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ON THE NUMBER OF FIXED POINTS OF AUTOMORPHISMS OF

VERTEX-TRANSITIVE GRAPHS

PRIMOŽ POTOČNIK AND PABLO SPIGA

Abstract. The main result of this paper is that, if Γ is a finite connected 4-valent vertex- and edge-transitive
graph, then either Γ is part of a well-understood family of graphs, or every non-identity automorphism of Γ
fixes at most 1/3 of the vertices. As a corollary, we get a similar result for 3-valent vertex-transitive graphs.

1. Introduction

The aim of this paper is to study a graph-theoretical parameter called fixicity, defined as the maximal
number of vertices that are fixed by a non-trivial automorphism of the graph. Investigation of a group
theoretical analogue of this parameter (the maximum number of points fixed by a permutation group) has
a long history going back to a classical work of Jordan studying primitive permutation group containing
a non-trivial permutation fixing all but a prescribed number of points. His results were later improved
significantly by several authors: for example, Babai [1], Liebeck and Saxl [22], Guralnick and Magaard [17],
Burnes [6, 7], Liebeck and Shalev [22], to name a few. As a result, all primitive groups G having a non-trivial
permutation fixing more than half of the points are known.

To the best of our knowledge, the fixicity of a graph was first studied by Babai [2, 3] and was motivated
by the famous graph isomorphism problem [4]. In these papers, Babai shows how fixicity is related to a
number of important notions, such as the spectrum of the graph, the order of individual automorphisms
and the automorphism group of the graph. While the focus there are strongly regular graphs (that can be
though of as graphs are highly symmetrical through from a purely combinatorial point of view) this paper is
devoted to the fixicity of graphs exhibiting a high level of symmetry as measured through their automorphism
groups. In particular, we will be interested in connected graphs of valence at most 4 admitting a group of
automorphisms G acting transitively on the vertices (G-vertex-transitive graphs), edges (G-edge-transitive
graphs) and/or ordered pairs of adjacent vertices (G-arc-transitive graphs).

Our understanding of vertex-transitive graphs is a function of time. The fact that this function has
increased so much recently (especially for graphs of valency 3 and 4) is, in our opinion, due to two processes
intimately intertwined. On the one hand, theoretical results allow us to get deeper into the structure (both
combinatorial and algebraic) of vertex-transitive graphs. These results can often be used to improve our
database of vertex-transitive graphs, see [10, 11, 27, 28, 29]. On the other hand, these databases can be used
to test open problems or to formulate conjectures; see for example [9, 31, 37]. The spin off of this process is
more theoretical work. And the loop starts again, if one can really say that there is a “start” and an “end”
in this process.

The pattern described in this paper starts with some computer evidence, found by Gabriel Verret and the
first-named author of this paper. By checking the census of connected 3-valent vertex-transitive graphs [27,
28] (which was obtained from the theoretical work in [26]), they observed that (for graphs small enough to
be in this list) non-identity automorphisms of a connected 3-valent vertex-transitive graph Γ cannot fix more
than 1/3 of the vertices of Γ, unless Γ is in a very special family or very small. A similar pattern holds for
the family of connected 4-valent vertex- and edge-transitive graphs.

Our main results are the following. For not breaking the flow of the argument, we refer the reader to
Sections 1.2 and 1.3 for undefined terminology, including the definition of the Praeger-Xu graphs C(r, s) and
the Split Praeger-Xu graphs S(C(r, s)).
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Theorem 1.1. Let Γ be a finite connected edge- and vertex-transitive 4-valent graph admitting a non-identity
automorphism fixing more than 1/3 of the vertices. Then Γ is arc-transitive and one of the following holds:

(i): |VΓ| ≤ 70 and Γ is one of the six exceptions Ψ1, . . . ,Ψ6, defined in Section 1.2;
(ii): Γ is isomorphic to a Praeger-Xu graph C(r, s) with 1 ≤ s < 2r/3 and r ≥ 3.

Theorem 1.2. Let Γ be a finite connected 3-valent vertex-transitive graph admitting a non-identity auto-
morphism fixing more than 1/3 of the vertices. Then one of the following holds:

(i): |VΓ| ≤ 20 and Γ is one of the six exceptions Λ1, . . . ,Λ6, defined in Section 1.2;
(ii): Γ is isomorphic to a Split Praeger-Xu graph S(C(r, s)) with 1 ≤ s < 2r/3 and r ≥ 3.

Observe that every primitive permutation group G ≤ Sym(Ω) acts as an edge- and vertex-transitive
group of automorphisms on each of its non-trivial orbital graphs on Ω. The results of this paper can thus
be considered as an attempt to generalise the theorems about the maximal number of fixed points of a non-
identity element in a primitive permutation group; see for example [17, 20, 22]. One of the key ingredients
in our proof of Theorems 1.1 is the following recent result [25]. Since its proof depends heavily on the
classification of finite simple groups, so do the proofs of Theorems 1.1 and 1.2.

Theorem 1.3. [25, Theorem 1.1] Let G be a transitive permutation group on Ω containing no non-trivial
normal subgroups of order a power of 2 (that is, O2(G) = 1) and let ω ∈ Ω with Gω being a 2-group. Then
|{δ ∈ Ω | δg = δ}| ≤ |Ω|/3, for every g ∈ G \ {1}.

The bound 1/3 in the Theorems 1.1 and 1.2 is sharp in the sense that there exists an infinite family (in
each case) meeting this bound. To see this, consider the graph DWm with vertex-set Zm×Z3 and the edge-set
{(x, i), (x+1, j) | x ∈ Zm, i, j ∈ Z3, i 6= j}. The graph DWm is clearly connected, 4-valent and arc-transitive.
Moreover, it admits an automorphism which fixes every vertex of the form (x, 0) while swapping the vertices
in each pair {(x, 1), (x, 2)}, x ∈ Zm. In a similar way as 4-valent arc-transitive Praeger-Xu graphs yield
3-valent vertex-transitive Split Praeger-Xu graphs (see Section 1.4), one can apply the splitting “operation”
to obtain a family of 3-valent vertex-transitive graphs S(DWm) of fixity exactly 1/3 of the number of vertices.
This suggests the following problem:

Problem 1.4. Determine the connected 4-valent arc-transitive graphs and the connected 3-valent vertex-
transitive graphs admitting an automorphism fixing precisely 1/3 of the vertices.

Theorems 1.1 and 1.2 seem to be suggesting that the proportion of fixed points of a non-identity auto-
morphism of a connected vertex-transitive graph is bounded by a “small” constant unless the graph is either
small or rather “special”. Since at this point it is not clear to us what the class of “special” graphs of larger
valencies might be and what would be a meaningful “small constant”, we include the definition of “special
graphs” and “small constant” as a part of the following problem:

Problem 1.5. For a given positive integer d find a “small constant” cd and a “well-understood” family of
“special graphs” Fd such that every finite connected d-valent vertex-transitive graph Γ admitting a non-trivial
automorphism fixing more than cd|VΓ| vertices belongs to Fd.

Finally, we would like to propose the following “edge-fixing” variation of Theorems 1.1 and 1.2:

Problem 1.6. Determine the connected 4-valent arc-transitive graphs and the connected 3-valent vertex-
transitive graphs admitting an automorphism fixing more than 1/3 of the edges.

1.1. Basic terminology and notation. A graph in this paper will be viewed as a pair (V,E) where V is
a finite non-empty set of vertices and E is a set of unordered pairs of V , called edges. If Γ := (V,E) is a
graph, then we let VΓ := V and EΓ := E. An s-arc of a graph is an (s+ 1)-tuple of vertices with every two
consecutive vertices adjacent and every three consecutive vertices pair-wise distinct. In particular, a 1-arc is
also called an arc. The set of arcs of a graph Γ is denoted AΓ.

We will also need a notion of a digraph, which we define to be a pair (V,A), where V is a finite non-empty
set of vertices and A is a set of ordered pairs of distinct vertices. Elements of A are called arcs of the digraph.
An s-arc of a digraph is an (s + 1)-tuple of vertices such that every two consecutive vertices form an arc.
If (u, v) is an arc of a digraph, then we say that v is an out-neighbour of u and that u is an in-neighbour
of v. The out-valency (in-valency, respectively) of a given vertex is then the number of its in-neighbours

(out-neighbours, respectively). If ~Γ := (V,A) is a digraph, then the underlying graph of ~Γ is the graph
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(V,E) with E := {{u, v} : (u, v) ∈ A}. Note that when ~Γ is an orientation (that is, when (u, v) ∈ A~Γ implies

(v, u) 6∈ A~Γ), then there is a bijective correspondence between the arcs of ~Γ and edges of the underlying
graph.

Let Γ be a graph (or a digraph), let G ≤ Aut(Γ) and let v ∈ VΓ. We denote by Gv the stabiliser

of the vertex v, by Γ(v) = {u ∈ VΓ : (v, u) ∈ AΓ} the neighbourhood of the vertex v and by G
Γ(v)
v the

permutation group induced by Gv on Γ(v). Suppose now that Γ is a G-arc-transitive connected graph. As
usual, when G = Aut(Γ), we omit the label G and we simply say that Γ is s-arc-transitive. Observe that a

G-arc-transitive graph Γ is (G, 2)-arc-transitive if and only if G
Γ(v)
v is a 2-transitive permutation group.

An edge- and vertex-transitive group of automorphisms G of a connected graph Γ that is not arc-transitive
is called 1

2 -arc-transitive. Note that in this caseG possesses two orbits on arcs, each orbit containing precisely
one arc underlying each edge. If A is an orbit of G on the arc-set of Γ, then (VΓ, A) is an arc-transitive

digraph, denoted ~Γ(G), whose underlying graph is Γ. In particular, if Γ has valency 4, then the in-valence

and out-valence of every vertex of ~Γ(G) is 2.
Given a set Ω, we denote by Sym(Ω) and Alt(Ω) the symmetric and the alternating group on Ω. When

the domain Ω is irrelevant or clear from the context, we write Sym(n) and Alt(n) for the symmetric and
alternating group of degree n. Given a permutation g ∈ Sym(Ω), we write Fix Ω(g) for the set of fixed points
{ω ∈ Ω | ωg = ω} of g and we write fprΩ(g) for the fixed-point-ratio of g, that is

fprΩ(g) :=
|Fix Ω(g)|

|Ω|
.

Given n ∈ N \ {0}, we denote by Dn the dihedral group of order 2n and we view Dn as a permutation
group of degree n; similarly, we denote by Cn the cyclic group of order n. Similarly, we denote by Zn the
integers modulo n.

A subgroup G of Sym(Ω) is said to be semiregular if the identity is the only element of G fixing some
point of Ω. Let G be a group and let H be a subgroup of G, we denote by H\G the set of right cosets of H
in G. Recall that G acts transitively on H\G by right multiplication. If G is a group and a, b ∈ G, we let
[a, b] = a−1b−1ab be the commutator of a and b, and CG(a) = {c ∈ G : ca = ac} be the centraliser of g in G.

1.2. The twelve sporadic graphs from Theorems 1.1 and 1.2. We start by describing the six sporadic
examples from Theorem 1.1.

Ψ1 The first graph is the complete graph K5. The automorphism group of K5 is Sym(5). A permutation
of Sym(5) fixing two or three points gives rise to a non-identity automorphism fixing more than a
1/3 of the vertices.

Ψ2 The second graph is the complete bipartite graph minus a complete matching K5,5 − 5K2. The
automorphism group of this graph is isomorphic to Sym(5) × C2. A permutation of Sym(5) fixing
two or three points gives rise to a non-identity automorphism fixing four or six vertices and hence
fixing more than a 1/3 of the vertices. Moreover, Aut(Ψ2) contains a vertex-transitive copy of Sym(5)
which fixes four vertices of Ψ2.

Ψ3 The third graph arises from the Fano plane. This graph is bipartite with bipartition given by the
seven points and the seven lines of the Fano plane, where the incidence in the graph is given by the
anti-flags in the plane, that is, the point p is adjacent to the line ℓ if and only if p /∈ ℓ. In other
words, Ψ3 is the bipartite complement of the Heawood graph. The automorphism group of this graph
is isomorphic to Aut(PSL3(2)) ∼= PGL2(7). An involution of PSL3(2) gives rise to a non-identity
automorphism fixing six vertices and hence fixing more than a 1/3 of the vertices of the graph.

Ψ4 The fourth graph is similar to Ψ3 and arises from the projective plane over the finite field with three
elements. This graph is bipartite with bipartition given by the thirteen points and the thirteen lines
of the projective plane, where the incidence in the graph is given by the flags in the plane, that is,
the point p is adjacent to the line ℓ if and only if p ∈ ℓ. The automorphism group of Ψ4 is isomorphic
to Aut(PGL3(3)). An involution of PGL3(3) gives rise to a non-identity automorphism fixing ten
vertices and hence fixing more than 1/3 of the vertices.

Ψ5 The fifth graph is a Kneser graph. This graph has 35 vertices and these are labeled by the 35 subsets
of {1, . . . , 7} having cardinality 3. Two 3-subsets a and b are declared to be adjacent if and only
if a ∩ b = ∅. The automorphism group of this graph is isomorphic to Sym(7). A transposition of



4 PRIMOŽ POTOČNIK AND PABLO SPIGA

Sym(7) gives rise to a non-identity automorphism fixing fifteen vertices and hence fixing more than
1/3 of the vertices of the graph.

Ψ6 The sixth (and last) graph is the standard double cover of Ψ5. This graph has 70 vertices and these
are labeled by the ordered pairs (v, i), where v is a vertex of Ψ5 and i ∈ {0, 1}. The vertices (v, 0) and
(w, 1) are declared to be adjacent if and only if v and w are adjacent in Ψ5. The automorphism group
of this graph is isomorphic to Sym(7) × C2. A transposition of Sym(7) gives rise to a non-identity
automorphism fixing thirty vertices and hence fixing more than 1/3 of the vertices of the graph.
Similarly as Ψ2, Aut(Ψ6) also contains a vertex-transitive copy of the symmetric group Sym(7),
however the maximum fixed point-ratio of a non-trivial element in this group is 1/5.

We now describe the six sporadic examples from Theorem 1.2.

Λ1 The first graph is the complete graph K4. The automorphism group of this graph is Sym(4). A
transposition of Sym(4) gives rise to a non-identity automorphism fixing more than 1/3 of the vertices
of the graph.

