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A B S T R A C T

In this work, the mechanics of cone penetration during CPTu tests in Osaka clay, a natural structured silty
clay, was investigated with the Particle Finite Element Method (PFEM). To describe the behavior of the soil,
the FD_Milan model, recently proposed by the Authors, was adopted. The model, based on the multiplicative
decomposition of the deformation gradient, incorporates a scalar internal variable, the bond strength 𝑃𝑡, to
quantify the effects of structure. The macroscopic description of mechanical destructuration effects is provided
by the hardening law of 𝑃𝑡, according to which the bond strength decreases monotonically with accumulated
plastic deformations. The brittle behavior resulting from the softening process associated to destructuration
make the soil quite susceptible to the spontaneous development of strain localization in the form of shear
bands. In order to deal with strain localization phenomena, the model is equipped with a non-local version
of the hardening laws, incorporating a material constant – the characteristic length 𝓁𝑐 – which provides the
material with an internal length scale. The objective of this work was to get some insight on the effects of the
characteristic length and of the initial degree of structure on: the kinematics of the soil deformation around
the advancing cone tip; the evolution of soil structure with accumulated plastic deformations; the excess pore
pressure field generated in the soil as a result of the hydro-mechanical coupling between the solid skeleton
and the pore water, and the net cone resistance measured at the base of the cone. The results of the PFEM
simulations show that the deformations around the piezocone are strongly affected by the characteristic length.
For heavily structured soils, when 𝓁𝑐 is relatively small with respect to cone radius, the accumulated plastic
deviatoric deformation field is characterized by clearly visible shear bands while, as 𝓁𝑐 increases, the detection
of localized deformation regions becomes more difficult, if not impossible. This depends on the fact that, for
large values of 𝓁𝑐 , the shear band width may be of comparable size to the cone radius. In all cases, the
soil around the advancing piezocone is subjected to a very strong destructuration process, which leads to
the complete loss of bond strength in a large region around the cone tip and shaft. As a consequence, the
use of conventional 𝑁𝑐 values from the literature in the interpretation of the CPTu test performed in heavily
structured soils could provide undrained strength values closer to the ultimate undrained shear strength. At
the same time, the use of empirical correlation to estimate the yield stress in oedometric conditions would
lead to a significant underestimation of the overconsolidation ratio.
1. Introduction

Recent development in particle-based numerical methods such as
the Smoothed Particle Hydrodynamics (SPH, see, e.g., Bui et al., 2008;
Pastor et al., 2009, 2015; An et al., 2016), the Material Point Method
(MPM, see, e.g., Beuth and Vermeer, 2013; Abe et al., 2014; Bisht and
Salgado, 2018) and the Particle Finite Element Method (PFEM, see,
e.g., Oliver et al., 2007; Carbonell et al., 2013; Monforte et al., 2017b,
2019) have allowed to address in a rational, accurate and efficient
way the interpretation of the complex coupled deformation and flow

✩ The authors dedicate this paper to the late Professor Patrick Selvadurai.
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processes which occur in a saturated soil mass undergoing extreme
deformations, involving significant modifications in the configurations
of the soil body with time, see for example the special issue of Acta
Geotechnica dedicated to ‘‘Point-based methods and their applications
in geomechanics’’ (Wu and Bui, 2021).

Among such problems, much interest has been drawn by the mod-
eling of the so-called insertion processes, which are of relevance in a
number of practical geomechanical applications, such as, for example,
in-situ testing, soil sampling and pile driving. In particular, significant
vailable online 24 April 2024
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attention has been devoted to the analysis of cone penetration tests,
performed either with a standard penetrometer (CPT tests) or with
piezocones with pore pressure transducers located at the base of the
cone or at cone mid-height (CPTu tests). In fact, for their simplicity,
reliability and relatively low cost, CPT and CPTu tests are widely
used investigation tools for the characterization of both coarse- and
fine-grained soils.

In geotechnical practice, the interpretation of CPT and CPTu tests is
typically based on empirical and semi-empirical correlations, based on
very crude descriptions of soil behavior (e.g., the total stress approach

ith Tresca or von Mises models). Particle-based methods have been
sed to get valuable insight on the mechanics of the cone penetra-
ion process in both coarse-grained soils (Martinelli and Galavi, 2021;
artinelli and Pisanò, 2022; Moshfeghi et al., 2024) and fine-grained

oils (Ceccato et al., 2016; Ceccato and Simonini, 2017; Monforte
t al., 2018a,b, 2021; Zhang et al., 2021; Ciantia et al., 2022), often
dopting fully coupled formulations capable of describing the pore
ressure build-up around the advancing cone tip in low-permeability
oils. Recently, Yost et al. (2022) and Boschi et al. (2024) used the MPM
nd PFEM to investigate the effects of embedded thin soil layers with
ifferent grain size distribution than the host soil. However, among the
arge number of contributions which can be found in the literature on
his subject, only a few appear to have addressed the effects that cone
enetration may induce in structured natural clays (see, e.g., Hauser
nd Schweiger, 2021; Ciantia et al., 2022; Oliynyk et al., 2023).

As observed by Burland (1990), the peculiar fabric and the pres-
nce of interparticle bonds of various origin – collectively termed
‘structure’’ – affect the mechanical response of both soft and stiff
atural clays by producing a net increase in shear strength and yield
tress in one-dimensional compression, as well as the development of

non-negligible tensile strength. At the same time, structured soils
re typically characterized by quite marked yield phenomena which,
n deviatoric loading paths, are accompanied by a brittle behavior at
ailure, with a significant reduction of the shear strength with increas-
ng deviatoric deformations. This is the consequence of the progressive
egradation of the interparticle bonds (‘‘destructuration’’) as the soil
eformation increases.

The particular features of the response of structured clays may have
wo important effects on both the mechanics and the numerics of the
iezocone penetration problem. First, the brittle nature of these mate-
ials make them quite susceptible to the spontaneous development of
train localization in the form of shear bands (Vardoulakis and Sulem,
995; Borja, 2013). Second, the progressive reduction of the soil shear
trength due to the destructuration process may affect significantly the
ean total stress at the base of the cone – the cone resistance 𝑞𝑐 – which

s one of the measured quantities during the test, and from which the
oil properties are determined.

The occurrence of localization has far-reaching consequences in
he numerical modeling of inelastic deformation phenomena using
lassical elastoplasticity, which does not provide the material with an
nternal length scale. When strain localization occurs, the results of
umerical simulations with the FE method, or any other displacement-
ased approach related to it, show a pathological dependence on the
dopted spatial discretization in the post-localization regime (see, e.g.,
ažant et al., 1984; Bažant and Pijaudier-Cabot, 1988; de Borst, 1989).
n fact, as the thickness of the localized zone tends to zero, the best
esolution of the localized zone which can be provided by the adopted
esh is represented by a narrow zone spanning over a single element
idth (see, e.g., Borja et al., 2013).

In order to restore the objectivity of the numerical solutions in
resence of localized deformations, two main strategies have been
ursued in computational mechanics, with varying degree of success.
he first approach consists in treating the localized deformation band
s a displacement discontinuity, whose geometry evolves during the
oading process and on which a specific constitutive equations for
2

he interface between the two parts of the body separated by the
iscontinuity needs to be defined (see, e.g., Armero and Callari, 1999;
Regueiro and Borja, 2001; Borja and Aydin, 2004; Borja, 2004). The
second approach involves the modification of the constitutive theory in
order to introduce some form of ‘‘non-locality’’. This can be achieved
by means of various kind of gradient plasticity models (Vardoulakis
and Aifantis, 1991; de Borst and Mühlhaus, 1992; Zervos et al., 2001;
Chambon et al., 2001, 2004) or through non-local plasticity models of
the integral type (see, e.g., Bažant and Lin, 1988; Bažant and Jirásek,
2002, and references therein).

Hauser and Schweiger (2021) and Ciantia et al. (2022) adopted a
particular version of non-local regularization in their plasticity models,
based on Galavi and Schweiger (2010). In this non-local formulation,
the material is endowed with a characteristic length 𝓁𝑐 , which con-
trols the shear band width (Oliynyk et al., 2022). In these works,
the value of the characteristic length was chosen mainly to achieve
mesh-independent and smooth results in the CPTu simulations, but
no systematic study was carried out to evaluate the effects of the
adopted value of 𝓁𝑐 on the strain field around the cone tip and on the
onventional test results (cone resistance and excess pore pressure at
he piezocone probe).

In this work, the geomechanics-oriented PFEM code GPFEM (Mon-
orte et al., 2017a; Carbonell et al., 2022), developed as an appli-
ation module of the Kratos Multiphysics computational environment
Mataix Ferrándiz et al., 2020), was used to extend the previous numer-
cal investigations. In particular, the study was focused on the effects
hat the characteristic length may have on the deformation field around
he advancing piezocone, on the soil destructuration, on the excess pore
ressure and on the cone resistance, computed during the penetration
rocess.

To focus the investigation on a realistic scenario, the choice was
ade to adopt for the soil the properties of a specific natural structured

lay – the Osaka clay (Adachi et al., 1995) – selected as a typical
xample of this class of geomaterials. The FD_Milan model proposed

by Oliynyk et al. (2021) was adopted to provide an accurate description
of the main aspects of Osaka clay relevant for the problem at hand.

This model – which can be considered the extension to finite de-
formations of the isotropic hardening models for bonded geomaterials
developed at the Technical University of Milan over the last two
decades (Tamagnini et al., 2002; Nova et al., 2003; Tamagnini and
Ciantia, 2016) – is based on the multiplicative decomposition of the
deformation gradient and on the adoption of a suitable free energy
function to describe the elastic response of the material. In addition,
it features non-local hardening laws which provide the internal length
scale necessary to obtain objective numerical results.

The outline of the remainder of the paper is as follows. In Sections 2
and 3 we summarize briefly the constitutive equations of the FD_Milan
model and the basics of the PFEM method, to make the paper self-
contained. Section 4 deals with the calibration of the model constants
for Osaka clay, based on some conventional laboratory test results
available in the literature. The details of the CPTu simulation program
performed in this study are given in Section 5. Some selected PFEM
results are presented and discussed in Section 6. Finally, Section 7
summarized the main conclusions obtained from this work.

Notation

In the following, all stresses and stress-related quantities are effec-
tive, unless otherwise stated. The sign convention of soil mechanics
(compression positive) is adopted throughout, except where otherwise
stated. Both direct and index notations are used to represent vector and
tensor quantities according to convenience. In direct notation, vectors
and second-order tensors are represented by boldface italic characters;
upper- and lowercase blackboard bold fonts – as for example C𝑒 and
c𝑒 – are used for fourth-order tensors. Following standard practice, for
any two vectors 𝒗,𝒘 ∈ R3, the dot product is defined as: 𝒗 ⋅𝒘 ∶= 𝑣𝑖𝑤𝑖,

and the dyadic product as: [𝒗⊗𝒘]𝑖𝑗 ∶= 𝑣𝑖𝑤𝑗 . Accordingly, for any two
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Fig. 1. Yield surface of the FD_Milan model: (a) three-dimensional view in the principal Kirchhoff stress space; (b) representation in 𝑄: 𝑃 plane of the Kirchhoff stress invariants,
for 𝜃 = 𝜋∕6; (c) view in the direction of the isotropic axis.
second-order tensors 𝑿, 𝒀 ∈ L, 𝑿 ⋅𝒀 ∶= 𝑋𝑖𝑗𝑌𝑖𝑗 and [𝑿⊗𝒀 ]𝑖𝑗𝑘𝑙 ∶= 𝑋𝑖𝑗𝑌𝑘𝑙.
The quantity ‖𝑿‖ ∶=

√

𝑿 ⋅𝑿 denotes the Euclidean norm of the second
order tensor 𝑿.

