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Abstract

We consider wetting models in 1+1 dimensions with a general pinning function on a shrinking strip.
We show that under a diffusive scaling, the interface converges in law to the reflected Brownian motion,
whenever the strip size is o(N−1/2) and the pinning function is close enough to the critical value of the
so-called δ-pinning model of Deuschel–Giacomin–Zambotti [10]. As a corollary, the same result holds
for the constant pinning strip wetting model at criticality with order o(N−1/2) shrinking strip.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: δ-pinning model; Strip-wetting model; Entropic repulsion; Interface model; Zero-set; Markov renewal
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1. Introduction

1.1. The standard wetting model

Let (Sk)k=0,1,... be a random walk with increments Sk − Sk−1, k ≥ 1, which are i.i.d with
law P. We assume that P has a continuous probability density of the form ρ(x) =

1
κ

e−V (x), so
that κ is a normalizing constant, V is symmetric and strictly convex (in the sense that V in C2

and V ′′(x) ∈ [1/c, c] for some c > 1). As a result

ρ(·) is symmetric and monotonically decreasing on the positive half line. (1)
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Symmetry then implies that E[S1] = 0. We assume further that E[S2
1 ] = 1. Denote by Px the

law of S, starting at x ∈ R, and let Ex be the corresponding expectation function. For ease of
notation we let P = P0 and E = E0.

As a convention, throughout the paper expressions of the form Px [A, SN = y] =

Ex [1A1{y}(SN )], are to be read as the density of SN at y with respect to the measure Px on the
event A. More explicitly, for a random variable Y ,

Ex [Y1{y}(SN )] := lim
ϵ→0

1
ϵ
Ex [Y1[y,y+ϵ](SN )]. (2)

The standard wetting model, also called the δ-pinning model, was introduced in [10]. It is
a measure on RN

+
where two possible boundary conditions are considered, free and constraint.

The constraint case is defined by

Pc
β,N (dx) =

1
Z c

β,N
exp

(
−

N∑
i=1

V (xi − xi−1)

)
N−1∏
i=1

(
dxi1[0,∞)(xi ) + eβδ0(dxi )

)
, (3)

where x0 = xN = 0. Analogously, the free case is defined by

P f
β,N (dx) =

1

Z f
β,N

exp

(
−

N∑
i=1

V (xi − xi−1)

)
N∏

i=1

(
dxi1[0,∞)(xi ) + eβδ0(dxi )

)
, (4)

where x0 = 0. Here dxi is the Lebesgue measure on R, and the partition functions Z c
ϵ,N and

Z f
ϵ,N are normalizing constants so that Pc

β,N and P f
β,N are probability measures on RN

+
.

A remarkable localization transition was proved in [10] using a renewal structure naturally
corresponding to the model. On the heuristic level, conditioning on the contact set, the
excursions from zeros are independent and their law is independent of the pinning parameter.
Hence one expects to see that under the conditioning, the (appropriately rescaled) excursions
converge to the Brownian excursions. To analyze the full path one therefore needs to understand
the contact set distribution. Whenever N is large, the contact set looks like a renewal process
with inter-arrival distribution expressed in terms of the Green function of the walk.

In particular, making the above intuition accurate and quantitative, in [10] (and tailored for
renewal theory techniques in [5]) the authors proved that there exists some βc ∈ R, explicitly
defined in (5) below, so that under the standard diffusive scaling and interpolation to continuous
paths on [0, 1] the following limit in distribution holds, with the following laws:

• For β < βc, the Brownian meander (free case) or the Brownian excursion (constrained
case).

• For β > βc, a mass-one measure on the constant zero function.
• For β = βc, the reflecting Brownian motion (free case) or the reflecting Brownian bridge

(constrained case).

Moreover, βc is explicit in terms of the random walk density ρ. In particular,

e−βc =

∞∑
n=1

fn, (5)

where fn := P0[Cn, Sn = 0] is the density of Sn at zero on the event Cn = {S1 ≥ 0, . . . , Sn ≥ 0}

(remember (2)). We remark already at this stage that

fn =
1

√
2π

n−3/2
+ o(n−3/2) (6)
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and moreover, in the Gaussian case V (x) =
1
2 x2, the error term is identically zero [10, Lemma

1] (see also (11) and a few lines below it) and in particular βc = log
(

1
√

2π

∑
∞

n=1 n−3/2
)

.

1.2. The strip wetting model with general pinning function

The strip wetting model is the analogous family of measures on RN
0 which we now define.

Fix a one-parameter family of functions {ϕa, a ∈ (0, a0]}, so that ϕa : R+ → R and
∫ a

0 eϕa (x)dx
is finite for 0 < a ≤ a0, where dx is the Lebesgue measure on R. Let CN be the event
{S1 ≥ 0, . . . , SN ≥ 0}. We shall define now Pα

ϕa ,N for α ∈ {c, f }. Whenever we would like
to emphasize the pinning functions we also call them the ϕa-wetting model. The case of free
boundary conditions is defined by the Radon–Nikodym derivative

dP f
ϕa ,N (S) =

1

Z f
ϕa ,N

exp

(
N∑

n=1

ϕa(Sn)1[0,a](Sn)

)
1CN dP(S), (7)

while the constraint case is defined by the Radon–Nikodym derivative

dPc
ϕa ,N (S) =

1
Zc

ϕa ,N
exp

(
N∑

n=1

ϕa(Sn)1[0,a](Sn)

)
1[0,a](SN )1CN dP(S). (8)

The normalizing constants Z f
ϕa ,N and Zc

ϕa ,N are called the partition functions. When we
want to specify the initial and ending points, we also define the density at y ∈ R+ by

Zc
ϕa ,N (x, y) = Ex

[
exp

(
N∑

n=1

ϕa(Sn)1[0,a](Sn)

)
1{y}(SN )1CN

]
, x ∈ R+, N ≥ 1, (9)

so that

Zc
ϕa ,N =

∫ a

0
Zc

ϕa ,N (0, y)dy.

1.3. Main results

As mentioned in the introduction this paper deals with strip models approximating the
critical standard wetting model in a regularizing way. The regularization is due to the fact
that we allow the pinning functions ϕa to be smooth. The approximation is due to the fact the
strip size a goes to zero with the model size N .

As we shall see in Section 1.6, as an application we prove that the strip wetting model
with constant pinning βc(aN ) has the same asymptotic behavior as the critical standard wetting
model, whenever the strip size aN is decaying asymptotically faster than 1

√
N

.
We start with some notations. For a path (Si )i≥0, let τ a

0 = 0, τ a
j = inf{n > τ a

j−1 : S j ∈

[0, a]}, ℓa
N = sup{k ≤ N : Sk ∈ [0, a]}. Let Aa

N = {
τ j
N : j ≤ ℓa

N } ⊂ [0, 1] be the zero-set up to
time N . Define now for A = {t1, . . . , t|A|}, 0 =: t1 < · · · < t|A| ≤ N ,

p̃α
ϕa ,N (Aa

N = A/N ) := Pα
ϕa ,N (τ a

i = ti , i ≤ ℓa
N ), (10)

and Ẽ
α

ϕa ,N , α ∈ {c, f }, the corresponding expectation. We shall use p̃c
ϕa ,N (A) and p̃c

ϕa ,N (Aa
N =

A/N ) with no distinction. Note that by definition p̃c
ϕa ,N (A) = 0 whenever ℓa

N (A) < N .
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Definition 1.1. We say that (ϕa)0<a<a0 satisfies Condition (A) if there is some C > 0 so that

| log
∫ a

0
eϕa (x)−βc dx | ≤ Ca

for all 0 < a < a0, where βc was defined in (5).

Remark 1.2. Note that Condition (A) guarantees that for N fixed, the ϕa-wetting model
converges weakly to the critical standard wetting model as a tends to 0.

The content of the next theorem is a scaling limit of the contact sets. For that we shall use
the Matheron topology on closed real sets [17]. The basic notions can be found in [14, page
209], [10, Chapter 7], and [5, Appendix B].

Definition 1.3. Let B be a standard one-dimensional Brownian motion (resp. bridge from
0 to 1). We call the random set {t ∈ [0, 1] : Bt = 0} the Brownian motion (resp. bridge)
zero-set.

Theorem 1.4. Fix some sequence aN = o(N−1/2). Assume that ϕa satisfies Condition (A) from
Definition 1.1. Then under p̃α

ϕaN ,N , seen as a probability measure on the Matheron topological

space of closed sets of [0, 1], the set AN is converging in distribution to the Brownian motion
zero-set for α = f , and to the Brownian bridge zero-set for α = c.

We also have a full path scaling limit.

X (N )
t :=

1
N 1/2 X⌊Nt⌋ +

1
N 1/2 (Nt − ⌊Nt⌋)(X⌊Nt⌋+1 − X⌊Nt⌋).

Theorem 1.5. If aN = o(N−1/2) then the process (X (N )
t )t∈[0,1] under Pα

ϕaN ,N converges weakly

in C[0, 1] to the reflected Brownian motion on [0, 1] for α = f and to the reflected Brownian
bridge on [0, 1] for α = c.

Remark 1.6. As it will become clear from the proof of Theorems 1.4 and 1.5, they hold if we
weaken Condition (A) from Definition 1.1 so that the constant C is a function of a, C = C(a),
as long as a + aC(a) → 0 as a → 0 faster than N−1/2. For example if C(a) = a−ϵ for some
0 < ϵ < 1, then the theorems hold whenever the faster shrinking rate aN = o(N−1/2(1−ϵ))
holds.