Λ2 The second graph is the complete bipartite graph K3,3. The automorphism group of this graph is
isomorphic to Sym(3)wr Sym(2). A transposition from the base group Sym(3) × Sym(3) gives rise
to a non-identity automorphism fixing four vertices and hence fixing more than 1/3 of the vertices.

Λ3 The third graph is the 1-skeleton of the cube. This graph is the Hamming graph over the 3-
dimensional vector space F3

2 over the field F2 with two elements. Two vertices (x1, x2, x3) and
(y1, y2, y3) are declared to be adjacent if and only if the vectors (x1, x2, x3) and (y1, y2, y3) dif-
fer in one, and only one, coordinate. The automorphism group of this graph is isomorphic to
Sym(2)wr Sym(3) ∼= Sym(4) × Sym(2). A transposition from Sym(4) gives rise to a non-identity
automorphism fixing four vertices and hence fixing more than 1/3 of the vertices.

Λ4 The fourth graph is the ubiquitous Petersen graph and it is a Kneser graph where the 10 vertices are
the subsets of {1, . . . , 5} having cardinality 2. Two 2-subsets a and b are declared to be adjacent if
and only if a∩b = ∅. The automorphism group of this graph is isomorphic to Sym(5). A transposition
from Sym(5) gives rise to a non-identity automorphism fixing four vertices and hence fixing more
than 1/3 of the vertices of the graph.

Λ5 The fifth graph arises from the Fano plane and it is the bipartite complement of Ψ3, that is, Λ5 is the
Heawood graph. The automorphism group of this graph is isomorphic to Aut(GL3(2)) ∼= PGL2(7).
An involution of GL3(2) gives rise to a non-identity automorphism fixing six vertices and hence fixing
more than 1/3 of the vertices of the graph.

Λ6 The sixth (and last) graph is the standard double cover of the Petersen graph. This graph has 20
vertices and these are labeled by the ordered pairs (v, i), where v is a vertex of the Petersen graph
and i ∈ {0, 1}. The vertices (v, 0) and (w, 1) are declared to be adjacent if and only if v and w are
adjacent in the Petersen graph. The automorphism group of this graph is isomorphic to Sym(5)×C2.
A transposition of Sym(5) gives rise to a non-identity automorphism fixing eight vertices and hence
fixing more than 1/3 of the vertices of the graph.

1.3. The Praeger-Xu graphs. We now define the infinite family appearing in Theorem 1.2 (ii). These are
the ubiquitous 4-valent Praeger-Xu graphs C(r, s), studied in detail by Gardiner, Praeger and Xu in [15, 35],
and more recently in [18]. We introduce them through their directed counterparts defined in [34].

Let r be an integer, r ≥ 3. Then ~C(r, 1) is the the lexicographic product of a directed cycle of length r

with an edgeless graph on 2 vertices. In other words, V~C(r, 1) = Zr×Z2 with the out-neighbours of a vertex

(x, i) being (x + 1, 0) and (x + 1, 1). For s ≥ 2, let V~C(r, s) be the set of all (s − 1)-arcs of ~C(r, 1) with

the out-neighbours of (v0, v1, . . . , vs−1) ∈ V~C(r, s) being (v1, . . . , vs−1, u) and (v1, . . . , vs−1, u
′), where u and

u′ are the two out-neighbours of u in ~C(r, 1). The graph C(r, s) is then defined as the underlying graph of
~C(r, s).

Clearly, C(r, s) is a connected 4-valent graph with r2s vertices (see [34, Theorem 2.8]). Let us now discuss

the automorphisms of the graphs C(r, s). Clearly, every automorphism of ~C(r, 1) (C(r, 1), respectively) acts

naturally as an automorphism of ~C(r, s) (C(r, s), respectively) for every s ≥ 2. For i ∈ Zr, let τi be the

transposition on V~C(r, 1) swapping the vertices (i, 0) and (i, 1) while fixing every other vertex. This is clearly

an automorphism of ~C(r, 1), and thus also of ~C(r, s) for s ≥ 2. Let

(1.1) K := 〈τi | i ∈ Zr〉



FIXED POINTS OF AUTOMORPHISMS OF GRAPHS 5

and observe that K ∼= Cr
2. Further, let ρ and σ be the permutations on V~C(r, 1) defined by

(x, i)ρ := (x+ 1, i) and (x, i)σ := (x,−i).

Then ρ is an automorphism of ~C(r, 1), and σ is an automorphism of C(r, 1) (but not of ~C(r, 1)). Observe
that the group 〈ρ, σ〉 normalises K. Let

(1.2) H := K〈ρ, σ〉 and H+ := K〈ρ〉.

Then clearly C2 wrDr
∼= H ≤ Aut(C(r, s)) and C2 wrCr

∼= H+ ≤ Aut(~C(r, s)) for every r ≥ 3 and s ≥ 1.

Moreover, H (H+, respectively) acts arc-transitively on C(r, s) (~C(r, s), respectively) whenever 1 ≤ s ≤ r−1.

With three exceptions, the groups H and H+ are in fact the full automorphism groups of C(r, s) and ~C(r, s),
respectively:

Lemma 1.7. ([35, Theorem 2.13] and [34, Theorem 2.8]) Let r, s, H and H+ be as above. Then Aut(~C(r, s)) =
H+ and if r 6= 4, then Aut(C(r, s)) = H. Moreover, |Aut(C(4, 1)) : H| = 9, |Aut(C(4, 2)) : H| = 3 and
|Aut(C(4, 3)) : H| = 2.

Remark 1.8. Lemma 1.7 implies that C(r, s) is 2-arc-transitive if and only if r = 4 and s ∈ {1, 2}.

Let v be a vertex of ~C(r, s) which as an (s − 1)-arc of ~C(r, 1) starts in (x, 0) or (x, 1) for some x ∈ Zr.

Observe that then Aut(~C(r, s))v = 〈τi | i ∈ Zr \ {x, x+ 1, . . . , x+ s− 1}〉, showing that

(1.3) K = 〈Aut(~C(r, s))v | v ∈ V~C(r, s)〉 = 〈(H+)v | v ∈ V~C(r, s)〉 = 〈Kv | v ∈ V~C(r, s)〉.

The following result explains the restriction on r and s in Theorem 1.1 (ii) and characterises the auto-
morphisms of C(r, s) that fix more than 1/3 of the vertices.

Lemma 1.9. The graph C(r, s) with r ≥ 3 and 1 ≤ s ≤ r − 1 contains a non-identity automorphism fixing
more than 1/3 of the vertices if and only s < 2r/3. In this case all such automorphisms belong to the group
K defined by (1.1).

Proof. Let Γ = C(r, s). For r ≤ 6 the claim of the lemma can be verified by inspecting the 14 graphs C(r, s),
3 ≤ r ≤ 6, 1 ≤ s ≤ r − 1, with a computer algebra system such as Magma [5]. We may thus assume that
r ≥ 7. By Lemma 1.7, we see that Aut(Γ) = H.

Let g be an arbitrary automorphism of Aut(Γ) fixing more than 1/3 of the vertices. Then g = τρiσǫ for

some τ ∈ K, i ∈ Zr and ǫ ∈ {0, 1}. For x ∈ Zr, let ∆x be the set of (s − 1)-arcs of ~C(r, 1) that start at a
vertex (x, 0) or (x, 1), and consider the elements of ∆x as vertices of Γ. Observe that each ∆x is an orbit of
the action of K on VΓ, that (∆x)

ρ = ∆x+1 and that (∆x)
σ = ∆−x−s+1. Consequently, (∆x)

g is either ∆x+i

if ǫ = 0 or ∆−x−i−s+1 if ǫ = 1. In particular, unless i = 0 and ǫ = 0, g preserves at most 2 out of r orbits
∆x, x ∈ Zr . Since r ≥ 7 and since g fixes more then 1/3 vertices of Γ, this implies that i = 0, ǫ = 0, and
thus that g ∈ K.

Finally, note that τi moves precisely those (s − 1)-arcs of ~C(r, 1) that pass through one of the vertices
(i, 0) or (i, 1). Therefore, τi, as an automorphism of C(r, s), fixes all but s2s vertices. Similarly, an element
∏

i∈J τi ∈ K moves precisely those (s − 1)-arcs of ~C(r, 1) that pass through at least one of the vertices
{(i, ǫ) : ǫ ∈ {0, 1}, i ∈ J}, implying that such an element fixes at most as many elements as a single τi. Hence

1

3
< fprVC(r,s)(g) ≤ fprVC(r,s)(τi) =

(r − s)2s

r2s
=

r − s

r
and the result follows. �

The Praeger-Xu graphs can be characterised by an existence of an abelian normal subgroup not acting
semiregularly on the vertices. The following result appeared as Theorem 1 in [35] for the case of G acting
arc-transitively, and as Theorem 2.9 in [34] for the 1

2 -arc-transitive case.

Lemma 1.10. (see [35, Theorem 1] and [34, Theorem 2.9]) Let Γ be a connected 4-valent graph and let G
be an edge- and vertex-transitive group of automorphisms of Γ. If G has an abelian normal subgroup which
is not semiregular on the vertices of Γ, then Γ ∼= C(r, s) with r ≥ 3 and 1 ≤ s ≤ r − 1.

The following lemma is a generalisation of [15, Lemma 3.1] from the case of G being arc-transitive group
to the case of an arbitrary edge- and vertex-transitive group G. The proof closely follows that of [15,
Lemma 3.1].
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Lemma 1.11. Let Γ be a connected 4-valent graph, let G be an edge- and vertex-transitive group of auto-
morphisms of Γ and let N be a minimal normal subgroup of G. If N is a 2-group and Γ/N is a cycle, then
Γ ∼= C(r, s) for some r and s.

Proof. If N does not act semiregularly on VΓ, then the result follows by Lemma 1.10. We may thus assume
that N is semiregular. If G is arc-transitive, then result follows directly from [15, Lemma 3.1]. We may thus
assume that G is 1

2 -arc-transitive.

Let K be the kernel of the action of G on the vertex-set {uN : u ∈ VΓ} of Γ/N and let C = CK(N) be the
centraliser of N in K. Note that both K and C are normal in G. Since N is abelian, we have N ≤ C. The

stabiliser Cu clearly fixes every vertex of uN , showing that the group CuN

induced by the action of C on uN

is regular, implying that CuN

= NuN

and so CuN

is abelian. But every permutation group is isomorphic
to a subgroup of the direct product of the permutation groups it induces on its orbits. In particular, C is

isomorphic to a subgroup CuN
1 × · · · × CuN

m where uC
1 , . . . , u

C
m are the C-orbits on VΓ, implying that C is

abelian. If Cu 6= 1 for some u ∈ VΓ, then by Lemma 1.10, Γ ∼= C(r, s). We may thus assume that Cu = 1,
and therefore that C = N .

Let v ∈ VΓ and let u,w be the out-neighbours of v in the digraph ~Γ(G). Since G acts arc-transitively on
~Γ(G), there is an element h ∈ Gv swapping the vertices u and w. Moreover, such an element clearly preserves
each N orbit, implying that g ∈ K. In particular, Kv 6= 1, and so N is a proper subgroup of K. On the other
hand, since vN = vK , we have K = NKv, implying that K is a 2-group. The action of K on the set N \ {1}
of odd cardinality by conjugation thus has at least one fixed point, say x ∈ N . But then x is centralised
by every element in K and thus x ∈ Z(K). In particular Z(K) ∩ N is a non-trivial normal subgroup of G
contained in G. By minimality of N , it follows that N ≤ Z(K). But then C = K, contradicting the fact
that Cv = 1. This contradiction shows that Γ ∼= C(r, s) as claimed. �

1.4. Split Praeger-Xu graphs. We now define the family of the Split Praeger-Xu graphs S(C(r, s)), fea-
turing in Theorem 1.2 (ii). This family is obtained from the Praeger-Xu graphs via the splitting operation
S(−), which was introduced in [27, Construction 9]. Rather then defining S(−) in its full generality here, we
only describe it in the special case of the Praeger-Xu graphs C(r, s). We refer the reader to [27, Section 4]
for more information on this operator.

Split each vertex v of ~Γ := ~C(r, w) into two copies, denoted v+ and v−, and let v− be adjacent to

v+ and to u+ whenever u is an in-neighbour of v in ~Γ. Similarly, let v+ be adjacent to v− and to w−

whenever w is an out-neighbour of v in Γ. The resulting 3-valent graph is then called the Split Praeger-Xu

graph and denoted S(C(r, s)). Observe that the automorphism group Aut(~C(r, s)) (= H) acts faithfully as
a vertex- but not arc-transitive group of automorphisms of S(C(r, s)) and that for every g ∈ H we have
fprVS(C(r,s))(g) = fprVC(r,s)(g).

1.5. Normal quotients. The proofs of the main theorems are inductive with the induction step using the
notion of a normal quotient of a graph introduced in [36, Section 4].

Definition 1.12. Let Γ be a connected graph (or digraph) and let N ≤ Aut(Γ). The normal quotient Γ/N
is the graph (or digraph) whose vertices are the N -orbits on VΓ with two distinct such N -orbits vN and uN

forming an arc (vN , uN ) of Γ/N whenever there is a pair of vertices v′ ∈ vN and u′ ∈ uN such that (v′, u′)
is an arc of Γ.

If the group N is normalised by some group G ≤ Aut(Γ), then G/N acts (possibly unfaithfully) on Γ/N
as a group of automorphisms. If G is vertex-, edge- or arc-transitive on Γ, then so is G/N on Γ/N . Suppose
now that Γ is a 4-valent graph and that G is arc-transitive. Then the valency of Γ/N is either 0 (when N
is transitive on VΓ), 1 (when N has 2 orbits on VΓ), 2 (when Γ/N is a cycle) or 4. In the latter case, G/N
acts faithfully on VΓ and hence Γ/N is a connected 4-valent G/N -arc-transitive graph with vertex-stabiliser
(G/N)vN = GvN/N in G/N isomorphic to Gv. Moreover, if Γ/N is 4-valent, Nv = 1 for every vertex
v ∈ VΓ.

