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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Pathway enrichment analysis (PEA) is a computational biology method that identifies biolog-

ical functions that are overrepresented in a group of genes more than would be expected by

chance and ranks these functions by relevance. The relative abundance of genes pertinent

to specific pathways is measured through statistical methods, and associated functional

pathways are retrieved from online bioinformatics databases. In the last decade, along with

the spread of the internet, higher availability of computational resources made PEA software

tools easy to access and to use for bioinformatics practitioners worldwide. Although it

became easier to use these tools, it also became easier to make mistakes that could gener-

ate inflated or misleading results, especially for beginners and inexperienced computational

biologists. With this article, we propose nine quick tips to avoid common mistakes and to out

a complete, sound, thorough PEA, which can produce relevant and robust results. We

describe our nine guidelines in a simple way, so that they can be understood and used by

anyone, including students and beginners. Some tips explain what to do before starting a

PEA, others are suggestions of how to correctly generate meaningful results, and some

final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips

can help users perform better pathway enrichment analyses and eventually contribute to a

better understanding of current biology.

Introduction

Pathway enrichment analysis (PEA), also known as functional enrichment analysis or overrep-

resentation analysis, is a bioinformatics procedure that identifies specific biological pathways

as being particularly abundant in a list of genes [1].

Biological pathways describe molecular activities or roles of genes of different kinds. Path-

way databases can be specific (HumanCyc [2] for metabolic pathways and LIPEA for lipid

functions [3], for example) or more general purpose (KEGG [4], Reactome [5], and WikiPath-

ways [6], for example). Molecular functions can also be represented in a structured hierarchy:

The Gene Ontology (GO) [7], for example, contains structured biomolecular annotations that

indicate biological processes, molecular functions, or cellular components, connected in

directed acyclic graphs.
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Several statistical methods can be used to associate the most enriched biological pathways

in the input gene list and take into account the number of genes and the likelihood of a path-

way to be found enriched. g:Profiler g:GOSt [8–11], for example, uses a modified Fisher’s exact

test [12–15] to estimate abundance of the genes considering the frequency of the genes in the

pathways’ database. g:Profiler g:GOSt then proposes three different methods for computing

multiple testing correction for p-values (g:SCS, Bonferroni correction, or Benjamini–Hoch-

berg false discovery rate (FDR); S2 Text) [10,16].

Multiple PEA tools are available in the scientific literature, both as web tools and as stand-

alone software programs. Some of them employ multiple databases, while others use only one,

but they all have the same goal: take an input gene list and associate biological pathways with

the larger gene overlap than the one obtained by chance.

Even if a PEA can be done easily, it is also easy to make mistakes that can generate overopti-

mistic or misleading results. We therefore propose these nine quick tips that can help begin-

ners and inexperienced users perform a PEA properly, by avoiding common errors or pitfalls.

Other authors reported potential problems of functional enrichment analysis [17–21] and

described best practices in the past [22, 23], but we believe that our guidelines are easier to fol-

low and to understand by all users, including students and beginners.

Tip 1: Before starting, clarify which analysis you would like to perform

As simple as it might sound, the first step for a sound and robust PEA is about making up your

mind: What analysis do you plan to perform? The answer to this question depends mainly on

the type of scientific problem you would like to solve and on the type of data you have.

What analysis type. Several different enrichment analyses are available in the bioinfor-

matics landscape; even if most of them have significant differences, sometimes their names are

used as synonyms, increasing confusion in the scientific literature. PEA, which is the main

topic of this article, is sometimes called functional enrichment analysis. These two names

indicate the same procedure: the identification of enriched biological pathways (also called

“biological functions”) in a list of biomolecular entities (usually genes, but also microRNAs or

metabolites), through statistical methods.

PEA methods can also be classified into overrepresentation analysis (ORA) and gene set

enrichment analysis (GSEA) approaches. The ORA name highlights the importance of the bio-

logical functions that are overrepresented in a group of genes with respect to their role in the

human genome [24]. GSEA is both the name of a bioinformatics tool developed and released

by scientists at University of California San Diego (UCSD) and Broad Institute [25–27] and

the name of the type of analysis they invented. The authors of Enrichr [28–30], for example,

define its goal as GSEA.

Some users refer to GSEA and PEA as synonyms [31,32]. Each ORA and GSE approach can

be categorized into the competitive and/or self-contained classes based on the null hypothesis.

