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Lp GRADIENT ESTIMATES AND CALDERÓN–ZYGMUND

INEQUALITIES UNDER RICCI LOWER BOUNDS

LUDOVICO MARINI, STEFANO MEDA, STEFANO PIGOLA, AND GIONA VERONELLI

Abstract. In this paper we investigate the validity of first and second order Lp estimates for
the solutions of the Poisson equation depending on the geometry of the underlying manifold.
We first present Lp estimates of the gradient under the assumption that the Ricci tensor
is lower bounded in a local integral sense and construct the first counterexample showing
that they are false, in general, without curvature restrictions. Next, we obtain Lp estimates
for the second order Riesz transform (or, equivalently, the validity of Lp Calderón–Zygmund
inequalities) on the whole scale 1 < p < +∞ by assuming that the injectivity radius is
positive and that the Ricci tensor is either pointwise lower bounded or non-negative in a
global integral sense. When 1 < p ≤ 2, analogous Lp bounds on even higher order Riesz
transforms are obtained provided that also the derivatives of Ricci are controlled up to a
suitable order. In the same range of values of p, for manifolds with lower Ricci bounds and
positive bottom of the spectrum, we show that the Lp norm of the Laplacian controls the
whole W 2,p-norm on compactly supported functions.

1. Introduction

The purpose of this paper is to prove some regularity results (see Section 2 for the precise
statements) concerning solutions to the Poisson equation on Riemannian manifolds under
comparatively weak assumptions on their geometry. We also show that certain regularity
results may be strongly influenced by the geometry at infinity of the manifold. One recurrent
theme in our investigation is to prove (at least some of) our results under the assumption that
the Ricci curvature satisfies appropriate Lp lower bounds in place of the pointwise bounds
that commonly appear in the literature.

In order to place our research in perspective, we begin by making some comments that
may help the reader orienting in this fascinating field of research.

Given a function f in Lp(Rn), where 1 < p < ∞, and a distributional solution u of the
Poisson equation ∆u = f , it is well known that ∂j∂ℓu belongs to Lp(Rn) for every pair of
integers j and ℓ in {1, . . . , n} and

(1.1)
∥∥∂j∂ℓu

∥∥
p
≤ C

∥∥f
∥∥
p
,

where C does not depend on f . This regularity result may be reformulated as a boundedness
result in Lp(Rn) for the so called second order Riesz transform, as follows. For j and ℓ as
above, consider the operator Rj,ℓ, defined, at least formally, by

(
Rj,ℓf

)
̂(ξ) = ξj ξℓ

|ξ|2
f̂(ξ);
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Rj,ℓ is a paradigmatic example of Calderón–Zygmund singular integral operator, and acts on f
by convolution with a specific principal value distribution, viz. the inverse Fourier transform of
the function ξ 7→ ξj ξℓ/|ξ|

2. Such operators are known to be bounded on Lp(Rn), 1 < p <∞,
and of weak type (1, 1) [Ho]. By virtue of the very special structure of the Euclidean space, this
is equivalent to saying that the operator ∇2(−∆)−1, where ∇2 denotes the second covariant
derivative associated to the Euclidean metric, extends to a bounded operator from Lp(Rn)
to Lp(Rn;T2R

n), the space of all Lp sections of the second order covariant tensors on R
n,

endowed with the standard metric. The operator ∇2(−∆)−1 will henceforth be called second
order Riesz transform, and denoted by R2. More generally, for each positive integer k, one
can consider the kth order Riesz transform ∇k(−∆)−k/2, denoted by Rk, which is bounded
from Lp(Rn) to Lp(Rn;T2R

n), 1 < p <∞, and of weak type (1, 1).

The Riesz potential ∆−1 is unbounded on Lp(Rn), so that one cannot expect that a dis-
tributional solution of (1.1) with Lp datum f belongs to Lp(Rn). A simple scaling argument
shows that both the estimates

∥∥u
∥∥
p
≤ C

∥∥f
∥∥
p

and
∥∥|∇u|

∥∥
p
≤ C

∥∥f
∥∥
p

fail. However, ∆−1 is a smoothing operator. Indeed, if n ≥ 3, then the Hardy–Littlewood–
Sobolev inequality implies that ∆−1 maps Lp(Rn) to Lr(Rn), where 1/r = 1/p − 2/n. Thus,
distributional solutions u of the Poisson equation (1.1) belong to Lr(Rn), hence locally to
Lp(Rn). This, in turn, implies that u is locally (but not globally) in the Sobolev space
W 2,p(Rn).

Recall that −∆ generates a Markovian semigroup, so that its Lp spectrum is contained
in the closure of the right half plane. In particular, for every τ > 0 the operator τI −∆ is
invertible in Lp(Rn), 1 < p <∞, equivalently

(1.2) ‖u‖p ≤ C ‖τ u−∆u‖p

whenever the right hand side is finite. In other words, solutions to the modified Poisson
equation ∆u− τ u = f , with datum f in Lp(Rn), are in Lp(Rn). It is convenient to introduce
the kth order local Riesz transform Rk

τ := ∇k(τI − ∆)−k/2. Then the estimate (1.1) may
be reformulated by saying that R2

τ is bounded from Lp(Rn) to Lp(Rn;T2R
n). Furthermore,

observe that the Lp boundedness of the first order Riesz transform ∇(−∆)−1/2, and the
Moment inequality [Haa, Proposition 6.6.4] (which we can apply, for −∆ is a sectorial operator
on Lp(Rn)), imply the gradient estimate

(1.3)
∥∥|∇u|

∥∥
p
≤ C

∥∥(−∆)1/2u
∥∥
p
≤ C

∥∥u
∥∥1/2
p

∥∥∆u
∥∥1/2
p

≤ C
( ∥∥u

∥∥
p
+
∥∥∆u

∥∥
p

)
.

This and (1.1) then yield the bound

(1.4)
∥∥u
∥∥
W 2,p(Rn)

≤ C
( ∥∥u

∥∥
p
+
∥∥∆u

∥∥
p

)
.

It is natural to speculate how the scenario described above has to be modified as we progres-
sively move away from the familiar Euclidean space, by replacing R

n with a complete non-
compact n dimensional Riemannian manifold M , and the Laplace operator by the Laplace–
Beltrami operator, which we henceforth denote by ∆. Clearly, the definitions of Riesz trans-
form and local Riesz transform of order k extend in an obvious way to this more general
setting. They will be denoted by Rk

τ and Rk, respectively.

Simple examples that illustrate how subtle the influence of the geometry at infinity of M
on the estimates discussed above can be are the hyperbolic space H

n and the connected sum
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R
n♯Rn of two copies of Rn. It is worth observing that both H

n and R
n♯Rn have bounded

geometry in the strongest possible sense.