1.4. Examples

1.4.1. Constant pinning
We call the model the strip wetting model with constant pinning whenever the pinning

function is constant on the strip, i.e., for some β = β(a) ∈ R ϕa(x) = β, x ∈ [0, a].
This model was suggested in Giacomin’s monograph [14, Equation (2.57)] as an open

problem, and a major progress was done by Sohier [20,21]. Applications of our results in
this case are presented in Section 1.6.
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1.4.2. Smooth approximation of the critical standard model
We construct functions ϕa ∈ C∞(R) supported on [0, a] so that they satisfy Condition (A)

from Definition 1.1. Let

f (x) :=

{
e−1/x x > 0
0 x ≤ 0.

It is easy to verify that the derivatives of f at 0 vanish and hence it is C∞(R). Choose some
ϵ(a) → 0 as a → 0 with the rate of decay to be specified later on and let g = ga be defined
by

g(x) = ϵ(a) +
1
a

f ( a−x
ϵ(a) )

f (1 −
a−x
ϵ(a) ) + f (1 +

a−x
ϵ(a) )

.

It is easy to check that ϵ(a) ≤ g(x) ≤ 1/a + ϵ(a), g(x) = 1/a + ϵ(a) if x ≤ a − ϵ(a), and
g(x) = ϵ(a) if x ≥ a. Therefore (1/a+ϵ(a))(a−ϵ(a)) ≤

∫ a
0 g(x)dx ≤ (1/a+ϵ(a))a. Therefore,

choosing ϵ(a) ≤ a2 then there is some constant C > 0 so that for all a small enough

e−Ca
≤ 1 + aϵ(a) − ϵ(a)/a + ϵ(a)2

≤

∫ a

0
ga(x)dx ≤ 1 + aϵ(a) ≤ eCa .

We remark that exp(βc) ≡
√

2π/
∑

n≥1 n−3/2
≈ 0.961849. Set ϕa(x) := (βc + log ga(x))1R+

(x), x ∈ R, where ϵ(a) = a2. See Fig. 1 for a graphical presentation. Then ϕa ∈ C∞([0, a])
and satisfies Condition (A) from Definition 1.1.

Fig. 1. The graph of exp(ϕa(x)), 0 ≤ x ≤ 1, for a = 1/4 and a = 1/2.

1.5. The critical wetting dynamics problem

Our main motivation for the question discussed in this paper comes from the notorious
problem of constructing and studying a continuous dynamics which is reversible with respect
to the reflected Brownian motion/bridge. The well-known Nualart–Pardoux type SPDE [18]
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is a scaling limit of the infinite-dimensional Ornstein–Uhlenbeck process with reflection at
zero [13], and is reversible under the Brownian excursion [23]. As mentioned in the introduction
the latter is the scaling limit of a subcritical standard wetting model [10].

Therefore a natural candidate for a solution to the problem is the critical wetting dynamics.
This process should arise as a scaling limit of the finite volume dynamics which is reversible
with respect to the critical wetting measure. However, a canonical dynamics associated with the
standard wetting measure is non-trivial due to the presence of an atom in zero. A construction
of the dynamics for a given finite size is possible using Dirichlet form techniques [12] (see
also Funaki’s lecture notes [7, Chapter 15.2]). Taking a limit using this approach seems out
of reach. Nevertheless, an integration by parts formula for the reflected Brownian bridge was
achieved in [16], where it was formulated in terms of Hida distribution and also a relevant
SPDE was conjectured.

Using the result of this paper we can present a straightforward approach based on Skorokhod
type equation. More precisely, take ϕa ∈ C2 supported on [0, a], 0 < a < 1, which satisfies
Condition (A) from Definition 1.1 (e.g., the one constructed in Section 1.4.2). Similarly to [13],
we can construct a dynamics X t (x), t ≥ 0, x ∈ IN := {0, 1, . . . , N }, for which the measure
Pc

ϕa ,N defined in (8) is a reversible equilibrium. Indeed, consider the Skorokhod type equation

Xx (t) = −

∫ t

0
∂x HN (X (s))ds + ℓt (x) +

√
2Wt (x), x ∈ IN , t ≥ 0,

with boundary conditions

X0(t) = X N (t) = 0, t ≥ 0,

initial law

(Xx (0))x∈IN ∼ Pc
ϕa ,N ,

so that the local time process ℓt satisfies

dℓx (t) ≥ 0, t ≥ 0, x ∈ IN ,

and ∫
∞

0
Xx (t)dℓx (t) = 0, x ∈ IN ,

W (x), x ∈ IN , are independent standard Wiener measures, the Hamiltonian

HN (X ) :=

N∑
x=0

ϕa(Xx ) +
1
2

N∑
x=1

(Xx − Xx−1)2,

and

∂x HN (X ) :=
∂ HN (X )

∂ Xx
= ϕ′

a(Xx ) + ∆x (X ),

where

∆x (X ) = 2Xx − Xx−1 − Xx+1 whenever 1 ≤ x < N

is the discrete Laplacian. Let X N (t) be the diffusively rescaled and linearly interpolated path
given by

X N
y (t) =

1
N 1/2 X⌊N y⌋(t) +

1
N 1/2 (N y − ⌊N y⌋)(X⌊N y⌋+1(t) − X⌊N y⌋(t)), t ≥ 0, y ∈ [0, 1].
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Theorem 1.5 states that if a = aN = o(N−1/2), then

(X N
y (0))y∈[0,1] ⇒ (βy)y∈[0,1] (∗)

where (βy)y∈[0,1] is the reflected Brownian bridge.
The goal is to get a limiting dynamics as the volume size tends to infinity and simultaneously

the strip size tends to zero and then identify the corresponding SPDE which should be the
natural reversible dynamics associated with the reflected Brownian bridge.

In a collaboration with Henri Elad Altman we recently proved that

{X N
y (t N 2), y ∈ [0, 1], t ≥ 0}N∈N is a tight sequence

in H−1(0, 1) [9], thus showing existence of the limit. The reader is invited to consult that last
reference for more details on the construction of the dynamics.

Attacking the problem from yet a different angle, a major progress on it was made recently
by Elad Altman and Zambotti [11] where they consider a local time mollification of a
continuous model to construct the dynamics. They also conjecture the formal (singular) SPDE
the dynamics should solve. Showing that any of these models is a solution to the proposed
SPDE, in some reasonable sense, is still an open problem.

1.6. Applications to strip wetting with constant pinning at criticality

In order to achieve progress in the open problem of constructing the wetting dynamics which
was described in Section 1.5, a natural question would be to choose ϕa to be a constant function
on the strip, ϕa ≡ β1[0,a]. However, in this case the drift term in the dynamics has no derivative
at a and therefore an approximating ϕa as in Section 1.4.2 should be taken into account. On
the other hand, one might be still interested to understand the constant strip wetting scaling
limit per se. In order to use our theorem, condition (A) has to be satisfied. It is easy to see that
β independent of a will not work.

Sohier [21] considered the strip wetting model with constant pinning and proved that there
is some βc(a) ∈ R so that off-criticality, the same path scaling limit results as in the standard
wetting model hold true. Namely, in this case the limiting object is

• Brownian meander (free case) or the Brownian excursion (constrained case), whenever
β < βc(a), and

• a unit mass on the constant zero function, whenever β > βc(a).

In particular, he proved also a corresponding statement on the off-critical contact set scaling
limits. Moreover, βc(a) is represented in terms of an eigenvalue of a natural Hilbert–Schmidt
integral operator, see [21], and Section 5.1.

In [20] the critical contact set with free boundary conditions was considered, for a fixed size
a of the strip. That paper states that the rescaled contact set converges to a random set with
a distribution which is absolutely continuous but not equal to the Brownian motion zero-set.
Moreover the Radon–Nikodym derivative is claimed there to be independent of a, which would
suggest that the limit as a → 0 is discontinuous.We strongly believe that there is mistake in
the argument in Lemma 3.3 of that paper which is the key for proving Theorem 1.5 there.
Specifically, the decomposition in lines (70) and (86) is false. E.g., instead of the probability
appearing in the second line of (86) one has a probability which is not bounded away from
zero (except for the location on the strip, it depends also on the size N −tk of the last excursion
before time N , and vanishes in the limit as N − tk → 0). Therefore, one cannot use that paper’s
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main result dealing with Markov renewal processes for the sum in (86) in order to bound all
of it from below by order N 1/2. In any case, [20] does not contradict our results, since it deals
with a constant strip size a.

The next theorem deals with the critical value βc(a) of the constant pinning model for a
small. It states that the critical value βc of the standard wetting model is well-approximated by
βc(a).

Theorem 1.7. There are constants C, D > 0 so that

Da2
≤ log a + βc(a) − βc ≤ Ca

for all a > 0 small enough. In particular, the constant function ϕa = βc(a) satisfies Condition
(A) from Definition 1.1, and moreover aeβc(a)

→ eβc as a → 0.

Corollary 1.8. Theorems 1.4 and 1.5 hold true also for the critical constant pinning models,
i.e. whenever ϕa(x) = βc(a), x ∈ [0, a].

In other words, in the case where a = aN = o(N−1/2) the rescaled path of the strip wetting
with critical constant pinning βc(a) converges to reflected Brownian motion. Remark 5.2 for a
partial result on the case a = aN = O(N−1/2)

Remark 1.9. As discussed in Section 1.5, in this work we are only interested in a wetting
model on the strip so that a scaling limit as in Theorem 1.5 is achieved with a smooth pinning
function. In particular, the condition on the rate of which the strip size shrinks is not relevant
from the SPDE point of view. On the other hand, our results seem to be far from optimal. In
particular one can ask what is the optimal rate for which a → 0 as N → ∞ for which we still
see the reflected Brownian bridge/motion at criticality, for the constant pinning at criticality
β = βc(a)? We believe that the result stays true even with a constant strip size a.