Competitive methods compute p-values assuming the genes independence hypothesis is not

always true, whereas self-contained methods assume that genes in the gene list are equally

associated with phenotype as genes not listed, yielding many relevant genes (like ROAST [33],

for example). GSEA approaches are considered a mix of self-contained and competitive meth-

ods, since they permute only the genes’ class labels (for example, phenotypes) into the pathway,

or permute all the genes’ class labels for each pathway, comparing the pathway gene set with

the query gene set, depending on the parameters chosen [34].

Thus, GSEA methods can perform both self-contained and competitive hypothesis tests by

altering how permutation is done for testing the null hypothesis. It is worthy to note that many

PEA tools provide both options, ORA and GSEA. ORA methods differ from GSEA because
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they only consider the query gene set of interest and need a strict cutoff to classify genes as up-

and down-regulated; thus, it is advisable to choose GSEA methods when there is uncertainty

about the cutoff value. BioPAX-Parser (BiP) [35], pathDIP [36,37], SPIA [38], CePaORA [39],

and PathNet [40] are competitive methods, whereas CePa [39] and GSEA [25–27] are self-con-

tained methods. More precisely, the main difference between the GSEA approaches and the

ORA approaches is the output: GSEA indicates the pathways that are enriched in genes located

at both extreme ends of a ranked gene list, and a higher ranked pathway indicates that more

genes are located at the very top or at the very end of this list.

Conversely, ORA outputs all pathways enriched in the query gene list as a whole, and

mainly uses a nonranked list (except one option in g:Profiler g:GOst using a minimum hyper-

geometric value-based method). Therefore, the focus of ORA methods is the gene set, while

the focus of GSEA techniques is the ranked pathways list. In this article, we will consider this

distinction even if, as we mentioned earlier, the terms GSEA or PEA are often used as syno-

nyms in the scientific literature. Furthermore, topology-based PEA (TPEA) is an advanced

PEA that takes into account the hierarchical topology of the analyzed genes, such as the inter-

actions between genes and gene products [24,41–43].

Even if these methods generally produce more precise results, they suffer from the limita-

tion of using a gene topology based on the single cell type in use [24]. Moreover, the topologies

of the genes are far from being final and might change as the general biology understanding

advances. Lastly, researchers refer to chromosome region enrichment analysis or genomic

enrichment analysis to PEA tools that read lists of genomic regions as input, rather than lists

of genes. These analyses first associate genes to genomic regions and then retrieve their corre-

sponding biological pathways. GREAT [44], BEHST [45], and Poly-Enrich [46] belong to this

category. We report the complete list of PEA tools mentioned in this article in S1 Table. Unlike

what some unexperienced PEA users think, it is important to note that PEA does not give

clues about the active or inhibited status of the pathways. More appropriately, PEA provides

information about how genes help carry out pathways.

Which data type. As it is easy to understand, the type of analysis depends also on the type

of the data one would like to analyze. For unordered lists of genes, researchers can use g:Pro-

filer g:GOSt [8–10], Enrichr [28,29], and BioPAX-Parser [35,47]. If the genes are ranked, g:

Profiler g:GOSt can treasure this information and generate rank-based functional enrichment

results. If the input data are gene expression levels, they can be analyzed through GSEA [27].

pathDIP [37], instead, can assist with curated analyses based on scientific literature.

If one would like to have topological scores to rank cross-enriched pathways using more

pathway databases, cPEA [48] might be the best tool choice. GeneTrail [49–52] can be useful

for results related to epigenetics, while NoRCE [53] serves well for investigating noncoding

RNAs.

Another aspect to keep in mind is the format of the data one would like to analyze, and

their specific representation. Different models can represent multiple biochemical reactions

responsible for biological functions and pathways. Usually, signaling or metabolic pathways

are considered sets of genes interacting in a coordinated way to accomplish a given biological

function or process. For instance, in a standard signaling pathway, KEGG [4] uses nodes to

represent genes or gene products and edges to define signals, such as activation or inhibition,

going from one gene to another. A common metabolic pathway would be depicted with nodes

to represent biochemical compounds and edges to represent reactions that transform one or

more compounds into other compounds. Enzymes coded by genes usually accomplish these

reactions. Therefore, genes or their products are associated with edges rather than nodes in a

metabolic pathway, like a signaling pathway. Keep in mind that the immediate impact of this

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010348 August 11, 2022 3 / 15

https://doi.org/10.1371/journal.pcbi.1010348


difference is that many techniques cannot be applied directly to all available pathway types (S3

Text).

