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Abstract: Four endemic coronaviruses infect humans and cause mild symptoms. Because previous
analyses were based on a limited number of sequences and did not control for effects that affect
molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling
for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time
to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-
229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel
alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of
HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown.
To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded
the occurrence of influenza pandemics since 1500. Although there is no clear relationship between
pandemic occurrence and human population size, the frequency of influenza pandemics seems to
intensify starting around 1700, which corresponds with the initial phase of exponential increase of
human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th
century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic
may be due to chance.

Keywords: coronavirus; molecular dating; emerging infectious diseases; viral disease; virus evolution

1. Introduction

Coronaviruses (order Nidovirales, family Coronaviridae, subfamily Coronavirinae) are a
diverse group of positive-sense, single-stranded RNA enveloped viruses with high zoonotic
potential [1–3]. In 2002, a highly pathogenic coronavirus, severe acute respiratory syndrome
coronavirus (SARS-CoV), spilled over from palm civets to humans and caused ~8000 cases
in several countries [4]. These events were followed by the appearance, in 2012, of Middle
East respiratory syndrome coronavirus (MERS-CoV), a camel-derived pathogen that caused
multiple outbreaks of respiratory disease mainly in the Arabic Peninsula [5]. Containment
and surveillance strategies allowed for the control of these viruses, which have never
(SARS-CoV) or only occasionally (MERS-CoV) reappeared in human populations [6,7].
However, at the end of 2019, SARS-CoV-2 emerged in China and is now recognized as
the cause of COVID-19 [8]. The virus rapidly spread worldwide, and the World Health
Organization declared the SARS-CoV-2 pandemic in early March 2020.

The epidemic behavior of SARS-CoV, MERS-CoV, and SARS-CoV-2, as well as their
clinical severity, have clearly raised awareness of the potential danger posed by coron-
aviruses, which were considered relatively harmless to humans before 2002. In fact, four
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other human coronaviruses (HCoV) (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-
229E), sometimes referred to as “common cold coronaviruses”, have been circulating in
human populations for decades, usually causing mild symptoms [2,9,10].

Like the highly pathogenic coronaviruses, the endemic coronaviruses have a zoonotic
origin [2,3,11]. Although with some controversy [12], most previous estimates indicated
that the endemic coronaviruses entered human populations in the last 1000 years [2,13–18].
However, these early analyses were often based on a small number of sequences and did not
control for effects that are now recognized to affect molecular dating (e.g., recombination).
For instance, using the first complete genome of HCoV-OC43 and the sequences of 15 BCoV
spike proteins, Vijgen and coworkers estimated that the time to the most recent common
ancestor (tMRCA) of HCoV-OC43 and BCoV dated to the end of the 19th century [14]. A
follow-up analysis with seven additional HCoV-OC43 sequences and based on both the
S and N sequences confirmed this estimate, placing the tMRCA at the end of the 19th
century or at the beginning of the 20th [17]. A study that sequenced and analyzed several
BCoV spike sequences also reached the same conclusion [18]. With respect to HCoV-229E,
previous dating analysis did not include the camelid viruses, as they were unavailable
at that time [13,15]. In the wake of the COVID-19 pandemic, a better understanding
of the evolutionary dynamics of endemic coronaviruses, as well as of the tendency of
viral disease emergence, might provide valuable insight into the possible trajectories of
SARS-CoV-2 evolution.

2. Materials and Methods
2.1. Sequences and Alignments

Complete or almost complete genome sequences for all four endemic coronaviruses
were downloaded from the NCBI database (National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/, accessed on 15 April 2022). Only sequences with known
sampling dates were included in the analyses (Table S1). The HCoV-OC43 Paris strain
was excluded, as its sampling date is uncertain [19]. For HCoV-229E and HCoV-OC43,
the closest phylogenetically related animal viruses were also retrieved, namely camel
alphacoronavirus and bovine coronavirus (BCoV) (Table S1).

Sequence alignments were generated using MAFFT (v7.427) (multiple alignment using
fast Fourier transform) [20], with default parameters.