Since the bottom of the L2 spectrum of ∆ is strictly negative and its L1 spectrum is
contained in the left half plane, ∆ is invertible on Lp(Hn), 1 < p <∞, so that a distributional
solution u of the Poisson equation ∆u = f , with f in Lp(Hn), automatically belongs to
Lp(Hn). Since the first order Riesz transform is bounded from Lp(Hn) to Lp(Hn;T1H

n)
[Str, An], we can argue as in (1.3), and conclude that

(1.5)
∥∥u
∥∥
W 2,p(Hn)

≤ C
∥∥f
∥∥
p
,

an estimate which has no analogue in R
n.

Coulhon and Duong [CD1] proved that the first order Riesz transform R1 is unbounded
on Lp(Rn♯Rn) for p > n. In fact, they considered the case n ≥ 3, but their argument can be
adapted to the case where n = 2. Thus, in particular, R1 is unbounded from Lp(R2♯R2) to
Lp(R2♯R2;T1(R

2♯R2)) for all p > 2, a fact alien to R
n. For an interesting generalization to

manifolds with finitely many Euclidean ends see [CCH].

Suppose now that (M,g) is an n dimensional Riemannian manifold and that 1 < p < ∞,
and consider the problem of determining (geometric) assumptions under which the analogues
of (1.1), (1.2), (1.3), (1.4) and (1.5) hold on M . It may be worth warning the reader that
people in Harmonic Analysis and in Global Analysis quite often use different terminologies
to denote the same object: in particular, the former speak about the Lp boundedness of local
Riesz transforms, whereas the latter prefer to refer to the Lp Calderón–Zygmund inequalities

(1.6)
∥∥|∇2u|

∥∥
p
≤ C

[ ∥∥u
∥∥
p
+
∥∥∆u

∥∥
p

]
∀u ∈ C∞

c (M).

An account of this latter approach can be found in the survey paper [Pi]. The equivalence
between the Lp boundedness of the second order Riesz transform and the validity of an Lp

Calderón–Zygmund inequality will be formalised in Proposition 2.4. The two formulations
will be used interchangeably in the rest of the paper.

First we look at (1.3). A special case of a celebrated result of D. Bakry [B] states that if
the Ricci curvature curvature of M is bounded from below, then the first order local Riesz
transform is bounded on Lp(M) for every p in (1,∞), equivalently there exists a constant C
such that

(1.7)
∥∥|∇u|

∥∥
p
≤ C

[ ∥∥(−∆)1/2u
∥∥
p
+
∥∥u
∥∥
p

]
∀u ∈ C∞

c (M).

Thus, much as in (1.3), we obtain the gradient estimate

(GE(p))
∥∥|∇u|

∥∥
p
≤ C

[ ∥∥u
∥∥
p
+
∥∥∆u

∥∥
p

]
∀u ∈ C∞

c (M).

In the case where p > 2, this result was also obtained via probabilistic arguments by Cheng,
Thalmaier and Thompson [CTT]. To the best of our knowledge it is not known whether
the first order local Riesz transform is bounded from Lp(M) to Lp(M,TM), 1 < p < 2,
on any complete Riemannian manifold M . However, Coulhon and Duong [CD2] proved
that if p ∈ (1, 2], then the Lp gradient estimates (GE(p)) holds on any geodesically complete
manifold. A much simpler proof thereof may be found in [HMRV, Lemma 1.6]. We emphasise
that the the multiplicative estimate

∥∥|∇u|
∥∥
p
≤ C

∥∥u
∥∥1/2
p

∥∥∆u
∥∥1/2
p

∀f ∈ C∞
c (M)



4 LUDOVICO MARINI, STEFANO MEDA, STEFANO PIGOLA, AND GIONA VERONELLI

fails if p > 2 and M = R
2♯R2 [CD2, second remark after Theorem 4.1], although M has Ricci

curvature bounded from below, whence Bakry’s estimate (1.7) and the Moment inequality
[Haa, Proposition 6.6.4] imply that (GE(p)) holds for every p in (1,∞). This result illustrates
how sensitive of the geometry of the underlying manifold these inequalities may be.

It is natural to speculate whether the gradient estimates (GE(p)) hold for some p > 2
under the sole assumption that M is geodesically complete. One of our main contributions
(see Theorem B in Section 2) is to exhibit for each p > 2 and each positive integer n ≥ 2 an
n dimensional Riemannian manifold M that does not support the gradient estimate (GE(p)).
According to what has been discussed above, the curvature of these manifolds is necessarily
lower unbounded. However, as we will explain in Remark 5.1, it is possible to construct
examples where the negative part of the curvature grows as slowly as desired.

Note that, as a consequence, both R1, and R1
τ for any τ > 0, are unbounded on Lp(M).

We also prove that if p0 > n, and the Ricci curvature is bounded from below in an appro-
priate local Lp0/2 integral sense (see Definition 2.1 in Section 2), then (GE(p)) holds for all
p in (1, p0) (see Theorem A in Section 2). Our condition is trivially satisfied if we assume
standard pointwise lower bounds for the Ricci curvature, so that our result extends [CTT]
(which, as mentioned above, can also be obtained as an easy consequence of the Lp bound-
edness of the first order local Riesz transform, proved in [B]). If, instead, p0 is as above, M

has positive injectivity radius and nonnegative Ricci curvature in a global Lp0/2 integral sense
(see Definition 2.1 in Section 2), then (GE(p)) holds for all p in (1,∞) (see Theorem B in
Section 2).

Our next set of results is concerned with Riesz transforms of even order. We prove the
following:

(1) if M has positive injectivity radius and the Ricci curvature is (pointwise) bounded
from below, then R2

τ is bounded from Lp(M) to Lp(M ;T2M) for every p in (1,∞)
and τ > 0;

(2) ifM has positive injectivity radius and nonnegative Ricci curvature in the global Lp0/2

sense for some p0 > n, then R2
τ is bounded from Lp(M) to Lp(M ;T2M) for every p

in (1,∞) and τ > 0;
(3) if M has spectral gap and its and Ricci curvature is (pointwise) bounded from below,

then R2 is bounded from Lp(M) to Lp(M ;T2M) for every p in (1, 2]. As a consequence
of this and the Federer–Fleming inequality, the analogue of (1.5) holds on M ;

(4) if ℓ ≥ 1, the Ricci tensor of M and its derivatives up to the order 2ℓ− 2 are uniformly
bounded, and M has positive injectivity radius, then R2ℓ

τ is bounded from Lp(M) to
Lp(M ;T2ℓM) for every p in (1, 2].