The following lemma follows almost immediately from the theory of lifting automorphisms along covering
projections, as developed in [23]. However, in order to avoid leading the reader astray with introducing these
methods, we decided to provide a straightforward, though longer proof.
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Lemma 1.13. Let Γ be a connected 4-valent G-arc-transitive graph and let N be a semiregular normal
subgroup of G such that the normal quotient Γ/N is a cycle of length r ≥ 3. Let K be the kernel of the
action of G on the N -orbits on VΓ. Then Kv is an elementary abelian 2-group.

Proof. Let ∆0,∆1, . . . ,∆r−1 be the orbits of N in its action on VΓ. Since Γ/N is a cycle, we may assume
that ∆i is adjacent to ∆i−1 and ∆i+1 with indices computed modulo r. Since N is normal in G, the orbits
of N on the edge-set EΓ form a G-invariant partition of EΓ. Since N acts semiregularly on VΓ, no two edges
incident to a fixed vertex of Γ belong to the same N -edge-orbit. Moreover, since G is arc-transitive, every
vertex v ∈ ∆i is adjacent to two vertices in ∆i−1 and two vertices in ∆i+1, implying that the edges between
∆i and ∆i+1 are partitioned into precisely two N -edge-orbits; let’s call these two orbits Θi and Θ′

i.
Clearly, an element of K can map an edge in Θi only to an edge in Θi or to an edge in Θ′

i. On the other
hand, for every vertex v ∈ Θi there is an element g ∈ Gv which maps an edge of Θi incident to v to the
edge of Θ′

i incident to v; and this element g is clearly an element of K. This shows that the orbits of K on
EΓ are precisely the sets Θi ∪Θ′

i, i ∈ Zr. In other words, each orbit of the induced action of K on the set
EΓ/N = {eN : e ∈ EΓ} has length 2. Consequently, if X denotes the kernel of the action of K on EΓ, then
K/X embeds into Sym(2)r and is therefore an elementary abelian 2-group.

Let us now show that X = N . Clearly, N ≤ X . Let v ∈ ∆0. Since N is transitive on ∆0, it follows that
X = NXv. Suppose that Xv is non-trivial and let g be a non-trivial element of Xv. Further, let w be a
vertex which is closest to v among all the vertices not fixed by g, and let v = v0 ∼ v1 ∼ . . . ∼ vm = w be a
shortest path from v to w. Then vm−1 is fixed by g. Since g fixes each N -edge-orbit set-wise and since every
vertex of Γ is incident to at most one edge in each N -edge-orbit, it follows that g fixes all the neighbours of
vm−1, thus also vm. This contradicts our assumptions and proves that Xv is a trivial group, and hence that
X = N .

Thus K/N is an elementary abelian 2-group. Now, since N is semiregular, we see that Kv
∼= Kv/(N ∩

Kv) ∼= KvN/N = K/N (the latter equality following from the fact that N is transitive on vK). Hence, Kv

is an elementary abelian 2-group, as claimed. �

1.6. Miscellanea. We now present several auxiliary results that will come useful when proving Theorems 1.1
and 1.2.

Lemma 1.14. Let Γ be a connected k-valent graph admitting an abelian group of automorphisms N having
at most two orbits on VΓ and let v ∈ VΓ. Then either Nv 6= 1 and there exist two distinct vertices u and u′

with Γ(u) = Γ(u′), or Nv = 1, N has a generating set consisting of at most 2k−2 elements and |VΓ| = 2|N |.

Proof. Observe that since N is abelian, Nv = Nu whenever u ∈ vN . Hence, if N is transitive on VΓ, then Γ
is a Cayley graph on the group N , and N is generated by the k-element set {x ∈ N : vx ∼Γ v}.

Suppose now that N has two orbits on VΓ and let u be a neighbour of v. If Nv = 1, then Γ is isomorphic
to a bi-Cayley graph BiCay(N ;L,R, S}) (see, for example, [8] for the definition of bi-Cayley graphs and
basic properties) where S,L,R ⊆ N , 1 ∈ S, |S| + |L| = |S|+ |R| = k and 〈S ∪ L ∪ R〉 = N . In particular,
N has a generating set of size at most 2k − 2. If Nv 6= 1, then Nv and Nu are kernels of the action of N on
vN and uN , respectively, and thus Nv ∩Nu = ∅. Hence, if x is a non-trivial element of Nv, then ux 6= u and
Γ(u) = Γ(ux). �

Lemma 1.15. Let Γ be one of the exceptional graphs Ψ1, . . . ,Ψ6 or C(r, s) with r ≥ s and 1 ≤ s ≤ r − 1
and let G be an edge- and vertex-transitive group of automorphisms of Γ containing a non-trivial element g
with fprVΓ(g) > 1/3. Then exactly one of the following happens:

(1) G is 2-arc-transitive, or
(2) Γ ∼= C(r, s) with 1 ≤ s ≤ 2r/3 and G is Aut(Γ)-conjugate to a subgroup of H defined in (1.2).

Proof. Suppose first that Γ ∼= C(r, s). Then Lemma 1.9 implies that s < 2r/3. If r 6= 4, then, by Lemma 1.7,
we see that Aut(Γ) = H and the result follows (note that H is not 2-arc-transitive). Suppose now that r = 4,
and thus s ∈ {1, 2}. Since |H| = r2r+1, we see that H is a 2-group, and by Lemma 1.7, |Aut(Γ) : H| = 3
or 9. Hence H is a Sylow 2-subgroup of Aut(Γ). If G is not 2-arc-transitive, then Gv is a 2-group and
since |VΓ| = 8 or 16, we see that G is a 2-group, implying that G is conjugate to a subgroup of the Sylow
2-subgroup H. For Γ ∼= Ψi with i ∈ {1, . . . , 6} we verified the claim of the lemma by using the algebra
computational system Magma [5]. �
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Lemma 1.16. Let G be a group acting transitively on the set Ω and let Σ be a G-invariant partition of Ω.
For g ∈ G, let gΣ be the permutation of Σ induced by g. Then

fprΩ(g) ≤ fprΣ(g
Σ).

In particular, if N is a normal subgroup of G, then fprΩ(g) ≤ fprΩ/N (Ng).

Proof. Observe that if ω ∈ Fix Ω(g) and [ω] is the element of Σ containing ω, then [ω] ∈ Fix Ω/N (Ng). Hence

|Fix Ω(g)| =
∑

B∈FixΣ(gΣ)

|B ∩ Fix Ω(g)| ≤ b|Fix Σ(g
Σ)|,

where b is the cardinality of an arbitrary element of Σ. Note that b|Σ| = |Ω|. The claim of the lemma then
follows by dividing the above inequality by |Ω| and observing that Ω/N is a G-invariant partition of Ω. �

The following lemma was proved in [25, Lemma 2.2] and is just a slight generalisation of [22, Lemma 2.5].

Lemma 1.17. [25, Lemma 2.2] Let X be a group acting on a set Ω, let Y be a normal subgroup of X, let
ω ∈ Ω and let x ∈ Xω. Then

(1.4) fprωY (x) =
|xY ∩Xω|

|xY |
=

|xY ∩Xω|

|Y : CY (x)|
,

where xY := {xy | y ∈ Y } is the Y -conjugacy class of the element x and CY (x) the centraliser of x in Y .

If B ≤ G ≤ Sym(Ω) and ω ∈ Ω, we let [a,B] = {[a, b] : b ∈ B} and [a,B]ω = [a,B]∩Gω. Note that [a,B]
is not necessarily a subgroup of G. Observe that if B is semiregular and normalised by a, then [a,B]ω = 1.

Lemma 1.18. Let G ≤ Sym(Ω), let ω ∈ Ω, let g ∈ Gω, and let X be a normal subgroup of G such that
[g,X ]ω = 1. Then

Fix ωX (g) = ωCX (g) and fprΩ(g) ≤ fprωX (g) =
1

|X : CX(g)|
.

Proof. Observe first that 1 = [g,X ]ω = {[g, x] : x ∈ X, [g, x] ∈ Gω} ⊇ {[g, x] : x ∈ Xω}, implying that
every x ∈ Xω centralises g and so Xω = CX(g)ω. Let δ ∈ Fix ωX (g). Then there exists x ∈ X with δx = ω

and ωg−1x−1g = (ωx−1

)g = δg = δ = ωx−1

, implying that ω[g,x] = ω. Since [g,X ]ω = 1, this shows that
x ∈ CX(g) and hence that Fix ωX (g) = ωCX(g), as claimed. Therefore |Fix ωX (g)| = |CX(g) : CX(g)ω| and
so

fprωX (g) =
|Fix ωX (g)|

|ωX |
=

|CX(g)| |Xω|

|X ||CX(g)ω |
=

1

|X : CX(g)|
,

as claimed. In particular, fprωg (g) = fprδg (g) for every δ ∈ FixΩ(g). Now choose a set {δ1, . . . , δm} of
representatives of those orbits δX for which Fix δX (g) 6= ∅. Without loss of generality, we may assume that
all δi are fixed by g. The set Fix Ω(g) is then the disjoint union of the sets Fix δXi

(g) for i ∈ {1, . . . ,m}. Since

|Ω| = |Ω/X | |ωX| ≥ m|ωX |, we see that

fprΩ(g) =
|Fix Ω(g)|

|Ω|
≤

|Fix Ω(g)|

m|ωX |
=

1

m

m
∑

i=1

|Fix δXi
(g)|

|ωX |
=

1

m

m
∑

i=1

fprδXi (g) = fprωX (g),

completing the proof. �

2. Proof of Theorem 1.1 for Γ not 2-arc-transitive

This section is devoted to the proof of Theorem 1.1 in the case where Γ is not a 2-arc-transitive graph.
Throughout this section, we work under the following assumption:

Hypothesis 2.1. Let Γ be a connected 4-valent graph, let G be a subgroup of Aut(Γ) acting transitively
on VΓ and on EΓ and let g be a non-trivial element of G such that fprVΓ(g) > 1/3.

Lemma 2.2. Let Γ, G and g be as in Hypothesis 2.1. If G is not 2-arc-transitive, then either Γ ∼= C(r, s)
for some integers r and s, or G contains a minimal normal subgroup N of order a power of 2 such that Γ/N
is a 4-valent graph.
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Proof. First, observe that since G is not 2-arc-transitive, the vertex-stabiliser Gv is a 2-group (for example,
see [26] for the arc-transitive case and [30] for the 1

2 -arc-transitive case). If G possesses no non-trivial normal
2-subgroups, then Theorem 1.3 yields a contradiction. We may thus assume that G has a minimal normal
subgroup N which is a 2-group (and hence an elementary abelian 2-group). If Nv 6= 1, then by Lemma 1.10,
we have Γ ∼= C(r, s). We may thus assume that Nv = 1. If N has at most two orbits on VΓ, then by
Lemma 1.14, we see that |VΓ| ≤ 128 and the validity of the claim can be checked computationally by
inspecting the candidate graphs from the list of all 4-valent arc-transitive graphs of small order (see [27] or
[33]) or small 4-valent 1

2 -transitive graphs [28]. We may thus assume that N has at least three orbits on VΓ,
and therefore Γ/N is either a cycle Cr for some r ≥ 3 or a 4-valent graph. In the former case, Lemma 1.11
implies that Γ ∼= C(r, s), and the result follows. �

We now prove a result that will enable us to reduce the proof of Theorem 1.1 to the case where G is
2-arc-transitive.

Lemma 2.3. Let Γ, G and g be as in Hypothesis 2.1. Suppose that G contains a minimal normal subgroup
N of order a power of 2 such that Γ/N is isomorphic to C(r, s) for some r and s. If G/N ≤ H+ where H+

is as in the formula (1.2) of Section 1.3, then Γ ∼= C(r′, s′) with 1 ≤ s′ ≤ 2r′/3.

Proof. By Lemma 1.9, we have 1 ≤ s ≤ 2r/3. Moreover, by way of contradiction, we may assume that
Γ 6∼= C(r′, s′) for any r′ and s′. Since G/N ≤ H+, the group G/N is not arc-transitive and thus neither is

G. Let ~Γ := ~Γ(G) be a digraph induced by the 1
2 -arc-transitive action of G. Then ~Γ is a G-arc-transitive

digraph of in- and out-valency 2, and thus in view of Lemmas 1.7 and 1.10, we may assume that:

(2.1) Every abelian normal subgroup of G acts semiregularly on V~Γ.

Note that ~Γ/N ∼= ~C(r, s). We will now follow the ideas developed in the proof of [26, Theorem 3.10] as well
as in [30], which in turn draw heavily from the classical work of Tutte [39], Djokovović [14] and Sims [38].

Identify ~Γ/N with ~C(r, s) and let the automorphisms τi, ρ ∈ Aut(~Γ) and the group K = 〈τi | i ∈ Zr〉 ∼= Cr
2

be as in Section 1.3. Recall that H+ = K〈ρ〉 and that K = 〈(H+)x : x ∈ V~C(r, s)〉 = 〈Kx : x ∈ V~C(r, s)〉 (see
formula (1.3)). Since G/N ≤ H+ this implies that (G/N)vN ≤ KvN and hence (G/N)vN = (G/N) ∩ Kv.
Now let

(2.2) E = 〈Gu : u ∈ V~Γ〉

and observe that E = (Gv)
G, the normal closure of Gv in G. We now see that

(2.3) EN/N = (GvN)G/N = (GvN/N)G/N = ((G/N)vN )G/N = ((G/N) ∩Kv)
G/N = (G/N) ∩K.

By minimality of N , it follows that either N ≤ G or N ∩E = 1. If N ∩E = 1, we see that E ∼= EN/N ≤ K;

in particular, E is an abelian normal subgroup of G not acting semiregularly on V~Γ, contradicting (2.1).
We may thus assume that N ≤ E. Then E/N = EN/N = (G/N) ∩ K. Hence E/N is an elementary

abelian 2-groups, implying that E is a 2-group. Moreover, since Eu
∼= Eu/(N∩Eu) ∼= (EuN/N) = (E/N)uN ,

wee see that

(2.4) Eu is an elementary abelian 2-group for every u ∈ VΓ.

Now consider the Frattini subgroup Φ(E) and the derived subgroup [E,E] of E. Being characteristic in E,
they are both normal in G. Recall that Φ(E) (respectively, [E,E]) is the smallest normal subgroup of E
with respect to which the quotient group is elementary abelian (respectively, abelian). In particular, since
E/N is elementary abelian, we see that [E,E] ≤ Φ(E) ≤ N . By the minimality of N , it follows that either
[E,E] = 1 or [E,E] = Φ(E) = N . If [E,E] = 1, then E is abelian, which contradicts (2.1). We may thus
assume that

(2.5) [E,E] = Φ(E) = N.