In the representation of Cauchy and Kirchhoff stress tensors, 𝝈 and
𝝉, use is made of the following invariant quantities:

𝑝 ∶= 1
3
tr(𝝈) 𝑞 ∶=

√

3
2
‖𝒔‖ 𝑆 ∶= sin(3𝜃) =

√

6
tr(𝒔3)

[tr(𝒔2)]3∕2

𝑃 ∶= 1
3
tr(𝝉) 𝑄 ∶=

√

3
2
‖

‖

𝒔𝜏‖‖ 𝑆 ∶= sin(3𝜃) =
√

6
tr(𝒔3𝜏 )

[tr(𝒔2𝜏 )]3∕2

where: 𝒔 ∶= 𝝈 − 𝑝𝟏 is the deviatoric part of 𝝈; 𝒔𝜏 ∶= 𝝉 − 𝑃𝟏 is the
deviatoric part of 𝝉; 𝒔2 and 𝒔3 are the square and the cube of 𝒔; 𝒔2𝜏 and
𝒔3𝜏 are the square and the cube of 𝒔𝜏 , and 𝜃 is the Lode angle.

2. Finite deformation modeling of natural structured clays: the
FD_Milan model

To represent the mechanical response of natural, structured clay
soils in finite deformation kinematics, the FD_Milan model developed
by Oliynyk et al. (2021) was adopted in this work.

The FD_Milan model is a non-associative, three-invariant isotropic
hardening finite-deformation plasticity model for structured soils and
weak rocks, based on the multiplicative decomposition of the deforma-
tion gradient and on the adoption of a suitable free energy function to
describe the elastic response of the material.

The details of the constitutive equations of the model are summa-
rized in Appendix A. The model is equipped with two scalar internal
variables, the preconsolidation pressure 𝑃𝑠, which accounts for the
hardening/softening effects due to volumetric and deviatoric plastic
strains, and the bond strength 𝑃𝑡, which quantifies, from a macroscopic
point of view, the effects of material fabric and interparticle bonding.
The representation of the yield surface in the Kirchhoff principal stress
space and in the Kirchhoff stress invariants plane 𝑄: 𝑃 , is provided in
Fig. 1.

Fig. 1b allows to highlight the role played by the preconsolidation
pressure 𝑃𝑠 and the bond strength 𝑃𝑡 in controlling the size of the
elastic domain. The bond strength accounts for a net increase of the
isotropic yield stress in compression (by a quantity 𝑘𝑃𝑡, with 𝑘 a
material constant) as compared to the unstructured soil, and for the
development of a true tensile strength, quantified by the intercept of
the yield surface with the positive 𝑃 axis at 𝑃 = −𝑃𝑡.

In order to provide a characteristic length scale to the constitu-
tive equation, with the objective of regularizing the numerical solu-
tion in presence of strain localization, the integral non-local approach
of Bažant et al. (1984) was adopted, in which the internal variables are
treated as non-local, spatially averaged quantities over a neighborhood
𝛺 of the material point, see Appendix B. The size of this neighborhood
is controlled by a material constant, 𝓁𝑐 , known as characteristic length.

As shown in Appendices A and B, the FD_Milan model is fully
characterized by 17 material constants with a clear role in controlling
3

Table 1
Sets of material constants adopted in the PFEM simulations.

Set #1 Set #2 Note

𝜅̂ (–) 0.03 0.03

Elastic constants𝐺0 (kPa) 3000.0 3000.0
𝛼 (–) 0.0 0.0
𝑃𝑟 (kPa) 60.0 60.0

𝑀𝑓,𝑐 (–) 1.1 1.1
Yield function constants𝛼𝑓 (–) 0.75 0.75

𝜇𝑓 (–) 1.5 1.5

𝑀𝑔,𝑐 (–) 1.1 1.1
Plastic potential constants𝛼𝑔 (–) 0.75 0.75

𝜇𝑔 (–) 1.5 1.5

𝜌𝑠 (–) 12.5 12.5

Hardening rules constants
𝜌𝑡 (–) 5.0 5.0
𝜉𝑠 (–) 0.0 0.0
𝜉𝑡 (–) 1.0 2.0
𝑘 (–) 5.0 5.0

𝑘ℎ (m2/s/kPa) 1.0e−8 1.0e−8 Hydraulic conductivity

𝓁𝑐 (m) Variable Variable Characteristic length

the different features of the constitutive equations. These constants are
summarized in Table 1. The first group of constants (𝜅̂, 𝐺0, 𝛼 and
𝑃𝑟) define the hyperelastic behavior of the material. The shapes of the
yield function 𝑓 and of the plastic potential 𝑔 are controlled by the
second and third groups of constants (𝑀𝑓,𝑐 , 𝛼𝑓 , 𝜇𝑓 and 𝑀𝑔,𝑐 , 𝛼𝑔 , 𝜇𝑔).
The constants controlling the evolution of the internal variables 𝑃𝑠 and
𝑃𝑡 with plastic deformations are provided by the fourth group. Finally,
the quantities 𝑘ℎ and 𝓁𝑐 represent the hydraulic permeability and the
characteristic length of the material.

3. Outline of GPFEM

In the application of GPFEM to fully saturated soils, the balance
equations of mass and (quasi-static) linear momentum are cast in an
updated Lagrangian description, i.e., all variables are assumed to be
known in the current configuration at time 𝑡. A domain discretization is
required in order to solve the governing equations with the standard FE
method. As the quality of the numerical solution depends on the chosen
spatial discretization, in PFEM the mesh is refined by performing a re-
triangulation of the domain when needed, typically in regions with high
deformation gradients.

Central to the method is the possibility of performing very efficient
mesh re-triangulation and refinement using ℎ — adaptive techniques
based on extended Delaunay tessellation and mesh smoothing. Low
order elements – linear triangles in 2d and linear tetrahedra in 3d
– are used in GPFEM due to their simplicity and low computational
cost. To avoid locking problems typical of low-order elements and
instabilities associated to the equal order of approximation for both
displacement and pore pressure fields, the mixed 𝒖−𝛩−𝑝 formulation
𝑤
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Table 2
Physical and index properties of Eastern Osaka clay.
Source: Data from Adachi et al. (1995).

Specific solid density 𝛾𝑠∕𝛾𝑤 2.67–2.703
Natural water content 𝑤0 65%–72%
Liquid limit 𝑤𝐿 69.2–75.1%
Plastic limit 𝑤𝑃 24.5–27.3%
Plasticity index 𝐼𝑝 41.9–50.6%
Activity 𝐴 0.54
Clay fraction 44%
Silt fraction 49%
Sand fraction 7%

of Monforte et al. (2017b) for coupled deformation and flow problems
in porous media is adopted. In the formulation of the relevant balance
equations, a stabilization term is added to the weak form of the
volumetric deformation balance equation, according to the Polynomial
Pressure Projection (PPP) method (Dohrmann and Bochev, 2004), while
the Fluid Pressure Laplacian stabilization technique (FPL, Truty and
Zimmermann, 2006) is used to address the stability problems associated
to the failure to meet the Inf-Sup conditions of standard linear triangles
or tetrahedra with equal order of approximation for displacements and
pore water pressures.

4. Calibration of the model for a natural soil: the Osaka clay

4.1. Main characteristics of Osaka clay

For the present study, Eastern Osaka clay, studied by Adachi et al.
(1995) and reported in this work simply as ‘‘Osaka clay’’, was chosen
as a representative soft natural fine-grained soil displaying the typical
behavior of structured clays. Osaka clay is a natural Pleistocene silt
with clay deposit with a thickness varying between 15 and 20 m, found
in Tsurumi, East Osaka. The main physical and index properties of the
soil are summarized in Table 2.

During its geological history, Osaka clay has undergone a cation
leaching process, which resulted in the substitution of part of the
sodium (Na+) ions with hydrogen (H+). This process is responsible
for its significant sensitivity, quantified by an 𝑆𝑡 value of about 10,
as measured in laboratory vane tests. The observed sensitivity can be
interpreted as a manifestation of the presence of structure in the natural
soil, which is confirmed by the experimental evidence obtained from
both oedometric tests (e.g., post-yield compression curve displaying
an initial high compressibility, which reduces with increasing volu-
metric deformations) and undrained triaxial compression tests (e.g.,
brittle behavior at failure during the deviatoric compression stage), see,
e.g., Leroueil and Vaughan (1990).

4.2. Experimental results used in the calibration

A large experimental investigation campaign was conducted on
Eastern Osaka clay for the construction of a subway tunnel in the
Tsurumi district, as reported in detail by Adachi et al. (1995). Undis-
turbed, high-quality block and tube samples of the clay were used to
perform a wide spectrum of laboratory test, including triaxial uncon-
fined compression (TX-UU) tests, oedometric (OED) tests, isotropically
(I) and anisotropically (A) consolidated triaxial compression (TX-C) and
extension (TX-E) undrained (U) tests.

For the purposes of the present work, the calibration of the FD_Milan
model was carried out considering the limited set of laboratory tests
reported in Table 3. In particular, our interest was focused on: (a) oe-
dometric compression tests on both natural and reconstituted samples,
to quantify the initial level of soil structure and its evolution with accu-
mulated plastic deformations along stress paths which do not lead the
soil to shear failure; (b) undrained TX compression tests on isotropically
consolidated specimens at two levels of initial mean effective stress; (c)
4

Table 3
Set of laboratory tests used for the calibration of the FD_Milan model.

Test Test Soil 𝑝0 𝑒0 𝑝𝑠0 𝑝𝑡0
ID type state (kPa) (–) (kPa) (kPa)

– OED Natural – 1.80 30.0 10.0
– OED Reconstituted – 1.80 10.0 0.0
TS5–1 TX–CIU Natural 78.4 1.85 20.0 10.0
TS5–4 TX–CIU Natural 39.2 1.79 15.0 10.0
TS5–8 TX–EIU Natural 78.4 1.73 20.0 10.0
TS5–9 TX–EIU Natural 39.2 1.70 20.0 10.0

undrained TX extension tests on isotropically consolidated specimens at
two levels of initial mean effective stress. Given the isotropic nature of
the constitutive model adopted in this study, in the calibration process
we did not consider anisotropically consolidated TX test results, nor the
results obtained from horizontally trimmed samples.

