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Enhanced Visualization and Interpretation of XMCD-PEEM
Data Using SOM-RPM Machine Learning

See Yoong Wong, Sarah L. Harmer, Wil Gardner, Alex K. Schenk, Davide Ballabio,
and Paul J. Pigram*

Photoemission electron microscopy (PEEM) is a powerful technique for
surface characterization that provides detailed information on the chemical
and structural properties of materials at the nanoscale. In this study, the
potential is explored using a machine learning algorithm called self-organizing
map with a relational perspective map (SOM-RPM) for visualizing and
analyzing complex PEEM-generated datasets. The application of SOM-RPM is
demonstrated using synchrotron-based X-ray magnetic circular dichroism
(XMCD)-PEEM data acquired from a pyrrhotite sample. Traditional
visualization approaches for XMCD-PEEM data may not fully capture the
complexity of the sample, especially in the case of heterogeneous materials.
By applying SOM-RPM to the XMCD-PEEM data, a colored topographic map
is created that represents the spectral similarities and dissimilarities among
the pixels. This approach allows for a more intuitive and easily interpretable
representation of the data without the need of data binning or spectral
smoothing. The results of the SOM-RPM analysis are compared to the
conventional visualization approach, highlighting the advantages of
SOM-RPM in revealing features that are not readily observable in the
conventional method. This study suggests that the SOM-RPM approach can
be used complimentarily for other PEEM-based measurements, such as core
level and valence band X-ray photoelectron spectroscopy.

1. Introduction

Photoemission Electron Microscopy (PEEM) is an advanced sur-
face characterization technique, operable in multiple modes.
It can provide detailed, spatially resolved information on the
chemical and structural properties of a materials surface at the
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nanoscale by measuring the electrons
emitted by a sample under specific illu-
mination conditions.[1] One way in which
PEEM can be used is to analyze the
secondary electrons emitted from each
pixel – a measure of the photon ab-
sorption rate – as the exciting photon
energy is scanned in the X-ray absorp-
tion near edge structure (XANES) re-
gion which, among other details, re-
veals information on the distribution of
chemical states and bonding of each el-
ement. This technique can be extended
by acquiring XANES spectra with left-
(LHS) and right-circularly (RHS) polar-
ized beams as the excitation source and
exploring the difference in electron yield
with the changed polarization, known
as X-ray Magnetic Circular Dichroism
PEEM (XMCD-PEEM). As XMCD ab-
sorption is strongly dependent on the
magnetic properties of a sample, XMCD-
PEEM can be used to explore the com-
plex relationship between magnetic do-
mains and chemical composition in a
material in a spatially resolved fashion.
As a result, this technique has been

used to study a wide range of material systems, including thin
films,[2] multilayers,[3] and nanoparticles.[4]

While XMCD-PEEM can provide valuable insights into the ele-
mental distribution, chemical states, magnetization, and limited
information on molecular geometry, effectively analyzing all of
this information and forming correlations between features in
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images can be challenging. Conventionally, researchers use the
relative electron flux captured at specific energy levels to repre-
sent the distribution of elemental and chemical states,[5,6] and
the contrast in emitted electrons between left- and right-circularly
polarized beams at that energy level is displayed separately as an
XMCD map.[7,8] While this is suitable for simple materials where
there are few distinct phases, these methods may be less informa-
tive when examining complex samples that have a more hetero-
geneous nature. To address these challenges, new approaches to
data reduction and visualization need to be developed, in order
to better exploit the full potential of XMCD-PEEM for character-
ization of complex material phases.

The use of machine learning (ML) as a tool for aiding spec-
troscopy data analysis is an emerging field, and there are many
algorithms and approaches that can be used, as well as many
workflows in which it can play a role in. For example, a ML
model known as Gaussian process modeling has been used to
reduce the size of XMCD dataset for accurate magnetic moment
evaluation.[9] ML algorithms, such as the unsupervised cluster-
ing algorithms (K-means and fuzzy-c-means),[10] can also reveal
spatial distribution patterns and identify molecular heterogene-
ity within samples. While these algorithms are proven useful for
data classification and prediction, a natural concern of spectro-
scopists in every case is the selection of an appropriate tool which
is used in a scientifically rigorous fashion, with an understand-
ing of the limitations of the selected tool. Hence, it is important
to explore the application of various ML algorithm and their re-
spective limitations.

