poisson and Szegö kernel scaling asymptotics…

hence it maps T τ ′M to M̃τ ′ , for all τ ′ ∈ (0, τ );
2. for sufficiently small τ > 0, Eτ is a C
 symplectomorphism between (T τM,�can) and

(M̃τ , �), that is,

Eτ ∗(�) = �can, (5)

and similarly replacing τ with any τ ′ ∈ (0, τ );
3. consequently, Eτ intertwines the Hamiltonian flow of ‖ · ‖ on (T τM\M0,�can), which

is the homogeneous geodesic flow, with the Hamiltonian flow of
√
ρ on (M̃\M,�);

4. the relation Eτ ∗(�) = �can also implies that Eτ ∗(J ) is a compatible complex structure
on (T τM,�can), and in fact Jad = Eτ ∗(J );

5. Eτ intertwines the Riemann foliation of (M, κ) with the Monge–Ampère foliation of√
ρ [21, 23].

In short, Eτ yields an isomorphism of Kähler manifolds

(T τM, �can, Jad)→ (M̃τ , �, J ),

and if τ ′ ∈ (0, τ ) then the Grauert tube boundary X τ ′ ⊆ M̃τ is identified with the (co)sphere
bundle of radius τ ′ in T∨M ∼= T M .

There are natural choices for primitives of both�can and�, and these also get intertwined
by Eτ . More precisely, let λcan ∈ �1(T∨M) be the canonical 1-form, locally expressed as
p dq; thus �can = −dλcan . Furthermore, let

λ := �(∂ρ) ∈ �1(M̃τ
); (6)

thus � = −dλ. Then on T τM

λcan = Eτ ∗(λ). (7)

Let us set

α := −λ = �(∂ρ) = 1

2 ı

(
∂ρ − ∂ρ

)
and ω := 1

2
�, (8)

so that

� = −dλ = dα = 2ω = ı ∂ ∂ρ. (9)

If M ′ ⊆ M̃ is open and f ∈ C∞(M ′), υ f ∈ X(M ′) will denote the Hamiltonian vector
field of f with respect to �. By the above, the homogeneous geodesic flow on T∨M\M0 is
intertwined by Eτ with the flow of υ√ρ on M̃\M . The following holds (see Sect. 3).

1. α is invariant under the flow of υ√ρ ; equivalently, λcan is preserved by the homogeneous
geodesic flow;

2. if jτ : X τ ↪→ M̃ is the inclusion, then ατ := jτ ∗(α) is a contact form;
3. the cone (closed in the complement of the zero section)

�τ := {(x, r ατx ) : x ∈ X τ , r > 0
} ⊆ T∨X τ\X0 (10)

is symplectic (for the standard symplectic structure of T∨X τ );
4. being tangent to X τ , υ√ρ induces by restriction a smooth vector field υτ√

ρ
∈ X(X τ ), and

by the above the flow of υτ√
ρ
preserves the volume form on X τ ;

5. consequently, the differential operator

Dτ√
ρ := ı υτ√ρ (11)

is formally self-adjoint on L2(X τ );
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6. the principal symbol σ(Dτ√
ρ
) of Dτ√

ρ
is positive along �τ .

These facts have the following consequence. Consider the composition

Dτ√
ρ := �τ ◦ Dτ√

ρ ◦�τ ; (12)

in the terminology of [16] and [4],Dτ√
ρ
is a self-adjoint first-order Toeplitz operator on X τ .

Its principal symbol (as a Toeplitz operator) is, by definition, the restriction of σ(Dτ√
ρ
) to�τ ,

and is therefore strictly positive. HenceDτ√
ρ
is an elliptic Toeplitz operator. By the theory in

§2 of [4] (especially Proposition 2.4), the spectrum ofDτ√
ρ
is discrete, bounded from below

and has only +∞ as accumulation point (see Sect. 3.5 below).
Let then

λτ1 < λτ2 < · · · ↑ +∞
be the distinct eigenvalues ofDτ√

ρ
; for j = 1, 2, . . . let 1 ≤ �τj < +∞ denote themultiplicity

of λ j , and let Hj (X τ ) ⊆ H(X τ ) be the (�τj -dimensional) eigenspace of λτj . If we choose

orthonormal basis (ρτj,k)
�τj
k=1 of every Hj (X τ ), then (ρτj,k) j,k is a complete orthonormal

system of H(X τ ). We shall henceforth leave dependence on τ of these spectral data forDτ√
ρ

implicit, and drop the suffix τ .
In order to obtain spectral or eigenfunction asymptotics, it is common to consider smoothed

versions of the spectral kernels associated to each eigenvalue (see e.g. [12] and [15]). In the
present setting, the C∞ function

�τ
j (x, y) :=

� j∑

k=1
ρ j,k(x) · ρ j,k(y) (13)

on X τ × X τ is the Schwartz kernel of the orthogonal projector �τ
j : L2(X τ ) → Hj (X τ ).2

Suppose χ ∈ C∞c
(
(−ε, ε)) with ε > 0 suitably small; as in [10, 11, 48], let us consider the

‘smoothed spectral projector’

�τ
χ,λ :=

+∞∑

j=1
χ̂ (λ− λ j )�

τ
j , (14)

whose distributional kernel is the C∞ function of (λ, x, y) ∈ R× X × X

�τ
χ,λ(x, y) :=

+∞∑

j=1
χ̂ (λ− λ j )

� j∑

k=1
ρ j,k(x) · ρ j,k(y); (15)

heuristically, (15) is a slight smoothing of a spectral projector kernel relative to a spectral
band travelling to the right as λ → +∞. The near-diagonal asymptotics of (15) encode
information about the local concentration behaviour of the ρ j,k’s, and globally on the global
asymptotic distribution of the λ j ’s. For a discussion in the specific context of Grauert tubes,
see [44] and [47]; for applications to the Toeplitz quantization of Kähler manifolds, with
an emphasis on scaling asymptotics, see [25–30, 49–51]). For recent work on general CR
manifolds, see [19].

2 We shall use the same symbol for operators and their distributional kernels.
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In [10] an [11], the authors provide near-diagonal and near-graph scaling asymptotics for
(15), strikingly similar to the Szegö kernel asymptotics holding in the line bundle setting [1,
35, 42] and to those holding for Toeplitz spectral projectors in [26].

As emphasized in [10], the asymptotic analysis of (15) is a complex analogue of the
analysis of the real spectral projection kernel of

√
�. Replacing Dτ√

ρ
with the Toeplitz

operatorDτ√
ρ
in (12) is forced by the lack of holomorphy of the homogeneous geodesic flow.

Remarkably, the Heisenberg-type scaling asymptotics of �τ
χ,λ are the complex counterpart

of the Bessel-type scaling asymptotics in [9].
In the present work, we shall survey the approach of [10], focusing on the near-diagonal

case, and provide some complements to their results.
Prior to precise statements, some additional notation is in order. To begin with, we

introduce an invariant, denoted ψ2, which is related to a Hermitian vector space and ubiqui-
tously appears in various guises as the exponent controlling equivariant Szegö kernel scaling
asymptotics [1, 35].

Definition 2 Let V be a finite-dimensional compòex vector space, and let h : V × V → C

be a Hermitian product. Then g := �(h) and ω := −�(h) are, respectively, an Euclidean
scalar product and a symplectic form on V (viewed as a real vector space), compatible with
the complex structure. If ‖ · ‖h is the norm function on V associated to h (or g), let us define

ψh
2 : (u, v) ∈ V × V →−1

2
‖u − v‖2h − ı ω(u, v) ∈ C.

Clearly, ψh
2 (u, v) is positively homogeneous of degree 2 in the pair (u, v), and of degree 1

in h (or ω).

For instance, if V = C
k and hst : Ck × C

k → C is the standard Hermitian product, then
hst = gst − ı ωst , where gst and ωst denote, respectively, the standard Euclidean product and
the standard symplectic structure on R

2k ∼= C
k . Then ψ2 := ψ

hst
2 : Ck × C

k → C is given
by

ψ2(u, v) := −1

2
‖u− v‖2 − ı ωst (u, v) = −1

2
‖u‖2 − 1

2
‖v‖2 + u · v.

If k = dimC(V ), and B is an orthonormal basis of (V , h), let MB : V → C
k be the

associated unitary isomorphism. Then ψh
2 = ψ2 ◦ (MB × MB). With this in mind, when no

confusion seems likely, we shall occasionally leave dependence on h implicit and write ψ2

for ψh
2 .

Recall that ω := 1
2 �; thus (M̃, ω, J ) is a Kähler manifold, with associated Riemannian

metric κ̃ := 1
2 κ̂ . If x ∈ M̃ , with tangent space Tx M̃ , we correspondingly have a function

ψ
ωx
2 : Tx M̃ × Tx M̃ → C. (16)

As mentioned, the near-diagonal asymptotic expansion for �τ
χ,λ at x ∈ X τ in [10] rests

on the choice of so-called Heisenberg local coordinates (called normal in [13, 14]). The
concept of Heisenberg local coordinates is twofold: one first introduces Heisenberg local
coordinates on M̃ centered at x , and adapted to X τ ; then Heisenberg local coordinates on
X τ centered at x . The latter will be induced by the former by restriction and projection.
More precisely, Heisenberg local coordinates on M̃ will be a system of holomorphic local
coordinates centered at x , in which the defining equation φτ := ρ− τ 2 for X τ takes a certain
canonical form (Definition 30). Let U ⊂ M̃ be an open neighbourhood of x ∈ X τ on which
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Heisenberg local coordinates (z0, z1, . . . , zd−1) : U → C
d (centered at x and adapted to

X τ ) have been chosen. Set θ := �(z0) : U → R and U τ := X τ ∩U ; then

ϕτ : (θ, z1, . . . , zd−1)|U τ : U τ → R× C
d−1

will be a system of Heisenberg local coordinates on X τ centered at x . We shall generally
redefine the zi ’s and omit symbols of restriction, andwrite z′ = (z1, . . . , zd−1). Alternatively,
we shall use real notation and write

ϕτ = (θ,u) : U τ → R× R
2d−2.

Furthermore, we shall often adopt the additive short-hand

x + (θ,u) := (ϕτ )−1(θ,u).

Actually, it will be convenient to work with a slightly more restrictive class of local coor-
dinates, that will be called normal Heisenberg local coordinates adapted to X τ at x (see
Sect. 3.3.3).

In the line bundle setting, X τ is a fixed-radius circle bundle in the dual of the polarizing
line bundle. Translation in θ may be then be assumed to correspond to fiberwise rotation,
hence to the flow of the Reeb vector field, which is CR-holomorphic.

In the Grauert tube setting, instead, neither is the Reeb flow generally CR-holomorphic
nor may it be assumed to correspond to translation in θ . Namely, let Rτ ∈ X(X τ ) be the
Reeb vector field of (X τ , ατ ). While we do haveRτ (x) = ∂/∂θ |x (see (60) below), there is
no reason to expect thatRτ = ∂/∂θ onU τ (see e.g. Theorem 18.5 in [13]). Hence the curves
θ �→ x + (θ, 0) deflect from the trajectories of Rτ , which are a rescaling of the geodesic
flow. This is a sharp difference with the line bundle situation, and contributes to making the
derivation of the asymptotics technically more involved.

We need one last piece of notation before formulating the near-diagonal scaling asymp-
totics of the smoothed spectral projectors �τ

χ,λ. Let �
τ
t : X τ → X τ be, with abuse of

language warranted by the previous identifications, the homogeneous geodesic flow at time
t (to be precise, this is the flow of υ√ρ).

Definition 3 If χ ∈ C∞c (R) and x ∈ X τ , let us set

xχ := {�τ
t (x) : t ∈ supp(χ)

}
.

Theorem 4 Suppose τ ∈ (0, τmax ), x ∈ X τ , and χ ∈ C∞c
(
(−ε, ε)) for some suitably small

ε > 0. Then the following holds.

1. Suppose C, δ > 0 are constants. Then (with the notation of Definition 3)

�τ
χ,λ(x1, x2) = O

(
λ−∞

)

uniformly for distXτ

(
x1, x

χ
2

) ≥ C λδ−1/2.
2. Suppose x ∈ X τ , and let us choose a system of normal Heisenberg local coordinates on

X τ centered at x. If C > 0 and δ ∈ (0, 1/6), uniformly for ‖(θ j/τ, v j )‖ ≤ C λδ there is
an asymptotic expansion

�τ
χ,λ

(
x +

(
θ1√
λ
,
v1√
λ

)
, x +

(
θ2√
λ
,
v2√
λ

))

∼ 1√
2π

·
(

λ

2πτ

)d−1
eı
√
λ

θ1−θ2
τ · χ(0) · e 1

τ
ψ2(v1,v2)
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·
⎡

⎣1+
∑

j≥1
λ− j/2 Aτj (x; θ1, v1, θ2, v2)

⎤

⎦ ,

where, as a function of (θ1, v1, θ2, v2), Aτj is a polynomial of degree ≤ 3 j and parity j .

Corollary 5 Under the same assumptions as in Theorem 4,

�τ
χ,λ (x, x) ∼

1√
2π

·
(

λ

2πτ

)d−1
· χ(0) ·

⎡

⎣1+
∑

j≥1
λ− j Bτ

j (x)

⎤

⎦ ,

for certain smooth functions B j ∈ C∞(X τ ).

We recover the near-diagonal asymptotic expansion of Chang and Rabinowitz (Theorem
1.1 of [10]) rescaling according to Heisenberg type, holding θ j and v j fixed.

Corollary 6 If θ1, θ2 ∈ R and v1, v2 ∈ R
2n−2, then

�τ
χ,λ

(
x +

(
θ1

λ
,
v1√
λ

)
, x +

(
θ2

λ
,
v2√
λ

))

∼ 1√
2π

·
(

λ

2πτ

)d−1
· eı θ1−θ2

τ · χ(0) · e 1
τ
ψ2(v1,v2)

·
⎡

⎣1+
∑

j≥1
λ− j/2 Rτ

j (x; θ1, v1, θ2, v2)
⎤

⎦ ,

where, as a function of (θ1, v1, θ2, v2), Rτ
j is a polynomial (again, of degree ≤ 3 j and

parity j).

Similar considerations apply to the complexified spectral projectors associated to the
Poissonwave operator. This issue relates to a fundamental extension property of theLaplacian
eigenfunctions on a compact real-analytic Riemannian manifold, and is specific to Grauert
tubes [2, 3, 18, 20, 21, 37, 38, 44].

Let 0 = μ2
1 < μ2

2 < · · · be the distinct eigenvalues of the positive Laplacian� of (M, κ),
with respective multiplicities �′j . Let Vj ⊂ C∞(M) denote the corresponding eigenspaces,

of dimension dim(Vj ) = �′j . For j = 1, 2, . . ., let (ϕ j,k)
�′j
k=1 be an orthonormal basis of Vj ,

so that (ϕ j,k) j,k is a complete orthonormal system in L2(M) for the L2-norm defined by the
Riemannian density.

Being of class C
 , each ϕ j,k admits a holomorphic extension ϕ̃ j,k to some open neigh-
borhood of M in M̃ , which a priori depends on ( j, k). Boutet de Monvel discovered that a
much stronger result is true: there exists τ0 > 0 such that every ϕ j,k extends holomorphically

to M̃τ0 . Therefore, for τ ∈ (0, τ0] the restriction ϕ̃τj,k := ϕ̃ j,k
∣∣
Xτ is a CR function.

This collective extension property is closely related to the analytic extension of the
Schwartz kernel of the Poisson operator

U (ı τ) = e−τ
√
� : L2(M)→ L2(M)
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for τ > 0 (see [2, 10, 11, 18, 21, 44, 48] for discussion and motivation). Assuming that the
ϕ j,k’s are real, the distributional kernel of U (ı τ) admits the spectral representation

U (ı τ,m, n) :=
+∞∑

j=1
e−τ μ j

�′j∑

k=1
ϕ j,k(m) ϕ j,k(n) (τ ∈ R+, m, n ∈ M), (17)

which is globally real-analytic on M × M for any τ > 0 [44]. If τ > 0 is sufficiently small,
analytic extension in m, followed by restriction to X τ , yields the kernel

Pτ (x, n) :=
+∞∑

j=1
e−τ μ j

�′j∑

k=1
ϕ̃ j,k(x) ϕ j,k(n) (x ∈ X τ , n ∈ M). (18)

As an operator, Pτ is a Fourier integral operator with complex phase of positive type and
order −(d − 1)/4. It is in fact a Fourier–Hermite operator in the sense of [4], adapted to
a homogeneous symplectic equivalence χτ : T∨M\M0 → �τ (see (10)). Hence Pτ is

continuous L2(M) → W
d−1
4 (X τ ), where Ws(X τ ) denotes the s-th Sobolev spaces of X τ .

More precisely, Pτ is a continuous isomorphism Pτ : L2(M)→ O
d−1
4 (X τ ), whereOs(X τ )

is the space of boundary values of holomorphic functions on X τ that are in Ws(X τ ); thus
H(X τ ) = O2(X τ ) (see [44], [37], §3 of [46]).

The complexified Poisson kernel Pτ governs the analytic continuation of eigenfunctions:
for any j ,

ϕ̃τj,k = eτ μ j Pτ (ϕ j,k). (19)

The composition

UC(2 ı τ) := Pτ ◦ Pτ ∗ : H(X τ )→ H(X τ ) (20)

is a Fourier integral operator with complex phase of positive type and of degree−(d − 1)/2
on X τ ; it is in fact a Fourier–Hermite operator adapted to the identity of �τ , hence with the
same complex canonical relation as�τ (the relation betweenUC(2 ı τ) and�τ is discussed
in §3.1 of [46]). The definition of (20) depends on the choice of a Riemannian density on
X τ ; given this, we may identify its distributional kernel with the generalized function

UC(2 ı τ, x, y) =
∑

j

e−2 τ μ j
∑

k

ϕ̃τj,k(x) ϕ̃
τ
j,k(y) =

+∞∑

j=1
U τ

j (x, y), (21)

where U τ
j ∈ C∞(X τ × X τ ) is given by

U τ
j (x, y) :=

�′j∑

k=1
Pτ (ϕ j,k)(x) Pτ (ϕ j,k)(y).

As
(
Pτ (ϕ j,k)

)
j,k is not an orthonormal system, neither UC(2 ı τ) nor U τ

j are orthogonal
projectors. Nonetheless,UC(2 ı τ) plays a role in the asymptotic study of analytic extensions
reminiscent of�τ (§6 of [48]).