Moreover, since E and N are 2-groups, the action of E on N \ {1} by conjugation must have at least
one fixed point, implying that N intersects the centre Z(E) non-trivially. The minimality of N then implies
that Z(E) ≥ N . If (Z(E))v 6= 1, then Z(E) is a normal elementary abelian 2-subgroup of G not acting
semiregularly on VΓ, which contradicts (2.1), showing that Z(E) acts semiregularly on VΓ.

We will now set up a standard notation typically used when studying the structure of a vertex-stabiliser
Gv in a G-arc-transitive digraph of out-valence 2 (see, for example, [30, Section 2.3]). Let t be the largest
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integer such that G acts transitively on the t-arcs of ~Γ. Note that G then acts regularly on the set of all

t-arcs of ~Γ and that t is the largest integer such that Gv (which clearly equals Ev) acts transitively on the

t-arcs starting at v. Let a be any element of G such that (va, v) is an arc of ~Γ and let

(2.6) vi := va
−i

for i ∈ Z.

Note that, for every i ≥ 0, the (i+1)-tuple (v0, v1, . . . , vi) is an i-arc of ~Γ. Observe also that Ea ∈ G/E acts

as a one-step rotation of ~Γ/E ∼= ~Cr, implying that G = E〈a〉.
Now consider the stabiliser G(v0,...,vi) of this i-arc in G; since v0 = v and Gv = Ev, we see that G(v0,...,vi) =

E(v0,...,vi). By the definition of t, it follows that G(v0,...,vt) = 1 and that G(v0,...,vt−1) = 〈x0〉, where x0 is the
unique element of G which fixes the t− 1 arc (v0, v1, . . . , vt−1) but moves the vertex vt. For i ≥ 1, let

(2.7) xi := xai

and Ei := 〈x0, . . . , xi−1〉, E0 := 1.

It is not difficult to deduce (see [30, Section 2.3] for the proof) that

(2.8) for every i ∈ {0, . . . , t} : Ei = G(v0,...,vt−i) and |Ei| = 2i.

Moreover, by [30, Section 2.3], there exists a positive integer e with the following properties:

• e is the smallest integer such that Et+e = Et+e+1;
• e is the smallest integer such that Et+e = E.

Recall that E/N = (G/N) ∩K is an elementary abelian 2-group. Let us now show that

(2.9) |E/N | = 2t+e and E/N = 〈Nx0, Nx1, . . . , Nxt+e−1〉.

Indeed: Suppose that for some e′ ≤ e we have Et+e′N = Et+e′+1N . Since (Ei)
a = 〈x1, . . . , xi〉, it follows

that Et+e′+2N = 〈Et+e′+1N, (Et+e′+1N)a〉 = 〈Et+e′N, (Et+e′N)a〉 = Et+e′+1N = Et+e′N , and thus by
induction we see that E = Et+eN = Et+e′N . Since N = Φ(E), the set of non-generators of E, it follows
that Et+e′ = E, and thus e = e′. In particular, e is the smallest integer such that Et+eN = Et+e+1N . Hence

(2.10) N = E0N < E1N < E2N < · · · < Et+e−1N < Et+eN = E.

In particular, |E| ≥ 2t+e|N | and thus |E/N | ≥ 2t+e. On the other hand, E/N = 〈Nx0, Nx1, . . . , Nxt+e−1〉,
and since E/N is elementary abelian, we see that |E| ≤ 2t+e, proving the claim (2.9).

Recall that Z(E) acts semiregularly on VΓ. Since Ev = Et = 〈x0, . . . , xt−1〉 is abelian (see (2.4)), it follows

that Eat−1

t = 〈xt−1, . . . , x2t−2〉 is also abelian. Therefore xt−1 is central in 〈Et, (Et)
at−1

〉 = 〈x0, . . . , x2t−2〉 =
E2t−1. Since xt−1 ∈ Ev and Z(E) ∩ Ev = 1, we get E2t−1 < E = Et+e and hence 2t− 1 < t+ e from which
it follows that

(2.11) e ≥ t.

We now prove a technical result (its relevance will become apparent later in the proof). Let h be an
arbitrary element of Ev0 \ Ev−1

and let β = min{b ∈ N : h ∈ G(v0,...,vt−b)}. Then:

(2.12) 1 ≤ β ≤ t and for every j ∈ {1, . . . , e} and every x ∈ E we have hat−β+jx 6∈ Ev and ha−1x 6∈ Ev.

Since G(v0,v1,...,vt) = 1, we see that β ≥ 1 and since h ∈ Ev0 = Gv0 , we see that β ≤ t. Recall that
G(v0,v1,...,vt−i) = 〈x0, . . . , xi−1〉 and that e is the smallest integer such that E = 〈x0, . . . , xt−1+e〉. By

definition, h is an automorphism of ~Γ fixing the (t − β)-arc (v0, v1, . . . , vt−β) and moving the vertices v−1

and vt−β+1. Since v0 = v and Ev = Gv = 〈x0, . . . , xt−1〉, we may write h = xαx
εα+1

α+1 · · ·x
εγ−1

γ−1 xγ , for some

0 ≤ α < γ < t and εi ∈ {0, 1}. Then h ∈ 〈x0, . . . xγ〉 = G(v0,...,vt−γ−1) and thus by the definition of β we see
that γ = β − 1. Further, since Ev−1

= Eva = (Ev)
a = 〈x1, . . . , xt〉 and since h 6∈ Ev−1

, we see that α = 0.

Therefore h = x0x
ε1
1 · · ·x

εβ−2

β−2 xβ−1 and thus

hat−β+jx = x−1xt−β+jx
ε1
t−β+j+1 · · ·x

εβ−2

t+j−2xt+j−1x.

Suppose now that hat−β+jx ∈ Ev = 〈x0, . . . , xt−1〉. Since E/N is an abelian group, then the above equality,
when considered modulo the group N , implies

Nxt−β+j Nxε1
t−β+j+1 · · ·Nx

εβ−2

t+j−2 Nxt+j−1 ∈ 〈Nx0, . . . , Nxt−1〉.

Since j ≥ 1 and t− β ≥ 0, we then see that

Nxt+j−1 ∈ 〈Nx0, . . . , Nxt+j−2〉.
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But since j ≤ e this contradicts the fact that {Nx0, Nx1, . . . , Nxt+e−1} is a minimal generating set for

E/N ; see (2.9). This contradiction shows that hat−β+jx 6∈ Ev, as claimed. Similarly, if ha−1x ∈ Ev, then

h ∈ (Ev)
x−1a and so h ∈ xa〈x1, . . . , xt〉(xa)−1, showing that Nx0 ∈ 〈Nx1, . . . , Nxt〉, again contradicting

(2.9).

Now let g be a non-trivial element of G with fprVΓ(g) >
1
3 and let u ∈ FixVΓ(g). Since g ∈ Gu = Eu, we

see that [g, E]u ≤ [E,E]u = Nu = 1. In particular, since [g, Eu] ≤ [g, E]u, it follows that [g, Eu] = 1, and
thus CE(g)u = Eu for every u ∈ FixVΓ(g). We may now apply Lemma 1.18 with VΓ in place of Ω, with E
in place of X and with u in place of ω, to conclude that

(2.13) Fix uE (g) = uCE(g) and
1

3
< fprVΓ(g) ≤ fpruE (g) =

1

|E : CE(g)|

and so |E : CE(g)| ≤ 2. If E = CE(g), then g ∈ Z(E) ∩ Ev = (Z(E))v = 1, a contradiction. Therefore
|E : CE(g)| = 2 and thus

(2.14) fpruE (g) =

{

1
|E:CE(g)| =

1
2 if Fix uE (g) 6= ∅,

0 if Fix uE (g) = ∅.

Now assume without loss of generality that v ∈ FixVΓ(g). Recall that E = Et+e = 〈x0, . . . , xt+e−1〉.
Since FixVΓ(g) 6= ∅ it follows by (2.14) that |E : CE(g)| = 2 and thus there exists the smallest integer
i ∈ {0, . . . , t + e − 1} such that xi 6∈ CE(g). If i < t, then xi ∈ Ev = CE(g)v (see (2.8)), contradicting the
choice of i. Hence we have

(2.15) E = CE(g) ∪ xiCE(g) for some i ∈ {t, t+ 1, . . . , t+ e− 1}.

Since the automorphism a maps a vertex to its neighbour in Γ, the connectivity of Γ implies that G =

〈Gv, a〉 ≤ 〈E, a〉. Now observe that ~Γ/E ∼= (~Γ/N)/(E/N) ∼= ~C(r, s)/((G/N) ∩ K) ∼= ~Cr; in particular, the

E-orbits on V~Γ can be labelled by ∆i, i ∈ Zr , in such a way that every arc of ~Γ starting in some ∆i ends in
∆i+1. We may assume without loss of generality that v ∈ ∆0. Since the automorphism a maps the vertex v
to its in-neighbour (see (2.6)), it follows that (∆j)

a = ∆j−1 for every j ∈ Zr, and thus

∆j = vEa−j

= va
−jE = (vj)

E .

Using (2.15), we can split this E-orbit into two halves, that is,

∆j = ∆′
j ∪∆′′

j where ∆′
j = va

−j
CE(g), ∆′′

j = va
−jxiCE(g) and ∆′

j ∩∆′′
j = ∅.

Let us call the E-orbit ∆j blue provided that Fix∆j
(g) = ∅, red if g ∈ Evj , and pink if g ∈ Ev

xi
j
. By (2.13)

we see that ∆j is red if and only if Fix∆j
(g) = ∆′

j and that it is pink if and only if Fix∆j
(g) = ∆′′

j . In

particular, if ∆j is not blue, then it is either red or pink. Moreover, if ∆j is red, then g ∈ Evj = (Ev)
a−j

,

and if it is pink, then g ∈ E(vj)xi = (Ev)
a−jxi = (Ev)

xi+ja
−j

. This immediately implies that:

(2.16) ∆j is red ⇐⇒ ga
j

∈ Ev and ∆j is pink ⇐⇒ ga
jxi+j ∈ Ev.

If, for a colourX ∈ {red, pink, blue}, an element k ∈ Zr and a positive integer ℓ the orbits ∆k, . . . ,∆k+ℓ−1

are all of colour X while ∆k−1 and ∆k+ℓ are of a colour different than X , we say that S := {k, . . . , k+ ℓ− 1}
is a strip of colour X and of length ℓ(S) := ℓ. Let S := {k, . . . , k+ℓ−1} be a strip. Then the strip containing
k − 1 is said to precede S and the strip containing k + ℓ follows the strip S.

Let S be a strip preceded by a strip S− and followed by a strip S+. We will now show that the following
holds:

(2.17) If S is red or pink, then S+ and S− are blue, ℓ(S) ≤ t and ℓ(S+) ≥ e.

Suppose first that S = {k, . . . , k + ℓ − 1} is a red strip. Let h := ga
k

. Then, by (2.16), we see that

haj

∈ Ev for every j ∈ {0, . . . , ℓ− 1}, while ha−1

, haℓ

6∈ Ev. In other words, h ∈ Ev0 \Ev−1
, h ∈ E(v0,...,vℓ−1)

while h 6∈ Evℓ . Hence β := min{b ∈ N : h ∈ G(v0,...,vt−b)} = t− ℓ+ 1. We may now apply (2.12) to conclude

that 1 ≤ t− ℓ+ 1 ≤ t (implying ℓ ≤ t, as required) and that neither of the elements ha−1x and haℓ−1+jx for
j ∈ {1, . . . , e} and x ∈ E belongs to Ev. In view of (2.16), this implies that neither of the orbits ∆k−1 and
∆k+ℓ, . . . ,∆k+ℓ+e−1 are red or pink, showing that the strips S−1 and S+ are blue and that ℓ(S+) ≥ e. This
completes the proof of the claim (2.17).
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Since e ≥ t (see (2.11)), the claim (2.17) implies that the number of blue orbits is greater of equal to
the number of red and pink orbits combined. Since g has no fixed points in blue orbits and fixes precisely
half of the points in each red or pink orbit, this shows that g fixes at most 1/4 of the vertices of Γ. This
contradictions completes the proof of the theorem in the case where Γ/N ∼= C(r, s) for some r and s. �

We can now prove Theorem 1.1 under the assumption that G is not 2-arc-transitive.

Theorem 2.4. Let Γ be a connected 4-valent graph, let G be an edge- and vertex-transitive but not 2-arc-
transitive group of automorphisms of Γ and let g be a non-trivial element of G with fprVΓ(g) > 1/3. Then
Γ ∼= C(r, s) for some positive integers r and s with 1 ≤ s < 2r/3.

Proof. Suppose that the theorem is false and let Γ be a counterexample with the smallest number of vertices.
Moreover, among all groups G satisfying the assumptions of the theorem, choose one of smallest order.

By Lemma 2.2, there exists a minimal normal subgroup N of G of order a power of 2 acting semiregularly
on VΓ such that Γ/N is a 4-valent graph. Then G/N acts edge- and vertex-transitively on Γ/N but not
2-arc-transitively, and by Lemma 1.16, we see that fprVΓ(Ng) > 1/3. The minimality of Γ then implies
that Γ/N ∼= C(r′, s′) for some r′ and s′ with 1 ≤ s′ < 2r′/3. By Lemma 1.15, it follows that G/N is
Aut(Γ/N)-conjugate to a subgroup of H. Without loss of generality we may thus assume that G/N ≤ H.
Furthermore, by Lemma 1.9, we see that Ng ∈ K ≤ H+. Now consider the group X := G/N ∩ H+. Since
|H : H+| = 2, we see that |G/N : X | ≤ 2 and X is a 1

2 -arc-transitive group of automorphisms of Γ/N . Let
G+ be the preimage of X with respect to the quotient projection G → G/N . Then G+/N ∼= X ≤ H+, G+

is 1
2 -arc-transitive and since Ng ∈ X , we see that g ∈ G+. By our choice of G this implies that G = G+,

and hence G/N ≤ H+. The result now follows from Lemma 2.3. �

3. Proof of Theorem 1.2 for Γ not arc-transitive

We now move our attention to 3-valent vertex- but not arc-transitive graphs. As observed in [26, 27], the
3-valent graph admitting a vertex- but not arc-transitive group of automorphisms are closely related to the
family of 4-valent graph admitting an arc- but not 2-arc-transitive group of automorphisms. This will enable
us to reduce the proof of Theorem 3.1 below to the situation covered by Theorem 1.1.

