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Abstract
Standard parametric regression models are unsuitable when the aim is to predict a 
bounded continuous response, such as a proportion/percentage or a rate. A possible 
solution is the flexible beta regression model which is based on a special mixture 
of betas designed to cope with (though not limited to) bimodality, heavy tails, and 
outlying observations. This work introduces such a model in the case of a functional 
covariate, motivated by a spectrometric analysis on milk specimens. Estimation 
issues are dealt with through a combination of standard basis expansion and Markov 
chains Monte Carlo techniques. Specifically, the selection of the most significant 
coefficients of the expansion is done through Bayesian variable selection methods 
that take advantage of shrinkage priors. The effectiveness of the proposal is illus-
trated with simulation studies and the application on spectrometric data.

Keywords  Bayesian variable selection · Beta mixture model · Bounded response · 
Functional data · MCMC

1  Introduction

Determining the composition of milk is critical to establish the nutritional values 
of this staple of the human diet. Chromatographic techniques are very accurate in 
performing this task but expensive, time consuming, and require the use of well-
equipped laboratories. A valid alternative is the near-infrared spectroscopy that 
measures the intensity of light reflected by matter as a function of wavelength in the 
near-infrared region of the electromagnetic spectrum. In recent years, technological 
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innovation in this area has enabled the development of portable and low-cost instru-
ments. Among them, two low-priced and portable devices are the NeoSpectra Micro 
Development Kit (Si-Ware), NeoSpectra for short, and the SCiO (Consumer Phys-
ics). An interesting study that motivated this work was conducted by Riu et  al. 
(2020) on 45 commercial milk specimens: the entire sample was analysed with the 
NeoSpectra device whereas a subsample of size 39 with the SCiO device. Note that 
the SCiO sample originally included an additional observation characterized by a 
spectrometric curve with strongly dissimilar shape compared to the other curves. 
Since no additional information is available to account for this anomalous behaviour, 
the potential leverage specimen has been excluded from further analyses. The spec-
trometric curves were observed over a grid of 134 points for the NeoSpectra sample 
and over a grid of 331 points for the SCiO sample. Raw data have been smoothed by 
adopting a system of 20 cubic splines. Figure 1 shows the smoothed spectra which 
were suitably collected using NeoSpectra (left-hand panel) and SCiO (right-hand 
panel) devices. The wavelength signal recorded by the NeoSpectra device ranges 
between 1350 and 2558 nm, whereas the signal recorded by the SCiO one ranges 
between 740 and 1070 nm.

Such a collection of observations of discretised curves presents the typical fea-
tures of functional data. The branch of statistics that deals with curves (but also with 
surfaces, images, or other objects) is known as Functional Data Analysis. In the last 
two decades this discipline has witnessed a strong growth thanks to the technologi-
cal development of data collection devices, the increase in computational powers, 
and the theoretical refinement of ad-hoc mathematical tools and statistical method-
ologies. The interest of researchers toward this field is evidenced by a conspicuous 
literature (see e.g.  the monographs by Ferraty and Vieu 2006; Horvath and Koko-
szka 2012; Kokoszka and Reimherr 2017; Ramsay and Silverman 2005).

Along with the spectrometric analysis, the milk composition, i.e., the quantity of 
fat, protein, and carbohydrate, measured in g/100 mL, was detected from the food 
labels. Of particular interest is the analysis of the amount of fat that is evaluated as 
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Fig. 1   Milk spectra recorded using NeoSpectra (left-hand panel) and SCiO (right-hand panel) devices. 
Curves are coloured according to the classification of milk specimens into “skimmed” (grey curves) and 
“not skimmed” (black curves)
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a proportion over the remaining macronutrients. Figure 2 shows the kernel density 
estimates of the fat proportion in the two samples. The corresponding boxplots are 
provided with respect to the classification of milk specimens into “skimmed” (fat 
content lower than 0.5 g/100 mL) and “not skimmed”. Note that 9 out of 45 milk 
specimens are classified as “skimmed”. Of these, 8 are included in the subsample of 
39 milk specimens analysed with the SCiO device. It is worth noting that the pres-
ence of a heavy left-tail is possibly induced by a mixture structure in the bounded 
responses. Interestingly, this behaviour can not be encompassed by a standard distri-
bution for proportions such as the beta one, which is unable to give rise to unimodal 
shapes with heavy tails.

The problem of investigating the relationship between the fat proportion and the 
near-infrared spectra in milk specimens translates, from a statistical perspective, into 
a regression model between a real bounded response (the fat proportion) and a func-
tional covariate (a spectrometric curve observed over a discrete mesh of an interval). 
This kind of scalar-on-function regression model has generated a wide range of sta-
tistical procedures both in the parametric case and in the semi and nonparametric 
ones (see e.g. Aneiros and Vieu 2016; Ferraty and Vieu 2002; Goia and Vieu 2015; 
Ling and Vieu 2018 and references therein). To the best of the authors’ knowledge, 
the issue of modelling a bounded response has not been thoroughly addressed in 
that literature and it is mostly tackled by resorting to a generalized functional lin-
ear model (GFLM) (Goldsmith et  al. 2011; Greven and Scheipl 2017). The latter 
requires a transformation of the response that makes the interpretation of the esti-
mated functional regression parameter more involved as it moves it from the original 
support to the transformed one.

Because of the boundedness of the response, outside the functional data context 
a widespread approach is the beta regression model. It has been introduced in the 
standard framework of multivariate covariates by Ferrari and Cribari-Neto (2004) 
and it is based on the assumption that the response variable is beta distributed. This 
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Fig. 2   Estimated densities of fat proportion (based on the Epanechnikov kernel with bandwidth equals 
0.04) and their corresponding boxplots from NeoSpectra (left-hand panel) and SCiO (right-hand panel) 
samples
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model has among its strengths the easiness of interpretation of the regression coef-
ficients but it presents some inconveniences, shared also with GFLMs, due to the 
limited shapes of the beta when bimodality, outlying observations, and heavy tails 
appear. The latter often occur in real datasets when a relatively large number of 
observations take values close to the support boundaries, so that distributions which 
exhibit one positive finite tail limit (or even two positive but not necessarily equal 
tail limits) are needed. To overcome these drawbacks, more flexible distributions 
can be adopted. Among them, a regression model based on a special mixture of two 
betas, called flexible beta (FB) distribution (Migliorati et al. 2018), proved to fit well 
a large variety of data patterns and still being computationally tractable.