Note that (1) above was known under an additional pointwise upper bound on the Ricci
curvature, thanks to work of Güneysu and the third author [GP]. Subsequently, Baumgarth–
Devyver–Güneysu [BDG] proved that for p < 2 one can replace the positivity of the injectivity
radius with a bound on the whole Riemann tensor and its derivatives, as a consequence of some
estimates on the covariant Riesz transforms. Finally, a very recent and far reaching result
due to Cao–Cheng–Thalmaier [CCT] states that R2

τ is bounded from Lp(M) to Lp(M ;T2M)
when 1 < p ≤ 2 under the sole assumption of Ricci curvature bounded from below. There is
no hope to extend this result to p > 2 in full generality. Indeed, it is known [MV, HMRV]
(see also [DN]) that, for every p > 2, there exists a complete Riemannian manifold (M,g)
satisfying Sect ≥ 0 (in fact Sect > 0 if p > m) on which R2

τ is unbounded in Lp for every
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positive τ . Apart from the case of Ricci-bounded geometry alluded to above, the only further
set of assumptions ensuring the validity of (1.6) when p > 2 are given in [CCT, Theorem 1.2].
The manifolds considered therein must satisfy (Kato type) conditions on the curvature and its
derivatives but, on the other hand, could have zero injectivity radius. Finally, in a different
direction, let us recall that R2

τ is bounded from L2(M) to L2(M ;T2M) also on manifolds
whose curvature is very negative, i.e. explodes polynomially to −∞ in an asymptotic sense
[MV1].

Concerning (3) above, it was known under the additional assumption that M has positive
injectivity radius. Indeed, R2 was known to be bounded from Lp(M) to Lp(M ;T2M) for
1 < p < 2 [MMV]. Then the Federer–Fleming inequality and Bakry’s estimate allow to
conclude. In a related direction, let us also point out that the study of the Lp boundedness
properties of R2 on complete manifolds whose full curvature tensor decays quadratically has
been announced in [Ca]. Finally, note that (4) was known under the additional assumption
that M has spectral gap (in which case an endpoint estimate for p = 1 was also provided).

In this paper we do not consider Riesz transforms of odd order ≥ 3. We believe that it is
an interesting problem to find geometric conditions on M under which either R2k+1

τ or R2k+1

is bounded on Lp, for some positive integer k. A neat result by Anker [An] shows that if
M is a symmetric space of the noncompact type, then the Riesz transforms of any order are
bounded on Lp, 1 < p <∞.

The paper is organised as follows. In Section 2, we give a precise statement of the main
results. In Section 3, we prove the Lp gradient estimate (GE(p)) under local uniform Lq Ricci
bounds. The proof for large p is based upon a related L∞ estimate [DWZ] and a covering
argument. The whole range p > 2 is obtained via interpolation. In Section 4, the estimates
GE(p) are proved under global Lq Ricci bounds, by exploiting the local expression in W 1,p-
harmonic coordinates. To this end, the positivity of the injectivity radius is required. In
Section 5, we exhibit the (as far as we know) first examples in the literature of complete
Riemannian manifolds which do not support (GE(p)) for large p. Such examples are obtained
through a suitable conformal deformation of the Euclidean plane. Harmonic coordinates with
a uniformW 1,q bound are also the key to prove the Lp boundedness of the second order Riesz
transform in the case of lower bounded Ricci curvature and positive injectivity radius. This
is the content of Section 6. Note that W 1,q-harmonic estimates for large enough q imply a
C0,α control on the metric coefficients. This is an improvement on previously known bounds
of the second order Riesz transform [GP], which relied on the existence of uniform C1,α-
harmonic coordinates, and thus required stronger geometric assumptions. In Section 7, we
show that if M has spectral gap and lower bounded Ricci curvature, then (M supports an Lp

Poincaré inequality so that) the W 1,p norm of a compactly supported function u is bounded
by ‖∆u‖Lp when 1 < p ≤ 2. Combining with the second order bounds obtained in [CCT],
this yields a control on the whole W 2,p-norm of u, analogous to (1.5). Finally, in Section 8 we
deal with the Lp boundedness of higher even order local Riesz transforms. Namely, we use a
trick which consists in considering the Cartesian product of M with a hyperbolic plane. This
allows to reduce the problem to previously known bounds for the (global) Riesz transforms
on manifolds with a spectral gap.

2. Assumptions and main results

All over this paper, M = (M,g) denotes a smooth complete non-compact n dimensional
Riemannian manifold without boundary and p ∈ (1,∞).
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Throughout this paper, C will denote a positive constant, whose value may change from
place to place. In each result, the constant C will depend only on the geometric bounds
assumed there, i.e. on n, p, the curvature bound and possibly the injectivity radius i and
the spectral gap, whenever these last two quantities are relevant. Given a symmetric 2-tensor
field T , we have denoted by minT its lowest eigenvalue.

In the literature, one can find two notions of integral curvature bounds, one of global nature
and one of uniform local nature.

Definition 2.1. Suppose that K ≥ 0, R > 0 and 1 < p < +∞. Set

(2.1) ̺K(x) := (minRic+(n− 1)K2)−(x)

(where f− denotes the negative part of f),

k(x, p,R,K) := R2 ‖̺K‖Lp(BR(x))

µ(BR(x))1/p
and k(p,R,K) := sup

x∈M
k(x, p,R,K).

Say that:

• M has Ricci curvature bounded from below by −(n − 1)K2 in the global Lp sense if
̺K ∈ Lp(M).

• M has an ǫ > 0-amount of Ricci curvature below −(n − 1)K2 in the Lp sense at the
scale R if k(p,R,K) < ǫ.

Our first main contribution is the following

Theorem A. Suppose that n < p0 < +∞. There exists a constant ε = ε(p0, n,K) > 0 such
that if k(p0/2, 1,K) ≤ ε for some K ≥ 0, then the Lp gradient estimate (GE(p)) holds on M
for every 1 < p ≤ p0.

Remark 2.2. Note that ρK(x) = 0 if and only if Ric(x) ≥ −(n−1)K2gx where the inequality
is intended in the sense of quadratic forms. In particular if the Ricci curvature satisfies the
lower bound Ric ≥ −(n − 1)K2g, then k(p,R,K) = 0 for all R > 0 and p ∈ (1,+∞).
Consequently, Theorem A provides yet another alternative proof of the result by Cheng,
Thalmaier and Thompson, [CTT], using only PDEs methods. On the other hand, the integral
bounds we assume are in general weaker than the usual pointwise bounds; see Remark 3.3
below.

Remark 2.3. If (M,g) is a complete Riemannian manifold supporting an Lp gradient esti-
mate for some p ∈ (1,+∞), then (GE(p)) extends with the same constant to all functions in
H2,p(M). Indeed, if u ∈ H2,p(M) = {f ∈ Lp(M) : ∆distrf ∈ Lp(M)}, by a result of Milatovic,
[GP1, Appendix], there exists a sequence {uk} ⊆ C∞

c (M) such that uk → u with respect to
the H2,p norm. Applying (GE(p)) to uk, we deduce that ∇uk is Cauchy and thus converges in
the space of Lp vector fields. Testing ∇uk against a smooth and compactly supported vector
field and taking the limit shows in fact that ∇uk converges in Lp norm to the weak gradient
∇u.