In the proof of Theorem 3.1 we need to refer to two special families of cubic vertex-transitive graphs: the
prisms Prn, that can be defined as the Cayley graphs Cay(Zn × Z2, {(0, 1), (1, 0), (−1, 0)}) for n ≥ 3, and
the Möbius ladders Mbn, defined as the Cayley graphs Cay(Z2n, {1,−1, n}) for some n ≥ 2.

Theorem 3.1. Let Γ be a connected 3-valent graph admitting a vertex-transitive but not arc-transitive group
of automorphisms G. Let g ∈ G be a non-trivial element of smallest order such that fprVΓ(g) > 1/3. Then
Γ is either a Split Praeger-Xu graph S(C(r, s)) with 1 ≤ s ≤ 2r/3, r ≥ 3, or isomorphic to Λ1 (the complete
graph K4) or Λ3 (the skeleton of the cube).

Proof. By consulting the database [27] of 3-valent vertex-transitive graphs on at most 1280 vertices, we
checked that Theorem 1.2 holds if |VΓ| ≤ 1280. We may thus assume that |VΓ| > 1280 (in fact, we will
only use |VΓ| > 140). Observe the vertex-stabiliser Gv is a 2-group (and thus the order o(g) of g is 2) whose
action upon Γ(v) has two orbits, one of length 2 and one of length 1.

For a vertex w ∈ V(Γ) let w′ be the neighbour of w such that {w} is the orbit of Gw of length 1. Then
clearly w′′ = w and Gw = G′

w. Hence, the set M := {{w,w′} : w ∈ VΓ} is a complete matching of Γ, while
edges outside M form a 2-factor F . The group G preserves both F and M and acts transitively on the arcs
of each of these two sets. Let Γ̃ be the graph with vertex-set M and two vertices e1, e2 ∈ M adjacent if and
only if they are (as edges of Γ) at distance 1 in Γ. The graph Γ̃ is then called the merge of Γ. We may also
think of Γ as being obtained by contracting all the edges in M. The group G clearly acts as an arc-transitive
group of automorphisms on Γ̃. Moreover, the connected components of the the 2-factor F gives rise to a
decomposition C of EΓ̃ into cycles.

If Γ ∼= Prn or Mbn for some n ≥ 3, then it is easy to see that a non-trivial automorphism of Γ can fix at
most 4 vertices, which, together with the assumption fprVΓ(g) > 1/3 implies that |VΓ| < 12, contradicting
our assumption on Γ. We may thus assume that Γ is neither a prism nor a Möbius ladder. As was shown in
[27, Lemma 9 and Theorem 10], this implies that Γ̃ is 4-valent. Moreover, the action of G on VΓ̃ is faithful,
arc-transitive but not 2-arc-transitive. Observe also that fprVΓ̃(g) ≥ fprVΓ(g) > 1/3. By Theorem 1.1, it

thus follows that Γ̃ ∼= C(r, s) with 1 ≤ s < 2r/3, r ≥ 3. In view of [27, Theorem 12], the graph Γ can then be
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uniquely reconstructed from Γ̃ and the decomposition C of EΓ̃ arising from the 2-factor F via the splitting
operation defined in [27, Construction 11]. In short, Γ can be obtained from Γ̃ by splitting each vertex v of

Γ̃ into two adjacent vertices v′, v′′, each of them retaining two neighbours of v in Γ̃, that together with v
form a part of a cycle in C. It is then straightforward to see that Γ is the Split Praeger-Xu graph S(C(r, s));
or, which is equivalent, that the merging operation applied to S(C(r, s)) yields the graph C(r, s). �

4. Graph-theoretical consideration

In this section we make a digression into purely graph-theoretical considerations. We begin with an easy
observation about 3-valent vertex-transitive graphs, and then prove the in the 4-valent arc-transitive case
we may assume that a non-trivial element fixing more than 1/3 vertices fixes an arc of the graph.

Lemma 4.1. Let Γ be a connected 3-valent vertex-transitive graph. If there exist two distinct vertices u and
u′ of Γ such that Γ(u) = Γ(u′), then Γ ∼= K3,3.

Proof. Let Γ(u) = Γ(u′) = {v1, v2, v3}. Since Γ is vertex-transitive, there exist v′1 ∈ VΓ such that Γ(v1) =
Γ(v′1). But then v′1 ∈ Γ(u), implying that v′1 is one of the vertices v2 or v3, say v′1 = v2. By applying the
same argument to v3 in place of v1, we see that Γ(v1) = Γ(v2) = Γ(v3). But then connectivity of Γ yields
Γ ∼= K3,3. �

Theorem 4.2. Let k ∈ {3, 4} and let Γ be a connected k-valent arc-transitive graph admitting a non-trivial
automorphism g fixing no arc of Γ and satisfying fprVΓ(g) > 1/3. Then k = 4 and Γ ∼= C(r, 1) for some
positive integer r, r ≥ 3, or k = 3 and Γ ∼= K3,3.

Proof. Let us first consider the case k = 3. Let d be the minimal distance between two vertices fixed by
g. Since g fixes no arcs of Γ, we see that d ≥ 2. If d ≥ 3, then every vertex v in F ′ := VΓ \ FixVΓ(g) is
adjacent to at most one vertex in F := FixVΓ(g), while every vertex u ∈ F is adjacent to three vertices in
F ′. Therefore, |F ′| ≥ 3|F | and thus

fprVΓ =
|F |

|F |+ |F ′|
≤

|F |

|F |+ 3|F |
=

1

4
,

a contradiction. Hence d = 2. Let v and w be two vertices at distance 2 fixed by g. If Γ(v) = Γ(w), then by
Lemma 4.1, Γ ∼= K3,3. If |Γ(v) ∩ Γ(w)| = 1, then the vertex in Γ(v) ∩ Γ(w) is also fixed by g, contradicting
d = 2. Therefore Γ(v) ∩ Γ(w) = {u1, u2} with u1 6= u2. But then g fixes the vertex in Γ(v) \ {u1, u2},
contradicting d = 2. This complete the proof in the case k = 3.

Let us now assume that k = 4. We divide the proof into several steps. We start by recalling that a
connected 4-valent arc-transitive graph containing two distinct vertices w and w′ with Γ(w) = Γ(w′) is
isomorphic to C(r, 1) for some r ≥ 3; for the proof, see [32, Lemma 4.3], for instance. For the rest of the
argument, we may thus assume that Γ has no two distinct vertices with the same neighbourhood.

Step 1: For every four distinct vertices v1, v2, v3, v4 ∈ FixVΓ(g), we have Γ(v1)∩Γ(v2)∩Γ(v3)∩Γ(v4) = ∅.

We argue by contradiction and we suppose that there exist four distinct vertices v1, v2, v3, v4 ∈ FixVΓ(g)
with Γ(v1) ∩ Γ(v2) ∩ Γ(v3) ∩ Γ(v4) 6= ∅. Let w ∈ Γ(v1) ∩ Γ(v2) ∩ Γ(v3) ∩ Γ(v4). Observe that wg ∈
Γ(v1) ∩ Γ(v2) ∩ Γ(v3) ∩ Γ(v4) because v1, v2, v3, v4 are fixed by g, and wg 6= w because g fixes no arc of Γ.
Thus Γ(w) = {v1, v2, v3, v4} = Γ(wg), which is a contradiction.

Step 2: For every three distinct vertices v1, v2, v3 ∈ FixVΓ(g), we have Γ(v1) ∩ Γ(v2) ∩ Γ(v3) = ∅.

We argue by contradiction and we suppose that there exist three distinct vertices v1, v2, v3 ∈ FixVΓ(g) with
Γ(v1) ∩ Γ(v2) ∩ Γ(v3) 6= ∅. Let w ∈ Γ(v1) ∩ Γ(v2) ∩ Γ(v3). Arguing as in Step 1, wg ∈ Γ(v1) ∩ Γ(v2) ∩ Γ(v3)
and wg 6= w. Thus

(4.1) w and wg have three neighbours in common.

From this point onwards one could follow the proof of the Subcase II.A of [32, Theorem 3.3] to conclude
that then Γ ∼= K5,5 − 5K2 (yielding a contradiction). However, for the sake of completeness, we provide an
independent proof of Step 2.

If w is adjacent to wg in Γ, then from the arc-transitivity of Γ we deduce Γ is isomorphic to the complete
graph K5. Since g fixes no arc of Γ, we have |FixVΓ(g)| ≤ 1 and hence fprVΓ(g) ≤ 1/5 < 1/3 and (??) holds.
Thus, we may suppose for the rest of the proof of this step that w is not adjacent to wg.
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Let us now prove that wg2

= w. If that were not the case, then w,wg and wg2

are all adjacent to v1, v2
and v3. Moreover, since v1 and v2 cannot have all neighbours in common, we also see that wg3

= w. Let u1

be the fourth neighbour of v1 other than w,wg and wg2

. Since g fixes no arcs, ug
1 6= u1, and hence ug

1, being

adjacent to v1, is one of w = wg3

, wg and wg2

. But then u1 ∈ {wg2

, w, wg}, yielding a contradiction. This

shows that wg2

= w, as claimed.
Let v4 ∈ VΓ with Γ(w) = {v1, v2, v3, v4}. If v4 ∈ FixVΓ(g), then w ∈ Γ(v1) ∩ Γ(v2) ∩ Γ(v3) ∩ Γ(v4) and

Γ(w) = {v1, v2, v3, v4} = Γ(wg), that is, w and wg are two distinct vertices with the same neighbourhood,
contradicting our assumption. Therefore v4 is not fixed by g. Thus Γ(wg) = {v1, v2, v3, v

g
4} and v4 6= vg4 .

Note that since wg2

= w, we have vg
2

4 = v4. For the next two paragraphs Figure 4.1 might be of some help
for following the argument. Since Γ is vertex-transitive, (4.1) yields that for each of vi, i ∈ {1, 2, 3}, there

v4 w

v1 v2 v3

wg vg4

Figure 4.1. Graph for the proof of Theorem 4.2, I

exists v′i ∈ VΓ with vi and v′i having three neighbours in common.
Our next claim is that that each of vi, i ∈ {1, 2, 3}, has three neighbours in common with v4 and three

neighbours in common with vg4 . Due to the symmetry conditions, it suffice to show that v1 has three
neighbours in common with v4.

Since w,wg ∈ Γ(vi), by the pigeonhole principle, either w or wg is a common neighbour of v1 and v′1.
Without loss of generality, we may assume that w ∈ Γ(v1) ∩ Γ(v′1). As Γ(w) = {v1, v2, v3, v4}, we deduce
v′1 ∈ {v2, v3, v4}.

We first suppose that v′1 ∈ {v2, v3}. Without loss of generality, we may assume that v′1 = v2. Let us
call v5 the third vertex in common to v1 and v2. Clearly, v5 cannot be fixed by g, otherwise g fixes the
arc (v1, v5). Since g fixes v1 and v2, we obtain that vg5 is a neighbour of both vg1 = v1 and vg2 = v2. Thus
Γ(v1) = {w,wg, v5, v

g
5} = Γ(v2), contradicting the fact that Γ has no two distinct vertices with the same

neighbourhood. This paragraph shows that v′1 6∈ {v2, v3} and hence v′1 = v4. Since v1 has three neighbours
in common with v4, we deduce that vg1 = v1 has three neighbours in common with vg4 .

By symmetry, the argument in the previous four paragraphs can be applied also to the vertex v2 and
v3. Therefore, we deduce that each of v1, v2 and v3 has three neighbours in common with v4 and three
neighbours in common with vg4 .

Since v1 has three neighbours in common with v4 and three neighbours in common with vg4 , we deduce
that v1, v4 and vg4 must have at least two neighbours in common. These vertices cannot be w or wg , otherwise
we contradicting Figure 4.1. Thus, let us call v5 one of the two neighbours in common to v1, v4 and vg4 . As
g fixes no arcs, we have vg5 6= v5. Thus v

g
5 is a neighbour in common to vg1 = v1, v

g
4 and (vg4)

g = v4. The left
side of Figure 4.2 might be of some help for following the rest of the argument. As v3 has three neighbours

v4 w

v1 v2 v3

wg vg4

v5

vg5

v4 w

v1 v2 v3

wg vg4

v5

vg5

Figure 4.2. Graphs for the proof of Theorem 4.2, II
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in common with v4 and three neighbours in common with vg4 , we may apply the argument of the previous
paragraph with the vertex v1 replaced by v3. We deduce that v3, v4 and vg4 have at least two neighbours in
common, which cannot be neither w nor wg. From the graph of the left side of Figure 4.2, we see that these
mutually common neighbours are v5 and vg5 , otherwise we contradict the fact that v4 and vg4 have valency 4.
See now the graph on the right side of Figure 4.2. When we apply the argument in the previous paragraph
to the vertex v3 replaced by the vertex v2, we deduce that v5 and vg5 are neighbours of v2, contradicting the
fact that Γ has valency 4.

Step 3: fprVΓ(g) ≤ 1/3.

For simplicity, set F := FixVΓ(g) and F ′ := VΓ \ FixVΓ(g). Since g fixes no arc of Γ, for every v ∈ F , we
have Γ(v) ⊆ F ′. Moreover, from Step 2, we see that, for every v ∈ F ′, we have |Γ(v) ∩ F | ≤ 2. Thus, by
counting the edges between F and F ′, we obtain 4|F | ≤ 2|F ′|. As |F |+ |F ′| = |VΓ|, it follows

fprVΓ(g) =
|F |

|F |+ |F ′|
≤

|F |

|F |+ 2|F |
≤

1

3
,

which contradicts our assumptions. �

5. The 2-arc-transitive case

In this section we complete the proofs of Theorems 1.1 and 1.2, by considering the remaining cases of
4-valent 2-arc-transitive graphs and 3-valent arc-transitive graphs. These cases are considered in [21] in a
more general context of arc-transitive locally quasiprimitive graphs (that is, graphs, where the stabiliser of a
vertex acts quasiprimitively on the neighbourhood) for which the order of the vertex-stabiliser is bounded by
some constant depending only on the valence of the graph. There it is proved that for every constant c there
are only finitely many graphs in such a family that admit a non-trivial automorphism fixing more than 1/c
vertices. Since the order of Aut(Γ)v is bounded by 11 664 if Γ is a connected 2-arc-transitive 4-valent graph
[41], and by 48 if Γ is a connected arc-transitive 3-valent graph [39], the result proved in [21] implies that
there can be only a finite number of counterexamples to Theorems 1.1 and 1.2 (however, with the bound on
their order being too large to be practical). The analysis carried out in this section is thus aimed at a finite
number of graphs only.