Motivated by the spectrometric problem described above, the aim of the paper 
is to define a functional FB regression (fFBreg) model when the covariate is func-
tional and the response is bounded between 0 and 1. In this setting, the conditional 
mean of the response is bounded as well, and it is transformed so that it takes values 
on the real line instead of the unit interval (0, 1). This transformation is linked to 
the functional covariate by using a linear specification, and the estimation step is 
done with a Bayesian strategy. This approach to inference, which has only recently 
received attention in the functional data field (Crainiceanu and Goldsmith 2010; 
Reiss et  al. 2017), has the advantage of being able to cope with complex models 
such as mixtures. To operationalise the latter, a truncated basis expansion of the 
functional terms involved in the model is adopted, allowing to write the likelihood 
expression in a parametric form. Among all possible strategies, the one induced by 
the functional principal component analysis (fPCA) is chosen. Here the preference 
goes to the PCs approach that has the characteristics of being estimated from data, 
and of acting globally, that is, on the whole support of the curves. In that framework, 
an important task is the selection of the principal components (PCs) to be included 
in the model. A standard practice is to take the first k PCs, ordered according to 
the explained variability, with k chosen by using the fraction of explained variance. 
Here, the choice of the most significant PCs is performed through Bayesian variable 
selection techniques that take advantage of shrinkage priors on the coefficients in 
the expansion (Crainiceanu and Goldsmith 2010; Malloy et al. 2010). Thanks to the 
combination of the FB specification and Bayesian thought, the obtained model is 
suitable for bounded responses when a mixture structure appears and a proper vari-
able selection approach is needed.

The effectiveness of the model and of the Bayesian estimation are illustrated by 
simulated numerical experiments, that allow also to evaluate the abilities of the vari-
able selection method. Finally, the proposed approach is applied to the prediction of 
the proportion of fat of milk specimens by using the spectrometric curves illustrated 
above. Since the NeoSpectra and SCiO spectra are materially different, in the sense 
that they differ in terms of wavelengths and reflectance ranges (see Fig. 1), the cor-
responding models are analysed separately.

The outline of the paper is as follows. Section 2 is devoted to the introduction 
of the main notations and the regression model. Section 3 describes the Bayesian 
approach to inference focusing on the priors choice and the Markov chain Monte 
Carlo (MCMC) techniques. Section  4 illustrates and discusses the results from 
some numerical studies. Section 5 shows the performances of the proposal on the 
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spectrometric data. Finally, in Sect. 6 some conclusions are drawn about the meth-
odology illustrated in the paper.

2 � Notation and model

Consider a real random variable Y taking values on the unit interval (0,  1) , and 
a functional random curve X valued in L2(T) , the space of square integrable real 
functions defined over a compact interval T  , equipped with its natural inner product 
⟨f , g⟩ = ∫

T
f (t)g(t)dt and induced norm ‖f‖ = ⟨f , f ⟩1∕2.

Assume that the conditional distribution of Y with respect to X is a special mix-
ture of two betas, namely an FB distribution with the following conditional pdf (in 
the notation, the dependence on x is dropped for simplicity):

where �1 and �2 are dependent on x, with the constraint 0 < 𝜆2 < 𝜆1 < 1 to ensure 
identifiability, 0 < p < 1 , 𝜙 > 0 , and fB(y|�j,�) denotes the pdf of a beta random 
variable with parameters �j and � , corresponding to the mean and the precision, 
respectively. Hence, the parameters �1 and �2 represent the (conditional) means of 
the first and second mixture components, respectively, whereas � is the precision 
parameter, and p is a mixing proportion parameter (see Migliorati et  al. 2018 for 
further details on the FB distribution). It is worth noting that the FB distribution 
contains the beta distribution as an inner point. Indeed, fixing � = 1∕(�1 − �2) and 
p = �2∕(1 − �1 + �2) in (1), it is possible to show that the FB coincides with a beta 
with mean �2∕(1 − �1 + �2) and precision equal to (1 − �1 + �2)∕(�1 − �2).

In order to define the fFBreg model, the conditional mean of the response must 
be linked to the functional covariate. Here, the following linear specification is 
adopted:

where � ∈ ℝ , � ∈ L
2(T) is the functional regression coefficient, g(⋅) is a mono-

tone and twice differentiable link function (a common choice being the function 
logit(u) = log(u∕(1 − u)) for ease of interpretation), and � is the overall conditional 
mean of the mixture defined in (1):

Since the original parametrization of the FB does not explicitly include � , a repara-
metrisation is needed. In particular, the set � , � , and p must be complemented with 
w = (�1 − �2)∕min {�∕p, (1 − �)∕(1 − p)} , a standardized measure of the distance 
between the two mixture components. The final parametric space of fFB(y|�,�,w, p) , 
where 0 < 𝜇 < 1 , 0 < w < 1 , 0 < p < 1 , and 𝜙 > 0, is variation independent, i.e., no 
additional constraints on the parametric space exist (Migliorati et al. 2018).

Following similar arguments, it is possible to define a simplified version of 
the model, namely the functional beta regression (fBreg) model. Such a model 

(1)fFB
(
y|𝜆1, 𝜆2,𝜙, p

)
= pfB

(
y|𝜆1,𝜙

)
+ (1 − p)fB

(
y|𝜆2,𝜙

)
, 0 < y < 1,

(2)g(�) = � + ⟨�, x⟩,

� = �[Y|x] = p�1 + (1 − p)�2.
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postulates that Y ∼ Beta(�,�) , and the mean parameter � is regressed onto func-
tional covariates as in Eq. (2). It is worth noting that both the fFBreg and fBreg 
models differ from standard GLM since the related distributions do not belong to the 
exponential family.

Consider now a sample 
{(

Xi, Yi
)
, i = 1,… , n

}
 , n ≥ 1 , of independent copies of 

(X, Y) . A possible strategy to deal with the linear specification in (2), that involves a 
functional parameter � belonging to an infinite dimensional space, is to approximate 
it over a finite dimensional subspace of L2(T) . In particular, given an orthogonal 
basis 

(
�k

)∞
k=1

 of L2(T) , the approximated sample version of Eq. (2) can be written as:

where bk = ⟨�,�k⟩are unknown real parameters, �ik = ⟨Xi,�k⟩ are real random ele-
ments, and K is the dimension of the approximating subspace (with K ≥ 1).

The choice of the basis and the dimension K become, in this context, relevant 
steps of the analysis. Here the preference goes to the PCs bases because of their 
data-driven and global nature. For what concerns K, a standard practice is to choose 
it according to the fraction of explained variance. Since this approach does not guar-
antee to select the PCs that better explain the response (see e.g.  Jolliffe 1982), in 
order to choose how many (and which ones) components of the approximation are 
needed in the regression framework, a Bayesian approach is exploited, in particular 
by taking advantage of Bayesian techniques of variable selection (O’Hara and Sil-
lanpää 2009). Moreover, the Bayesian framework is also convenient to cope with 
complex models such as the mixture model at hand.