Suppose as above that χ ∈ C∞0
(
(−ε, ε)), for a suitably small ε > 0. The asymptotic

concentration of the complexified eigenfunctions pertaining to a spectral band drifting to
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infinity is probed by the following smoothed version of (21):

Pτ
χ,λ(x, y) :=

∑

j

χ̂ (λ− μ j ) e
−2 τ μ j

�′j∑

k=1
ϕ̃ j,k(x) · ϕ̃ j,k(y)

=
∑

j

χ̂ (λ− μ j )U
τ
j (x, y) (x, y ∈ X τ ). (22)

Heuristically, Pτ
χ,λ ∈ C∞(X τ × X τ ) is a complex (tempered) analogue of the smoothed

spectral projector kernel (15). The diagonal restriction of Pτ
χ,λ is the non-negative function

Pτ
χ,λ(x, x) :=

∑

j,k

χ̂ (λ− μ j ) e
−2 τ μ j

∣
∣ϕ̃ j,k(x)

∣
∣2 (x ∈ X τ ). (23)

The complexified Poisson operator is a special instance of the complexified Poisson wave
operator (see (158) below), which was proved by Zelditch to be describable in terms of
dynamical Toeplitz operators (see e.g. [44], especially §8–9). Building on this, and on their
use of the normal local coordinates of Folland and Stein, Chang and Rabinowitz proved in
[10] a near-diagonal asymptotic expansion for Pτ

χ,λ very similar to the one holding for�τ
χ,λ.

The corresponding version that we shall provide here runs parallel to Theorem 4.

Theorem 7 Suppose τ ∈ (0, τmax ), x ∈ X τ , and χ ∈ C∞c
(
(−ε, ε)) for some suitably small

ε > 0. Then the following holds.

1. Suppose C, δ > 0 are constants. Then (with the notation of Definition 3)

Pτ
χ,λ(x1, x2) = O

(
λ−∞

)

uniformly for distXτ

(
x1, x

χ
2

) ≥ C λδ−1/2.
2. Suppose x ∈ X τ , and let us choose a system of normal Heisenberg local coordinates on

X τ centered at x. If C > 0 and δ ∈ (0, 1/6), uniformly for ‖(θ j/τ, v j )‖ ≤ C λδ there is
an asymptotic expansion

Pτ
χ,λ

(
x +

(
θ1√
λ
,
v1√
λ

)
, x +

(
θ2√
λ
,
v2√
λ

))

∼ γ τ
0,0(x)√
2π

·
(

1

2πτ

)d−1
· λ d−1

2 · eı
√
λ

θ1−θ2
τ · χ(0) · e 1

τ
ψ2(v1,v2)

·
⎡

⎣1+
∑

j≥1
λ− j/2 Fτ

j (x; θ1, v1, θ2, v2)
⎤

⎦ ,

for a certain constant γ τ
0,0(x) (to specified below) and where, as a function of

(θ1, v1, θ2, v2), Fτ
j is a polynomial of degree ≤ 3 j and parity j .

Remark 8 We shall verify a posteriori that γ τ
0,0(x) = τ (d−1)/2 (see below).

Corollary 9 Under the assumptions of Theorem 7,

Pτ
χ,λ (x, x) ∼

γ τ
0,0(x)√
2π

·
(

1

2πτ

)d−1
· λ d−1

2 · χ(0) ·
⎡

⎣1+
∑

j≥1
λ− j Qτ

j (x)

⎤

⎦ ,

for certain smooth functions Qτ
j ∈ C∞(X τ ).
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We shall leave it to the reader to formulate the corresponding analogue of Corollary 6.
As an application of the on-diagonal asymptotic expansions for �τ

χ,λ and Pτ
χ,λ, we provide

local Weyl laws by a standard argument, similar to the one in [25] for the line bundle setting
(inspired by the discussion in [15]). The stated equality γ τ

0,0(x) = τ (d−1)/2 will follow by
comparison with the local Weyl law in Proposition 3.8 of [46]. For x ∈ X τ , let us note the
identities

�τ
j (x, x) =

� j∑

k=1

∣
∣ρ j,k(x)

∣
∣2 , U τ

j (x, x) = e−2 τ μ j

�′j∑

k=1

∣
∣
∣ϕ̃τj,k(x)

∣
∣
∣
2
,

where notation is as in (13) and (21). Let us further define, for x ∈ X τ and λ ∈ R,

Wτ
x (λ) :=

∑

j :λ j≤λ
�τ

j (x, x) =
∑

j

H(λ− λ j )�
τ
j (x, x), (24)

Pτ
x (λ) :=

∑

j :λ j≤λ
U τ

j (x, x) =
∑

j

H(λ− λ j )U
τ
j (x, x), (25)

where H is the Heaviside function.

Proposition 10 Uniformly in x ∈ X τ , we have for λ→+∞

Wx (λ) = τ

d
·
(

λ

2π τ

)d

+ O
(
λd−1

)
(26)

and

Pτ
x (λ) =

1

(2π)d

(
λ

τ

) d−1
2 · γ

τ
0,0(x)

τ
d−1
2

[
λ

d−1
2 + 1

+ O(1)

]

. (27)

Comparing with Proposition 3.8 of [46] we finally conclude

Corollary 11 γ τ
0,0(x) = τ

d−1
2 .

2 An example

The geometric setting is clarified by the following example (see [32], [17], and §2.1 of [43]
for this and other model examples).

Consider the compact torusM := R
d/Zd ; its complexification is M̃ := C

d/Zd . If u ∈ M ,
the (real) exponential map at u is expu(v) = u + v (v ∈ TuM ∼= R

d ); here, by abuse of
notation, elements ofRd are identifiedwith their classes inM , and the sum ismeant inM . The
complexified exponential map Eu : TC

u M → M̃ at u is thus Eu(v1+ ı v2) := (u+v1)+ ı v2.
Hence the imaginary time exponential E : T M ∼= M × R

d → M̃ is

E(u, v) := u+ ı v (u ∈ M, v ∈ R
d).

In particular, writing z = u + ı v, we see that the standard symplectic structure � :=
(ı/2) dz ∧ dz pulls back to

du ∧ dv = −d(v du) = −dλcan = �can .

Hence, the pull-back of the standard complex structure on M̃ by E is indeed compatible with
�can .
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The geodesic γ = γu,v with initial conditions (u, v) is γ (σ ) = u+ σ v, with tangent lift
γ̇ (σ ) := (u+ σ v, v). The composition E ◦ ψγ , with ψγ : C→ T M as in (2), is then

E ◦ ψγ (σ + ı τ) = E(u+ σ v, τ v) = u+ (σ + ı τ) v, (28)

which is holomorphic. Hence Jad = E∗(J ) is the adapted complex structure of T M , in the
terminology of [23].

Let us henceforth identify T M with M̃ by E , and consider the functions

ρ(u + ı v) := ‖v‖2, √
ρ(u+ ı v) = ‖v‖.

We have, with z j := u j + ı v j ,

∂ρ = 1

ı

∑

j

v j dz j , α := �(∂ρ) = −
∑

j

v j du j = −λcan = −� (∂ρ) .

Furthermore,

ı ∂ ∂ρ = ı

2

∑

j

dz j ∧ dz j = −dλcan = �can .

Thus ρ is a Kähler potential for �can .
A direct computation shows that the differential form ı ∂ ∂

√
ρ, which is defined where

v �= 0, is given by

ı ∂ ∂
√
ρ = ı

2 ρ3/2

⎡

⎣‖v‖2
∑

j

dz j ∧ dz j −
∑

j,k

v j vk dz j ∧ dzk

⎤

⎦ ,

with constant rank 2d−2. Furthermore, its 2-dimensional kernel at u+ı v is generated by the
tangent vectors (v, 0) and (0, v); by (28), this is the tangent space of the Riemann foliation,
which therefore coincides with the Monge–Ampère foliation.

Since dρ = 2
∑

j v j dv j and �can =∑ j du j ∧ dv j , letting υρ denote the Hamiltonian
vector field of ρ with respect to � we have

υρ = 2
∑

j

v j
∂

∂u j
, ι(υρ) α = −2 ‖v‖2 = −2 ρ, υ√ρ = 1

‖v‖
∑

j

v j
∂

∂u j
.

Let us set

R := − 1

2 ρ
υρ = −1

2
υln(ρ) = − 1√

ρ
υ√ρ. (29)

Then α(R) ≡ 1, and R is itself a Hamiltonian vector field

ι(R) dα = ι(R)� = d ln
(
ρ−1/2

)
.

For τ > 0, set X τ := {u+ ı v : ‖v‖ = τ }, so that X τ is the boundary of a strictly pseudo-
convex domain in M̃ . Let jτ : X τ ↪→ M̃ be the inclusion, and set ατ := jτ ∗(α). Then R is
tangent to X τ and restricts to a vector field Rτ on X τ , which satisfies

ι(Rτ ) ατ = 1, ι(Rτ ) dατ = 0.

In other words, Rτ is the Reeb vector field of the contact manifold (X τ , ατ ).
Similarly, υ√ρ is also tangent to X τ , and in view of (29) it restricts along X τ to a vector

field υτ√
ρ
satisfying υτ√

ρ
= −τ Rτ .
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We have ‖υ√ρ‖ = 1, hence
√
ρ is a distance function on the Riemannian manifold

(M̃\M, κ) (here ‘distance function’ is meant in the sense of, say, §3.2.2 of [33]; see also the
discussion at the end of Sect. 3.2.2 below). The (Hamiltonian) flow of υ√ρ is

�t (u+ ı v) =
(
u+ t

v
‖v‖

)
+ ı v,

which (with the identification provided by E) corresponds to the homogeneous geodesic
flow.

Finally, let us consider the cones

�τ = {(u+ ı v, r ατu+ı v) : ‖v‖ = τ, r > 0
} ⊆ T∨X τ ,

where as above ατ = −∑ j v j du j . The symbol of the differential operator Dτ√
ρ
:= ı υτ√

ρ

along �τ is then

σ(Dτ√
ρ)
(
r ατu+ı v

) = eı r
∑

k vk uk ı υτ√ρ

(
e−ı r

∑
k vk uk

)

= ı

‖v‖
∑

j

v j
∂

∂u j

(

−ı r
∑

k

vk uk

)

= r ‖v‖ = r τ > 0.

3 Preliminaries

3.1 Notation

For the reader’s convenience, we collect here some of the notation and conventions adopted
in the paper.

Fourier transform. Given f ∈ Sd(Rk) (smooth functions of rapid decay on Rk) its Fourier
transform f̂ ∈ Sd(Rk) is given by

f̂ (ξ) := 1

(2π)k/2

∫

Rk
e−ı 〈ξ,x〉 f (x) dx (ξ ∈ R

k), (30)

so that the Fourier inversion formula has the form

f (x) = 1

(2π)k/2

∫

Rk
eı 〈ξ,x〉 f̂ (ξ) dξ (x ∈ R

k).

Densities and functions.Ourmanifolds will be endowedwith naturally given volume forms,
and we shall identify densities, half-densities and functions.

Schwartz kernels. Given a manifold N , we shall use the same letter for a continuous linear
operator F : C∞0 (N )→ D′(N ) and its distributional kernel F(·, ·) ∈ D′(N × N ).

Induced vector fields. Given a smooth action of a Lie group G on a manifold R, for any
ξ ∈ g (the Lie algebra of G) we shall denote by ξR ∈ X(R) (the Lie algebra of smooth vector
fields on R) the vector field induced by ξ .

Riemannian and Kähler structures, I. (M, κ) is the reference real-analytic Riemannian
manifold, ρ the associated strictly pseudoconvex function defined on a neighbourhood on M
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in M̃ , � = ı ∂ ∂ ρ the corresponding Kähler form, κ̂ := �(·, J ·) the induced Riemannian
structure on M̃ε ; thus (M, κ) is a Riemannian submanifold of (M̃ε, κ̂).

Hamiltonian vector fields. Given f ∈ C∞(M̃ε), υ f ∈ X(M̃ε) will denote its Hamiltonian
vector field w.r.t. �: d f = �(υ f , ·).
Riemannian and Kähler structures, II.We shall also use ω := 1

2 �, and the corresponding
Riemannian metric κ̃ := 1

2 κ̂ .

Riemannian distance function κ̂τ is the Riemannian metric on X τ given by the restriction
of κ̂ , and distXτ : X τ × X τ → R denotes the corresponding distance function.

Reeb vector fields.R is the Reeb vector field of (M, κ) (Definition 16); it is tangent to every
X τ , and restricts along X τ to the Reeb vector field Rτ of (X τ , ατ ).

Volume form. volRXτ is the Riemannian volume form on X τ , in terms of which the Hilbert
structure on L2(X τ ) is defined.

Geodesic flow. �τ
t : X τ → X τ denotes the homogeneous geodesic flow along X τ at time t .

Zero section. For a manifold R, R0 ⊆ T∨R is the image of the zero section in the cotangent
bundle.

CR structures. With slight abuse, we shall denote by J both the complex structure on M̃
and (rather than by J τ ) the induced CR structure on X τ ; similarly, Jt is the CR structure
intertwined with J by the homogeneous geodesic flow at time t (see Sect. 3.6 for precise
definitions).

3.2 The geometric setting

3.2.1 The homogeneous geodesic flow

As remarked, for τ > 0 sufficiently small Eτ intertwines the homogenous geodesic flow on
T τM\M0 (that is, the Hamiltonian flow with respect to �can of the norm function induced
by κ) with the Hamiltonian flow of

√
ρ on M̃τ\M with respect to�. Neither flow is generally

holomorphic (of course, the former is if and only if so is the latter).
Recall that we identify T M and T∨M by means of κ .

Lemma 12 The canonical 1-form λcan on T∨M is invariant under the homogenous geodesic
flow. Similarly, α in (8) is invariant under the flow of υ√ρ .

Proof The two statements are equivalent by (7). To verify the former, we may work in a local
coordinate chart (q, p) for the cotangent bundle associated to a system of local coordinates
q for M . Let K = (κ i j ), where κ i j = κ i j (q), denote the inverse metric tensor, and set
 := ‖ · ‖2; then

√
 =

√
κ i j pi p j =

√
pt K p.

Since locally �can = dq ∧ dp, the Hamiltonian vector field of
√
ρ is

V√ =
(
∂
√
 

∂ p

)t
∂

∂q
−
(
∂
√
 

∂q

)t
∂

∂ p
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= 1√
 
(pt K )

∂

∂q
−
(
∂
√
 

∂q

)t
∂

∂ p
.

Since locally λcan = p dq ,

ι(V√ ) λcan = 1√
 
(pt K p) = √

 .

Hence the Lie derivative of λcan along V√ is

LV√ 
(λcan) = d

(
ι(V√ ) λcan

)− ι(V√ )� = d
√
 − d

√
 = 0.

 !
For a more general statement, see Lemma 22.

3.2.2 The Reeb vector field of (M, k)

As shown in [17], the condition that
√
ρ satisfies the complex Monge–Ampère equation may

be reformulated in terms of the norm of the gradient gradρ of ρ. Let us briefly recall the

argument in [17]. Let ! ∈ X(M̃) be defined by the identity

ι(!)� = α. (31)

Then ! is the gradient vector field with respect to κ̂ of ρ/2, that is,

! = 1

2
J (υρ) = 1

2
gradρ.

Lemma 13 (Guillemin and Stenzel) The following conditions are equivalent:

1.
√
ρ satisfies the homogeneous complex Monge–Ampère equation on M̃\M;

2. !(ρ) = 2 ρ.

Proof (See [17]) Given f ∈ C∞(R+), let us consider the composition f (ρ) : M̃\M → R.
We have

∂ ∂ f (ρ) = ∂
[
f ′(ρ) ∂ρ

]

= f ′′(ρ) ∂ρ ∧ ∂ρ + f ′(ρ) ∂ ∂ρ
= f ′′(ρ) ∂ρ ∧ ∂ρ − ı f ′(ρ)�. (32)

Furthermore,

dρ ∧ α = 1

2 ı

(
∂ρ + ∂ρ

) ∧ (∂ρ − ∂ρ
)

= 1

2 ı

(−2 ∂ρ ∧ ∂ρ
)

= −1

ı
∂ρ ∧ ∂ρ

= ı ∂ρ ∧ ∂ρ. (33)

Hence
[
∂ ∂ f (ρ)

]d = (−ı)d f ′(ρ)d �d + d (−ı)d−1 f ′′(ρ) f ′(ρ)d−1 ∂ρ ∧ ∂ρ ∧�d−1

= (−ı)d f ′(ρ)d �d + d (−ı)d f ′′(ρ) f ′(ρ)d−1 dρ ∧ α ∧�d−1
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= (−ı)d f ′(ρ)d
[
�d + d

f ′′(ρ)
f ′(ρ)

dρ ∧ α ∧�d−1.
]

(34)

On the other hand,

ι(!)�d = d · ι(!)� ∧�d−1 = d · α ∧�d−1.

Therefore

[
∂ ∂ f (ρ)

]d = (−ı)d f ′(ρ)d
[
�d + f ′′(ρ)

f ′(ρ)
dρ ∧ ι(!)�d

]
. (35)

Furthermore, since dρ ∧�d = 0

0 = ι(!)
(
dρ ∧�d

)
= dρ(!)�d − dρ ∧ ι(!)�d . (36)

We conclude

[
∂ ∂ f (ρ)

]d = (−ı)d f ′(ρ)d
[
�d + f ′′(ρ)

f ′(ρ)
dρ(!)�d

]

= (−ı)d f ′(ρ)d
[
1+ f ′′(ρ)

f ′(ρ)
dρ(!)

]
�d . (37)

If f = √·, then

f ′(x) = 1

2
x−1/2, f ′′(x) = −1

4
x−3/2 ⇒ f ′′(x)

f ′(x)
= −1

4
x−3/2 2 x1/2 = − 1

2 x
.

Summing up,

[
∂ ∂ f (ρ)

]d = (−ı)d f ′(ρ)d
[
�d + f ′′(ρ)

f ′(ρ)
dρ(!)�d

]

= (−ı)d f ′(ρ)d
[
1− 1

2 ρ
dρ(!)

]
�d , (38)

which vanishes if and only if dρ(!) = 2 ρ.
 !

Corollary 14 With ! as in (31), the square norm of ! with respect to κ̂ is ‖!‖2
κ̂
= ρ.

Corollary 15 α(υρ) = −2 ρ.
Proof Since gradρ = J (υρ),

4 ρ = ‖gradρ‖2κ̂ = dρ(gradρ) =
(
∂ρ + ∂ρ

)
(J υρ)

= ı
(
∂ρ(υρ)− ∂ρ(υρ)

) = −2 α(υρ). (39)

 !
Definition 16 Let us set

R := −υρ/2

ρ
= − υρ

2 ρ
= 1

ρ
J (!) ∈ X(M̃\M). (40)

We shall call R in (40) the Reeb vector field of (M, κ).

Corollary 17 R is uniquely determined in X(M̃\M) by the conditions
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1. α(R) = 1;
2. R ∈ C∞(M̃\M) υρ .