Since the experimental data used for the calibration were inter-
preted assuming homogeneous deformation of the specimen during the
test, the available information does not allow to calibrate the character-
istic length 𝓁𝑐 of the soil. Moreover, as the test interpretation was done
without considering geometric non-linearity effects, the simulations of
the test results were performed assuming infinitesimal deformations.

4.3. Determination of the elastic properties

The elastic compressibility coefficient 𝜅̂ was estimated from the re-
sults of the oedometric test performed on the reconstituted soil. In fact,
this quantity can be related to the swelling coefficient 𝐶∗

𝑠 , measured
as the slope of the unloading-reloading branch of the compressibility
curve, via the relation 𝜅̂ ≃ 0.434𝐶∗

𝑠 ∕(1 + 𝑒0). The value of 𝜅̂ thus
obtained is reported in Table 1.

In lack of experimental evidence of elastic volumetric/deviatoric
coupling, the coefficient 𝛼 was set equal to zero. Under this assumption,
the hyperelastic model is characterized by a constant shear modulus 𝐺0
and by an apparent pressure-dependent bulk modulus 𝐾, provided by
the following relation (see Oliynyk et al., 2021):

𝐾 =

⎧

⎪

⎨

⎪

⎩

𝑝
𝜅̂

if 𝑝 ≥ 𝑝𝑟
𝑝𝑟
𝜅̂

otherwise
(1)

According to Eq. (1), the bulk modulus is proportional to the mean
Cauchy effective stress 𝑝, down to a lower threshold value set by 𝑝𝑟.

The shear modulus value 𝐺0 was calibrated from the initial portion
of the stress/strain curves of the tests TS5–1, TS5–4, TS5–8 and TS5–9,
as:

𝐺0 =
𝑞
3𝜖𝑠

=
𝑞

3 |
|

𝜖𝑎||

ince in isochoric deformation processes 𝜖𝑠 = 𝜖𝑎. The value of 𝐺0 =
000 kPa was found to provide a good match between model predic-
ions and experimental data from both TX compression and extension
ests, see Table 1.

Finally, the adopted value of the reference pressure 𝑝𝑟 was chosen
y assuming that the apparent Poisson’s ratio 𝜈app, provided by the
elation:

app ∶=
3𝐾 − 2𝐺0
6𝐾 + 2𝐺0

attains its minimum value 𝜈app = 0 at the threshold 𝑝 = 𝑝𝑟. The
corresponding value of 𝑃𝑟, in terms of Kirchhoff mean stress (positive
in compression), is listed in Table 1.
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Fig. 2. Yield points obtained from isotropically consolidated triaxial compression and
extension tests (red dots) and limit state surface identified by Adachi et al. (1995)
(green area).

4.4. Determination of yield surface and plastic potential constants

In the work of Adachi et al. (1995), Fig. 20 report the collection
of yield points observed in different testing conditions, as well as the
region identified as ‘‘limit state surface’’. This data, reproduced in
Fig. 2, was used as a starting point for the evaluation of the yield
function constants 𝑀𝑓,𝑐 , 𝛼𝑓 and 𝜇𝑓 .

The yield surface obtained with the values of these constants re-
ported in Table 1, assuming 𝑝𝑡 = 16 kPa, 𝑝𝑠 = 20 kPa and 𝑝𝑚 = 80 kPa,
is plotted in Fig. 2 with a full black line. Note that, in the figure, the
values of the (non-negative) deviatoric stress 𝑞 for triaxial extension
states are multiplied by sin(3𝜃) = −1, as done in Adachi et al. (1995)
for a more clear representation of experimental data. Overall, the model
yield surface appears to reproduce reasonably well the available exper-
imental evidence. Due to the assumption of material isotropy, the yield
surface cannot capture the slight rotation of Adachi et al. (1995) limit
state surface, originated by the anisotropic compression experienced
during the soil deposition. Also, the yield points determined from TX
extension tests appear to overshoot the yield surface by a significant
amount. However, as the mobilized friction angles computed at these
yield states appear very large and quite unrealistic, there is reason to
believe that the peak stress reached in TX extension tests are not fully
reliable.

As for the plastic potential, in lack of accurate experimental data
on either soil dilatancy or excess pore water pressure evolution with
deviatoric strains during the shearing stages of the TX tests, we assumed
that the plastic flow is associated, and therefore:

𝑀𝑔,𝑐 =𝑀𝑓,𝑐 𝛼𝑔 = 𝛼𝑓 𝜇𝑔 = 𝜇𝑓

see Table 1.

4.5. Determination of the hardening constants

The constant 𝜌𝑠 controls the evolution of the preconsolidation pres-
sure 𝑃𝑠 with accumulated plastic volumetric and deviatoric deforma-
tions. It can be related to the compressibility constants 𝜆̂ and 𝜅̂ of the
5

Fig. 3. Oedometric test on natural Eastern Osaka clay: comparison between ex-
perimental and predicted compression curves on the 𝑒: log10(𝜎𝑧∕𝜎𝑧0), with 𝜎𝑧0 =
98 kPa.

reconstituted soil, measured in ln(1 + 𝑒): ln(𝑝) plane, by the relation:

𝜌𝑠 =
1

𝜆̂ − 𝜅̂

The value of 𝜆̂ was estimated from the results of the oedometric test
performed on the reconstituted soil, by the relation 𝜆̂ ≃ 0.434𝐶∗

𝑐 ∕(1 +
𝑒0), where 𝐶∗

𝑐 is the virgin compression coefficient of the normally
consolidated reconstituted soil in oedometric compression, as measured
in 𝑒: log(𝜎𝑎) plots. The value of 𝜌𝑠 thus obtained is reported in Table 1.
In order to incorporate the concept of critical state for the completely
destructured material, the internal variable 𝑃𝑠 must be characterized
by pure volumetric hardening. This is achieved by setting the constant
𝜉𝑠 to zero.

The hardening constants controlling the destructuration process, 𝜌𝑡
and 𝜉𝑡 were calibrated by fitting the oedometric compressibility curve
of the natural soil in the fully plastic regime, and the stress–strain
curves of undrained TX compression tests performed at different initial
mean effective stress on the natural soil. The shape of the oedometric
compression curve of the natural soil, in the 𝑒: log(𝜎𝑎) plane, is mainly
controlled by 𝜌𝑡. The constant 𝜉𝑡 affects significantly the post-peak
response observed in undrained TX tests, where deviatoric plastic de-
formations are prevailing over the plastic volumetric deformations. The
values of 𝜌𝑡 thus obtained is reported in Table 1. The two values of 𝜉𝑡
identified in the calibration, which provide the lower and upper bounds
to the observed response of the soil during the deviatoric compression
stage, are reported in Table 1.

4.6. Comparison between experimental data and model predictions

To assess the quality of the calibration process, the comparison
between model predictions and the experimental data from the tests
of Table 3 is shown in Figs. 3–7. The initial values of the internal
variables, 𝑃𝑠0 = 𝑝𝑠0 and 𝑃𝑡0 = 𝑝𝑡0, were set as indicated in Table 3. All
the simulations were performed with both sets of constants reported in
Table 1.

Fig. 3 shows the comparison between the experimental and pre-
dicted compression curves in the 𝑒 ∶ log10(𝜎𝑧∕𝜎𝑧0) obtained in the
oedometric test performed on natural Osaka clay. The model predic-
tions captures well the curved shape of the post-yield compression
part of the test and the slope of the unloading–reloading curve. The
discrepancy observed in the void ratio values between the experimental
and the predicted virgin loading branch after the axial stress cycle is
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Fig. 4. Undrained triaxial compression test TS5–1 on natural Eastern Osaka clay: comparison between experimental data and predicted results in (a) 𝑞: 𝜖𝑎 plane, and (b) 𝑞: 𝑝
plane.
the result of a permanent reduction of void ratio accumulated during
the unloading–reloading path. This results in a downward shift of the
virgin compression curve, which cannot be captured by the hyperelas-
tic response of the model upon unloading–reloading. The comparison
between the simulations performed with the two sets of constants
indicates that the effect of 𝜉𝑡 on the model response is relatively
limited for this particular loading condition. This justifies a posteriori
the assumption made in the calibration process that the shape of the
oedometric compression curve is mainly controlled by 𝜌𝑡.

The results of the triaxial compression test TS5–1 on natural Eastern
Osaka clay are plotted together with the model predictions in Fig. 4.
In particular, Fig. 4(a) shows the measured and predicted stress–strain
curves of the material in the 𝑞: 𝜖𝑎 plane, while the corresponding
undrained stress paths are shown in Fig. 4(b) in the 𝑞: 𝑝 plane. In
test TS5–1, the mean effective stress at the beginning of the deviatoric
loading stage is 78.4 kPa (see Table 3), very close to the isotropic yield
stress. The material is therefore almost ‘‘normally consolidated’’. The
response of the material in the undrained deviatoric loading stage is
characterized by the development of positive excess pore water pres-
sures, which cause the stress path to bend to the left as the deviatoric
stress 𝑞 increases. Differently from unstructured virgin soils, 𝑞 does
not attain its maximum value at large deformations upon reaching
critical state conditions. Rather, a peak in 𝑞 is observed at relatively
small strains, followed by a reduction towards the final critical state
conditions. This is the result of the progressive destructuration of the
natural soil, mainly due to the accumulated plastic deviatoric defor-
mations. The model captures this behavior accurately, both from a
qualitative and a quantitative point of view. Under undrained shear-
ing, plastic deviatoric strains are much larger than plastic volumetric
strains; therefore the effects of the constant 𝜉𝑡 on the model predictions
are more significant than in the case of one-dimensional compression.
The larger value of 𝜉𝑡 seems to capture better the post-peak response of
the soil. However, it must be observed that care must be exercised in
considering the measurements done in the post-peak part of the test as
an actual feature of the material response, since there is no guarantee
that, in this regime, the stress and strain fields are not affected by the
spontaneous formation of shear bands within the specimen (see, e.g.,
Vardoulakis and Sulem, 1995).

The results of the triaxial compression test TS5–4 on natural Eastern
Osaka clay are plotted together with the model predictions in Fig. 5,
where Fig. 5(a) shows the measured and predicted stress–strain curves
of the material in the 𝑞: 𝜖𝑎 plane, while the corresponding undrained
stress paths are shown in Fig. 5(b) in the 𝑞: 𝑝 plane. In this test, the
mean effective stress at the beginning of the deviatoric loading stage
is 39.2 kPa (see Table 3), which is slightly less than half the isotropic
yield stress. This specimen can therefore be considered as slightly over-
consolidated. As expected, the stress–strain response of the material is
characterized by a peak deviatoric stress, reached at relatively small
strains, followed by a softening response with a significant reduction
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of 𝑞 towards the end of the test. This softening is accompanied by a
significant increase in pore water pressure – see the descending branch
of the stress path in Fig. 5(b) – which is the result of a clear tendency
of the solid skeleton to develop contractant plastic volumetric deforma-
tions. Again, this is a consequence of the progressive destructuration
taking place in the specimen during the deviatoric loading stage. The
model captures well the observed behavior, both from a qualitative and
a quantitative point of view.