3 � Bayesian inference

Bayesian inference on the unknown parameters requires the computation of the 
posterior distribution, which can be accomplished starting from the prior distribu-
tion and the likelihood function. This computation admits no analytical solution in 
the given framework, therefore MCMC techniques are resorted to, and specifically 
a Metropolis within Gibbs algorithm. The latter is based on the traditional Gibbs 
sampling (i.e. the iterative sampling from the full conditional distributions), comple-
mented with the implementation of a Metropolis step when the full conditionals can 
not be determined analytically. The computation of the likelihood is straightforward:

where � ∈ ℝ
n is the vector of the observations, � = (�, �,�, p,w) ∈ ℝ

K+4 is the 
vector of the unknown parameters, and fFB is given by (1). It is worth noting that 
the membership of each i− th observation to either component of the mixture is 
unknown and this makes the (mixture) likelihood a tricky function of the unknown 
parameters. A possible solution to make the sampling from the likelihood, and thus 

g̃
(
𝜇i

)
= 𝛼 +

K∑
k=1

bk𝜒ik, i = 1,… , n,

(3)L(�|�) =
n∏
i=1

fFB(yi|�),
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from the posterior, more feasible is to adopt the data augmentation strategy (Tanner 
and Wong 1987) that consists in associating each observation with a latent variable 
� identifying the allocation to the mixture components. The resulting probabilistic 
scheme is thus the following:

i = 1,… , n . Thanks to the above notation, the complete-data likelihood writes:

which is much more tractable. Note that the (mixture) likelihood defined in (3) can 
be restored from (5) by marginalizing out the latent variable �.

With respect to the a priori information, non-informative priors are selected with 
the scope of inducing the least impact on the posterior distributions. The coefficients 
bk are associated with spike-and-slab priors showing a mixture structure:

The first component of the mixture is a diffuse normal (the slab) with a precision 
hyper-parameter �bk that is gamma distributed with both its parameters small enough 
to induce non-informativeness. Whereas, the second component of the mixture �(0) 
indicates a discrete measure concentrated at zero (the spike). The mixture weights 
of the spike-and-slab priors Ik are Bernoulli distributed with hyper-parameter qk fol-
lowing a uniform prior over (0, 1) . Moreover, for the intercept term � a diffuse nor-
mal prior is chosen, and for the precision parameter � a non-informative gamma 
distribution is taken. Finally, uniform priors over (0, 1) are chosen for the additional 
parameters w, p of the FB distribution.

Denoting by �(⋅) a generic prior distribution, �(�) is the joint prior of the 
unknown parameters. As observed above, without elaborating further, the paramet-
ric space of the FB is variation independent. This characteristic is particularly help-
ful in a Bayesian framework since it allows inference to be made under the hypoth-
esis of a priori independence of the parameters, and this results into the factorization 
of the joint prior as follows:

Given the likelihood (5) and the prior (6) as specified above, the posterior distribu-
tion is:

which is analytically intractable. In order to get samples from the posterior distribu-
tion, one takes advantage of the Gibbs sampling algorithm that is briefly described 

(4)

⎧
⎪⎨⎪⎩

vi ∼ Bernoulli(p),

yi�vi = 1 ∼ Beta(�1i,�),
yi�vi = 0 ∼ Beta(�2i,�),

(5)L
(
�, �|�) =

n∏
i=1

[
pfB

(
yi|�1i,�

)]vi[(1 − p)fB
(
yi|�2i,�

)]1−vi ,

bk|Ik, �bk ∼ IkN
(
0, �−1

bk

)
+
(
1 − Ik

)
�(0), k = 1,… ,K.

(6)�(�) = �(�)�(�)�(�)�(p)�(w).

f (�|�) ∝ �(�)L(�|�),
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in what follows. The main rationale is that given some initial values, that are set at 
random, the sampling from the full conditional distributions is repeated iteratively, 
always conditioning on the most recent values of the other variables. Note that the 
algorithm takes advantage of the complete likelihood (5), as it emerges from its 
description that follows: 

1.	 Initialize, at random, the unknown vector of parameters 

2.	 Repeat for s = 1,… , S , (until convergence): 

(a)	 For i = 1,… , n , generate v(s)
i

 from a Bernoulli distribution such that 

(b)	 Generate p(s) from a Beta
��∑n

i=1
v
(s)

i
+ 1

�
∕(n + 2), n + 2

�
,

(c)	 Generate the remaining parameters �(s),�(s) , �(s) , p(s) , and w(s) from their full 
conditional distributions. Since the full conditionals can not be written in 
closed form, a direct sampling from each of them is not feasible. Because 
of this, a Metropolis–Hasting algorithm (Robert and Casella 1999) is per-
formed within this step of the Gibbs sampling.

The implementation of the estimation algorithm is done through the software Open-
BUGS and R (Lunn et al. 2009).

4 � Numerical studies

This section illustrates some numerical studies to comparatively assess the perfor-
mances of the fFBreg and fBreg models: Sect. 4.1 describes the simulative settings 
whereas results are discussed in Sect. 4.2.

4.1 � Simulation settings

The data generating mechanism is configured coherently with the functional regres-
sion framework described in Sect. 2. The functional covariate is a Wiener process. 
In particular, data are simulated as follows:

�
(0) =

(
�(0), �(0),�(0), p(0),w(0)

)
.

ℙ

(
v
(s)

i
= 1

|||p
(s−1), �(s−1)

1i
, �(s−1)

2i
,�(s−1), yi

)
=

p(s−1)fB

(
yi|�(s−1)1i

,�(s−1)
)

p(s−1)fB

(
yi|�(s−1)1i

,�(s−1)

)
+
(
1 − p(s−1)

)
fB

(
yi|�(s−1)2i

,�(s−1)

) .

xi(t) =

M∑
k=1

�ki�k�k(t) i = 1,… , n,
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where �ki ∼ N(0, 1) iid, �k =
√
2∕((k − 1∕2)�) , �k(t) = sin ((k − 1∕2)�t) , 

t ∈ {t0 = 0,… , t100 = 1} equispaced, M = 100 to mimic the infinite dimension of 
the process, and n = 50, 100, 200.

Two alternative scenarios are set up that differ with respect to the selected elements 
of the basis of the functional regression coefficient, namely: �(t) = 0.5�2(t) in scenario 
A and �(t) = −0.3�1(t) − 0.7�2(t) + 0.5�4(t) in scenario B. These two scenarios are 
designed to account for different levels of complexity of the approximating subspace. 
Moreover, with the purpose of trying out the Bayesian variable selection strategy, the 
elements of the basis are chosen non-consecutively.