Self-organizing maps (SOM), which is another type of unsu-
pervised ML model, were successfully applied in the field of mass
spectrometry imaging (MSI).[11,12] The term unsupervised refers
to a category of algorithms and techniques that involve training a
model on a dataset without explicit supervision via labels. By pro-
cessing high-dimensional hyperspectral data, the SOM creates a
topological map that reflects the relationships between different
molecular species. This empowers researchers to visually explore
the complex data space of MSI, facilitating the identification of
regions with similar molecular composition and spatial correla-
tions. In our previous works, we have further enhanced the tradi-
tional SOM by integrating it with a secondary algorithm known
as the relational perspective map (RPM), resulting in a method
called SOM-RPM.[13–15] Our previous studies have demonstrated
the effectiveness of SOM-RPM in visualizing MSI datasets, pro-
viding an intuitive and interpretable low-dimensional represen-
tation of the complex data. Given that the MSI dataset and the
XMCD-PEEM dataset share the same hyperspectral format, the
utilization of SOM-RPM as a visualization technique for XMCD-
PEEM is highly promising.

In this study, we use the iron sulphide mineral pyrrhotite and
synchrotron-based XMCD-PEEM acquired at the Fe L-edge to
demonstrate the potential of SOM-RPM for exploring complex
PEEM-generated datasets. Pyrrhotite has a chemical composition
of Fe(1−x)S, where x can range from 0 to 0.125, reflecting its iron
deficient nature,[16] and is composed of both monoclinic (Fe7S8)
and hexagonal domains (FeS), which exhibit magnetic and an-
tiferromagnetic properties, respectively. Furthermore, pyrrhotite
has a high degree of reactivity with oxygen, resulting in the for-
mation of iron oxides and oxyhydroxides.[6,17] While pyrrhotite
is commonly considered as mining waste, it is widely studied

in the paleomagnetic and geomagnetic fields since it is a com-
mon rock-forming mineral with magnetic properties.[18] How-
ever, pyrrhotite is often confused with other iron sulphide min-
erals such as greigite.[19] More advanced techniques are also
required to identify the origin of pyrrhotite. Its high metallic-
type conductivity[18] compared to other sulfides also makes it
an attractive candidate as the cathodic material for lithium-
sulphur batteries.[20] The fact that the mineral includes coex-
isting phases with differing chemical composition and mag-
netic properties – which both influence the shape of Fe L-edge
spectra acquired with different rotational polarizations – make
this mineral a useful demonstration of what ML and, more
specifically, SOM-RPM, can offer for analysis of PEEM-based
measurements.

To compare the visualization ability of SOM-RPM in interpret-
ing XMCD-PEEM data, we first display the typical PEEM and
XMCD images separately in the conventional way. We then an-
alyze and compare different regions on the similarity map pro-
duced by SOM-RPM to study the properties of the pyrrhotite sam-
ple. We show that SOM-RPM provides an intuitive yet compre-
hensive description of the underlying relationships and key fea-
tures in the data. We therefore propose that this method can ef-
fectively enhance our understanding of surface characterization
techniques and the properties of pyrrhotite, contributing to the
current understanding of materials science.

2. Results and Discussion

2.1. Synchrotron XMCD-PEEM of Pyrrhotite – Traditional
Visualization Approach

The synchrotron XMCD-PEEM images of a freshly polished
pyrrhotite sample are presented in Figure 1. After the baseline
removal explained above, all maps in Figure 1 are normalized by
their respective maximum values for better visualization.

Figure 1a,b display the normalized electron count acquired at
707.8 eV, which, as demonstrated by Mikhlin & Tomashevich,[21]

is associated with electronic transitions in iron sulfides.[22]

Figure 1c,d show the normalized electron count acquired at
709.4 eV for LHS and RHS polarization respectively, revealing
the iron oxidation products,[6] which is likely to be amorphous.[17]

Figure 1c,d indicate that the sample contains mostly unoxidized
pyrrhotite (blue), with a few highly oxidized areas indicated by
the yellow domains. This observation is consistent with the ex-
pected composition of the sample, which contains fewer reac-
tive monoclinic regions and more reactive hexagonal regions.[17]

Figure 1e,f show the XMCD magnetic contrast image at 707.8 eV
and 709.4 eV respectively. The asymmetry value is calculated
by taking the difference of electron intensity between left and
right polarization at specific energy level and dividing by their
sum, as IRHS−ILHS

IRHS+ILHS
, to represent the magnetic contrast across the

sample.[8,23]