1.7. Organization of the paper

The main argument in the paper is to compare the ϕa-strip wetting model with the critical
standard wetting model through a mediator, the near-critical standard wetting model. We first
approximate the ϕa-strip wetting model in terms of a near-critical standard wetting. This is the
content of Section 2. In Section 3 near-critical standard wetting model is shown to approximate
the critical standard wetting models. This is done by the connection of standard wetting models
to pinning models on renewal processes and Sohier’s result [19] on the latter. Here the o(N−1/2)
condition appears. In Section 4 we use Condition (A) with the two approximations to prove
Theorems 1.4 and 1.5. To conclude, Section 5 deals with the constant pinning case and contains
the proof of Theorem 1.7. Appendices A, B, and C contain the proof of some technical Lemmas.

2. Comparing ϕa-wetting model to near-critical wetting model

2.1. Comparing excursion kernels

Define the excursion kernel density

f a
n (x, y) := Px [S1 > a, . . . , Sn−1 > a, Sn = y] (11)
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for n ≥ 2, x, y ∈ R, where f a
1 (x, y) = Px [S1 = y] (remember the notation from (2)). Let

f a
n := f a

n (0, 0),

and we omit the upper-case a whenever a = 0, that is

fn = f 0
n .

The first observation is that the f a
n approximate the corresponding fn .

Lemma 2.1. The following hold:

• f a
n (·, ·) is symmetric: f a

n (x, y) = f a
n (y, x) for all x, y ∈ [0, a], n ≥ 1.

• f a
n (x, y) is monotonously increasing in x ∈ [0, a] (and in y ∈ [0, a]).

• f a
n (a, a) = fn .

In particular,

f a
n

fn
≤

f a
n (x, y)

fn
≤ 1 (12)

for all x, y ∈ [0, a] and n ≥ 1. Moreover, f a
n
fn

decreases in a and tends to 1 as a → 0, for all
n.

Proof. For the first two properties, one uses the assumptions (1) on the following explicit
expression for the densities

f a
n+1(x, y) =

∫
∞

a
...

∫
∞

a
ρ(s1 − x)ρ(s2 − s1) · · · ρ(sn − sn−1)ρ(y − sn)ds1 · · · dsn.

The last property follows, e.g., by the change of variables si → si + a, i = 1, . . . , n. □

The main goal of this section is to estimate f a
n in terms of fn and a. The next lemma

actually supplies upper and lower bounds, but for the results of the paper we shall only use
the lower bound.

The next lemma is crucial for the argument. Its proof is rather technical and differed to
Appendix A.

Lemma 2.2. There are constants C0, C1 and 0 < a0 so that for all 0 ≤ a ≤ a0 and n ≥ 1

exp(−C0a) ≤ f a
n / fn ≤ exp(−C1a). (13)

2.2. Comparing the partition functions

Lemma 2.3. Fix ϕa and assume Condition (A) from Definition 1.1 with the constant C. Then,
there is a constant C ′ and a positive decreasing function C ′(a) so that C ′(a) → 1 as a → 0,
and for all N ≥ 1 we have

Z c
βc−C ′a,N ≤ Zc

ϕa ,N ≤ Z c
βc+C ′a,N , (14)

and

C ′(a)Z f
βc−C ′a,N ≤ Z f

ϕa ,N ≤ Z f
βc+C ′a,N . (15)
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Proof. We start with the constraint case.

Zc
ϕa ,N (0, y) =

N−1∑
k=0

∑
0=t0<t1<···<tk<N

∫ a

0
· · ·

∫ a

0

k∏
i=1

f a
ti −ti−1

(yi−1, yi )eϕa (yi ) f a
N−tk (yk, y)

× eϕa (y)dyi =: (∗).

Using (12) and Condition (A) we have the following upper bounds.

(∗) ≤

N−1∑
k=0

∑
0=t0<t1<···<tk<N

∫ a

0
· · ·

∫ a

0
fN−tk

k∏
i=1

fti −ti−1eϕa (yi )eϕa (y)dyi

= eϕa (y)
N−1∑
k=0

(
∫ a

0
eϕa (z)dz)k

∑
0=t0<t1<···<tk<N

fN−tk

k∏
i=1

fti −ti−1

≤ eϕa (y)
N−1∑
k=0

e(βc+Ca)k fN−tk

∑
0=t0<t1<···<tk<N

k∏
i=1

fti −ti−1 .

Hence,

Zc
ϕa ,N =

∫ a

0
Zc

ϕa ,N (0, y)dy ≤

∫ a

0
eϕa (y)dy

N−1∑
k=0

e(βc+Ca)k
∑

0=t0<t1<···<tk<N

fN−tk

k∏
i=1

fti −ti−1

≤

N−1∑
k=0

e(βc+Ca)(k+1)
∑

0=t0<t1<···<tk<N

fN−tk

k∏
i=1

fti −ti−1

=

N∑
k=1

e(βc+Ca)k
∑

0=t0<t1<···<tk=N

k∏
i=1

fti −ti−1

= Z c
βc+Ca,N .

Similarly for the lower bound, using (13) and Condition (A), we get

(∗) ≥ eϕa (y)
N−1∑
k=0

e(βc−Ca−C0a)k fN−tk

∑
0=t0<t1<···<tk<N

k∏
i=1

fti −ti−1

Hence,

Zc
ϕa ,N =

∫ a

0
Zc

ϕa ,N (0, y)dy ≥

∫ a

0
eϕa (y)dy

N−1∑
k=0

e(βc−Ca−C0a)k

×

∑
0=t0<t1<···<tk<N

fN−tk

k∏
i=1

fti −ti−1

≥ dy
N∑

k=1

e(βc−Ca−C0a)k
∑

0=t0<t1<···<tk=N

k∏
i=1

fti −ti−1

= Z c
βc−(C+C0)a,N .

Since Zc
ϕa ,N =

∫ a
0 Zc

ϕa ,N (0, y)dy, setting C ′
= C + C0 we conclude the two bounds.
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The free case is done in a similar manner. Indeed summing over the last contact before time
N , we have

Z f
ϕa ,N =

N∑
k=0

∫ a

0
Zc

a,ϕa ,k(0, y)Pa
y (N − k)dy =: (∗).

Using (35), the line before it, Condition (A), and the constraint case we have the following
upper bound.

(∗) ≤

N∑
k=0

P(N − k)
∫ a

0
Zc

a,ϕa ,k(0, y)dy

≤

N∑
k=0

P(N − k)Z c
βc+Ca,k

= Z f
βc+Ca,N .

Similarly for the lower bound, using (35), the line before it, (13) and Condition (A), we get

(∗) ≥ Ca(0)e−Ca Z f
βc−(C+C0)a,N .

Setting C ′(a) := Ca(0)e−Ca , we are done. □

2.3. Derivative of ϕa-strip wetting with respect to near-critical standard wetting

In this section we shall discuss the contact set distribution, and show that the ϕa-strip wetting
is approximated by a near-critical standard wetting model. By near-criticality we mean a linear
perturbation by a constant multiple of the strip-size of the critical pinning strength.

Remember the definition in (10) with the notations above it. We introduce the analog for
the standard wetting model.

pα
β,N (AN = A/N ) := Pα

eβ ,N (τi = ti , i ≤ ℓN ), (16)

and Eα
β,N , α ∈ {c, f }, the corresponding expectation. Here as well, with a slight abuse of

notation we use pc
β,N (A) and pc

β,N (AN = A/N ) with no distinction. Note again that by
definition pc

β,N (A) = 0 whenever ℓN (A) < N .

Lemma 2.4. Assume ϕa satisfies Condition (A) from Definition 1.1 with the constant C.
Remember the definitions from (10). There are some constants ci , i = 1, . . . , 6, so that for
α ∈ {c, f }

dp̃α
ϕa ,N

dpα
βc+c3a,N

≤
Zα

βc+c1a,N

Cα(a)Zα
βc−c2a,N

and
dp̃α

ϕa ,N

dpα
βc−c6a,N

≥
Zα

βc−c4a,N

Zα
βc+c5a,N

.

Here Cc(a) = 1 and C f (a) = C ′(a) is from (15).
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Proof. Assume that A = {t0, . . . , tk} so that 0 = t0 < · · · < tk = N . We have

p̃c
ϕa ,N (Aa

N = A/N ) =
1

Zc
ϕa ,N

∫ a

0
· · ·

∫ a

0

k∏
i=1

f a
ti −ti−1

(yi−1, yi )eϕa (yi )dyi =: (∗).

Using (13), Condition (A), and Lemma 2.3 we have

(∗) ≤
1

Zc
ϕa ,N

e(βc+Ca)k
k∏

i=1

fti −ti−1

=
Z c

βc+Ca,N

Zc
ϕa ,N

pc
βc+Ca,N (AN = A/N )

≤
Z c

βc+Ca,N

Z c
βc−C ′a,N

pc
βc+Ca,N (AN = A/N ).

The lower bound is analogous. For the free case, fix A = {t0, . . . , tk} so that 0 = t0 < · · · <

tk < N .

p̃ f
ϕa ,N (Aa

N = A/N ) =
1

Z f
ϕa ,N

∫ a

0
· · ·

∫ a

0

k∏
i=1

f a
ti −ti−1

(yi−1, yi )eϕa (yi ) Pa
yk

(N − tk)dyi =: (∗).

Using (13), Condition (A), and Lemma 2.3 we have

(∗) ≤
1

Z f
ϕa ,N

e(βc+Ca)(k−1)
k∏

i=1

fti −ti−1

∫ a

0
Pa

yk
(N − tk)eϕa (yk )dyk

≤
1

Z f
ϕa ,N

e(βc+Ca)k
k∏

i=1

P(N − tk) fti −ti−1

=
Z f

βc+Ca,N

Z f
ϕa ,N

p f
βc+Ca,N (AN = A/N )

≤
Z f

βc+Ca,N

C ′(a)Z f
βc−C ′a,N

pc
βc+Ca,N (AN = A/N ).

