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1 Introduction

Since the discovery of the Bekenstein-Hawking formula for the entropy, there has been a
greater understanding of the quantum information properties encoded by the geometry
of spacetime via holography. One of the biggest achievements of this idea in the context
of AdS/CFT was the Hubeny-Ryu-Takayanagi (HRT) formula [1, 2], which relates the
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entanglement entropy for a subregion on the boundary to the area of a codimension-two
extremal surface γ anchored to the boundary of the subsystem, that is,

SA = A(γ)
4G . (1.1)

This holographic proposal was justified from the perspective of the gravitational path in-
tegral [3] and later generalized to include quantum corrections [4]. These advancements
led to the concept of generalized extremal surfaces, a prescription where the fine-grained
entropy of a system is computed by extremizing the sum of the HRT entropy and a con-
tribution which accounts for the quantum corrections due to matter fields. In particular,
this conjecture was used to recover the Page curve for evaporating black holes [5–7].

The area of codimension-two extremal surfaces plays a central role in holography. It is
then natural to wonder about the meaning of the volume of codimension-one objects, whose
role is not yet well established in holography. The most promising proposal is, arguably,
that of holographic complexity [8]. Other related possibilities include the concepts of
quantum information metric and fidelity [9, 10].

Motivated by the desire of finding a dual description to the growth of the Einstein-
Rosen Bridge (ERB) in black holes, Susskind and collaborators [8, 11, 12] introduced the
notion of computational complexity in holography. By studying the time evolution of
wormholes, e.g., an eternal Black Hole (BH) in asymptotically AdS spacetime, one can
figure out that spacelike slices connecting the two asymptotic boundaries evolve for a much
longer time compared to the thermalization time scale. Since these slices can be defined
in a coordinate-invariant way by selecting the one with maximal volume at each value of
time, it is expected that there exists a dual quantity on the field theory side. In [8] it
was conjectured that the dual is computational complexity, which is heuristically defined
as a measure of the minimal number of simple unitary operations relating a reference
state with a chosen target state. For quantum mechanical systems, complexity can be
defined geometrically as a Hamiltonian control problem, an approach pioneered by Nielsen
et al. [13, 14]; in this approach, negative curvatures seem to be a desirable feature of
complexity space [15–17]. While there has been some recent progress in extending Nielsen’s
method to free field theory [18–20], a precise definition of complexity in interacting CFTs
is still lacking. Further developments in this direction can be found in, e.g., [21–23]. Other
approaches have also gained attention in the community, see for instance [24–26].

Two proposals have made their way as holographic duals to computational complexity:

• the Complexity=Volume conjecture (CV), where the complexity is proportional to the
volume of a maximal spacelike codimension-one surface Γ anchored at the boundary

CV ∼
V (Γ)
GL

, (1.2)

where L is the AdS radius. This proposal has been tested in geometries with shock
waves perturbations and reproduced phenomena expected from tensor networks and
quantum circuits [11]; and
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• the Complexity=Action conjecture (CA). Since the CV conjecture is not universal (it
contains a specific dependence from a length scale like the AdS radius), it was later
proposed that the complexity is holographically given by the gravitational action I

computed in the Wheeler-De Witt (WDW) patch, i.e., the bulk domain of dependence
of the ERB [27, 28]:

CA = IWdW
π

. (1.3)

The late time behaviour of volume and action for asymptotically AdS black holes is
found to be qualitatively the same, but they differ for intermediate times [29].

The previous proposals have natural generalisation to the case of mixed states. In the
CV case, the proposal is to compute the volume of a maximal slice anchored to a boundary
subregion and bounded by the corresponding HRT surface [10]: hence the name subregion
complexity. To compute subregion CA, it was proposed [30] to evaluate the gravitational
action on the intersection of the WDW patch and the entanglement wedge. Subregion
complexity for an arbitrary interval in a BTZ black hole [31] background is an example
where volume and action proposals behave differently [32, 33]. Further studies on subregion
complexity include [34–39].

Defects, interfaces and boundaries are often present in interesting physical systems.
Impurities are one of the main topics in condensed matter physics. From a field theory
perspective, we can model these systems as a renormalization group (RG) flow where bulk
and boundary degrees of freedom are coupled. Entanglement entropy also provides an
important tool to characterize the properties of defects under RG flow. The entanglement
entropy S of an interval with length l in a two-dimensional CFT centered around the defect
has the following form [40]

S = c

3 log l
δ

+ log g , (1.4)

where c is the central charge, δ the UV cutoff, and g the ground state degeneracy of the
defect. The quantity g is monotonic under RG flow [41] and gives a measure of the number
of degrees of freedom localised on the defect.

Holographic examples of geometries dual to defect CFTs include:

• the Randall-Sundrum model (RS) [42]. The simplest situation corresponds to a two-
dimensional brane embedded in AdS3, as considered in [43] for the study of en-
tanglement entropy. The case of a conformal defect in d dimensions was recently
investigated in the context of the island conjecture in relation to subregion complex-
ity [44];

• the holographic dual of CFT with boundaries (BCFT) studied in [45–47]; and

• Janus geometries [48, 49]. While it was originally discovered as a non-supersymmetric
dilatonic deformation of AdS5 space [48], it was later found that a similar deformation
can be implemented on AdS3×S3×M4, where M4 is a compact manifold [49]. Since
these solutions can be embedded into type IIB supergravity, they have well-defined
top-down holographic duals.
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All these geometries are interesting laboratories to investigate quantum information aspects
of the AdS/CFT duality. The Janus geometry was recently considered as a background to
test the pseudo-entropy, a quantum information object which is conjectured to describe a
Euclidean version of the entanglement entropy [50].

The physics of defects may provide us deeper insights on holographic complexity. While
this was already studied previously for the three-dimensional RS model in [51] and for
BCFT [52, 53], the purpose of this paper is to fill the gap for three-dimensional Janus
geometries. Related studies focusing on fidelity can be found in [9, 54, 55]. These back-
grounds represent an important playground to test the behavior of holographic complexity
because they admit many deformations with well-defined holographic duals, including the
finite temperature case or time-dependent perturbations.

In section 2 we review some basic facts about Janus geometries in three dimensions. In
section 3 we compute the subregion volume complexity for a symmetric region with radius
l/2 around the defect in Janus AdS3. The pure state complexity can be extracted from the
l→∞ limit of this result, where the length l plays the role of an IR regulator. In section 4
we extend the calculation at finite temperature, by computing the volume of the static BTZ
Janus black hole at time t = 0. In section 5 we consider CV for the time-dependent Janus
BTZ black hole. In this situation, the dual theory is not a defect CFT, but it corresponds
to two entangled CFTs with different values of the dilaton field on each side of the Penrose
diagram. We determine the time dependence of volume complexity for this situation. We
summarize our results in section 6. Appendix A contains our conventions for Jacobi elliptic
functions and elliptic integrals.

2 Janus geometry

In this section we introduce some of the faces that the Janus geometry can assume. The
Janus solution is a dilatonic domain-wall deformation of spacetime whose dual description
is an interface CFT (ICFT). We focus on the three-dimensional space, starting with the
Janus deformation of empty AdS3 space described in section 2.1. Complexity requires the
introduction of UV regulators; these are naturally determined from the Fefferman-Graham
(FG) expansion of the metric, which is considered in section 2.2. In section 2.3 we present
the conformal structure of the Janus AdS background, while in section 2.4 we extend the
static Janus deformation to the case of the BTZ black hole solution.

2.1 Janus AdS3

The Janus AdS3 solution [49] can be obtained from type IIB supergravity on AdS3×S3×M4,

where M4 can be chosen either as T 4 or K3. Upon dimensional reduction, the following
action is obtained

I = 1
16πG

∫
d3x
√
−g

(
R− ∂aφ∂aφ+ 2

L2

)
, (2.1)

where φ is the dilaton and L the AdS3 radius.
We will use the metric ansatz

ds2 = L2(f(y)ds2
AdS2 + dy2) , (2.2)
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where ds2
AdS2

denotes the generic AdS2 metric in arbitrary coordinates. Unless otherwise
specified, we will describe the AdS slices using Poincaré coordinates, that is,

ds2 = L2
(
f(y)dz

2 − dt2

z2 + dy2
)
. (2.3)

Solving the equation of motion, the following solution is obtained

f(y) = 1
2

(
1 +

√
1− 2γ2 cosh(2y)

)
,

φ(y) = φ0 + 1√
2

log
(

1 +
√

1− 2γ2 +
√

2γ tanh y
1 +

√
1− 2γ2 −

√
2γ tanh y

)
,

(2.4)

where the coordinate y is ranged in (−∞,+∞). In correspondence of the extrema y =
±∞ we have two boundaries, where the two sides of the interface field theory live. The
parameter φ0 is set by the value of the dilaton at y = 0. The constant γ ∈ [0,

√
2/2]

parameterizes the excursion of the dilaton between the two sides. For γ = 0 the dilaton is
constant and the solution is just empty AdS.

The dual interpretation of this metric is a two-dimensional CFT deformed by a
marginal operator O(x) with couplings J±

∫
d2xO(x) on each boundary, where

J± = lim
y→±∞

φ(y) . (2.5)

The bulk coordinate y connects two theories with different coupling constants living at
y = ±∞. For γ =

√
2/2, the dilaton is linear, i.e., φ = φ0 +

√
2y and f is constant. In this

limit the dilaton is divergent at the boundary, and the bulk theory is infinitely strongly
coupled. Since the Janus deformation is associated with an exactly marginal operator, it
does not change the central charge of the CFT.