Pyrrhotite in the iron-rich region has a hexagonal structure
and a chemical composition of FeS, similar to troilite, which is a
non-magnetic mineral.[24] As the level of iron vacancy increases,
the electrical charge of the iron changes, leading to a corre-
sponding increase in its magnetic response. In the iron-deficient
region, pyrrhotite has a monoclinic structure and a chemical
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Figure 1. Visualization of XMCD-PEEM data using the conventional visualization approach. a) LHS and b) RHS PEEM map at 707.8 eV, representing
the iron sulfide species. c) LHS and d) RHS PEEM map at 709.4 eV, representing the iron oxidation products. XMCD-PEEM asymmetry images at
e) 707.8 eV and f) 709.4 eV, displaying the degree of magnetism across the sample for the iron sulfide and iron oxide species respectively. The images
show the same sample area, and they are displayed in a normalized Parula color scale.

composition of Fe7S8. Therefore, the vacancy of iron on the
pyrrhotite sample could be revealed by comparing the unoxi-
dized region (yellow in Figure 1a,b; blue in Figure 1c,d) with
Figure 1e, which is the magnetic contrast at 707.8 eV. This com-
parison indicated that the oxidized region (yellow in Figure 1c,d)
is surrounded by non-magnetic iron sulfide (blue in Figure 1e).

These findings align with the reactivity of pyrrhotite, as mono-
clinic pyrrhotite, which has an activation energy of 50.21 kJmol−1,
is less reactive than hexagonal pyrrhotite, which has a lower acti-
vation energy of 46.23 kJmol−1.[17]

While it is apparent that a traditional visualization ap-
proach allows us to examine pyrrhotite and already draw some
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Figure 2. SOM-RPM image of XMCD-PEEM of pyrrhotite, 10 × 10 neurons and 10 000 epochs. a) Colored SOM topographic map. The neurons are
labelled for further discussion. Note that the SOM is unfolded from a toroidal topology. b) Similarity map of pyrrhotite. Region A and B are highlighted
for further comparisons.

conclusions, we now turn to exploring the possibilities offered
by the SOM-RPM.

2.2. SOM-RPM Analysis of XMCD-PEEM Data

To consider all acquired data and enable a more detailed char-
acterization, we concatenated the Fe L-edge XANES spectra ob-
tained from both polarities and the data was used to train the
SOM-RPM model. By doing so, we simultaneously consider both
the oxidation state and magnetic characteristics to produce a sin-
gle map of the data product. Figure 2a shows the colored SOM
(10 × 10 neurons, 10 000 epochs) and Figure 2b shows the simi-
larity map of the same dataset shown in Figure 1.

The similarity maps trained with 6 × 6 and 14 × 14 neurons
are shown in Figure S2 (Supporting Information). While all three
maps are similar visually, some minor features revealed in Figure
S2b (Supporting Information) (10 × 10 neurons) and Figure
S2c (Supporting Information) (14 × 14 neurons) are missing in
Figure S2a (Supporting Information) (6 × 6 neurons). These ob-
servations highlight the impact of network size on the hierarchy
of clustering. A larger network size enables better pixel alloca-
tion, leading to improved clustering quality and reduced quanti-
zation error. However, it remains crucial for analysts to interpret
the data clustering. Individual neurons or neuron clusters may
represent distinct crystal phases in the sample. Here, we use the
model trained using 10 × 10 neurons to study the convergence
of the SOM model for training since Figure S2c (Supporting In-

formation) and Figure S2b (Supporting Information) are visually
similar. Larger SOM sizes may have revealed more subtle differ-
ences between similar groups of pixels, however for the purposes
of this work 10 × 10 neurons was sufficient. Again, we note that
this decision must be based upon analyst expertise and the re-
quirements of the study, as there is no objective measure to indi-
cate overfitting (unlike in supervised learning).

The quantization error for SOM with 10 × 10 neurons and var-
ious number of epochs are tabulated in Table S1 (Supporting In-
formation) and plotted in Figure S3 (Supporting Information).
The quantization error dropped from 9.6 to 0.3 just after five itera-
tions, showing the efficiency of SOM in clustering XMCD-PEEM
spectra. We proceed with the model that exhibited the lowest
quantization error, achieved through a configuration of 10 × 10
neurons and trained over 10 000 epochs, for further discussions.
The location of pixels assigned to each neuron in Figure 2a, and
their respective mean intensity and standard deviation are pre-
sented in Figures S4–S13 (Supporting Information). Low stan-
dard deviation values calculated for all neurons further suggest
that sufficient size and iteration are provided for SOM training.