We also obtain the following variant of Theorem A in the case of global Lq lower Ricci
bounds.

Theorem B. Suppose rinj(M) > 0 and non-negative Ricci curvature in the global Lq/2 sense
for some n < q < +∞. Then, for every 1 < p < +∞, (GE(p)) holds on M .
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While several counterexamples to the validity of the Lp Calderón–Zygmund inequalities
have been found in recent years, [GP, Li, Ve, MV1], in the case of Lp gradient estimates the
literature is lacking: see [Pi, Section 9] for an extensive account of the topic. As mentioned
in the introduction, using a sequence of conformal deformations on separated balls of the
Euclidean plane, we are able to construct a complete Riemannian manifold on which the Lp

gradient estimate fails for every 2 < p < +∞.

Theorem C. Suppose that n is an integer ≥ 2. For any p > 2 there exists a complete n
dimensional Riemannian manifold M where the Lp gradient estimate (GE(p)) fails.

As we will explain in Section 5, the examples in Theorem C shows that the result of Cheng,
Thalmaier and Thompson on Lp gradient estimates under Ricci lower bounds, [CTT] is, in
fact, optimal with respect to pointwise bounds.

The next contributions of the paper will concern Riesz transforms of even order 2k ≥ 2.
As announced in the introduction, adopting a different point of view all the next theorems
can be restated in term of Calderón–Zygmund inequalities, as a consequence of the following
Proposition, whose proof is deferred to Section 6.

Proposition 2.4. Let 1 < p < ∞, τ > 0 and let k ≥ 1 be an integer. The local Riesz
transform R2k

τ of order 2k is bounded from Lp(M) to Lp(M ;T2kM) if and only if the Lp

Calderón–Zygmund inequality or order 2k

(2.2)
∥∥|∇2ku|

∥∥
p
≤ C

[ ∥∥u
∥∥
p
+
∥∥∆ku

∥∥
p

]
∀u ∈ DomLp(∆k)

holds on M , where

DomLp(∆k) = {u ∈ Lp(M) : ∆ku ∈ Lp(M)}

is the domain of the Laplacian in Lp.
Moreover, when k = 1 the latter assertions are also equivalent to

∥∥|∇2u|
∥∥
p
≤ C

[ ∥∥u
∥∥
p
+
∥∥∆u

∥∥
p

]
∀u ∈ C∞

c (M).

First, we prove the Lp boundedness of the local second order Riesz transform (resp. the
validity of the Lp Calderón–Zygmund inequality), on manifolds with positive injectivity radius
and a lower bound on the Ricci curvature.

Theorem D. Suppose that rinj(M) > 0, and either Ric ≥ −(n − 1)K2 for some K ≥ 0, or

the Ricci curvature is nonnegative in the global Lq/2 sense for some q > n. Then, for any
τ > 0, R2

τ is bounded from Lp(M) to Lp(M ;T2M) for every 1 < p < +∞.

In particular, as explained in [Ve], we have the validity of a new density result in Sobolev
spaces.

Corollary E. Under the assumptions of Theorem D, C∞
c (M) is dense in W 2,p(M) for every

1 < p < +∞.

Remark 2.5. As it happens for the Calderón–Zygmund inequality of Theorem D, also the
density result in Corollary E was already known when 1 ≤ p ≤ 2 in the wider class of complete
manifolds with a pointwise lower Ricci bound (indeed, a controlled growth of the negative
part of the Ricci curvature is allowed in this case). See [HMRV] and references therein.

In the third main result of the paper we prove the strongW 2,p-estimate that, in particular,
includes the Lp boundedness of the (global) Riesz transform R2. Unfortunately, so far we
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have not been able to obtain its validity under integral Ricci bounds. On the positive side, we
are able to remove the injectivity radius assumption in [MMV] and to get an even stronger
inequality. We say that M has spectral gap if the bottom b of the L2 spectrum of −∆ is
strictly positive, i.e. b > 0. We will prove the following

Theorem F. Suppose that Ric ≥ −(n − 1)K2 and that M has spectral gap. Then, for any
fixed 1 < p ≤ 2, the strong W 2,p-estimate

(W(2, p))
∥∥|∇u|

∥∥
Lp +

∥∥|∇2u|
∥∥
Lp ≤ C‖∆u‖Lp , ∀u ∈ C∞

c (M),

holds on M for some C > 0.
Consequently, the whole W 2,p norm of u can be bounded in terms of the Lp norm of its

Laplacian.

It is worth noting that Calderón–Zygmund estimates can be derived for higher order deriva-
tives up to imposing more stringent conditions on the geometry of the underlying manifold.

As recalled above, it was proved in [MMV] that the Riesz transform R2ℓ is bounded in
Lp(M) in the range 1 < p ≤ 2, provided the geometry is bounded at the order 2ℓ− 2 and M
has a spectral gap. We shall show how to remove the latter condition.

Theorem G. Suppose that ℓ is a positive integer. Let τ > 0. Assume that rinj(M) > 0 and
that the covariant derivatives of the Ricci tensor are uniformly bounded up to the order 2ℓ−2.
Then R2ℓ

τ is bounded from Lp(M) to Lp(M ;T2ℓM) for every p in (1, 2].

3. Gradient estimtes: local uniform Lq Ricci bounds

This section is devoted to proving Theorem A. Preliminarly, we point out the following
facts, which will be repeatedly used in the sequel.

Remark 3.1. As noted in Section 2.3 in [PW] for the case K = 0, smallness of k(q,R0,K)
at a fixed scale R0 implies a control on k(q,R,K) for all scales R > 0. This is a consequence
of a volume comparison result contained in [BPS, Lemma 10]. Indeed, if q > n/2 there exists
ε = ε(n, q,K) > 0 such that if k(q,R2,K) < ε, then for every 0 < R1 < R2 one has

k(q,R1,K) ≤ 4

(
R1

R2

)2(vK(R2)

vK(R1)

) 1
q

k(q,R2,K),

where vK(R) is the volume of the geodesic ball of radius R in the n dimensional space form
of constant curvature K. Since vK(R1) ∼ Rn1 , k(q,R1,K) → 0 as R1 → 0, i.e., k(q,R1,K)
can be made arbitrarily small. See Corollary 13 in [BPS].

Note also that k(p, r,K) ≤ k(q, r,K) whenever p ≤ q.

Under the assumption that k(p/2, 1,K) is small, we first prove a local Lp gradient estimate,
which is obtained integrating a local gradient estimate proved in [DWZ]. In what follows, we
use the notation

‖u‖∗Lp(Ω) =

(
 

Ω
|u|p
)1/p

=

(
1

vol(Ω)

ˆ

Ω
|u|p
)1/p

.