To summarize, before running any analysis, spend some time studying which scientific

question you would like to answer, which data you have for your study, and of which data type

they consist. The answers to these questions will help you determine the most suitable enrich-

ment analysis to use.

Tip 2: Ensure the quality of your input genes or genomic regions

The popular saying “Garbage in, garbage out” summarizes a key pillar of computer science: If

the quality of data inputed into a computational system or method is poor, the output results

will also be of bad quality [54,55]. No matter how efficient and robust a computational method

is, to have meaningful results at the end of a computational analysis, data must be of good qual-

ity at input. This rule is valid for all computer science, including bioinformatics, and is true for

PEA as well.

Before starting a functional analysis, double-check the input list of genes or genomic

regions: study how that list was generated, with which tools and when. What criteria were

employed in selecting those genes or chromosome regions? Was a scientific article related to

that list published recently? If yes, it is a good idea to read it carefully. In a nutshell, ensure that

the gene list or the genomic region list that you plan to use for your PEA was assembled in a

meaningful, thorough, precise way, with a valid scientific rationale.

If you notice that the input list was generated in an obscure, odd, illogical way, discard it

and focus your attention on another gene list. Let us suppose you would like to investigate a

diagnostic genetic signature for breast cancer, derived from microarray gene expression. You

read the article related to this signature and notice that the authors used 3 datasets generated

on three different microarray platforms (Affymetrix, Illumina, and Agilent, for example), with-

out doing any batch effect correction [56,57]. It is clear that this study contains a preprocessing

mistake and its results should be discarded or at least treated with caution. In cases like this,

we suggest investigating further this list of genes or even avoiding any functional enrichment

analysis and look for another genetic signature.

Another red flag for a proposed gene list would be the absence of a validation on an external

data cohort. If a gene list was proposed in a study involving only one dataset, it is probably not

reliable enough for prognostic or diagnostic scopes.

If some gene symbols are not recognized by the PEA tool, we suggest to look for their

Entrez Gene ID’s through g:Profiler g:Convert [9] or to look for their symbol aliases on Gene

Cards [58–60].

Do not run a functional enrichment analysis on any gene list “just to see if anything comes

out”: If “anything” comes out, it is probably misleading. Only when you are sure about the

quality of your gene list you can proceed and start your PEA.

Even if the gene list is well curated, some technical issues can still occur, for example, with

the gene symbols.

Tip 3: Use multiple PEA tools, not only one

What we see in multiple studies involving phases of PEA is the habit of employing a single

PEA tool. Many bioinformatics and biomedical researchers, in fact, learn how to use one PEA

tool well and then stick with it forever by including an analysis done with it in most of their

published studies. This approach has several limitations, because using a unique PEA tool of

course generates results that are relegated to the databases associated with that specific PEA

software.
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Even if it seems obvious, we suggest all the practitioners performing a functional enrich-

ment analysis phase to employ at least two different PEA tools. Having results coming from

different sources and methods is pivotal: Some results will be confirmatory, some will be

complementary, and some might even be discordant. Seeing two sides of a PEA analysis surely

can give a user the possibility to learn more about the pathways associated with the input

genes.

For example, if the user had an unranked list of gene symbols, we would suggest to apply g:

Profiler g:GOSt [10], Enrichr [28], and GeneTrail [52] to it, and then compare their results.

Each of these three PEA tools share common databases (the Gene Ontology, for example) but

also have specific ones. A user could then analyze their results first to verify if the common

pathways are found by all the three methods, and then to analyze the unique terms found. The

comparison between the output pathways generated by different PEA tools can be tricky but

can reveal essential information about the analyzed gene list.

A quick, straightforward way to compare the enrichment results is to verify if they contain

pathways with the same name. This solution could be insufficient since pathways belonging to

various databases may have distinct names and might be structured in a redundant, partially

overlapping manner in some other databases. This aspect is a well-known complication in

PEA due to the lack of a unique standard to represent and store biological pathway data. Con-

sequently, many available software tools can only deal with a single pathway database. To per-

form pathway enrichment by employing more than a single database, users can employ cPEA

[48], a software tool able to deal with several pathway databases using the BioPAX language

[61] to store and represent pathways. Or they can use BiP [47] by selecting the “Whole

PathwayCommon Data” option that will perform cross enrichment using the whole collection

of automatically downloaded locally Pathway Common databases [62] coded in BioPAX. It is

worth noticing that evaluating the similarity among pathways may be helpful to compare the

genes within each pathway.