The motivation for this definition is the following. Suppose τ ∈ (0, ε). SinceR is tangent
to X τ , it restricts to a vector field Rτ ∈ X(X τ ). Furthermore, the Lie derivative

LR(α) = ι(R)�+ d(1) = − 1

2 ρ
dρ (41)

has vanishing pull-back to X τ ; therefore LRτ (ατ ) = 0. In other words, Rτ ∈ X(X τ ) is the
(genuine) Reeb vector field of (X τ , ατ ). We also have

R = − 1√
ρ
υ√ρ. (42)

Corollary 14 implies:

‖υ√ρ‖2κ̂ = 1, ‖R‖2
κ̂
= 1

ρ
, (43)

hence
√
ρ is a ‘distance function’ on M̃\M for κ̂ (in the terminology of §3.2.2 of [33]). In

fact, while the flow of υ√ρ is intertwined by Eτ with the homogeneous geodesic flow, the
trajectories of the gradient vector field grad√ρ = J (υ√ρ) are unit speed geodesics for κ̂ ,
perpendicular to the hypersurfaces X τ and minimizing the distance between them (see §3 of
[23]). By (42), the flows ofRτ and υτ√

ρ
on X τ are related by a rescaling by the factor−1/τ

in the time variable.

3.2.3 The volume form on X�

Suppose τ ′ > 0 is sufficiently small. Then the Riemannian volume form on the Kähler
manifold (M̃τ ′ ,�, J ) is

volM̃τ ′ := 1

d! �
∧d ;

it pulls back under Eτ ′ to the symplectic volume form volcan := 1
d! �

∧d
can (here we omit

restriction symbols to open sets for notational simplicity).
Suppose τ ∈ (0, τ ′). There are various natural alternatives in the literature for a volume

form on X τ ; different choices yield the same topology, but alter the construction of certain
adjoint operators. Let us dwell to specify the choice in this paper.

Given that that grad√ρ is a unit normal vector field to X τ by (43), the Riemannian volume
form is

volRXτ := jτ
∗ (

ι(grad√ρ) volM̃τ ′
)

= jτ
∗
(
ι(grad√ρ)� ∧ 1

(d − 1)! �
∧(d−1)

)
. (44)

An alternative choice is the contact volume form

volCXτ := jτ
∗
(
α ∧ 1

(d − 1)! �
∧(d−1)

)
. (45)

Let us clarify the relation between volRXτ and volCXτ .
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Lemma 18 α = √
ρ ι(grad√ρ)� = 1

2 ι(gradρ)�.

Proof The two equalities are clearly equivalent. As to the latter,

ι(gradρ)� = �(gradρ, ·) = �(Jυρ, ·) = −�(υρ, J ·) = −dρ ◦ J

= −ı (∂ρ − ∂ρ
) = 2α.

 !
Corollary 19 volCXτ = τ · volRXτ .

Our choice for a volume form on X τ will be volRXτ . Let us consider its homogeneity
properties. For λ > 0 let δλ : T∨M → T∨M denote fibrewise dilation by λ. Then δλ is
intertwined with a diffeomorphism δ′λ : Mε/λ → Mε .

Let !can ∈ X(T∨M) be the vector field correlated with ! by Eτ . Since locally � =
dq ∧ dp and α = −p dq , we have

ι(!can)�can = αcan ⇒ !can = p
∂

∂ p
,

which is homogeneous of degree zero with respect to δλ. Therefore the same holds of!with
respect to δ′λ. Since

√
ρ is homogenous of degree 1,

grad√ρ =
1√
ρ
!

is homogenous of degree−1. Hence by (44) volRXτ is homogeneous of degree d− 1 in τ . We
conclude

Lemma 20 For a constant D > 0, VolR(X τ ) := ∫Xτ volRXτ = D τ d−1.

3.2.4 Induced vector fields and Hamiltonians

For any sufficiently small τ > 0, the Kähler structure makes T M̃τ into a complex Hermi-
tian vector bundle. Being everywhere non-vanishing, υ√ρ spans on M̃τ\M a 1-dimensional

complex subbundle V of (T M̃τ , J ):

Vx := spanC
(
υ√ρ(x)

) = spanR
(
υ√ρ(x), grad√ρ(x)

)
(x ∈ M̃τ\M).

Hence there is on M̃τ\M a decomposition of (T M̃, J ) as the orthogonal direct sum of
complex vector sub-bundles

T M̃ = V ⊕H, where H := V⊥. (46)

Let T ⊂ V be the real vector subbundle generated on M̃τ\M by υ√ρ ; thus

T ⊕H = ker(dρ) ⊂ T M̃τ . (47)

The C∞ sections of T ⊕ H are the smooth vector fields that are tangent to X τ , for every
τ ∈ (0, τmax ). The decomposition (47) restricts to a corresponding orthogonal direct sum
decomposition for the tangent bundle T X τ :

T X τ = T τ ⊕Hτ , (48)

where T τ := jτ ∗(T ) and Hτ := jτ ∗(H). If x ∈ X τ , T τ (x) = spanR
(
Rτ (x)

)
, and Hτ (x)

is the maximal complex subspace of Tx X τ .
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Lemma 21 We have

J (T )⊕H = ker(α), Hτ = ker(ατ ).

Proof Suppose x ∈ M̃ε\M and decompose Rx according to the complex structure: Rx =
R1,0

x +R0,1
x . Since dρ(R) = 0,

2 ı αx
(
Jx (Rx )

) = ı
(
∂xρ − ∂xρ

) (
R1,0

x −R0,1
x

)

= ı
[
∂xρ

(
R1,0

x

)+ ∂xρ
(
R0,1

x

)] = ı dxρ(Rx ) = 0. (49)

Hence Jx (Tx ) ⊆ ker(αx ). One argues similarly for H.  !
For a vector bundle E on M̃ε\M , let �(E) be the space of its smooth sections. Any

V ∈ �(T ⊕H) = �(T )⊕ �(H) ⊆ X(M̃ε\M) may be uniquely decomposed as

V = V " − ϕR, (50)

where, since α(R) = 1,

ϕ := −α(V ) ∈ C∞(M̃\M), V " ∈ �(H).

Then

LV (α) = ι(V )�− dϕ.

This implies the following.

Lemma 22 Let V ∈ �(T ⊕H) be as in (50). Then the following conditions are equivalent:

1. LVα = 0;
2. V is the Hamiltonian vector field of ϕ = −α(V ) with respect to �.

Since υ√ρ = −√ρR by (42), Lemma 22 generalizes Lemma 12.

3.3 Heisenberg local coordinates

As emphasized in the Sect. 1, Chang and Rabinowitz in [10] and [11] considerably simplified
the application of the ideas and techniques from the line bundle setting in [1, 35, 42] to the
Grauert tube context, and their approach is partly based on Folland and Stein’s construction of
Heisenberg local coordinates for a strictly pseudoconvex hypersurface in a complexmanifold
[13, 14].

3.3.1 Heisenberg-type order

The notion of Heisenberg local coordinates on a complex manifold adapted to a strictly
pseudoconvex hypersurface rests on the concept of Heisenberg-type order of vanishing of a
smooth function at a given point with respect to a local holomorphic chart [13, §14 and §18].

Suppose x ∈ M̃ and let (U , ϕ, A) be a local holomorphic chart for M̃ centered at x ; thusU
is an open neighborhood of x in M̃ , and A ⊆ C

d is open. Let us write ϕ = (z0, z1, . . . , zd−1),
where z j : U → C.

Definition 23 Let Jx (M̃) be the ring of germs of (non necessarily smooth, real or complex)
functions on M̃ at x , and let mx (M̃) � Jx (M̃) be the ideal of those germs that vanish at x .
Let C∞(M̃)x ⊆ Jx (M̃) be the subring of germs of smooth functions. Suppose f ∈ mx (M̃).
Then
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1. f is said to be O1
ϕ if, for M̃ & y ∼ x ,

f (y) = O

⎛

⎝
d−1∑

j=1
|z j (y)| + |z0(y)|1/2

⎞

⎠ ;

2. O1
ϕ(M̃) :=

{
f ∈ mx (M̃) : f isO1

ϕ

}
;

3. inductively, for k ≥ 2 we define Ok
ϕ(M̃) := Ok−1

ϕ (M̃) ·O1
ϕ(M̃);

4. for any integer k ≥ 2, f is said to be Ok
ϕ if f ∈ Ok

ϕ(M̃);

5. finally, Ck
ϕ(M̃) := C∞(M̃)x ∩Ok

ϕ(M̃).

For example, if x j := �(z j ) and y j := �(z j ) then √|x0|, √|y0| ∈ O1
ϕ(M̃); therefore,

x0 = sgn(x0)
√|x0| · √|x0| ∈ C2

ϕ(M), and similarly for y0 and z0. For every k ≥ 1, we have

|x0| k+12 = |x0| k2 ·|x0| 12 , and it follows inductively that |x0| l2 ∈ Ol
ϕ(M̃) for every l ≥ 1. On the

other hand, x j , y j ∈ C1
ϕ(M̃) for every j ≥ 1, and one obtains inductively that xlj ∈ Clϕ(M̃)

for every l ≥ 1.
We shall occasionally abridge the notation Ok

ϕ(M̃) to Ok
ϕ . By the inductive definition,

Ok
ϕ = O1

ϕ ·O1
ϕ · · ·O1

ϕ︸ ︷︷ ︸
k times

, (51)

i.e. any f ∈ Ok
ϕ is a (finite) linear combination of products f1 · · · fk with f j ∈ O1

ϕ .

Corollary 24 Ok
ϕ ·Ol

ϕ = Ok+l
ϕ for any k, l ≥ 1.

Let us set z′ := (z1, . . . , zd−1) : U → C
d−1; thus ϕ = (z0, z′).

Lemma 25 Suppose f ∈ mx (M̃) Then the following conditions are equivalent:

1. f ∈ Ok
ϕ;

2. f (y) = O
(|z′(y)|k + |z0(y)|k/2

)
for M̃ & y ∼ x.

Proof Let 0 < dk < Dk be constants, depending only on k ≥ 1, such that for any pair
a, b ≥ 0 one has

dk (a
k + bk) ≤ (a + b)k ≤ Dk (a

k + bk).

Suppose f ∈ Ok
ϕ . Then f is a sum of products of the form f1 · · · fk with each f j ∈ O1

ϕ .
We may thus assume that f itself is of this form. Hence there is a constantC > 0 (depending
on f ) such that

| f j (y)| ≤ C
(|z′(y)| + |z0(y)|1/2

)
( j = 1, . . . , k);

therefore

| f (y)| ≤ Ck (|z′(y)| + |z0(y)|1/2
)k

≤ Ck Dk

(
|z′(y)|k + |z0(y)|k/2

)
.

Hence 2. holds.
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Conversely, assume that 2. holds. Then f ∈ O1
ϕ by definition for k = 1. Suppose that

k ≥ 2. Then

f (y) = O
(
|z′(y)|k + |z0(y)|k/2

)
= O

(
(|z′(y)| + |z0(y)|1/2)k

)
.

In some neighbourhood U of x in M̃ , let us define g : U → C by

g(y) := f (y)
(|z′(y)| + |z0(y)|1/2

)k−1 if y �= x; g(x) = 0.

When y �= x ,

|g(y)| ≤ C
(|z′(y)| + |z0(y)|1/2

)k

(|z′(y)| + |z0(y)|1/2
)k−1 = C

(|z′(y)| + |z0(y)|1/2
)
.

Hence g ∈ O1
ϕ , and

f (y) = g(y) · (|z′(y)| + |z0(y)|1/2
)k−1

.

Thus f ∈ O1
ϕ ·Ok−1

ϕ = Ok
ϕ .

 !
Let us focus on Ck

ϕ .

Definition 26 For a, b ∈ Z
d≥0, consider the monomial function of z := (z0 · · · zd−1

) ∈ C
d

given by

Pa,b(z) := za00 zb00

d−1∏

j=1
z
a j
j z

b j
j . (52)

The weighted degree of Pa,b is

wdg(Pa,b) := 2 (a0 + b0)+
d−1∑

j=1
(a j + b j ).

Proposition 27 Suppose f ∈ C∞(M)x . Then the following conditions are equivalent.

1. f ∈ Ck
ϕ;

2. every monomial contributing to the Taylor expansion of f ◦ϕ−1 at 0 has weighted degree
≥ k.

If M = C
d , U = A ⊆ C

d is open and ϕ = idA, we shall write Ck for Ck
ϕ . Since in the

general setting f ∈ Ck
ϕ if and only if f ◦ ϕ−1 ∈ Ck , we may identify U with A and work

directly on A ⊆ C
d (and prove the statement for Ck).

Proof We may assume without loss that A = D(0, r) is a polydisc centered at the origin, of
multiradius r = (r0, . . . , rd−1), with r0 ∈ (0, 1]. Let us denote the linear complex coordinates
on A by (w0, w1, . . . , wd−1) = (w0, w

′).
Let h : A → A be given by

h(w0, w1, . . . , wd−1) :=
(
w2
0, w1, . . . , wd−1

) = (w2
0, w

′).
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A monomial Pa,b(z) pulls back to

h∗(Pa,b)(w) = w
2 a0
0 w

2 b0
0

d−1∏

j=1
w

a j
j w

b j
j ; (53)

hence

deg
(
h∗(Pa,b)

) = 2 (a0 + b0)+
d−1∑

j=1
(a j + b j ) = wdg(Pa,b).

On the other hand, if f is a germ of smooth function at the origin on C
d , then the Taylor

expansion of f ◦ h a the origin is the pull-back by h of the one of f . Hence 2. holds if and
only if the Taylor expansion of f ◦ h only contains monomials of degree ≥ k, i.e. if f ◦ h
vanishes to k-th order at the origin.

Assume f ∈ Ck . Then f ◦ h is smooth and by Lemma 25

f ◦ h(w) = O
(
|w′|k + |w0|k

)

for w ∼ 0; hence the Taylor expansion of f ◦ h at 0 only contains terms of degree ≥ k, i.e.
2. holds.

Suppose, conversely, that 2. holds; equivalently, the Taylor expansion of f ◦h at the origin
only contains monomials of degree ≥ k. Hence on a neighbourhood of the origin

| f ◦ h(w)| ≤ C
(
|w′|k + |w0|k

)

for some constant C > 0. If z = h(w), this means

| f (z)| ≤ C
(
|z′|k + |z0|k/2

)
,

so that f ∈ Ck .
 !

3.3.2 Heisenberg type order and holomorphic extensions

A notational clarification is in order. Consider a d-dimensional complex manifold Z , with
complex structure J .We shall denote by Z the conjugate complexmanifold (that is, Z = Z as
differentiable manifolds, but with complex structure−J ). In particular, let J0 be the standard
complex structure on C

d ; an open subset A ⊆ C
d is a complex manifold with the induced

complex structure, which shall also be denoted J0. Then A is the same open subset, endowed
with the complex structure −J0.

On the other hand, let c : C
d → C

d denote complex conjugation. We shall set
Ac := c(A), with the complex structure J0. Then c yields by restriction an anti-holomorphic
diffeomorphism c : A → Ac, or equivalently a biholomorphism c : A → Ac.

Consider a holomorphic local chart (U , ϕ, A) of Z ; thus U ⊆ Z is an open subset with
the complex structure J and ϕ : U → A is a biholomorphism for J and J0. We obtain two
‘holomorphic charts’ for Z , both defined onU : (U , ϕ, A), and (U , c ◦ ϕ, Ac) (to be precise,
both are biholomorphisms, but only the latter is a genuine holomorphic chart).

Suppose f ∈ O(U ), that is, f : U → C is (−J )-holomorphic. Then f ◦ϕ−1 : A → C is
holomorphic on A; hence it locally admits a power series expansion in the conjugate variables
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z j ’s. Instead, f ◦ (c ◦ ϕ)−1 = ( f ◦ ϕ−1) ◦ c is holomorphic on Ac; hence it locally admits a
power series expansion in the standard variables z j ’s.

The diagonal� ⊂ M̃× M̃ is a totally real submanifold, real-analytically diffeomorphic to
M̃ . Let (U , ϕ, A) be holomorphic local chart forM centered at x . Then (U×U , ϕ×ϕ, A×A)

is a ‘holomorphic local chart’ for M̃×M̃ centered at (x, x). Let z j and u j denote, respectively,
the standard complex linear coordinates on the two factors of Cd × C

d , respectively. If

F : M̃ × M̃ → C is holomorphic, then F ◦ (ϕ × ϕ)−1 can be expanded in a power series in
the z j ’s and the u j ’s.

Any real-analytic function f on M̃ maybe viewed as a real-analytic function on�; as such,

it has a holomorphic extension f̃ to an open neighborhood of� in M̃× M̃ . Suppose that f ∈
Ck
ϕ for some k ≥ 1. By Proposition 27, the only contributions to the power series expansion

of f ◦ ϕ−1 ∈ Ck come from monomials (52) such that 2 (a0 + b0) +∑d−1
j=1(a j + b j ) ≥ k.

On the other hand, the holomorphic extension of (52) to C
d × Cd has the form

za00 ub00

d−1∏

j=1
z
a j
j u

b j
j . (54)

When we match Heisenberg type ordering with holomorphic extension of real analytic
functions, we are thus led to introduce the following two rings.

Definition 28 Let k ≥ 1 be an integer.

1. Ok will denote the ring of germs of holomorphic functions F on Cd ×Cd at (0, 0) with
the following property: if a monomial (54) gives a non-trivial contribution to the power
series expansion of F , then 2 (a0 + b0)+∑d−1

j=1(a j + b j ) ≥ k;

2. Ok
ϕ×ϕ will denote the ring of germs of holomorphic functions F on M̃ × M̃ at (x, x)

such that F ◦ (ϕ × ϕ)−1 ∈ Ok .

Corollary 29 Let (U , ϕ, A) be a holomorphic local chart for M centered at x. Then the
following holds.

1. Ok
ϕ×ϕ consists of the holomorphic extensions (for (J ,−J )) of the real-analytic germs in

Ck
ϕ;

2. if F is a germ of holomorphic function on M̃ × M̃ at (x, x), then F ∈ Ok
ϕ×ϕ if and only

if
∣∣F ◦ (ϕ × ϕ)−1(z, u)

∣∣ = O
(
‖z′‖k + ‖u′‖k + |z0| k2 + |u0| k2

)

for (z, w) ∼ (0, 0).

We shall occasionally simplify notation and identify F(z, u) with F ◦ (ϕ × ϕ)−1(z, u) in
Corollary 29.

3.3.3 Heisenberg local coordinates adapted to a hypersurface

In §18 of [13], a special system of local holomorphic coordinates is constructed on a complex
manifold near a point lying on a strictly pseudoconvex hypersurface; this construction was
profitably put to use in [10] and [11] to study the asymtptotics of Szegö and Poisson kernels
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on Grauert tubes. In such a system of coordinates, the local geometry of the hypersurface
is well approximated by the local geometry of the Heisenberg group; for this reason, these
systems of coordinates are naturally referred to asHeisenberg local coordinates (see e.g. [10,
11, 35]), although they were originally called normal coordinates in [13]. In our setting, up
to a simple rescaling this amounts to the existence of coordinates as in following definition.