Recombination Analysis

Recombination can affect phylogenetic tree branch length estimates and, consequently,
molecular evolution analyses [21]. Thus, each coronavirus alignment was tested for ev-
idence of recombination signals using the 3SEQ software (v.1.7, software for identifying
recombination in sequence data) [22]. This method scans a given alignment searching for
mosaic recombination signals in all possible sequence triplets. The result is the identifica-
tion of genomic regions in which one of the three sequences is the recombinant (child) of the
other two (parental). 3SEQ full scans were run with a recombination significance threshold
of 0.01. All significant recombination events were mapped onto coronavirus alignments,
and the longest non-recombinant genomic regions, defined as the genomic region between
two recombination breakpoints, were selected for subsequent analyses (Figure 1). This gen-
erated four non-recombinant alignments with the following lengths: HCoV-OC43: 12,691
nucleotides, HCoV-229E: 17,271 nucleotides, HCoV-HKU1: 10,820 nucleotides, HCoV-
NL62: 2320 nucleotides. The unique recombination events identified in genome alignments
are shown in Figure 1.

http://www.ncbi.nlm.nih.gov/
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Figure 1. Recombination events and temporal signal. Unique recombination events in endemic 
coronaviruses (left panels). Each event is shown as a line with dots representing the start and the 
end. The non-recombinant regions used in the analyses are indicated with gray shadows. Schematic 
representations of coronavirus genomes are also reported. Plots of the root-to-tip distance as a 
function of sampling years are shown in the central panels. Each point corresponds to a viral 
sequence and the dotted line is the linear regression calculated using a method that minimizes the 
residual mean squares. The r coefficient and the corresponding p value are also shown. (right 
panels) report comparisons of branch lengths obtained using the aBSREL and the GTR models. Each 
dot represents an internal branch of a phylogenetic tree calculated using the longest non-
recombinant regions of each endemic coronavirus. 

  

Figure 1. Recombination events and temporal signal. Unique recombination events in endemic
coronaviruses (left panels). Each event is shown as a line with dots representing the start and the
end. The non-recombinant regions used in the analyses are indicated with gray shadows. Schematic
representations of coronavirus genomes are also reported. Plots of the root-to-tip distance as a
function of sampling years are shown in the central panels. Each point corresponds to a viral
sequence and the dotted line is the linear regression calculated using a method that minimizes the
residual mean squares. The r coefficient and the corresponding p value are also shown. (right panels)
report comparisons of branch lengths obtained using the aBSREL and the GTR models. Each dot
represents an internal branch of a phylogenetic tree calculated using the longest non-recombinant
regions of each endemic coronavirus.
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2.2. Phylogenetic Trees and Temporal Signal

Phylogenetic trees for the non-recombinant regions of all endemic coronaviruses
were reconstructed using the phyML (phylogenetic tree estimation under the maximum
likelihood (ML) principle) software under a general time-reversible (GTR) model plus
gamma-distributed rates and 4 substitution rate categories [23]. The substitution models
were estimated using JmodelTest 2 [24,25].

Internal-GTR-estimated branch lengths were compared to branch lengths calculated
using a model that accounts for different selective pressures among lineages. This model is
implemented in the aBSREL (adaptive branch site random effects likelihood [26]) tool from
the HYPHY (hypothesis testing using phylogenesis) suite (version 2.5) [27].

To evaluate whether the non-recombinant genomic regions selected for the analyses
carried sufficient temporal signal, we calculated the correlation coefficients (r) of regressions
of root-to-tip genetic distances against sequence sampling years. We applied a previously
proposed method, described by Murray and co-workers [28], that minimizes the residual
mean squares of the models rather than one that maximizes r2 [28]. We calculated p
values by performing clustered permutations (1000) of the sampling dates, as previously
suggested [28,29]. We considered significant a regression with p < 0.05 (Figure 1).

2.3. Molecular Dating

A time estimate phylogenetic reconstruction was performed using a Bayesian approach
implemented in the Bayesian Evolutionary Analysis by Sampling Trees (BEAST, v.1.10.4)
software [30].

To select the best-fit molecular clock and tree prior, we ran the path sampling tool
implemented in BEAST to choose between a constant size, an exponential growth, or a
coalescent Bayesian skyline tree prior, and between a strict and an uncorrelated relaxed log-
normal clock (100 steps, 1,000,000 iterations each). For all parameters, default priors were
chosen only if they had proper distributions; otherwise, they were changed accordingly
(i.e., for the population size parameter, an uninformative lognormal prior distribution was
used, instead of the 1/x default prior).