For later purposes, it is useful to perform the change of variable µ(y) such that

dµ = dy√
f(y)

. (2.6)

In the new set of coordinates the metric is

ds2
3 = L2f(y(µ)) cos2 µds2

AdS3 , ds2
AdS3 = 1

cos2 µ

(
dµ2 + ds2

AdS2

)
. (2.7)

The function f(µ) = f(y(µ)) and the dilaton can be expressed [56] in terms of Jacobi
elliptic functions (see appendix A for our conventions)

f(µ) = α2
+

sn2 (α+(µ+ µ0),m) ,

φ(µ) = φ0 +
√

2 log
[
dn (α+(µ+ µ0),m)−

√
m cn (α+(µ+ µ0),m)

]
,

(2.8)

where
α2
± = 1

2

(
1±

√
1− 2γ2

)
, m =

(
α−
α+

)2
, µ0 = K(m)

α+
. (2.9)

The range of the new coordinate µ is [−µ0, µ0]. Note that when γ = 0 we get µ0 = π/2
and we recover the AdS case with constant dilaton φ0 and f(µ) = 1/ cos2 µ.
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η

ξ

Constant z Constant y

Figure 1. Foliation of the AdS3 geometry into AdS2 slices, where the lines at constant y and z

coordinates are depicted. The black dot in the origin is the location of the Janus interface.

2.2 UV regulator and Fefferman-Graham expansion

A standard procedure for regularizing AdS-sliced metrics is to introduce a constant cut-
off along the radial direction in a Fefferman-Graham (FG) expansion of the metric (see,
e.g., [57] and [58]). Let’s start by considering the AdS2-sliced metric for the pure AdS3
geometry,

ds2
pure = L2

(
dy2 + cosh2 y

dz2 − dt2

z2

)
, (2.10)

that is, the Janus geometry with γ = 0. The boundary parameterization of AdS3 in the
coordinates (2.10) is more complicated compared to the one in Poincaré coordinates. In
fact, the two (1+1)−dimensional boundaries at y → ±∞ in (2.10) sit on the same boundary
when represented in Poincaré coordinates. Let us first relate the metric (2.10) to the same
metric in Poincaré coordinates

ds2
pure = L2

ξ2

(
dξ2 + dη2 − dt2

)
, (2.11)

by implementing the change of variables (see figure 1)

η = z tanh y , ξ = z

cosh y . (2.12)

Coming back to the Janus geometry in eq. (2.2), we can see that in the boundary
regions y → ±∞ the metric can be approximated by

ds2
±∞ = L2

(
dy2 +

√
1− 2γ2

4 e±2y dz
2 − dt2

z2

)
. (2.13)

Equation (2.13) simplifies by shifting the y coordinate as follows

ỹ = y ± 1
2 log

√
1− 2γ2, ds2

±∞ = L2
(
dỹ2 + 1

4e
±2ỹ dz

2 − dt2

z2

)
. (2.14)

We can then introduce the FG coordinates (ξ, η):
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• when ỹ →∞, ξ → 0, and η > 0

e−2ỹ = 1
4
ξ2

η2 , z = η

(
1 + 1

2
ξ2

η2

)
, (2.15)

• when ỹ → −∞, ξ → 0, and η < 0

e2ỹ = 1
4
ξ2

η2 , z = |η|
(

1 + 1
2
ξ2

η2

)
. (2.16)

Therefore, the metric in eq. (2.13) becomes

ds2
±∞ = L2

ξ2

(
dξ2 + dη2 − dt2 +O(ξ)

)
. (2.17)

This is valid when we are far from the interface located at (η, ξ) = 0. In fact, close to the
origin the coordinate transformation is singular and a different cutoff should be introduced.
More precisely, the regime where the FG expansion is valid is ξ � η, which implies that
at the lowest order |η| ' z, see eqs. (2.15) and (2.16). We will discuss how to regularize
divergences in the region close to the interface in section 3.2.

2.3 Conformal diagram of the Janus geometry

In order to understand the geometrical properties of Janus, it is useful to consider the
conformal diagram. It can be obtained by identifying an appropriate conformal factor
multiplying a known metric. Starting from eq. (2.7), and choosing the AdS2 slices in
Poincaré coordinates, we obtain

ds2
3 = L2

z2 f(µ)
(
z2dµ2 + dz2 − dt2

)
. (2.18)

This metric is conformal to a portion of the Minkowski spacetime where the spatial part
is written in polar coordinates with angle −µ0 ≤ µ ≤ µ0 and radius z > 0. This conformal
diagram is depicted in figure 2. Since µ0 ≥ π/2, the junction between the half-boundaries
meets at a joint1 W with an obtuse angle.

We can also consider the case where global coordinates are taken on AdS2 the slicing,
which gives the metric

ds2 = L2

cos2 λ

(
−dt2 + cos2 λ dµ2 + dλ2

)
, (2.19)

and the associated conformal diagram is given in figure 3. The boundary consists of two
parts, defined by µ = ±µ0, which are given by two halves of S1 joined through the north
and south poles.

1While this joint seems singular, it can be shown that it is only an artifact of the coordinate system.
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−µ0 µ0

W

Figure 2. Conformal diagram taken from [48] for the Janus AdS3 geometry with Poincaré coor-
dinates on the AdS2 slices. The polar angle corresponds to the coordinate µ ∈ [−µ0, µ0] and the
radial coordinate is z ∈ [0,∞]. The joint W corresponds to the place where the two parts with the
topology of half R2 meet. It can be seen as a domain wall on the boundary.

−µ0 µ0

N

S

Figure 3. Conformal diagram for the Janus AdS3 geometry with global coordinates on the AdS2
slices.

2.4 Static Janus BTZ black hole

The static Janus BTZ background [59, 60] is dual to the Janus interface conformal field
theory at finite temperature. The Kruskal extension of this solution is dual to two copies
of the Janus interface CFT in the thermofield double state. This solution has a timelike
Killing vector, hence the name static. It can be obtained as follows.

Starting from the Janus AdS metric

ds2 = L2
(
dy2 + f(y) ds2

AdS2

)
= L2 f(µ)

(
dµ2 + ds2

AdS2

)
, (2.20)

one can replace Poincaré AdS2 with Rindler AdS

ds2
AdS2 → ds2

Rindler = −(w2 − 1) r2
h

L4 dt2 + dw2

w2 − 1 . (2.21)

For γ = 0, the interfaces on each boundary disappear and the solution coincides with the
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w = 1r = rh

R
x = 0
w =∞

w =∞
x = 0

L

x

x

Figure 4. Picture representing an AdS slice of the BTZ black hole at constant time. The lines
at constant w are depicted in blue, while the curves at constant µ in orange. The coordinate x
runs along the left (L) and right (R) disconnected boundaries. The coordinate r covers the region
outside the horizon and runs on the vertical axis: starting from the middle line located at r = rh,

it increases towards the L and R boundaries.

BTZ black hole [31]. This can be seen from the change of coordinates (see figure 4)
rh
r

= cosµ√
w2 − sin2 µ

, sinh rhx
L2 = sinµ√

w2 − sin2 µ
, (2.22)

which bring the metric in eqs. (2.20) and (2.21) to the familiar form of the BTZ black hole
with vanishing angular momentum

ds2
BTZ = −r

2 − r2
h

L2 dt2 + L2dr2

r2 − r2
h

+ r2

L2dx
2 . (2.23)

The horizon is at r = rh and r = 0 corresponds to an orbifold singularity. This solution
is invariant under time t and spatial x translations. When the deformation parameter γ is
non vanishing, translational invariance in x is broken, while the time translation symmetry
in t remains unbroken. When γ = 0, due to translational invariance in x, we can compactify
x ∼ x + 2π. For general γ, this identification is no longer consistent with the symmetries
of the problem.

For generic γ the asymptotic behaviour of the solution can be mapped to the asymp-
totics of the BTZ as follows

r

rh
'
√

(w2 − 1)f(y) + 1 , sinh rhx
L2 ' sign(x)

√
f(y)− 1

(w2 − 1)f(y) + 1 . (2.24)

At generic γ, the solution has a Killing vector ∂t, which corresponds to time translations.
When considering the Kruskal extension of the solution, this Killing vector corresponds to
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the following time translations on the left and right boundaries

tL → tL ±∆t , tR → tR ∓∆t , (2.25)

The field theory dual involves the left and the right interface CFTs in the thermofield
(TFD) double state

|ψ(tL, tR)〉 = e−i(tLH⊗1+tR 1⊗H)|ψ(0, 0)〉 , |ψ(0, 0)〉 = 1√
Z

∑
n

e−
β
2En |n〉 ⊗ |n〉 . (2.26)

The choice tL = −tR is time-independent, and corresponds to the ∂t Killing vector of the
geometry.

3 Volume for Janus AdS3

In this section we apply the CV conjecture to the Janus AdS3 geometry. We consider
an extremal spacelike codimension-one slice attached to the boundary and we evaluate
the induced volume. Since this geometric object extends all the way to the boundary, the
corresponding holographic complexity will be divergent and it is necessary to regularize the
UV modes. In the case of entanglement entropy, divergences arise due to the arbitrarily
short correlations between degrees of freedom on each side of the entangling surface. The
leading divergence scales with the area law and either the finite term (in odd spacetime
dimensions) or the coefficient of the logarithmic divergence (in even spacetime dimensions)
have a universal interpretation which is not sensitive to the ambiguities in the choice of
the regulator. In the case of complexity, the outcome of a similar classification is a leading
divergence proportional to the boundary volume of the time slice, and a set of subleading
terms defined in terms of integrals over the same slice [30].