A comparison of the conventional approach (Figure 1) to the
similarity map generated by the SOM-RPM model (Figure 2) re-
veals that the similarity map in Figure 2 provides a more compre-
hensive view of the sample. By comparing conventional PEEM-
XMCD map (Figure 1) to the similarity map (Figure 2b), the color
scheme in Figure 2b presents iron oxidation products (yellow
in Figure 1c,d) as dark purple (neuron H5 to J7), FeS regions
(non-magnetic, blue in Figure 1e) as pink (neuron I3), and Fe7S8
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Figure 3. Comparison between SOM-RPM and conventional approach in the analysis of iron oxidization products (Region A highlighted in Figure 2b).
a) Magnified PEEM map on Region A in Figure 1c. The image is reproduced here to allow better comparison. b) Magnified SOM-RPM map on Region
A in Figure 2b, nine pixels are selected for discussion, numbers in brackets show the assigned neurons of selected pixels. c) Waterfall plot showing
the normalized left polarization PEEM spectra of selected pixels. d) Waterfall plot showing normalized spectra of average pixel intensity for the left
polarization of selected neurons. The shaded regions show the standard deviation of the intensity for all pixels assigned to each neuron. A line is plotted
at 709.4 eV as guide.

regions (ferrimagnetic, yellow in Figure 1e) as olive (neuron C8).
Figure 2b reveals features that were not readily observable in
Figure 1. These include the phase boundary of the oxidation prod-
ucts, magnetic and non-magnetic regions, and distinct domains
(primarily beige, green, and light blue) comprising the unoxi-
dized region. In the following sections, we will explore these fea-
tures in greater detail. To facilitate comparison of conventional
method and SOM-RPM, a particle representing iron oxidation
products (yellow in Figure 1c,d; dark purple in Figure 2b) and
a region containing magnetic and non-magnetic FeS (yellow and
blue in Figure 1e; olive and pink in Figure 2b) are highlighted as
region A and B respectively.

2.3. Chemical State Analysis (Fe1−xS Vs Oxidation Products)

To begin, we focus on Region A highlighted in Figure 2b, which
represents a grain of iron oxidation products. Magnified images
of Region A are reproduced and shown in Figure 3a,b, depict-

ing the PEEM map (reproduced from Figure 1c) and similarity
map (reproduced from Figure 2b), respectively. For analysis, we
selected nine different pixels located at varying distances from the
center of the grain. The numbers in brackets show the location
of neuron in the color SOM (Figure 2a). We then plot the PEEM
spectra of the selected pixels in Figure 3c and compare the mean
pixel intensity of the selected neurons using their respective as-
signed colors in Figure 3d.

The color-differentiated regions in the SOM-RPM map high-
light subtle differences in the spectral characteristics of the sam-
ple that are not easily visible in the original map. In both figures,
the particle appears to have a circular shape, with a central re-
gion that is brighter than the surrounding area, corresponding
to the iron oxidation products. However, there are some differ-
ences in the shape of the particle between the two maps. In the
original PEEM map, the particle appears to have a slightly irregu-
lar boundary, with some protrusions and indentations along the
edge. In contrast, in the SOM-RPM processed map, the particle
appears to have a more uniform circular shape, with a smooth
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Figure 4. Comparison between conventional and SOM-RPM approach in the analysis of the magnetic property of pyrrhotite on Region B highlighted in
Figure 2b. a) Magnified XMCD map on Region B in Figure 1e. The image is reproduced here to allow better comparison. b) Magnified similarity map
on Region B in Figure 2b. Nine ROIs are selected for discussion, numbers in brackets show the assigned neurons of selected pixels. c) Waterfall plot
showing the normalized PEEM spectra of selected pixels. The asymmetry between LHS (black) and RHS (color) polarized Fe2+ peaks (d1-9) of each pixel
is also displayed. d) Waterfall plot showing the mean pixel spectra of selected neurons. The shaded regions show the standard deviation of the intensity
for all pixels assigned to each neuron. The asymmetry between LHS (black) and RHS (color) polarized Fe2+ peaks (d1-9) of each neuron are displayed.
Two lines at 707.8 eV and 709.4 eV are plotted as guides.

boundary. This difference suggests that the unbiased considera-
tion of the full XMCD-PEEM spectra which the SOM-RPM ap-
proach utilizes has increased the ability to map oxidation at and
across this boundary. The smoother appearance also reflects the
decreased sensitivity of SOM-RPM to random noise and fluctua-
tions in the dataset.

The waterfall plot depicting the original PEEM spectra of se-
lected pixels is shown in Figure 3c. Figure 3d, on the other hand,
shows the respective mean ± standard deviation of the intensi-
ties of all pixels assigned to the same neurons as the selected
pixels, with plot coloring matching the SOM-RPM coloring of
the neurons. It can be observed in Figure 3d that as we move
toward the center of the oxidized particle, a shoulder begins
to emerge and progressively intensifies. This observation sug-
gests that the oxidation process occurring in the region is not
a sharp transition, but rather occurs in a gradient manner from
the outer edge toward the center of the particle. The emergence
of the shoulder feature in the spectra of the selected regions
may be attributed to the presence of different oxidation states
or phases within the particle; while the typical PEEM process-
ing does not clearly show any structured variation around this re-

gion, the SOM-RPM map allocates these points to different neu-
rons, allowing for a clear image of the emergence of these dif-
ferent phases. This demonstrates the potential for this approach
to provide valuable insights into the understanding of the oxida-
tion behavior and mechanisms of iron-based materials, and more
generally enable the assessment of phase formation in materi-
als.

