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Abstract— Brain-computer interfaces (BCIs) have rev-
olutionized the way humans interact with machines,
particularly for patients with severe motor impairments.
EEG-based BCIs have limited functionality due to the
restricted pool of stimuli that they can distinguish, while
those elaborating event-related potentials up to now
employ paradigms that require the patient’s perception of
the eliciting stimulus. In this work, we propose MIRACLE:
a novel BCI system that combines functional data analy-
sis and machine-learning techniques to decode patients’
minds from the elicited potentials. MIRACLE relies on a
hierarchical ensemble classifier recognizing 10 different
semantic categories of imagined stimuli. We validated MIR-
ACLE on an extensive dataset collected from 20 volunteers,
with both imagined and perceived stimuli, to compare the
system performance on the two. Furthermore, we quantify
the importance of each EEG channel in the decision-making
process of the classifier, which can help reduce the num-
ber of electrodes required for data acquisition, enhancing
patients’ comfort.

Index Terms— Brain-computer interfaces (BCIs), biomed-
ical signal processing, supervised learning, functional
analysis.

I. INTRODUCTION

BRAIN Computer Interfaces (BCIs) are intended to cre-
ate a direct connection between the human brain and

computerized devices, enabling individuals to operate such
devices without peripheral muscle involvement [1]. Several
BCIs have been proposed over the years, leveraging informa-
tion provided by brain electrical activity. Depending on the
specific application, brain activity can be acquired either inva-
sively through electrocorticogram (ECoG) or non-invasively
through electroencephalogram (EEG) [2], [3]. EEG is com-
monly preferred as non-invasive, but scalp-measured brain
electrical activity has lower signal-to-noise ratio, which poses
significant challenges to develop effective BCIs [4]. Despite
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their effectiveness, BCIs that rely on Steady-State Visual
Evoked Potentials (SSVEP) and P300 (a positive deflection
of electric brain activity that occurs 300ms after stimulus
recognition [5] indicating the presence of conscious mental
attention processes [6]) provide a reduced pool of available
functionalities [7]. This is because P300 remains the same
regardless of the stimulus that elicits it, and SSVEP is
limited by the resolution of the system to detect depolar-
ization changes due to the different flashing frequencies [8].
To address these limitations, researchers have explored the
use of Event-Related Potentialss (ERPs), which offer a wider
range of evoked responses that can be associated with differ-
ent actions [9]. ERPs are time-locked responses to stimuli,
and their shape depends on the category of the stimulus
presented.

To exploit ERPs potential, neuroscientists have extensively
studied their morphology to identify reliable and characteristic
markers. In more detail, the intent is to leverage the domain
knowledge to define a set of rules that an expert BCI system
can use to recognize different ERPs and perform the corre-
sponding action. Additionally, these studies can provide insight
into the cognitive processes underlying perception and provide
a better understanding of this phenomenon. For example,
in a recent work [10], researchers analyzed ERPs gener-
ated by 10 stimuli categories from both visual and auditory
domains to extract reliable markers for the perception process.
By interpreting the spatio-temporal coordinates of the brain
activity, they identified relevant voltage peaks and statistically
investigated their relationship to the specific stimulus category.
Despite the interpretability benefits provided by an expert
BCI system, the definition of hard rules can be challenging
due to the complexity of EEG data. Indeed, EEG typically
contains multiple channels, which refer to different brain
regions. Moreover, the morphology and amplitude of brain
waves varies across individuals, requiring a time-consuming
fine-tuning procedure for each new user. To address these
challenges, research has been conducted to leverage machine-
and deep-learning techniques to automatically identify ERPs,
assessing promising results [11]. The advantage of these
techniques is that they do not need any prior knowledge
concerning the investigated domain. A significant machine-
learning approach is presented in [12] and [13], where ERPs
are recognized belonging to 14 different semantic categories of
stimuli. The proposed approach largely overcame the accuracy
threshold of 70% for each category of stimulus, which is con-
sidered as the minimum requirement to guarantee a meaningful
BCI communication [14].
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In addition to perceived stimuli, the use of imagined stimuli
in BCI has been also explored for patients who are unable
to produce observable responses, such as those in a coma
or severe locked-in state. Indeed, mind-reading applications
would considerably expand the BCI potential in clinical field.
Again, studies have been conducted that demonstrate the
potential of motor imagery-based BCI systems in enabling
communication and control of external devices. For instance,
in [15] a BCI system based on motor imagery was devel-
oped to allow patients to control robots. Similarly, in [16],
a motor imagery-based BCI system was designed to con-
trol a wheelchair. These studies highlight the potential of
motor imagery-based BCI systems in improving the quality
of life for individuals with severe motor disabilities. Despite
being effective at moving objects, motor imagery BCIs still
provide a reduced pool of additional functionalities. There-
fore, researchers investigated ERP-based BCIs using imagined
stimuli as an alternative to provide a wider set of possible
actions for the patients. These works have been inspired by
evidence reported by recent studies that have found an overlap
in neural processing related to perceived and imagined stim-
uli [17]. In more detail, studies demonstrated that similar brain
regions activate in response to the same stimulus, whether
it is perceived or imagined [18]. Furthermore, multi-voxel
approach revealed that similar sensory visual features can
be identified in both perceived and imagined stimuli, with
additional activity in the anterior fronto-temporal region during
imagery tasks due to attention and memory processes [19].
For auditory stimuli, the secondary auditory cortex activates
similarly in both perceived and imagined stimuli, while the
primary auditory cortex tends to be more active in response to
perceived stimuli [20]. However, recent findings have provided
evidence of an activation of the Heschl gyri (A1) during music
imagery [21]. To further explore these findings, a recent study
has identified reliable markers in imagery ERPs to develop a
robust set of hard rules for implementing a mind-reading BCI
system [22]. Despite the promising results assessed by neuro-
scientists at identifying a reliable set of marker to distinguish
imagery ERPs, few approaches have been proposed that resort
to machine- and deep-learning techniques. Prior works, such
as those presented in [23] and [24], leverage deep-learning
techniques to distinguish between ERPs elicited by imagery
of different stimuli. Specifically, the former focused on dis-
tinguishing between ERPs related to the imagery of homes
and human faces, achieving an accuracy of 68%. On the other
hand, the latter study combined the potential of convolution
neural networks and genetic algorithms to distinguish between
ERPs that are associated with imagery of dogs, airplanes, and
houses, achieving 60% accuracy. However, these performances
are not enough to create a reliable BCI system.