For each of the two outlined scenarios, three cases that differ with respect to the 
response-generating mechanism are considered:

•	 case (1): the observed responses are simulated from a beta with the mean parameter 
that is linked to the functional covariates according to Eq. (2), the intercept term is 
equal to � = −0.5 , and the precision parameter is equal to � = 50;

•	 case (2): the observed responses are simulated from a FB with the mean and preci-
sion parameters as in case (1) and the additional parameters are equal to p = 0.3 , 
and w = 0.4;

•	 case (3): the observed responses are simulated from a FB with the mean and preci-
sion parameters as in case (1) and the additional parameters are equal to p = 0.3 , 
and w = 0.8.

The substantial difference between cases (2) and (3), where the response is of FB type, 
concerns the value of the parameter w which governs the distance between the compo-
nent means. The chosen values lead to a mixture with either overlapped (case (2)) or 
well separated (case (3)) components.

For the purpose of this numerical study, 100 Monte Carlo replications are per-
formed. The estimate of the unknown parameters of fFBreg and fBreg models is dealt 
with MCMC methods based on the Gibbs sampling algorithm illustrated in Sect. 3. For 
both scenarios, in all cases, and for all sample sizes, chains at least of length 10,000 
are simulated and the first half of the values are discarded. Convergence to the equi-
librium distribution was assessed through analytical and graphical tools. In particular, 
the Geweke and Heidel diagnostics were used to assess stationarity, and the Raftery 
diagnostic was useful in ascertaining the level of autocorrelation (Gelman et al. 2014). 
As for the graphical tools, traceplots, density plots, and autocorrelation plots were 
inspected.

The goodness of fit of the models is compared through the wide applicable informa-
tion criterion (WAIC), a fully Bayesian criterion that penalizes the goodness of fit for 
an estimate of the effective numbers of parameters (Gelman et al. 2014). The criterion 
is computed as −2(L̂PPD − p̂WAIC) where:
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where f∙(⋅) denotes either fFB(⋅) or fB(⋅) , respectively when evaluating the criterion 
for an fFBreg or an fBreg model. The lower the estimate the better the fit of the 
model. Moreover, the quadratic L2 distance between the true and the estimated func-
tional regression coefficients is evaluated. The calculation is done through numerical 
approximation.

4.2 � Results and discussion

The results for the simulative scenarios outlined above are reported in Tables 1 (sce-
nario A) and 2 (scenario B). Both the Monte Carlo posterior mean and standard 
deviation (SD) and some performance measures are shown.

A first analysis concerns the estimates of the additional parameters of the fBreg 
(i.e. the precision � ) and fFBreg models (i.e., the precision � , the mixing proportion 
p, and the distance measure w). In case (1) of both scenarios, when the response 
comes from a beta distribution, the fBreg model provides unbiased estimates of the 
precision parameter with an SD that decreases as the sample size increases. Dif-
ferently, the fFBreg model adapts to the beta distributed data by slightly overesti-
mating the precision parameter, but the bias reduces as the sample size increases. 
Moreover, the fFBreg model identifies two equally weighted components that are 
almost overlapping and being centred around almost the same mean. This is because 
the estimate of the mixing proportion p is around 0.5 (stable as the sample size 
increases) and the estimate of the cluster distance w is low (tending to decrease as 
the sample size increases). In cases (2) and (3) of both scenarios, the fFBreg model 
provides unbiased estimates for all the additional parameters � , p, and w, with SDs 
that decrease as the sample size increases, as expected. On the contrary, the fBreg 
struggles to adapt to the bimodal structure, more or less evident (cases (2) and (3), 
respectively), from the data; in the light of the possible shapes of the beta distribu-
tion, its only way of flexibility lies in tuning the precision parameter. As a result, in 
both scenarios the precision parameter is underestimated by the fBreg model when 
the data generating mechanism is of FB type. The estimates appear to be stable 
as the sample size increases, whereas SDs decrease. The underestimation is more 
severe in case (3) than in (2), since in the latter case the bimodality is less accentu-
ated. Moreover, the underestimation is more evident in scenario A than in B. The 
reason for this result is that the variability of the FB distributed response is greater 
in scenario A than in B in light of the combination of the parameters. It is worth 
mentioning, in fact, that the observed variability does not depend only on the preci-
sion parameter � but also on the other ones.

As for the goodness of fit, it is worth noting that in both scenarios, in all cases, 
and for both the considered models, the Monte Carlo means of the WAIC estimates 

L̂PPD =

n∑
i=1

log

(
1

S

S∑
s=1

f∙
(
yi|�(s)

))
,

p̂WAIC = 2

n∑
i=1

[
log

(
1

S

S∑
s=1

f∙
(
yi|�(s)

))
−

1

S

S∑
s=1

log
(
f∙
(
yi|�(s)

))]
,



633

1 3

Bayesian flexible beta regression model with functional…

decrease as the sample size increases. The increase in the corresponding SDs is only 
apparent and due to a change in the magnitude of the estimates, as it can be imme-
diately shown by computing any measure of relative variability. By looking at the 
results from both scenarios, it is evident that when the response variable is of beta 
type, i.e., case (1), the goodness of fit of the fFBreg model is completely equivalent 
to the one of the fBreg model, despite the latter model being the response-generating 
mechanism. In case (2) of both scenarios, the response variable shows a mild bimo-
dality since, by setting w = 0.4 , the two component means are not so far from each 
other. The fBreg behaves acceptably in terms of fit, but despite this, the goodness 
of fit of the fFBreg model is better. In case (3) of both scenarios, the parameter w is 

Table 1   Scenario A: Monte Carlo posterior means and SDs (in parenthesis)

n = 50 n = 100 n = 200

Case (1) fBreg � = 50 53.260 (11.631) 51.344 (7.074) 50.835 (5.041)
WAIC − 125.108 (10.634) − 255.255 (13.436) − 516.936 (19.527)
R2 0.766 (0.060) 0.744 (0.050) 0.744 (0.032)

L2 2.870 (0.635) 2.737 (0.503) 2.551 (0.316)
fFBreg � 70.458 (21.514) 62.278 (11.972) 57.851 (7.299)

p 0.509 (0.131) 0.518 (0.139) 0.572 (0.156)
w 0.187 (0.043) 0.151 (0.028) 0.137 (0.047)
WAIC − 124.530 (10.729) − 254.645 (13.284) − 516.310 (19.560)
R2 0.841 (0.052) 0.812 (0.042) 0.794 (0.033)

L2 2.890 (0.650) 2.747 (0.509) 2.559 (0.314)
Case (2) fBreg � 8.666 (1.284) 8.519 (0.999) 8.352 (0.675)

WAIC − 43.181 (7.310) − 92.901 (10.857) − 187.416 (15.638)
R2 0.381 (0.097) 0.345 (0.070) 0.323 (0.054)