However, this structure may change when defects, interfaces, or boundaries are present,
and it is interesting to understand how the structure gets modified. This problem has
already been addressed in some specific cases [51–53]. In this section we will study the
UV divergences of the AdS3 Janus geometry. This analysis will clarify the universality of
UV divegences in spacetimes containing a codimension-one object by comparing with the
Randall-Sundrum model [51] or with the case of a boundary CFT holographically described
by an end of the world brane [52, 53].

In the calculation of the volume, an IR regulator is also needed in order to get a finite
result. To deal with this divergence, a possibility could be to introduce an IR cutoff at
some constant value of the Fefferman-Graham (FG) coordinates. This approach is not very
practical for the Janus geometry, as the FG coordinates are known just as an expansion
nearby the boundary. In our case, it is more convenient to use the related concept of
subregion complexity as an IR regulator.

Subregion volume complexity [10] is from the bulk perspective defined as the volume
of an extremal slice limited by a constant time subregion on the boundary and the corre-
sponding HRT surface. The precise meaning of subregion complexity in the dual CFT is
still an open question. Some proposals, such as fidelity, purification complexity and basis
complexity, were discussed in [10, 35]. In any event, the HRT surface defining the subregion
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volume can effectively be used as an infrared regulator: the total complexity will then be
defined as the limit in which the subregion covers the entire boundary. In the case of the
Janus geometries under consideration in this section, the spacetime is (2 + 1)-dimensional
and then the RT surface is a geodesic.

In section 3.1, we discuss the time independence of the volume of the Janus AdS
geometry. In section 3.2 three different prescriptions to regulate the UV divergences of
the extremal volume are described; these regularization only differ by finite terms. In
section 3.3 we compute the Janus AdS3 volume, using the single cutoff regularization; in
sections 3.4 and 3.5 we will discuss how the computation is modified using the FG and the
double cutoff regularizations. We will show that these regularization prescriptions differ
only by a finite term. In section 3.6 we will compare the result with the one found in other
AdS defect geometries.

3.1 Time independence of the volume in the Janus AdS3 geometry

We want to show that it is not restrictive to study the CV conjecture in the Janus AdS3
background using a time slice at constant boundary time. One could be tempted to assign
different time arrows on each of the two y = ±∞ boundaries (as customary for the left
and right side of the Kruskal diagram). However, this is not consistent because the two
boundaries are not causally disconnected. We are then forced to evolve the time in a unique
way according to the asymptotic Killing vector of the metric. This forces us to take the
boundary condition of the extremal volume at constant time t. The discussion also applies
to the HRT surface associated to the subregion, which is also time independent.

Let us now show that the whole solution is at constant t. We parametrize the
codimension-one slice expressing the time as a function t(y, z). From the metric in eq. (2.3),
the volume functional is

V = L2
∫
dz dyL , L =

√
f(y)
z

√
1− (∂yt)2 − f(y)

z2 (∂zt)2 . (3.1)

The t = t0 function, where t0 is a constant, is a solution of the Euler-Lagrange equation.
Moreover, this solution has the property to maximize the volume functional.

3.2 UV regularizations for the volume

The volume is divergent and needs a regularization by an UV cutoff. The choice of this
cutoff is a delicate issue in Janus geometries, due to the presence of subtleties with the
Fefferman-Graham (FG) coordinates. Nearby the defect, there is a region where the FG
patch is not well-defined and the UV cutoff surface is ambiguous. To overcome this problem,
we will use three different regularization prescriptions and we will show that they only differ
by finite terms. Each regularization is equally valid to describe the relevant physics of the
system.

We generically consider an interface CFT described by a codimension-one defect em-
bedded in a AdSd+1 bulk geometry, whose isometries get reduced from the conformal group
SO(d, 2) to the subgroup SO(d− 1, 2). The natural way to parametrize this geometry is to

– 11 –
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perform a slicing of spacetime in terms of AdSd slices. The metric takes the form [61]

ds2 = L2
(
A2(y)ds2

AdSd + ρ2(y)dy2
)
, (3.2)

with y being a non-compact coordinate such that when y → ±∞ we have the asymptotic
behaviour

A(y)→ L±
2 e±y±c± , ρ(y)→ 1 . (3.3)

Here L± and c± are constants (which can take different values at the boundaries y = ±∞),
and we are assuming that there is not any other internal direction in the spacetime. We
parametrize the AdSd slices using Poincaré coordinates

ds2
AdSd = 1

z2

(
dz2 − dt2 + d~x2

d−2

)
, (3.4)

where (t, z) are the time and radial coordinates on each slice and ~x collects all the other
orthogonal directions. In the following, we will use three regularization techniques inspired
by the similar discussion for the free energy [62] and the entanglement entropy [61, 63]. In
all the computations of this section, the volume will be determined from

V =
∫
dz

∫
dy

∫
d~x
√
h , (3.5)

where
√
h is the determinant of the induced metric. The integration along the orthogonal

spatial directions ~x is usually trivial, while the part along the (y, z) coordinates contains
the relevant information about the defect.

The three different regularization that we will consider are:

• Fefferman-Graham regularization. The Fefferman-Graham (FG) form of the
metric is

ds2 = L2

ξ2

[
dξ2 + g1(ξ/η)

(
−dt2 + d~x2

)
+ g2(ξ/η) dη2

]
, (3.6)

where ξ is a radial coordinate for the asymptotic AdS region in Poincaré coordinates,
η is a field theory direction orthogonal to the defect, and g1, g2 are two opportune
functions, such that the original metric (3.2) with slicing (3.4) is equivalent to (3.6)
with a suitable change of coordinates (z, y) → (ξ, η). We perform an expansion of
eq. (3.6) such that the asymptotic metric reads

ds2 = L2

ξ2

(
dξ2 + dη2 + d~x2 − dt2 +O(ξ)

)
. (3.7)

The natural prescription to regularize divergences using the FG form of the metric is
to introduce a UV cutoff by cutting the spacetime with the surface located at ξ = δ,

and expand all the results in a series around δ = 0. The problem of this procedure is
that in the region where ξ/η � 1, the FG expansion breaks down and the coordinates
(ξ, η) are ill-defined [57].
For this reason, the defect geometry is characterized by the existence of two patches,
defined away from the region of the defect on the left and right sides of the spacetime,
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Defect

ξ = δ

Left FG Patch

ξ = δ

Right FG Patch

Γ

Figure 5. Interpolation between two FG patches with a continuous curve Γ.

where the FG expansion is valid: we call them FG patches (see figure 5.) We do not
have access to a natural UV cutoff in the middle region closer to the defect. To
overcome the problem, the original proposal from [61] is to interpolate the cutoff
determined by requiring ξ = δ in the left and right FG patches with an arbitrary
curve in the middle region. The only constraint is that the curve should be continuous
at the value y = y0 where the FG expansion breaks down. The corresponding curve
is pictorially represented in figure 5.
This method was later applied to the calculation of complexity in [51], with the
additional requirement that the interpolation is smooth, i.e., the curves in the middle
region are perpendicular to the surface which delimits the FG patches. We will discuss
the details of this method in section 3.4.

• Single cutoff regularization. This technique [62] is inspired by the Fefferman-
Graham method, but has the advantage to not introduce any arbitrary interpolating
curve in the middle region. Instead, it uses the FG map to induce a minimal value on
the z coordinate, in such a way that the integration does not reach the region z → 0
where the expansion breaks down. We explain how the procedure works starting
from AdSd+1, which can be written using the slicing (3.2) choosing A(y) = cosh y
and ρ(y) = 1. In this case, the coordinate transformation which brings the metric to
the FG form in eq. (3.6) is

η = z tanh y , ξ = z

cosh y . (3.8)

If we locate the UV cutoff at the surface ξ = δ, we get the condition

δ = z

cosh y , (3.9)

which selects a maximal value of y = y∗(z) for the first non-trivial integration in
eq. (3.5). Reversing this formula gives a constraint on the minimal value of the
integration along z, determined by

zmin = δmin
y∈R

(cosh y) = δ . (3.10)
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In this way, we observe that the choice of a single cutoff δ from the FG expansion
restricts the integration along both the (y, z) coordinates and regularizes the volume.

In the presence of a defect, the procedure is the same, except that the conditions
determined from the FG form of the metric get modified to

δ = z

A(y) , zmin = δmin
y∈R

[A(y)] . (3.11)

We apply this technique in section 3.3.

• Double cutoff regularization. The previous technique regularizes all the integrals
with the choice of a single UV cutoff inspired by the FG expansion. On the other
hand, we can consider two different cutoffs for the each of the directions (y, z). This
method [63] is based on the observation that, after the subtraction of the vacuum
geometry, we should obtain a holographic quantity intrinsic to the defect: for this
reason, a natural cutoff can be imposed on the AdSd slicing at z = δ, instead of
selecting the asymptotic radial direction in the AdSd+1 bulk geometry. This choice
by itself is not sufficient to regularize the full integral (3.5), since the metric factor
A(y) is still singular at infinity: for this reason we also determine a maximum value
of y where the integration ends by requiring

A(y) = 1
ε
. (3.12)

Notice that while the δ cutoff has physical relevance as it regularizes the intrinsic
contribution from the defect, the ε cutoff is a mathematical artifact introduced at
intermediate steps, and the result should therefore be ε-independent. As a conse-
quence of this, we are allowed to remove the ε cutoff at the end of the computation.
We apply this procedure in section 3.5.