In this study, we introduce a novel machine learning-based
BCI system that can learn characteristic patterns to accurately
classify ERPs associated with different semantic categories of
stimuli. To assess the performance of the approach, we con-
ducted an extensive experimental campaign involving 20 vol-
unteers, who were presented with 40 stimuli belonging to
10 semantic categories and asked to both perceive and imagine
them. The proposed system demonstrates a very high accuracy,

largely exceeding the 70% threshold for both perception and
imagery ERPs. To reduce the number of electrodes needed,
we also investigate how the number of considered channels
affects the classifier’s performance. Our findings indicate that
several electrodes can be neglected, allowing to improve the
patient comfort. These promising results lay the groundwork
for the development of effective mind-reading BCI systems
relying on stimuli imagery only. MIRACLE offers three main
contributions over the existing literature. To the best of the
authors’ knowledge, it represents the first attempt to use Func-
tional Data Analysis (FDA) for the ERP recognition problem.
This tool is crucial to retain the time information and reduce
data dimensionality by means of Functional Principal Com-
ponent Analysis (fPCA). Secondly, we propose a hierarchical
classifier architecture that simplifies the multi-category stimuli
classification problem as a series of binary classifications, thus
enhancing the stimuli recognition performance and exceeding
those obtained so far for mind reading, reaching them over a
wider set of stimuli. Last, we contribute to BCI technology
by presenting an approach to quantify the importance of each
channel in the decision-making process of the hierarchical
classifier. This approach calculates the Kendall τ correlation
coefficient between each EEG channel and the first princi-
pal component identified by fPCA, providing an effective
tool to reduce the number of electrodes embedded in the
acquisition cap and improve patients’ comfort. Furthermore,
it enables the automatic identification of relevant brain areas
involved in stimuli classification, which turns out to be consis-
tent with neuroscientific knowledge. To validate MIRACLE,
grand averaged ERPs triggered by 10 semantic categories
of stimuli, both visual and auditory, were collected during
an extensive experimental campaign involving 20 volunteers.
Performance is evaluated through k-fold cross-validation to
ensure robustness when considering new ERPs belonging to
the same subjects analyzed during training, and leave-one-
out validation to investigate the impact of BCI illiteracy on
the hierarchical classifier’s accuracy. The results showed that
the proposed BCI system reaches outstanding performance
on both perception and imagery ERPs, vastly exceeding the
70% threshold for effective communication. Summarizing, the
most significant achievement of this work is demonstrating
the ability to recognize the imagined stimulus that triggers
an ERPs, which represents a significant step forward in the
field of mind-reading applications that can be effective even in
patients who are in a coma or affected by locked-in syndrome.

The rest of the paper is organized as follows: Section II
provides insights concerning the experimental procedure used
to collect the ERPs data considered in this work. Then,
Section III presents the method designed to associate each
ERPs to the semantic category of the stimulus that has elicited
it. Section IV discusses the system’s performance. Section V
explains the approach designed to investigate EEG channels’
importance and presents the obtained results.

II. EXPERIMENTAL SETUP

This Section outlines the experimental methodology
designed for ERPs data collection. For additional information,
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please refer to [10] and [22], where further neuroscientific
insights into the collected ERPs’ components are provided.

The data collection process involved a group of 20 vol-
unteers (13 females and 7 males) with an average age of
23.9±3.34 years. All participants were right-handed according
to the Edinburgh Inventory Questionnaire [25]. Furthermore,
they had normal or corrected-to-normal vision and hearing
and did not experience deficits in language comprehension,
reading, or spelling. None of the volunteers had previously
been diagnosed with a psychological or psychiatric disorder
or drug abuse. The experimental protocol adhered to the
Helsinki Declaration of 1964 and was approved by the Ethics
Committee of Bicocca University (protocol number RM-432).
Each participant provided written informed consent before
participating in the data collection process.