L2 3.493 (1.421) 2.897 (0.763) 2.740 (0.496)
fFBreg � = 50 52.638 (13.742) 51.296 (8.054) 49.685 (4.797)

p = 0.3 0.298 (0.048) 0.298 (0.035) 0.302 (0.019)
w = 0.4 0.402 (0.031) 0.402 (0.018) 0.400 (0.013)
WAIC − 70.743 (11.037) − 151.769 (15.648) − 305.092 (20.122)
R2 0.928 (0.028) 0.923 (0.012) 0.918 (0.008)

L2 2.919 (0.811) 2.646 (0.479) 2.579 (0.338)
Case (3) fBreg � 2.055 (0.280) 2.057 (0.223) 2.039 (0.126)

WAIC − 10.975 (8.293) − 29.619 (11.903) − 66.880 (17.266)
R2 0.159 (0.078) 0.135 (0.054) 0.119 (0.039)

L2 5.175 (2.575) 3.524 (1.357) 2.957 (0.779)
fFBreg � = 50 54.980 (12.566) 51.342 (8.151) 50.575 (4.516)

p = 0.3 0.299 (0.044) 0.295 (0.034) 0.297 (0.021)
w = 0.8 0.798 (0.016) 0.800 (0.010) 0.800 (0.008)
WAIC − 99.031 (13.751) − 204.258 (17.706) − 419.327 (24.821)
R2 0.979 (0.007) 0.977 (0.005) 0.976 (0.003)

L2 2.795 (0.616) 2.665 (0.468) 2.534 (0.325)
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set to 0.8, and this implies a bimodal response variable characterized by two well-
separated groups. Therefore, the goodness of fit of the fFBreg model is far better 
than the one of the fBreg model, the latter model being not designed to cope with 
latent structures in data.

Moreover, the inspection of the R2 allows to evaluate the goodness of fit of the 
models in terms of the proportion of variability of the response that is explained by 
the functional covariate. Overall, the results are stable as the sample size varies and 
consistent with those observed for the WAIC.

Finally, the results concerning the L2 distance give an insight into the goodness 
of the estimates of the functional regression coefficients, that depends both on the 

Table 2   Scenario B: Monte Carlo posterior means and SDs (in parenthesis)

n = 50 n = 100 n = 200

Case (1) fBreg � = 50 51.421 (11.353) 50.416 (7.259) 50.086 (4.672)
WAIC − 127.475 (10.930) − 265.215 (15.122) − 539.224 (19.212)
R2 0.907 (0.027) 0.901 (0.022) 0.901 (0.013)

L2 2.385 (0.575) 2.221 (0.439) 2.007(0.352)
fFBreg � 67.288 (22.645) 60.456 (11.572) 56.601 (8.043)

p 0.460 (0.115) 0.480 (0.137) 0.473 (0.157)
w 0.187 (0.032) 0.148 (0.030) 0.128 (0.030)
WAIC − 127.138 (11.102) − 264.750 (14.987) − 538.685 (19.251)
R2 0.936 (0.022) 0.927 (0.019) 0.920 (0.014)

L2 2.374 (0.571) 2.235 (0.463) 2.014 (0.352)
Case (2) fBreg � 12.751(2.125) 13.692 (1.946) 13.357 (1.262)

WAIC − 62.780 (8.995) − 143.302 (13.969) − 293.044 (19.652)
R2 0.699 (0.071) 0.706 (0.057) 0.696 (0.041)

L2 3.080 (0.696) 2.968 (0.624) 2.548 (0.587)
fFBreg � = 50 51.337 (19.039) 48.138 (8.884) 49.575 (6.295)

p = 0.3 0.313 (0.063) 0.295 (0.052) 0.296 (0.029)
w = 0.4 0.386 (0.048) 0.392 (0.036) 0.399 (0.021)
WAIC − 81.616 (12.457) − 176.557 (13.568) − 367.126 (21.992)
R2 0.951 (0.026) 0.949 (0.012) 0.948 (0.006)

L2 2.523 (0.607) 2.159 (0.480) 1.954 (0.314)
Case (3) fBreg � 3.055 (0.755) 3.277 (0.437) 3.172 (0.266)

WAIC − 18.978 (9.600) − 55.455 (13.466) − 116.627 (16.907)
R2 0.384 (0.125) 0.430 (0.084) 0.419 (0.060)

L2 3.508 (0.922) 3.238 (0.485) 2.983 (0.510)
fFBreg � = 50 51.753 (11.668) 51.080 (7.207) 49.958 (5.506)

p = 0.3 0.311 (0.053) 0.300 (0.034) 0.304 (0.025)
w = 0.8 0.795 (0.025) 0.798 (0.019) 0.801 (0.010)
WAIC − 88.766 (10.854) − 192.647 (15.689) − 392.493 (24.139)
R2 0.970 (0.007) 0.967 (0.007) 0.966 (0.005)

L2 2.179 (0.516) 2.043 (0.350) 1.839 (0.222)
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ability of the model in identifying the truly significant elements of the basis and 
on the goodness of the estimates of the real parameters bk , k = 1,… ,K . Interest-
ingly, the findings are quite similar in the two scenarios. It emerges that in case 
(1) the MC means of L2 for the fBreg and fFBreg models are similar, thus con-
firming the ability of the latter model to well adapt to beta-distributed responses. 
Conversely, in cases (2) and (3) the fFBreg model always provides better esti-
mates of the functional coefficient, thus resulting in lower MC means of the L2 
distance. This is particularly evident in case (3) where the simulated response 
comes from a mixture with well-separated components.

To complete the analysis, the performances of the used selection criterium are 
discussed. For what concerns scenario A, the performance of the variable selec-
tion strategy is very good. In particular, the only issues concern the fBreg model 
in cases (2) and (3) when n = 50 with a correct selection rate equals 83% within 
the whole Monte Carlo simulations. For the more challenging scenario B, Table 3 
reports the percentage of times the first five PCs are selected in the Monte Carlo 
replicates. Those PCs explain more than 95% of the overall variability of the 
functional data: a wrong selection of a PC from the sixth onwards has thus a neg-
ligible impact on the overall estimate of the functional regression coefficient �(t).