Similarly for the lower bound, where we should omit the C ′(a) in the analogous statement. □

3. Near-critical standard wetting, scaling limit of the contact set

In this section we shall use a result by Julien Sohier on order N−1/2 near-critical pinning
models defined by a renewal process with free boundary conditions [19] to deduce that for
o(N−1/2) near-critical standard wetting models, and also for pinning models defined by a
renewal process with constraint boundary conditions, the rescaled limiting contact set coincides
with the one which is corresponding to the critical pinning model. That is, very roughly
speaking, we shall show that in the standard wetting model, the rescaled contact set limit is
invariant under o(N−1/2) linear perturbation of the critical pinning strength. We now make these
statements exact and formal.

First, let us formulate Sohier’s result. Let τ be a renewal process on the positive integers
with inter-arrival mass function K . More precisely, let τk =

∑k
i=1 li where li are i.i.d. random

variables with P(l1 = n) = K (n), then τ is the random subset τ := {τi : i ≥ 0} ⊂ N with
respect to P. Let E be the corresponding expectation.
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Assume that K (n) =
L(n)
n3/2 , where L is slowly varying at infinity (i.e. L(cx)/L(x) → 1 as

x → ∞ for all c > 0).
Let Pβ,N be a probability measure on subsets of {0, . . . , N } and naturally, on subsets of N,

defined by

dPβ,N (τ ) = dPβ,N (τ ∩ [0, N ]) :=
1

Zβ,N
exp(β|τ ∩ [0, N ]|)dP(τ )

so that the partition function is Zβ,N = E[exp(β|τ ∩ [0, N ]|)]. Let Eβ,N be the corresponding
expectation. We also define β (K )

c by the identity eβ
(K )
c
∑

n≥1 K (n) = 1. Obviously, one notes
that β (K )

c = 0 whenever
∑

≥1 K (n) = 1.
As in Section 1.3, in this section weak convergence of closed random subsets of [0, 1] is

with respect to the Matheron topology on closed subsets.
For readability, we exclude some notations which are irrelevant to our argument and we

now formulate a special version of Sohier’s theorem. For elaborated discussion see Sohier
[19, Sections 1 and 3]. See also the monograph [14] for a comprehensive, rich, and approach-
able analysis of the renewal model.

Theorem 3.1 (Theorem 3.1.(1) and Part of the Proof of [19] in the Case α =
1
2 , L ∼ CK :=

1
√

2π
eβc ). Assume K (n) = q(n) :=

CK
n3/2 , where CK is defined so that

∑
n≥1 q(n) = 1. Let

b = 2
√

πCK and fix ϵ ∈ R. Then, under P b√
N

ϵ,N the rescaled contact set AN :=
1
N τ ∩[0, N ] :=

{
i
N : i ∈ τ ∩ [0, N ]} ⊂ [0, 1] is converging weakly to a random set B1/2. Moreover, the law of

B1/2 is absolutely continuous with respect to the law of A1/2, the set of zeros in [0, 1] of the
standard Brownian motion, with Radon–Nikodym density exp(ϵL1)

E[exp(ϵL1)] , where L1 is the local time

in 0 of the Brownian motion at time 1 endowed with probability measure P and expectation
E. In particular, for every continuous bounded function Φ : F → R, where F is the space of
closed sets in [0, 1] with the Matheron topology, it holds that

E bϵ√
N

,N [Φ(AN )] = E
[

exp
(

bϵ
|τ ∩ [0, N ]|

√
N

)
Φ(AN )

]
→ E[exp(ϵL1)Φ(A1/2)], (17)

and specifically

Z bϵ√
N

,N = E
[

exp
(

bϵ
|τ ∩ [0, N ]|

√
N

)]
→ E[exp(ϵL1)]. (18)

Remark 3.2. Following Sohier’s notation in lines (3.4) and (3.7) in his paper, in the case
α =

1
2 and L(x) ∼ CK , we have an ∼ 4πC2

K n2 and bn ∼
1

2
√

πCK

√
n. We note again that

β (K )
c = 0 since

∑
∞

n=1 K (n) = 1.

Remark 3.3. We note that in the case K (n) = fn =
1

√
2π

n−3/2 we have β (K )
c = βc, the critical

wetting model pinning strength, and for K (n) = eβc fn we have β (K )
c = 0.

Corollary 3.4. Fix a sequence ϵN so that ϵN → 0 as N → ∞. Let K (·) = q(·), as in
Theorem 3.1. Then, under P ϵN√

N
,N the rescaled contact set AN is converging weakly to A1/2,

the set of zeros in [0, 1] of a standard Brownian motion.
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Sketch of proof. By considering the positive and negative parts of ϵN we may assume without
loss of generality that they all have the same sign. We consider the case where they are non-
negative. The complementary case is similar. First, note that for every ϵ > 0 we have by (18)
that

1 ≤ lim sup
N→∞

Z bϵN√
N

,N
≤ lim

N→∞

Z bϵ√
N

,N = E[exp(ϵL1)].

Hence,

1 ≤ lim sup
N→∞

Z bϵN√
N

,N
≤ lim inf

ϵ→0
E[exp(ϵL1)] = 1

and so

lim
N→∞

Z bϵN√
N

,N
= 1. (19)

Similarly, it holds that for any measurable bounded function Φ : F → R,

lim
N→∞

E
[

exp
(

bϵN
|τ ∩ [0, N ]|

√
N

)
Φ(AN )

]
= E[Φ(A1/2)]. (20)

The statement of the corollary follows. □

Define Pc
β,N similarly to be the constrained version of Pβ,N :

dPc
β,N (τ ) = dPc

β,N (τ ∩ [0, N ]) :=
1

Zc
β,N

exp(β|τ ∩ [0, N ]|)1{N∈τ }dP(τ ).

One can write

Zc
0,N =

N∑
k=1

P0,N (τk = N )Z0,N = E0,N (1{N∈τ })Z0,N ,

and so it holds

Pc
0,N (·) =

P0,N (· ∩ {N ∈ τ })
P0,N (N ∈ τ )

= P0,N (·|N ∈ τ )

(compare with Giacomin [14, Remark 2.8]).
The next proposition is an analog of Corollary 3.4 in the corresponding constraint case, and

moreover for the near-critical standard wetting model.

Proposition 3.5. Let K (·) = q(·), as in Theorem 3.1. Fix a sequence ϵN so that ϵN → 0
as N → ∞. The rescaled contact set AN ⊂ [0, 1] distributed according to p f

βc+
ϵN√

N
,N

, is

converging weakly to A1/2, the set of zeros in [0, 1] of a standard Brownian motion. Moreover,
when distributed according to either Pc

ϵN√
N

,N
or pc

βc+
ϵN√

N
,N

, AN is converging weakly to Ac
1/2,

the set of zeros of the Brownian bridge in [0, 1]. Here Pc
ϵN√

N
,N

is corresponding to K with the

same conditions as in Theorem 3.1, and, as before, all sets are considered in the Matheron
topology on closed subsets of the real line.

For the proof we shall essentially imitate the way Proposition 5.2. of [5] was deduced from
Lemma 5.3 of that paper (which is partly based on [10]), while performing the necessary
changes. In light of Eqs. (19) and (20) the free case is almost the same as in [5]. In the
constrained cases we will borrow an estimate from [8].
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Proof. First, for the free case, let A = {t1, . . . , t|A|} so that 0 =: t0 < t1 < · · · < t|A| ≤ N .
Note that Z0,N = 1 for all N (see [14, equation (2.17)]), so P0,N (A) = P(A). Now

P(A) =

|A|∏
j=1

q(t j − t j−1)Q(N − t|A|)

where Q(n) = K̄ (n + 1) =
∑

t≥n+1 q(t). Also

p f
β,N (A) =

1

Z f
β,N

e(β−βc)|A| P(N − t|A|)
|A|∏
j=1

q(t j − t j−1),

where as before P(n) = P0(n) := P[S1 > 0, . . . , Sn > 0]. We then have for βN = βc +
ϵN√

N

p f
βN ,N (A)

P(A)
= exp

(
ϵN
√

N
|A|

)
φN (max A),

where φN : [0, 1] → R+ is defined by

φN (t) :=
1

Z f
βc,N

P(N (1 − t))
Q(N (1 − t))

.

Therefore for every bounded measurable functional Φ we have

E f
βN ,N [Φ(AN )] = E

[
exp

(
ϵN
√

N
|AN |

)
φN (max A)Φ(AN )

]
,

It was proved in [5, proof of Proposition 5.2.] that φN (t) → 1 uniformly in t ∈ [0, v], for every
v ∈ (0, 1). Since P-a.s. 0 /∈ A1/2, it follows from (20) (for general ϵN → 0) that

E
[

exp
(

ϵN
√

N
|AN |

)
φN (max A)Φ(AN )

]
→ E[Φ(A1/2)],

and the free case is done. We will now show the constraint case. By definition, for every
A ⊂ {1, . . . , N } containing N we have

Pc
β,N (A)

pc
βc+β,N (A)

=
Z c

βc+β,N

Zc
βc,N

.

That is, the ratio of these two probability measures is constant and so they coincide. We
shall work with Pc

ϵN√
N

,N
. As in the free case we follow the proof of [5, Proposition 5.2.], and

accordingly we now consider AN ∩ [0, 1/2]. We have for βN = βc +
ϵN√

N

Ec
βN ,N [Φ(AN ∩ [0, 1/2])] = E

[
exp

(
ϵN
√

N
|AN ∩ [0, 1/2]|

)
φc

N (maxAN ∩ [0, 1/2])

× Φ(AN ∩ [0, 1/2])
]

,

where

φc
N (t) :=

∑N/2
n=0 Zc

ϵn√
n
,nq(N (1 − t) − n)

Zc
ϵN√

N
,N

Q(N (1 − t))
, t ∈ [0, 1/2].