Definition 30 If τ ∈ (0, ε) and x ∈ X τ ⊆ M̃ε , a system of Heisenberg local coordinates on
M̃ adapted to X τ at x is a holomorphic local chart (U , ϕ, A) for M̃ centered at x , with the
following properties:

1. ∂
∂z0

∣
∣
∣
x
∈ spanC (R(x));

2. ∂
∂z j

∣
∣
∣
x
∈ H(1,0)(x) := (H(x)⊗ C

) ∩ T (1,0)M̃τ , for j = 1, . . . , d − 1;

3. the defining function φτ := ρ − τ 2 for X τ takes the form

φτ ◦ ϕ−1(z) = −2�(z0)+ ‖z′‖2 + f (z), (55)

where f ∈ C3 (clearly f is real valued and real-analytic).

Caveat 31 The norm ‖·‖ in (55) is for now simply the Euclidean norm in the given coordinate
system, but it will be shown below to have an metric intrinsic meaning (see (63)).

As mentioned in the Introduction, it will be convenient to make a slightly more specific
choice of coordinates (without altering the previous properties). Since f ∈ C3 and is real-
analytic, for suitable coefficients c ∈ R and al , b j ∈ C we have

f (z) = c |z0|2 + �
⎛

⎝2 z0
d−1∑

j=0
a j z j + z0

d−1∑

j=1
b j z j

⎞

⎠+ R3(z, z), (56)

where R3 is the third order remainder, i.e. a convergent power series near 0 in (z, z) involving
only monomials of total ordinary degree ≥ 3. If we make the change of variables

w0 := z0 − z0

d−1∑

j=0
a j z j , w′

j := z j for j = 1, . . . , d − 1,

and replace z by w in (55), we reduce to the case where all a j = 0 (possibly with a new R3).
With this adjustment, we shall refer to (U , ϕ, A) as a system of normal Heisenberg local
coordinates adapted to X τ at x .

With abuse of notation, if γ is a locally defined differential form on M̃ , we shall
occasionally also denote by γ its local coordinate representation ϕ−1∗(γ ).

Lemma 32 Referring to (56), we have c > 0 and b j = 0 for every j = 1, . . . , d − 1.

Proof Since � = ı ∂ ∂ρ = ı ∂ ∂φτ , one concludes from (55) and (56) that

� = ı
(
c dz0 ∧ dz0 + dz′ ∧ dz′

)+�
⎛

⎝
d−1∑

j=1
b j dz0 ∧ dz j

⎞

⎠+ R1(z, z). (57)

Let us write b j = b′j + ı b′′j , where b′j , b′′j ∈ R, and let

θk := �(zk), ηk := �(zk), ∀ k = 0, . . . , d − 1.
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Then

�
⎛

⎝
d−1∑

j=1
b j dz0 ∧ dz j

⎞

⎠

=
d−1∑

j=1

[
b′j
(
dθ0 ∧ dθ j + dη0 ∧ dη j

)− b′′j
(
dη0 ∧ dθ j − dθ0 ∧ dη j

)]
.

On the other hand, given the Hermitian orthogonality of ∂/∂z0 and ∂/∂z j for j ≥ 1 at x ,
∂/∂θ0 and ∂/∂η0 are symplectically orthogonal to ∂/∂θ j and ∂/∂η j at x for j ≥ 1. Hence
b′j = b′′j = 0.  !

Therefore,

�x = ı
(
c dx z0 ∧ dx z0 + dx z

′ ∧ dx z
′) = 2

⎛

⎝c dxθ0 ∧ dxη0 +
d−1∑

j=1
dxθ j ∧ dxη j

⎞

⎠ .

Hence κ̂x (·, ·) = �x
(·, Jx (·)

)
is given by

κ̂x = 2 c (dxθ0 ⊗ dxθ0 + dxη0 ⊗ dxη0)

+2
d−1∑

j=1

(
dxθ j ⊗ dxθ j + dxη j ⊗ dxη j

)
. (58)

In particular,

∂

∂η0

∣∣∣∣
x
= 2 c gradκ̂x (η0).

We conclude that

1. x is a critical point for the restriction of η0 to X τ (recall (55));
2. therefore, ∂/∂η0|x is orthogonal to Tx X τ with respect to κ̂ , whence a non-zero multiple

of $(x);
3. hence, ∂/∂θ0 and ∂/∂θ j , ∂/∂η j for j = 1, . . . , d − 1 are all tangent to X τ at x ;
4. (θ0, θ1, η1, . . . , θd−1, ηd−1) restrict to a system of local coordinates on X τ centered at

x ;
5. ∂/∂θ0|x is a non-zero multiple of R(x).

Given (8) and (55), the local coordinate expression for α is then

α = �∂ρ = �∂φτ

= dθ0 + c

2 ı
(z0 dz0 − z0 dz0)+ 1

2 ı

(
z′ · dz′ − z′ dz′

)+ R2(z, z), (59)

where R2(z, z) denotes a differential 1-form whose coefficients vanish to second order at x .
In particular, αx = dxθ0. On the other handR(x) is a multiple of ∂/∂θ0|x and α(R) ≡ 1.

Hence

R(x) = ∂

∂θ0

∣∣∣∣
x
. (60)

Lemma 33 c = 1

2 τ 2
.
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Proof By (43) and (58)

1

τ 2
= ‖R(x)‖2

κ̂x
=
∥
∥
∥
∥

∂

∂θ0

∣
∣
∣
∣
x

∥
∥
∥
∥

2

κ̂x

= 2 c. (61)

 !
We reach the following conclusion.

Proposition 34 Let (U , ϕ, A) be a normal Heisenberg local chart for M̃, centered at x ∈ X τ

and adapted to X τ . Then the local coordinate expressions of φτ , α and � are as follows:

φτ ◦ ϕ−1(z) = −2�(z0)+ 1

2 τ 2
|z0|2 + ‖z′‖2 + R3(z, z),

α = dθ0 − ı

4 τ 2
(z0 dz0 − z0 dz0)+ 1

2 ı

(
z′ · dz′ − z′ dz′

)+ R2(z, z),

� = ı

(
1

2 τ 2
dz0 ∧ dz0 + dz′ ∧ dz′

)
+ R1(z, z),

κ̂ = 1

τ 2
(dθ0 ⊗ dθ0 + dη0 ⊗ dη0)

+2
d−1∑

j=1

(
dθ j ⊗ dθ j + dη j ⊗ dη j

)+ R1 (z, z) ,

where R j denotes an expression of the appropriate type (function, differential 1- or 2-form,
metric tensor respectively) vanishing to j-th order at the origin.

In Heisenberg local coordinates for M̃ at x ∈ X τ , (w,u) ∈ C×C
d−1 corresponds to the

real tangent vector

V := w
∂

∂z0

∣∣∣∣
x
+ w

∂

∂z0

∣∣∣∣
x
+ u · ∂

∂z′

∣∣∣∣
x
+ u · ∂

∂z′

∣∣∣∣
x
∈ Tx M̃ . (62)

Corollary 35 With V as in (62), the square norm of V with respect to κ̂ is

‖V ‖2
κ̂x
= 1

τ 2
|w|2 + 2 ‖u‖2.

As in the Introduction, let us set ω := 1
2 �; thus the Riemannian metric on the Kähler

manifold (M̃ε, ω, J ) is κ̃ := 1
2 κ̂ . With V as in (62) then

‖V ‖2κ̃x = ωx
(
V , Jx (V )

) = 1

2 τ 2
|w0|2 + ‖u‖2. (63)

3.3.4 Heisenberg local coordinates on X�

The local expression for φτ in Proposition 34 yields an estimate on �(z0) on X τ .

Corollary 36 Assume x ∈ X τ , and let (U , ϕ, A) be a normal Heisenberg local chart on M̃
adapted to X τ at x. If y ∈ U ∩ X τ and ϕ(y) = (z0, z′) with z0 = �(z0)+ ı �(z0), then

�(z0) = 1

4 τ 2
�(z0)2 + 1

2
‖z′‖2 + R3

(�(z0), z′, z′
)
.

Under the same assumptions, |z0|2 = �(z0)2 + R4(�(z0), z′).
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Corollary 37 There exists a constant Cτ > 0, such that if y ∈ U ∩ X τ and ϕ(y) = (z0, z′),
then

|�(z0)| ≤ Cτ

(
θ20 + ‖z′‖2) .

In the following, θ := θ0|Xτ (with θ0 = �(z0)). Let us set U τ := U ∩ X τ and define
ϕτ : U τ → R× C

d−1 by

ϕτ (x ′) := (θ(x ′) z′(x ′)) . (64)

Set Aτ := ϕτ (U τ ). Perhaps after restricting U , Aτ is an open subset of R × C
d−1 and

(U τ , ϕτ , Aτ ) is local coordinate chart for X τ centered at x .

Definition 38 We shall call (U τ , ϕτ , Aτ ) the Heisenberg local chart for X τ at x induced
by (U , ϕ, A), and say that (U τ , ϕτ , Aτ ) is a normal Heisenberg local chart for X τ if so is
(U , ϕ, A) for M̃ . We shall often use additive notation for ϕτ , in the following ways. First, if
x ′ ∈ U τ and ϕτ (x ′) is as in (64), we shall write x ′ = x + (θ(x ′), z′(x ′)). When viewing z′ ∈
C
d−1 as an element of R2d−2, we shall use bold notation and write x ′ = x + (θ(x ′), v(x ′)).
Furthermore, let us identify Tx X τ withR×C

d−1, by letting (a, u) ∈ R×C
d−1 correspond

to the tangent vector

W := a
∂

∂θ

∣∣∣∣
x
+ u · ∂

∂z′

∣∣∣∣
x
+ u · ∂

∂z′

∣∣∣∣
x
. (65)

We shall then also write x +W := (ϕτ )−1(a, u) = x + (a, u).

Remark 39 By (60), if the tangent vectors on the right hand side of (65) are meant in terms
of the coordinates on M̃ , they are actually all tangent to X τ at x . Hence (65) may as well be
interpreted in terms of the (restricted) local coordinates on X τ . Thus the additive short-hand
x+W has different meanings according to whether we think ofW as tangent to X τ and refer
to ϕτ , or to M̃ and refer to ϕ. The context should clarify the potential ambiguity.

We can extend the notion of Heisenberg-type order of vanishing to functions on X τ with
respect to (U τ , ϕτ , Aτ ), by the following variant of Definition 23 (see §18 of [13]).

Definition 40 Let (U τ , ϕτ , Aτ ), ϕτ = (θ, z′), be a system of Heisenberg local coordinates
on X τ centered at x . Let Jx (X τ ) be the ring of germs of (non necessarily smooth, real
or complex) functions on X τ at x ; let mx (X τ ) � Jx (X τ ) be the ideal of those germs that
vanish at x . Let C∞(X τ )x ⊆ Jx (X τ ) be the subring of germs of smooth functions. Suppose
f ∈ mx (X τ ). Then

1. f is said to be O1
ϕτ if, for X

τ & y ∼ x ,

f (y) = O

⎛

⎝
d−1∑

j=1
|z j (y)| + |θ(y)|1/2

⎞

⎠ ;

2. O1
ϕτ (X

τ ) :=
{
f ∈ mx (X τ ) : f isO1

ϕτ

}
;

3. inductively, for k ≥ 2 we define Ok
ϕτ (X

τ ) := Ok−1
ϕτ (X τ ) ·O1

ϕτ (X
τ );

4. for any integer k ≥ 2, f is said to be Ok
ϕτ if f ∈ Ok

ϕτ (X
τ );

5. finally, Ck
ϕτ (X

τ ) := C∞(X τ )x ∩Ok
ϕτ (X

τ ).
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Let (U τ , ϕτ , Aτ ) be induced by the system of Heisenberg local coordinates (U , ϕ, A)
adapted to X τ at x . The definition of Ok

ϕτ entails the following.

Lemma 41 Let jτ : X τ ↪→ M̃ be the inclusion. Then

Ok
ϕτ (X

τ ) = jτ
∗ (Ok

ϕ(M̃)
)
.

Proof The statement follows readily from the definition in case k = 1. For general k,
Ok
ϕτ (X

τ ) = O1
ϕτ (X

τ ) · · ·O1
ϕτ (X

τ ) (k times). The claim follows from this and (51) since
jτ ∗ is multiplicative morphism.  !

Let us express volRXτ (x) in terms of ϕτ (recall (45) and Corollary 19). By Corollary 36,
jτ ∗(dx z0) = dxθ0. In view of Proposition 34

volRXτ (x) = 1

τ
volCXτ (x)

= 1

τ
jτ

∗
(
α ∧ 1

(d − 1)! �
∧(d−1)

)∣∣
∣
∣
x

= ıd−1

τ (d − 1)! dxθ ∧ jτ
∗
(

1

2 τ 2
dx z0 ∧ dx z0 + dx z

′ ∧ dx z
′
)∧(d−1)

. (66)

By Corollary 36, jτ ∗(dx z0) = dxθ0. Hence

volRXτ (x) = ıd−1

τ (d − 1)! dxθ ∧
(
dx z

′ ∧ dx z
′)∧(d−1)

= 2d−1

τ
dxθ ∧ 1

(d − 1)!
( ı
2
dz′ ∧ dz′

)∧(d−1)
. (67)

The latter factor is the standard volume form on Cd−1 ∼= R
2d−2 in the linear coordinates z′.

3.3.5 Comparison of Heisenberg local coordinates

Suppose x ∈ X τ and let ϕ = (z0, z′) and % = (w0, w
′) are normal Heisenberg local charts

adapted to X τ at x . By (60) and (63)

w0 = z0 + f (z0, z
′), w′ = A z′ + f(z0, z′), (68)

where A ∈ U (d − 1) and f , f are holomorphic and vanish to second order at x . Consider
y ∼ x and suppose (z0, z′) = ϕ(y), (w0, w

′) = %(y). Let as usual R j denote a generic
smooth function vanishing to j-th order at x ; by Proposition 34 and (68),

φτ (y) = −2�(w0)+ 1

2 τ 2
|w0|2 + ‖w′‖2 + R3(w0, w

′)

= −2�(z0)− 2�( f (z0, z′)
)+ 1

2 τ 2
|z0|2 + ‖z′‖2 + R3(z0, z

′).

Given that ϕ is also a normal Heisenberg chart, in view of the same Proposition we also have

φτ (y) = −2�(z0)+ 1

2 τ 2
|z0|2 + ‖z′‖2 + R3(z0, z

′).

Thus �( f (z0, z′)
)
vanishes to third order at x (that is, at the origin). Since f is holomorphic,

f itself vanishes to third order at x . We conclude the following.

Lemma 42 Let ϕ = (z0, z′), % = (w0, w
′) : U → C

d be two normal Heisenberg local
charts on M̃ adapted to X τ at x. Then w0 − z0 vanishes to third order at x.
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3.3.6 The geodesic flow in Heisenberg coordinates

Since the vector field R of Definition 16 is tangent to the compact hypersurfaces X τ , it is
complete on M̃\M . Given x ∈ X τ , let us choose a system of Heisenberg normal coordinates
(U , ϕ, A) adapted to X τ at x . Let &x : R→ X τ be the integral curve of R passing through
x at t = 0. For t sufficiently small,

&x (t) = x + (z0(t), z′(t)
)
, where z0(0) = 0 ∈ C, z′(0) = 0 ∈ C

d−1.

Let us write z0(t) = θ(t) + ı η(t), where θ(t) = �(z0(t)
)
and η(t) = �(z0(t)

)
; in view of

(60), we have

θ(0) = 0, θ̇ (0) = 1, η(0) = η̇(0) = 0, z′(0) = ż′(0) = 0.

Hence θ(t)− t , η(t), and z′(t) vanish to second order at the origin. Thus

z0(t) = t + f (t), z′(t) = F(t), (69)

where f and F are smooth and vanish to second order at 0 ∈ R.
Since &x is an integral curve of R,

〈αγx (t), γ̇x (t)〉 = 〈α,R〉 ◦&x (t) ≡ 1.

Expressing this condition by means of Proposition 34 yields

1 = θ̇ (t)− ı

4 τ 2

[(
t + f (t)

) · (1+ ḟ (t)
)− (t + f (t)

) ·
(
1+ ḟ (t)

)]

+ 1

2 ı

(
F(t) · Ḟ(t)− F(t) Ḟ(t)

)
+ R2(t) = θ̇ (t)+ R2(t). (70)

Thus θ(t) = t + R3(t). We conclude:

Lemma 43 If&x : R→ X τ is the integral curve ofR through x, then in normal Heisenberg
local coordinates for X τ at x we have

ϕτ ◦&x (t) =
(
t + R3(t),R2(t)

)
.

In additive notation as in Definition 38, &x (t) = x + (t + R3(t),R2(t)
)
.

Since any smooth function vanishing to first order at x is in C1
ϕτ (X

τ ), we reach the
following conclusion (a slight refinement of Lemma 3.6 of [10]).

Corollary 44 Suppose y = x + (θ,u) ∈ U τ and let &y : R → X τ be the integral curve of
R with initial condition y. Then for t small we have

&y(t) = x + (θ + t + R3(t)+ t · f (t, θ,u),u + R2(t)+ t · f(t, θ,u)),
where f (t, ·, ·) and (every component of) f(t, ·, ·) are in C1

ϕτ (X
τ ) (that is, they are O1

ϕτ ).

The previous statement may be converted into one concerning the homogeneous geodesic
flow. The latter is intertwined by Eτ with the flow of υ√ρ ; on the other hand by (42) we
have υτ√

ρ
= −τ Rτ on X τ . Thus γ (·) is an integral curve of Rτ if and only if γ (−τ ·) is an

integral curve of υτ√
ρ
. Let us denote by �τ

t : X τ → X τ the restricted geodesic flow at time
t .
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Corollary 45 Suppose y = x + (ϑ,u) ∈ U τ . Then for t small we have

�τ
t (y) = x + (ϑ − τ t + R3(τ t)+ τ t · f (τ t, ϑ,u),u + R2(τ t)+ τ t · f(τ t, ϑ,u)),

where f (t, ·, ·), f(t, ·, ·) are as in the statement of Corollary 44.

Corollary 46 υτ√
ρ
(θ)

∣
∣∣
y
= −τ + τ f (0, ϑ,u).

3.3.7 Horizontal curves in Heisenberg coordinates

Let I ⊆ R be an interval; a smooth curve γ : I → X τ will be called horizontal if
〈αγ (t), γ̇ (t)〉 = 0 ∀ t ∈ I . Lemma 47 below concerns the local description, in normal
Heisenberg coordinates, of a horizontal curve. Although it won’t be used elsewhere in this
paper, it is a natural complement to the results in Sect. 3.3.6 (and potentially useful in future
applications).