We first prove two reduction results simultaneously for the 4-valent and the 3-valent case and split our
analysis later. Note that by Theorem 4.2, the element g fixing more than 1

3 vertices fixes an arc. Moreover,
if Γ is a connected 3-valent graph with G ≤ Aut(Γ) acting arc-transitive but not 2-arc-transitively, then
the arc-stabiliser Gvw is trivial. This shows that in our analysis we may assume that the graph Γ is 2-arc-
transitive not only in the 4-valent case but also when Γ is 3-valent case. If a group of automorphisms G of
a graph Γ acts transitively on the 2-arcs of Γ, we say that Γ is (G, 2)-arc-transitive.

Lemma 5.1. Let Γ be a connected k-valent (G, 2)-arc-transitive graph with k ∈ {3, 4} and let g be a nontrivial
element of G with fprVΓ(g) > 1/3. Suppose that G contains a minimal normal subgroup N such that Γ/N
is isomorphic to one of the graphs Ψ1, . . . ,Ψ6,C(r, s), 1 ≤ s ≤ 2r/3, r ≥ 3 (if k = 4); or to one of the
graphs Λ1, . . . ,Λ6 (if k = 3). Then Γ itself is isomorphic to one of these graphs and is therefore not a
counterexample to Theorem 1.1 or Theorem 1.2.

Proof. If |VΓ| ≤ 768 and k = 4 or if |VΓ| ≤ 10 000 and k = 3, the claim can be checked with a computer
assisted computation using the census of connected 4-valent 2-arc-transitive graphs of order at most 768 [24]
and the census of connected 3-valent arc-transitive graphs of order at most 10 000 [10]. We may therefore
assume that |VΓ| exceeds these bounds.

Since Γ/N is of the same valency as Γ, it follows that Nv = 1 for every v ∈ VΓ and that G/N acts
faithfully on VΓ/N . In particular, Ng ∈ G/N is a non-trivial automorphism of Γ/N fixing more than 1/3 of
the vertices. Furthermore, G/N acts transitively on the arcs of Γ/N and if k = 4 then it also acts transitively
on the 2-arcs of Γ/N . Consequently, if Γ/N ∼= C(r, s), then by Remark 1.8, r = 4 and s ∈ {1, 2}. By applying
Lemma 1.18 with N in place of X and VΓ in place of Ω, we conclude that 1/3 < fprVΓ(g) ≤ 1/|N : CN (g)|,
implying that |N : CN(g)| ≤ 2.

Suppose first that N is an elementary abelian 2- or 3-group. Since N is a minimal normal subgroup of
G, the action of G/N on N by conjugation endows N with the structure of a G/N -irreducible module over
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a field F of size 2 or 3. In this case the proof can be completed by a straightforward computation with the
computer algebra system, such as Magma [5], in a way which we now describe.

For every graph ∆ ∈ {Ψ1, . . . ,Ψ6,C(r, 1),C(r, 2),Λ1, . . . ,Λ6} we consider every 2-arc-transitive subgroup
H of Aut(∆) and contains a non-trivial element h fixing more than 1/3 of the vertices of ∆. Thus (∆, H, h)
is our putative triple (Γ/N,G/N,Ng).

Next, we compute all the irreducible FH-modules V . Since |N : CN(g)| ≤ 2, the element g either
centralises N , or p = 2 and g acts as a transvection on N . Among all irreducible FH-modules V , we select
those with CH(V ) 6= 0 or (in the case p = 2) those admitting an element h of H with |V : CV (h)| = 2.
Thus, in this refined family, V is our putative N .

When k = 3, a direct computation shows that all such modules V satisfy |VΓ/N | · pdimV ≤ 10 000,
contradicting our assumption that |VΓ| > 10 000.

In the case (k, p) = (4, 2) we have checked that

• |VΓ/N | · 2dimV ≤ 640, or
• Γ/N ∼= Ψ5, H ∼= Sym(7), dimF2

(V ) = 6 and there is only one choice for V , or
• Γ/N ∼= Ψ6, H ∼= Sym(7)× C2, dimF2

(V ) = 6 and there is only one choice for V .

Since |VΓ/N ||N | = |VΓ| > 640, we may consider only the last two possibilities. For these cases, we have
computed the cohomology module of H over V and we have obtained the corresponding first and second
cohomology groups. These groups have dimension zero and hence G splits over N and N has a unique
conjugacy class of complements in G. Thus G is isomorphic to a subgroup of F6

2 ⋊ Sym(7) when Γ/N ∼= Ψ5

and G is isomorphic to a subgroup of F6
2⋊(Sym(7)×C2) when Γ/N ∼= Ψ6. In these cases, we have constructed

the abstract group G and we have considered all the permutation representations of G of the relevant degree
(of degree 26 ·35 when Γ/N ∼= Ψ5 and of degree 26 ·70 when Γ/N ∼= Ψ6). Finally, we have checked that none
of these permutation groups acts arc-transitively on a connected 4-valent graph.

In the case (k, p) = (4, 3) we know that g centralises N , and hence we may consider only those FH-modules
V with CH(V ) 6= 0. The computation in this case is similar to the case p = 2, and again none of the modules
V yields an appropriate group G.

We may thus assume that N is not an elementary abelian 2- or 3-group. Since |N : CN (g)| ≤ 2 and
since N has no index-2 subgroups in this case, we deduce g ∈ CG(N) and hence C := CG(N) is a normal
subgroup of G not acting semiregularly on VΓ.

Suppose vN ⊆ vC . Then, for every n ∈ N , there exists c ∈ C with vnc = v, that is, nc ∈ Gv. Since n and
c commute, the order o(nc) of nc equals lcm{o(n), o(c)}. Since Gv is a {2, 3}-group, we thus see that o(nc)
is a power of 2 times a power of 3. Thus N is a {2, 3}-group. From Burnside’s pαqβ-theorem, N is solvable
and hence elementary abelian, contradicting our assumption.

We may thus assume that vN * vC . Observe that G
Γ(v)
v is a primitive group, implying that C

Γ(v)
v is either

transitive or trivial. In the latter case, it follows that Cv = 1 contradicting the fact that g ∈ Cv. Hence
Cv acts transitively on Γ(v), implying that C is either transitive on VΓ, or Γ is bipartite with bipartition
given by the orbits of C on VΓ. As vN * vC , we have vC 6= VΓ and hence C is not transitive on VΓ; thus

Γ is bipartite with bipartition given by the C-orbits. As vN * vC , N contains permutations interchanging
the two parts of the bipartition of Γ. Thus N contains a subgroup having index 2, which is a contradiction
because N is not a 2-group. �

Let us now assume that Theorem 1.1 or Theorem 1.2 fails due to a 4-valent 2-arc-transitive graph or due
to a 3-valent arc-transitive graph, respectively. Let us consider the minimal counterexample, that is, let us
work under the following assumption:

Hypothesis 5.2. Let k ∈ {3, 4} and let Γ be a smallest connected k-valent 2-arc-transitive graph not
isomorphic to any of the exceptional graphs Ψ1, . . . ,Ψ6,Λ1, . . . ,Λ6 or C(r, s) with 1 ≤ s ≤ 2r/3, r ≥ 3, but
admitting a non-trivial automorphism fixing more than 1/3 of the vertices. Among such automorphisms,
pick one of smallest order. In view of Theorem 4.2, it follows that such an automorphism fixes an arc (v, w)
of Γ. Let G be a smallest 2-arc-transitive subgroup of Aut(Γ) containing g. Since Gvw is a 2-group if k = 3,
and is a {2, 3}-group if k = 4, we see that the order o(g) of g satisfies o(g) ∈ {2, 3} if k = 4 and o(g) = 2
if k = 3. Since the validity of Theorems 1.1 and 1.2 was checked for the graphs in the census of 4-valent
2-arc-transitive graphs of order at most 768 [24] and the census of 3-valent arc-transitive graphs of order at
most 10 000, we assume that |VΓ| > 768 if k = 4 and |VΓ| > 10 000 if k = 3.
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Lemma 5.3. Assuming Hypothesis 5.2, it follows that G has a unique normal subgroup, which is non-abelian,
has at most 2 orbits on V(Γ) and does not act semiregularly on VΓ.

Proof. Suppose that G contains a minimal normal subgroup N having at least 3 orbits on VΓ. By [36,
Theorem 4.1] it then follows that N is semiregular, and Γ/N is 4-valent with G/N acting faithfully as as
s-arc-transitive group of automorphisms. By Lemma 1.16, Ng ∈ G/N is a non-trivial automorphism of
Γ/N with fprVΓ/N (Ng) > 1/3. The minimality of Γ now implies that Γ/N is one of the exceptional graphs

Ψ1, . . . ,Ψ6,Λ1, . . . ,Λ6 or C(r, s) for some r in s. But then, by Lemma 5.1, Γ is not a counterexample to
Theorem 1.1 or Theorem 1.2, contradicting Hypothesis 5.2. We have thus shown that every minimal normal
subgroup of G has at most two orbits on VΓ. Moreover, if a minimal normal subgroup N has two orbits,
then Γ is bipartite with {vN , wN} being the bipartition of Γ.

Suppose now that G contains an abelian minimal normal subgroup N . By Lemma 1.14, either Nv 6= 1
and there exist two distinct vertices u, u′ ∈ VΓ such that Γ(u) = Γ(u′), or Nv = 1 and |VΓ| ≤ 2|N | ≤ 22k−1.
The latter case contradicts our assumption on the order of Γ, so we may assume that former case happens.
If k = 3, then Lemma 4.1 yields Γ ∼= K3,3, while if k = 4, then it is easy to see that Γ ∼= C(r, 1) (see [32,
Lemma 4.3] for a proof). We may therefore assume that no minimal normal subgroup of G is abelian.

Suppose now that a minimal normal subgroup N of G acts semiregularly on VΓ. By Lemma 1.18, we see
that |N : CN (g)| = 1 or 2. If |N : CN (g)| = 2, then N is abelian, a contradiction. Hence g centralises N
and since g ∈ Gvw, we see that g fixes every element in vN ∪wN = VΓ. This contradiction shows that none
of the minimal normal subgroups of G acts semiregularly on VΓ.

Suppose now that G contains two distinct minimal normal subgroups N and M . Let KN and KM be the
kernels of the actions of G on VΓ/N and VΓ/M respectively. Suppose thatN ≤ KM . Then vN ⊆ vKM = vM .
Let n ∈ N be an element of prime order at least 5. We have vn ∈ vM and hence vn = vm, for some m ∈ M .
This gives nm−1 ∈ Gv. Since o(nm−1) = lcm{o(n), o(m)}, it follows that Gv contains an element of order
divisible by a prime number at least 5. This contradiction shows that N � KM . This yields that N acts
faithfully as a group of automorphisms of the graph Γ/M . However, since M is not semiregular, Γ/M
has valency at most 2; thus the automorphism group of Γ/M is soluble and hence so is N . However, this
contradicts the fact that N is non-abelian, and thus shows that our initial assumption on the existence of
two minimal normal subgroups of G was false. �

We now continue our analysis under the assumption of Hypothesis 5.2. Let N be the unique minimal
normal subgroup of G. Since N is non-abelian, we see that for some non-abelian simple group T we have:

(5.1) N ∼= T1 × T2 × · · · × Tℓ with Ti
∼= T for every i, and G . Aut(T )wr Sym(ℓ);

where by X . Y we indicate that X is a group isomorphic to a subgroup of Y . Observe also that CG(N) = 1.
For h ∈ G, let σh denote the permutation of {1, . . . , ℓ} mapping i to j if and only if (Ti)

h = Tj . Then
σ : G → Sym(ℓ), h 7→ σh, is a homomorphism whose kernel equals

(5.2) M := G ∩ Aut(T )ℓ ≤ Aut(T )wrSym(ℓ).

Note that every element h ∈ G can now be written uniquely as (y1, . . . , yℓ)σh for some y1, . . . , yℓ ∈ Aut(T ).
In particular, let x1, . . . , xℓ ∈ Aut(T ) be such that

(5.3) g = (x1, . . . , xℓ)σg .

Let K ∈ {N,M}. Since K EG, we see that Kv EGv. Moreover, since Kv 6= 1, the connectivity of Γ implies

that K
Γ(v)
v is a non-trivial normal subgroup of the 2-transitive group G

Γ(v)
v . Hence K

Γ(v)
v is transitive. Since

Gvw is the stabiliser of the action of Gv on Γ(v), we thus see that Gv = GvwKv. Since K
Γ(v)
v is transitive,

the quotient Γ/K has valence 0 or 1 and |Kv : Kvw| = k. In the first case, K is transitive on AΓ, implying
that G = GvwK, while in the second case, K is edge-transitive and has two orbits on AΓ and VΓ, the latter
forming the bipartition of Γ. In both cases, we see that

(5.4) K is transitive on EΓ,

and thus G = KG{v,w} with |G : KGv| = |G : KGvw| = 1 or 2, depending of whether Γ/K has valence 0 or
1, respectively. In particular, since K is contained in the kernel of σ, this implies that

(5.5) σ(G) = σ(G{v,w}) and thus σ(G{v,w}) ≤ Sym(ℓ) is transitive.
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The structure of the vertex- arc- and edge-stabiliser in a group G acting 2-arc-transitively on a connected
k-valent graph with k ∈ {3, 4} was first studied by Tutte in his seminar work [39] for the case k = 3, and
by Weiss [41] for the case k = 4. It follows from their work that |Gv| ≤ 48 if k = 3 and |Gv| ≤ 11 664 if
k = 4. Furthermore, the triples (Gv, Gvw , G{v,w}) were completely determined (up to isomorphism of triples
of groups) by Conder and Lorimer in [12] for k = 3, and by the first-named author of this paper in [24,
Table 1] for k = 4. In Table 5.1 we gather some information about these triples that will be frequently
used in what follows. In particular, for each of the nine triples, we give the number of elements of order 2
and (if k = 4) of order 3 in Gv. In the last column, the information on the minimal order of an element
h ∈ G{v,w} \Gvw is also provided.

k type |Gv| |{x ∈ Gv : o(x) = 2}| |{x ∈ Gv : o(x) = 3}| o(h)

3 G5 48 19 2
3 G1

4, G
2
4 24 9 2

3 G3 12 7 2
3 G2

2 6 3 4
3 G1

2 6 3 2

4 7-AT 11 664 405 890 2
4 4-AT 432 45 80 2
4 S3 × S4 144 39 26 2
4 C3 ⋊ S∗

4 72 21 26 4
4 C3 ⋊ S4 72 21 26 2
4 C3 ×A4 36 3 26 2
4 S4 24 9 8 2
4 A4x and A4s 12 3 8 2

Table 5.1. Vertex-stabilisers of groups G acting 2-arc-transitively on connected 4-valent graphs.