Moreover, we describe two possible ways to compare, consolidate, and validate pathways in

S1 Text.

Tip 4: Document all your PEA tests and their details

For each PEA software used, keep track of its version, of its parameters’ arguments, and of all

its details [63,64]. Write this precious information in a notebook [65], and then include it in

the supplementary information of the article about the given PEA study. This step is important

for you and your future analysis comparison, but also for the reproducibility of your research

study [66,67].

In Box 1, we report an example of details and information regarding a functional enrichment

analysis made with g:Profiler g:GOSt that should be manually written by a bionformatician in

her or his notes. The user should save these pieces of information in addition to saving the full

results of the PEA tests, of course. In particular, we recommend to take note of the version and

last update of the databases employed: Since they change quite often, some biological annota-

tions can become obsolete soon, with negative consequences on the scientific outcomes [68].

The last part of Box 1 regarding the output file name and location should not be included in

the manuscript, of course, but should be written in the user’s notebook. This piece of informa-

tion will be invaluable in the future.

Tip 5: Always use the corrected p-value, and not the nominal one

As we explained earlier, pathway enrichment analyses include statistical steps that rank the

output pathways by abundance in the gene list and express their enrichment through a
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probability value called p-value. The closer to zero this p-value is, the more significant the

result is. However, since we know that genes are unevenly annotated in the biological data-

bases, using the simple nominal p-values would easily generate misleading results. Two differ-

ent Gene Ontology annotations, for example, might end up having p = 0.001 in the PEA

results, and the user might think they are enriched in this gene list. However, these p-values

might just be related to the fact that one of the two is actually enriched, while the other is just

annotated to few genes in the Gene Ontology database.

Additionally, since one p-value needs to be calculated for each term, it is very likely that

some terms might end up having a significant p-value just by chance.

To alleviate this issue, we recommend using the adjusted p-value for multiple testing, some-

times also called corrected p-value and indicated as p.adj [70].

In the hypothesis testing, we have our hypothesis that says that some variables are corre-

lated, and a null hypothesis that states there is no relationship between them [71]. If our test’s

p-value is significant, we can reject the null hypothesis and claim that our hypothesis is true.

The issue is that, with many variables and, therefore, multiple hypotheses to test, there is a

Box 1: Example of PEA test details

My test ID: 2022-02-04, h10:02 EST.

My input genes: AK4, ALDOC, EGLN1, FAM162A, MTFP1, PDK1, PGK1.

My input genes’ type: gene symbols.

Source: D. Cangelosi and colleagues [69].

Disease: neuroblastoma.

Tool: g:Profiler g:GOSt.

Access: online via Google Chrome browser.

Version: e104_eg51_p15_3922dba.

URL: https://biit.cs.ut.ee/gprofiler/gost

Organism: Homo sapiens.

Query: unordered genes.

Statistical domain scope: only annotated genes.

Significance threshold: g:SCS threshold.

User threshold: 0.005.

Data sources: default.

All the other parameters: default.

My output file(s) name(s): gprofiler_gost_NB_2022-02-04_h1002_output.csv

My output file(s) folder: /home/davide/PEA_analyses/neuroblastoma/

My output file(s) location: bioinformatics-laptop-2021 (Dell Latitude E5420).
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higher chance to make at least one type 1 error that is to reject the null hypothesis even if the

null hypothesis is actually true. This result would be misleading and can be alleviated through

methods for multiple testing error correction or adjustment.

This adjustment limits the family error rate or the FDR and therefore improves the quality

of the PEA outcomes. An example of technique for the family error rate correction is the Bon-

ferroni method [72], while a common procedure for FDR correction is the Benjamini–Hoch-

berg procedure [73]. The terms adjusted p-values, corrected p-values, and false discovery rate
(FDR) values are often used as synonyms in the scientific literature.

Additionally, following a recent debate on the best practices for computational statistics

[74], we suggest using the adjusted p-value threshold at 0.005 (that corresponds to 5 × 10−3), as

recommended by Benjamin and colleagues [75].