2.4. Magnetic State Analysis (FeS Vs Fe7S8)

To study the application of SOM-RPM in identifying regions with
different magnetic property, a region containing high and low
magnetic contrast is selected. Figure 4a,b provide a magnified
view of Region B on the XMCD (reproduced from Figure 1b)
and similarity maps (reproduced from Figure 2b), respectively.
To analyze the region further, we randomly selected nine differ-
ent pixels and identified their assigned neurons in brackets. In
Figure 4a, ROIs 1 to 6 exhibit low XMCD contrast. Given that
the degree of perceived color alteration represents the Euclidean
distance between neurons, we further explored the notable
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Figure 5. Analysis of the magnetic property of pyrrhotite using SOM-RPM approach. a) Similarity map of iron oxidization product. b) Similarity map
after removing pixels (shown in white for contrast) from the oxidized region. c) SOM topographic map recolored by the difference of the Fe2+ peak
between left and right polarization for the remaining neurons. The color scale shows the asymmetry values represented by each neuron. d) Similarity
map colored by degree of magnetism. e) Magnified similarity map colored by degree of magnetism on Region B. f) Magnified XMCD map on Region B
in Figure 1e. The image is reproduced here to allow better comparison.

divergence in color assignment between ROIs 1 and 2, as com-
pared to ROIs 3 to 6.

Pixel intensities and neuron intensities are plotted in
Figure 4c,d, respectively, to study this observation. LHS polar-
ization is shown in black and the RHS polarization in assigned
pixel/neuron assigned color. The grey shaded region in Figure 4d
indicates the standard deviation of pixels assigned to each neu-
ron. The insets in Figure 4c,d show the asymmetry values at

707.8 eV of selected pixels ( di =
Ipi RHS−Ipi LHS

Ipi RHS+Ipi LHS
) and mean normal-

ized pixel intensity ( di =
Norm INi RHS −Norm INi LHS

Norm INi RHS +Norm INi LHS
) of selected neu-

rons respectively. Normalized intensity is used for neurons as the
pixel intensity is normalized for SOM training. The dotted verti-
cal lines at 707.8 eV and 709.4 eV were added as visual guides. To
emphasize, these spectra are the mean spectra of the clustered
pixels. They are not an approximation generated by the model.

As stated previously, the low standard deviation calculated
(grey shaded region) for these neurons serves to validate the ac-
curate derivation of the spectral features illustrated in Figure 4d
from the allocated pixels. ROIs 1 and 2, colored green and blue
in Figure 4b, were selected from a slightly oxidized region, as in-
dicated by the emergence of the shoulder of their SOM output

spectra (Figure 4d) at 710.9 eV. Using the conventional data vi-
sualization technique, the increase in intensity is challenging to
attribute solely to the magnetic property or iron oxidization since
magnetic property would affect the overall intensity of the Fe2+

peak, which overlaps the iron oxidation peak. ROIs 3 to 9 were
selected at different distances around the magnetic domain of
unoxidized region, and the spectra of the neurons were consis-
tent with the XMCD maps.

In order to assess the magnetization, and hence the iron de-
ficiency of the pyrrhotite crystal, we implemented a methodol-
ogy to compare these properties across the surface. Initially, we
excluded 17 neurons that represented oxidized regions (as de-
picted in Figure 5a) from the analysis. This step was necessary
to avoid potential interference caused by the alteration of the cor-
relation between iron vacancy and magnetism induced by the ox-
idation process. Figure 5b displays the remaining pixels after the
removal of the oxidized regions. Subsequently, we proceeded to
calculate the contrast in the intensity of the Fe2+ peak between
the left and right polarized beams using the remaining neuron
weights. Figure 5c shows the contrast values of the neurons in
the SOM, while Figure 5d shows these values mapped back to the
pixels’ spatial locations. The black neurons in Figure 5c indicate

Adv. Mater. Interfaces 2023, 2300581 2300581 (7 of 10) © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

 21967350, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

i.202300581 by C
ochraneItalia, W

iley O
nline L

ibrary on [30/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advmatinterfaces.de

that the neurons representing oxidation products are clustered
together on the SOM.