Suppose I = (−ε′, ε′) for some ε′ > 0, and let γ be smooth, horizontal, and such that
γ (0) = x .

For t ∼ 0, in normal Heisenberg coordinates γ (t) = x + (θ(t), z′(t)); recall that θ =
θ0|U τ . By assumption θ̇ (0) = 0, so that θ(t) = R2(t). Furthermore, z′(t) = R1(t), hence
z′(t) = t u + R2(t) where u ∈ C

d−1 and R2 is smooth and vanishes to second order at the
origin. By Corollary 37, η

(
γ (t)

) = R2(t). Thus z0
(
γ (t)

) = R2(t).
Hence by Proposition 34

0 = αγ (t) (γ̇ (t)) = θ̇0(t)+ R2(t) ⇒ θ(t) = R3(t). (71)

We conclude the following.

Lemma 47 If γ : (−ε, ε) → X τ is horizontal and γ (0) = x, then in normal Heisenberg
local coordinates for X τ at x we have

γ (t) = x + (R3(t),R1(t)
)
.

3.4 The Szegö kernel and its phase

Recall that L2(X τ ) denotes the Hilbert space of square summable functions on X τ with
respect to volRXτ in Sect. 3.2.3, H(X τ ) ⊆ L2(X τ ) is the corresponding Hardy space, and
�τ : L2(X τ ) → H(X τ ), the Szegö projector, is the orthogonal projector. By [5], �τ

is a Fourier integral operator with complex phase; its wave front WF(�τ ) = �τ " is the
anti-diagonal of �τ in (10):

�τ " = {(x, rατx , x,−r ατx
) : x ∈ X τ , r > 0

}

⊆ (T∨X τ\X0
)× (T∨X τ\X0

)
. (72)

More precisely, up to a smoothing term the distributional kernel of �τ (a.k.a. the Szegö
kernel of X τ ) is microlocally of the form

�τ (x ′, x ′′) '
∫ +∞

0
eı u ψ

τ (x ′,x ′′) sτ (x ′, x ′′, u) du, (73)

where the amplitude sτ and the phase ψτ are as follows (see [5]).
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1. sτ is a semiclassical symbol admitting an asymptotic expansion

sτ (x ′, x ′′, u) ∼
∑

j≥0
ud−1− j sτj (x

′, x ′′). (74)

2. ψτ satisfies �(ψτ ) ≥ 0 and is essentially determined along the diagonal of X τ by the
Taylor expansion of the defining function φτ ; in the present real-analytic setting we may
assume that

ψτ := 1

ı
φ̃τ
∣
∣
∣
∣
Xτ×Xτ

, (75)

where φ̃τ denotes the holomorphic extension of φτ to M̃ × M̃ (see the discussion
preceding Definition 28).

Let us express ψτ in the neighbourhood of (x, x) in X τ × X τ using normal Heisenberg
local coordinates ϕτ = (θ, z′) on X τ centered at x , defined on an open subsetU τ ⊆ X τ . Let
ψ
ωx
2 be as in (16).

Proposition 48 Suppose that

x ′, x ′′ ∈ U τ , (θ, z′) = ϕτ (x ′), (η, u′) = ϕτ (x ′′).

Then

ı ψτ (x ′, x ′′) = ı (θ − η)− 1

4 τ 2
(θ − η)2 + ψ

ωx
2

(
z′, u′

)+ R3(θ, η, z
′, z′, u′, u′),

where the latter term denotes a power series in the indicated variables, involving only terms
of total degree ≥ 3.

Proof Let ϕ be the normal Heisenberg local chart on M̃ centered at x inducing ϕτ . Let
(z0, z′) := ϕ(x ′) and (u0, u′) := ϕ(x ′′), so that θ = �(z0), η = �(w0). By Proposition 34
and (75),

ı ψτ (x ′, x ′′) = ı (z0 − u0)+ 1

2 τ 2
z0 u0 + z′ · u′ + R3(z, u)

= ı (θ − η)− (�(z0)+ �(u0)
)+ 1

2 τ 2
z0 u0 + z′ · u′ + R3(z, u). (76)

Let us abridge the third order term to R3. Applying Corollary 36 and (63), we obtain

ı ψτ (x ′, x ′′) = ı (θ − η)− 1

4 τ 2
(
θ2 + η2 − 2 θ η

)− 1

2

(‖z′‖2 + ‖u′‖2 − 2 z′ · u′)+ R3

= ı (θ − η)− 1

4 τ 2
(θ − η)2 + ψ

ωx
2

(
z′, u′

)+ R3. (77)

 !
The following property follows from the general construction of the phase of the Szegö

kernel in [5]; here it can be read immediately from Propositions 34 and 48.

Corollary 49 For any x ∈ X τ , d(x,x)ψτ = (αx ,−αx ).
Proof Let notation be as in Proposition 48. Then d(x,x)ψτ = (dxθ,−dxη). The statement
then follows from Proposition 34.  !
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Again, the following statement follows from the general theory of [5], but it can also be
verified by direct inspection of (77). Let distXτ : X τ × X τ → R be the Riemannian distance
function.

Corollary 50 There are a neighborhood X ′ ⊆ X τ × X τ of the diagonal and a constant
Cτ > 0 such that

�ψτ (x ′, x ′′) ≥ Cτ distXτ (x ′, x ′′)2

for all (x ′, x ′′) ∈ X ′.

3.4.1 The leading order term of the amplitude

We aim to determine the evaluation sτ0 (x, x) of the leading order term in (74); we shall follow
the argument in §4 of [5], and apply Proposition 48.

Theorem 51 In a system of normal Heisenberg local coordinates on X τ centered at x,
sτ0 (x, x) = τ/(2π)d .

Remark 52 Recall that �τ is the Szegö kernel for the Hermitian structure on L2(X τ ) asso-
ciated to volRXτ . Integration with respect to volRXτ in a variable y will be denoted by the
short-hand dVXτ (y). A different choice of volume form would clearly lead to a different
result.

Proof By the idempotency of�τ , for all (x ′, x ′′) ∈ X τ × X τ we have

�τ (x ′, x ′′) = (�τ ◦�τ
)
(x ′, x ′′) =

∫

Xτ

�τ (x ′, y)�τ (y, x ′′) dVXτ (y). (78)

Since the singular support of �τ is the diagonal in X τ × X τ , at the cost of a smoothing
term we can localize (78) to some small δ-neighbourhood where x ′, x ′′, y ∼ x . Leaving the
cut-off in y implicit, in view of (73) up to a smoothing contribution we have

(
�τ ◦�τ

)
(x ′, x ′′) '

∫ +∞

0
du
∫ +∞

0
dv
∫

Xτ

dVXτ (y)
[
eı [u ψτ (x ′,y)+v ψτ (y,x ′′)] sτ (x ′, y, u) sτ (y, x ′′, v)

]

=
∫ +∞

0
I (u, x ′, x ′′) du, (79)

where, setting v = u σ ,

I (u, x ′, x ′′)

:=
∫ +∞

0
dσ
∫

Xτ

dVXτ (y)
[
eı uϒ

τ (x ′,x ′′;y,σ ) u sτ (x ′, y, u) sτ (y, x ′′, u σ)
]

(80)

with

ϒτ (x ′, x ′′; y, σ ) := ψτ (x ′, y)+ σ ψτ (y, x ′′). (81)

Since x ′, x ′′, y all belong to a δ-neighborhood of x ,

dyϒ
τ (x ′, x ′′; y, σ ) = −αy + σ αy + O(δ);
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therefore, iterated ‘integration by parts’ in y shows that only a negligible contribution in
u → +∞ is lost, if integration in σ is restricted to a suitable neighborhood of 1. Hence
the asymptotics in u → +∞ are unaltered, if the integrand is multiplied by γ (σ ), with
γ ∈ C∞0 (R+) identically equal to 1 on (ε′, 1/ε′), for some ε′ > 0. Thus integration in σ may
also be assumed to be compactly supported. Again, the latter cut-off will be left implicit.

As in [5], in order to evaluate (80) asymptotically we first look for stationary points ofϒτ

when x ′ = x ′′ = x . To this end, let us fix normal Heisenberg local coordinates on X τ at x ,
and set y = x + (θ, v). By Proposition 48,

Fx (σ, θ, v) := ϒτ (x, x; x + (θ, v), σ )

= −θ + ı
1

4 τ 2
θ2 + ı

2
‖v‖2 + σ θ + ı

σ

4 τ 2
θ2 + ı

σ

2
‖v‖2 + R3(θ, v)

= θ (σ − 1)+ ı

[
σ + 1

4 τ 2
θ2 + σ + 1

2
‖v‖2

]
+ R3(θ, v)+ σ R3(θ, v).

(82)

Here (θ, v) ∼ 0, and the only real critical point near the origin is (1, 0, 0). The Hessian
matrix at the critical point is

H(Fx )(1, 0, 0) =
⎛

⎝
0 1 0t

1 ı/τ 2 0t

0 0 2 ı I2d−2

⎞

⎠ , (83)

with det
(− ı H(Fx )(1, 0, 0)

) = (−1)d 22d−2 · (−1)d = 22d−2 �= 0. In addition,

det
(
s I2 d − ı (1− s) H(Fx )(1, 0, 0)

)

=
∣∣∣∣∣∣

s −ı(1− s) 0t

−ı(1− s) s + (1− s)/τ 2 0t

0 0 (2− s) I2d−2

∣∣∣∣∣∣

=
[
s2 + s (1− s)

τ 2
+ (1− s)2

]
· (2− s)2d−2 > 0, ∀s ∈ [0, 1]. (84)

Hence by Theorem 2.3 of [24] we may apply the complex version of the stationary phase
Lemma, with

√
det
(− ı H(Fx )(1, 0, 0)

) = 2d−1.

Recalling (67), to leading order in u we obtain for (80)

I (u, x ′, x ′′)

∼ eı u ψ1(x ′,x ′′)(2π)d
1

2d−1
u−d u sτ0

(
x ′, yc(x ′, x ′′)

) · sτ0
(
yc(x

′, x ′′), x ′′
)
u2d−2 2d−1

τ

= eı u ψ1(x ′,x ′′)(2π)d sτ0
(
x ′, yc(x ′, x ′′)

) · sτ0
(
yc(x

′, x ′′), x ′′
)
ud−1 1

τ
(85)

where ψ1(x ′, x ′′) is the critical value of a holomorphic extension of ϒτ . More precisely, let
X̃ τ denote a complexification of the real-analytic manifold X τ . The real-analytic function
ϒτ (x ′, x ′′; ·, ·) : X τ × R → C, depending on the parameter (x ′, x ′′) ∈ X τ × X τ , extends
uniquely to a holomorphic function ϒ̃τ (x ′, x ′′; ·, ·) to an open neighbourhood of X τ ×R in
X̃ τ × C. We have seen that ϒτ (x, x; ·, ·) admits a unique and non-degenerate critical point
near (x, 1), namely (x, 1). By the theory in [24], ϒ̃τ (x ′, x ′′; ·, ·) has a unique critical point
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(
ycr (x ′, x ′′), σcr (x ′, x ′′)

) ∈ X̃ τ ×C for x ′, x ′′ ∼ x which tends to (x, 1) when x ′, x ′′ → x .
Then

ψ1(x
′, x ′′) := ϒτ

(
x ′, x ′′, ycr (x ′, x ′′), σcr (x ′, x ′′)

)
. (86)

Proposition 53 ψ1(x ′, x ′′) = ψ(x ′, x ′′) for all x ′, x ′′ ∼ x in X τ .

This is (a special case of) Proposition 4.8 of [5]. Nonetheless, we provide the proof below
for the reader’s convenience and because the argument appears somewhat more concrete in
the current real-analytic setting.

Let us premise a few remarks. Let us fix normal Heisenberg coordinates on M̃ adapted
to X τ at x , and with abuse of notation identify functions on M with their coordinate rep-
resentations. As above, let us identify M̃ (as a differentiable manifold) with the totally real

submanifold �M̃ := diag(M̃) ⊂ M̃ × M̃ . In local coordinates, we shall write Z for x + Z ,
where Z = (z0, z′). Thus Z is mapped to (Z , Z) ∈ �M̃ . In addition, φτ may be written

(locally near x) as a convergent power series φτ (Z , Z); its holomorphic extension to M̃× M̃
is then locally given by φ̃τ

(
Z ,W

)
. By (75),

ψ(x + Z , x +W ) = 1

ı
φ̃τ
(
Z ,W

)
. (87)

By the embedding X τ ↪→ M̃ ∼= �M̃ ⊂ M̃ × M̃ , we can locally realize the real-analytic

hypersurface X τ as the manifold of Cd × Cd

X τ ′ :=
{
(Z , Z) : φ̃τ (Z , Z) = 0

}
.

The complexification X̃ τ is then locally describable as the holomorphic hypersurface of
C
d × Cd

X̃ τ ′ :=
{
(Z ,W ) : φ̃τ (Z ,W ) = 0

}

(to be precise, here (Z ,W ) belongs to a neighbourhood of the diagonal).
If (Z ,W ) ∈ X̃ τ ′, the holomorphic tangent space to X̃ τ ′ is

T (1,0)
(Z ,W ) X̃

τ ′ =
{
(δZ , δW ) : 〈∂Z φ̃τ , δZ〉 + 〈∂W φ̃τ , δW 〉 = 0

}
,

with complex multiplication given by λ · (δZ , δW ) := (λ δ Z , λ δW ).
Let us consider the complex vector sub-bundles H ′, H ′′ ⊆ T (1,0) X̃ τ ′ given by

H ′
(Z ,W ) :=

{
(δZ , 0) :

〈
∂Z φ̃

τ
∣∣∣
(Z ,W )

, δZ

〉
= 0

}
,

H ′′
(Z ,W ) :=

{
(0, δW ) :

〈
∂W φ̃τ

∣∣∣
(Z ,W )

, δW

〉
= 0

}
; (88)

we have emphasized that ∂φ̃τ only involves Z -derivatives, while ∂φ̃τ only involves W -
derivatives, since φ̃τ is (J ,−J )-holomorphic.

Restricted to X τ , H ′ (respectively, H ′′) is the vector bundle of tangent vectors tangent to X τ

and of type (1, 0) (respectively, (0, 1)). Furthermore, if (Z , Z) ∈ X τ then H ′
(Z ,Z) = H ′′

(Z ,Z),
and H ′

(Z ,Z) and H ′′
(Z ,Z) are non-singularly paired under the Levi form along X τ . Sufficiently

close to X τ in X̃ τ , therefore, by continuity H ′
(Z ,W ) and H ′′

(Z ,W ) are still non-singularly paired

under the Levi form (locally represented by the matrix
[
∂2φ̃τ /∂Zi ∂W j

]
).
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Proof of Proposition 53 The real-analytic phaseϒτ (x ′, x ′′; ·, ·) : X τ ×R+ → C in (81) may
be locally expressed as follows. Let us write x ′ = x + Z ′, x ′′ = x + Z ′′, y = x +U ∈ X τ ,
corresponding to pairs (Z ′, Z ′), (Z ′′, Z ′′), (U ,U ) satisfying φ̃τ (Z ′, Z ′) = φ̃τ (Z ′′, Z ′′) =
φ̃τ (U ,U ) = 0. Then by (81) and (87) we have

ϒτ (x ′, x ′′; y, σ ) = 1

ı

[
φ̃τ (Z ′,U )+ σ φ̃τ (U , Z

′′
)
]
. (89)

Consider the holomorphic extension ϒ̃τ (x ′, x ′′; ·, ·) : X̃ τ × C → C. Let us write the
general point ỹ ∈ X̃ τ near x , by the previous identifications, as (x+U , x+W ), corresponding
to a pair (U ,W ) with φ̃τ

(
U ,W

) = 0. Then

ϒ̃τ (x ′, x ′′; ỹ, σ̃ ) = 1

ı

[
φ̃τ (Z ′,W )+ σ̃ φ̃τ (U , Z

′′
)
]
. (90)

We have seen that ϒτ (x, x; ·, ·) admits a unique (real) non-degenerate critical point near
(x, 1), namely (x, 1) itself. For all x ′, x ′′ ∼ x , therefore, ϒ̃τ (x ′, x ′′; ·, ·) admits a unique
critical point in the complex domain near (x, 1), which will be a real-analytic function of
(x ′, x ′′).

At such critical point, 0 = ∂σ̃ ϒ̃
τ (x ′, x ′′; ỹ, σ̃ ) = −ı φ̃τ (U , Z

′′
). Hence, (U , Z ′′) ∈ X̃ τ ′.

Let us consider the subspace H ′
(U ,W ) ⊂ T 1,0

(U ,W ) X̃
τ ′. By its definition in (88),

∂U φ̃τ
∣∣∣
(U ,W )

= 0 on H ′
(U ,W ). (91)

On the other hand, since (ỹ, σ̃ ) is a critical point of (90), and ỹ corresponds to (U ,W ) in
local coordinates, by (90) we also have

∂U φ̃τ
∣∣∣
(U ,Z ′′)

= 0 on H ′
(U ,W ). (92)

Since (U ,W ), (U , Z ′′) ∈ X̃ τ ′, to first order in Z ′′ −W , and with some abuse of notation,
we may regard (0, Z ′′ −W ) as an element of T 1,0

(U ,W ) X̃
τ ′. We have

∂U φ̃τ
∣∣∣
(U ,Z ′′)

= ∂U φ̃τ
∣∣∣
(U ,W )

+
[

∂2φ̃τ

∂Ui ∂W j

]

(Z
′′ −W )+ R2(Z

′′ −W ),

where R2 vanishes to second order at the origin. By (91) and (92), the tangent vector Z ′′ −W
is in the kernel of the Levi form at (U ,W ). Since the latter is non-degenerate, we conclude
that W = Z ′′.

Since φ̃τ (U ,W ) = 0 and φ̃τ (Z ′, Z ′′) = ı ψ(x ′, x ′′), in view of (86) the claim follows by
replacing W with Z ′′ in (90).

 !

Wecan nowconclude the proof of Theorem51.By (79), Proposition 53), and idempotency,
�τ is a Fourier integral operator with phase ψτ and a symbol of order d − 1 whose leading
order termmust coincide with the one in (73). Since yc(x, x) = x , equating the leading order
coefficients in (74) and (79), we obtain

sτ0 (x, x) = (2π)d sτ0
(
x, x
)2 1

τ
.