We know that the significance of the results cannot be indicated by a single threshold for all

possible PEA experiments: The significance of the pathways, instead, depends on the input

data, on the size of the gene list, on the tool and method employed, on the databases used, and

on the nonindependence between the genes. We therefore suggest using the p.adj< 0.005

threshold for a first strict analysis of the results, and then repeating the test by using a more

permissive threshold such as p.adj< 0.01, and then again with an even higher threshold, such

as the traditional p.adj< 0.05. Based on the characteristics of the experiment, results found by

one particular threshold might be more suitable than results found with other thresholds.

In any case, the results found in this phase should be then validated through wet lab experi-

ments or a literature review (Tip 8) and reviewed by a wet lab biologist (Tip 9), since these

steps would avoid publication of many false findings [76,77].

We believe this tip is true not only for bioinformatics, but also for all the scientific studies

involving statistics and probability values.

Tip 6: Keep in mind that your PEA results can be strongly affected by the

statistical tests and the visualization techniques you use

Statistical tests. As we mentioned earlier, each PEA software tool uses a different statisti-

cal method to identify the biological pathways enriched in a set of input genes. These statistical

techniques associate a corrected probability value (p-value) to each pathway, which indicates

its importance: the lower the adjusted p-value is, the more the pathway is enriched in genes

from the query gene list compared to all genes.

Pathways are not equal in their number of genes they contain, and some contain a limited

number of curated genes, but therefore can be very relevant in a PEA analysis if found

enriched in a high percentage of input genes.

Different statistical techniques, however, can generate different results, and this is some-

thing users should always keep in mind. We describe an example of different results obtained

on g:Profiler g:GOSt when using different statistical tests in S2 Text, and we report the list of

the statistical methods of the PEA tools mentioned in this article in S1 Table.

Our general advice for this task is to keep in mind that different statistical methods can gen-

erate different results, so avoid blind use of any statistical test. Study which statistical method

can be more suitable for your analysis and why, and then apply it.

Visualization. Scientific visualization is a key pillar of bioinformatics and of modern sci-

entific research [78]. Proper visualization plots do not only represent the data or the results

observed in an experiment, but they can also provide alternative, new insights about the data

themselves [79].

The visualization step of a PEA, although fundamental, is sometimes underrated by inexpe-

rienced users. On the contrary, we believe this phase is vital for the interpretation of the PEA
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results. Following what we suggested in Tip 4, we advise all PEA practitioners to employ multi-

ple tools for this task. Moreover, the key point to keep in mind during this phase is that differ-

ent visualization tools and styles can highlight different scientific aspects of the results and

therefore unveil unexpected biological novelty that would have been unnoticed otherwise.

Visualization of PEA results can be useful and advantageous because it easily allows users to

quickly detect the main enriched functional subjects, which they can then use to interpret the

enrichment results. This identification of the functional subjects and their interpretation

would be more difficult without a visualization step. Moreover, several useful PEA visualiza-

tion techniques allow users to deal with redundancy of enrichment results by grouping

together similar processes and pathways into common functional themes.

Enrichment Maps [80] and enrichplot [81] for biological pathways, AutoAnnotate [82] for

networks, and REVIGO [83] and CirGO [84] for GO annotations are few examples of different

visualization techniques and contents. Network visualization techniques can also be used to

detect a lower adjusted p-value threshold (Tip 5).

To recap, avoid blind use of visualization techniques: understand the available ones and

choose the most suitable one for your case.

Tip 7: Consider using subgroups of correlated genes instead of all your

input genes

A common practice in PEA is to take all the genes derived from an experiment or a previous

analysis and to use them all as input in a PEA tool. This is surely a good thing to do when the

users do not know any hierarchy or relationship between the input genes, but it can also pro-

duce many gene–pathway associations that might turn out to be irrelevant or even misleading

in the end. Additionally, using many input genes could produce a large number of general

pathways in the results, such as “signaling pathway” available in KEGG [4] and Reactome [5],

for example, which do not improve our understanding of the affected biological processes and

functions. Some PEA tools give the possibility to exclude these generic terms from the results,

but not all of them.

Instead of using all genes as input for the PEA, we therefore suggest bioinformatics practi-

tioners to detect subgroups of correlated genes and perform the PEA on each of these sub-

groups alone.