The discussion presented in Section 3.1 highlights the struc-
tural differences between the iron-rich, non-magnetic region
comprised of hexagonal FeS crystal and the iron-deficient,
highly magnetic region comprised of monoclinic Fe7S8 crystal.
Figure 5d provides insight into the spatial distribution of mag-
netic regions in relation to iron oxidization products. Notably,
the oxidized regions appear to be surrounded by non-magnetic
or low magnetic regions (blue), while the moderately to highly
magnetic regions (yellow) are located further away from these
products. These findings are consistent with the activation en-
ergies of hexagonal and monoclinic pyrrhotite as discussed in
Section 3.1. Figure 5e,f present the recolored similarity map and
original XMCD map magnified in Region B for direct compari-
son. The fact that these two maps closely resemble each other in-
dicates a reliable connection between the asymmetry calculated
for single pixels and neurons.

2.5. Use of SOM-RPM for Analysis of PEEM Data

Having explored the ways in which a SOM-RPM map can be used
to explore XMCD-PEEM data for the pyrrhotite sample, we now
turn to discussing, in more general terms, the use of SOM-RPM
for PEEM analysis.

First, we would like to emphasize the role of SOM-RPM in the
analytical workflow. We note that, like any unsupervised learning
algorithm, it should be applied in conjunction with domain ex-
pertise. Indeed, SOM-RPM does not present scientifically inter-
esting conclusions on its own – this is the domain of the scientist
who is applying the SOM-RPM algorithm. For scientific rigour,
it is always important to incorporate domain expertise into the
interpretation and evaluation of the model. This study presents a
demonstration of this, whereby at each point in the analytical pro-
cess we have considered the veracity of the SOM-RPM clustering
and visualizations (e.g., Figures 3d and 4d and Figures S4–S13,
Supporting Information).

Looking more specifically at the spectra shown in Figures 3d
and 4d and Figures S4–S13 (Supporting Information): A key fea-
ture of SOM-RPM, in contrast with more traditional analytical
workflows (such as simply binning neighboring pixels or apply-
ing a smoothing algorithm to obtain a smoother spectrum, re-
quiring the sacrifice of spatial or energy resolution), SOM-RPM
allows the creation of maps in which unbiased statistical averag-
ing of similar spectra is possible. This allows the retention of the
high lateral spatial resolution and energy resolution of the origi-
nal XMCD-PEEM measurement, making SOM-RPM an ideal al-
gorithm for this type of analysis. Furthermore, in Figure 4c, there
are indications of a shoulder in the single pixel spectra of ROI 1
and 2 (the original spectra of ROI 1, 3, 5, 7, and 9 selected in
Figure 4 are plotted in the Figure S14, Supporting Information).
However, it is very difficult discern due to the noise in the data,
which is a common complication in PEEM based measurements.
With the use of SOM-RPM, these pixels with similar spectra are
grouped together, such that the resulting similarity map provides
the starting point for generating these kinds of insights, which
still come directly from the data. The fact that SOM-RPM assigns
a different color to these two ROIs highlights its ability to differ-

entiate between pixels with high similarity, enabling the visual-
ization of subtle differences in material phases, which would be
easily overlooked using the conventional approach.

After processing the dataset with SOM-RPM, the retained
spectral properties enable us to eliminate undesired (oxidized)
pixels and apply an alternative color scale to the model (depicted
in Figure 5c,d). This produces a direct and clear visualization of
the relevant property – magnetic anisotropy. By assigning distinct
colors to the SOM, we facilitate the interpretation of variations in
Fe2+ peak intensity contrast throughout the sample. Figure 5e,f
illustrates that the SOM-RPM algorithm refines the definition of
magnetic and non-magnetic domains, leading to clearer differen-
tiation compared to the original magnetic contrast image. This
results from the averaging out of fluctuations by SOM-RPM.

It is crucial to note that the model’s purpose is not to accurately
replicate the asymmetry ratio. This information is inherent and
straightforward to calculate and visualize. Instead, SOM-RPM of-
fers a means to visualize this asymmetry within the broader con-
text of overall spectral similarity. Conversely, it allows us to ex-
plore spectral similarity in relation to asymmetry. This reveals
diverse subphases with distinct spectral attributes that align with
the same (or nearly identical) asymmetry. Consequently, our ap-
proach provides a more comprehensive analysis of the data.