The claim follows.  !
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3.5 Symbols and Toeplitz operators

Suppose τ ∈ (0, ε) and W ∈ X(X τ ). Let us decompose W in terms of the direct sum (48):

W = W " − λRτ . (93)

Here W " is a smooth section of Hτ , and λ = −ατ (W ) ∈ C∞(X τ ).
Assume that LW (ατ ) = 0. Then the flow of W preserves volCXτ by (45); hence it also

preserves volRXτ by Corollary 19. Therefore the flow of W induces in a standard manner a
one-parameter group of unitary automorphisms of L2(X τ ). It follows that, as a differential
operator on X τ , W is skew-symmetric; thus the Toeplitz operator

W := ı �τ ◦W ◦�τ

is formally self-adjoint.
By [4], Toeplitz operators on X τ have well-defined principal symbols, which are smooth

functions on the closed symplectic cone

�τ := {(x, r ατx
) : x ∈ X τ , r > 0

} ⊆ T∨X τ\X0. (94)

Let us compute the principal symbolσ(W) ofW at
(
x, r ατx

)
.We consider a systemof normal

Heisenberg local coordinates on M̃ adapted to X τ at x (Definition 30), and the corresponding
Heisenberg local chart for X τ at x (Definition 38); we denote the latter by ϕτ = (θ, z′). By
Proposition 34, ατx = dxθ . On the other hand, by (60) and (93),

W (x) = W "(x)− λ(x)
∂

∂θ

∣∣∣∣
x
.

Thus,

σ(W)(x, r ατx ) = ı e−ı r θ W (x)
(
eı r θ

) = ı
(− λ(x) ı r

) = r λ(x). (95)

If λ > 0, therefore, W is a positive self-adjoint Toeplitz operator, so that its spectrum is
discrete, bounded from below and accumulates at+∞ (see [4]). This applies in particular if
W = υ√ρ by (42), with λ = √

ρ. ThenW = Dτ√
ρ
(see (12)).

3.6 Dynamical Toeplitz operators

As mentioned in the Introduction, the homogenous geodesic flow is generally not holo-
morphic for Jad . Equivalently, the (1, 0)-component of υ√ρ needn’t be holomorphic on

M̃\M . Therefore, when viewed a differential operator, υτ√
ρ
does generally not preserve the

Hardy space H(X τ ). A natural replacement is the self-adjoint, first order Toeplitz operator
Dτ√

ρ
:= �τ ◦ D√

ρ ◦�τ (Sect. 3.5). The latter generates the 1-parameter group of unitary
Toeplitz operators

U τ√
ρ(t) := e

ı t Dτ√
ρ : H(X τ )→ H(X τ ). (96)

In view of (11),

ı t Dτ√
ρ = ı t �τ ◦ D√

ρ ◦�τ = −t �τ ◦ υτ√ρ ◦�τ .

Hence, heuristicallyU τ√
ρ
(t) is a Toeplitz quantization of the geodesic flow at time−t . In the

notation of the Introduction, the distributional kernel U τ√
ρ
(t; ·, ·) ∈ D′(X τ × X τ ) of (96)
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admits the spectral description

U τ√
ρ(t; x, y) =

+∞∑

j=1
eı t λ j ·

� j∑

k=1
ρ j,k(x) · ρ j,k(y), (97)

where (ρ j,k)
� j
k=1 is an orthonormal basis of the � j -dimensional eigenspace of Dτ√

ρ

corresponding to the eigenvalue λ j .
Arguing, say, as in §12 of [15], and using (15) and (30), one obtains

�τ
χ,λ(x, y) =

+∞∑

j=1
χ̂ (λ− λ j )

� j∑

k=1
ρ j,k(x) · ρ j,k(y)

= 1√
2π

∫ +∞

−∞
e−ı λ t χ(t)U τ√

ρ(t; x, y) dt . (98)

It was shown by Zelditch that, up to smoothing Toeplitz operators,U τ√
ρ
(t) is a ‘dynamical

Toeplitz operator’ associated to the geodesic flow at time −t , composed with a suitable
pseudodifferential operator (see e.g. §5.3 of [48]). To express this precisely, recall that �τ

t :
X τ → X τ denotes the geodesic flow along X τ (Corollary 45); for t ∈ R let us set �τ

t :=
�τ
t
∗ ◦�τ . Thus�τ

t has Schwartz kernel

�τ
t (x, y) := �τ

(
�τ
t (x), y

) = (�τ
t × idXτ

)∗
(�τ )(x, y).

Remark 54 When defining the pull-back under a diffeomorphism, one ought to distinguish
whether �τ is referred to as a (generalized) function, density, or half-density. There is no
ambiguity in the present case, since these are being identified by means of volRXτ , which is
invariant under �τ

t .

Before stating the following result of Zelditch, we need a further piece of notation. For
any t ∈ R, let us set

�τ
(t) :=

(
�τ−t
)∗ ◦�τ ◦ (�τ

t

)∗ : L2(X τ )→ L2(X τ ),

where the brackets in the suffix (t) are intended to avoid confusion with the operator
�τ

t just defined. Just as �τ , �τ
(t) is an orthogonal projector onto its image H(X τ )t :=(

�τ−t
)∗
(H(X τ )). In particular, its Schwartz kernel is

�τ
(t)(x, y) = �τ

(
�τ−t (x), �τ−t (y)

) = (�τ−t × �τ−t
)∗
(�τ )(x, y).

Thus,�τ
(t) is the Szegö projector onto the Hardy space associated to the new CR structure

Jt := d�τ
t ◦ J ◦ d�τ−t : Hτ → Hτ ,

where Hτ is as in (48).
As discussed in, say, [41], given a finite dimensional symplectic vector space (E, σ ) and

two compactible (linear) complex structures J1, J2 ∈ J (E, σ ), there exists a well-defined
invariant 〈J1, J2〉, given by the overlap of two normalized Gaussians associated to J1 and J2;
in particular, 〈J1, J2〉 is non-vanishing, and equals 1 for J1 = J2.

Theorem 55 (Zelditch) There exist a zeroth order polyhomogeneous complete classical
symbol of the form

σ τ
t (x, r) ∼

+∞∑

j=0
σ τ
t, j (x) r

− j (x ∈ X τ , r > 0), (99)
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and a zeroth order pseudodifferential operatorPτ
t ∼ σ τ

t (x, D
τ√
ρ
) such that

U τ√
ρ(t) ' �τ ◦Pτ

t ◦�τ−t , (100)

where ' means ‘equal modulo smoothing Toeplitz operators’. Furthermore, up to a mul-
tiplicative factor of modulus 1, the principal symbol σ τ

t,0(x) is given by 〈Jx , Jt x 〉−1; in
particular, σ τ

0,0(x) = 1.

Up to smoothing terms, the Schwartz kernel of�τ−t has the form

�τ−t (x1, x2) ∼
∫ +∞

0
eı u ψ

τ (�τ−t (x1),x2) sτ
(
�τ−t (x1), x2, u

)
du, (101)

where ψτ and sτ are as in (73). Using classical results on the composition of pseudodiffer-
ential and Fourier integral operators [36, 40], we reach the following conclusion.

Lemma 56 Up to smoothing terms, the Schwartz kernel of the compositionRτ
t := Pτ

t ◦�τ−t
has the form

Rτ
t (x1, x2) ∼

∫ +∞

0
eı u ψ

τ (�τ−t (x1),x2) r τt (x1, x2, u) du, (102)

where

r τt (x1, x2, u) ∼
∑

j≥0
ud−1− j r τt j (x1, x2), r τt 0(x1, x2) = σ τ

t,0 (x1) · sτ0
(
�τ−t (x1), x2

)
.

By (100), we have

U τ√
ρ(t) ' �τ ◦Rτ

t . (103)

4 Near-diagonal asymptotics for 5�
�,�

Before delving into the proof of Theorem 4, let us premise some notation.
The choice of a normal Heisenberg local chart ϕτ for X τ at x determines an isomorphism

Tx X τ ∼= R × R
2d−2; a general υ ∈ Tx X τ will be written accordingly as a pair υ = (θ,u).

The subspaces R× {0} and {0} ×R
2d−2 correspond, respectively, to T τ (x) andHτ (x) (see

(48)). By (63), the isomorphism C
d−1 ∼= {0} × R

2d−2 → Hτ (x) is unitary, when Hτ (x) is
endowed with the Hermitian structure associated to ωx = 1

2 �x .
With the notation of Corollary 46, let (ax ,Ax ) ∈ R× R

2d−2 be defined by

τ f (0, ϑ,u) = 1

2 τ 2
ax ϑ + 〈Ax ,u〉 + Fτ

2 (ϑ,u), (104)

where Fτ
2 vanishes to second order at the origin. We may then reformulate the conclusion of

Corollary 45 writing

�τ
t (y) = x +

(
ϑ − τ t + t

(
1

2 τ 2
ax ϑ + 〈Ax ,u〉

)
+ R3(τ t, ϑ,u),

u+ R2(τ t, ϑ,u)
)
. (105)

We shall verify a posteriori that (ax ,Ax ) = (0, 0).
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Definition 57 With (ax ,Ax ) as in (104), let us set

ax (θ1, θ2) := θ1 − θ2

τ
Ax .

We further define

+2 : Tx X τ × Tx X
τ → C

by setting, given υ j = (θ j , v j ),

+2(υ1, υ2) := −ı ωx (v1, v2)− ı

2
ωx
(
Jx
(
ax (θ1, θ2)

)
, v1 + v2

)

−1

4
‖v1 − v2‖2 − 1

4

∥
∥v1 − v2 + Jx

(
ax (θ1, θ2)

)∥∥2 . (106)

Proof of Theorem 4 By (98) and (100), we can rewrite (15) in the following form:

�τ
χ,λ(x1, x2) ∼

1√
2π

∫

Xτ

∫ +ε

−ε
[
e−ı λ t χ(t)�τ (x1, y)

[
Pτ
t ◦�τ−t

]
(y, x2)

]

dt dVXτ (y), (107)

where ∼ stands for ‘has the same asymptotics for λ→+∞ as’.
Thewave front set of�τ is given by (72). Therefore, given that the geodesic flowpreserves

α (Lemma 12), the wave front of Pτ
t ◦�τ−t is

WF
(
Pτ
t ◦�τ−t

) = WF
(
�τ−t

) = (�τ−t × idXτ

)∗ (WF(�τ )
)

=
{(
�τ
t (x), rα

τ
�τ
t (x)

, x,−r ατx
)
: x ∈ X τ , r > 0

}
.

Hence the singular supports of�τ and Pτ
t ◦�τ−t are, respectively, the diagonal and the graph

of �τ−t in X τ × X τ .

Lemma 58 Let c > 0 be such that

distXτ

(
�τ−t (x), x

) ≤ c |t |, ∀ x ∈ X τ , t ∈ R. (108)

Then, provided ε > 0 is sufficiently small, if distXτ (x1, x2) ≥ 3 c ε we have

max
{
distXτ (x1, y) , distXτ

(
�τ−t (y), x2

)} ≥ c ε, ∀ y ∈ X τ , t ∈ supp(χ).

Proof For any y ∈ X τ and t ∈ (−ε, ε)
3 c δ ≤ distXτ (x1, x2)

≤ distXτ (x1, y)+ distXτ

(
y, �τ−t (y)

)+ distXτ

(
�τ−t (y), x2

)

≤ distXτ (x1, y)+ c ε + distXτ

(
�τ−t (y), x2

)
. (109)

Hence,

distXτ (x1, y)+ distXτ

(
�τ−t (y), x2

) ≥ 2 c ε ∀ t ∈ supp(χ).

 !
Lemma 59 For any ε ∼ 0+, if supp(χ) ⊂ [−ε, ε] and distXτ (x1, x2) ≥ 3 c ε, then
�τ

χ,λ(x1, x2) = O
(
λ−∞

)
.

123



Poisson and Szegö kernel scaling asymptotics…

Proof Let us define

U1 :=
{
y ∈ X τ : distXτ (x1, y) >

c ε

2

}
,

U2 :=
{
y ∈ X τ : distXτ

(
�τ−t (y), x2

)
>

c ε

2
, ∀ t ∈ supp(χ)

}
.

By Lemma 58, U := {U1, U2} is an open cover of X τ . Let γ1 + γ2 = 1 be a partition of
unity of X τ subordinate to U . Then

�τ
χ,λ(x1, x2) ∼ �τ

χ,λ(x1, x2)1 +�τ
χ,λ(x1, x2)2,

where

�τ
χ,λ(x1, x2) j

:= 1√
2π

∫ +∞

−∞
e−ı λ t χ(t)

[∫

Uj

γ j (y)�
τ (x1, y)

[
Pτ
t ◦�τ−t

]
(y, x2) dVXτ (y)

]

dt .

(110)

By definition of U1, the function y �→ γ1(y) · �τ (x1, y) is C∞ (and depends smoothly
on x1); therefore, for j = 1 the inner integral in (110) is the distributional kernel of the
composition of a smoothing kernel with Pτ

t , whence it is itself a smoothing kernel. In other
words, it a smooth function of (x1, x2, t), uniformly so under the assumption. Therefore, that
�τ

χ,λ(x1, x2)1 is O
(
λ−∞

)
then follows by integration by parts.

Similarly, by definition of U2, the function y �→ γ2(y) ·
[
Pτ
t ◦�τ−t

]
(y, x2) is C∞ (and

depends smoothly on x2), whence �τ
χ,λ(x1, x2)2 = O

(
λ−∞

)
by a similar argument.  !

Assume from now on distXτ (x1, x2) < 3 c ε, with c as in (108). Let us define

U ′
1 :=

{
y ∈ X τ : distX (x1, y) < 2 ε

}
,

U ′
2 :=

{
y ∈ X τ : distX (x1, y) > ε

}
. (111)

ThenU ′ := {U ′
1,U

′
2} is an open cover of X τ ; let γ ′1+γ ′2 = 1 be a partition of unity subordinate

to U ′. Thus

�τ
χ,λ(x1, x2) ∼ �τ

χ,λ(x1, x2)
′
1 +�τ

χ,λ(x1, x2)
′
2,

where �τ
χ,λ(x1, x2)

′
j is defined as in (110), with γ ′j in place of γ j . For y ∈ U ′

2, the
function y �→ �τ (x1, y) is C∞, and an adaptation of the previous argument implies that
�τ

χ,λ(x1, x2)
′
2 = O

(
λ−∞

)
. Thus

�τ
χ,λ(x1, x2) ∼ �τ

χ,λ(x1, x2)
′
1, (112)

where integration in y is now over a small neighborhood of x1.
We may assume that x1, x2 and every y in the support of the integrand in �τ

χ,λ(x1, x2)
′
1

belong to a Heisenberg coordinate neighborhood centered at some x ∈ X τ . Without altering
the asymptotics,�τ may be represented as a Fourier integral operator (73), and apply Lemma
56 and (103). Then (107) may be rewritten

�τ
χ,λ(x1, x2)

∼ 1√
2π

∫ +∞

0
du
∫ +∞

0
dv
∫

Xτ

dVXτ (y)
∫ +ε

−ε
dt

[
eı [u ψτ (x1,y)+v ψτ (�τ−t (y),x2)−λ t] γ ′1(y) χ(t) sτ (x1, y, u) r τt (y, x2, v)

]
. (113)
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With the rescaling u � λ u and v � λ v, (113) becomes

�τ
χ,λ(x1, x2)

∼ λ2√
2π

∫ +∞

0
du
∫ +∞

0
dv
∫

Xτ

dVXτ (y)
∫ +ε

−ε
dt

[
eı λ+

τ (x1,x2;u,v,t,y) Aτλ(x1, x2; u, v, t, y)
]
, (114)

where

+τ (x1, x2; u, v, t, y) := u ψτ (x1, y)+ v ψτ (�τ−t (y), x2)− t, (115)

Aτλ(x1, x2; u, v, t, y) := χ(t) γ ′1(y) sτ (x1, y, λ u) r τt
(
�τ−t (y), x2, λ v

)
. (116)

We shall let y = x + (θ,u) in normal Heisenberg local coordinates on X τ at x ; then
dVXτ (y) by V(θ,u) dθ du, and by (67)

V(0, 0) = 2d−1

τ
. (117)

Integration in (θ,u, t) is compactly supported near the origin. By (115), Proposition 34,
Corollaries 45 and 49

∂θ+
τ = v − u + O(ε), ∂t+

τ = τ v − 1+ O(ε). (118)

It follows by a standard ‘partial integration’ argument in the compactly supported variables
(θ, t) that the contribution of the locus where ‖(u, v)‖ ( 0 contributes negligibly to the
asymtptotics. Similarly, if ε ) 1, integration by parts in t shows that the contribution of the
locus where v ) 1/τ is also negligible. Finally, integration by parts in θ yields a similar
conclusion for u. We thus obtain the following reduction.

Lemma 60 There exists D ( 0 such that the following holds. Let h ∈ C∞0
(
(1/(2D), 2 D)

)

be such that h ≡ 1 on (1/D, D). Then only a negligible contribution to the asymptotics of
(114) is lost, if the integrand is multiplied by h(u) · h(v). Hence, integration in (u, v) may be
assumed to be compactly supported in (1/(2D), 2 D)2.

Proof of Statement 1) of Theorem 4 There exist constants 0 < a ≤ A such that

a distXτ

(
�τ−t (y), x

) ≤ distXτ

(
y, �τ

t (x)
) ≤ A distXτ

(
�τ−t (y), x

)

for every t ∈ (−ε, ε) and y, x ∈ X τ .
Assume distXτ

(
x1, x

χ
2

) ≥ C λδ−1/2, and define

Uλ
1 := {y ∈ X τ : distXτ (y, x1) < (C/2) λδ−1/2

}
,

Uλ
2 := {y ∈ X τ : distXτ (y, x1) > (C/3) λδ−1/2

}
.

Then Uλ := {Uλ
1 , U

λ
2 } is an open cover of X τ .

If y ∈ Uλ
1 , for any t ∈ (−ε, ε) we have

C λδ−1/2 ≤ distXτ

(
x1, , �

τ
t (x2)

) ≤ distXτ (x1, y)+ distXτ

(
y, �τ

t (x2)
)

< (C/2) λδ−1/2 + distXτ

(
y, �τ

t (x2)
)

⇒ distXτ

(
�τ−t (y), x2

) ≥ 1

A
distXτ

(
y, �τ

t (x2)
) ≥ C

2 A
λδ−1/2.
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By Corollary 50, in the same range
∣∣
∣
∣
∂+τ

∂v

∣∣
∣
∣ =

∣
∣ψτ

(
�τ−t (y), x2

)∣∣ ≥ Dτ

(
C

2 A

)2

λ2 δ−1.

Integrating by parts in v, we obtain that the contribution ofUλ
1 to the asymptotics of (114) is

O
(
λ−∞

)
.

On the other hand, if y ∈ Uλ
2 then

∣
∣
∣
∣
∂+τ

∂u

∣
∣
∣
∣ =

∣
∣ψτ (y, x1)

∣
∣ ≥ Dτ distXτ (y, x1)

2 >
Dτ C2

9
λ2 δ−1.