The results of undrained triaxial extension tests TS5–8 (𝑝0 = 78.4
kPa) and TS5–9 (𝑝0 = 39.2 kPa) are compared with model predictions
in Figs. 6 and 7, respectively. In the representation of the test results,
the deviatoric stress 𝑞 is assumed negative in extension, following the
same convention discussed in the representation of the yield states in
Fig. 2. The comparison between model prediction and experimental
observations for test TS5–8 is relatively good until 𝜖𝑎 ≃ −0.01, when
the predicted stress–strain curves show a (negative) peak in 𝑞. After
this axial strain level, the model predictions show – as expected – a
slight reduction in the deviatoric stress caused by the progressive loss
of structure of the material. The observed material response, however,
is characterized by a monotonically decreasing evolution of 𝑞 as 𝜖𝑎
decreases, with the peak (negative) deviatoric stress reached at very
large strain levels. The same qualitative observations can be made for
the comparison between model predictions and experimental observa-
tions for test TS5–9, for which the differences between the calculated
and measured stress–strain curves and stress paths are even larger. This
is certainly a consequence of some model limitations, in particular of
the assumption of material isotropy. However, the observed discrep-
ancy may be, at least in part, attributed to some inaccuracies in the
experimental data which, for both extension tests, cannot be considered
as fully reliable, for the following two main reasons. First, it appears
unlikely that the destructuration process which should certainly have
occurred in these tests did not result in the progressive reduction of the
deviatoric stress and the mobilized friction angle as the axial deforma-
tions increased in absolute value. Second, the mobilized friction angles
corresponding to the measured value of the 𝑞∕𝑝 ratio at the end of both
tests are unrealistically high, exceeding 55 degrees in both cases.

Considering all the results presented in this section, we can conclude
that the calibration process leading to the two sets of material constants
reported in Table 1 is satisfactory, and that both sets are capable of
providing quantitatively good predictions of the behavior of Osaka clay,
within the limits of the constitutive assumptions made in the develop-
ment of the FD_Milan model. In the PFEM simulations described in the
following Sections 5 and 6, the choice was made to adopt the set #2 of
material constants to characterize the Osaka clay behavior because it
captures slightly better the softening effects due to accumulated plastic
deviatoric strains, which are expected to dominate the kinematics of
soil deformation around the cone tip in almost undrained conditions.
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Fig. 5. Undrained triaxial compression test TS5–4 on natural Eastern Osaka clay: comparison between experimental data and predicted results in (a) 𝑞: 𝜖𝑎 plane, and (b) 𝑞: 𝑝
plane.
Fig. 6. Undrained triaxial extension test TS5–8 on natural Eastern Osaka clay: comparison between experimental data and predicted results in (a) 𝑞: 𝜖𝑎 plane, and (b) 𝑞: 𝑝 plane.
Fig. 7. Undrained triaxial extension test TS5–9 on natural Eastern Osaka clay: comparison between experimental data and predicted results in (a) 𝑞: 𝜖𝑎 plane, and (b) 𝑞: 𝑝 plane.
5. PFEM simulations of CPTu tests

A series of PFEM simulations of CPTu tests in saturated Osaka clay
– calibrated as discussed in the previous Section 4 – was performed to
investigate the effects of the characteristic length, 𝓁𝑐 , adopted for the
soil and of its initial bond strength, 𝑃𝑡0.

All the PFEM simulations were performed as fully coupled hy-
dromechanical problems, adopting the mixed 𝒖 − 𝛩 − 𝑝𝑤 formulation
of Monforte et al. (2019) and the set # 2 of material constants of
Table 1.

The geometry of the problem is shown in Fig. 8. A standard
piezocone, with radius 𝑅 = 1.78 cm and a cone tip angle of 60◦ is
inserted in a cylindrical calibration chamber, with radius 𝐵 = 0.7 m
and height 𝐻 = 1.0 m, filled with fully saturated soil. In the PFEM
simulations, the problem is modeled as axisymmetric.
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In all the simulations, the piezocone is wished-in-place at an initial
elevation 𝑧0 = 0.0 m (0.1 m below the top surface of the soil layer)
and then displaced downwards at a constant penetration speed of
2.0 cm/s, up to an elevation 𝑧 ≃ −20𝑅. At any penetration depth,
the cone resistance 𝑞𝑐 is computed as the ratio 𝐹𝑐∕𝐴𝑐 between the
resultant force acting at the base of the cone, 𝐹𝑐 , and the cone base
area, 𝐴𝑐 = 𝜋𝑅2. The piezocone is equipped with two pore pressure
probes, located as shown in Fig. 8, where the excess pore pressure
𝛥𝑢 induced in the soil by the deformation process is calculated as the
cone advances. The piezocone tip and its lateral surface are modeled as
rigid, impervious surfaces, and a smooth contact interface with the soil
is employed to simulate the piezocone-soil interaction. This assumption
allows to increase significantly the computational efficiency in the
simulations, and is supported by the observations made by Boschi et al.
(2024), who report that the effect of cone-soil interface friction on the
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Fig. 8. Geometry of the CPTu test simulations with assumed boundary conditions.

computed value of the cone resistance are very small, for both coarse-
and fine-grained soils.

Given the relatively small dimensions of the calibration chamber,
the self weights of the pore water and of the soil was ignored and the
initial pore water pressure was assumed uniform and equal to zero.

The boundary conditions adopted for the soil deformation and the
pore water flow are summarized in Fig. 8. Zero horizontal displace-
ments and water flow were assumed on the symmetry axis da. The
bottom surface ab was considered as rigid and perfectly rough. The
lateral surface bc was assumed as rigid and perfectly smooth. At the top
surface of the soil body, cd, a constant and uniform normal pressure
𝑞0 = 100 kPa was applied. A constant pore water pressure 𝑢 = 0
was imposed at both the top and bottom surfaces, while the lateral
surface was considered as impervious. Consistent with these boundary
conditions, the initial Cauchy effective stress in the soil mass was
assumed axisymmetric, with components 𝜎𝑧 = 100 kPa and 𝜎𝑟 = 𝐾0𝜎𝑧,
in which 𝐾0 = 0.6. The initial value of the preconsolidation pressure 𝑃𝑠0
was set to 120 kPa in all the simulations, while three different initial
values were considered for the bond strength 𝑃𝑡0, see Table 4.

The complete program of the PFEM simulations is detailed in Ta-
ble 4. The selected values of 𝓁𝑐 range from a relatively small fraction
of the cone radius (14%), to a 3 times larger one (42%). The chosen
values for 𝑃𝑡0 provide a large range of different initial soil structures,
going from strong (𝑃𝑡0 = 60 kPa) to medium (𝑃𝑡0 = 30 kPa) to weak (𝑃𝑡0
= 5 kPa), respectively. The simulations took CPU times ranging from
about 20 to 79 h on a laptop computer with an AMD Ryzen 7 processor,
depending on the assumed value of 𝓁𝑐 (which controls the final number
of elements in the mesh) and on the number of CPUs used (2 or 4).

6. Discussion of results

6.1. Time evolution of selected field variables

The evolution of some selected field variables with space and time
is presented in the following in the form of a series of contour maps
evaluated at different time stations, namely 𝑡 = 5, 9, 12 and 15 s,
8

Table 4
Program of PFEM simulations of CPTu tests on Osaka clay.

Test # 𝓁𝑐∕𝑅 𝑃𝑠0 𝑃𝑡0
(–) (kPa) (kPa)

r102 0.14 120.0 60.0
r103 0.14 120.0 30.0
r104 0.14 120.0 5.0
r202 0.28 120.0 60.0
r203 0.28 120.0 30.0
r204 0.28 120.0 5.0
r302 0.42 120.0 60.0
r303 0.42 120.0 30.0
r304 0.42 120.0 5.0

corresponding to normalized penetration depths (𝑧 − 𝑧0)∕𝑅 equal to
5.62, 10.11, 13.48 and 16.85, respectively.1

Accumulated plastic deviatoric deformation
The contour maps of the accumulated plastic deviatoric deforma-

tion, 𝐸𝑝𝑠 , are shown in Figs. 9 and 10 for some selected simulations.
The first figure refers to the results of simulations r102 and r302,
performed with the same initial bond strength (𝑃𝑡0 = 60 kPa) and the
two extreme values of the normalized characteristic length (𝓁𝑐∕𝑅 =
0.14 and 0.42, respectively). The second figure refers to the results
of simulations r102 and r104, performed with the same value of the
normalized characteristic length (𝓁𝑐∕𝑅 = 0.14) and the two extreme
values of the initial bond strength (𝑃𝑡0 = 60 and 5 kPa, respectively).

By looking at the results on the top row of Fig. 9, it can be
noted that the plastic deviatoric strain field is characterized by clearly
visible localization zones, in the form of shear bands, which originate in
correspondence of the piezocone sleeve and then propagate downwards
until they reach the cone axis well below the cone tip. As the cone
advances, the zone of soil between the tip and the shear band is
deformed until the shear band is incorporated within this region and
disappears. At the same time, a new shear band is initiated at the cone
flank and the localized deformation mechanisms is replicated again
over and over. It is worth noting that, in this case, the evolution of
the deviatoric deformation field is not stationary around the advancing
cone tip, as it is assumed in some CPTu modeling approaches based on
the theory of cavity expansion (Salgado et al., 1997; Salgado and Prezzi,
2007; Suzuki and Lehane, 2015) or on the Strain Path Method (Baligh,
1985; Teh and Houlsby, 1991).

As the characteristic length scale increases, as seen in the results of
the bottom row of Fig. 9, the pattern of the deviatoric plastic strain
is significantly different. At the same penetration depths, the plastic
region still shows some faint hint of strain localization close to the
piezocone sleeve, but the deformations below the cone evolve in a
much more regular fashion. This is a consequence of the fact that the
shear band width increases with 𝓁𝑐 , as shown by Oliynyk et al. (2022).
With the value of 𝓁𝑐∕𝑅 adopted in simulation r302 the thickness of the
eventual shear bands is a significant fraction of the cone radius, and
therefore the bands are almost undetectable.

The effect of the initial bond strength on the accumulated plastic
deviatoric deformations is shown in Fig. 10, where the results of
simulation r102 on a strongly structured clay (𝑃𝑡0 = 60 kPa, top row in
the figure) are compared with those of simulation r104, performed with
the same characteristic length but assuming a much smaller initial bond
strength (𝑃𝑡0 = 5 kPa, bottom row in the figure). While the magnitude
of 𝐸𝑝𝑠 appears comparable, the most notable difference between the
two simulations is that, as the cone penetration progresses, no clear
strain localization is visible in the results of simulation r104. This is
most likely a consequence of the smaller amount of softening associated

1 Selected animations of the results obtained in simulation r102 are
provided as supplementary material, see Appendix C.
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Fig. 9. Contour maps of accumulated plastic deviatoric strain 𝐸𝑝
𝑠 at different time stations, for simulation r102 (𝓁𝑐∕𝑅 = 0.14) and r302 (𝓁𝑐∕𝑅 = 0.42), with 𝑃𝑡0 = 60 kPa.
to the debonding process experienced by the weakly structured soil as
compared to the strongly structured one. This, in turns, yields a higher
plastic modulus and reduces the likelihood of meeting the bifurcation
condition which triggers the localization of deformations into shear
bands (see, e.g., Vardoulakis and Sulem, 1995).