One can observe that the parameters associated with the third and fifth PCs, 
that are not significant, are wrongly selected in rather few cases whereas, the 
first, second, and forth PCs are correctly selected with very high rates. It is worth 
noticing that for the fFBreg model the higher the coefficient magnitude is, the 
better the selection approach behaves and, in any ways, performances improve 

Table 3   Scenario B: Percentage of times the PCs associated with coefficients b
k
 , k = 1,… , 5 are selected 

in the Monte Carlo replicates

Coefficients Sample Case (1) Case (2) Case (3)

Size fBreg fFBreg fBreg fFBreg fBreg fFBreg

n = 50 61 58 40 52 40 66
b1 = −0.3 n = 100 69 70 50 72 45 89

n = 200 90 90 50 97 57 99
n = 50 97 96 77 94 73 100

b2 = −0.7 n = 100 100 100 86 100 78 100
n = 200 100 100 96 100 83 100
n = 50 11 11 8 14 6 19

b3 = 0 n = 100 9 9 5 15 3 15
n = 200 12 14 6 11 4 19
n = 50 86 82 56 75 62 95

b4 = 0.5 n = 100 98 97 68 97 66 100
n = 200 100 100 82 100 76 100
n = 50 10 10 5 7 3 11

b5 = 0 n = 100 9 10 4 5 6 14
n = 200 8 6 3 8 5 16
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as the sample size increases. On the other hand, the fBreg produces poor perfor-
mances coherently with the overall poor fit of the model in terms of L2 distance.

5 � Results on milk data

The present section provides some key findings from the analysis on the samples 
of milk specimens, and it is divided into two sub-sections, coherent with a two-fold 
objective. On the one hand, the interest is in assessing the goodness of fit of the 
fFBreg and fBreg models and in evaluating how well they adapt to the data. This 
step of analysis is done on the entire samples and it is referred to as “in-sample”. 
On the other hand, the focus is on the evaluation of the prediction accuracy of the 
proposed model, comparing it also with alternative regression models. This step of 
analysis is based on cross-validation and it is referred to as “out-of-sample”.

The spectromectric curves illustrated in Fig.  1 have an inherently functional 
nature and therefore it is possible to evaluate the different impact of their deriva-
tives. To this purpose, three configurations were examined depending on whether 
the observed data (model 0), the first derivative (model 1), or the second derivative 
(model 2) is included as a functional covariate in Eq. (2).

5.1 � In‑sample results

The fFBreg model (and the fBreg one for comparison purpose) has been specified 
according to Eq. (2) by choosing the logit transformation as a link function, and has 
been estimated by means of the Bayesian procedure described in Sect. 3. Tables 4 
and 5 synthesize the main results referred to the estimates of the coefficients bk , 
k = 1,… ,K , and of the additional parameters, as well as the goodness of fit among 
competing models.

Looking at the WAIC estimates from both samples (Table 5), the fFBreg model 
always provides a better fit than the fBreg one, the advantage in fit being particu-
larly pronounced especially for the NeoSpectra sample. Focusing on the NeoSpectra 
sample, it emerges that the model with the observed functional covariate is to be 
preferred, in terms of goodness of fit, with respect to competing models with either 
the first or the second derivatives. Differently, as for the SCiO sample, the fit of the 
models in the different configurations appears to be comparable although model 2 
(i.e., with second derivative as functional covariate) is slightly better.

The graphical representation of the estimated functional parameter �(t) is illus-
trated in Figs. 3 (NeoSpectra sample) and 4 (SCiO sample). The estimated curves 
provided by the models under examination differ little for the SCiO data, whereas 
they differ slightly more for the NeoSpectra data. The major differences among the 
estimated curves are observed for model 0 for the NeoSpectra sample and for model 
2 for the SCiO sample. Interestingly, these two configurations are indeed the ones 
where the models ensure the best fit.

The analysis of the curves can be deepened in order to better understand the 
impact of the functional parameter in the regression model. By way of example, 
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focusing on the NeoSpectra data in the model 0 configuration (left-hand side panel 
of Fig. 3), it emerges that the functional parameters of the competing models have 
their peaks, and thus the greatest impact on the response, over the wavelengths inter-
vals [1350,1400] and [1600, 1700] nm. In correspondence to these intervals, the 
observed spectra are indeed more spread, and the partition between skimmed and 
not skimmed specimens is particularly accentuated, as can be seen in Fig. 1. Similar 
comments can be made for the other configurations and for the results related to 
SCiO data as well.

1400 1600 1800 2000 2200 2400

0.
00

0.
02

0.
04

0.
06

0.
08

wavelength

β

wavelength

β

−0
.1
0

−0
.0
8

−0
.0
6

−0
.0
4

−0
.0
2

0.
00

0.
02

−0
.2
0

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

wavelength

β

1400 1600 1800 2000 2200 2400 1400 1600 1800 2000 2200 2400

Fig. 3   NeoSpectra data: estimated functional regression coefficients �(t) for model 0 (left-hand side 
panel), model 1 (middle panel), and model 2 (right-hand side panel), and for fBreg (dashed lines) and 
fFBreg (solid lines) models

0.
02

0.
04

0.
06

0.
08

wavelength

β

0.
02

0.
04

0.
06

0.
08

wavelength

β

750 800 850 900 950 1000 1050

−0
.0
8

−0
.0
6

−0
.0
4

−0
.0
2

wavelength

β

750 800 850 900 950 1000 1050 750 800 850 900 950 1000 1050

Fig. 4   SCiO data: estimated functional regression coefficient �(t) for model 0 (left-hand side panel), 
model 1 (middle panel), and model 2 (right-hand side panel), and for fBreg (dashed lines) and fFBreg 
(solid lines) models



638	 A. M. Di Brisco et al.

1 3

A closer look into the behaviour of the estimated functional parameter is pro-
vided by looking at the posterior estimates of the coefficients in Table 4. Here, 
only the posterior estimates of the significant coefficient bk were reported, i.e. 
those for which the posterior probability of inclusion of that coefficient is greater 
than 0.5 meaning that 1

S

∑S

s=1
I
(s)

k
> 0.5 . The analysis of the results from Table 4 is 

of interest because it shows that the most significant estimated PCs in the regres-
sion framework are not necessarily the first ones once they have been ordered 
with respect to the fractional explained variability. Let us focus on the results 
from the NeoSpectra sample. In model 0, the fFBreg includes the fifth coefficient 

Table 4   Milk data: posterior means and SDs (in parenthesis) of the significant b
k
 coefficients

NeoSpectra data SCiO data

fBreg fFBreg fBreg fFBreg

Model 0 � = −1.774(0.072) � = −1.766(0.084) � = −1.907(0.049) � = −1.922(0.047)

b1 = 0.764(0.064) b1 = 0.413(0.033) b1 = 1.087(0.077) b1 = 1.065(0.066)

b2 = 0.103(0.079) b5 = 0.067(0.035) b3 = −0.223(0.047) b3 = −0.231(0.039)

Model 1 � = −1.786(0.066) � = −1.771(0.068) � = −1.883(0.045) � = −1.82(0.19)

b1 = −0.778(0.063) b1 = −0.437(0.04) b1 = 1.018(0.066) b1 = 0.998(0.17)

b6 = −0.098(0.092) b3 = 0.203(0.038) b2 = 0.188(0.039)

b3 = 0.160(0.049)