3.3 Single cutoff regularization

We will consider a symmetric region of radius l/2 centered on the defect in Janus AdS3
and we will compute its subregion complexity. The total complexity can be defined as the
l→∞ limit of this result, with the length l playing the role of IR regulator.

The interval is located at the FG radial coordinate ξ = 0 and placed symmetrically
along the orthogonal direction to the interface, i.e., η ∈ [− l

2 ,
l
2 ]. There is an ambiguity in the

regularization of the UV divergences: we can either put the subregion on the cutoff surface
ξ = δ and build the corresponding HRT surface, or we can put the interval on the real
boundary ξ = 0 and then cut the HRT surface with the line at ξ = δ. Since the difference
between the two cases vanishes in the δ → 0 limit, we will only focus on the latter case.

As pointed out in [63], on a fixed time slice there is a particular simple class of geodesics
for the Janus geometry given by curves at constant z. Using the FG expansion in eq. (2.15)
and putting the boundary conditions ξ = 0 and η = l

2 , we determine the constant z̄ value
where the surface is located:

z̄ = l

2 . (3.13)
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The prescription for the extremal volume tells us to consider a solution at t = 0 anchored
at the boundary and delimited by the HRT surface.

The UV divergencies will be regularised according to the single cutoff prescription
described in section 3.2. The correspondence between the generic form (3.2) of the metric
with a conformal defect and the Janus background is

A2(y) = f(y) , ρ(y) = 1 , L2
± =

√
1− 2γ2 , c± = 0 . (3.14)

In this way the requirement in eq. (3.11) to regularize the UV divergences becomes

z√
f(y)

= δ . (3.15)

This single condition identifies both a maximum value of the coordinate y = y∗(z), obtained
by inverting the previous expression, and a minimum value of the coordinate z = zmin,

determined from the second identity in eq. (3.11). Concretely, they are given by

y∗(z) = f−1
(
z2

δ2

)
, zmin = a δ , a2 = f(0) = 1 +

√
1− 2γ2

2 . (3.16)

The integral which computes the subregion volume in eq. (3.5) takes the form

V(l, γ) = 2L2
∫ z̄

zmin

dz

z

∫ y∗(z)

0
dy
√
f(y) . (3.17)

Changing variables into

τ = f(y)
a2 , ζ = z2

a2δ2 , ζ̄ = z̄2

a2δ2 , (3.18)

we can express the integral as

V(l, γ) = L2a3
√

2

∫ ζ̄

1

dζ

ζ

∫ ζ

1

τ1/2dτ√
γ2 + 2a2τ(a2τ − 1)

= L2a3
√

2

∫ ζ̄

1
dτ

∫ ζ̄

τ

dζ

ζ

τ1/2√
γ2 + 2a2τ(a2τ − 1)

.

(3.19)

It is useful to define

m = 1−
√

1− 2γ2

1 +
√

1− 2γ2 , (3.20)

which is one of the zeroes of the denominator. Since 0 ≤ γ ≤ 1/
√

2, we have 1/
√

2 ≤ a ≤ 1
and 0 ≤ m ≤ 1. A direct evaluation gives

V(l, γ) = L2a

2

∫ ζ̄

1

(log ζ̄ − log τ) τ1/2√
(τ − 1)(τ −m)

dτ

= L2
(
l

δ
+ η(γ) log

(
l

2a δ

)
+ χ(γ)

)
,

(3.21)
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where

η(γ) = a

[∫ ∞
1

τ1/2
(

1√
(τ − 1)(τ −m)

− 1
τ

)
dτ − 2

]
= 2a (K(m)− E(m)) , (3.22)

χ(γ) = a

[
−2− 1

2

∫ ∞
1

τ1/2 log τ
(

1√
(τ − 1)(τ −m)

− 1
τ

)
dτ

]
. (3.23)

The complexity of the total space can be obtained from the l→∞ limit of eq. (3.21).
To compute the contribution to the volume arising purely from the defect, we need to

subtract the result from AdS3 space. This amounts to put γ = 0 in the previous result,
giving

η(0) = 0 , χ(0) = −π . (3.24)

For a cross-check, we can perform directly the AdS3 calculation

y∗ = arccosh
(
z

δ

)
, zmin = δ , (3.25)

and the integral computing the volume is

V(l, 0) = 2L2
∫ z̄

δ

dz

z

∫ arccosh(z/δ)

0
dy cosh y = L2

(
l

δ
− π

)
, (3.26)

which is consistent with eq. (3.24).
The difference between the regularised volumes of the Janus geometry and AdS3 is

∆V(l, γ) ≡ V(l, γ)− V(l, 0) = L2
(
η(γ) log

(
l

2a δ

)
+ χ(γ) + π

)
. (3.27)

The only divergence in eq. (3.27) is logarithmic, which is interpreted as the contribution
from the defect, and it is proportional to the function η(γ). Note that for small γ

η(γ) ≈ π

4 γ
2 , (3.28)

and that η is divergent for γ → 1/
√

2, which corresponds to the linear dilaton limit. A
plot of η(γ) is shown in figure 6.

Note that the l-dependent part of eq. (3.27) is proportional to the entanglement entropy
of the segment without the defect, i.e.,

SAdS = c

3 log
(
l

δ

)
. (3.29)

3.4 Fefferman-Graham regularization

This method consists in using the FG form of the metric in eq. (3.6) to identify a UV cutoff
in terms of the proper radial coordinate near the boundary. In particular, it is required
that when ξ → 0 the asymptotic behaviour respects the limits

g1(ξ/η)→ 1 , g2(ξ/η)→ 1 . (3.30)
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η(γ)

γ

Figure 6. Plot of η(γ) as defined in eq. (3.22), which is the coefficient of the log divergencies due
to the defect.

The change of coordinates from (y, z) to (ξ, η) breaks down when ξ/η � 1, which corre-
sponds to approaching the interface. This condition is equivalent to the statement that
there exists a value of y = y0 such that the FG expansion breaks down. Since f(y) is a
monotonically increasing function in the region y ≥ 0, this equivalently implies that there
exists a value b ≥ 1 such that

A(y0) = bA(0) , (3.31)

where A(y) was introduced in eq. (3.2). This criterion selects a particular y = y0 such that

y0 = A−1(bA(0)) . (3.32)

There exist universal quantities that do not depend on the choice of the curve connecting
the two FG patches [61]. For this reason, in the region where y ∈ [−y0, y0] we can introduce
an arbitrary curve interpolating between the two regions. As proposed in [51], we will select
an interpolating curve connecting smoothly the two patches. In the following, we show that
this prescription gives the same result as the single cutoff method applied in section 3.3,
except for the finite part.

Integration in the FG patches. We consider the FG expansion defined in eq. (2.15)
with a UV cutoff located at ξ = δ and the condition y � 1. In this way we find

δ

z
= 1√

f(y)
, ⇒ y∗ = 1

2 arccosh
( 2z2

δ2 − 1√
1− 2γ2

)
, (3.33)

which is equivalent to the single cutoff prescription (3.11) after using the identification
in (3.14). According to eq. (3.32), we determine the minimal value of y = y0 such that the
FG expansion is valid by solving

√
f(y0) = a b ⇒ y0 = 1

2 arccosh
(

2a2b2 − 1√
1− 2γ2

)
. (3.34)
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Therefore, the integration in the FG patch region is given by

V1
FG(l, γ) = 2L2

∫ z̄

zFG
min

dz

z

∫ y∗(z)

y0
dy
√
f(y) , (3.35)

where z̄ was defined in eq. (3.13), and we put a symmetry factor of 2 due to the symmetry
of the problem. The minimal value z = zFG

min is determined as

zFG
min = min

y∈[y0,y∗]

(√
f(y)

)
δ = a b δ , (3.36)

where we used the fact that in a single FG patch the function f(y) is monotonically
increasing. Notice that this value of zFG

min differs from zmin in eq. (3.16) (determined for the
single cutoff prescription) only by the factor b.

Interpolation in the middle region. Now we consider the middle region where we do
not have access to a FG expansion. We show that the surfaces at constant y and the ones
at constant z are orthogonal to each others. Since the normal one-forms to such surfaces
are given by

v = dy , w = dz , (3.37)

one can easily show that v · w = 0. Even though the coordinates (ξ, η) are not defined
in the middle region, the original variables (y, z) are still valid. According to [51], the
curve interpolating the FG patches should be chosen perpendicular to the surface located
at y = y0. On the time slice t = 0, this condition selects curves at constant z.

The integral in this region reads

V2
FG(l, γ) = 2L2

∫ z̄

zFG
min

dz

z

∫ y0

0
dy
√
f(y) . (3.38)

The total volume is

VFG(l, γ) ≡ V1
FG(l, γ) + V2

FG(l, γ) = 2L2
∫ z̄

zFG
min

dz

z

∫ y∗

0
dy
√
f(y) , (3.39)

which is exactly the integral (3.17) that we evaluated for the single cutoff prescription,
except that now we integrate from zFG

min ≥ zmin. Subtracting vacuum AdS3, the result is

∆VFG(l, γ) = L2
[
η(γ) log

(
l

2a b δ

)
+ χ(γ) + π

]
. (3.40)

The result, up to a finite term, coincides with eq. (3.27). This procedure also shows that
the value y = y0 where the FG patch ends does not play any special role.