Jacobian determinant of the deformation
In all the simulations of the CPTu tests, a relatively large value of

the hydraulic conductivity 𝑘ℎ was adopted to account for the presence
of a large silt fraction (see Table 2). A consequence of this assumption
is that the local deformation process around the advancing cone tip
may not occur in fully undrained (isochoric) conditions, and some
local drainage may occur between contracting and dilating zones, as
observed by Paniagua et al. (2013) in a small scale experiment on silty
soil.

To investigate this aspect, the contour maps of the Jacobian deter-
minant of the deformation, 𝐽 , are plotted in Figs. 11 and 12 for some
selected simulations. In both figures, the sign convention of continuum
mechanics is adopted, in which a value of 𝐽 < 1 indicates contraction
while 𝐽 > 1 denotes dilation. Fig. 11 shows the results of simulations
r102 and r302, performed with the same initial bond strength (𝑃𝑡0 =
60 kPa) and the two extreme values of the normalized characteristic
length (𝓁𝑐∕𝑅 = 0.14 and 0.42, respectively). Fig. 12 shows the results
of simulations r102 and r104, performed with the same value of the
normalized characteristic length (𝓁𝑐∕𝑅 = 0.14) and the two extreme
values of the initial bond strength (𝑃𝑡0 = 60 and 5 kPa, respectively).

The results on the top row of Fig. 11, obtained with the smallest
value of the normalized characteristic length, show that contractant
9

and dilatant zones can be clearly identified in the soil around the cone
tip. It is worth noting that the shape and size of these zones tend to
follow the pattern of shear localization observed for 𝐸𝑝𝑠 in the same
simulation (see Fig. 9). In particular, the contractant zones below the
cone base almost coincide with the observed shear bands, indicating
that the localized shear deformation is accompanied by a permanent
reduction in volume (contractant shear band). On the contrary, a small
dilation is observed in both the regions between the shear bands and in
a relatively large zone of soil outside the outermost shear band. Close
to the piezocone shaft, as expected, a significant volume contraction is
observed in a radially symmetric region with thickness of about one
radius 𝑅, while the soil outside experience a small dilation up to a
distance of about 6𝑅.

The effect of the characteristic length scale on volumetric defor-
mations can be assessed by comparing the results of simulation r102
with those of simulation r302, shown in the bottom row of Fig. 11,
obtained with the largest value of the normalized characteristic length.
In this last case, the pattern of the Jacobian field 𝐽 around the cone tip
is quite different from the one observed for the smallest 𝓁𝑐∕𝑅 value.
However, in this case it is possible to identify clearly the presence
of alternate compaction and dilation zones, closer to the cone surface
than in the previous case. While the contour maps of 𝐸𝑝𝑠 did not show
any substantial evidence of shear localization for r302, the volumetric
deformations show that localization does indeed take place even for
𝓁𝑐∕𝑅 = 0.42, but in the form of compaction bands.

In Fig. 12, the effect of the initial bond strength on the Jacobian
of the deformation is explored by comparing the results of simulation
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Fig. 10. Contour maps of accumulated plastic deviatoric strain 𝐸𝑝
𝑠 at different time stations, for simulation r102 (𝑃𝑡0 = 60 kPa) and r104 (𝑃𝑡0 = 5 kPa), with 𝓁𝑐∕𝑅 = 0.14.
r102 (𝑃𝑡0 = 60 kPa, top row) with those of simulation r104, adopting
the same characteristic length but assuming a much smaller initial
bond strength (𝑃𝑡0 = 5 kPa, bottom row). For the weakly structured
soil, no significant evidence of the presence of localized volumetric
deformations can be observed. The Jacobian field around the advancing
cone tip is much more regular and the contour maps tend to follow the
piezocone shape. Again, this could be attributed to the smaller amount
of softening associated to the debonding process experienced by the
weakly structured soil, which reduces the likelihood of triggering the
formation of compaction bands.

Bond strength degradation
An important aspect of CPTu modeling in structured soils is that the

large deformations induced by the cone penetration process are likely
to be associated to significant destructuration effects in the region of
soil close to the piezocone tip and shaft.

For the Osaka clay soil, this aspect is investigated in Figs. 13 and
14, which show the contour maps of bond strength, 𝑃𝑡 for some selected
simulations. The results of simulations r102 and r302, performed with
the same initial bond strength (𝑃𝑡0 = 60 kPa) and the two extreme
values of the normalized characteristic length (𝓁𝑐∕𝑅 = 0.14 and 0.42,
respectively) are displayed in Fig. 13. Fig. 14 provides the results
of simulations r102 and r104, performed with the same value of the
normalized characteristic length (𝓁𝑐∕𝑅 = 0.14) and the two extreme
values of the initial bond strength (𝑃 = 60 and 5 kPa, respectively).
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𝑡0
From the results of the simulation in the top row of Fig. 13, per-
formed with the smallest characteristic length, it can be observed that
the destructuration process going on around the advancing piezocone is
indeed quite strong. Almost complete degradation of the bond strength
is occurring in a zone of soil which extends below the cone tip by 2–3
times the cone radius 𝑅, and laterally by about one cone radius from
the piezocone shaft. As expected, the geometry of the destructured soil
regions closely follow the pattern of shear bands observed in Fig. 9,
where the amount of accumulated plastic deformation is maximum.
The comparison of the snapshots corresponding to the different pene-
tration depths allow to visualize clearly the progressive formation and
propagation of the localization zones with time.

In the case at hand, the destructuration process is mainly associated
to distortional plastic deformations which are much larger in absolute
value than the volumetric deformations. Therefore, when the charac-
teristic length scale increases, as in simulation r302 (bottom row of
Fig. 13), the pattern of bond strength is much more regular, reflecting
the absence of localized shear deformations observed in Fig. 9. This
result is similar to the one obtained by Hauser and Schweiger (2021)
in their PFEM simulations of CPTu tests in clay, performed with a non-
local version of the CASM model, adopting normalized characteristic
length values in the range between 0.27 and 0.40.

The lack of clearly apparent localized deformation zones in the
simulation r104, performed with a low initial bond strength, gives rise
to a similar pattern of soil destructuration around the piezocone tip
and shaft, as shown in the bottom row of Fig. 14. In this case the size
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Fig. 11. Contour maps of Jacobian determinant 𝐽 at different time stations, for simulation r102 (𝓁𝑐∕𝑅 = 0.14) and r302 (𝓁𝑐∕𝑅 = 0.42), with 𝑃𝑡0 = 60 kPa. In the figure, 𝐽 is
represented using the solid mechanics convention (𝐽 > 1 for dilation).
of the fully destructured region extends laterally a little bit further, as
compared to that of simulation r102 (top row of the same figure).

Excess pore water pressures
Despite of the relatively high permeability adopted for the soil, the

penetration process induces significant excess pore pressures in the
soil region close to the advancing cone tip. In actual CPTu tests, this
quantity can be monitored at two different positions along the cone
surface (probes 1 and 2 in Fig. 8).

Figs. 15 and 16 show the contour maps of the excess pore water
pressure, 𝛥𝑢, for some selected simulations.2 As for the other field vari-
ables considered, the results of simulations r102 and r302, performed
with the same initial bond strength (𝑃𝑡0 = 60 kPa) and the two extreme
values of the normalized characteristic length (𝓁𝑐∕𝑅 = 0.14 and 0.42,
respectively) are displayed in Fig. 15. Fig. 16 provides the results
of simulations r102 and r104, performed with the same value of the
normalized characteristic length (𝓁𝑐∕𝑅 = 0.14) and the two extreme
values of the initial bond strength (𝑃𝑡0 = 60 and 5 kPa, respectively).

Fig. 15 shows the effects of the adopted characteristic length on
the computed excess pore pressures. For both simulations r102 (top

2 Note that, in both figures, the continuum mechanics sign convention
(compression negative) is adopted in the representation of 𝛥𝑢.
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row) and r302 (bottom row), the minimum (compressive) excess pore
pressure is obtained at the cone surface-soil interface, approximately at
the position of probe 1. The shape and size of the contours are also quite
similar and change relatively little with advancement depth and with
𝓁𝑐∕𝑅. Differently from the deformation and bond strength fields, no
evidence of concentration of 𝛥𝑢 into thin zones is apparent, even in the
case of simulation r102, due to local pore pressure diffusion effects. The
most significant differences in the two cases reported in the figure are:
the magnitude of positive excess pore pressures (associated to dilation)
detected in a small region around the cone axis ahead of the cone tip,
much higher in the case of the smaller characteristic length; and in the
size of the zone characterized by large compressive values of 𝛥𝑢 at the
cone flank, which is wider in the case of the larger characteristic length.

The effect of the initial bond strength on the excess pore water
pressure is shown in Fig. 16, where the results of simulation r102,
with 𝑃𝑡0 = 60 kPa (top row) are compared with those of simulation
r104, performed with the same characteristic length but assuming a
much smaller initial bond strength (𝑃𝑡0 = 5 kPa, bottom row).

While the shape and position of the contours of excess pore pressure
are similar for both values of 𝑃𝑡0 considered, the striking difference is
in the respective range of values for 𝛥𝑢. In particular, the minimum
(compressive) 𝛥𝑢 at the cone mid-height is about 100 kPa smaller (that
is, 100 kPa larger in absolute value) for the heavily structured soil as
compared to the weakly structured soil. This is due to the fact that the
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Fig. 12. Contour maps of Jacobian determinant 𝐽 at different time stations, for simulation r102 (𝑃𝑡0 = 60 kPa) and r104 (𝑃𝑡0 = 5 kPa), with 𝓁𝑐∕𝑅 = 0.14. In the figure, 𝐽 is
represented using the solid mechanics convention (𝐽 > 1 for dilation).
total stresses around the cone tip increase in magnitude with increasing
bond strength, and so does the excess pore pressure in almost undrained
conditions.

6.2. Conventional interpretation of CPTu simulations

In this section, a selection of results from the different simulations
performed is shown in terms of the typically measured quantities in
real CPTu tests:

(a) the net cone resistance, defined as:

𝑞𝑛 = 𝑞𝑐 − 𝜎∗𝑧0 (2)

where 𝑞𝑐 is the cone resistance and 𝜎∗𝑧0 is the total initial vertical
stress at the measurement depth;

(b) the excess pore water pressure registered at the location of probe
1, 𝛥𝑢1,

as functions of the normalized cone penetration depth 𝑍 = (𝑧−𝑧0)∕𝑅. In
order to filter out small numerical oscillations due to remeshing at the
soil-cone interface, the values of 𝑞𝑛 and 𝛥𝑢1 have been smoothed using
a mobile average with 𝑍, as suggested in Monforte et al. (2018a).