With the information provided in Table 5.1 we can now obtain a series of useful bounds. For example, by
applying Lemma 1.17 with (G,N, v) in place of (X,X, ω) we we see that

(5.6) |N : CN (g)| ≤ |gG| < 3|gG ∩Gv| ≤







3 · 19 = 57 if k = 3
3 · 405 = 1215 if k = 4 and o(g) = 2
3 · 890 = 2670 if k = 4 and o(g) = 3

We now split the analysis into two case, depending on whether σg = 1 (or equivalently, g ∈ M) or not.

Suppose σg 6= 1.

Let κ be the length of a longest cycle in σg . In particular, κ = o(g) ∈ {2, 3}. Without loss of generality,
we may assume that σg = (1 2 · · · κ)σ′, for some σ′ ∈ Sym({κ + 1, . . . , ℓ}). Since gκ = 1, we see that
x1x2 · · ·xκ = 1. Now consider the element

h := (1, x−1
1 , (x1x2)

−1, . . . , (x1x2 · · ·xκ−1)
−1, 1, 1, . . . , 1) ∈ Aut(T )ℓ,

and observe that

h−1gh = (1, . . . , 1, xκ+1, xκ+2, . . . , xℓ)(1 2 · · · κ)σ
′.

Replacing the graph Γ with the graph Γh := (VΓ, (EΓ)h), the group G with Gh and hence g with gh, we
may assume that x1 = x2 = · · · = xκ = 1. A calculation in T κ gives that CTκ((1 2 · · · κ)) is the diagonal
subgroup {(t, . . . , t) | t ∈ T } of T κ. Thus |CTκ((1 2 · · · κ))| = |T | and |CN (g)| ≤ |T | · |T |ℓ−κ = |T |ℓ−κ+1.
Hence |N : CN (g)| = |T |ℓ/|CN(g)| ≥ |T |ℓ/|T |ℓ−κ+1 = |T |κ−1. As |T | ≥ 60, we can now deduce from (5.6)
that

(5.7) k = 4, κ = o(g) = 2, and thus |N : CN (g)| = |gN | ≤ |gG| < 1215.

Assume that σ has more than one cycle of length 2. Without loss of generality we may assume that
σ = (1 2)(3 4)σ′′, for some σ′′ ∈ {5, . . . , ℓ}. As above, replacing g by a suitable Aut(T )ℓ-conjugate, we may
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assume x3 = x4 = 1. A computation gives |CT 4((1 2)(3 4))| = |{(t, t, t′, t′) | t, t′ ∈ T }| = |T |2 and hence
1215 > |N : CN (g)| ≥ |T |2 ≥ 3600, which is a contradiction. Thus σ = (1 2),

(5.8) g = (1, 1, x3, . . . , xℓ)(1 2) and |N : CN (g)| = |T ||T : CT (x3)| · · · |T : CT (xℓ)|.

Therefore |T | ≤ |N : CN (g)| ≤ 3 · 405 = 1215, implying that

(5.9) T ∈ {Alt(5),Alt(6),PSL2(7),PSL2(8),PSL2(11),PSL2(13)}.

Let V := 〈gx | x ∈ G{v,w}〉 and observe that V ≤ Gvw. Let ∆ be the graph defined by V∆ := {1, . . . , ℓ} and

E∆ := {{r, t} : (r t) ∈ σ(V )}. Since (r t), (t, s) ∈ σ(V ) implies (r s) = (r t)(s r t) = (r t)(t s)(r t) ∈ σ(V ), we see
that every connected component of ∆ is a complete graph. Let W1, . . . ,Wk be the vertices of the connected
components of ∆. Then for each i ∈ {1, . . . , k}, the group σ(V ) contains all the transpositions (r t) with
r, t ∈ Wi, implying that Sym(W1)× . . .×Sym(Wk) ≤ σ(V ). Now observe that the group σ(G{v,w}) preserves
E∆ and hence σ(G{v,w}) is a subgroup of Aut(∆), which by (5.5) acts vertex-transitively. In particular, ∆
is vertex-transitive and thus |Wi| = m for some m ≥ 2 dividing ℓ and every i ∈ {1, . . . , k}. Hence

(5.10) Sym(m)ℓ/m ≤ σ(V ) ≤ σ(Gvw) ≤ σ(G{v,w}) ≤ Aut(∆) = Sym(m)wr Sym(ℓ/m).

Since |Gvw| divides 22 · 36, this implies that either m = 3 and ℓ ∈ {3, 6} or m = 2 and ℓ ∈ {2, 4}.
Suppose first that (m, ℓ) = (2, 4). Since σ(G{u,v}) is transitive, (5.10) implies that σ(G) = σ(G{v,w}) =

Sym(2)wr Sym(2) ∼= D4, and hence σ(V ) = σ(Gvw) = C2
2. In particular, |Gvw | is divisible by 4, implying

that Gv is of type 7-AT, 4-AT or S3 × S4. Moreover, the kernel Mvw of the restriction of σ to Gvw must
be a group of odd order. Since Mv is transitive on Γ(v), we see that |Mv| = 4|Mvw|. However, a direct
computation shows that if Gv is of type 4-AT or 7-AT, then Gv contains no normal subgroup of order 4
times an odd integer, implying that Gv is of type S3 × S4. In view of (5.6), (5.8) and Table 5.1, we see
that |T | |T : CT (x3)| |T : CT (x4)| = |N : CN(g)| ≤ 3 · 39 and thus T ∼= Alt(5) and x3 = x4 = 1. Hence
T 4 ≤ G ≤ Aut(T )wrD4, with T = Alt(5), σ(G) = D4, and |gG| < 3 · 39 with g = (1 2). We have checked
with Magma [5], that no such group G exists.

Suppose now that (m, ℓ) = (2, 2). Then σ(Gvw) = σ(G{v,w}) = Sym(2), T 2 ≤ G ≤ Aut(T )wr Sym(2)

with T as in (5.9), σ(G) = Sym(2), g = (1 2) and |gG| < 1215. If Gv is of type 7-AT, then 24 · 36 = 11 664 =
|Gv| divides |G|, which in turn divides 2|Aut(T )|2. By inspecting the groups in (5.9), we see that only
T = PSL(2, 8) satisfies this condition. A computer assisted computation showed that in this case there are
two groups G satisfying the above conditions, however none of the contains a subgroup isomorphic to the
vertex-stabiliser of type 7-AT. Hence Gv is not of type 7-AT. But then, in view of (5.6) and Table 5.1, we have
|gG| < 3 · 45. Checking the groups in (5.9) and all the groups G satisfying T 2 ≤ G ≤ Aut(T )wr Sym(2) and
σ(G) = Sym(2), we see that |gG| < 3 ·45 holds only when T = Alt(5) with |gG| = 60 or 120, implying that Gv

is of type C2 ⋊ S4, C2 ⋊ S∗
4 , S3 × S4 or 4-AT. In particular, |Gv| ≥ 72, and since |G| ≤ 2|Sym(5)|2 = 28 000,

we see that |VΓ| ≤ 400. However, all 2-arc-transitive graphs of order at most 512 are known (see [24]) and it
can be easily checked that none of these graphs, with the exception of Ψ1, . . . ,Ψ6 and C(4, s) with s ∈ {1, 2},
has a non-trivial automorphism fixing more than 1/3 of the vertices.

Suppose now that (m, ℓ) = (3, 3). Then

(5.11) σ(G) = σ(G{v,w}) = Sym(3), T 3 ≤ G ≤ Aut(T )wr Sym(3), T as in (5.9), and g = (1, 1, x3)(1 2).

If x3 6= 1, then in view of (5.8), we have 60 ≤ |T | < |Gv|/|T : CT (x3)|. By inspecting the centralisers
of involutions of the simple group in (5.9), we see that T = Alt(5) and Gv is of type 7-AT. However,
|Aut(T )wr Sym(3)| is not divisible by |Gv| = 11 664 in this case, yielding a contradiction. Hence x3 = 1
and thus g = (1 2). If Gv is of type 7-AT, then the divisibility condition |Gv| | |Aut(T )wrSym(3)| yields
T ∈ {Alt(6),PSL(2, 8)}. If T = Alt(6), then no group G satisfying (5.11) is such that |gG| ≤ 1215. If
T = PSL(2, 8), then there are 25 groups G satisfying (5.11), with the minimum value of |gG| being 1080.
Now observe that g is not a square of any element in Aut(T )wr Sym(3). A direct inspection of the vertex-
stabiliser of type 7-AT reveals that there are only 324 involutions in Gv that are non-squares, implying that
|gG ∩Gv| ≤ 3 · 324, which contradicts the fact that 1080 ≤ |gG| ≤ |gG ∩Gv|. Hence Gv is not of type 7-AT.
By (5.6) and Table 5.1, it follows that |gG| ≤ 3 · 45 and |T | = |N : CN (g)| ≤ 3|gG ∩ Gv| ≤ 3 · 45, forcing
T = Alt(5). However, direct computation shows that no group G satisfying (5.11) such that |gG| ≤ 3 · 45
exists in this case.

Suppose finally that (m, ℓ) = (3, 6). Then σ(Guv) contains a subgroup isomorphic to Sym(3) × Sym(3).
Inspecting the orders of the arc-stabilisers in Table 5.1, we see that (Gv, Gvw , G{v,w}) is of type 7-AT, 4-AT or
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S3×S4 and that σ(V ) = σ(Gvw) = Sym(3)×Sym(3). Similarly as in the case (m, ℓ) = (2, 4), we see thatMvw

has odd order and thus Gv contains a subgroup of order 4 times an odd number, which rules out the types 4-
AT and 7-AT. But then, in view of (5.8), we see that |N : CN (g)| = |T ||T : CT (x3)| · · · |T : CT (x6)| ≤ 3 · 39,
implying that T ∼= Alt(5) and x3 = . . . = x6 = 1. Now let h be an element of minimal order in G{v,w} \Gvw.
According to Table 5.1, we see that o(h) = 2. Consider the group L := 〈M, g, h〉. Since M is transitive on
EΓ (see (5.4)) and since h swaps the arc (v, w), we see that L is an arc-transitive subgroup of G containing
g. By Theorem 2.4, L is 2-arc-transitive, and by Hypothesis 5.2, it follows that G = L. Now, since
G{v,w} = Gvw〈h〉 and since σ(G{v,w}) is transitive on {1, . . . , 6} = V∆, we see that σ(h) swaps the two
connected component W1 and W2 of ∆. By construction, one connected component of ∆ contains the
vertices 1 and 2, and without loss of generality, we may assume that W1 = {1, 2, 3} and W2 = {4, 5, 6} and
hence that σ(h) = (1 4)(2 5)(3 6). But then we see that 〈T1, T2, T4, T5〉 is normalised by M, g and h and thus
by G = 〈M, g, h〉, which contradict the assumption that N is a minimal normal subgroup of G.

Suppose σg = 1.

Then g = (x1, x2, . . . , xℓ) ∈ M , where M is as in (5.2). Let h be an element of G{v,w} \ Gvw of minimal
possible order. From the information given in Table 5.1, it follows that o(h) ∈ {2, 4}; moreover, o(h) = 4
if and only if k = 4 and (Gv, Gvw, G{v,w}) is of type C3 ⋊ S∗

4 , or k = 3 and (Gv, Gvw, G{v,w}) is of type

G2
2, Now observe that 〈M,h〉 = M〈h〉 ≤ G acts arc-transitively on Γ. Since G is a smallest arc-transitive

group of Γ containing the element g, it follows that G = M〈h〉. Since M is the kernel of the homomorphism
σ : G → Sym(ℓ), we see that 〈h〉 = σ(〈h〉) = σ(G) = σ(G{u,v}), which is by (5.5) a transitive subgroup of
{1, . . . , ℓ}. Hence ℓ ∈ {1, 2, 4}.

For a finite simple group X , embedded as the group of inner automorphisms into Aut(X), and an integer
r ≥ 2 such that X , (respectively, Aut(X)) contains an element of order r, let

ι(X, r) := min{|X : CX(x)| : x ∈ X, o(x) = r};

ι∗(X, r) := min{|X : CX(x)| : x ∈ Aut(X), o(x) = r};

m(X) := min{|X : H | : H ≤ X,H 6= X}.

Note that m(X) ≤ ι∗(X, r) ≤ ι(X, r) and that m(X) equals the minimal degree of a faithful transitive
permutation representation of X .

Now observe that |N : CN(g)| = |T : CT (x1)| |T : CT (x2)| . . . |T : CT (xℓ)|. Let α := {i ∈ {1, . . . , ℓ} :
xi 6= 1} and observe that α ≥ 1. Inequality (5.6) and Table 5.1 now imply that

(5.12) m(T )α ≤ ι∗(T, o(g))
α < |gG ∩Gv| ≤







57; if k = 3;
1215; if k = 4 and o(g) = 2;
2670; if k = 4 and o(g) = 3.

The values of m(T ) for finite simple groups T are known and can be found, for example, in [16, Table 4]
for the groups of Lie type (this table takes in account the corresponding table in [19, Table 5.2A] together
with the corrections of Mazurov and Vasil’ev in [40]) and in [42] or [43], for sporadic groups. In Table 5.2,
containing all non-abelian simple groups T with m(T ) < 2670, we summarise the relevant information; note
that the last two columns give a condition for the group in the corresponding row satisfies m(T ) < 2670 and
m(T ) < 117, respectively (the meaning of the bound 117 will become apparent later). We will now consider
the possible values of ℓ case by case and show that cases ℓ = 4 and ℓ = 2 lead to a contradiction.