3.5 Double cutoff regularization

Here we repeat the calculation of the previous section using the double cutoff prescription.
Following the procedure described in section 3.2, we take one cutoff at z = δ, whereas the
other one is determined by

f(y) = 1
ε2 . (3.41)
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Solving the previous equations for y = y∗, we find

y∗(ε) = f−1
( 1
ε2

)
. (3.42)

This value is the same as the one in eq. (3.16), once we identify ε = δ/z. The main difference
using this method is that ε does not depend on z. Thus, the two integrals defining the vol-
ume are independent and factorize. Then, the extremal volume for the subregion is given by

V(l, γ) = 2L2
∫ z̄

δ

dz

z

∫ y∗(ε)

0
dy
√
f(y) . (3.43)

Following the analysis in section 3.3 and performing the change of variables

τ = f(y)
a2 , (3.44)

we obtain
V(l, γ) = L2a log

(
z̄

δ

)∫ 1/(a2ε2)

1
dτ

√
τ

(τ − 1)(τ −m) . (3.45)

A direct evaluation gives

V(l, γ) = L2
(
η(γ) + 2

ε

)
log

(
z̄

δ

)
, (3.46)

where η(γ) is defined in eq. (3.22). Subtracting the volume of pure AdS3 space which is
given by

V(l, 0) = L2 2
ε

log
(
z̄

δ

)
+O(ε) , (3.47)

we get the contribution to the volume from the defect

∆V(l, γ) = L2 η(γ) log
(
l

2 δ

)
+O(δ) . (3.48)

We observe that the dependence on ε disappears after the subtraction, consistently with
the non-physical relevance of this cutoff [63]. The remaining logarithmic divergence
matches with the single cutoff calculation in eq. (3.27), up to finite parts.

3.6 Comparison with other defect geometries

In this section, we investigated subregion volume complexity for an interval of length l

centered around the Janus interface, using three different regularizations. We found that
the increment of subregion complexity compared to the vacuum CFT is

∆C(l, γ) = 2
3c η(γ) log

(
l

δ

)
+ finite terms , (3.49)

where c is the CFT central charge and η(γ) is

η(γ) = 2

√
1 +

√
1− 2γ2

2 [K(m)− E(m)] , m = 1−
√

1− 2γ2

1 +
√

1− 2γ2 . (3.50)
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A plot of η(γ) is shown in figure 6. We can contrast this with the ground state degeneracy
g of the Janus solution computed in [43], given by

∆S = log g = c

6κ(γ) , κ(γ) = log 1√
1− 2γ2 . (3.51)

The value 0 ≤ γ <
√

2
2 parameterizes the excursion of the dilaton between the two sides of

the interface, which diverges for γ →
√

2
2 .

It is interesting to compare ∆C for the Janus interface with recent results found for
other defect geometries, namely:

• the AdS3 Randall-Sundrum model, where the contribution to complexity coming from
the defect, evaluated in [51], is

∆C(l, y∗) = 2
3c ηRS log l

δ
+ finite terms , ηRS = 2 sinh y∗ , (3.52)

where the parameter 0 ≤ y∗ <∞ is related to the brane tension λ by

λ = tanh y∗
4πGL . (3.53)

In this case, the defect boundary entropy [43] is

∆S = log g = c

6κRS , κRS = 2y∗ ; (3.54)

• the BCFT model. Complexity was studied in [52, 53] and a similar scenario for an
holographic Kondo model was investigated in [47]. For the three-dimensional case,
the subregion volume complexity reads

∆C(l, α) = 2
3c ηBCFT log l

δ
+ finite terms , ηBCFT = cotα , (3.55)

where the parameter 0 < α ≤ π
2 is related to the brane tension T as follows

T = cosα
L

. (3.56)

The defect boundary entropy [45, 46] is

∆S = log g = c

6κBCFT , κBCFT = log
(

cot α2

)
. (3.57)

We conclude that:

1. the leading divergence in ∆C is always logarithmic, with a positive coefficient η that
is a function of the deformation parameter of the model;

2. in all three cases, the log divergence in ∆C is not related in any universal way to
the defect boundary entropy ∆S. Nonetheless, the two quantities share a similar
behavior, that is, they diverge for the same critical value;
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4η
πκ

γ

Figure 7. Plot of 4η/(πκ) as a function of γ, see eq. (3.51).

3. for small values of the deformation parameters, in all the models η/κ is of order 1,
i.e.,

η(γ)
κ(γ) = π

4 ,
ηRS

κRS

= ηBCFT

κBCFT

= 1 ; (3.58)

4. in the Janus case η/κ remains very close to π
4 for the whole range of the deformation

parameter γ (see figure 7). On the contrary, in the other two models η � κ close to
the critical values y∗ →∞ and α→ 0.

4 Volume of the static Janus BTZ black hole

In the finite temperature case, it is interesting to consider the thermal complexity of forma-
tion [64], which corresponds to the additional complexity needed to prepare the thermofield
double state starting from two copies of unentangled vacuum CFTs. We study this quantity
for the Janus interface. In the CV conjecture, this corresponds to the volume of the initial
time slice of the Kruskal extension of the static Janus BTZ subtracted by twice the Janus
AdS contribution.

4.1 Single cutoff regularisation

In this section we compute the subregion complexity for a symmetric interval with length l
centered around the defect of the static Janus BTZ geometry at vanishing boundary time.
The metric is

ds2 = L2
[
dy2 + f(y)

(
−(w2 − 1)r2

h

L4 dt2 + dw2

w2 − 1

)]
, (4.1)

which is obtained by substituting the Rindler-like metric (2.21) in (2.20), and performing
the µ-to-y change of variable dµ = dy/

√
f(y).

The HRT surface on a constant time slice lies at a constant value w = w̄ [60]. We
locate the interval along the coordinate x ∈ [− l

2 ,
l
2 ] orthogonal to the defect and on the
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real boundary parametrized by r =∞. The value of w̄ can be obtained by combining the
two equations (2.24) with r =∞, x = l/2 and solving for w̄, which gives

w̄ = coth
(
lrh
2L2

)
(4.2)

The UV divergencies are regularized with the single cutoff prescription presented in sec-
tion 3.2. The natural choice of cutoff is found by performing a FG expansion of the metric
to relate the asymptotic behavior of the deformed BTZ black hole with the non-deformed
counterpart. Such asymptotic behaviour is identified by

r

rh
'
√

(w2 − 1)f(y) + 1 . (4.3)

The cutoff surface determined by the FG expansion at r = L2/δ induces the following value
of y coordinate

y∗(w) = 1
2arcosh

(
2− δ̂2 (w2 + 1

)
δ̂2 (w2 − 1)

√
1− 2γ2

)
, δ̂ = rhδ

L2 . (4.4)

This in turn induces a cutoff in the w coordinate, which is found by maximizing the inverse
of the previous function

w(y) =

√√√√2/δ̂2 +
√

1− 2γ2 cosh(2y)− 1√
1− 2γ2 cosh(2y) + 1

, (4.5)

with respect to y. The maximum occurs at y = 0, and thus

wmax =

√√√√2/δ̂2 +
√

1− 2γ2 − 1√
1− 2γ2 + 1

. (4.6)

This UV cutoff is the analog of zmin in the Janus AdS3 case, see eq. (3.16).
The extremal volume (3.5) for the static Janus BTZ geometry reads

V(l, γ) = 2L2
∫ wmax

w̄
dw

∫ y∗(w)

0
dy

√
f(y)
w2 − 1 . (4.7)

After performing the following change of variables

τ = f(y)
a2 , z = 1− δ̂2

a2δ̂2(w2 − 1)
, z̄ = 1− δ̂2

a2δ̂2(w̄2 − 1)
, (4.8)

the integral takes the form

V(l, γ) = L2a

2

∫ z̄

1

dz√
1 + α2z

∫ z

1
dτ

√
τ

(τ − 1)(τ −m)

= L2a

2

∫ z̄

1
dτ

√
τ

(τ − 1)(τ −m)

∫ z̄

τ

dz

z
√

1 + α2z
,

(4.9)
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where
α = a δ̂√

1− δ̂2
. (4.10)

The integration over z yields three kind of terms, according to which we split the extremal
volume as

V(l, γ) = V1 + V2 + V3 , (4.11)
where

V1 = L2a

∫ z̄

1
dτ log

(
1 +

√
1 + α2τ

)√ τ

(τ − 1)(τ −m) ,

V2 = −L
2a

2

∫ z̄

1
dτ log τ

√
τ

(τ − 1)(τ −m) ,

V3 = −L2a

∫ z̄

1
dτ log

(
1 +
√

1 + α2z̄√
z̄

)√
τ

(τ − 1)(τ −m) .

(4.12)

These integrals can be evaluated explicitly following similar steps as in section 3.3. The
result is

V(l, γ) = L2
(
l

δ
+ η(γ) log

[
2L2

a δ rh
tanh

(
lrh
4L2

)]
+ χ(γ)

)
+O(δ) , (4.13)

where η(γ) and χ(γ) were defined in eq. (3.22).
In absence of the interface (for γ = 0) the volume is still given by the AdS3 result in

eq. (3.26). This is due to the fact that subregion volume complexity in the BTZ background
does not depend on temperature and it is topologically protected by the Gauss-Bonnet
theorem [32]. On the other hand, in the case of the Janus interface subregion complexity
depends on the temperature. In the small temperature regime rhl � 1, we recover the
Janus AdS result in eq. (3.21).