In all the simulations, both 𝑞𝑛 and 𝛥𝑢1 profiles are characterized by
an initial transient stage, up to 𝑍 = −4, followed by a stationary state
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Table 5
CPTu tests simulations on Osaka clay: average values of net cone resistance and excess
pore pressure evaluated at probe 1 over the interval 𝑍 ∈ [−19,−4].

Test # 𝓁𝑐∕𝑅 𝑃𝑡0 𝑞𝑛 𝛥𝑢1
(–) (kPa) (kPa) (kPa)

r102 0.14 60.0 558.49 436.02
r202 0.28 60.0 572.50 440.66
r302 0.42 60.0 570.53 461.08

r103 0.14 30.0 514.21 375.81
r203 0.28 30.0 525.30 392.84
r303 0.42 30.0 535.96 390.54

r104 0.14 5.0 456.03 338.83
r204 0.28 5.0 472.94 327.91
r304 0.42 5.0 466.32 332.72

up to the final value of the penetration depth. Their average values, 𝑞𝑛
and 𝛥𝑢1, over the range −4 ≥ 𝑍 ≥ −19 are reported in Table 5.

The effect of the characteristic length on the computed values
of 𝑞𝑛 and 𝛥𝑢1 can be assessed by looking at the results shown in
Fig. 17, which refers to simulations r103, r203 and r303, performed
with different values of 𝓁𝑐∕𝑅 and 𝑃𝑡0 = 30 kPa (see Table 4). Similar
results are obtained for the other two values of the initial bond strength
considered.
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Fig. 13. Contour maps of bond strength 𝑃𝑡 at different time stations, for simulation r102 (𝓁𝑐∕𝑅 = 0.14) and r302 (𝓁𝑐∕𝑅 = 0.42), with 𝑃𝑡0 = 60 kPa. In the figure, 𝑃𝑡 is represented
using the solid mechanics convention (tension positive).
From the figure, it can be observed that the adopted value of the
characteristic length has only a minor impact on the test results, in
terms of both 𝑞𝑛 and 𝛥𝑢1. The only significant (yet small difference) is
observed in the net cone resistance as 𝓁𝑐∕𝑅 is varied. The data reported
in Table 5 indicate that the simulations performed with 𝓁𝑐∕𝑅 = 0.28
and 0.42 provide 2 to 4% larger average values of 𝑞𝑛 for the same
initial bond stress level. As for the computed average values of 𝛥𝑢1,
no similar trend is observed. In fact, the value of 𝛥𝑢1 obtained with
𝓁𝑐∕𝑅 = 0.14 in simulation r104, with 𝑃𝑡0 = 5 kPa, is the largest among
those obtained with larger characteristic length at the same initial bond
strength; however, the opposite is true for the two other groups of
simulations performed with larger initial bond strength, see Table 5.

As expected, the assumed initial bond strength has a much larger
impact on the simulation results. This is clearly shown in Fig. 18,
which reports the computed profiles of 𝑞𝑛 and 𝛥𝑢1 for different values
of 𝑃𝑡0 and 𝓁𝑐∕𝑅 = 0.14 (simulations r102, r103 and r104). Similar
results are obtained for the other two values of the characteristic length
considered.

Both the net cone resistance and the excess pore pressure at probe 1
increase with the initial bond strength of the soil. However, it is worth
noting that the differences between the values of 𝑞𝑛 and 𝛥𝑢1 registered
in the three simulations considered are not very large, in spite of the
significantly different 𝑃𝑡0 values considered.

Some further insight on this point can be obtained by interpreting
the test results in terms of existing correlations, widely used in practice,
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between the net cone resistance and some conventional indicators of
the soil ‘‘strength’’ such as:

(a) the undrained shear strength of the soil as measured in triaxial
undrained compression tests, starting from the initial in-situ state,
determined as 𝑠𝑢 = 𝑞𝑓∕2, where 𝑞𝑓 is the deviator stress at failure;

(b) the effective yield stress 𝜎𝑦 as measured in one-dimensional (oe-
dometric) compression tests, starting from the initial in-situ state.

Both 𝑠𝑢 and 𝜎𝑦 are not material properties, but define some specific
behavior of the soil which is affected by the size of the yield surface,
and thus by the degree of structure possessed by the soil.

In order to obtain the reference values of 𝑠𝑢 and 𝜎𝑦 for the Osaka
clay, a series of unconsolidated undrained TX tests and oedometric tests
were simulated with the FD_Milan model, starting from the initial states
considered in the CPTu tests program. As the soil response in undrained
TX tests was characterized by stress–strain curves showing a peak and
a subsequent strength reduction up to the critical state, both peak (𝑠𝑝𝑢)
and ultimate (𝑠𝑢𝑢) values of undrained strength were defined for each
test. The reference values of 𝑠𝑝𝑢, 𝑠𝑢𝑢 and 𝜎𝑦 thus obtained are summarized
in Table 6.

In geotechnical engineering practice, the following conventional
expression are adopted to determine the undrained shear strength of
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Fig. 14. Contour maps of bond strength 𝑃𝑡 at different time stations, for simulation r102 (𝑃𝑡0 = 60 kPa) and r104 (𝑃𝑡0 = 5 kPa), with 𝓁𝑐∕𝑅 = 0.14. In the figure, 𝑃𝑡 is represented
using the solid mechanics convention (tension positive).
Table 6
Reference values of 𝑠𝑝𝑢 , 𝑠𝑢𝑢 and 𝜎𝑦 as obtained from simulations of undrained TX and
oedometric tests on Osaka clay, for the 3 different initial conditions assumed in the
CPTu test simulations.
𝜎𝑧 𝜎𝑟 𝑃𝑡0 𝑃𝑠0 𝑠𝑝𝑢 𝑠𝑢𝑢 𝜎𝑦
(kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

100.0 60.0 60.0 120.0 120.84 42.42 525.49
100.0 60.0 30.0 120.0 85.15 42.42 317.69
100.0 60.0 5.0 120.0 50.66 42.42 169.92

the soil from the CPTu test results:

𝑠𝑢 =
𝑞𝑛
𝑁𝑐

𝑠𝑢 =
𝛥𝑢𝑖
𝑁𝛥𝑢

(𝑖 = 1, 2) (3)

where 𝑁𝑐 and 𝑁𝛥𝑢 are dimensionless quantities known as cone factors.
Starting from these expressions, the undrained strength data in Table 6
can be used to define the following normalized net cone resistance and
excess pore pressure values at probe 1, for both peak and critical state
(ultimate) conditions:

𝑁𝑝
𝑐 =

𝑞𝑛
𝑠𝑝𝑢

𝑁𝑢
𝑐 =

𝑞𝑛
𝑠𝑢𝑢

(4)

𝑁𝑝
𝛥𝑢 =

𝛥𝑢1
𝑠𝑝𝑢

𝑁𝑢
𝛥𝑢 =

𝛥𝑢1
𝑠𝑢𝑢

(5)
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These four dimensionless quantities, computed for the three simulations
with 𝓁𝑐∕𝑅 = 0.14, are shown in Figs. 19 and 20.

From the results in Fig. 19 it can be noted that, when the values of
𝑞𝑛 are normalized with respect to the peak undrained strength, the val-
ues of 𝑁𝑝

𝑐 decrease significantly with increasing initial bond strength,
passing from about 9 for 𝑃𝑡0 = 5 kPa to about 5 for 𝑃𝑡0 = 60 kPa. This
is due to the fact that 𝑠𝑝𝑢 is conventionally determined when the soil is
at the first yield state or close to it, and the destructuration of the soil
is either zero or very small. However, as clearly shown by the results
in Fig. 14, when the soil is heavily structured a significant amount of
destructuration takes place in the soil ahead of the cone tip, while this
effect is much smaller in weakly structured soils.

The opposite is observed when the values of 𝑞𝑛 are normalized
with respect to the ultimate undrained strength, since the values of 𝑁𝑢

𝑐
increase with increasing initial bond strength, passing from about 10 for
𝑃𝑡0 = 5 kPa to about 13 for 𝑃𝑡0 = 60 kPa. This is not surprising, since
even the very large deformation levels induced in the soil by the cone
advancement are not sufficient to cause the complete destructuration
of the soil region determining the stress state acting on the cone. Thus,
the larger the initial bond strength, the larger is the residual amount of
structure which affects the net cone resistance.

It is worth noting that, in his overview of the literature on the
interpretation of CPT tests in clays, Salgado (2022) reports that the 𝑁𝑐
coefficient typically falls in the range between 9 and 15. The values of
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Fig. 15. Contour maps of excess pore water pressure 𝛥𝑢 at different time stations, for simulation r102 (𝓁𝑐∕𝑅 = 0.14) and r302 (𝓁𝑐∕𝑅 = 0.42), with 𝑃𝑡0 = 60 kPa. In the figure,
𝛥𝑢 is represented using the solid mechanics convention (tension positive).
𝑁𝑢
𝑐 reported in Fig. 19 fall within this range, while the 𝑁𝑝

𝑐 values for
the cases with 𝑃𝑡0 equal to 30 and 60 kPa are significantly lower. This
means that a conventional interpretation of 𝑞𝑛 measurements in heavily
structured clay with a value 𝑁𝑐 in the range suggested by Salgado
would provide a significant underestimation of the peak undrained
strength. The 𝑠𝑢 values obtained would rather be closer to the ultimate
undrained shear strength of the soil.

The data in Fig. 20, referring to the profiles of the normalized
excess pore pressure 𝑁𝑝

𝛥𝑢 and 𝑁𝑢
𝛥𝑢, show a similar trend of variation

with 𝑃𝑡0 as the normalized net cone resistance values. When the values
of 𝛥𝑢1 are normalized with respect to the peak undrained strength,
the values of 𝑁𝑝

𝛥𝑢 decrease significantly with increasing initial bond
strength, while the opposite is observed when the values of 𝛥𝑢1 are
normalized with respect to the ultimate undrained strength. This is due
to the fact that the excess pore water pressures measured at the probes
increase with the net cone resistance, and thus are affected by the soil
destructuration around the cone tip in the same way as 𝑞𝑛.

A correlation between the net cone resistance and the yield stress 𝜎𝑦
as measured in oedometric tests has been proposed by Mayne for non-
structured, inorganic clays (Mayne, 1991, 2005), and more recently
reviewed by Mayne and Agaiby (2019) to extend it to organic clays. The
different correlations proposed are represented graphically in Fig. 21.