Each participant was given instructions regarding the stan-
dardized experimental protocol. Firstly, an high-density elec-
trodes cap was carefully applied to the volunteer’s scalp. Then
the participant was instructed to wear Sennheiser electronic
gmbH headphones and sit inside an anaechoic and faradized
cabinet, located 114cm away from a HR VGA color mon-
itor positioned outside. All the volunteers were specifically
instructed to remain still and avoid any eye or body movements
while focusing their gaze on a central point displayed on the
screen. The stimuli were organized into 12 runs, consisting of
8 runs with visual stimuli and 4 runs with auditory stimuli.
Each visual run lasted for 3 minutes, while each auditory run
lasted for 2 minutes and 30 seconds. The allocation of stimuli
to the runs was randomized within their respective sensory
domains. In total, there were 40 stimuli instances for each cate-
gory, encompassing 10 categories, with 7 visual and 3 auditory
categories. Consequently, there were a total of 280 visual stim-
uli and 120 auditory stimuli. Although all subjects perceived
the same stimuli, the order of presentation varied between
participants. The visual stimuli consisted of images measuring
18.5 × 13.5cm, presented at the center of the monitor for
1500ms, accompanied by a white background. On the other
hand, the auditory stimuli consisted of 1500ms recordings
played through the headphones from an iPhone 7 and a
Huawei P10. The visual stimuli were carefully matched in
terms of sensory properties such as luminance, color, and size.
Likewise, the human-related visual and auditory stimuli were
matched based on perceptual properties like sex and age, while
written and spoken words were matched based on linguistic
properties. Specifically, a set of 40 common Italian words was
selected. The auditory stimuli were normalized and adjusted to
intensity levels ranging from 20 to 30 dB, ensuring consistency
in intensity and volume. For what concerns the choice of the
specific categories of stimuli, which are detailed in Table I,
they represent the 10 most distinctive categories of sensory and
perceptual stimuli for which human display innate and devoted
neural mechanisms, which have been studied both in terms of
both anatomical localization and timing of activation. When a
run started, the first stimulus was presented. The presentation
of the stimuli to the volunteers leveraged Eevoke Software for
audiovisual presentation (ANT, Enschede, The Netherlands).
Following the removal of the stimulus, a gray screen was
displayed for an intra-stimulus interval of 500 ± 100ms.

TABLE I
EXPERIMENTAL CAMPAIGN: SEMANTIC CATEGORIES OF STIMULI. THIS

TABLE PRESENTS THE CATEGORIES OF THE STIMULI EMPLOYED IN

THE EXPERIMENT; 40 DIFFERENT STIMULI ARE COLLECTED FOR

EACH CATEGORY

Fig. 1. Perception vs Imagery: CPz Trend. This Figure refers to Subject
1 and shows the trends measured by CPz channel for all the semantic
categories of stimuli, comparing perception and imagery ERPs. Please
notice that, to ease the comparison, the plotted trends have been
subjected to baseline correction.

Subsequently, a yellow frame appeared on the screen, signaling
to the participant to imagine the picture or sound that had
just been presented. After a designated 2000ms duration for
performing the imagery task, the yellow frame disappeared,
and the participant was provided with an inter-trial interval
of 900 ± 100ms before the next stimulus was presented. It is
important to note that the decision to allocate 2000ms to the
volunteers for imaging each stimulus is supported by evidence
in the literature that at least 500ms are required to figure
an alphabet letter, and this interval considerably increases
considering auditory stimuli [26]. To foster concentrations,
volunteers were informed beforehand that at the end of the
experiment they would be asked to complete a questionnaire
related to the presented stimuli.

During the experiment, EEG data was continuously
recorded by a cap embedding 126 electrodes sampling at
512Hz and placed according to the 10/5% system by Oost-
enveld and Praamstra [27]. The electrodes’ impedance was
kept below 5k�. The electrodes record both EEG and elec-
trooculogram (EOG), and use the linked mastoids (M1, M2)
as reference leads. ANT software was used to acquire and
clean the data. In detail, it applies a band-pass filter between
0.016 and 30Hz to all the EEG channels, and between
0.016 and 70Hz for the EOG channels. Artifacts caused
by eye movements, blinks, or excessive muscle potential
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were also removed by leveraging peak-to-peak amplitude
exceeding 50µV as criterion, leading to a rejection rate of
5%. Furthermore, ANT acquisition software performs ERPs
grand averaging to improve the signal-to-noise ratio of the
potential elicited by each stimulus [28]. Specifically, for both
the perception and imagery recordings, the 40 responses of
each subject associated with stimuli belonging to the same
semantic category were first synchronized based on the trigger
onset and then averaged. The resulting collections of aver-
aged ERPs for perception and imagery stimuli constitute the
datasets produced at the end of the experimental procedure.
Both perception and imagery datasets consisted of 200 ERPs,
10 per subject, one for each category of stimulus. In the
perception dataset, each ERP lasted 1500ms, with 100ms pre-
stimulus baseline; In the imagery dataset, each ERP lasts
2000ms, with a 100ms pre-stimulus baseline. An example of
the ERPs collected in the perception and imagery datasets
is reported in Figure 1, where Subject 1’s trends for the
CPz channel are presented for all the stimulus categories.
It is interesting to notice that, as reported in Section I, P300
component was reduced and delayed in the imagery datasets.
This result further suggests how imagery is a weaker and
noisier imaginative experience, as opposed to the more vivid
and detailed perceptual one [22].