Lemma 3.2. Let p > n. There exists ε = ε(n, p,K) > 0, C(n, p) > 1 and 0 < R0 ≤ 1 such
that if k(p/2, 1,K) ≤ ε, then

(3.1) sup
BR/2(x)

|∇u|2 ≤ CR−2
[
(‖u‖∗L2(BR(x)))

2 + (‖∆u‖∗Lp(BR(x)))
2
]
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for all 0 < R ≤ R0, for all x ∈ M and for all smooth functions u on B1(x). Moreover, there
exists a constant D(n, p) > 0 such that

(3.2)
∥∥|∇u|

∥∥p
Lp(BR/2(x))

≤ DR−p
(
‖u‖pLp(BR(x)) + ‖∆u‖pLp(BR(x))

)

for all x ∈M , 0 < R ≤ R0 and all smooth functions u on B1(x).

Proof. By Theorem 1.9 in [DWZ], there exists a constant ε0(n, p) > 0 independent of R0 such
that if k(p/2, R0, 0) ≤ ε0, then (3.1) holds for all 0 < R ≤ R0. By Remark 3.1 we know that if
k(p/2, 1,K) ≤ ε, then k(p/2, R,K) . R2−n/2p as R→ 0 and since ̺0(x) ≤ ̺K(x)+(n−1)|K|,
we have

k(p/2, R, 0) ≤ k(p/2, R,K) + (n− 1)|K|R2.

Hence, if we take R0 small enough, then k(p/2, R0, 0) ≤ ε0, which concludes the first part of
the lemma. The constant R0 depends on K,n, ε and ε0.

From (3.1) we have

sup
BR/2(x)

|∇u|p ≤ Cp/2R−p2p/2−1
[
(‖u‖∗L2(BR(x)))

p + (‖∆u‖∗Lp(BR(x)))
p
]
.

By Hölder’s inequality (
 

BR(x)
u2

)p/2
≤

 

BR(x)
up,

whence
ˆ

BR/2(x)
|∇u|p ≤ Cp/2R−p2p/2−1vol(BR/2(x))

vol(BR(x))

(
ˆ

BR(x)
|u|p +

ˆ

BR(x)
|∆u|p

)
.

To conclude the proof of (3.2) recall that, as a consequence of the volume comparison, (M,g)
satisfies a uniform local volume doubling property. See Lemma 10 and subsequent results in
[BPS]. The proof of the lemma is complete. �

We are now ready to prove the global Lp gradient estimate.

Proof (of Theorem A). We start by noting that the local Lp0 gradient estimate (3.2), p0 > n,
extends to the whole manifold using a uniformly locally finite covering of M . The existence
of such covering is a formal consequence of the local volume doubling inequality, which, as
we have recalled above, holds under local integral Ricci bounds. Thus, let u ∈ C∞

c (M) and
Ω = supp(u) and let 0 < R ≤ R0 small enough such that 2R ≤ 1. Here R0 is the radius
appearing in Lemma 3.2. By local volume doubling, there exist x1, . . . , xh ∈M such that

(i) Ω ⊆
⋃h
i=1BR/2(xi);

(ii) every x ∈ Ω intersects at most N balls BR(xi).

Then
ˆ

M
|∇u|p0 ≤

h∑

i=1

ˆ

BR/2(xi)
|∇u|p0 ≤ DR−p

h∑

i=1

(
ˆ

BR(xi)
|u|p0 +

ˆ

BR(xi)
|∆u|p0

)

≤ DR−p0

ˆ

M

h∑

i=1

1BR(xi) (|u|
p0 + |∆u|p0) ≤ DR−p0N

(
ˆ

M
|u|p0 +

ˆ

M
|∆u|p0

)
,

which proves the gradient estimate (GE(p)) with p = p0 > n.
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Recall that if p ∈ (1, 2], then Lp gradient estimates always holds on complete Riemannian
manifolds [CD2]. We now interpolate between this and the result for p > n obtained in the
first part of the proof.

It is well known that the heat semigroup is strongly continuous and contractive on Lp(M)
for all p ∈ [1,+∞) [Gü, Theorem IV.8]. By the Hille-Yosida Theorem, −1 is in the resolvent
set of its infinitesimal generator −∆. Then −∆+ I is (surjective and) invertible in Lp(M).
Therefore (−∆+ I)−1 is bounded on Lp(M) and its range is contained in the domain of ∆.
Now, suppose that 2 < p ≤ n. Choose q > n and θ in (0, 1), so that 1/p = θ/q + (1− θ)/2.

On the one hand, by the first part of the proof, the operator ∇(−∆ + I)−1 extends to a
bounded operator from Lq(M) to Lq(M ;T1M). On the other hand

∥∥|∇(−∆+ I)−1f |
∥∥2
L2(M)

=
(
(−∆+ I)−1f,∆(−∆+ I)−1f

)
L2(M)

.

Since both (−∆+I)−1 and ∆(−∆+I)−1 extend to bounded operators on L2(M), the operator
∇(−∆+ I)−1 extends to a bounded operator from L2(M) to L2(M ;T1M).

By the Riesz–Thorin theorem ∇(−∆ + I)−1 extends to a bounded linear operator from
Lp(M) to Lp(M ;T1M). As a consequence, the Lp gradient estimate holds on M .

The proof of the theorem is complete.
�

Remark 3.3. As alluded to in the introduction, the integral curvature bounds assumed
here are weaker than the classical pointwise bounds. An easy example of a Riemannian
manifold (M,g) satisfying infM minRic = −∞ but with k(p, 1, 0) arbitrarily small, can be
constructed as follows. We let M = R

2 endowed with the conformally flat metric g = e2ϕdx2,
where ϕ is a smooth nonpositive function. In the following the sub/superscript e denotes the
objects taken with respect to the Euclidean metric. In particular volg(K) ≤ vole(K) for any
measurable set K ⊂ R

2, and Bg
R(w) ⊇ Be

R(w) for any R > 0 and w ∈ R
2. Suppose now that

suppϕ ∈ ∪n∈NB
e
1/2((4n, 0)). This guarantees that B

g
1(w) ⊆ Be

2(w) for any w ∈ R
2. Moreover,

given w ∈ R
2, let nw be the unique integer (if any) such that Be

1/2((4nw, 0)) intersects B
e
1(w).

Then

(3.3) volgB
g
1(w) ≥ volgB

e
1(w) ≥ volg(B

e
1(w) \B

e
1/2(4nw, 0)) =

3

4
π.