A Bayes factor test was applied to compare the different likelihoods (Table S2). Since
none of the models were favored when compared to all the others, we selected the simplest
among the favored ones (Table S2). Thus, a constant population size tree prior with a strict
clock model was used for HCoV-229E and HCoV-NL63, whereas a constant population and
a relaxed clock with a log-normal distribution were used for HCoV-OC43.

For the HCoV-HKU1 phylogeny, we used the mean rates estimated for the other
betacoronavirus HCoV-OC43 (1.78 × 10−4 substitutions per site yr−1) as an informative
rate prior following a normal distribution.

We performed two different Markov chain Monte Carlo runs for all four endemic
coronaviruses, one hundred million iterations each, and sampled every 10,000 steps after
a 10% burn-in. The runs were combined after checking for convergence and for heaving
effective sampling sizes > 100.

We generated a maximum clade credibility tree using TreeAnnotator [31], which was
visualized with FigTree (http://tree.bio.ed.ac.uk/, accessed on 15 April 2022).

2.4. Data on Influenza Pandemics and Human Population Size

The timing of influenza pandemics was obtained from a previous work [32], as well as
from references therein [33–42]. Estimates of human population size were obtained from the
“Our World in Data” website (https://ourworldindata.org/, accessed on 15 April 2022).

3. Results
3.1. Time-Frame of Human Endemic Coronavirus Emergence

As mentioned above, all endemic coronaviruses were estimated to have recently
emerged as human pathogens [2,13–18]. However, besides being generally based on a
limited number of sequences, most previous analyses did not include some of the viruses

http://tree.bio.ed.ac.uk/
https://ourworldindata.org/
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that are now recognized to be closely related to endemic human coronaviruses (e.g., the
dromedary camel alphacoronaviruses related to HCoV-229E). Moreover, it is now recog-
nized that the presence of recombination, the lack of a temporal signal in the sequence
data, and the pervasive effect of purifying selection can affect molecular dating [21,43,44].
Accounting for these effects has become common practice only in recent years. Thus,
because their zoonotic source is known, we decided to reassess the timing of HCoV-OC43
and HCoV-229E emergence. As their animal origin is unknown, we instead estimated
the time when circulating strains of HCoV-NL63 and HCoV-HKU1 last shared a common
ancestor. For this purpose, we retrieved all available sequences with known sampling date
for the four coronaviruses (HCoV-OC43, n = 167; HCoV-229E, n = 31; HCoV-NL63, n = 68;
HCoV-HKU1, n = 34), together with the sequences of the reference genomes of BCoV and
camel alphacoronavirus (Table S1).

Because recombination is known to be frequent in all coronavirus genera [45–47],
we used 3SEQ to identify recombination events, which were detected in all datasets
(Figure 1) [22]. Based on the location of breakpoint positions, we then selected the longest
non-recombining region for each alignment. Specifically, we obtained relatively long re-
gions for HCoV-OC43, HCoV-229E, and HCoV-HKU1, whereas the non-recombining region
was shorter for HCoV-NL63 (Figure 1). For all the selected non-recombining regions, maxi-
mum likelihood phylogenetic trees were constructed, and we checked for the presence of a
temporal signal by performing regression of root-to-tip genetic distances against sampling
dates. These analyses indicated a strong temporal signal for all regions, with the exclusion
of the HCoV-HKU1 region (Figure 1). In this latter case, the lack of a temporal signal is most
likely due to the short time span among virus sampling dates, with the earliest sequences
collected in 2003 (Table S1).

Before performing molecular dating, we evaluated whether natural selection strongly
affected branch length estimates in the viral phylogenies. In fact, it is now recognized that
purifying selection and saturation effects contribute to the time-dependent substitution
rate variation in viruses, which, in turn, affects molecular dating [43,48]. We thus estimated
branch lengths using the aBSREL (adaptive branch-site random effects likelihood) model,
which accounts for different selective pressures among lineages and is relatively robust to
substitution saturation [49]. For all phylogenies, branch lengths estimated with aBSREL
were comparable to those obtained with a GTR (general time reversible) model (Figure 1),
suggesting that molecular dating can be performed with minor effects related to the time
dependency of substitution rates.