III. PROPOSED METHOD

This Section details MIRACLE’s pipeline, tailored to rec-
ognize the semantic category of the stimulus related to the
measured ERPs, and presents the performance metrics used for
its evaluation. A comprehensive set of metrics has been con-
sidered, to provide a reliable understanding of MIRACLE’S
performance and enable comparison with other methods in the
literature.

A. Pre-Processing

The first step of the MIRACLE classification pipeline is
pre-processing. It consists of two stages: baseline correction
and frame selection. As grand averaged ERPs are affected
by noise, baseline correction is essential. Indeed, this step
aims to remove the resting-state activity from the signal, and
guarantees that any measured voltage changes are due to the
stimulus rather than to the ongoing brain processes [29]. For
each grand averaged ERP, its mean voltage recorded before
the onset of the stimulus is subtracted channel by channel.
After this procedure, the unnecessary channels, i.e., the ones
related to the ocular (vEOG, hEOG) and mastoids (M1, M2)
are removed.

Then, frame selection is performed, to improve the signal-
to-noise ratio [29]. Considering imagery stimuli categories,
we consider as relevant the 400 to 1000ms range, while for
perception stimuli categories, we maintain the grand averaged
ERP’s portion included in 100 to 1000ms range. The choice of
considering a smaller interval in imagery ERPs is due to the
lack of P300 component. Indeed, as reported in Section I, it is
related to attention processes, so it is not typically observed in
potentials that are not evoked by an external stimulation [30].

B. Windowing
Windowing is a technique widely used in machine learning

to enhance model training and provide robustness to time shifts
in data collection. It involves dividing the pre-processed sig-
nals into smaller segments of fixed length leveraging a window
that slides of a specific factor, defined as slope. Windowing is
also essential when designing an online BCI to enable real-
time ERPs classification. Indeed, the window and the slope
determine the time required to get the first prediction and
the update rate, respectively. It follows that window size is a
crucial parameter that must be properly fine-tuned. Wider win-
dows correspond to a reduced number of instances and longer
wait to get the first prediction, while smaller windows may not
accurately represent the grand averaged ERP behavior, leading
to inconsistent results. In the design of MIRACLE, we tuned
the window size according to an a posteriori approach, which
relies on the performance of the classifier in recognizing the
classes from the extracted features while varying the window
size, and evaluated different sizes ranging from 100ms to
600ms. For each evaluated window size, we extracted the
corresponding set of features, using the 75% of the data to train
the classifier, and the remaining 25% for testing purposes. The
train-test split was performed according to a stratified split.
To evaluate the classifier’s performance in recognizing the
semantic category of the stimuli, we computed the F1-Score
using k-fold cross-validation. Fine-tuning of the classifier was
conducted separately for the perception and imagery datasets.
In both cases, we determined the optimal window size to be
500ms, while setting the slope to 1s.

C. Features Extraction
After the windowing stage, the perception and imagery

datasets consist of two collections of grand averaged ERPs’
windows. In more detail, they are composed of a set of
6600 and 9300 windows 500ms long, respectively. It follows
that each window collects the samples measured in the window
time frame by the 122 channels. Formally, we can define the
perception and the imagery datasets as χ pro and χ f ig , where
each χ is a collection of on the windows E R Pi, j,w extracted
from the grand averaged ERP recorded for the i th subject when
triggered by the j th stimulus, i.e.,

χ = {E R P1,1,1, . . . , E R Pi, j,w, . . . , E R PSu,St,W },

where St is the number of stimuli categories in the dataset, i.e.,
10, Su the number of volunteers, i.e., 20, and W the number of
overall windows extracted from all the grand averaged ERP.
Moreover, each E R Pi, j,w contains all the discrete samples
collected in the wth window frame, that is

E R Pi, j,w = [E R Pi, j,w(1, a), . . . , E R Pi, j,w(k, t),

. . . , E R Pi, j,w(K , b)]

where K is the number of channels, i.e., 122, while a and b
are the extremes of the grand averaged ERP window’s domain,
i.e., E R Pi, j,w : [a, b] and b − a = 500ms.