Model 2 � = −1.769(0.08) � = −1.738(0.072) � = −1.893(0.043) � = −1.77(0.179)

b1 = −0.733(0.075) b1 = −0.366(0.041) b1 = −0.992(0.066) b1 = −0.883(0.158)

b2 = 0.135(0.093) b2 = 0.169(0.029) b2 = −0.377(0.037) b2 = −0.357(0.042)

b3 = −0.062(0.034)

Table 5   Milk data: posterior means and SDs (in parenthesis) of the additional parameters and WAIC 
measures

NeoSpectra data SCiO data

fBreg fFBreg fBreg fFBreg

Model 0 � 43.106 (9.937) 294.804 (70.298) 170.384 (47.158) 245.513 (66.935)
p — 0.782 (0.058) — 0.637 (0.423)
w — 0.822 (0.031) — 0.655 (0.217)
WAIC − 143.574 − 177.424 − 167.51 − 174.097

Model 1 � 44.453 (10.649) 196.065 (43.866) 170.123(46.192) 331.987 (137.5)
p — 0.793 (0.06) — 0.67 (0.337)
w — 0.801 (0.038) — 0.364 (0.241)
WAIC − 146.456 − 161.898 − 171.005 − 174.696

Model 2 � 34.223 (8.141) 220.701 (54.066) 196.221 (56.292) 237.295 (77.043)
p — 0.796 (0.053) — 0.43 (0.401)
w — 0.822 (0.034) — 0.441 (0.322)
WAIC − 131.563 − 159.542 − 176.602 − 178.15
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in the final model, despite its corresponding PC accounts for only 0.18% of vari-
ability of the functional data. Similarly, in model 1 the fBreg includes the sixth 
coefficient in the final model, despite its corresponding PC accounts for only 
1.04% of variability of the first derivative. An analogous phenomenon can be 
observed for the SCiO sample. In model 0, the third coefficient is selected, cor-
responding to a PC that only explains 0.11% of the total variability of the covari-
ate, by both the fFBreg and fBreg models. Conversely, the second coefficient is 
excluded by both of them despite the fact that it accounts for a slightly greater 
amount of variability. All these findings confirm the soundness of relying on 
shrinkage prior-based Bayesian variable selection techniques in order to choose 
the most significant PCs.

To enhance the comparison between the regression models, one could directly 
compute, from the results reported in Table 4, the ratio of the SD to the absolute 
value of the corresponding posterior mean as a relative measure of variability. By 
doing this, the only remarkable finding that emerges is that the lower the fraction 
of variability explained by a PC, the higher the relative variability of the associ-
ated coefficient estimate.

To deepen the analysis, it is of interest to look at the posterior estimates of the 
additional parameters of the fFBreg (see Table 5). In particular, the estimate of 
the mixing proportion p and of the normalized distance w allow to understand 
how the special mixture structure of the FB fits data. Focusing on the NeoSpec-
tra sample, it is worth noting that the fFBreg recognizes two latent groups in all 
models. The first component has an estimated weight p of around 0.8, and the 
component means of the two latent groups are quite far from each other (esti-
mated w larger than 0.8). Interestingly, the model dedicates the second compo-
nent of its mixture to model the group of milk specimens with the lowest level of 
fat, the one that is classified as “skimmed”.

Differently, by looking at results from the SCiO data, it emerges the presence 
of two almost equally weighted components with not so far cluster means and 
quite large SDs. Moreover, the mixture structure identified by the fFBreg model 
does not find a match into the classification of data into “skimmed” and “not 
skimmed”.

To better understand the behaviour of the fFBreg model, it is enlighten-
ing to look at posterior predictive distributions (Gelman et  al. 2014). Generally 
speaking, the posterior predictive distribution is the distribution of a replicated 
response ỹi under the fitted model, conditional on the observed data. Having sim-
ulated S draws from the posterior distributions of � , sampling from the posterior 
predictive distribution for each ỹi , i = 1,… , n , is straightforward and works as 
follows:

•	 simulate v(s) from a Bernoulli distribution as in 2.(a) of the algorithm in Sect. 3;
•	 if v(s) = 1 , simulate ỹ(s)

i
∼ Beta

(
𝜆(s)
1i
,𝜙(s)

)
 , i.e., from the first component of the 

FB mixture;
•	 otherwise if v(s) = 0 , simulate ỹ(s)

i
∼ Beta

(
𝜆(s)
2i
,𝜙(s)

)
 , i.e., from the second com-

ponent of the FB mixture.
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The vector 
(
ỹ
(1)

i
,… , ỹ

(S)

i

)
 represents a sample from the posterior predictive 

distribution.
The 95% confidence bounds of the posterior predictives for the specimens under 

model 0 are reported in Fig. 5 (but similar results are obtained for models 1 and 2). 
Looking at the plots concerning the SCiO sample (bottom panels), it emerges how 
the confidence bounds of the fBreg and fFBreg models are almost coincident. Thus, 
this is a typical scenario where the latent mixture structure observed in the bounded 
response is fully explained by the covariate and, as a result, the fBreg and fFBreg 
perform similarly. In contrast, the scenario that emerges from the NeoSpectra sam-
ple is completely different. The confidence bounds of the fBreg model (top left-
hand panel) are very wide, showing the worst posterior predictions for the skimmed 
specimens. Instead, posterior predictive bounds of the fFBreg model (top right-hand 
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Fig. 5   Posterior predictive confidence bounds at 95% for fBreg (left-hand panels) and fFBreg (right-hand 
panels) models from NeoSpectra data (top panels) and SCiO data (bottom panels). The asterisks rep-
resent the observed response values whereas the filled points are the corresponding average posterior 
predictive values
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panel) are tight and well-centred around the observed values, particularly for the 
skimmed specimens. Thus, this evidence suggests that the covariate alone is not 
capable of fully accounting for the latent mixture structure of the bounded response. 
The choice of the fFBreg model, in this case, is fundamental since it allows to 
recover the latent mixture structure, greatly increasing the overall fit with respect to 
non-mixture models such as beta-type ones.

Finally, to appreciate the ability of the proposed methodology in recovering the 
special features of the densities of the responses (see Fig. 2), the estimated densities 
of the average posterior predictives are plotted in Fig. 6 and superimposed on the 
original ones. All the estimates are computed by using the same kernel and band-
width. Concerning the NeoSpectra sample (left-hand side panel), it is worth not-
ing that the entire original density is fully captured by the fFBreg model, whereas 
the fBreg model identifies neither the left heavy tail nor the mode. Conversely, in 
the SCiO sample (right-hand side panel) both models are able to reproduce these 
patterns.