We remind the reader that here Zc
β,N is the partition function corresponding to Pc

β,N . Now,
since φc

N (t) is defined similarly to f c
N (t) in the proof of [5, Proposition 5.2.], with the only
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difference being that all the Zc
ϵk√

k
,k

are replaced by the corresponding Zc
0,k , and since that proof

uses only the asymptotic rates of Zc
0,·, q(·) and Q(·), we are done once we show that

Zc
ϵN√

N
,N

Zc
0,N

→ 1 as N → ∞. (21)

By a direct expansion, one finds that Zc
ϵN√

N
,N

= Zc
0,N Ec

0,N

[
exp

(
ϵN√

N
|τ ∩ [0, N ]|

)]
. Therefore,

Zc
ϵN√

N
,N

Zc
0,N

= Ec
0,N

[
exp

(
ϵN
√

N
|τ ∩ [0, N ]|

)]
= E

[
exp

(
ϵN
√

N
|τ ∩ [0, N ]|

)
|N ∈ τ

]
.

Assume without loss of generality that ϵN ≥ 0 for all N and fix ϵ > 0. Since for large
N the right most expression in last line is smaller than E

[
exp

(
ϵ

√
N

|τ ∩ [0, N ]|
)

|N ∈ τ
]
, by

[8, equation (A.12)] (cf. [22], and [15, Lemma A.2]), there is a constant C > 0 bounding
the expression. Using Lemma C.1 we deduce that the expression is in fact converging to 1 as
N → ∞, and so we have (21). We therefore conclude the proof of the proposition. □

4. Contact set and path scaling limit — proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. First, we note that for aN = o(N−1/2), and s, r ∈ R, we have by (21)
that

Z c
βc+raN ,N

Z c
βc+saN ,N

→ 1.

Moreover, by (19) we have

Z f
βc,N → 1 and Z f

βc+raN ,N → 1 as a → 0.

Using Proposition 3.5 with rϵN instead of ϵN we have the desired corresponding scaling
limit under pα

βc+raN
. Using Lemma 2.4 we can now conclude. Indeed, let Φ : F → R be

a measurable bounded function. As before, considering separately the positive and negative
parts in the presentation Φ = Φ+ − Φ− we can assume without loss of generality that Φ is
non-negative. We therefore have by Lemma 2.4

Ẽ
α

ϕa ,N [Φ(AN )] ≤ RN Eα
βc+c3aN ,N [Φ(AN )] → E[Φ(Aα

1/2)]

and

Ẽ
α

ϕa ,N [Φ(AN )] ≥ L N Eα
βc−c6aN ,N [Φ(AN )] → E[Φ(Aα

1/2)],

where L N , RN are positive reals so that L N , RN → 1. □

Next, once we have the contact set convergence, Theorem 1.4, to move to the path limit,
Theorem 1.5, is by now routine, following the guidelines of [10]. Let us first give a rough
sketch.

Tightness will be proved as in [10, Lemma 4] where we need a small linear modification
of the oscillation function, and instead of using Propositions 7 and 8 of that paper, we
shall use stronger results as follows. The first result is the weak convergence in C[0, 1]
under pc

0,N (xN , yN ) the pinning-free process (i.e. ϕa = 0) conditioned on the starting and
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ending points xN , yN ∈ [0, aN ] to the Brownian bridge, which was proved by Caravenna–
Chaumont [4]. The second result is the analogous statement on the free case and the Brownian
meander which is available by Caravenna–Chaumont [3].

Once we have tightness, we need to prove the finite-dimensional distributions, for that we
follow [10, Chapter 8]. Since we know that our contact set converges to the zero-set of the
Brownian motion or bridge, then we know that the probability that a fixed finite number of
points in [0, 1] are the limiting zero-set is 0, and there is no change of that part of the argument.
The only difference in the proof is that we condition not only on the contact indices but also
on their location in the strip. But since the conditioned processes converge by the last two
aforementioned theorems, we can conclude using dominated convergence on the full path as
in [10].

Let Aa
n(y) := {S1 > a, . . . , Sn−1 > a, Sn = y}. We have the following densities comparison

bound.

Lemma 4.1. For every γ > 0 and n ∈ N, we have

Px

(
max

0≤i, j≤n
|Si − S j | > γ, Aa

n(y)
)

≤ P0

(
max

0≤i, j≤n
|Si − S j | > γ − a, A0

n(0)
)

(22)

uniformly in x, y ∈ [0, a]. Moreover, the same holds whenever in both sides of the inequality
the index set satisfies in addition that |i − j | ≤ m for some fixed m > 0.

Proof. Let a − x = S0, S1, . . . , Sn = a − y so that Si ≥ 0, i = 1, . . . , n − 1, and
|Si0 − S j0 | = max0≤i, j≤n |Si − S j |. Then, if i0, j0 /∈ {1, . . . , n − 1}, without loss of generality
i0 = 0, and so |Si0 − S j0 | = |S j0 − (a − x)| ≤ |S j0 | + |a − x | ≤ |S j0 − 0| + a. In other
words, max0≤i, j≤n |Si − S j | ≤ max0≤i, j≤n |S′

i − S′

j | + a where S′

i = Si for i = 1, . . . , n − 1 but
S0 = Sn = 0. Therefore, by monotonicity of ρ(·)

Px

(
max

0≤i, j≤n
|Si − S j | > γ, Aa

n(y)
)

=
1
κn

∫
∞

a
...

∫
∞

a
1maxi, j≤n |Si −S j |>γ

×ρ(s1 − x)ρ(s2 − s1) · · · ρ(sn−1 − sn−2)ρ(y − sn−1)ds1 · · · dsn−1

=
1
κn

∫
∞

0
...

∫
∞

0
1max0≤i, j≤n |Si −S j |>γ

×ρ(s1 − x + a)ρ(s2 − s1) · · · ρ(sn−1 − sn−2)ρ(y − sn−1 − a)ds1 · · · dsn−1

≤
1
κn

∫
∞

0
...

∫
∞

0
1max0≤i, j≤n |Si −S j |>γ−a

×ρ(s1)ρ(s2 − s1) · · · ρ(sn−1 − sn−2)ρ(sn−1)ds1 · · · dsn−1

= P0

(
max

0≤i, j≤n
|Si − S j | > γ − a, A0

n(0)
)

.

The ‘moreover’ part is similar, we omit its proof. □

We shall now prove that whenever ϕ = ϕ0
aN

, i.e. no pinning is present, the scaling limit is a
Brownian excursion, for any fixed endpoints xN , yN ∈ [0, aN ]. Shifting by aN , it is equivalent
to show that conditioning on starting and ending at S0 = xN − aN , SN = yN − aN and Sn

non-negative at times 1 ≤ n ≤ N − 1, the rescaled path converges weakly to the Brownian
excursion.
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The following is a formulation of Theorem 1.1 of Caravenna–Chaumont [4] which shows
the same for non-negative endpoints which are o(

√
N ) away from the zero line.

Let us first introduce a notation for the conditioning. Define

P+,N
x,y := Px (·|CN−1, SN = y),

for any x, y ∈ R, N ∈ N.

Theorem 4.2 (Caravenna–Chaumont [4]). Let (xN ), (yN ) be sequences of non-negative real
numbers such that xN , yN = o(

√
N ) as N → ∞. Then under P+,N

xN ,yN
, (X (N )

t )t∈[0,1] converges
weakly in C[0, 1] to the Brownian excursion.

Theorem 4.2 implies the following theorem.

Theorem 4.3. Let (xN ), (yN ) be sequences of non-negative real numbers such that xN , yN ≤

aN = o(1) as N → ∞. Then under P+,N
xN −aN ,yN −aN

, (X (N )
t )t∈[0,1] converges weakly in C[0, 1] to

the Brownian excursion.

We note that the assumption xN , yN ≤ aN = o(1) is only to make sure that X N
0 , X N

1 → 0.
We will use the theorem under the stronger condition aN = o( 1

√
N

).

Proof. First we prove tightness. For a path x ∈ C[0, 1] define

Γ (δ)(x) := sup
{t,s∈[0,1]:|t−s|≤δ}

|xt − xs |. (23)

Using the fact that f 0
N (xN − aN , yN − aN ) = f aN

N (xN , yN ), the ‘moreover’ part of Lemma 4.1
implies that

P+,N
xN −aN ,yN −aN

⎛⎝ max
0≤i, j≤N :

|i− j |≤δn

|Si − S j | > γ

⎞⎠ f aN
N (xN , yN )

≤ P+,N
0,0

⎛⎝ max
0≤i, j≤N :

|i− j |≤δn

|Si − S j | > γ − aN

⎞⎠ f 0
N (0, 0)

for every δ, γ > 0 and n ∈ N, uniformly in xN , yN ∈ [0, aN ]. Now, by (12) and (13) we get

P+,N
xN −aN ,yN −aN

⎛⎝ max
0≤i, j≤N :

|i− j |≤δn

|Si − S j | > γ

⎞⎠
≤ exp(C0aN )P+,N

0,0

⎛⎝ max
0≤i, j≤N :

|i− j |≤δn

|Si − S j | > γ − aN

⎞⎠ . (24)

Theorem 4.2 implies in particular that (X (N )
t )t∈[0,1] is tight under P+,N

0,0 , and so by (24), it is also
tight under P+,N

xN −aN ,yN −aN
. Indeed, the standard necessary and sufficient condition for tightness

on C[0, 1] is Prokhorov’s Theorem: for every γ > 0 limδ→0 supN P+,N
0,0 (Γ (δ) > γ ) = 0. To

get our tightness, fix γ > 0. Choose N0 large enough so that γ − aN > γ/2 for all N ≥ N0.
Tightness will hold by considering only δ < 1/N0.