Fix a ∈ (2 − 2
p , 2), and φ0 ∈ C∞

c (Be
1/2(0, 0)), we define ϕ(x, y) =

∑
n∈N φn(x, y), where

φn(x, y) = n−aφ0(n(x − 4n, y)) if n ≥ 1. On the one hand, since ∆eφ0 attains positive
values and since ∆eφn(x, y) = n2−a∆eφ0(n(x− 4n, y)), we have that Ricg = −2∆eϕ is lower
unbounded. On the other hand,

ˆ

Bg
1 (w)

((minRic)−)
pdµg = 2p

ˆ

Bg
1 (w)

((∆eϕ)+)
pdµg ≤ 2p

ˆ

Be
2(w)

((∆eφnw)+)
pdx2

= 2pn2p−pa−2
w

ˆ

Be
1(0,0)

((∆eφ0)+)
pdx2

≤ 2p
ˆ

Be
1(0,0)

((∆eφ0)+)
pdx2,

which is uniformly bounded independently from w. Moreover, choosing an appropriate φ0, we
can assume that the right hand side of the estimate above is arbitrarily small. Together with
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the uniform volume lower bound (3.3), this proves that k(p, 1, 0) < +∞ and can be made
arbitrarily small.

4. Gradient estimates: global Lq Ricci bounds

Preliminarily, we recall the following

Definition 4.1. Let (M,g) be an n dimensional Riemanian manifold and let n < q < +∞.
The W 1,q harmonic radius at x, denoted by rW 1,q (x), is the supremum of all R > 0 such that
there exists a coordinate chart φ : BR(x) → R

n satisfying

a) 2−1[δij ] ≤ [gij ] ≤ 2[δij ];

b) R1−n/q‖∂kgij‖Lq(BR(x)) ≤ 1;

c) φ is a harmonic map.

The following result encloses in a single statement classical contributions by Anderson and
Cheeger, [AC], and a more recent contribution by Hiroshima, [Hi].

Theorem 4.2. Given n ∈ N, q > n, K ≥ 0 and i > 0, there exists a constant r̄ =
r̄(n, q,K, i) > 0 such that the following holds. Let (M,g) be a complete, n dimensional
Riemannian manifold satisfying either of the following sets of assumptions:

a) rinj ≥ i and Ric ≥ −(n− 1)K2 or

b) rinj ≥ i and Ric is non-negative in the global Lq/2 sense, i.e., (minRic)− ∈ Lq/2(M).

Then rW 1,q(z) ≥ r̄ independently of z ∈M .

We note that, by the Sobolev embedding, we have for free a C0,α control on the metric
coefficients within the ball Br̄/2(z).

Finally, we observe the inclusions Be
r̄/8 ⊆ φ(Br̄/4(z)) ⊆ Be

r̄/2, where B
e ⊆ R

n denotes the

Euclidean ball centered at the origin. Since, inside Be
r̄/8, the Euclidean and the Riemannian

measures are mutually controlled by absolute constants, in performing integrations in local
coordinates, the chosen measure is irrelevant.

Remark 4.3. We have already observed that complete manifolds with Ricci lower bounds,
in the uniform local integral sense, enjoy the uniform local volume doubling property at any
fixed scale. In the class of manifolds with positive injectivity radius, the same is true if we
consider the case of global Lq conditions. This follows from Croke isoperimetric estimate
and volume comparison. In particular, at a sufficiently small scale, we have the existence of
the covering with finite intersection multiplicity as in the proof of Theorem A; see e.g. [Hi,
Proposition 1.5]. Conversely, if one assumes a priori that rW 1,q (M) := infx∈M rW 1,q (x) > 0,
then the double sided Euclidean control of the volume of the balls at a small scale implies the
uniform volume doubling property, and hence the covering property.

In view of Remark 4.3 and of Theorem 4.2 we obtain that Theorem B is a direct consequence
of the next result. Recall that, if (x1, · · · , xn) is a system of harmonic coordinates, then

(∇u)j = gjk∂ku, ∆u = gij∂2iju,

where g = [gij ] and g
−1 = [gij ] are, respectively, the matrix of the metric coefficients and its

inverse.

Theorem 4.4. Suppose that rW 1,q(M) = r̄ > 0 for some q > n. Then for every 1 < p < +∞,
the Lp gradient estimate (GE(p)) holds on M .
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Proof. Fix 0 < r < r̄/16. Since the metric coefficients in W 1,q-harmonic coordinates are
uniformly C0,α-controlled, there exist absolute constants C > 1 such that, for any u ∈ C∞

c (M)
and 0 < R ≤ r,

C−1
∥∥|∇eu|

∥∥
Lp(Be

R)
≤
∥∥|∇u|

∥∥
Lp(B2R(x))

≤ C
∥∥|∇eu|

∥∥
Lp(Be

4R)

and

‖gij∂2iju‖Lp(Be
R) ≤ C‖∆u‖Lp(B2R(x)).

On the other hand, by the Euclidean estimates of the gradient, [GT, Theorem 9.11], there
exists an absolute constant C = C(n, p,R) > 0 such that

C−1
∥∥|∇eu|

∥∥
Lp(Be

2r)
≤ ‖u‖Lp(Be

4r)
+ ‖gij∂2iju‖Lp(Be

4r)
.

Hence,
∥∥|∇u|

∥∥
Lp(Br(x))

≤ C
∥∥|∇eu|

∥∥
Lp(Be

2r)

≤ C
(
‖u‖Lp(Be

4r)
+ ‖gij∂2iju‖Lp(Be

4r)

)

≤ C
(
‖u‖Lp(B8r(x)) + ‖∆u‖Lp(B8r(x))

)
.

Since, thanks to the uniform local doubling condition, M has a countable covering by balls
{Br(xj)} such that {B8r(xj)} has finite intersection multiplicity, the global Lp estimate follows
by adding the local inequalities. �

5. Counterexamples to Lp gradient estimates

In this section, we prove Theorem C.

Proof (of Theorem C). First we prove the result in the case where n = 2. Take (Σ, g) =
(R2, λ2dx2) where dx2 is the usual Euclidean metric on R

2 and λ ∈ C∞(Σ) such that 0 <
λ ≤ 1. As above, we denote by ∆ and ∇ the Laplace–Beltrami operator and gradient with
respect to the metric g while we use ∆e and ∇e to denote the corresponding Euclidean
differential operators. The spaces Lp(Σ) are defined in terms of the Riemannian volume form
dµg, whereas L

p(R2) are the spaces with respect to the Lebesgue measure dx2.
For each nonnegative integer m, consider the point xm in R2, with coordinates (m, 0). Take

λ(x) = 1 for all x ∈ Σ \
⋃
m∈NB1/8(xm). Since (Σ, g) is isometric to (R2, dx2) outside of a

countable union of bounded sets whose pairwise distance is uniformly lower bounded, it is a
complete Riemannian manifold. Next, take ϕ0 ∈ C∞

c (Σ) such that
{
ϕ0(u, v) = u+ 1 on B1/4(x0)

supp(ϕ0) ⋐ B1/2(x0)

and let ϕm(u, v) = ϕ0(u−m, v), for all positive integers m. Then, for every positive integer k
define

uk :=
k∑

m=0

2−m ϕm.