Suppose first that ℓ = 4. Recall that in this case o(h) = 4 and (Gv, Gvw, G{v,w}) is of type C3 ⋊ S∗
4

if k = 4 or of type G2
2 if k = 3. If k = 3, then m(T ) ≤ ι∗(T, 2) ≤ 8, implying that T embeds into

Sym(n) for some n ∈ {5, 6, 7, 8}. But then T embeds into Sym(m) for m ≤ 8. Hence either T = Alt(n)
for n ∈ {5, . . . , 8} or T = PSL(3, 2). However, a closer inspection of these groups shows that none of them
satisfies ι∗(T, 3) ≤ 8. We may therefore assume that k = 4 and that (Gv, Gvw, G{v,w}) is of type C3 ⋊ S∗

4 .

From the information given in [24, Table 1], we see that |Gv| = 23 · 32, |Gvw | = 2 · 32, |G{v,w}| = 22 · 32,
the Sylow 3-subgroup P of Gvw is normal in Gvw , P ∼= C2

3, and h2 inverts every element of P . Since
G = MG{v,w}, we see that G/M ∼= G{v,w}/(M ∩ G{v,w}) = G{v,w}/M{v,w}. Without loss of generality,

h = (y1, y2, y3, y4)(1 2 3 4) for some yi ∈ Aut(T ), implying that G/M ∼= C4. But then |M{v,w}| = 32 and since

|M{v,w} : Mvw| ≤ 2, we see that M{v,w} = Mvw and thus Mvw = P ; in particular, o(g) = 3 and gh
2

= g−1.

Now, h2 = (y4y1, y1y2, y2y3, y3y4)(1 3)(2 4), and thus (x−1
1 , x−1

2 , x−1
3 , x−1

4 ) = (xy2y3

3 , xy3y4

4 , xy4y1

1 , xy1y2

2 ). Since
g 6= 1, this implies that at least two of the elements x1, . . . , x4 are non-trivial. In view of (5.12) we see that
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Group T m(T ) m(T ) < 2670 m(T ) < 117

Alt(n) n 5 ≤ n ≤ 2669 5 ≤ n ≤ 116
PSL2(q) q + 1 8 ≤ q ≤ 2663, q 6= 9, 11 8 ≤ q ≤ 113, q 6= 9, 11
PSL3(q) (q3 − 1)/(q − 1) 2 ≤ q ≤ 49 2 ≤ q ≤ 9
PSL4(q) (q4 − 1)/(q − 1) 3 ≤ q ≤ 13 3 ≤ q ≤ 4
PSL5(q) (q5 − 1)/(q − 1) 2 ≤ q ≤ 5 q = 2
PSLd(2) 2d − 1 6 ≤ d ≤ 11 d = 6
PSL2(11) 11 true true

PSL6(3), PSL7(3), PSL6(4) 364, 1093, 1365 true false
PSp4(q) (q4 − 1)/(q − 1) 4 ≤ q ≤ 13 q = 4
PSp2m(2) 2m−1(2m − 1) 3 ≤ m ≤ 6 m = 3

PSp6(3),PSp6(4) 364, 1365 true false
PSU3(q) q3 + 1 3 ≤ q ≤ 13, q 6= 5 3 ≤ q ≤ 4
PSU4(q) (q + 1)(q3 + 1) 2 ≤ q ≤ 5 2 ≤ q ≤ 3
PSU3(5) 50 true true

PSU5(2), PSU6(2), PSU5(3) 165, 672, 2440 true false

PΩ+
2m(2), 2m−1(2m − 1) 4 ≤ m ≤ 6 false

PΩ−
2m(2) 2m(2m−1 − 1) 4 ≤ m ≤ 6 m = 4

PΩ7(3), PΩ
−
8 (3), PΩ

+
8 (3) 351, 1066, 1080 true false

G2(3), G2(4) 351, 416 true false
2B2(8), 65 true true

3D4(2),
2B2(32),

2F4(2)
′ 819, 1025, 1755 true false

M11, M12, M22, M23, M24 11, 12, 22, 23, 24 true true
J1, McL 266, 275 true false
J2, HS 100, 100 true true

Co2, Co3, Suz, He 2300, 276, 1782, 2058 true false

Table 5.2. Simple groups T with m(T ) < 2670.

m(T ) ≤ ι∗(T, 3)
2 < 3 · 26 = 78, and hence ι∗(T, 3) ≤ 8. However, as we have shown in case k = 3, no simple

group T satisfies this condition. This contradiction shows that ℓ 6= 4.

Suppose now that ℓ = 2. Then h = (y1, y2)(1 2) for some y1, y2 ∈ Aut(T ), implying that G{v,w}/M{v,w}
∼=

G/M ∼= C2. Since g ∈ M , the minimality of G then implies that M is not arc-transitive, showing that
Γ is bipartite with {vM , wM} being the bipartition, and that |Mv| = |M |/|vM | = |G|/|VΓ| = |Gv|. In
particular, Mv = Gv and M is the kernel of the action of G on the bipartition. Consider the groups
L1 := M ∩ (Aut(T1) × {1}) and L2 := M ∩ ({1} × Aut(T2)). Note that both L1 and L2 are normal in M ,
that L1 ∩L2 = 1 , and that conjugation by h swaps L1 with L2. Hence L := 〈L1, L2〉 ∼= L1 ×L2 is a normal
subgroup of G = M〈h〉. Moreover, since T1 × T2 = N ≤ M , we see that Ti ≤ Li for i ∈ {1, 2}.

Suppose that g is contained in one of the group L1 or L2. Without loss of generality, we may assume that
g ∈ L1, and thus (L1)vw 6= 1. Since L1 is normal in M and since vM ∪ wM = VΓ, we see that (L1)u 6= 1

for every u ∈ VΓ. The connectivity of Γ then implies that (L1)
Γ(u)
u 6= 1, and since G

Γ(u)
u is primitive, we

see that (L1)
Γ(u)
u is transitive for every u ∈ VΓ. Hence Γ/L1

∼= K2, implying that vL1 = vM . Therefore
M = L1Mv and thus M/L1

∼= L1Mv/L1
∼= Mv/(L1)v. Since Mv is soluble, so is M/L1; however, M/L1

contains a subgroup isomorphic to L2, which is non-soluble since it contains T2.
This contradiction shows that g is contained neither in L1 nor in L2 and thus g = (x1, x2) with both x1

and x2 nontrivial. In view of inequality (5.12) (where we may assume α ≥ 2) and Table 5.1, we thus see that

ι∗(T, 2) ≤ 7 if k = 3

ι∗(T, 2) ≤ 34 or ι∗(T, 3) ≤ 51 if k = 4 and Gv is of type 7-AT,

ι∗(T, 2) ≤ 11 or ι∗(T, 3) ≤ 15 if k = 4 and Gv is not of type 7-AT.

We have already seen that no non-abelian simple group T satisfies ι∗(T, 2) ≤ 7. We may thus assume that
k = 4. If Gv is not of type 7-AT, then one can eaily use a computer algebra system, such as Magma [5], to
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check that none of the groups T in Table 5.2 with m(T ) ≤ 15 satisfies the second of the above conditions.
Similarly, if Gv is of type 7-AT, then |Gv| = 11664 and since G ≤ Aut(T )wrSym(T ), we see that 11664
divides 2|Aut(T )|2. By first checking the groups T in Table 5.2 with m(T ) ≤ 51 against this divisibility
condition and then, for the remaining groups, directly computing the values ι∗(T, r), r ∈ {2, 3}, one sees
that no groups T satisfying the first of the above conditions exists either. This shows that ℓ 6= 2.

We may thus assume for the rest of the proof that ℓ = 1; that is T ≤ G ≤ Aut(T ) where T is the unique
minimal normal subgroup of G and CG(T ) = 1. If Tv = 1, then Lemma 1.18 implies that |T : CT (g)| =
1/fprvT (g) < 3, implying that g centralises T , contradicting the fact that CG(T ) = 1. Since T is normal in
G, we thus see that Tv is transitive on Γ(v) and Γ/T ∼= K2 or K1. We will now split our analysis depending
on the valence of Γ.

Suppose first that k = 4. Let H := 〈T, h〉 = T 〈h〉 and observe that H is arc-transitive. Moreover,
T = H (which happens if Γ/T ∼= K1) or T has index 2 in H (which happens if Γ/T ∼= K2). In both cases
we have Tv = Hv, implying that Tv is isomorphic to one of the nine possible vertex-stabilisers of 4-valent,
2-arc-transitive graphs given in Table 5.1. Now, observe that the vertex-stabiliser of type 4-AT or 7-AT
contains no proper normal subgroup isomorphic to one of the stabilisers in Table 5.1. This implies that
either Tv = Gv (and thus g ∈ Tv and |G : T | ≤ 2) or Gv is not of type 4-AT or 7-AT. Having in mind
that g ∈ T implies that the expression ι∗(T, o(g)) in (5.12) can be substituted with ι(T, o(g)) and using the
information from Table 5.1, we can now conclude that one of the following holds (here part (b) corresponds
to the case when Gv is of type 4-AT and part (c) to the case when Gv is of type 7-AT):

(a) ι∗(T, 2) < 117 or ι∗(T, 3) < 78;

(b) |T | is divisible by 432, and ι(T, 2) < 135 or ι(T, 3) < 240;

(c) |T | is divisible by 11664, and ι(T, 2) < 1215 or ι(T, 3) < 2670.

Non-abelian simple groups T satisfying one of the above conditions can now be determined using purely
theoretical argument or in combination with computer assisted computations. For example, for the alter-
nating groups Alt(n), n ≥ 5, it is well-known and easy to see that:

ι(Alt(n), 3) = ι∗(Alt(n), 3) = 2

(

n

3

)

, ι∗(Alt(n), 2) =

(

n

2

)

, ι(Alt(n), 2) = 3

(

n

4

)

for n 6= 8, ι(Alt(8), 2) = 105.

From this we see that Alt(n) satisfies (a) if and only if 5 ≤ n ≤ 15, that it never satisfies (b), and that it
satisfies (c) if and only if 15 ≤ n ≤ 16. To determine the non-alternating groups T satisfying (a), we have
considered all the groups T in Table 5.2 satisfying m(T ) < 117 (see the last column of the table), and then
compute the values ι∗(T, 2) and ι∗(T, 3) directly with Magma. The groups T satisfying conditions (b) and
(c) were determined by first checking divisibility conditions on |T | and then checking the bounds on ι(T, r)
directly with Magma. This computations resulted in the following list of groups T satisfying at least one of
the conditions (a), (b) and (c):

Alt(n) with 5 ≤ n ≤ 16, PSL2(8),PSL2(11),PSL2(13),PSL2(16),PSL2(25),PSL3(2),PSL3(3),PSL4(3),

PSU3(3),PSU4(2),PSU4(3),PSU5(2),PSU6(2),PSp6(2),PSp6(3),PSp10(2),PΩ7(3), G2(3)

To deal with these possible groups T and corresponding groups G with T ≤ G ≤ Aut(T ), consider a chain

Gv := X1 < X2 < . . . < Xm−1 < Xm := G

such that each Xi, i ∈ {1, . . . ,m − 1}, is a maximal subgroup of Xi+1 Let k be the smallest index such
that T ≤ Xk. Then, for each i ∈ {1, . . . , k − 1}, the action of G by right multiplication on the cosets of
Xi in G is faithful and in view of Lemma 1.16, we see that g is a non-trivial permutation of Xi\G with
fprXi\G(g) > 1/3. This observation allows us to use the following naive algorithm which finishes the proof
of Theorem 1.1.

Let T be one of the groups satisfying a condition (a), (b) or (c) and let G be such that T ≤ G ≤ Aut(G).
Initialise the procedure by letting Y := {G}. Now construct a set Z by going through all the group Y ∈ Y
and then through all the maximal subgroups M of Y (modulo conjugation in Y ). Put M into Z if and only
if either T ≤ M or there exists an element g ∈ G with o(g) ∈ {2, 3} such that fprM\G(g) > 1/3 (this can be

checked by determining the set M ∩ gG of elements in M that are conjugate in G to g, dividing its size by
|gG| = |G : CG(g)|, and checking if ratio is larger than 1/3). In the latter case, check it M is isomorphic to a
possible vertex-stabiliser of a connected 4-valent 2-arc-transitive graph in [24, Table 1], and if it is, check if
any of the orbital graphs of G acting on M\G is a connected 4-valent graph with G acting 2-arc-transitively
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on it. If there is such a graph, store it. Finally, we repeat this procedure with Z in place of Y, until the set
Y becomes empty.

This computation might seem very time and memory consuming but for most groups T the procedure stops
after the first few iteration. The resulting graphs are: Ψ1,Ψ2,Ψ3,Ψ4,Ψ5, arising from T = Alt(5),Alt(5),
PSL(3, 2), PSL(3, 3) and Alt(7), respectively. This finishes the case k = 4 and thus proves Theorem 1.1.

Let us now assume that k = 3. By (5.12) we see that m(T ) ≤ ι∗(T, 2) ≤ 56, and if Gv is not of type G5,
then we obtain that m(T ) ≤ ι∗(T, 2) ≤ 27. Similarly as in the case k = 4, a computer assisted inspection
of the groups in Table 5.2 yields that the only non-abelian simple groups T satisfying ι∗(T, 2) ≤ 26 are
Alt(5),Alt(6),Alt(7) and PSL(3, 2). Since |Aut(T )|/6 ≤ 840, we see that all graphs arising from a 2-arc-
transitive action of G have order at most 840, contradicting our assumption that |VΓ| > 10 000. We may
thus assume that Gv is of type G5, and thus that |Aut(T )| is divisible by 48 and that |Aut(T )|/48 > 10 000.
The only group from Table 5.2 satisfying these restrictions together with ι∗(T, 2) ≤ 56 is Alt(11). Using the
algorithm described at the end of the case k = 4 reveals that no graph satisfying Hypothesis 5.2 arises in
this case. This completes the proof of Theorem 1.2.
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