In the same figures are also plotted the points of coordinates (𝑞𝑛, 𝜎𝑦)
corresponding to each CPTu simulations, with the average cone re-
sistance values of Table 5. The data points plotted with circles,
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corresponding to the simulations performed on the weakly structured
soil, fit very nicely with Mayne’s correlation for unstructured clays.
However, all the other data points (triangles for 𝑃𝑡0 = 30 kPa and
squares for 𝑃𝑡0 = 60 kPa) are located to the left of the correlation.
This indicates that the measured average net cone resistance is smaller
than what Mayne’s correlation would predict for the given yield stresses
𝜎𝑦, the difference increasing as 𝑃𝑡0 increases. As the yield stress in
oedometric compression is determined at the first yield point, when
the soil has not yet undergo any destructuration, this result is in line
with the previous observations made on the normalized peak cone
resistance 𝑁𝑝

𝑐 . In fact, the computed values of 𝑞𝑛 are significantly
affected by the destructuration process going on in the soil around the
advancing cone, which is more intense for heavily structured soils than
for weakly structured soils. An important practical consequence of this
observation is that the use of Mayne’s correlation on heavily structured
soils may provide largely underestimated values of 𝜎𝑦, and thus of the
overconsolidation ratio OCR of the soil deposit.

7. Concluding remarks

The response of a natural structured clay to the penetration of the
piezocone in CPTu tests was investigated by means of a series of fully
coupled, non-linear hydrodynamic PFEM simulations, incorporating
an isotropic hardening elastoplastic constitutive model based on the
multiplicative decomposition of the deformation gradient. In the model,
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Fig. 16. Contour maps of excess pore water pressure 𝛥𝑢 at different time stations, for simulation r102 (𝑃𝑡0 = 60 kPa) and r104 (𝑃𝑡0 = 5 kPa), with 𝓁𝑐∕𝑅 = 0.14. In the figure,
𝛥𝑢 is represented using the solid mechanics convention (tension positive).
the effects of structure are quantified by means of a specific internal
variable – the bond strength – which decreases monotonically with
increasing accumulated plastic strains.

As the destructuration process can be accompanied by significant
strain softening – which may trigger the spontaneous localization of the
deformations into shear bands – the model was equipped with a non-
local formulation of the hardening laws, which provides the material
with the necessary internal length scale regularizing the numerical
solution in the post-localization regime.

The results obtained in this study show that the kinematics of the
deformation process around the advancing cone tip can be strongly
affected by the ratio between the characteristic length 𝓁𝑐 and the
cone radius 𝑅. In particular, for heavily structured soils (high initial
bond strength 𝑃𝑡0), when 𝓁𝑐 is relatively small with respect to 𝑅, the
accumulated plastic deviatoric deformation field is characterized by
clearly visible shear bands, which originate in correspondence of the
piezocone sleeve and then propagate downwards until they reach the
cone axis well below the cone tip. For larger values of 𝓁𝑐 , at the same
initial 𝑃𝑡0, no localized deviatoric deformation zones can be detected,
and the 𝐸𝑝𝑠 field is much more regular around the cone tip. This is due
to the fact that as 𝓁𝑐 increases, so does the shear band width, which
may eventually become of size comparable to the cone radius.

Significant strain localization is also observed, for the same initial
bond strength, in the volumetric deformations. The localized volu-
metric deformation zones below the cone base almost coincide with
16
the previously observed shear bands, indicating that the localized
shear deformation is accompanied by a permanent reduction in volume
(contractant shear bands). Volumetric deformation bands (compaction
bands) are also observed in the case of the largest 𝓁𝑐 value considered,
although of smaller length and closer to the cone surface than in the
previous case. No significant strain localization in both deviatoric and
volumetric components is observed in the case of weakly structured soil
(low initial bond strength 𝑃𝑡0).

It is worth noting that, in presence of shear bands, the deformation
field is not stationary around the advancing cone tip, as it is assumed
in some CPTu modeling approaches based on the theory of cavity
expansion or on the Strain Path Method.

When deviatoric deformations are localized into shear bands, the
spatial distribution of the bond strength closely follows the localiza-
tion zones, with the smaller values (higher destructuration) found in
correspondence of the interior of the bands. In general, regardless of
the initial amount of structure or the soil characteristic length, the
soil around the advancing piezocone is subjected to a very strong
destructuration process, leading to the complete loss of bond strength.

Quite surprisingly, the large differences in the kinematics of the
deformation process around the cone tip observed in the simulations as
the characteristic length is reduced are not reflected in the calculated
net cone resistance 𝑞𝑛 and in the excess pore pressure 𝛥𝑢1 measured at
the cone mid-height, which are practically independent of 𝓁 .
𝑐
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Fig. 17. Results of simulations r103, r203 and r303 with 𝑃𝑡0 = 30 kPa and different
normalized characteristic lengths 𝓁𝑐∕𝑅. Profiles with depth of: (a) net cone resistance
𝑞𝑛; (b) excess pore pressure at the cone mid-height 𝛥𝑢1.

Fig. 18. Results of simulations r102, r103 and r104 with 𝓁𝑐∕𝑅 = 0.14 and different
initial bond strength 𝑃𝑡0. Profiles with depth of: (a) net cone resistance 𝑞𝑛; (b) excess
pore pressure at the cone mid-height 𝛥𝑢1.

On the contrary, the initial degree of structure possessed by the
soil has a clear effect on 𝑞𝑛 and 𝛥𝑢1, which increase with increasing
initial bond strength 𝑃𝑡0. However, the interpretation of the computed
net cone resistance values in terms of existing correlations with con-
ventional soil properties – the undrained strength 𝑠𝑢 and yield stress
in one-dimensional compression 𝜎𝑦 – indicates that this effect is not
as large as one might have expected. This is a consequence of the
significant amount of destructuration that the soil experiences during
the piezocone advancement.
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Fig. 19. Results of simulations r102, r103 and r104, with 𝓁𝑐∕𝑅 = 0.14. Profiles with
depth of net cone resistance, 𝑞𝑛, normalized with respect to: (a) the peak undrained
strength 𝑠𝑝𝑢 ; (b) the ultimate undrained strength 𝑠𝑢𝑢.

Fig. 20. Results of simulations r102, r103 and r104, with 𝓁𝑐∕𝑅 = 0.14. Profiles with
depth of excess pore water pressure at probe 1, 𝛥𝑢1, normalized with respect to: (a)
the peak undrained strength 𝑠𝑝𝑢 ; (b) the ultimate undrained strength 𝑠𝑢𝑢.

For the particular natural soil examined, the results obtained show
that the use of 𝑁𝑐 values reported in the literature in the interpretation
of the CPTu test results would provide an undrained strength 𝑠𝑢 value
closer to the ultimate undrained shear strength of the soil. At the same
time, the use of Mayne and Agaiby (2019) correlation to estimate 𝜎𝑦
would lead to a significant underestimation of the overconsolidation
ratio OCR of the soil.

These results represent a promising step towards a more rational
interpretation of the CPTu tests in structured geomaterials and for their
use in the calibration of advanced soil models.
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Fig. 21. Effective yield stress 𝜎𝑦 – as determined in oedometric compression tests for
the assumed initial states – vs. average net cone resistance, 𝑞𝑛. The shaded area (ED-
IC) represents the range of experimental data reported by Mayne et al. (2009) for
intact, unstructured inorganic clays. The full curves refer to the correlations proposed
by Mayne et al. (2009): IC = intact non-structured inorganic clays; OC = organic clays;
S = silts.
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Appendix A. Constitutive equations of the fd_Milan model

The FD_Milan model is based on the general framework of isotropic
multiplicative finite deformation plasticity (Simo and Hughes, 1998;
Borja, 2013) in which the deformation gradient 𝑭 is multiplicatively
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decomposed into an elastic, reversible part 𝑭 𝑒 and a plastic, irreversible
part 𝑭 𝑝:

𝑭 = 𝑭 𝑒𝑭 𝑝

The (hyper)elastic behavior of the model is defined in terms of an
assumed free energy function of one of the elastic Cauchy–Green de-
formation tensors, 𝒃𝑒 = 𝑭 𝑒𝑭 𝑒𝑇 or 𝑪

𝑒
= 𝑭 𝑒𝑇𝑭 𝑒.

The evolution equations for the state variables, i.e., the Kirchhoff
stress tensor 𝝉 and the scalar internal variables 𝑃𝑠 (preconsolidation
stress) and 𝑃𝑡 (bond strength) are provided by:
∇
𝝉 = a𝑒𝑝𝒅 (6)

𝒒̇ = 𝛾̇ 𝒉 (𝝉 , 𝒒) (7)

In Eq. (6),
∇
𝝉 is the Jaumann rate of the Kirchhoff stress tensor, given

by:
∇
𝝉= 𝝉̇ −𝒘𝝉 + 𝝉𝒘

𝒅 = sym(∇𝒗) is the symmetric part of the spatial velocity gradient, i.e.,
the rate of deformation tensor, and 𝒘 = skw(∇𝒗) is the spin tensor. The
fourth-order spatial elastoplastic continuum tangent stiffness tensor,
a𝑒𝑝, is defined as:

a𝑒𝑝 =

⎧

⎪

⎨

⎪

⎩

a𝑒 − 1
𝐾̂𝑝

(

a𝑒
𝜕𝑔
𝜕𝝉

)

⊗
(

a𝑒
𝜕𝑓
𝜕𝝉

)

if (𝜕𝑓∕𝜕𝝉) ⋅ a𝑒𝒅 > 0

a𝑒 otherwise
(8)

where 𝑓 (𝝉 , 𝒒) is the yield function; 𝑔(𝝉 , 𝒒) is the plastic potential func-
tion, and 𝐾̂𝑝 is a strictly positive scalar given by:

𝐾̂𝑝 ∶=
𝜕𝑓
𝜕𝝉

⋅ a𝑒
𝜕𝑔
𝜕𝝉

−
𝜕𝑓
𝜕𝒒

⋅ 𝒉 > 0 (9)

The spatial fourth-order elastic tangent stiffness tensor, a𝑒, appearing
in Eqs. (8) and (9) is obtained from the free energy function 𝛹̄ 𝑒𝑠 (𝑪

𝑒
) of

the material (in the intermediate configuration) as:

a𝑒𝑖𝑗𝑘𝑙 = c𝑒𝑖𝑗𝑘𝑙 + 𝜏𝑖𝑘𝛿𝑗𝑙 + 𝜏𝑖𝑙𝛿𝑗𝑘 (10)

c𝑒𝑖𝑗𝑘𝑙 = 4
𝜕2𝛹̄ 𝑒𝑠

𝜕𝐶
𝑒
𝐴𝐵𝜕𝐶

𝑒
𝐶𝐷

𝐹 𝑒𝑖𝐴𝐹
𝑒
𝑗𝐵𝐹

𝑒
𝑘𝐶𝐹

𝑒
𝑙𝐷 (11)

in which 𝑪
𝑒
= 𝑭 𝑒𝑇𝑭 𝑒 is the right elastic Cauchy–Green deformation

tensor.
In Eq. (7), the vectors 𝒒 and 𝒉 are defined as:

𝒒 =
{

𝑃𝑠
𝑃𝑡

}

𝒉 =
{

ℎ𝑠(𝝉 , 𝒒)
ℎ𝑡(𝝉 , 𝒒)

}

(12)

and 𝛾̇ ≥ 0 is the plastic multiplier, given by:

𝛾̇ = 1
𝐾̂𝑝

𝜕𝑓
𝜕𝝉

⋅ a𝑒𝒅 ≥ 0 (13)

The scalar functions ℎ𝑠 and ℎ𝑡 are the hardening functions of the
preconsolidation stress 𝑃𝑠 and of the bond strength 𝑃𝑡, introduced in
Section 2.