We shall now prove the convergence of the finite-dimensional distributions. Let 0 < s1 <

· · · < sn < 1. Fix N large enough so that 1/N < s1 < sn < 1 − 1/N . Then (X (N )
si

)i=1,...,n
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have the same distribution under both conditional distributions P+,N
0,0 (·|S1 = x, SN−1 = y) and

P+,N
xN −aN ,yN −aN

(·|S1 = x, SN−1 = y), for all x, y ≥ 0. Since xN√
N

,
yN√

N
→ 0, the difference

between the corresponding expectations on any test function on (X (N )
si

)i=1,...,n goes to zero as
N → ∞. Using Theorem 4.2 again, we conclude by the convergence of the distributions of
(X (N )

si
)i=1,...,n under P+,N

0,0 . □

The next lemma provides bounds on the oscillations of the ϕa-model conditioned on
the contact set and the contact locations in terms of the oscillations of the standard model
conditioned on the contact set. For ease of notation we write i ∼N j whenever i

N ∼X (N )
j

N .

Lemma 4.4. It holds that

Pα
ϕa ,N

(
max

|i− j |≤δN ,i∼N j
|Si − S j | > γ |A, y1, . . . , y|A|

)
≤ exp(C0a|A|)Pα

βc,N

(
max

|i− j |≤δN ,i∼N j
|Si − S j | > γ − a|A

)
where A is the contact set, yk ∈ [0, a] are the corresponding values in the strip.

Proof. Note that conditioning on A = {t1, . . . , t|A|} the excursions are independent. Moreover,
conditioning on the endpoints the law of the excursions is the same as with respect to P+,N

yk−1,yk
.

To conclude, we use the “moreover” part of Lemma 4.1 with m = δN and n = tk − tk − 1 on
each excursion separately. □

Proof of Theorem 1.5. First, we shall prove that aN = o(N−1/2) then the sequence(
(X (N )

t )t∈[0,1],Pα
ϕaN ,N

)
is tight.

We modify the definition (23) as follows. For a path x ∈ C[0, 1] define the modified
δ-oscillation of strip size a by

Γ̃ a(δ)(x) := sup
{t,s∈[0,1]:|t−s|≤δ,s∼x t}

|xt − xs |, (25)

where s ∼x t if and only if xu > a for all u ∈ (s, t) (see [6] for the case a = 0).
We naturally extend the definition of p̃α

ϕa ,N to include pairs (A, y) where y ∈ [0, a]|A| the
vector of positions at the contact indices. Since Γ (δ)(x) ≤ Γ̃ a(δ)(x), it is enough to show that
Pα

ϕa ,N (Γ̃ a(δ)(x) > γ ) → 0 as δ → 0. By Lemma 4.4

Pα
ϕa ,N (Γ̃ a(δ) > γ ) =

∑
A⊂{0,...,N }

∫ a

0
...

∫ a

0
Pα

ϕa ,N (Γ̃ a(δ) > γ |A, y1, . . . , y|A|)

×p̃α
ϕa ,N (A, y1, . . . , y|A|)dy1 · · · dy|A|

≤

∑
A⊂{0,...,N }

exp(C0aN |A|)Pα
βc,N (Γ̃ (δ) > γ − aN |A)p̃α

ϕa ,N (A).

Now, from Lemma 2.4, using the fact that aN → 0, we have C ′

N → 1 so that

p̃α
ϕa ,N (A) ≤ C ′

N pα
βc+c3aN ,N (A)
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The partition functions ratio between pinning perturbation of constant times aN is going to 1.
Hence we have∑

A⊂{0,...,N }

exp(C0aN |A|)Pα
βc,N (Γ̃ (δ) > γ − aN |A)p̃α

ϕa ,N (A)

≤ CN

∑
A⊂{0,...,N }

Pα
βc,N (Γ̃ (δ) > γ − aN |A)pα

βc+(c3+C0)aN ,N (A),

for some CN → 1. To conclude, note that the conditioning allows us to change βc, to get

CN

∑
A⊂{0,...,N }

Pα
βc,N (Γ̃ (δ) > γ − aN |A)pα

βc+(c3+C0)aN ,N (A)

≤ C̃N

∑
A⊂{0,...,N }

Pα
βc+(c3+C0)aN ,N (Γ̃ (δ) > γ − aN |A)pα

βc+(c3+C0)aN ,N (A)

= C̃NPα
βc+(c3+C0)aN ,N (Γ̃ (δ) > γ − aN ).

To sum up, tightness follows once we show tightness under Pα
βc+(c3+C0)aN ,N . The latter is a

special case of [2, Theorem 3.5].
To prove the convergence of finite-dimensional distributions we follow closely

[10, Chapter 8], with the necessary modifications. Let us deal with the constraint case. Let
(βt )t∈[0,1] be the Brownian bridge. Let 0 < s1 < · · · < sn < 1. Remember the law of Aα

N given
in (10), where ϕa satisfying Condition A.

To unify the notations denote by Z (x) the zero-set of the path x ∈ C[0, 1]. Given a closed
set Z ⊂ [0, 1] and t ∈ [0, 1] we let dt (Z ) := inf Z ∩ [t, 1], gt (Z ) := sup Z ∩ [0, t], and
Λt (Z ) := dt − gt .

By Theorem 1.4 and the Skorokhod representation Theorem there is a sequence Z N with
laws Ac

N converging a.s. to Ac
1/2, in the Matheron topology defined above.

We define random equivalence relations, with respect to Z N , on {s1, . . . , sn} by declaring
that si ∼ s j if and only if either dsi = ds j or gsi = gs j . In words, si ∼ s j if and only if (si , s j )
is contained in an excursion of X (N ).

Notice that a.s. (βsi ) ̸= 0 for all 1 ≤ i ≤ n. Since the Matheron topology is also
homeomorphic to the Hausdorf metric space (see (29) and (30) in [10]) then gsi (Z N ) and
dsi (Z N ) converge a.s. to strictly positive random variables, and AN

k , k = 1, . . . , I N , the random
equivalent classes of {s1, . . . , sn} (here I N

≤ n) are a.s. eventually constant with N (but still

random). Denote their eventual a.s. limit by Ak, k = 1, . . . , I . Let W
N ,(yN

i−1,yN
i )

si i = 1, . . . , n,

yN
i ∈ [0, aN ] be a set of random variables with values in C[0, 1], so that W

N ,(yN
i−1,yN

i )
si is

distributed as X N under P+,N
yi−1,yi

, and is independent of gsi (Z N ) and Λsi (Z N ). Theorem 4.3

tells us that W
N ,(yN

i−1,yN
i )

si converges weakly to the Brownian excursion (Et )t∈[0,1]. Set

M N
si

=

I N∑
k=1

1si ∈AN
k

√
ΛAN

k
· W

N ,(yN
i−1,yN

i )
si

(
si − gAk

ΛAk

)
.

Then (M N
si

)i=1,...,n is distributed at Pc
ϕaN ,N conditioned on the excursions’ endpoints y1, . . . , yI N .

Note that the measures P((|βsi |)i∈Ak ∈ dx) and P(
√
ΛAk · (Esi /ΛAk

)i∈Ak ∈ dx) on RAk have the
same densities (see [10, Chapter 8]). Using dominated convergence and the Brownian scaling
of (Et )t∈[0,1], the finite-dimensional distributions for the path conditioned on the endpoints yN

i
have a limiting law |β|. But since the limit is independent of yN

i , we conclude. The free case
follows analogously. □



2798 J.-D. Deuschel and T. Orenshtein / Stochastic Processes and their Applications 130 (2020) 2778–2807

5. The strip wetting model with constant pinning

The goal in this chapter is to prove Theorem 1.7.

5.1. The associated Markov renewal process, integral operator, and free energy, and the
critical value

To fix notations and for sake of self containment, we shall elaborate on the analysis of the
strip wetting model, and follow closely Sohier [21]. We state here the argument mostly without
proofs, which can be found in [21]. We remind the reader that in our case ϕ = ϕ

β
a := β1[0,a].

Here a ≥ 0 and β ∈ R are the corresponding parameters. Let us first introduce a notation for
the corresponding measures in this case.

dP f
a,β,N (S) =

1

Z f
a,β,N

exp

(
β

N∑
k=1

1[0,a](Sk)

)
1CN dP0(S), (26)

dPc
a,β,N (S) =

1
Z c

a,β,N
exp

(
β

N∑
k=1

1[0,a](Sk)

)
1[0,a](SN )1CN dP0(S), (27)

and the density

Z c
a,β,N (S)(x, y) = Ex

[
exp

(
β

N∑
k=1

1[0,a](Sk)

)
1CN1{y}(SN )

]
. (28)

Remember the density

f a
n (x, y) :=

1
dy

Px [S1 > a, . . . , Sn−1 > a, Sn ∈ dy]

with respect to the Lebesgue measure, where

f a
1 (x, y) := ρ(x − y).

Define the resolvent kernel density on [0, a]

ba
λ(x, y) :=

∞∑
n=1

e−λn f a
n (x, y)1[0,a]2 (x, y) (29)

for all λ ≥ 0. The following Lemma is an easy estimate, we defer its proof to Appendix B.

Lemma 5.1. ba
λ is a kernel density of a Hilbert–Schmidt integral operator, for all λ ≥ 0. In

other words,
∫

∞

0

∫
∞

0 ba
λ(x, y)2dxdy < ∞.

Let δa(λ) be the eigenvalue corresponding to the integral operator defined by the kernel
density ba

λ. We note that since ba
λ is smooth, strictly positive, and point-wise decreasing

with λ ≥ 0, then δa(λ) is also decreasing, continuous and moreover, its corresponding left
eigenfunction V a

λ (·) is continuous and strictly positive on [0, a]. In particular, δa(λ) has an
inverse function which is also continuous, strictly positive and decreasing δ−1

a (·) : [0, δa(0)) →

(0, ∞).
Define the free energy by

Fa(β) := δ−1
a (e−β)
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whenever β ≥ βc(a) := − log(δa(0)) and set Fa(β) := 0 if β < βc(a). In the critical and super-
critical cases, β ≥ βc(a), we denote the corresponding left eigenfunction by Va,β(·) := V a

Fa (β)(·)
Therefore we have∫ a

0

∞∑
n=1

e−Fa (β)n f a
n (x, y)

Va,β(y)
Va,β(x)

eβdy = 1 (30)

for all x ∈ [0, 1]. Note that by symmetry of f a
n , the left eigenvalue equals the right eigenvalue

and moreover one can check that in this case the measure with density V 2
a,β is invariant for the

Markov process on [0, a] with jump density
∫ a

0

∑
∞

n=1 e−Fa (β)n f a
n (x, y) Va,β (y)

Va,β (x) e
β .