Instead of displaying the data in separate images, which could
be cumbersome for researchers to compare and study correla-
tions, SOM-RPM can present an objective, comprehensive rep-
resentation of multiple datasets, probing different properties
within a single image. This is a data reduction and analysis ap-
proach which is uniquely well suited to the experimental capabil-
ities of a PEEM instrument. One of the reasons PEEM is consid-
ered so useful is that it is possible, with an appropriate appara-
tus and experimental design, to create multiple high-resolution
images which are of the same spatial region of a sample, but dif-
ferent data products (for example. core level X-ray photoelectron
spectroscopy, valence band, and XMCD at multiple absorption
edges all on the same sample area).

By using SOM-RPM as a tool in PEEM analysis it is possible
to build maps correlating similarities in these disparate spectral
products and develop a more nuanced understanding of the com-
position and properties of a material surface at nanometer length-
scales. Critically, we note that this unsupervised ML approach to
data reduction and visualization requires no a priori assumptions
about the sample, and interpretation of the information is left to
the researcher, who can apply best practice in the analysis. While
the demonstration shown in this work is a natural mineral sam-
ple, there is nothing in this workflow which would prevent the
use of this approach for characterizing the properties of other
samples, such as engineered quantum structures.

3. Conclusion

We investigated the potential of using SOM-RPM for ana-
lyzing and visualizing complex PEEM datasets generated by
synchrotron-based XMCD-PEEM. Traditional visualization ap-
proaches for XMCD-PEEM data may not fully capture the com-
plexity of heterogeneous samples. By applying SOM-RPM to
the XMCD-PEEM data acquired from a pyrrhotite sample, we
demonstrated the creation of a colored topographic map that rep-
resents spectral similarities and dissimilarities among the pixels.
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This approach provides a more intuitive and easily interpretable
representation of the data without the need for data binning or
spectral smoothing. The results of the SOM-RPM analysis were
compared to the conventional visualization approach, highlight-
ing the advantages of SOM-RPM in revealing features that were
not readily observable using a more conventional method to the
data.

The SOM-RPM analysis of the XMCD-PEEM data enabled
a valuable visualization of the pyrrhotite sample. By compar-
ing the results to the conventional approach, the SOM-RPM-
generated similarity map provided insights into the distribu-
tion of iron oxidation products, magnetic and non-magnetic
regions, and distinct domains within the unoxidized region.
The SOM-RPM visualization approach allowed for the identi-
fication of phase boundaries and the characterization of dif-
ferent regions based on their spectral properties. This analy-
sis enhances the visualization of phases with subtle differences
embedded in pyrrhotite. These observations demonstrate the
utility of our approach in discerning subphases within sam-
ples, a critical facet within the micro-mineralogy, paleomagnetic,
and geomagnetic domains. Such precision becomes paramount
in preventing misinterpretation of minerals that bear high
similarities.

The successful application of SOM-RPM to XMCD-PEEM
data suggests its potential as a complementary tool for other
PEEM-based measurements, making SOM-RPM a useful data
reduction tool for understanding correlations in the rich
high resolution hyperspectral data that PEEM is capable of
generating.

4. Experimental Section
Pyrrhotite Sample Preparation: The sample of mixed pyrrhotite was

sourced from Brukunga mine, South Australia. The sample was confirmed
to be a mixture of monoclinic and hexagonal pyrrhotite with a 45:55 ratio,
by quantitative XRD. Powder X-ray Diffraction (PXRD) analysis was carried
out at Flinders Microscopy and Microanalysis (Flinders University) using
a Bruker D8 Advance Eco Powder X-Ray Diffractometer with a Co K𝛼 ra-
diation source (𝜆 = 1.7902˚A). The PXRD analysis is presented in Figure
S1 (Supporting Information). Samples were ground to a particle size of
<50 μm using a quartz mortar and pestle. The sample was analyzed on a
zero-background silicon substrate disc. XRD data were all collected across
the 2𝜃 range of 10 to 90◦ with a step size of 0.02◦ and 0.5 s per step. Qual-
itative analysis of samples was completed using Diffrac.EVA and matched
with reference spectra from the Crystallography Open Database (COD).
Sections ≈1 cm2 and 1 mm thick were cut from the block for analysis. The
sample surface was polished using wet and dry sandpaper of increasingly
fine grain size from 400, 800 to 1200 grit, then polished with 1 μm dia-
mond paste. The sample was then sonicated for 3 min in ultrapure water
to remove the diamond paste and particles. The sample was then leached
in Milli-Q water adjusted to pH 1 with concentrated sulfuric acid, for 1 h
just prior to analysis, to clean and remove iron hydroxide.[25]