The large number of channels can cause a decrease in
classifier performance due to the curse of dimensionality
problem [31]. This occurs because as more features are added,
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the dimension of the space in which the instances are repre-
sented enlarges, making it more challenging for the classifier
to learn a robust decision function without overfitting. One
common technique used to address this problem is Principal
Component Analysis (PCA), which reduces the instances
dimensionality while preserving most of the information [32].
However, PCA does not account for the temporal dependency
of grand averaged ERPs, for which the shape of the curves is
a critical factor that cannot be neglected in their classification.
To overcome this issue, we decided to represent the data using
FDA, which allows us to use fPCA. fPCA is an extension of
PCA that accounts for the time dimension and is specifically
designed to handle data where observations can be represented
as functions, such as EEG time-series [33].

Therefore, we transform our data resorting to FDA tech-
niques. According to this representation, each window is
composed of a set of 122 functions fitted to the discrete
samples provided by each EEG channel. To fit the functions,
B-splines are used, which are piece-wise polynomial functions
defined over a sequence of knots that partition the function
domain in intervals. Within each interval, the B-spline is a
polynomial of a fixed degree. The degree of smoothness is
determined by the number and location of the knots, as well
as the order of the B-splines. B-splines were preferred over
Fourier or other options because they allow for flexible mod-
eling of complex functions. Additionally, the use of B-splines
can help to maintain important features of the original data,
such as peaks and troughs, while removing noise [34].

In MIRACLE, the EEG channels’ functions are approxi-
mated using 5 knots (m) and a polynomial of order (r ) equal
to 2. In more detail, let E R Pi, j,w(k, t), t = [a, b], be the
set of Nw discrete samples associated to the kth channel of
the grand averaged ERP window referred to the j th subject
elicited by the i th stimulus. Let also τn , n = 1, 2, . . . , m be
a set of m knots equally spaced in the function domain. The
knots divide the window interval [a, b] into m+1 sub-intervals,
where a = τ1 ≤ τ2 ≤ · · · ≤ τm ≤ τm+1 = b. It follows that
the basis smoothing of the grand averaged ERP window’s data
can be defined by a linear combination of the fitted splines as

Ê R P i, j,w(k, t) =

m+2r−1∑
n=1

ωn Bn,r (k, τ ) (1)

where Ê R P i, j,w(k, t) is the smoothed function, Bn,r (k, τ ) is
the B-spline of order r associated to the nth knot, and ωn are
the weights attributed to each B-spline in the linear combina-
tion, estimated by least squares. As reported in Figure 2, at the
end of this step, the window consists of a set of 122 functions.

As previously mentioned, FDA representation enables us
to leverage fPCA to reduce instances dimensionality, while
preserving temporal information [35]. In fPCA, the objective is
to decompose the data into a set of orthogonal functions known
as principal components, which capture the main sources of
variability in the data. Each functional principal component is
associated with a score that represents the amount of explained
data variance. Usually, the first few principal components
capture the largest sources of variability, so that the others
can be neglected. To perform fPCA, we first center and

scale the windows to have zero mean and unit variance.
Then, we compute the eigenfunctions and eigenvalues of the
covariance operator, which describes the variation in the data
over time and is defined as

Cov[Ê R P i, j,w(k, t), Ê R P i, j,w(l, t)]

=
1

Nw − 1

Nw∑
t=1

[ (
Ê R P i, j,w(k, t) − µÊ R P i, j,w(k,t)

)
×

(
Ê R P i, j,w(l, t) − µÊ R P i, j,w(l,t)

) ]
,

where Ê R P i, j,w(k, t) represents the kth channel function of
the w window at time t , µÊ R P i, j,w(k,t) is its mean across all
time points, and Nw is the number of time points for each
channel in the window. As we are considering functions, the
functional covariance must also be computed from the sample
covariance by solving∫ b

a
Cov[Ê R P i, j,w(k, t), I (Ê R P i, j,w(l, t))]dt

= λ

∫ b

a
I (Ê R P i, j,w(k, t))I (Ê R P i, j,w(l, t))dt,

where λ is the eigenvalue associated with each eigenfunction
and I (·) is the integral operator. The solution to this problem
can be expressed as a series expansion in the form

I (t) =

∞∑
p=1

√
λpφp(t)ξp, (2)

where φp(t) are the eigenfunctions of the covariance operator,
λp are the corresponding eigenvalues, and ξp are the coeffi-
cients of the expansion. Then we can project each window onto
the fPCA space to obtain a lower-dimensional representation
by retaining only the information provided by a reduced set
of the principal components.

The first functional principal component captures most of
the variance (over 95%) in both perception and imagery
datasets; therefore this is the only one retained. It follows that
fPCA reduces each window dimensionality from 122 channels
to 1 functional principal component. To highlight its variations
within the window, we also calculate the first derivative of
the component. Finally, we extract statistical features, i.e.,
mean, standard deviation, minimum, and maximum from both
the component and its first derivative. By extracting these
8 features for each window, we can provide a concise summary
of the available information to the machine-learning classifier,
guaranteeing robust training performance.