Clearly uk ∈ C∞
c (Σ). Notice that

‖uk‖
p
Lp(Σ) =

k∑

m=0

2−mp
ˆ

Σ
|ϕm|

p λ2 dx ≤

k∑

m=0

2−mp ‖ϕm‖
p
Lp(R2)

= ‖ϕ0‖
p
Lp(R2)

+∞∑

m=0

2−mp < +∞.
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Now observe that ∆ϕm = λ−2∆eϕm. Hence

‖∆uk‖
p
Lp(Σ) =

k∑

m=0

2−mp
ˆ

Σ
|∆ϕm|

p λ2 dx =
k∑

m=0

2−mp
ˆ

Σ
|∆eϕm|

p λ2(1−p) dx.

Moreover, we have that ∆eϕm(u, v) = (∆eϕ0)(u−m, v). Since ∆eϕ0 vanishes on B1/4(x0), the
function ∆eϕm vanishes on B1/4(xm). This and the fact that the support of ϕ0 is contained
in B1/2(x0) yield

‖∆uk‖
p
Lp(Σ) =

ˆ

B1/2(x0)\B1/4(x0)
|∆eϕ0|

p λ2(1−p) dx =

ˆ

B1/2(x0)\B1/4(x0)
|∆eϕ0|

p dx,

where the last equality holds, because λ = 1 on B1/2(x0) \ B1/4(x0). Altogether, we obtain
that

‖∆uk‖
p
Lp(Σ) ≤ ‖∆eϕ0‖

p
Lp(R2)

+∞∑

m=0

2−mp < +∞.

Now, recall that p > 2 is given. Choose β > 1/(p − 2), and consider λ∞(x) := |x|2β in
Bδ(x0) for some 0 ≤ δ ≪ 1/8. Note that |∇eϕ0| = 1 on B1/8(x0), whence

ˆ

Bδ(x0)
|∇eϕ0|

p
e λ

2−p
∞ dx = 2π

ˆ δ

0
r1−2β(p−2)dr = +∞.

Here |x| = r denotes the Euclidean distance from the origin. Then for any m ∈ N we can find
εm > 0, such that εm → 0 as m→ +∞, and

ˆ

Bδ(x0)
|∇eϕ0|

p (|x|2 + εm)
(2−p)βdx ≥ 2mp.

For x ∈ B1/8(x0) and ε ∈ [0, 1] we define the function λε ∈ C∞(B1/8(x0)) by




0 < λε ≤ 1

λε(x) = (|x|2 + ε)β if x ∈ Bδ(x0)

supp(1− λε) ⊆ B1/8(x0).

Now define λ ∈ C∞(Σ) by




0 < λ ≤ 1

λ(x) = 1 if x ∈ Σ \
⋃
m∈NB1/8(xm)

λ(x) = λεm(x− xm) if x ∈ Bδ(xm).

Then, arguing much as above,

∥∥|∇uk|
∥∥p
Lp(Σ)

=

ˆ

Σ

k∑

m=0

|∇ϕm|
p

2mp
λ2dx ≥

k∑

m=0

2−mp
ˆ

Bδ(x0)
|∇ϕo|

pλ2mdx

=
k∑

m=0

2−mp
ˆ

Bδ(x0)
|∇eϕ0|

p(|x|2 + εm)
(2−p)βdx ≥ k.

Since {‖uk‖Lp(Σ)} and {‖∆uk‖Lp(Σ)} are bounded, the gradient estimate fails on Σ.
This concludes the proof of Theorem C in the case where n = 2.
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Suppose now that n ≥ 3. We proceed as in [HMRV]. Let (Σ, g) be the Riemannian manifold
considered above and (N,h) any n − 2 dimensional closed Riemannian manifold. Consider
the product manifold M = Σ×N and define

vk(x, y) = uk(x) ∀(x, y) ∈ Σ×N.

Clearly {vk} ⊆ C∞
c (M). It is straightforward to check that the sequences {‖vk‖Lp(M)} and

{‖∆vk‖Lp(M)} are bounded, whereas {
∥∥|∇vk|

∥∥
Lp(M)

} is unbounded. Hence the gradient

estimate fails on M .
This concludes the proof of Theorem C. �

Remark 5.1. We observe that the choice of the sequence {xm} is quite arbitrary. In par-
ticular, let α : [0,+∞) → [0,+∞) be an arbitrary increasing function such that α(t) → ∞
as t → +∞. If we choose xm which diverges quick enough to infinity we can make the lower
bound on Ricci arbitrarily small so that

Ric(x) ≥ −α
(
r(x)

)
.

This shows that the result by Cheng, Thalmaier and Thompson, [CTT] is, in fact optimal
with respect to pointwise lower bounds, as observed after the statement of Theorem C.

We also point out the following straightforward consequence of the proof of Theorem C.

Corollary 5.2. For any n ≥ 2 and p > 2, there exists a Riemannian manifold M and a
function v∞ ∈ H2,p(M) such that v∞ 6∈W 1,p(M).

Indeed, for n > p, it is enough to define

u∞ =

+∞∑

m=0

2−mϕm;

then u∞,∆u∞ ∈ Lp(Σ) while |∇u∞| 6∈ Lp(Σ). In particular u∞ ∈ H2,p(Σ) while u∞ 6∈
W 1,p(Σ). The case 2 < p ≤ n can be dealt with the same trick as in the proof of Theorem C.

6. Shifted Calderón–Zygmund inequalities

We begin this section by proving the equivalence between boundedness of the local Riesz
transform and Calderón–Zygmund inequalities stated in Proposition 2.4.

Proof(of Proposition 2.4). Since −∆ generates a contraction semigroup on Lp(M), the oper-
ator −∆ is sectorial in Lp(M), and the resolvent operator (−∆ + τI)−1 is bounded on Lp,

by the Hille–Yosida Theorem. Hence so is (−∆ + τI)−k. Set ψ(λ) := (λk + τ)(λ + τ)−k.
It is not hard to prove that both ψ and 1/ψ are in the extended Dunford class Eθ for ev-
ery θ in (π/2, π). By the standard functional calculus for sectorial operators, ψ

(
(−∆)

)
and

(1/ψ)
(
(−∆)

)
extend to bounded operators on Lp(M).

Suppose first that R2k
τ is bounded on Lp(M), i.e. there exists a constant C such that
∥∥|R2k

τ f |
∥∥
Lp(M)

≤ C
∥∥f
∥∥
Lp(M)

∀f ∈ Lp(M).