Using the expression for temperature and the central charge

T = rh
2πL2 , c = 3L

2G , (4.14)

we get that the subregion complexity, in terms of field theory quantities, is

C(T, l, γ) = V(l, γ)
LG

= 2
3c
(
l

δ
+ η(γ) log

[ 1
πaTδ

tanh
(
πlT

2

)]
+ χ(γ)

)
. (4.15)

The temperature dependence of the volume complexity is

∆C(T, l, γ) ≡ C(T, l, γ)− C(0, l, γ) = 2
3 c η(γ)Φ(T l) (4.16)

where
Φ(T l) = log

[ 2
πlT

tanh
(
πlT

2

)]
. (4.17)

At zero temperature, the contribution of the defect to C(0, l, γ) is proportional to the en-
tanglement entropy of the segment without defect. However, the proportionality is spoiled
at finite temperature. In fact, the BTZ entanglement entropy for a segment of length l is

SBTZ(T, l) = c

3 log
[

2L2

rh δ
sinh

(
lrh
2L2

)]
= c

3 log
[ 1
π T δ

sinh (πT l)
]
, (4.18)
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T l

Φ(T l)

Figure 8. Plot of Φ(T l) in eq. (4.17), which gives the temperature dependence of the complexity
of the interface.

which is an increasing function of T , while ∆C(l, γ) is a decreasing function of T (see
figure 8).

Taking into account the two sides of the Kruskal diagram, the complexity of formation
CF of the static Janus BTZ starting from the Janus AdS3 background is given by the
l� 1/T limit of 2∆C, that is,

CFThermal = 4
3c η(γ) log

( 2
πlT

)
, (4.19)

where, again, we interpret l as an infrared regulator. In this limit, the complexity of
formation is negative. This means that it takes less complexity to form a BTZ black hole
in the Janus geometry than the defect alone, starting from empty space.

It is also interesting to consider the complexity of formation of the defect in the BTZ
background. In this case, we subtract from eq. (4.15) the γ = 0 result

C(T, l, γ)− C(T, l, 0) = 2
3 c

(
η(γ) log

[ 1
πaTδ

tanh
(
πlT

2

)]
+ χ(γ) + π

)
. (4.20)

Then, considering the lT � 1 limit and multiplying by an additional factor of two to
account for the two sides of the Kruskal diagram, we obtain the complexity of formation
of the defect starting from the static BTZ background

CFDefect = 4
3c
(
η(γ) log

( 1
πaTδ

)
+ χ(γ) + π

)
. (4.21)

Notice that, since the volume complexity in the BTZ black hole is topological, the above
result can be also interpreted as the complexity of formation of the Janus static BTZ
starting from the vacuum AdS3 spacetime.

4.2 Double cutoff regularisation

We compute the subregion volume complexity for the static Janus BTZ geometry by em-
ploying the double cutoff regularization. According to this prescription, we directly intro-
duce a physical UV cutoff along the w direction located at wmax = 1/δ̂, but in addition
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we regularize the integration along y by requiring eq. (3.41). This constraint induces a
maximal value of y = y∗ that reads

y∗ = 1
2arccosh

(
2− ε2√
1− 2γ2 ε

)
. (4.22)

Finally, the integration is restricted by the HRT surface, that is located at the constant
value w = w̄ as determined in eq. (4.2). Collecting these geometrical data, we compute the
volume as

V(l, γ) = 2L2
∫ wmax

w̄
dw

∫ y∗(ε)

0

√
f(y)
w2 − 1 . (4.23)

Contrarily to the single cutoff case, the integrations are independent and can be evaluated
separately. Using the change of variables τ = f(y)/a2, we find

V(l, γ) = L2a

2

∫ wmax

w̄

dw√
w2 − 1

∫ 1/(a2ε2)

1
dτ

√
τ

(τ − 1)(τ −m) =

= L2 log
[ 1
πTδ

tanh
(
πlT

2

)](
η(γ) + 2

ε

)
+O(δ, ε) .

(4.24)

The complexity of formation compared to the BTZ black hole background is obtained by
subtracting the result in the case γ = 0. It reads

C(T, l, γ)− C(T, l, 0) = 2
3c
(
η(γ) log

[ 1
πTδ

tanh
(
πlT

2

)])
+O(δ) , (4.25)

whose divergence part precisely matches with the single cutoff computation, see eq. (4.20).
In addition, also the temperature dependence of the finite part is the same in both the
regularizations: their difference is finite and depends only on γ, as in eq. (4.21).

5 Volume for the time-dependent Janus BTZ geometry

In this section we will focus on the growth rate of complexity for the Janus BTZ geometry
obtained through a time-dependent deformation of the BTZ black hole [49, 65]. This
gravity solution corresponds to a domain wall configuration for the dilaton field along the
radial direction of AdS, which connects the left and right sides of the Penrose diagram.
The dilaton does not divide each boundary component into two halves, rather, it takes two
different values on each boundary.

The field theory dual of this solution is not an interface CFT, but corresponds to two
entangled CFTs with two different but constant values of the dilaton source, eφ− and eφ+ ,
on each side of the Penrose diagram. The two CFTs are correlated through the bulk in
a non-trivial way and the solution is time-dependent. In particular, the field theory dual
starts at initial time from an out-of-equilibrium state, with an initial density for a non-
conserved operator [65]. At later times, the theory thermalizes and approaches equilibrium.
The initial thermofield double state is determined by

|ψ(0, 0)〉 = 1√
Z

∑
m,n

〈ELm|ERn 〉 e−
β
4 (ELm+ERn )|ELm〉 ⊗ |ERn 〉 . (5.1)
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The time evolution of this state is not invariant under the boundary time shift of eq. (2.25),
because the left and the right Hamiltonians are different.

The analysis is organized in the following way. In section 5.1 we introduce the metric
of the solution. In section 5.2 we restrict to the t = 0 case to analyze the structure of the
UV divergences of the model. Then, we move to the study of the time dependence of the
volume by analysing the equations of motion and specifying the boundary conditions of
the problem in section 5.3. In section 5.4 we numerically determine the extremal slices and
we plot the corresponding volume as a function of time.

5.1 Preliminaries

In order to find the time-dependent background, let us start form the Janus AdS3 solution
in eq. (2.7)

ds2
3 = L2f(µ) cos2 µds2

AdS3 , ds2
AdS3 = 1

cos2 µ

(
dµ2 + ds2

AdS2

)
. (5.2)

We can replace the AdS3 part of this geometry with the BTZ BH in eq. (2.23), as this
solution is locally equivalent to pure AdS3 (indeed, the BTZ solution can be obtained as
the quotient of AdS3 by a discrete group of invariances [31]). The identification between
the coordinate r in eq. (2.23) and µ is given by2

tanµ = ± cosh(rht)
√(

r

rh

)2
− 1 . (5.3)

This is responsible for the time-dependence of the final configuration, because µ is function
both of t and r. We can introduce the Kruskal coordinates

V = erh(t+r∗) , U = −e−rh(t−r∗) , (5.4)

with tortoise coordinate
r∗(r) = 1

2rh
log

(
r − rh
r + rh

)
. (5.5)

which can be compactified by introducing

V = tanw1 , U = tanw2 , (5.6)

and finally we go back from null coordinates to timelike and spacelike ones defining

τ = w1 + w2 , µ = w1 − w2 . (5.7)

Using the relation (5.3), we obtain [49, 65]

ds2
3 = L2f(µ)

(
−dτ2 + dµ2 + r2

h cos2 τdθ2
)
. (5.8)

Changing variable as in eq. (2.6), we get

ds2
3 = L2dy2 + L2f(y)

(
−dτ2 + r2

h cos2 τdθ2
)
, (5.9)

2Since the calculations in this section are mostly numerical, we use different unit conventions, in which
r, rh, t, τ, δ are dimensionless. All dimensional factors are carried out by L.
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µ = −µ0 µ = µ0

τ = π/2

τ = −π/2

Shadow region

Figure 9. Penrose diagram of the Janus deformation of the BTZ black hole. The µ variable runs
along horizontal lines from −µ0 to µ0, while τ runs vertically from −π/2 to π/2. The shaded region
represents the so-called shadow region.

with the same dilaton solution given in eq. (2.4). The Penrose diagram is shown in figure 9.
Note the appearance of a “shadow region”, which is causally disconnected from both the
boundaries. For γ = 0 we recover the BTZ solution, which has a square Penrose diagram
with no shadow region.

5.2 Volume at vanishing boundary time

The time-dependent Janus deformation of the BTZ black hole has two disconnected bound-
aries. In order to analyze the structure of the UV divergences of the volume, it is sufficient
to consider the case where both the boundary times vanish τL = τR = 0, which implies
that the extremal surface sits on a time slice at constant τ = 0. This is interpreted as the
complexity of formation of the Janus deformation starting from the pure BTZ background.
The extremal volume reads

V0(γ) = 2L2 rh

∫ 2π

0
dθ

∫ y∗

0
dy
√
f(y) , (5.10)

where introduce a UV cutoff at y = y∗, which we explictly determine below.
In order to compute the value of the UV cutoff consistently with the FG expansion,

we notice from [66] that near the conformal boundary the metric approaches AdS space in
Poincaré coordinates with radial direction ξ and time coordinate t if we make the identifi-
cation

ξ = 2
rh (1− 2γ2) 1

4
e−|y| cosh (rht) . (5.11)

The compact time τ and the non-compact one t are related at the boundary by the relation

tanh(rht) = sin τ . (5.12)
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If we set ξ = δ and t = 0, we get

y∗ = − log
(
rh(1− 2γ2) 1

4

2 δ

)
. (5.13)

The result for the volume in eq. (5.10) is

V0(γ) = 2πL2
(2
δ

+ rhη(γ)
)
, (5.14)

where η(γ) is defined in eq. (3.22). The difference between this volume and the volume of
the standard BTZ solution (obtained for γ = 0) is

∆V0(γ) ≡ V0(γ)− V0(0) = 2πL2rhη(γ) . (5.15)

This quantity is indeed positive (see figure 6).