D. Classifier Learning and Evaluation
After the features extraction process, each window of the

grand averaged ERPs is represented by eight features, includ-
ing the mean, standard deviation, minimum, and maximum
of the first functional principal component and its derivative.
These instances are presented to the hierarchical classifier for
training and evaluation purposes. The evaluation procedure
was first conducted considering k-fold cross-validation with
a stratified split, where 25% of the data is used for testing
purposes. This enables us to assess the model’s predictive
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Fig. 2. fPCA Computation. Each 500ms window is composed of
the samples collected for the the 122 channels in that time range.
To compute fPCA, the first step is to estimate from the samples of each
channel the respective function. Then, fPCA computes the functional
principal components that best explains the variance in the window.
As in each window the first component explains more than 95% of the
variance, it is the only one considered.

Fig. 3. Hierarchical Classifier Architecture. This Figure shows the
hierarchical classification architecture designed to identify the grand
averaged ERPs. Each binary split is performed by a machine-learning
model, ad-hoc trained to distinguish the two classes.

capabilities when presented with grand averaged ERPs belong-
ing to the same subjects considered in training. Additionally,
we investigated the model’s performance on new users by
resorting to leave-one-out validation, where the classifier is
trained on all the instances in the dataset except for those
belonging to one user, which constitute the test set. We repeat
this procedure for all subjects, and the average evaluation
metrics are considered.

To design the hierarchical classification structure, stimuli
categories are grouped into fictional macro-categories accord-
ing to a semantic perspective to create a tree structure, whose
architecture is reported in Figure 3. Grouping similar cate-
gories together improves model interpretability and, depending
on the requirements of the end user, it allows for high-level
predictions while maintaining a correct semantic. Each binary
classification is performed by a k-Nearest Neighbours (k-
NN) machine-learning model. k-NN identifies the k nearest
neighbors to a new data point in the training set and classifies
it based on the most commonly represented class among the
neighbors [36]. One of the advantages of k-NN is that it is
a non-parametric algorithm that makes no assumptions about
the underlying data distribution. The key parameter in this
model is the number of neighbors considered, k, which we

TABLE II
CLASSIFICATION REPORT FOR BINARY CLASSIFIERS: Perception. THIS

TABLE REPORTS THE PRECISION, RECALL, AND F1-SCORE ASSESSED

BY EACH BINARY CLASSIFIER INDEPENDENTLY AT PREDICTING THE

GRAND AVERAGED ERPS IN PERCEPTION DATASET. THE SUPPORT IS
EQUAL TO 660 SAMPLES FOR EACH CLASS

fine-tuned and set to 5. Each k-NN in the tree is trained and
evaluated individually, and overall architecture performance is
also estimated.

The F1-Score is considered as the main evaluation metric,
due to its ability to provide a balanced view of performance,
unlike accuracy, which can be misleading in datasets with
unbalanced class distribution. It is defined as the harmonic
mean of precision and recall.

IV. EXPERIMENTAL RESULTS: EVALUATION AND
DISCUSSION

To evaluate MIRACLE ability to recognize new grand
averaged ERPs belonging to the same subjects as those in
the training set, we utilized 10-fold cross-validation. This
approach is widely adopted in machine-learning as it ensures
reliable and consistent estimation of the classifier’s perfor-
mance [37]. In each of the 10 iterations, the dataset was
partitioned into two subsets: a training set that contained
75% of the instances and a test set including the remaining
25%. Stratified sampling was used to ensure a similar class
distribution in the training and test sets, which is crucial
in case of imbalanced datasets. The performance metrics
were computed as the average assessed in the test set for
each iteration. We evaluated the classifiers both individually
and within the hierarchical architecture. In the former case,
we evaluated each classifier’s ability to distinguish between
classes on which it was trained. In the latter, we evaluated
the performance of the entire hierarchical architecture, where
each binary classifier predicted all the samples provided to the
previous nodes. As a result, in case of misclassifications, the
samples provided to a binary classifier may not belong to any
of the classes on which it was trained.

We applied the same procedure to both perception and
imagery datasets. Tables II and III present the precision, recall,
and resulting F1-Score of each binary k-NN classifier on the
perception and imagery datasets, respectively. The classifiers
achieved an average F1-Score of 94.26% and 97.34%, with
both datasets performing best for written and spoken words.
The most frequently misclassified stimulus was the infant face.
Upon further investigation, it was discovered that 7.63% and
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TABLE III
CLASSIFICATION REPORT FOR BINARY CLASSIFIERS: Imagery. THIS

TABLE REPORTS THE PRECISION, RECALL, AND F1-SCORE ASSESSED

BY EACH BINARY CLASSIFIER AT PREDICTING THE IMAGERY DATASET.
THE SUPPORT IS EQUAL TO 930 SAMPLES FOR EACH CLASS

TABLE IV
CLASSIFICATION REPORT FOR HIERARCHICAL CLASSIFIER:

Perception. THIS TABLE REPORTS THE PRECISION, RECALL, AND

F1-SCORE FOR THE PERCEPTION DATASET WHEN PREDICTED BY THE

HIERARCHICAL CLASSIFIER. THE SUPPORT IS EQUAL

TO 660 SAMPLES FOR EACH CLASS

1.89% of the grand averaged ERPs windows associated with
infant face were incorrectly attributed to adult face during the
split considering perception and imagery datasets, respectively.
Clearly, the reaction process to the perception or imagination
of faces share commonalities, so the specific error does not
pose particular harm to the overall performance of the system.