5.2 � Out‑of‑sample results

In this applicative context, a key feature of the model to be preferred concerns its 
predictive ability. For this reason, a cross-validation analysis was performed. In par-
ticular, since the sample size is small, a leave-one-out cross-validation LOO-CV 
procedure was implemented, meaning that at each iteration of the cross-validation 
algorithm one specimen of milk was used as test set while all other specimens were 
used as training set.

First, it is natural to compare the predictive ability of the fFBreg model to the 
one provided by the fBreg. As it has been already noted above, to the best of the 
authors’ knowledge, there is a lack of regression models specifically designed to 
cope simultaneously with a bounded continuous response and functional covariate. 
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Fig. 6   Estimated densities (based on the Epanechnikov kernel with bandwidth equals 0.04) of the 
observed fat proportion (solid lines) and of the average posterior predictives for fBreg (dotted lines) and 
fFBreg (dashed lines) models from NeoSpectra data (left-hand side panel) and SCiO data (right-hand 
side panel)
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Despite this, it is still of interest to try to make comparisons with existing models 
in terms of predictive ability. To this end, a GFLM (Ramsay and Silverman 2005) 
and a non parametric (NP) scalar-on-function regression model are evaluated (Fer-
raty and Vieu 2006), having preliminarily performed a logit transformation of the 
bounded response. The estimation of these models is done through the use of the 
fda.usc package in the R software.

The predictive accuracy of a model is measured by computing the inverted bal-
ance relative error (IBRE) (Tofallis 2015), a normalised index equal to:

where ŷ(−i)
i

 is the predicted value of the i− th observation based on the estimates 
obtained when the i− th data point is removed.

Results are reported in Table 6: original values have been multiplied by 1000 to 
improve readability. Reading the table results can be twofold. On the one hand, it is 
possible to assess the best functional covariate (among the observed data, the first 
derivative, and the second derivative) in terms of accuracy of the prediction within 
each regression model. On the other hand, one can determine the best regression 
model, in terms of prediction accuracy, among the four alternatives at hand.

Focusing on the NeoSpectra sample, it is worth noting that the fBreg, GFLM, and 
NP models perform better with model 0, whereas fFBreg model predicts slightly 
better with model 1. By comparing the competing models, focusing on the results for 
model 0 it emerges that the worst model is the GFLM, followed closely by the fBreg 
one. Conversely, the NP is the best model in terms of predictive accuracy closely 
followed by the fFBreg model. Results for model 1 lead to analogous conclusions. 
Note also that for model 2, which is the best among the three models according to 
WAIC of both fBreg and fFBreg, the best accuracy in prediction is provided by far 
by the fFBreg model.

Focusing on the SCiO sample, all regression models perform similarly whatever 
the functional covariate included in the model. The fBreg and NP models have a 
slightly better performance with model 0, whereas the fFBreg and GFLM perform 
slightly better with model 1. The comparison among competing models shows that 

(7)IBRE =
1

n

n∑
i=1

(
yi − ŷ

(−i)

i

)2
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(
yi, ŷ

(−i)

i

) ,

Table 6   Predictive accuracy of the competing models based on LOO-CV for the NeoSpectra and SCiO 
samples

Results have been multiplied by 1000 to improve readability

NeoSpectra data SCiO data

fBreg fFBreg GFLM NP fBreg fFBreg GFLM NP

Model 0 13.507 5.506 19.806 3.357 4.511 3.940 7.057 3.158
Model 1 15.539 4.154 24.603 3.809 6.029 3.160 6.103 7.024
Model 2 17.587 4.478 21.585 14.527 4.853 3.805 7.855 7.353
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the worst performance is always provided by the GFLM, whereas the fFBreg and 
NP models are preferable in terms of predictive accuracy. In particular, looking at 
results for model 0, the best model in terms of predictive accuracy is the NP one, 
while looking at results for model 1 and model 2 it is the fFBreg model that outper-
forms all competing models.

Overall, it should be noted that the fFBreg shows a predictive accuracy that is 
comparable to the one provided by the NP model, only sometimes being slightly 
worse. However, the tiny advantage in terms of prediction provided by a non para-
metric method comes with a great cost in terms of interpretability of the regression 
function.

Finally, it is worth noting that similar findings would have been found using alter-
native prediction measures such as the root mean square predictive error (MSPE) 
[that is the root square of the numerator of (7)], or its relative counterpart, that is the 
root of the MSPE divided by the sample deviance.

6 � Concluding remarks

The fFBreg model is proposed to simultaneously handle a bounded response and a 
functional covariate in a regression framework. The estimation issue is performed 
according to a Bayesian rationale. Moreover, a bases representation strategy is 
adopted to operationalise the linear specification of the conditional mean of the 
response. This approach presents the problem of determining how many and which 
real coefficients are significant in the regression model. The adopted solution takes 
advantage of a Bayesian variable selection strategy, consistent with the Bayesian 
approach, that exploits spike-and-slab priors. Several Monte Carlo studies enabled 
the comparison between the proposed fFBreg model and a more standard fBreg one, 
as well as the inspection of the goodness of the estimates. The Metropolis within 
Gibbs sampling algorithm behaves well in all configurations, leading to chains that 
fulfill the convergence checks. Moreover, the fFBreg model shows a satisfactory 
behaviour in all the considered scenarios. Specifically, when the response generating 
mechanism is of beta-type, the fFBreg has a similar fit than the fBreg model. Con-
versely, when the response generating mechanism is of mixture-type, with groups 
that are from moderately to highly separated, the fFBreg model outperforms the 
fBreg one. Therefore, it emerges that the fFBreg model should always be the pre-
ferred, despite being more complex, even when the response does not show some 
typical features such as heavy tails and/or multimodality.

Finally, the proposed regression model is applied to a real spectrometric exam-
ple that also motivated the work. Interestingly, the observations from the simu-
lation studies find full application in the example. Indeed, in the SCiO sample 
the left heavy tail observed in the response is fully explained by the functional 
covariate, and hence the fFBreg and fBreg perform similarly and very well both 
in terms of fit and prediction accuracy [these results remind of case (1) of simu-
lation study]. Conversely, in the NeoSpectra sample the latent mixture structure 
of the bounded response is not entirely explained by the functional covariate. As 
a result, the fBreg performs poorly, whereas the special mixture structure of the 
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fFBreg model proves to be essential in the goodness of fit of the model [these 
results resemble case (3) of simulation study].

It is worth noting that a generic mixture of beta distributions, despite being 
potentially more flexible than the FB one, would not be identifiable, thus result-
ing in severe computational issues.

The introduced model can be extended in different manners. One of the most 
interesting contemplates the possibility of using more real and/or functional 
covariates (e.g. one could consider the raw functional data and at the same time 
some of its derivatives). This type of extension can be managed by carefully rede-
fining the covariates space that would leads to a change in the definition of the 
internal product appearing in (2) as well as the covariance operator and the asso-
ciated principal components.
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