5.3 Growth rate of the volume

In this section we will address the time evolution of the ERB. In principle, the extremal
surface can be specified by a function τ(y, θ). Due to the cylindrical symmetry, the extremal
τ does not depend on θ, i.e.,

τ(y, θ) = τ(y) . (5.16)

The volume functional can be evaluated from the metric in eq. (5.9), giving

V(γ) = 4πL2rh

∫ ymax

0
dy f(y) cos [τ(y)]

√
1− f(y)τ̇2 , (5.17)

where the dot denotes derivative with respect to y, and ymax will be fixed below in terms
of an appropriate UV cutoff. The Euler-Lagrange equation resulting from eq. (5.17) is

2 sin τ − 3 cos τ f ′(y)τ̇ + 2 cos τ f(y)f ′(y)τ̇3 − 2f(y)
(
sin τ τ̇2 + cos τ τ̈

)
= 0 . (5.18)

We then need to specify appropriate boundary conditions. We consider for simplicity the
case where the boundary times satisfy

τB ≡ τL = τR . (5.19)

In this case, the geometry is still symmetric between the left and right sides of the Penrose
diagram: continuity implies that there exists a turning point for the extremal slice. For
these reasons, we can impose the conditions

τ(ymax) = τ(−ymax) = τB ,
dτ

dy

∣∣∣
y=0

= 0 . (5.20)

In particular, the turning point is identified by the condition

τmin ≡ τ(y = 0) . (5.21)

Changing the boundary time τB, the value of τmin gets modified.
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5.4 Numerical solutions and time dependence of the volume

We determine the numerical solutions to the Euler-Lagrange equations given in (5.18).
This means that we find the extremal slices representing the evolution of the ERB, and we
also compute numerically the integral which gives their volume.

Extremal slices. An appropriate choice of the UV cutoff is naturally determined by
eq. (5.11) evaluated at ξ = δ. We find

ymax(τB) = log
(

2
rh δ

1
cos τB(1− 2γ2) 1

4

)
. (5.22)

This choice corresponds to the FG coordinates such that the metric on the boundary is
the BTZ black hole solution, and indeed the cutoff is time-dependent as a result of the
non-stationarity of the Janus deformation. Imposing the boundary conditions (5.20) at
these values of the y coordinate, we get the numerical solutions in figure 10.

One may wonder which extremal volumes have a turning point that sits inside the
shadow region. This part of the spacetime is determined by the intersection of the curves
at constant value of the null coordinates

w1 = 1
2 (τ + µ) , w2 = 1

2 (τ − µ) . (5.23)

If we impose the condition that these null lines pass through the points

(µ, τ) =
(
−µ0,−

π

2

)
, (µ, τ) =

(
µ0,−

π

2

)
, (5.24)

then the curves that determine the shadow region for positive τ are given by

− µ+ µ0 = τ + π

2 , µ+ µ0 = τ + π

2 . (5.25)

The corresponding equation in the (y, τ) coordinate system is obtained after performing
the transformation

tanh y = sn
(
α+µ

∣∣∣m) , m = α2
−
α2

+
, α2

± = 1±
√

1− 2γ2

2 , (5.26)

and using the definition

µ0 = 1
α+

K
(
α2
−
α2

+

)
≥ π

2 . (5.27)

The shadow region is coloured in red in figure 10.

UV divergencies of the volume. We numerically evaluate the integral corresponding
to the extremal volume (5.17), with τ(y) numerically determined by solving the differential
equation (5.18) with boundary conditions (5.20). We find that the volume is a monoton-
ically increasing function of time. A typical feature of black hole solutions like the BTZ
background is that the divergences are time-independent, while the finite part brings the
information about the time evolution of the system. This can be heuristically understood
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Figure 10. Plot of the numerical solutions τ = τ(y) for different values of the boundary time
τB . The configuration is taken to be symmetric, i.e., τL = τR = τB and the solutions have a
turning point at y = 0, which corresponds to τmin. All the extremal slices are computed by putting
γ = 0.5, rh = 2.0 and δ = 10−4. The solution with τB = 0 corresponds to the case studied in
section 5.2. The shadow region is shown as the red triangle in the picture.

from the fact that the time dependence is encoded in the turning point τmin, and since it
is determined at y = 0, which is far away from the boundary, it carries no UV modes. We
suspect that the same phenomenon occurs for this non-stationary black hole deformation,
since the choice of the UV cutoff determined from the FG expansion is such that we recover
the static BTZ background at the boundary.

In order to investigate the dependence of the volume from the UV cutoff δ, we consider
a fixed boundary time τB and we choose different values of δ scaling as

δi = 10−
i+2

2 , (5.28)

with i ∈ {1, . . . , 10}. If we assume that the leading divergence of the extremal volume scales
as

Vi ≡ V(δi, τB) = 4π
δi

+O(δ0
i ) , (5.29)

see eq. (5.14), this would imply that the ratio between the volume evaluated for two
consecutive values of δi is constant

Vi+1
Vi

=
√

10 ' 3.162 . (5.30)

We tested this behaviour numerically for various choices of the boundary time. We find a
strong numerical evidence that the leading divergence indeed scales as δ−1, see table 1.

We also notice that these ratios have a bigger error and deviate more from the analytic
result as we increase the boundary time. This phenomenon can be explained by the fact
that the finite term increases with time, and therefore produces a small deviation of the
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Boundary time τB Ratio Vi+1/Vi
0.2 3.159± 0.006
0.4 3.158± 0.007
0.6 3.157± 0.010
0.8 3.154± 0.014
1.0 3.151± 0.020
1.2 3.144± 0.029

Table 1. Numerical value of the ratios Vi+1/Vi evaluated at various boundary times τB . We
determined the mean value and the standard deviation from the results obtained by varying i ∈
{1, . . . 10} in the function δ = 10− i+2

2 . The results must be compared with the analytic expectation√
10 ' 3.162.

Vren

tB

γ = 0
γ = 0.5
γ = 0.67
γ = 0.7

Figure 11. Time dependence of the volume of the solutions depicted in figure 10 for different values
of γ , with δ = 10−4. The volumes Vren are renormalized after subtracting the divergence 4π/δ.

total volume from the contribution coming only from the leading divergence. One can
verify that at τB = 0 the analytic result in eq. (5.14) for the BTZ background is recovered
with great accuracy.

Time dependence of the volume. In order to show the time dependence of the solution
from the physical time tB, we use the change of coordinates, valid close to the boundary,
given by eq. (5.12). After subtracting the divergence 4π/δ, which is the same for all values
of γ, we show in figure 11 the time dependence of the volume Vren for both the Janus
deformation, plotted for different values of γ, and the pure BTZ background γ = 0. The
result is a monotonically increasing function of time, which reaches a linear growth for
late times. We also depict the growth-rate of the volume in figure 12. We numerically
find that the rates of growth of the volume for late times are the same (within numerical
uncertainties) for all the solutions with various γ.
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dVren
dtB

γ = 0
γ = 0.5
γ = 0.67
γ = 0.7

tB

Figure 12. Time derivative of the extemal volume of the time dependent Janus BTZ deformation
for various values of γ.

According to [65], the time-dependent Janus deformation of the BTZ solution describes
the thermalisation of an out-of equilibrium system, with a late-time temperature given by

T = rh
2π L . (5.31)

In addition, the area of the horizon is given by [49]

A(τ) = 2πL rh
α+ sin (π/2− τ)

sn (α+ (π/2− τ) , k) −→tB→∞
2πL rh . (5.32)

Hence, at late times

TS = r2
h

4G , (5.33)

which is the same value that one gets for the BTZ background. We numerically checked,
for the values of γ shown in figure 13, that the asymptotic rate of the volume is

1
4πGL2 lim

tB→∞

dVren
dtB

= TS , (5.34)

which matches with the volume rate at late times found in [29] for the BTZ case.
We remark that the divergence of the volume is universal because it does not depend

on γ. For this reason, it is meaningfull to compare the finite part of the volume with
different values of the Janus deformation. We define

∆V(γ, tB) = V(γ, tB)− V(0, tB) , (5.35)

which is plotted (as a function of tB for different γ) in figure 13. At tB = 0, we have
that ∆V = ∆V0, given by eq. (5.15). The quantity ∆V0 is positive and, in particular, for
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∆V

tB

γ = 0.5
γ = 0.67
γ = 0.7

Figure 13. Plot of the quantity ∆V(tB) defined in eq. (5.35) for various values of γ. When γ = 0,
this function is vanishing by construction.

γ →
√

2/2 it diverges. Since the volume rate is a decreasing function of γ, we have that
∆V(γ, tB) is a decreasing function of time. The asymptotic rate does not depend on γ and
so ∆V approaches a constant at late times.