Integrating by parts in u, we obtain that the contribution of Uλ
2 is also O

(
λ−∞

)
.  !

We focus on statement 2. Let us set

x jλ := x +
(
θ j√
λ
,
v j√
λ

)
. (119)

Under the assumptions,

distXτ (x, x jλ) ≤ 2C λδ−
1
2 . (120)

Let hτ be a Riemannian metric on X τ that in a sufficiently small neighborhood of x is
given in Heisenberg local coordinates by

hτ = 1

τ 2
(dθ)2 + dz′ ⊗ dz′ + dz′ ⊗ dz′.

Thus hτx = κ̂τx by Corollary 35. Let d̃istXτ : X τ × X τ → R be the Riemannian distance of
hτ . By the latter remark,

d̃istXτ (x, y)/distXτ (x, y)→ 1 for y → x .

For r > 0, let Bx (r) ⊆ X τ be the open ball centered at x for hτ . Let r be small enough
that Bx (r) ⊂ U τ , and consider the open cover of X τ

B :=
{
Bx (r), Bx (r/2)

c
}
.

Let (b1, b2) be a partition of unity subordinate to B. For some fixed R > 0 and any λ ( 1,
let bλj ∈ C∞(X τ ) be defined in Heisenberg local coordinates by

bλj
(
(θ0, z

′)
) := b j

( r

12C
λ1/2−δ (θ0, z′)

)
.

Thus
{
bλ1 , b

λ
2

}
is a partition of unity subordinate to the rescaled open cover Bλ :={

Bx
(
12C λδ−1/2

)
, Bx

(
6C λδ−1/2

)c}
. For y ∈ supp

(
bλ2
)
and λ( 0,

distXτ (x, y) ≥ 1

2
d̃istXτ (x, y) ≥ 3C λδ−1/2. (121)

The asymptotics of�τ
χ,λ(x1λ, x2λ) are given by (114) with (x1, x2) replaced by (x1λ, x2λ).

Lemma 61 Only a negligible contribution to the asymptotics of�τ
χ,λ(x1λ, x2λ) is lost, if the

integrand in (114) is multiplied by bλ1(y).
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Proof For y ∈ supp
(
bλ2
)
and λ( 0,

distXτ (x, y) ≥ 1

2
d̃istXτ (x, y) ≥ 3C λδ−1/2. (122)

Hence where bλ1(y) = 0 in view of (120)

distXτ (x1λ, y) ≥ distXτ (x, y)− distXτ (x, x1λ)

≥ 3C λδ−1/2 − 2C λδ−1/2 = C λδ−1/2.

Recalling (115),with x j replaced by x jλ, the claim follows arguing as in the proof of statement
1. (integrate by parts in u).  !

We conclude from (114) and Lemma 61 that

�τ
χ,λ(x1λ, x2λ)

∼ λ2√
2π

∫ 2 D

1/(2 D)
du
∫ 2 D

1/(2 D)
dv
∫ +∞

−∞
dθ
∫

R2 d
du
∫ +ε

−ε
dt

[
eı λ+

τ
(
x1λ,x2λ;u,v,t,y(θ,u)

)
bλ1
(
y(θ,u)

)
Aτλ
(
x1λ, x2λ; u, v, t, y(θ,u)

)
V(θ,u)

]
.

(123)

On the domain of integration, (θ/τ,u) ranges in a shrinking ball of radiusO
(
λδ−1/2

)
centered

at the origin in R2d+1.
Next we show that integration in dt may be localized to a shrinking neighbourhood of the

origin.
Let us fix a constant C1 > 0 such that for all λ ( 0 and y = y(θ,u) on the support of

bλ1
(
y(θ,u)

)

distXτ (x2λ, y) ≤ distXτ (x2λ, x)+ distXτ (x, y) ≤ C1 λ
δ− 1

2 . (124)

Let β ∈ C∞0 (R) be such that β(t) ≡ 1 on [−1, 1], and define βλ(t) := β
(

1
3C1

λ
1
2−δ t

)
.

Then 1− βλ(t) = 0 if |t | ≤ 3C1 λ
δ− 1

2 .
We have

�τ
χ,λ(x1λ, x2λ) ∼ �τ

χ,λ(x1λ, x2λ)
′ +�τ

χ,λ(x1λ, x2λ)
′′,

where�τ
χ,λ(x1λ, x2λ)

′ and�τ
χ,λ(x1λ, x2λ)

′′ are as in (123), but with the integrandmultiplied,

respectively, by βλ(t) and 1− βλ(t).

Lemma 62 �τ
χ,λ(x1λ, x2λ)

′′ = O
(
λ−∞

)
.

Proof Where 1− βλ(t) �= 0, we have |t | > 3C1 λ
δ− 1

2 . In view of (43), if ε is small enough

and and |ε| > |t | > 3C1 λ
δ− 1

2 then

distXτ

(
�τ−t (y), y

) ≥ t

2
≥ 3

2
C1 λ

δ− 1
2 .

Therefore, by (124) on the support of the integrand of�τ
χ,λ(x1λ, x2λ)

′′ we have

distXτ

(
�τ−t (y), x2λ

) ≥ distXτ

(
�τ−t (y), y

)− distXτ (x2λ, y) ≥ C1

2
λδ−

1
2 .

The claim follows again by the argument in the proof of statement 1, by iterated integration
by parts in v.  !
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With the rescalings θ � θ/
√
λ, u � u/

√
λ, t � t/

√
λ, (123) becomes

�τ
χ,λ(x1λ, x2λ)

∼ λ2−d√
2π

∫ 2 D

1/(2 D)
du
∫ 2 D

1/(2 D)
dv
∫ +∞

−∞
dθ
∫

R2 d
du
∫ +∞

−∞
dt

[
eı λ+

τ
λ

(
x1λ,x2λ;u,v,t,θ,u

)
Bτ
λ

(
x1λ, x2λ; u, v, t, θ,u

)
]
, (125)

where, in view of (115),

+τ
λ

(
x1λ, x2λ; u, v, t, θ,u

)

:= +τ

(
x1λ, x2λ; u, v, t√

λ
, y

(
1√
λ
(θ,u)

))
,

= u ψτ

(
x1λ, y

(
1√
λ
(θ,u)

))
+ v ψτ

(
�τ

−t/√λ

(
y

(
1√
λ
(θ,u)

))
, x2λ

)
− t√

λ
,

Bτ
λ

(
x1λ, x2λ; u, v, t, θ,u)

)
(126)

:= bλ1

(
y

(
1√
λ
(θ,u

))
Aτλ

(
x1λ, x2λ; u, v, t√

λ
, y

(
1√
λ
(θ,u)

))
· V
(

1√
λ
(θ,u)

)
.

(127)

Integration in (t, θ, v) in (125) is over an expanding ball centered at the origin and radius
O
(
λδ
)
.

We now make explicit the dependence of +τ
λ in (126) on the rescaled variables. By

Proposition 48,

ı ψτ

(
x1λ, y

(
1√
λ
(θ,u)

))

= ı
θ1 − θ√

λ
− 1

4 τ 2 λ
(θ1 − θ)2 + ψ

ωx
2 (v1,u)

λ
+ R3

(
θ1√
λ
,
v1√
λ
,
θ√
λ
,

u√
λ

)
.

(128)

Furthermore, by Corollary 45 and (105),

�τ

−t/√λ

(
y

(
1√
λ
(θ,u)

))

= x +
(

1√
λ
(θ + τ t)− t

λ

(
1

2 τ 2
ax θ + 〈Ax ,u〉

)
+ R3

(
τ t√
λ
,
θ√
λ
,

v√
λ

)
,

u√
λ
+ R2

(
τ t√
λ
,
θ√
λ
,

u√
λ

))
. (129)

Therefore, again by Proposition 48,

ı ψτ

(
�τ

−t/√λ

(
y

(
1√
λ
(θ,u)

))
, x2λ

)

= ı√
λ
(θ + τ t − θ2)− ı

λ
t

(
1

2 τ 2
ax θ + 〈Ax ,u〉

)

− 1

4 τ 2 λ
(θ + τ t − θ2)

2 + ψ
ωx
2 (u, v2)

λ
+ R3

(
τ t√
λ
,
θ2√
λ
,
v2√
λ
,
θ√
λ
,

u√
λ

)
. (130)
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We finally obtain

ı λ+τ
λ

(
x1λ, x2λ; u, v, t, θ,u

)

= ı
√
λϒτ (t, v, θ, u)+ S(u, t, v, θ, u)+ λ R3

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
,
θ√
λ
,

u√
λ

)
, (131)

where

ϒτ (t, v, θ, u) = ϒτ (θ j , v j ; t, v, θ, u)
:= u (θ1 − θ)+ v (θ + τ t − θ2)− t, (132)

S(u, t, v, θ, u) = Sθ j ,v j (u, t, v, θ, u)

:= −ı v t
(

1

2 τ 2
ax θ + 〈Ax ,u〉

)

− 1

4 τ 2
u (θ1 − θ)2 − 1

4 τ 2
v (θ + τ t − θ2)

2

+u ψωx
2 (v1,u)+ v ψ

ωx
2 (u, v2) , (133)

and R3 vanishes to third order at the origin. Notice that S(u, t, v, θ, u) is homogenous of
degree 2 in the rescaled variables.

If we set θ ′ := θ − θ1, t ′ := θ + τ t − θ2, and u′ := u− v1, then

�(S(u, t, v, θ, u)) ≤ −b0 ‖(t ′, θ ′,u′)‖2 (134)

for some b0 > 0.
In light of (131), we can rewrite (125) as follows:

�τ
χ,λ(x1λ, x2λ) ∼

λ2−d√
2π

∫

R2 d−2
Iλ(u) du (135)

where

Iλ(u) :=
∫ +∞

−∞
dt
∫ 2 D

1/(2 D)
dv
∫ +∞

−∞
dθ
∫ 2 D

1/(2 D)
du

[
eı
√
λϒτ (t,v,θ,u) B̃τ

λ

(
x1λ, x2λ;u, t, v, θ, u

)]
(136)

and, using (74), (116), (117), and (131)

B̃τ
λ

(
x1λ, x2λ;u, t, v, θ, u

)

:= e
S(u,t,v,θ,u)+λ R3

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
, θ√

λ
, u√

λ

)

Bτ
λ

(
x1λ, x2λ;u, t, v, θ, u

)
. (137)

For every N = 1, 2, . . ., Taylor expansion in the rescaled variables yields for the third
order remainder R3 in the exponent in (137)

λ R3

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
,
θ√
λ
,

u√
λ

)

=
N∑

s=0
λ1−

3+s
2 P3+s(θ j , v j , θ,u)+ λ R4+N

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
,
θ√
λ
,

u√
λ

)
, (138)

where Pl denotes a homogeneous polynomial of degree l in the argument. On the domain of

integration, the latter summand is bounded in absolute value byCN λ
1−
(
1
2−δ

)
(4+N )

for some
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constant CN > 0. Passing to the exponential, we therefore obtain an asymptotic expansion

e
λ R3

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
, θ√

λ
, u√

λ

)

=
+∞∑

k=0

λk

k! R3

(
τ t√
λ
,
θ j√
λ
,
v j√
λ
,
θ√
λ
,

u√
λ

)k

∼
+∞∑

k=0

1

k!

[
N∑

s=0
λ1−

3+s
2 P3+s(θ j , v j , θ,u)

]k

=
+∞∑

k=0
λ−

k
2 Qk(θ j , v j , θ,u), (139)

where Qk is a polynomial of degree ≤ 3 k.
On the other hand, the asymptotic expansion (74) yields

sτ (x1λ, y, λ u) ∼
∑

k≥0
(λ u)d−1−k sτj (x1λ, y)

= (λ u)d−1 sτ0 (x, x)+
∑

k+l≥1
λd−1−k−

l
2 ud−1−k Sτk,l(θ1, v1, θ,u), (140)

where Sτk,l is homogenous of degree l. Similarly, the asymptotic expansion in Lemma 56
yields

r τt (y, x2 λ, λ v) ∼
∑

k≥0
(λ u)d−1−k r τt j (y, x2 λ)

= (λ u)d−1 sτ0 (x, x)+
∑

k+l≥1
λd−1−k−

l
2 ud−1−k Rτ

k,l(θ1, v1, θ,u), (141)

where again Rτ
k,l is homogeneous of degree l, and we have used that r τ0, 0(x, x) = sτ0 (x, x).

Multiplying (139), (140), (141), and the Taylor expansion of χ and V at the origin, we
obtain an asymptotic expansion

B̃τ
λ

(
x1λ, x2λ;u, t, v, θ, u

)

∼ λ2d−2 2d−1

τ
χ(0) eS(u,t,v,θ,u) ud−1 vd−1 sτ0 (x, x)2 · β

(
λ−δ (u, t, θ)

)

·
⎡

⎣1+
∑

k≥1
λ−k/2 Bk(x;u, θ j , v j , t, v, θ, u)

⎤

⎦ , (142)

where Bk(x; ·) is a polynomial of degree ≤ 3 k in (θ j , v j ,u, t, θ), while β is compactly
supported and identically equal to 1 in a suitable neighborhood of the origin. The latter is
indeed an asymptotic expansion for δ ∈ (0, 1/6). Furthermore, fractional powers of λ arise
from Taylor expansion in (θ j , v j ,u), while the asymptotic expansion for the amplitude in
the Szegö kernel parametrix is by descending integer powers. Hence Pj will be even for j
even (corresponding to integer powers of λ), and odd for j odd (corresponding to fractional
powers).

Inserting (142) in (136), we obtain an asymptotic expansion for the integrand which, in
view of (134) or the previous remark on the domain of integration, can be integrated term by
term. Each term is an oscillatory integral with phase (132) in the parameters (t, v, θ, u), and
depending parametrically on the other parameters.

Now we remark that the asymptotics of (135) are unaltered, if integration in (t, θ) is
restricted to a suitable compact set. In fact, since ∂uϒτ = θ1 − θ , ∂vϒτ = θ + τ t − θ2,
integration by parts in (u, v) implies the following.
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Lemma 63 Only a negligible contribution to the asymptotics of (125) is lost, if the amplitude
(137) is multiplied by a compactly supported cut-off function in (θ, t), identically equal to 1
near

(
θ1, (θ2 − θ1)/τ

)
.

We shall leave the latter cut-off implicit in the following, and simply assume henceforth
that integration in (θ, t) is over a compact neighborhood of

(
θ1, (θ2 − θ1)/τ

)
.

The proof of the following is omitted.

Lemma 64 ϒτ in (132) has a unique stationary point Ps = (ts, vs, θs, us), given by

Pτ
s =

(
θ2 − θ1

τ
,
1

τ
, θ1,

1

τ

)
.

The critical point is non-degenerate. The Hessian matrix and its inverse at the critical point
are

H(ϒτ )Pτ
s
=

⎛

⎜
⎜
⎝

0 τ 0 0
τ 0 1 0
0 1 0 −1
0 0 −1 0

⎞

⎟
⎟
⎠ , H(ϒτ )−1Pτ

s
=

⎛

⎜
⎜
⎝

0 1/τ 0 1/τ
1/τ 0 0 0
0 0 0 −1

1/τ 0 −1 0

⎞

⎟
⎟
⎠ .

The Hessian determinant, the Hessian signature, and the critical value are

det H(ϒτ )Pτ
s
= τ 2, sgnH(ϒτ )Pτ

s
= 0, ϒτ (Pτ

s ) =
θ1 − θ2

τ
.

The third order remainder at Ps is zero.

Let us set

L := 1

τ

(
∂2

∂t∂u
+ ∂2

∂t∂v

)
− ∂2

∂θ ∂u
, (143)

and apply the Lemma of Stationary Phase to (136) in correspondence to the k-th summand
in (142); we obtain an asymptotic expansion whose r -th summand (for r = 0, 1, 2, . . .) is a
multiple of

(4π2/τ) · eı
√
λ

θ1−θ2
τ · λ2d−3−(r+k)/2

· Lr
(
eS(u,t,v,θ,u) ud−1 vd−1 Pk(x; θ j , v j ,u, t, v, θ, u)

)∣∣∣
Ps
, (144)

where the dependence on (θ j , v j ) of the exponent is left implicit for brevity. In view of (133),
with the notation of Definition 57 the value of S(u, t, v, θ, u) at the critical point is

Sc(θ j , v j ,u) := Sθ j ,v j (u, ts, vs, θs, us)

= ı ·
[
(θ1 − θ2) θ1

2 τ 4
ax + θ1 − θ2

τ 2
· 〈Ax ,u〉

]

+ 1

τ
ψ
ωx
2 (v1,u)+ 1

τ
ψ
ωx
2 (u, v2)

= ı
(θ1 − θ2) θ1

2 τ 4
ax − ı

τ
· ωx

(
Jx
(
ax (θ1, θ2)

)
,u
)

+ 1

τ
ψ
ωx
2 (v1,u)+ 1

τ
ψ
ωx
2 (u, v2) . (145)
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Thus

Sc(θ j , v j ,u) = ı
(θ1 − θ2) θ1

2 τ 4
ax

+ 1

τ

[
−ı ωx

(
v1 − v2 + Jx

(
ax (θ1, θ2)

)
,u
)− 1

2

(‖v1‖2 + ‖v2‖2
)

−‖u‖2 + 〈u, v1 + v2〉
]

= ı
(θ1 − θ2) θ1

2 τ 4
ax

+ 1

τ

[
− 1

2

(‖v1‖2 + ‖v2‖2
)+ 1

4
‖v1 + v2‖2

−ı ωx
(
v1 − v2 + Jx

(
ax (θ1, θ2)

)
,u
)−

∥
∥
∥
∥u−

1

2
(v1 + v2)

∥
∥
∥
∥

2
]

. (146)

In particular, Sc(θ j , v j ,u) is homogenous of degree 2.
It follows from (133) and (143) that (144) is a linear combination of terms of the form

λ2d−3−k/2 Pk(x; θ j , v j ,u) eSc(θ j ,v j ,u), where Pk(x; ·) is a polynomial of degree ≤ 3 k. Fur-
thermore, using that S(u, t, v, θ, u) is homogenous of degree 2 in the rescaled variables, the
explicit expression (143) of L , and the linear dependence of θs and ts on (θ1, θ2), one verifies
that Pk(x; ·) has parity k.

Putting all these asymptotic expansions together, we obtain an asymptotic expansion for
Iλ(u) of the form

Iλ(u) ∼ eı
√
λ

θ1−θ2
τ · λ2d−3

(2π2 τ 2)d−1
· χ(0) eSc(θ j ,v j ,u)

·β1
(
λ−δ u,

)
⎡

⎣1+
∑

k≥1
λ−k/2 Fk(x; θ j , v j ,u)

⎤

⎦ (147)

where Fk(x; ·) is a polynomial of degree ≤ 3 k and parity k, and β1 is an appropriate cut-off
function identically equal to one near the origin.