Thus, for the three phylogenies (HCoV-OC43, HCoV-229E, and HCoV-NL63) show-
ing a temporal signal, we used a Bayesian approach to estimate substitution rates and
time-measured evolutionary histories. Substitution rates in the range of 1.78 × 10−4 to
2.03 × 10−4 substitutions per site yr−1 were obtained, in line with previous analyses [46].
For the HCoV-HKU1 phylogeny, date estimates were obtained by using the substitution
rate of HCoV-OC43 (another betacoronavirus) as a prior. For the circulating strains of all
coronaviruses, we obtained similar tMRCA estimates, which ranged from 72 (HCoV-229E)
to 54 (HCoV-NL63) years ago (Figure 2 and Figure S1).
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probability > 0.80 for that node. 

The splits of HCoV-OC43 and HCoV-229E from their most closely related animal 
viruses were more variable. Specifically, we estimated that HCoV-OC43 split from the 
bovine coronavirus (BCoV) lineage around 1923 (HPD: 1872–1967), whereas HCoV-229E 
separated from the camel alphacoronavirus in the 18th century (1754, HPD: 1714–1791) 
(Figures 2 and S1). It should, however, be noted that the 95%HPD intervals for the split of 

Figure 2. HCoV-229E and HCoV-OC43 timescaled phylogenetic trees. Maximum likelihood trees
estimated for the non-recombinant region of HCoV-229E (a) and HCoV-OC43 (b). Branch lengths
represent the evolutionary time measured by the grids corresponding to the timescale shown at the
tree base (in years). For internal nodes, 95% HPD bars are shown, and black dots indicate a posterior
probability > 0.80 for that node.

The splits of HCoV-OC43 and HCoV-229E from their most closely related animal
viruses were more variable. Specifically, we estimated that HCoV-OC43 split from the
bovine coronavirus (BCoV) lineage around 1923 (HPD: 1872–1967), whereas HCoV-229E
separated from the camel alphacoronavirus in the 18th century (1754, HPD: 1714–1791)
(Figure 2 and Figure S1). It should, however, be noted that the 95%HPD intervals for
the split of HCoV-OC43 from the animal virus were very large, and the inference should,
therefore, be taken with caution.
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3.2. Human Coronavirus Emergence in the Context of Viral Outbreaks

The molecular dating analyses reported above indicate that, most likely, all endemic
coronaviruses emerged as human pathogens earlier than 50 years ago, and possibly in a
more distant past (Figure 3). This implies that, at least between ~1970 and 2002 (when
SARS-CoV appeared), no coronavirus gained the ability to spread widely in our species.
Thus, the pattern of coronavirus emergence seems to be highly irregular and to have
intensified in recent years. To compare the timing of coronavirus emergence to that of
another respiratory virus, we recorded the occurrence of known influenza pandemics since
1500. As previously noted [50], this pattern is also irregular. Although there is no clear
relationship between pandemic occurrence and human population size, the frequency of
influenza pandemics seems to intensify starting around 1700, which corresponds with the
initial phase of the exponential increase of human population (Figure 3). This time also
roughly corresponds to the emergence of HCoV-229E.
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Figure 3. Timeline of endemic coronavirus emergence. Colored horizontal bars represent the time
span between the divergence of each coronavirus from the closest known animal virus and the
tMRCA (time to the most recent common ancestor) of circulating strains. In the case of HCoV-HKU1
and HCoV-NL63 tMRCA are shown as colored dots. Gray bars indicate 95% HPD. Vertical lines
represent influenza pandemic events and the scaled colors (from blue to red, see legend on the
plot) indicate the proportion of articles reporting that event as pandemic [33–42]. The three recent
coronavirus zoonoses are shown as black vertical lines. The world human population count from
1400 C.E. is reported as a dotted gray line.

4. Discussion

Many uncertainties surround the origin of coronaviruses as human pathogens. Recent
molecular dating analyses have estimated that the tMRCA of sarbecoviruses dates back to
about 21,000 years ago [51], which roughly corresponds to the time when a set of human
proteins that interact with coronaviruses started to experience positive selection in Asian
populations [52]. Whether the selective pressure was accounted for by a coronavirus or
another pathogen remains to be clarified. In the case that the agent that infected humans
back then was indeed a betacoronavirus, it must have gone extinct, at least in human
populations. Indeed, it seems difficult to imagine that a newly emerged coronavirus might
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be able to spread and persist in early human communities, which were small and poorly
connected. Whatever the nature of that early infectious agent, it is clear that much informa-
tion on the possible trajectories of SARS-CoV-2 evolution can be gained by the analysis of
previous human epidemics, especially those caused by coronaviruses. We thus leveraged
the increasing availability of sequence data and advances in molecular dating approaches
to re-estimate the time when endemic coronaviruses entered human populations.