Then, we evaluated the performance of the binary k-NN
classifiers within the hierarchical structure. To this extent,
we provided all instances in the dataset to the first binary
classifier, which aimed to distinguish between visual and
auditory stimuli categories. The instances were then passed on
to the following binary classifiers according to the predicted
category, until a leave of the hierarchical structure is reached.
Table IV and V show the resulting precision, recall, and F1-
Scores for the perception and imagery datasets, respectively.
The F1-Score assessed to 91.10% and 94.13% for the percep-
tion and imagery datasets, respectively. The infant face was
the least recognized class, and a higher percentage of wrongly
predicted windows should be attributed to the animal stimulus.
This could be due to the baby schema, i.e., some animals
sharing physical characteristics with babies, as suggested by
ethologist Konrad Lorenz’s research in 1943, eliciting similar
responses in humans [38], [39].

TABLE V
CLASSIFICATION REPORT FOR HIERARCHICAL CLASSIFIER: Imagery.
THIS TABLE REPORTS THE PRECISION, RECALL, AND F1-SCORE FOR

THE IMAGERY DATASET WHEN PREDICTED BY THE HIERARCHICAL

CLASSIFIER. THE SUPPORT IS EQUAL TO 930 SAMPLES FOR EACH

CLASS

TABLE VI
CLASSIFICATION PERFORMANCE ACCORDING TO K-FOLD

CROSS-VALIDATION AND LEAVE-ONE-OUT VALIDATION: Perception.
THIS TABLE COMPARES THE F1-SCORE ASSESSED AT RECOGNIZING

THE PERCEPTION STIMULI CATEGORIES

The purpose of leave-one-out validation is to assess the
performance of a BCI system at classifying ERP windows
belonging to a new subject. Despite high leave-one-out vali-
dation performance would be desired, as it would guarantee
that the system is effective on new patients without requiring
classifier re-training, it is well known in the literature that
differences in human physiology and brain patterns cause BCI
illiteracy [40]. To evaluate the performance of MIRACLE
on new users, we trained the hierarchical architecture on all
but one user and repeated the procedure for all subjects,
considering the average performance. The results for the
perception and imagery datasets at each split level are reported
in Tables VI and VII, which also provide a comparison with
k-fold cross-validation outcomes. Despite MIRACLE assesses
high F1-Score, even on new users, in both perception and
imagery datasets, the classifier proves to perform better on
the same subjects considered in the training phase rather than
on new ones.

Additionally, Figure 4 shows the F1-Score obtained by the
hierarchical classifier according to leave-one-out validation for
each subject, considering the perception and imagery datasets.
The results demonstrate inter-subject variability in perfor-
mance, with some subjects achieving a higher recognition
accuracy than others. This finding is consistent with previous
studies indicating that similarity in cortical organization or
patterns of brain activity can influence BCI performance [41].
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TABLE VII
CLASSIFICATION PERFORMANCE ACCORDING TO K-FOLD

CROSS-VALIDATION AND LEAVE-ONE-OUT VALIDATION: Imagery. THIS

TABLE COMPARES THE F1-SCORE ASSESSED AT RECOGNIZING THE

IMAGERY STIMULI CATEGORIES

Fig. 4. Leave-One-Out Validation Results. This Figure shows the
average F1-Score assessed by each subject according to leave-one-
out validation procedure.

Similarly, evidence is reported in literature that individuals
who had similar EEG patterns in the training set achieved
higher classification accuracy in BCI tasks [42].

Finally, the trend in predictions over time for Subject 1 was
investigated and reported in Figure 5 for the imagery dataset;
perception dataset shows similar results. The left subplots
show the predictions made when the hierarchical classifier
was trained on 75% of the instances, equally distributed by
stimuli categories and subjects. The right subplots show the
predictions made by the hierarchical classifier when trained on
the instances of all the subjects, except for Subject 1, who con-
stituted the test set. Little classification error occurred for both
perception and imagery stimuli categories according to k-fold
cross-validation. Furthermore, by performing a majority voting
and attributing to the grand averaged ERP the label most
attributed to its windows, the performance can be enhanced.
The same applies to the hierarchical classifier trained accord-
ing to leave-one-out validation. However, in this case, more
errors occur, mostly in discriminating adult and infant faces
or music and emotional vocalization stimuli categories.