The asymptotic expansion (147) may be integrated term by term. In view of the rapidly
decreasing exponential eSc(θ j ,v j ,u), we obtain

�τ
χ,λ(x1λ, x2λ) =

λ2−d√
2π

∫

R2 d−2
Iλ(u) du

∼ eı
√
λ

θ1−θ2
τ · λ

d−1
√
2π

· 1

(
√
2π τ)2 (d−1)

· χ(0)
∫

R2 d−2
eSc(θ j ,v j ,u)du

·
⎡

⎣1+
∑

k≥1
λ−k/2

∫

R2 d−2
eSc(θ j ,v j ,u)Fk(x; θ j , v j ,u) du

⎤

⎦ . (148)

We compute the leading order term using (146). With the change of variable

w := u− 1

2
(v1 + v2),

we have

Sc(θ j , v j ,u)
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= ı
(θ1 − θ2) θ1

2 τ 4
ax

+ 1

τ

[
−ı ωx

(
v1 − v2 + Jx (a),

1

2
(v1 + v2)

)
− 1

2

(‖v1‖2 + ‖v2‖2
)+ 1

4
‖v1 + v2‖2

−ı ωx
(
v1 − v2 + Jx

(
ax (θ1, θ2)

)
,w
)− ‖w‖2

]

= ı
(θ1 − θ2) θ1

2 τ 4
ax

+ 1

τ

[
−ı ωx (v1, v2)− ı ωx

(
Jx
(
ax (θ1, θ2)

)
,
1

2
(v1 + v2)

)
− 1

2

(‖v1‖2 + ‖v2‖2
)

+1

4
‖v1 + v2‖2 − ı ωx

(
v1 − v2 + Jx

(
ax (θ1, θ2)

)
,w
)− ‖w‖2

]
. (149)

Let us setv′j := 1√
τ
v j , a′ := 1√

τ
ax (θ1, θ2).With the further change of variablew = 1√

2
r,

we obtain
∫

R2 d−2
e

1
τ

[
−ı ωx

(
v1−v2+Jx

(
ax (θ1,θ2)

)
,w
)
−‖w‖2

]
dw

= 1

2d−1

∫

R2 d−2
e

1
τ

[
−ı ωx

(
1√
2

(
v1−v2+Jx

(
ax (θ1,θ2)

))
,r
)
− 1

2 ‖r‖2
]

dr

= 1

2d−1

∫

R2 d−2
e
−ı ωx

(
1√
2 τ

(
v′1−v′2+Jx (a′)

)
, r√

τ

)
− 1

2

∥∥
∥ r√

τ

∥∥
∥
2

dr

=
(τ
2

)d−1 ∫

R2 d−2
e
−ı ωx

(
1√
2 τ

(
v′1−v′2+Jx (a′)

)
,s
)
− 1

2 ‖s‖2ds

=
(τ
2

)d−1
(2π)d−1e−

1
4 τ

∥
∥
∥v1−v2+Jx

(
ax (θ1,θ2)

)∥∥
∥
2

= (τ π)d−1 · e− 1
4 τ ‖v1−v2‖2− 1

4 τ

∥∥
∥Jx
(
ax (θ1,θ2)

)∥∥
∥
2− 1

2 τ

〈
v1−v2,Jx

(
ax (θ1,θ2)

)〉
. (150)

We have

− 1

2 τ

(‖v1‖2 + ‖v2‖2
)+ 1

4 τ
‖v1 + v2‖2 − 1

4 τ
‖v1 − v2‖2

= − 1

2 τ

(‖v1‖2 + ‖v2‖2
)+ 1

τ
〈v1, v2〉 = − 1

2 τ
‖v1 − v2‖2. (151)

Hence
∫

R2 d−2
eSc(θ j ,v j ,u) du

= e
ı
(θ1−θ2) θ1

2 τ4
ax · (τ π)d−1 e

1
τ

[
−ı ωx (v1,v2)− 1

2 ‖v1−v2‖2− ı
2 ωx (Jx (a),v1+v2)

]

·e− 1
4 ‖Jx (a)‖2− 1

2 〈v1−v2,Jx (a)〉

= e
ı
(θ1−θ2) θ1

2 τ4
ax · (τ π)d−1

·e 1
τ

[
−ı ωx (v1,v2)− 1

4 ‖v1−v2‖2− 1
4 ‖v1−v2+Jx (a)‖2− ı

2 ωx (Jx (a),v1+v2)
]

. (152)

Recalling Definition 57, we conclude
∫

R2 d−2
eSc(θ j ,v j ,u) du = e

ı
(θ1−θ2) θ1

2 τ4
ax · (τ π)d−1 e

1
τ
+2

(
(θ1,v1),(θ2,v2)

)
. (153)
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Hence the leading order term in the asymptotic expansion (148) is

1√
2π

·
(

λ

2πτ

)d−1
eı
√
λ

θ1−θ2
τ e

ı
(θ1−θ2) θ1

2 τ4
ax χ(0) e

1
τ
+2

(
(θ1,v1),(θ2,v2)

)
. (154)

Lemma 65 ax = 0.

Proof Let us consider the special case where v1 = v2 = 0 and θ2 = 0, and set xλ :=
x+ (θ/

√
λ, 0). By (154), the leading order term for the asymptotic expansion of�χ,λ(xλ, x)

is

1√
2π

·
(

λ

2πτ

)d−1
eı
√
λ θ

τ e
ı θ2

τ4
ax χ(0) e−

1
4 τ ‖Jx (a)‖2 ,

while the one for�χ,λ(x, xλ) is

1√
2π

·
(

λ

2πτ

)d−1
e−ı

√
λ θ

τ χ(0) e−
1
4 τ ‖Jx (a)‖2 .

Since �τ
χ,λ(x, xλ) = �τ

χ,λ(xλ, x) for any θ , ax = 0.  !
Lemma 66 Ax = 0.

Proof Given Lemma 43 and Corollary 45,

�τ

θ/
√
λ
(x) = x +

(
− τ θ√

λ
+ R3

(
τ θ√
λ

)
,R2

(
τ θ√
λ

))
.

Hence, in view of Lemma 65, (148), and (154)

�τ
χ,λ

(
�τ

θ/
√
λ
(x), x

)
* 1√

2π
·
(

λ

2πτ

)d−1
e−ı

√
λ θ χ(0) e

1
τ
+2

(
(−τ θ,0),(0,0)

)

= 1√
2π

·
(

λ

2πτ

)d−1
e−ı

√
λ θ χ(0) e−

θ2
4 τ ‖Ax‖2 ,

where * means ‘asymptotic to leading order’. The estimate holds uniformly for |θ | ≤ C λδ .
On the other hand, by Theorem 1.1 of [11] in the same range we also have

∣∣∣�τ
χ,λ

(
�τ

θ/
√
λ
(x), x

)∣∣∣ * C ′
d,τ λ

d−1 χ(0),

for some constant C ′
d,τ , and the claim follows.  !

Let us consider the lower order terms. The coefficient of λd−1− k
2 in the expansion (148)

is a linear combination of Gaussian integrals of the form

θ lj · vLj
∫

R2 d−2
eSc(θ j ,v j ,u)uL ′ du, (155)

where L and L ′ are multi-indexes, l + |L| + |L ′| ≤ 3 j , and l + |L| + |L ′| has the same
parity as j . In turn, in view of (149), the Gaussian integral in (155) may be written as a linear
combination of summands of the form

θaj · vBj D(1)
θ j ,v j

◦ · · · ◦ D(|C |)
θ j ,v j

[∫

R2 d−2
eSc(θ j ,v j ,u) du

]
, (156)
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where each D(a)
θ j ,v j

a first order differential operator with constant coefficients and no zeroth

order term in (θ j , v j ), with a + |B| + |C | = l + |L| + |L ′|. It then follows from (106) and

(153) that the coefficient of λd−1− k
2 has the form

Pk(x; v j , θ j ) e
1
τ
+2

(
(θ1,v1),(θ2,v2)

)
,

where again Pk is a polynomial of degree ≤ 3 k and parity k.  !

5 Proof of Theorem 7

5.1 Preliminaries for Theorem 7

In addition to the general setting of Theorem 4, we need the description, also due to Zelditch,
of the wave group in the complex domain as a dynamical Toeplitz operator ([48, Proposition
7.1], [44, especially §8–9], [46, §4], see also the discussions in [10] and [11]). This is the
analogue of the description ofU τ√

ρ
(t) as a dynamical Toeplitz operator recalled in Sect. 3.6.

For t ∈ R and τ > 0 sufficiently small, Zelditch considers the complexified Poisson wave
kernel

UC(t + 2 ı τ) = Pτ ◦U (t) ◦ Pτ ∗, (157)

where Pτ is as in (19). The distributional kernel of (157) admits the expansion

UC(t + 2 ı τ, x, y) =
∑

j

e(−2 τ+ı t) μ j ϕ̃ j (x) ϕ̃ j (y). (158)

Arguing as for (98), one may then rewrite (22) as

Pτ
χ,λ(x, y) =

1√
2π

∫ +∞

−∞
χ(t) e−ı λ t UC(t + 2 ı τ, x, y) dt . (159)

Alternatively, UC(t + 2 ı τ) is a Fourier integral operator with complex phase of positive
type on X τ , of degree −(d − 1)/2; in the terminology of [4], it is in fact a Fourier–Hermite
operator adapted to the symplectomorphism �τ → �τ induced by the homogeneous
geodesic flow at time t . More precisely, for every t ∈ R the real locus of the (complex)
canonical relation of UC(t + 2 ı τ) is as follows.

Let γt : T∨M\M0 → T∨M\M0 denote the (genuine) homogeneous geodesic flow; thus
γt gets intertwined by Eτ with Hamiltonian flow of

√
ρ on M̃\M . Furthermore, recall that

�τ
t : X τ → X τ is the restriction of the latter flow of υ√ρ on M̃\M , and ατ is invariant under

�τ
t . Therefore, the cotangent lift of �

τ
t restricts on �τ ⊂ T∨X τ\X0 to a flow �τ → �τ by

homogeneous symplectomorphisms, that by abuse of language we shall also denote �τ
t (�τ

as in (10)).
Let ιτ : T∨M\M0 → �τ be given by

ιτ (m, β) :=
(
Eτ

(
m, τ

β

‖β‖
)
, ‖β‖α

Eτ
(
x,τ β

‖β‖
)
)
. (160)

Then ιτ is a homogeneous symplectomorphism, and intertwines γt with �τ
t . Then the wave

front of Pτ is (see e.g. [48])

WF′
(
Pτ
) = {(ιτ (m, β), (m, β)

) : (m, β) ∈ T∨M\M0
}
. (161)
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On the other hand, the wave front of U (t) is (see e.g. [12])

WF′
(
U (t)

) = {(γt (m, β), (m, β)
) : (m, β) ∈ T∨M\M0

}
. (162)

Given (157) and the composition law for wave fronts we conclude

WF′
(
UC(t + 2 ı τ)

) = {(�τ
t (x, ξ) , (x, ξ)

) : (x, ξ) ∈ �τ
}
. (163)

This is however the samewave front of the composition�τ ◦�τ−t , whence of any composition
�◦Q◦�τ−t , with Q a pseudodifferential operatorwhich is elliptic on a conic neighourhood of
�τ . Hence, for any such Q,UC(t+2 ı τ) and�◦Q ◦�τ−t are both Fourier integral operators
of Hermite type with the same real canonical relation; it follows that they are associated to
the same complex Lagrangian. This is the basis for the following analogue of Theorem 55
(notation is as in Sect. 3.6).

Theorem 67 (Zelditch) There exist a polyhomogeneous classical symbol on X τ ×R+ of the
form

γ τ
t (x, r) ∼

∑

j≥0
γ τ
t, j (x) r

− d−1
2 − j ,

and a pseudo-differential operator Qτ
t ∼ γ τ

t (x, D
τ√
ρ
) of degree −(d − 1)/2 on X τ , such

that up to smoothing operators

UC(t + 2 ı τ) ∼ �τ ◦ Qτ
t ◦�τ−t = �τ ◦Qτ

t , (164)

where Qτ
t := Qτ

t ◦�τ−t .

The coefficients γ τ
t, j depend on the choice of volume form. We shall determine γ τ

0,0 a
posteriori by deriving a local Weyl law for the complexified eigenfunctions and comparing
it to the one in Proposition 3.8 of [46].

Remark 68 Up to smoothing operators that do not affect the asymptotics, the composition
(164) only depends on the behaviour of Qτ

t in a small conic neighborhood of�τ , where Dτ√
ρ

may be assumed to be microlocally elliptic.

Using known results on the composition of pseudodifferential and Fourier integral opera-
tors, in view of (95) and Corollary 49 one obtains from Theorem 67 the following analogue
of Lemma 56.

Lemma 69 Up to smoothing terms, the Schwartz kernel of Qτ
t has the form

Qτ
t (x1, x2) ∼

∫ +∞

0
eı u ψ

τ (�τ−t (x1),x2) qτt (x1, x2, u) du, (165)

where

qτt (x1, x2, u) ∼
∑

j≥0
u

d−1
2 − j qτt j (x1, x2),

with

qτ0 0(x1, x2) =
1

τ
d−1
2

· γ τ
0,0(x) s

τ
0

(
�τ
t (x1), x2

)
.
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5.2 Proof of Theorem 7

Proof By the considerations in Sect. 5.1, the analysis of Pτ
χ,λ(x1λ, x2λ) (notation as in (119))

parallels the one for�τ
χ,λ(x1λ, x2λ) in Theorem 4, with the following change.

The leading order term of the amplitude has beenmultiplied by a factor γ τ
0,0(x)·(u τ)−

d−1
2 .

In view of the rescaling u �→ λ u in (114), this change entails an additional factor

γ τ
0,0(x) · λ−

d−1
2 in front of the resulting asymptotic expansion. Furthermore, by Lemma

64 the evaluation of u τ at the stationary point Ps = (ts, vs, θs, us) of ϒτ is us τ = 1.
Hence, the leading order term of the asymptotic expansion for Pχ,λ(x1λ, x2λ) only differs

from the one of�τ
χ,λ(x1λ, x2λ) by the factor γ τ

0,0(x) · λ−
d−1
2 .  !

5.3 The pointwiseWeyl law

Proof of Proposition 10 We shall prove (26); the same argument, with obvious adaptations,
also proves (27).

Let us choose χ ∈ C∞c
(
(−ε, ε)) with χ̂ > 0. Define f : R× R→ [0,+∞) by

fλ(t, s) := χ̂(t) H(λ− s − t),

where H is the Heaviside function.
Let us consider the following positive measures L and T τ

x on R. First, L is the Lebesgue
measure. Second,

T τ
x :=

∑

j≥1
�τ

j (x, x) δλ j . (166)

Let us endow R× R with the product measure L× T .
By the Fubini Theorem (see e.g. Ch. 8 of [34]),

∫

R

dTx (s)
[∫

R

fλ(t, s) dL(t)
]
=
∫

R

dL(t)
[∫

R

fλ(t, s) dTx (s)
]
; (167)

the claim will follow by comparing both sides of (167).
The former integral in (167) is

∫

R

dTx (s)
[∫

R

fλ(t, s) dL(t)
]
=
∫

R

dTx (s)
[∫ λ−s

−∞
χ̂ (t) dt

]

=
∫

R

dTx (s)
[∫ λ

−∞
χ̂ (t − s) dt

]
=
∑

j≥1
�τ

j (x, x) ·
∫ λ

−∞
χ̂ (t − λ j ) d t

=
∫ λ

−∞

⎡

⎣
∑

j≥1
�τ

j (x, x) · χ̂ (t − λ j )

⎤

⎦ d t =
∫ λ

−∞
�τ

χ,t (x, x) d t; (168)

on the last line, we have made use of (15) and Theorem 1.27 of [34]. In view of Corollary 5,
(168) implies that as λ→+∞

∫

R

dTx (s)
[∫

R

fλ(t, s) dL(t)
]
=

√
2π

d · (2π)d ·
λd

τ d−1
· χ(0)+ O

(
λd−1

)
. (169)
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On the other hand, the latter integral in (167) is

∫

R

dL(t)
[∫

R

fλ(t, s) dTx (s)
]
=
∫ +∞

−∞

⎡

⎣
∑

j

�τ
j (x, x) fλ(t, λ j )

⎤

⎦ d t

=
∫ +∞

−∞

⎡

⎣
∑

j

�τ
j (x, x) H(λ− t − λ j )

⎤

⎦ χ̂(t) d t

=
∫ +∞

−∞
Wx (λ− t) χ̂(t) d t

= Wx (λ)

∫ +∞

−∞
χ̂(t) d t +

∫ +∞

−∞
[
Wx (λ− t)−Wx (λ)

]
χ̂(t) d t

= √
2π χ(0) ·Wx (λ)+

∫ +∞

−∞
[
Wx (λ− t)−Wx (λ)

]
χ̂(t) d t . (170)

 !
Lemma 70 For λ→+∞, we have

∫ +∞

−∞
[
Wx (λ− t)−Wx (λ)

]
χ̂(t) d t = O

(
λd−1

)
.

Proof It follows from Corollary 5 that for λ( 0

Wx (λ+ 1)−Wx (λ) =
∑

λ≤λ j≤λ+1
�τ

j (x, x) = O
(
λd−1

)
.

Hence there exist C0, C1 > 0 such that

Wx (λ+ 1)−Wx (λ) ≤ C1 |λ|d−1 + C0 ∀ λ ∈ R.

Thus for suitable C ′, C ′′ > 0 for any λ, t ∈ R

∣∣Wx (λ− t)−Wx (t)
∣∣ ≤ C ′ · |t |

[
|λ|d−1 + |λ− t |d−1

]
+ C ′′.

Therefore for λ( 0
∣∣∣∣

∫ +∞

−∞
[
Wx (λ− t)−Wx (λ)

]
χ̂(t) d t

∣∣∣∣

≤ C ′
∫ +∞

−∞
|t |
[
|λ|d−1 + |λ− t |d−1

]
χ̂ (t) d t + C ′′′ ≤ A λd−1 + B,

for appropriate constants A, B > 0.  !
Comparing (168) and (170), we conclude that

√
2π χ(0) ·Wx (λ) =

√
2π

d · (2π)d ·
λd

τ d−1
· χ(0)+ O

(
λd−1

)
,

whence

Wx (λ) = τ

d
·
(

λ

2π τ

)d

+ O
(
λd−1

)
.
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This establishes (26). To obtain (27), we need only run over the same argument, with the
following changes: first, in (166) replace�τ

j (x, x) byU
τ
j (x, x) (notation as in (22)); second,

in the derivation of (169), invoke Corollary 9 in place of Corollary 5.  !
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