A.1. Free energy function

Due to the principle of Material Frame Indifference, the free energy
function 𝛹̄ 𝑒𝑠 is a function of the right elastic Cauchy–Green tensor 𝑪

𝑒

via its invariants. Choosing the principal values of the right elastic
Cauchy–Green tensor, 𝐶

𝑒
𝐴, as a suitable set of invariants and noting

that:

𝐶
𝑒
𝐴 =

(

𝜆𝑒𝐴
)2 (𝜆𝑒𝐴 = 1, 2, 3)

the hyperelastic formulation of Tamagnini et al. (2002) and Nova et al.
(2003) can be extended to the finite deformation regime by replacing
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the infinitesimal elastic strain invariants with the elastic logarithmic
volumetric and deviatoric strains defined as follows:

𝜀𝑒𝑣 ∶= 𝜀̂𝑒1 + 𝜀̂
𝑒
2 + 𝜀̂

𝑒
3 𝜀𝑒𝑠 =

√

2
3
{

(𝑒𝑒1)
2 + (𝑒𝑒2)

2 + (𝑒𝑒3)
2
}

(14)

here 𝜀̂𝑒𝐴 = − ln(𝜆𝑒𝐴) is the 𝐴th elastic logarithmic principal strain and
𝐴 = 𝜀̂𝑒𝐴−𝜀

𝑒
𝑣∕3 its deviatoric part. The free energy function in the spatial

etting then reads:

𝜓̂𝑒(𝜀𝑒𝑣, 𝜀
𝑒
𝑠) = 𝜓̃(𝜀𝑒𝑣) +

3
2

{

𝐺0 +
𝛼
𝜅̂
𝜓̃(𝜀𝑒𝑣)

}

(𝜀𝑒𝑠)
2 (15)

where:

𝜓̃(𝜀𝑒𝑣) ∶=

⎧

⎪

⎨

⎪

⎩

𝜅̂𝑃𝑟 exp
{(

𝜀𝑒𝑣∕𝜅̂ − 1
)}

(𝜀𝑒𝑣 ≥ 𝜅̂)

𝑃𝑟𝜀𝑒𝑣 − 𝑃𝑟
(

𝜀𝑒𝑣 − 𝜅̂
)2 ∕(2𝜅̂) (𝜀𝑒𝑣 < 𝜅̂)

(16)

In Eqs. (15) and (16), 𝜅̂, 𝐺0 and 𝛼 are material constants, whose
physical meaning is discussed in Section 4, while 𝑃𝑟 is a reference
Kirchhoff mean stress, marking the transition from linear (𝜀𝑒𝑣 < 𝜅̂) to
non-linear (𝜀𝑒𝑣 ≥ 𝜅̂) elastic behavior.

A.2. Yield function and plastic potential

Due to the assumption of material isotropy, both the yield function
and the plastic potential 𝑔 depend on 𝝉 through its invariants (𝑃 ,𝑄, 𝜃).

he FD_Milan model adopts for the functions 𝑓 and 𝑔 the expressions
rovided by Lagioia et al. (1996) – transformed to the Kirchhoff stress
pace – for their flexibility in reproducing a wide range of experimental
ata:

(𝑃 ,𝑄, 𝜃, 𝑃𝑠, 𝑃𝑡) = 𝑃 ∗ − 𝐴
−𝐾1𝑓 ∕𝐶𝑓
𝑓 𝐵

𝐾2𝑓 ∕𝐶𝑓
𝑓 𝑃 ∗

𝑐 = 0 (17)

𝑔(𝑃 ,𝑄, 𝜃, 𝑃𝑡) = 𝑃 ∗ − 𝐴
−𝐾1𝑔∕𝐶𝑔
𝑔 𝐵

𝐾2𝑔∕𝐶𝑔
𝑔 𝑃 ∗

𝑐 (18)

here, for either 𝑎 = 𝑓 or 𝑔:

1𝑎 ∶=
𝜇𝑎(1 − 𝛼𝑎)
2(1 − 𝜇𝑎)

{

1 +

√

1 −
4𝛼𝑎(1 − 𝜇𝑎)
𝜇𝑎(1 − 𝛼𝑎)2

}

(19)

𝐾2𝑎 ∶=
𝜇𝑎(1 − 𝛼𝑎)
2(1 − 𝜇𝑎)

{

1 −

√

1 −
4𝛼𝑎(1 − 𝜇𝑎)
𝜇𝑎(1 − 𝛼𝑎)2

}

(20)

𝐴𝑎 ∶= 1 + 1
𝐾1𝑎𝑀𝑎(𝜃)

𝑄
𝑃 ∗ (21)

𝐵𝑎 ∶= 1 + 1
𝐾2𝑎𝑀𝑎(𝜃)

𝑄
𝑃 ∗ (22)

𝐶𝑎 ∶= (1 − 𝜇𝑎)(𝐾1𝑎 −𝐾2𝑎) (23)

nd:

∗ ∶= 𝑃 + 𝑃𝑡 𝑃 ∗
𝑐 ∶= 𝑃𝑠 + (1 + 𝑘)𝑃𝑡 𝑃 ∗

𝑐 ∶= 𝑃𝑐 + 𝑃𝑡 (24)

n the above equations, 𝑃𝑐 is a dummy parameter determined by setting
= 0 at the current state; the quantities 𝛼𝑓 , 𝜇𝑓 , 𝛼𝑔 and 𝜇𝑔 are material

onstants controlling the shape of the yield locus and of the plastic
otential in the meridian plane (𝑄 ∶ 𝑃 , at constant 𝜃) of Kirchhoff
tress space. The functions 𝑀𝑎 = 𝑀𝑎(𝜃), appearing in Eqs. (21) and
22), control the shape of the yield surface and plastic potential in
he deviatoric plane. In the model formulation, these functions are
hosen in order to reproduce the regularized Mohr–Coulomb surface
roposed by Abbo et al. (2011). Associative plastic flow is recovered
hen the constants 𝛼𝑔 , 𝜇𝑔 and the function 𝑀𝑔(𝜃) are set equal to the

orresponding quantities for the yield function 𝑓 . A representation of
he yield function in both 𝑄 ∶ 𝑃 invariants plane and in principal
19

irchhoff stress space is given in Fig. 1.
.3. Hardening functions

The hardening functions for the internal variables 𝑃𝑠 and 𝑃𝑡 are
iven by:

𝑠 = 𝜌𝑠𝑃𝑠
(

𝑉 + 𝜉𝑠𝐷̂
)

(25)

ℎ𝑡 = −𝜌𝑡𝑃𝑡
(

|𝑉 | + 𝜉𝑚𝐷̂
)

(26)

here:

̂ ∶= tr
(

𝜕𝑔
𝜕𝝉

)

𝐷̂ ∶=
√

2
3

‖

‖

‖

‖

‖

dev
(

𝜕𝑔
𝜕𝝉

)

‖

‖

‖

‖

‖

(27)

re the first and second invariants of the plastic potential gradient
ensor. For 𝜉𝑠 = 0, the preconsolidation stress undergoes purely vol-
metric hardening, and the material response is characterized by the
xistence of a Critical State locus in stress space. Eq. (27) describes the
ebonding process with a monotonic decrease of the bond strength 𝑃𝑡
ith accumulated volumetric and distortional plastic deformations.

Following Monforte et al. (2019), the evolution Eq. (7) can be recast
n the alternative, integrated form:

𝑠 = 𝑃𝑠0 exp
{

𝜌𝑠
(

𝐸𝑝𝑣 + 𝜉𝑠𝐸
𝑝
𝑠
)}

(28)

𝑃𝑡 = 𝑃𝑡0 exp
{

−𝜌𝑡
(

𝑁𝑝
𝑣 + 𝜉𝑡𝐸

𝑝
𝑠
)}

(29)

where 𝐸𝑝𝑣 , 𝐸
𝑝
𝑠 and 𝑁𝑝

𝑠 are three alternative (strain-like) internal vari-
bles, representing, respectively, the accumulated plastic volumetric
eformation, the accumulated plastic deviatoric deformation and the
ccumulated norm of the plastic volumetric deformation. Their evolu-
ion equations are simply provided by:

̇ 𝑝
𝑣 = 𝛾̇𝑉 𝐸̇𝑝𝑠 = 𝛾̇𝐷̂ 𝑁̇𝑝

𝑣 = 𝛾̇|𝑉 | (30)

Eqs. (28) and (29) allow to determine the preconsolidation stress 𝑃𝑠
and the bond strength 𝑃𝑡 each material point and at each time 𝑡 once
the time evolution of the strain-like internal variables is known.

Appendix B. Extension of the FD_Milan model to non-local plastic-
ity

The extension to non-local plasticity of the FD_Milan model is
obtained by transforming the strain-like internal variables 𝐸𝑝𝑣 , 𝐸

𝑝
𝑠 and

𝑝
𝑣 to spatially averaged quantities in the neighborhood 𝛺 of a material
oint 𝒙 = 𝝓(𝑿, 𝑡) at time 𝑡. In the numerical implementation of the
odel, the averaged values are computed by the following expressions:

𝐸
𝑝
𝑣(𝒙𝑖) =

1
∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )

∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )𝐸𝑝𝑣 (𝒙𝑗 ) (31)

𝐸
𝑝
𝑠(𝒙𝑖) =

1
∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )

∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )𝐸𝑝𝑠 (𝒙𝑗 ) (32)

𝑁
𝑝
𝑣(𝒙𝑖) =

1
∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )

∑

𝒙𝑗∈𝛺
𝑤(𝒙𝑖, 𝑟𝑖𝑗 )𝑁𝑝

𝑣 (𝒙𝑗 ) (33)

here 𝑟𝑖𝑗 =
‖

‖

‖

𝒙𝑗 − 𝒙𝑖
‖

‖

‖

is the distance between points located at 𝒙𝑗 and

𝑖, and 𝑤 is a suitable weighting function, for which the expression
roposed by Galavi and Schweiger (2010):

(𝒙, 𝑟𝑖𝑗 ) =
𝑟𝑖𝑗
𝓁𝑐

exp

{

−
( 𝑟𝑖𝑗
𝓁𝑐

)2
}

(34)

s adopted. The scalar quantity 𝓁𝑐 appearing in Eq. (34) (characteristic
ength) is a material constant providing the length scale necessary to
ender the numerical solution objective in presence of shear localiza-
ion. Once the non-local quantities 𝐸

𝑝
𝑣, 𝐸

𝑝
𝑠 and 𝑁

𝑝
𝑣 are known, the

stress-like internal variables 𝑃𝑠 and 𝑃𝑡 are computed by Eqs. (28) and
(29).
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Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compgeo.2024.106343.
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