Subgroups of correlated genes can be found, for example, through protein–protein interac-

tion networks’ tools such as IID [85–88], STRING [89–92], GeneMANIA [93–97], or Reac-

tome Functional Interaction Network (Reactome FI) [98,99]. These software programs are

able to cluster together groups of genes that might share a common physical interaction in

their databases. Woodwarda and colleagues [100] recently released a GSEA tool enhanced

with epistatic interactions [101], which might be of interest for this scope.

To this end, some R packages have been recently released: pathfindR [102] and netGO

[103], which exploit the protein–protein interaction networks to produce more accurate PEA

results.

Using these groups of genes, which are already correlated between each other by sharing

the same physical interactions, would probably detect more precise biological pathways as out-

put of the PEA.

Tip 8: Use the (recent) scientific literature to review your PEA results

The results you obtained with the PEA tools used are surely interesting and useful, but they are

likely based on databases and datasets collected some months or even years ago. Therefore,

your results might not be as novel as the recent scientific literature: Some new studies about
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pathway–gene associations might have been published between the release of the databases

employed by the PEA tools used and when your PEA was executed.

To verify your findings, we therefore suggest any practitioner to manually perform a litera-

ture search and look for scientific studies published about the significant genes–pathways asso-

ciations found by the functional enrichment analysis and about the role of the genes inside the

enriched pathways found.

The search can be done by using the pathways and the genes as keywords on Google

Scholar [104] and PubMed [105]. We also suggest to search on the preprint servers such as

bioRxiv [106] and arXiv Quantitative Biology [107], although the fact that these preprint docu-

ments are not peer reviewed should be kept in mind. This phase can help alleviate the problem

of outdated gene annotations [68].

However, we know that sometimes the list of genes and the list of pathways are so large that

manually looking for at least one article about each of them would take too much time. As a rule

of thumb, we therefore suggest the users to investigate at least the top twenty genes–pathways

associations in the literature. Alternatively, the user could filter the genes by known importance:

They could study their input list of genes, identify some frequently seen genes that they already

saw in the literature, and investigate their pathways found by the PEA. In any case, we invite users

to verify PEA results by looking at the role of the genes shared in the top PEA output pathways to

precisely define the biological functions targeted by the gene list (S1 Text).

Tip 9: Ask a wet lab biologist or a clinician to review your PEA results

After looking for evidence about the results of a PEA with scientific literature (Tip 8), we

believe one additional step is needed: To further validate the PEA results achieved, a wet lab

biologist or a clinician should review these results and clearly say if they make sense or if they

contain mistakes or inappropriate information.

Similarly to what is suggested for machine learning studies [108], we therefore suggest that

all computational biologists, after performing the PEA, contact a biology researcher and ask

for a review of their PEA results. This person should not be a user or a computational biologist

but should have a degree in traditional biology or medicine and should be familiar with scien-

tific results obtained in the wet lab.

The point of view of this expert will surely provide interesting considerations and feedback

regarding the PEA results and will highlight some aspects that maybe the user might have

overlooked. If possible, one can also consider asking this person to perform some wet lab vali-

dation of the results found through the PEA. We intended this list of quick tips for computa-

tional analyses, but it goes without saying that a precise biological validation made in a wet lab

would be extremely useful and even more relevant than any literature review.

Conclusions

PEA is a pivotal step of bioinformatics studies that highlights the most relevant biological func-

tions associated with gene lists. In the last decade, huge computational resources and numer-

ous web tools available online made this analysis type easy for anyone to perform. However, it

also became easy to make mistakes by using PEA tools, data, or results that might not address

the original scientific scope properly. Following the recent debates emerged in machine learn-

ing and biomedical informatics communities [108–116], we propose these nine quick tips that

can be used as a checklist for any computational user running a functional enrichment

analysis.
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49. Keller A, Backes C, Al-Awadhi M, Gerasch A, Küntzer J, Kohlbacher O, et al. GeneTrailExpress: a

web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics.

2008; 9(1):1–6. https://doi.org/10.1186/1471-2105-9-552 PMID: 19099609

50. Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, et al. GeneTrail—advanced

gene set enrichment analysis. Nucleic Acids Res. 2007; 35(suppl 2):W186–W192. https://doi.org/10.

1093/nar/gkm323 PMID: 17526521
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