In the critical case we omit the βc(a) from the notation and write

Va(·) := V a
Fa (βc)(·) = V a

0 (·).

(Attention, Va as well as Va,β should not be confused with the potential V discussed in
introduction!). In particular,∫ a

0

∞∑
n=0

qa
n (x, y)dy = 1 (31)

for all x ∈ [0, a], where qa
n (x, y) := f a

n (x, y) Va (y)
Va (x) e

βc(a).

Strip model in terms of Markov renewal

Let Pβ be measure of a Markov renewal process (τ, J ) on N × [0, a] with kernel density

qa,β
n (x, y) := e−Fa (β)n f a

n (x, y)
Va,β(y)
Va,β(x)

eβ .

In particular, at criticality qa,βc(a)
= qa . We then have

Z c
a,β,N (x, y)dy = Pβ(N ∈ τ, j0 = x, jN ∈ dy)eFa (β)N Va,β(x)

Va,β(y)
.

And in particular

Z c
a,βc(a),N (x, y)dy = Pβ(N ∈ τ, j0 = x, jN ∈ dy)

Va(x)
Va(y)

.

Therefore, under our initial measure the density of the zero-set A in [0, N ] together with
the corresponding points J (A) ⊂ [0, a]|A| is

Pc
a,β,N ((A, J (A))) = Pβ((A, J (A))|N ∈ τ ),

and more generally

Pc
a,β,N (x, y)((A, J (A))) = Pβ((A, J (A))|N ∈ τ, j0 = x, jN = y).

5.2. Strip wetting with critical pinning satisfies Condition (a) - proof of Theorem 1.7

Choose an eigenfunction Va so that
∫ a

0 Va(x)2dx = 1. Remember the eigenvalue equation

Va(x) = eβc(a)
∫ a

0

∑
n≥1

f a
n (x, y)Va(y)dy,



2800 J.-D. Deuschel and T. Orenshtein / Stochastic Processes and their Applications 130 (2020) 2778–2807

x ∈ [0, a]. Note that for a fixed a > 0, Va is continuous and strictly positive on [0, a] since so
is f a

n (x, y). Also since f a
n (·, ·) is continuous and is dominated by a summable series (of the

form c(a)n−3/2), then so is Va , and moreover its derivatives, whenever defined, are given by

∂m

∂xm
Va(x) = eβc(a)

∫ a

0

∑
n≥1

∂m

∂xm
f a
n (x, y)Va(y)dy,

m ≥ 1. Therefore, the simple estimate ∂
∂x f a

n (x, y) ≥ (a − x) f a
n (x, y) implies that also

∂

∂x
Va(x) ≥ (a − x)Va(x). (32)

Integrating, we get

Va(z)
Va(x)

≥ ea(z−x)− 1
2 (z2

−x2) (33)

whenever 0 ≤ x ≤ z ≤ a. Using it for z = a, x = y, we have

e−βc(a)
=

∫ a

0

∑
n≥1

f a
n (a, y)

Va(y)
Va(a)

dy

≤

∫ a

0

∑
n≥1

f a
n (a, y)e−

1
2 a2

+ay−
1
2 y2

dy

≤

∫ a

0
e−

1
2 a2

+ay−
1
2 y2

dy ·

∑
n≥1

fn

= e−βc

∫ a

0
e−

1
2 (a−y)2

dy

= e−βc

∫ a

0
e−

1
2 y2

dy

≤ ae−Da2
e−βc .

(Indeed, e−x
= 1 − x + o(x), so

∫ a
0 e−

1
2 y2

dy − ae−Da2
= −

1
6 a3

+ Da3
+ o(a3) and thus for

D < 1
6 the last expression is negative whenever a > 0 is small enough.) Therefore the lower

bound

aeβc(a)−βc ≥ eDa2

is achieved. For the upper bound, note first that since Va is strictly positive (32) implies that it
is also (strictly) increasing on [0, a]. In particular, Va(y) ≥ Va(0) for all y ∈ [0, a], and, using
the lower bound (13), we get

e−βc(a)
=

∫ a

0

∑
n≥1

f a
n (0, y)

Va(y)
Va(0)

dy

≥

∫ a

0

∑
n≥1

f a
n (a, y)dy

≥

∫ a

0
dy
∑
n≥1

fne−C0a

= ae−C0a−βc .
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Therefore, the upper bound

aeβc(a)−βc ≤ eC0a

is also achieved.

Remark 5.2. Following the line of the last proof one gets a stronger statement. Indeed, under
Ẽ

α
b√
N

,βc( b√
N

),N (or generally, under Ẽ
α

ϕ b√
N

,N ) Aα
N is tight and every limit set Bα is absolutely

continuous with respect to Aα
1/2. Moreover, denoting the Radon–Nikodym density by Db, then

for every ϵ > 0

(1 − ϵ)e−ϵL1 ≤ Db ≤ (1 + ϵ)eϵL1

whenever b > 0 is small enough.
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Appendix A. Proof of Lemma 2.2

In this section we prove Lemma 2.2. First, let

Pa
x (n) := Px [S1 > a, . . . , Sn > a], and P(n) := P0

0 (n). (34)

Note that Pa
x (n) is (continuously) increasing in x ∈ [0, a]. In particular, Pa

0 (n) ≤ Pa
x (n) ≤

Pa
a (n) = P(n) for x ∈ [0, a]. For the right part a classical result is

P(n) ∼
1

√
2π

n−1/2.

The following is a weak version of Sohier [21, Lemma 2.2.].

Lemma A.1. There is a monotonously decreasing function Ca(x) : [0, a] → R+ so that
Ca(a) = 1 and

Pa
x (n) ∼

Ca(x)
√

2π
n−1/2.

Proof. If we set Ca(x) := P[H1 ≥ a − x], the asymptotic equivalence in the line above is the
content of [21, Lemma 2.2.], where H1 is the so called first ascending ladder point. The proof
is done by noticing that H1 is defined to be a non-negative random variable. □
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Putting the last statements together, we get that there is a monotonously decreasing function
Ca(x) : [0, a] → R+ so that Ca(a) = 1 (and hence also Ca(0) > 0) and

Ca(0) ∼
√

2πn1/2 Pa
0 (n) ≤

√
2πn1/2 Pa

x (n) ≤
√

2πn1/2 P(n) ∼ 1 (35)

for x ∈ [0, a].
As a corollary we have

Corollary A.2. Assume that a = an → 0. Then uniformly in xn ∈ [0, an]
√

2πn1/2 Pan
xn

(n) → 1 as n → ∞,

or equivalently Pan
xn

(·) ∼ P(·).

Proof. Indeed,

1 = lim inf
n→∞

Can (0) ≤ lim inf
n→∞

√
2πn1/2 Pan

xn
(n) ≤ lim sup

n→∞

√
2πn1/2 P(n) = 1 □

Remember we assumed in the introduction that ρ(x) =
1
κ

e−V (x), where V ∈ C2 is symmetric
and V ′′(x) ∈ [1/c, c] for some c > 1. It follows that V ′ is antisymmetric so that V ′(0) = 0,
and moreover,

V ′ is positive on the positive real half line and (strictly) increasing on the real line.

(36)

Proof of Lemma 2.2. We shall show the following sufficient condition: there are constants
0 < c0, c̃0, c1, c̃1 so that for all 0 ≤ a ≤ 1 and n ≥ 1

exp(−c0a − c̃0a2) ≤ f a
n / fn ≤ exp(−c1a + c̃1a2).

Denote by An(y) the event {S1 > 0, . . . , Sn−1 > 0, Sn = y}, so that f 0
n (x, y) = Px [An(y)]

(with the convention in (2)). We first note that f a
n = f a

n (0, 0) = f 0
n (−a, −a) = P−a[An(−a)],

by stationarity. Taking a derivative from the right-most expression we get

∂

∂a
f a
n = −E−a[V ′(S1 + a)1An (−a)] − E−a[V ′(Sn−1 + a)1An (−a)].

On the event An(−a) the random variables S1 + a and Sn−1 + a have the same distribution
under P−a and therefore

∂

∂a
f a
n = −2E−a[V ′(S1 + a)1An (−a)].

In particular,

∂

∂a
f a
n |a=0 = −2E0[V ′(S1)1An (0)].

A direct calculation for the second derivative yields

∂2

∂a2 f a
n = −2

∂

∂a
E−a[V ′(S1 + a)1An (−a)]

= 2E−a[(V ′(S1 + a)2
− V ′′(S1 + a) + V ′(S1 + a)V ′(Sn−1 + a))1An (−a)].
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A second order Taylor expansion yields

f a
n
fn

− 1 = −
2aE0[V ′(S1)1An (0)]

P0[An(0)]

+
2a2E−a′ [(V ′(S1 + a′)2

− V ′′(S1 + a′) + V ′(S1 + a′)V ′(Sn−1 + a′))1An (−a′)]
P0[An(0)]

,

where 0 < a′ < a (allowed to depend on n). Therefore, the proof is finished once we show
that both

c0 ≤ E0[V ′(S1)1An (0)]/P0[An(0)] ≤ c1 (37)

and

−c̃0 ≤ E−a′ [(V ′(S1+a′)2
−V ′′(S1+a′)+V ′(S1+a′)V ′(Sn−1+a′))1An (−a′)]/P0[An(0)] ≤ c̃1

(38)

hold for all 0 ≤ a′
≤ a and n ≥ 1.