Synchrotron XMCD-PEEM Setup: The XPEEM data was collected on
beamline BL05B2 at the National Synchrotron Radiation Research Centre
(NSRRC) in Hsinchu, Taiwan. The BL05B2 beamline uses an elliptically
polarized undulator (EPU5) capable of left, right, and linear polarization,
and an Omicron FOCUS-IS PEEM as the microscope. The beamline has
a spherical-grating monochromator, yielding very high photon flux (2 ×
1012 photons S−1 at 800 eV in a 0.4 mm × 0.2 mm) with spatial resolu-
tion better than 50 nm.[26,27] The emitted photoelectrons were accelerated
toward an electron lens column and projected onto an aluminum coated
yttrium aluminium garnet crystal screen. The real-time, sample surface im-

ages were acquired by a charge coupled device detector mounted behind
the screen in total electron yield mode. The analysis chamber vacuum was
held at ultrahigh vacuum (10−10 Torr) during analysis. An Fe L edge stack
of images was acquired while scanning the desired photon energy range
across the Fe L-absorption edge, from 700 to 730 eV, with a 0.1 eV step,
so that each pixel in the stacked image contained a complete near edge
X-ray absorption spectrum. The data was energy calibrated using a Fe wire
standard.

Data Export and Preprocessing: The 1024*1024 pixels hyperspectral
data was exported from the XSM reader 0.99 software in TIFF format for
each energy level in both polarity from 702.0 to 726.0 eV in 0.1 eV step,
thus giving 482 features in total for each pixel. The TIFF image stack was
then imported into MATLAB R2020b (v9.7) for preprocessing and analy-
sis. To remove low-intensity pixels outside the field of view, 308 400 pixels
were filtered out with a total intensity less than 10% of the maximum pixel
value, giving 740 176 remaining pixels. To correct for the varying distribu-
tion of the light source, the dataset underwent initial processing using a
baseline removal function called msbackadj implemented in the MATLAB
Bioinformatics Toolbox, with a window size of 100 and step size of 50 to
remove the background electron intensity. The baseline removal function
performs baseline correction on a raw signal by estimating and regressing
the baseline within windows, and then adjusts the intensity values based
on the estimated baseline. This step aimed to normalize the data and mit-
igate the effects of non-uniform illumination, ensuring more accurate and
reliable results for subsequent analysis.[28]

SOM-RPM: The detailed algorithm used for the SOM-RPM model is
discussed in Gardner et al. 2019,[11] 2020,[15] and 2021.[13] To provide
some context, the principle of SOM is explained in terms of the current
study. SOM is an unsupervised ML algorithm that can be used to visual-
ize and cluster high-dimensional data in a low-dimensional space. A SOM
is consisted of network units known as neurons and each neuron is built
up of weight layers. In the study, each weight layer represents the intensity
of photoelectrons detected at each energy level, giving 482 weight layers
(241 layers for each polarity). The total electron count for each pixel was
normalized for SOM training.

As part of the training, each of the 740 176 pixels in the PEEM im-
age was associated with a winning neuron, defined as neuron with closest
weight vector (using shortest Euclidean distance from the sample vector).
The weight vectors of winning neuron and its neighboring neurons were
then iteratively updated to minimize the difference between pixel intensi-
ties and the weights of neurons in the high-dimensional space. A princi-
pal component-based approach was used to initialize the SOM weights.
More details about this initialization method, and the SOM algorithm
more generally, are provided in Ballabio et al.[29–31] The resultant topo-
graphic map exhibits a toroidal structure and serves as a low-dimensional
model of the data topology, whereby the topological distances in the high-
dimensional data are modeled as topographical distances between neu-
rons in the map. In the case, each neuron in the topographic map con-
tains a full weights spectrum from both polarities of the Fe L-edge XANES
spectra.

The SOM was then color coded using the RPM technique, which is a
multidimensional scaling technique, to provide a model for the SOM itself
in which distances between neurons are accurately represented.[15] Here,
International Commission on Illumination (CIE) L*a*b* color space was
used, which was designed such that the perceived color change is approx-
imately proportional to the Euclidean distance of the neurons to further
improve the accuracy of the resulting map.[13,15] Finally, the color tagged
pixels were plotted in their original position forming an image known as
similarity map.

The SOM-RPM workflow, as previously described, was performed us-
ing MATLAB R2020b (v9.7).[11,13] Square SOMs with the size of 6 × 6,
10 × 10, and 14 × 14 neurons with a toroidal topology were utilized for
pixel clustering. SOMs were trained for 10 000 epochs, which took ≈7 h.
This number of epochs was selected to ensure convergence. RPM was per-
formed using in-house MATLAB scripts. The SOM training was done on a
16 CPU cluster with 128 GB total RAM. CIE lab color space was used for
the RPM algorithm for a more accurate distance-oriented coloring of the
SOM neurons.
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