For γ 6= 0 the system at tB = 0 starts in a out-of-equilibrium state and then thermalizes
at late times. The resulting complexity rate is lower compared to the γ = 0 case: the
computational power gets decreased by the time-dependent perturbation which brings the
system out of equilibrium. The initial ∆V0 is partially washed out at later times, but it
does not approach zero asymptotically. It is surprising that the late-time volume rate is
universal, in spite of the fact that different boundary values of the dilaton are dual to
theories with different couplings.

5.5 Contribution of the shadow region

The consistency of holographic entanglement entropy with causality [67] imposes the re-
quirement that the HRT surface of a given boundary region A lies in the causal shadow of
A. When the region A coincides with the left or right boundary of the Kruskal diagram,
the causal shadow coincides with the shadow region in figure 9. The HRT surface of one of
the boundaries of the time-dependent Janus BH lies at the center of the Penrose diagram
and so it satisfies the causality bound.

Given the importance of the causal shadow for holographic entanglement entropy,
it is natural to wonder about the role of the shadow region in the Complexity=Volume
conjecture. The extremal volume at t = 0 actually crosses horizontally the entire shadow
causal diamond in figure 9. It is then interesting to compute the part of the volume which
is included inside the shadow region at t = 0. This can be achieved by restricting to the
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ΔV0

ΔV0
shadow

0.1 0.2 0.3 0.4 0.5 0.6

γ

10

20

30

V

Figure 14. Volumes ∆V0 and ∆Vshadow
0 as a fuction of γ. The numerical value rh = 1 is chosen.

interval µ ∈ [0, µ0 − π
2 ] the integral in eq. (5.10). A direct evaluation gives

∆Vshadow
0 (γ) = 2L2rh

∫ 2π

0
dθ

∫ arctanh[sn(α+(µ0−π2 )|m)]
0

dy
√
f(y) . (5.36)

It is interesting to compare ∆Vshadow
0 (γ) with ∆V0(γ) in eq. (5.15), see figure 14. For small

γ, the dominant contribution to ∆V0(γ) comes indeed from the shadow region. This is
not true for γ approaching to the linear dilaton regime (γ → 1/

√
2): in this limit, the

quantity ∆V0(γ) diverges, while the contribution arising from the shadow region is always
finite, reaching the value π2rh/

√
2. The linear dilaton limit lies in the strongly coupled

regime from the bulk perspective, and we expect that in this limit our classical holographic
calculations are not trustable.

At larger tB, the extremal volume surface tends to escape from the shadow region.
From figure 10, we can check that for γ = 0.5 and for τB > τB0 ≈ 0.6, the extremal
volume starts to sit completely outside the shadow region. The escape of the extremal
volume brane from the shadow region does not seem to affect the time dependence of
complexity in a particularly dramatic way. As can be checked from figures 11 and 12, both
the renormalised complexity and the complexity rate remain continuous and no special
feature seems to appear for τB = τB0.

6 Conclusions

In this paper we studied subregion volume complexity for an interval of length l centered
around the AdS3 Janus interface. The contribution to the complexity due to the defect is
log divergent in the cutoff δ, i.e.

∆C(l, γ) = 2
3c η(γ) log

(
l

δ

)
+ finite terms , (6.1)
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where η(γ) is defined in terms of elliptic integrals, see eq. (3.22) and figure 6. We performed
the calculation with three different regularizations: Fefferman-Graham, single and double
cutoff. The three methods give the same result for the log divergent term in eq. (6.1), while
the finite terms depend on the choice of regulator. We compared the result with the AdS3
Randall-Sundrum and the BCFT models, see section 3.6 for details. In all these models
the leading divergence in ∆C is logarithmic. This divergence is not related in an universal
way to the boundary entropy ∆S, even if the two quantities share a similar qualitative
behaviour.

In absence of the interface, the subregion volume complexity for the BTZ background is
topologically protected by the Gauss-Bonnet theorem [32] and, therefore, does not depend
on temperature. This is no longer true in the presence of the Janus interface. We computed
the difference ∆CT between the finite and the zero temperature subregion complexity using
both single and double cutoff regularizations. This is a finite quantity, whose temperature
dependence does not depend on the regularization, i.e.

∆CT (T, l, γ) = 2
3 c η(γ) log

[ 2
πlT

tanh
(
πlT

2

)]
+ . . . , (6.2)

where the . . . correspond to finite terms which are function just of γ, which parameterizes
the excursion of the dilaton between the two sides of the interface. This is a decreasing
function of temperature, see figure 8. It would be interesting to compute this quantity also
in the RS and in the BCFT models, in order to see if there is some universality property.

As the l→∞ limit covers the whole space, we can define the total complexity by the
l → ∞ limit of the subregion complexity. The complexity of formation for the defect is
then defined as the difference between the total complexity and its value at γ = 0. At zero
temperature, the result is given by eq. (6.1), where l plays the role of an infrared regulator.
At finite temperature, such expression generalizes to

CFDefect = 4
3c η(γ) log

( 1
T δ

)
+ finite terms , (6.3)

which is still logarithmically divergent. However, in this case there is no need of an infrared
regulator. At finite temperature, it is also meaningful to consider the thermal complexity
of formation of the Janus BTZ black hole in a geometry which already contains a de-
fect. In this case we compute the difference between the total complexity and its value at
temperature T = 0, to obtain

CFThermal = 4
3c η(γ) log

( 2
πlT

)
. (6.4)

Compared to eq. (6.3), this quantity is UV finite, but it requires an IR regulator l.
We also numerically computed the time evolution of the volume complexity for the

time-dependent Janus BTZ black hole. In this case the boundary theory is not an interface
CFT, but corresponds to two entangled CFTs with different values of the dilaton field on
each of the boundaries. At tB = 0, the boundary theories start from an out-of-equilibrium
state and the time-dependent Janus black hole background is the gravity dual of the ther-
malisation process. The rate of growth of the volume as a function of the boundary time
tB is shown in figure 12.
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At late time, the growth rate of the volume saturates at the same constant (propor-
tional to TS) for all the values of γ. So the coupling does not influence the computational
power of the CFT at equilibrium. This could come as a surprise given that γ determines
the boundary values of the dilaton, which are dual to the couplings of the boundary CFTs.
We find that at early times, where the dual field theory is in an out-of-equilibrium state
for γ 6= 0, the Janus deformation always decreases the complexity growth rate compared
to the BTZ case. Being out of equilibrium decreases the computational power of the CFT.

In this paper we investigated several aspects of the CV conjecture in AdS3 Janus
geometries. Several open questions call for further investigation:

• It would be interesting to extend our analysis of the complexity of the time-dependent
Janus BTZ BH to more general geometries. For regions made by the union of two
segments on different sides of the Kruskal diagram, there is a phase transition in the
topology of the HRT surface: depending on the size of the segments, the HRT surface
can be connected or disconnected [66]. This should be reflected in a discontinuity of
subregion complexity as a function of the length of the segment; similar discontinu-
ities in subregion complexity appear also for regions made by two segments in AdS3
Poincaré patch, see e.g. [32, 33].

• Another direction is the generalization to higher dimensions, for example to Janus
AdS5. This is the topic of a follow-up work [68]. In this case the leading order
divergence is power-like, and depends on the regularization method that is used.
Subleading logarithmic divergences instead turn out to be independent of the reg-
ularization method. This result points towards a universal property typical of the
coefficient of the logarithmic divergences, as we also observed in the three-dimensional
case considered here.

• An important topic for further investigation is the complexity=action conjecture [27].
For AdS3 Randall-Sundrum [51] and BCFT [52, 53] the action complexity due to the
defect is finite, and so it provides a situation where the CV and the CA conjecture
give radically different outcomes. In higher dimension BCFT, it turns out that CV
and CA have instead the same leading-order divergence structure [52]. It would be
interesting to investigate the case of the Janus interface, both in AdS3 and in AdS5,
to check if this behaviour is universal for defects.

• It would be interesting to compare the holographic result with a direct calculation of
complexity on the field theory side. In [53] circuit complexity was computed in a free
field theory with boundary, following the approach introduced in [18]. Even if the
free field theory calculation and the holographic dual are not directly related, it is
interesting that the result is logarithmically divergent, as in the CV case. The absence
of logarithmic divergences in CA so seems to disfavour this proposal. It would be
interesting to perform the calculation of the complexity of the defect also in conformal
field theory, following the approach in [21–23]. The CFT calculation should be more
directly related to the holographic dual and may give further insights on the problem
of identifying the correct holographic dual of quantum computational complexity.
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A Jacobi elliptic functions and elliptic integrals

We work with the standard Jacobi elliptic functions and elliptic integrals defined along the
lines of [69]. We use the incomplete elliptic integrals

F (x|m) =
∫ x

0

dθ√
1−m sin2 θ

, (A.1)

E (x|m) =
∫ x

0
dθ
√

1−m sin2 θ , (A.2)

Π (n;x |m) =
∫ x

0

dθ(
1− n sin2 θ

)√
1−m sin2 θ

. (A.3)

of the first, second and third kind, respectively. The complete elliptic integrals are defined
as

F

(
π

2

∣∣∣∣m) = K(m) , E

(
π

2

∣∣∣∣m) = E(m) , Π
(
n; π2

∣∣∣m) = Π (n|m) . (A.4)

We also use the Jacobi amplitude ϕ = am(x|m) which is the inverse of F (x|m)

x = F (am(x|m)|m) . (A.5)

The Jacobi elliptic functions are defined as

sn (x|m) = sinϕ, cn (x|m) = cosϕ and dn (x|m) =
√

1−m sin2 ϕ, (A.6)

such that sn (K(m)|m) = 1 and cn (K(m)|m) = 0.
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