To prove (38) it is enough to show that

E−a′ [(V ′(S1 + a′)2
+ V ′(S1 + a′)V ′(Sn−1 + a′))1An (−a′)]/P0[An(0)] ≤ c̃1 (39)

and

P−a′ [An(−a′)]/P0[An(0)] = f (a′)(n)/ fn ≤ c̃0. (40)

Let us first show (37). By reversibility of the walk (due to symmetry of V ) Px [An(y)] =

Py[An(x)] for all x, y ≥ 0. In particular,

P0[S1 > 0, . . . , Sn−1 > 0, Sn ∈ [k, k + 1]] =

∫ k+1

k
P0[S1 > 0, . . . , Sn−1 > 0, Sn = x]dx

=

∫ k+1

k
Px [An(0)]dx .

The Ballot theorem [1, Theorem 1] (and the form we shall use [24, Theorem 2.12]) therefore
yields that for k ≤

√
n

c2
k + 1
n3/2 ≤

∫ k+1

k
Px [An(0)]dx ≤ c3

k + 1
n3/2 , (41)

where the upper bound holds for all k.
For the upper bound we get from (1), (36), and the right inequality of (41)

E0[V ′(S1)1An (0)] =

∫
∞

0
V ′(x)ρ(x)Px [An−1(0)]dx

=

∞∑
k=0

∫ k+1

k
V ′(x)ρ(x)Px [An−1(0)]dx

≤

∞∑
k=0

V ′(k + 1)ρ(k)
∫ k+1

k
Px [An−1(0)]dx

≤
2c3

n3/2

∞∑
k=0

V ′(k + 1)(k + 1)ρ(k) =:
c1

√
2πn3/2

.
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For the lower bound we get from (1), (36), and the left inequality of (41) that

E0[S11An (0)] ≥

∫ 2

1
V ′(x)ρ(x)Px [An−1(0)]dx

≥ max
[1,2]

{V ′(x)ρ(x)}
2c2

n3/2 =:
c0

√
2πn3/2

.

Using (6) and the fact that P0[An(0)] = fn , (37) is now proved.
We shall now prove (39). We have

E−a[(V ′(S1 + a)2
+ V ′(S1 + a)V ′(Sn−1 + a))1An (−a)]

= E0[(V ′(S1)2
+ V ′(S1)V ′(Sn−1))1S1>a,...,Sn−1>a,Sn=0]

≤ E0[(V ′(S1)2
+ V ′(S1)V ′(Sn−1))1S1>0,...,Sn−1>0,Sn=0]

by writing the terms in the explicit integral form. Now, as in the proof of (37)

E0[V ′(S1)21S1>0,...,Sn−1>0,S0=0] ≤

∞∑
k=0

V ′(k + 1)2ρ(k)
∫ k+1

k
Px [An−1(0)]dx

≤
2c3

n3/2

∞∑
k=0

(k + 1)V ′(k + 1)2ρ(k) =:
c5

√
2πn3/2

.

For the term E0[V ′(S1)V ′(Sn−1)1S1>0,...,Sn−1>0,Sn=0], note that

P0[S1 + y > 0, . . . , Sn−1 + y > 0, Sn + y ∈ [k, k + 1]]
= Py[S1 > 0, . . . , Sn−1 > 0, Sn ∈ [k, k + 1]]

=

∫ k+1

k
Py[S1 > 0, . . . , Sn−1 > 0, Sn = x]dx

=

∫ k+1

k
Px [An(y)]dx .

We shall use a general variation of The Ballot Theorem: for 0 ≤ y ≤ k + 1 ≤
√

n/2,∫ k+1

k
Px [An(y)]dx ≤ c5

(k + 1)(y + 1)2

n3/2 (42)

(see [24, Corollary 2.13]). Now, by the symmetric roles of x and y in the integrand we have

E0[V ′(S1)V ′(Sn−1)1An (0)] =

∫
∞

0

∫
∞

0
V ′(x)ρ(x)V ′(y)ρ(y)Px [An−2(y)]dxdy

≤ 2
∫

∞

0

∫
∞

√
n/2

V ′(x)ρ(x)V ′(y)ρ(y)Px [An−2(y)]dxdy

+

∫ √
n/2

0

∫ √
n/2

0
V ′(x)ρ(x)V ′(y)ρ(y)Px [An−2(y)]dxdy

= (I ) + (I I ).

To bound (I ) we note first that by the local limit theorem Px [An−2(y)] ≤ Px [Sn−2 = y] ≤

C/
√

n for some constant C , uniformly on x, y ∈ R and n ≥ 1. In particular Px [Sn−2 = y] is
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uniformly bounded from above by C . Therefore,

(I ) ≤ 2C
∫

∞

0

∫
∞

√
n/2

V ′(x)ρ(x)V ′(y)ρ(y)dxdy

≤

∫
∞

0
V ′(y)ρ(y)

(
2C
κ

∫
∞

√
n/2

V ′(x)e−V (x)dx
)

dy

=
2C
κ

e−V (
√

n/2)
∫

∞

0
V ′(y)ρ(y)dy

=
2C
κ

e−V (
√

n/2) 1
κ

e−V (0)

=
2C
κ2 e−V (

√
n/2)

= o(n−3/2),

here we used the symmetry of V to get
∫

∞

0 V ′(y)ρ(y)dy = e−V (0)
= 1 and we used the strict

convexity of V to conclude that e−V (
√

n/2) is decaying faster than any polynomial. To bound
(I I ), we first have that

(I I ) ≤

⌊
√

n/2⌋∑
k,l=0

∫ l+1

l

∫ k+1

k
V ′(x)ρ(x)V ′(y)ρ(y)Px [An−2(y)]dxdy.

By symmetry of Px [An−2(y)] the right hand side equals

2
⌊
√

n/2⌋∑
k=0

k∑
l=0

∫ l+1

l

∫ k+1

k
V ′(x)ρ(x)V ′(y)ρ(y)Px [An−2(y)]dxdy,

which is not larger than

2
⌊
√

n/2⌋∑
k=0

k∑
l=0

V ′(k + 1)ρ(k)V ′(l + 1)ρ(l)
∫ k+1

k

∫ l+1

l
Px [An−2(y)]dxdy.

Using (42), if l ≤ k then∫ l+1

l

∫ k+1

k
Px [An−2(y)]dxdy ≤

∫ l+1

l
c5

(k + 1)(y + 1)2

n3/2 dy ≤ c5
(k + 1)(l + 2)2

n3/2 .

(I I ) ≤ 2
⌊
√

n/2⌋∑
k=0

k∑
l=0

V ′(k + 1)ρ(k)V ′(l + 1)ρ(l)
∫ k+1

k

∫ l+1

l
Px [An−2(y)]dxdy

≤
c5

n3/2

√
n/2∑

k=0

k∑
l=0

(l + 2)2V ′(l + 1)ρ(l)(k + 1)V ′(k + 1)ρ(k)

≤
c5

n3/2

∞∑
k=0

(k + 1)2V ′(k + 1)2ρ(k)

=:
c6

n3/2 . □
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Appendix B

Proof of Lemma 5.1. By Lemma 2.1∫
∞

0

∫
∞

0
ba

λ(x, y)2dxdy =

∫ a

0

∫ a

0

(
∞∑

n=0

e−λn f a
n (x, y)

)(
∞∑

m=0

e−λm f a
m(x, y)

)
dxdy

=

∫ a

0

∫ a

0

∞∑
n,m=0

e−λ(n+m) f a
n (x, y) f a

m(x, y)dxdy

=

∞∑
n,m=0

e−λ(n+m)
∫ a

0

∫ a

0
f a
m(x, y) f a

n (x, y)dxdy

≤

∞∑
n,m=0

e−λ(n+m) fn fm

∫ a

0

∫ a

0
dxdy

≤ c2a2
∞∑

n,m=0

e−λ(n+m)(nm)−3/2

=

(
ca

∞∑
n=0

e−λnn−3/2

)2

< ∞,

for every λ ≥ 0. □

Appendix C

Lemma C.1. Let (RN )N≥1 be a sequence of non-negative random variables. Assume that
there exist some ϵ0 > 0 and C < ∞ so that E[eϵ0 RN ] ≤ C for all N . Then E[eϵN RN ] → 1 for
every sequence ϵN → 0.

Proof. We first assume that ϵN > 0. Let δ > 0. It is enough to show that E[eϵN RN ] ≤ 1 + δ

for all N large enough. By Chebyshev’s Inequality P[RN > r ] ≤ Ce−ϵ0r for all r . Take r0 so
that Ce−ϵ0r0/2 < δ/2. It holds that

E[eϵN RN ] = E[eϵN RN1RN ≤r0 ] + E[eϵN RN1RN >r0 ]
≤ eϵN r0 + E[e2ϵN RN ]1/2P[RN > r0]1/2

≤ 1 + δ/2 + C1/2C1/2e−ϵ0r0/2

≤ 1 + δ

whenever N is so large so that both eϵN r0 < 1 + δ/2 and 2ϵN ≤ ϵ0 hold. Here we used
Cauchy–Schwarz in the first inequality and the fact that E[eϵRN ] is increasing in ϵ in the second
one. The proof for −ϵN is similar. Indeed,

E[e−ϵN RN ] ≥ E[e−ϵN RN1RN ≤r0 ]
≥ e−ϵN r0 (1 − P[RN > r0])

≥ (1 −
δ

2
)(1 −

δ

2
)

≥ 1 − δ
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whenever r0 is chosen so that Ce−ϵ0r0 ≤ δ/2 and then N is so large so that e−ϵN r0 ≤ 1 − δ/2.
For general ϵN ’s, the lemma follows once we write them as ϵN = ϵ+

N − ϵ−

N , the negative part
subtracted from the positive part, and use the above on each part separately. □
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