V. EEG CHANNELS REDUCTION

It is known in the literature that PCA prevents to interpret
the contributions of each input attribute in the predictive
process, as the principal components are computed as a linear

combination of the inputs. Similarly, fPCA can have similar
interpretability issues. To address this problem, we embed
in MIRACLE an approach to estimate the contribution of
each channel in determining the first functional principal
component. Specifically, for each grand averaged ERP related
to the same stimulus we compute the correlation between
each channel and the first functional principal component.
Despite several formulations are provided to estimate corre-
lation, we use Kendall τ coefficient, as it is non-parametric
and more robust to noise [43]. The channels that are most
correlated with the first principal component, considering all
subjects, are considered the most relevant. Indeed, those chan-
nels are the most correlated to the first principal component,
which is the one employed to extract the features proposed
to the classifier to identify relevant patterns on which rely
its predictive process. This procedure is repeated for each
grand averaged ERPs in both perception and imagery datasets
separately. Figure 6 shows the outcomes of the process, report-
ing the channels as colored dots, with size that increases
with importance. It turns out that, regardless the specific
stimulus, central, dorsolateral and centro-parietal brain area are
the most considered by the hierarchical classifier to perform
the recognition task. Finally, it is also possible to see that
the prefrontal cortex is considered more in perception than
in imagery stimuli categories, where the centro-parietal is
most involved. It is worth mentioning that the correlation is
computed over the whole frame of the grand averaged ERP
considered, i.e., between 100ms and 1000ms for the perception
dataset and 400ms to 1000ms for the imagery one. Therefore,
the preponderance of frontal and central activity is also due
to the cognitive processes related to the perception of the
stimulus. We can state that is possible to reduce the acquisition
setup. Therefore, we first averaged the Kendall τ coefficient
computed for each ERP. Then, according to the average
correlation coefficient, we sort the channels, from the most to
the least important. Table VIII reports the 10 most important
channels in perception and imagery datasets. In both datasets
the most important channels’ set includes electrodes of central,
dorsolateral prefrontal/frontocentral and centro/parietal brain
areas, e.g., C1, C2, and Cz, CCP1h and CCP2h, FC2, and
FFC1h, FFC2h, and FFC4h. The results of our study align
with the physiological findings reported in [10] and [22]. This
result proves that our approach is able to identify important
channels located in brain areas that are known to be involved
in stimulus processing, without relying on prior knowledge.
In more detail, many of the channels that are known to contain
relevant markers according to previous studies were reported
as important according to the presented approach. This is the
case of C1, C2, Cz, CPz, FFC1h, FFC2h, AF2, AF3, AF4,
AFz, Fz, FPz, P3, and P4. Exceptions are channels in the
midline occipital and left occipitotemporal regions, including
Oz, Iz, P7, P8, PPO9h, and PPO10h, which are known to
be relevant for distinguishing between word, checkerboard,
object, human, and animal face stimuli, but were among the
least important for the hierarchical classifier. Nevertheless,
MIRACLE was still able to accurately distinguish among these
stimuli categories, even with the limited contribution of these
channels.
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Fig. 5. Predictions for Subject 1. This Figure compares the stimuli categories predicted for Subject 1’s data by the hierarchical classifier when
trained on imagery dataset and evaluated according to k-fold cross-validation (left) and leave-one-out validation (right).

Fig. 6. Channels Importance. This Figure shows, for each considered stimulus, the channels that, on average, are most correlated to the first fPCA
component, i.e., that are most considered in the classification process.

At this point, the hierarchical classifier has been iteratively
re-trained and evaluated according to k-fold cross-validation
by removing one channel at time, from the least to the

most important one. Figure 7 reports the F1-Score assessed
by the hierarchical classifier on the perception and imagery
datasets according to the number of channels considered.
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Fig. 7. Setup Simplification. This Figure shows the average F1-Score assessed on grand averaged ERPs classification as a function of the number
of considered channels.

TABLE VIII
CHANNELS’ IMPORTANCE. THIS TABLE REPORTS THE 10 CHANNELS

THAT, ONE AVERAGE, ARE MOST IMPORTANT TO RECOGNIZE THE

STIMULI CATEGORIES ASSOCIATED TO THE GRAND AVERAGED ERPS

IN PERCEPTION AND IMAGERY DATASETS

It turns out that, in perception dataset, the first important
channel alone, provides 74.32% F1-Score; in imagery 80.09%.
Also, in perception dataset to provide 90% F1-Score 93 elec-
trodes are required; in imagery 37 electrodes are enough to
assess the same performance. According to the performance
requirements of the specific application, this analysis provides
valuable insights to design a cap which embeds only the
minimum number of important electrodes.

VI. CONCLUDING REMARKS AND OUTLOOK

This study represents an FDA and machine learning-based
approach that demonstrated the feasibility of developing a pas-
sive BCI that recognizes specific semantic categories of stimuli
based on grand averaged EEG data. Specifically, we recognize
imagery stimuli categories, which has not been addressed by
previous studies. MIRACLE’s classification performance for
both perceived and imagery stimuli categories is remarkable,
surpassing the 70% threshold for effective communication.
With accuracy rates of 96.37% and 83.11% in k-fold cross-
validation and hold-out validation, respectively, MIRACLE
shows great potential for clinical applications, particularly
considering the realm of mind-reading and communication
with locked-in patients. Moving forward, our future work will
focus on refining the hierarchical classification architecture,
broadening the scope of stimuli categories, and assessing real-
time performance.
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