Unfortunately, we could not estimate the emergence time for HCoV-HKU1 and HCoV-
NL63, as the hosts from which they spilled over are unknown. Both viruses have their
closest relatives in wild rodents and bats, but there is no information concerning the
unsampled diversity in these mammals or in other domestic ones. Thus, for these two
viruses, we can only estimate the time when circulating strains last shared a common
ancestor, which was in the 1960s. Thus, we can place an upper-bound limit and state that
they emerged earlier than ~50 years ago. This time roughly corresponds to the tMRCAs of
HCoV-229E and HCoV-OC43. However, for these viruses, we estimated that the splits from
the viruses hosted by domestic animals occurred in the 18th and 20th centuries, respectively.
Because bovines and camels are plausible zoonotic sources for human infections, these
split dates may be considered as good proxies for the time when HCoV-OC43 and HCoV-
229E entered human populations. The long time spans that, especially for HCoV-229E,
separate the split times and the tMRCAs are most likely accounted for either by extinct
ancestral lineages or by unsampled viral diversity. In the case of HCoV-OC43, our estimate
of the split from BCoV in 1923 (HPD: 1872–1967) is based on a large non-recombining
region of ORF1a. This result is in good agreement with previous works that analyzed
the S or N gene regions and obtained split dates ranging from 1873 to 1910 (plus credible
intervals) [14,17,18]. Previous studies on HCoV-229E, as well as on HCoV-NL63, mainly
analyzed the split times from bat viruses and are thus not comparable with the data we
present herein [13,15]. In general, our results and previous studies agree that the four
endemic coronaviruses entered human populations earlier than 50 years ago [14–18]. This
indicates that, for several decades, no coronavirus spilled over to humans (or at least
caused a registered outbreak) until three highly pathogenic coronaviruses emerged in tight
temporal succession. The factors responsible for the timing of epidemics or pandemics have
remained unknown for decades in the case of influenza, as virological and non-virological
elements have been associated with the occurrence of pandemics with poor explanatory
power [32,34,53–57]. Thus, it is presently impossible to predict the timing of such events
and their severity. As noted elsewhere [50], there is no clear role of human population size in
the frequency of pandemics either. Thus, the recent exponential growth has not determined
a comparable increase in pandemic occurrence. However, some intensification seems to
be detectable starting around the beginning of the 18th century, which also corresponds
to the time when HCoV-229E emerged. This period was characterized by the industrial
revolution and the colonial expansion, which resulted in larger cities and long-distance
travels. Whether these changes in human behavior contributed to the intensification of viral
disease emergence remains to be evaluated. Alternatively, it is possible that the increase in
pandemic occurrence since 1700 simply reflects the increasing accuracy and reliability of
medical or historical records.

In the same way as we are unable to predict the timing, we have very little ability to an-
ticipate which viruses will emerge and how pathogenic they will be [58,59]. In this respect,
it is worth mentioning that, because they have now circulated in (and adapted to) human
populations for decades, if not centuries, we cannot exclude that the endemic coronaviruses
were once more pathogenic than they are now. Indeed, it was previously suggested that
the 1889–1890 flu pandemic (known as the Russian flu), which was characterized by pro-
nounced central nervous system symptoms, was actually caused by HCoV-OC43 [14,60]. If
we allow for credible intervals, our estimate of the timing of HCoV-OC43 emergence is still
compatible with the hypothesis that the virus, which displays some neurotropism, was the
causative agent of Russian flu. However, the frequency of flu pandemics in the 19th century
suggests the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be
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due to chance. Only the retrieval of historical samples from the pandemic will prove or
refute this hypothesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14051095/s1, Table S1. List of endemic coronavirus strains.
Table S2. Model comparison using BEAST (v.1.10.4) path sampling. Figure S1. HCoV-NL63 and
HCoV-HKU1 timescaled phylogenetic trees.
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