In particular, if u is in DomLp

(
(−∆)k

)
, then the function f := (−∆+ τI)ku is in Lp(M), and

∥∥|∇2ku|
∥∥
Lp(M)

≤ C
∥∥(−∆+ τI)ku

∥∥
Lp(M)

≤ C
[ ∥∥∆ku

∥∥
Lp(M)

+
∥∥u
∥∥
Lp(M)

]
,

where C depends on τ . The last inequality is a straightforward consequence of the bounded-
ness in Lp of (1/ψ)

(
(−∆)

)
.
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Conversely, suppose that (2.2) holds. Consider f in Lp(M). Since τ is in the resolvent set
of (−∆), the operator (−∆ + τI)k maps DomLp(∆k) onto Lp(M). Therefore there exists u
in DomLp

(
∆k
)
such that u = (−∆+ τI)−kf . Consequently (2.2), with u as above yields

(6.1)
∥∥|∇2ku|

∥∥
Lp(M)

≤ C
[ ∥∥(−∆+ τI)−kf

∥∥
p
+
∥∥∆k(−∆+ τI)−kf

∥∥
p

]
.

Now, both (−∆+ τI)−k and ∆k(−∆+ τI)−k are bounded operators on Lp(M), as ψ
(
(−∆)

)

is. Furthermore, standarad properties of sectorial operators imply that there exists a constant
C such that

∣∣∣∣∣∣(−∆+ τI)−k
∣∣∣∣∣∣
Lp(M)

≤
∣∣∣
∣∣∣
∣∣∣(−∆+ τI)−1

∣∣∣
∣∣∣
∣∣∣
k

Lp(M)
≤
C

τk
∀τ > 0

and
∣∣∣∣∣∣∆k(−∆+ τI)−k

∣∣∣∣∣∣
Lp(M)

≤
∣∣∣
∣∣∣
∣∣∣∆(−∆+ τI)−1

∣∣∣
∣∣∣
∣∣∣
k

Lp(M)
≤ C ∀τ > 0.

This and (6.1) yield
∥∥|∇2k(−∆+ τI)−kf |

∥∥
Lp(M)

≤ C
[
τ−k

∥∥f
∥∥
p
+
∥∥f
∥∥
p

]
≤ C max

(
1, τ−k

) ∥∥f
∥∥
p
,

as required.

Suppose now that k = 2, and that (1.6) holds for all u ∈ C∞
c (M). Let f ∈ DomLp(∆) =

H2,p(M). Thanks to a density result by O. Milatovic [GP1, Appendix A] we can take a
sequence uj ∈ C∞

c (M) converging to f in H2,p(M) as j → ∞ (see Remark 2.3). Hence, (1.6)
and (GE(p)) (which holds due to [GP1, Theorem 2]) implies that uj is a Cauchy sequence
in W 2,p(M), hence it converges to some limit u∞ ∈ W 2,p(M). Finally, u∞ = f and (1.6), as
W 2,p(M) continuously embeds in H2,p(M). �

The rest of this section is devoted to prove Theorem D. As in Section 4 we use local
estimates in W 1,q-harmomic coordinates and then glue them together thanks to the uniform
local volume doubling condition.

The crucial ingredient is the following estimate of the first order term in the local expression
of the Hessian of a smooth function. Recall that, if (x1, · · · , xn) is a system of harmonic
coordinates, then

∇2
iju = Hess(u)ij = ∂2iju− Γkij∂ku

where Γkij denote the Christoffel symbols.

Lemma 6.1. Let 1 < p < +∞. Fix z ∈M , q > max(n, p) and let 0 < r = 1
4rW 1,q(z). Finally,

denote by Γkij the Christoffel symbols with respect to the W 1,q harmonic coordinates system

φ(x) = (x1, · · · , xn) : Br(z) → U ⊇ Be
r/2. Then, there exists a constant C = C(n, p, q, r) > 0

such that, for any u ∈ C∞(M),

C−1 · ‖Γkij∂ku‖Lp(Be
r/2

) ≤
∥∥|Hesse u|

∥∥
Lp(Be

r/2
)
+
∥∥|∇u|

∥∥
Lp(Br(z))

.

Proof. We apply Hölder’s inequality with conjugate exponents t = q/(q − p) and t′ = q/p to
get

(6.2) ‖Γkij∂ku‖Lp(Be
r/2

) ≤
∑

k

‖Γkij‖Lq(Br(z)) ·
∥∥|∇eu|

∥∥
Lpq/(q−p)(Be

r/2
)
, ∀ i, j = 1, . . . , n.
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Next, we recall that the Christoffel symbols display a C1 dependence on the metric coefficients
in the form

Γ =
1

2
g−1 · ∂g.

Since ‖g‖L∞ , ‖g−1‖L∞ and ‖∂g‖Lq are bounded inside Br(z) (with a bound depending only
on n, q, r), we deduce that there exists a constant C = C(n, q, r) > 0 such that

(6.3) ‖Γkij‖Lq(Br(z)) ≤ C.

It remains to take care of gradient term in (6.2). To this end, for the sake of clarity, we
distinguish three cases according to the values of p.

(1 < p < n). Since
pq

q − p
< p∗ :=

np

n− p
,

we can apply directly the Sobolev(–Kondrakov) embedding theorem and deduce that, for
some constant S = S(r, p, q, n) > 0,

S−1 ·
∥∥|∇eu|

∥∥
Lpq/(q−p)(Be

r/2
)
≤
∥∥|Hesse u|

∥∥
Lp(Be

r/2
)
+
∥∥|∇eu|

∥∥
Lp(Be

r/2
)
.

On the other hand, observe that
∥∥|∇eu|

∥∥
Lp(Be

r/2
)
≤ C

∥∥|∇u|
∥∥
Lp(Br(z))

for some absolute constant C > 0, whence

(6.4)
∥∥|∇eu|

∥∥
L

pq
q−p (Be

r/2
)
≤ C

(∥∥|Hesse u|
∥∥
Lp(Be

r/2
)
+
∥∥|∇u|

∥∥
Lp(Br(z))

)
.

Inserting (6.3) and (6.4) into (6.2), gives the desired inequality when 1 < p < n.

(p = n). Let 1 < p̃ < n = p be defined by

p̃ =
nq

2q − n
.

Since
nq

q − n
=

np̃

n− p̃
=: p̃∗,

we can apply the Sobolev embedding theorem and the Hölder inequality to deduce that, for
some constant S = S(r, q, n) > 0,

S−1 ·
∥∥|∇eu|

∥∥
Lnq/(q−n)(Be

r/2
)
≤
∥∥|Hesse u|

∥∥
Lp̃(Be

r/2
)
+
∥∥|∇eu|

∥∥
Lp̃(Be

r/2
)

≤ |Be
r/2|

(n−p̃)/np̃

(∥∥|Hesse u|
∥∥
Ln(Be

r/2
)
+
∥∥|∇eu|

∥∥
Ln(Be

r/2
)

)
.

The conclusion follows exactly as above.

(p > n). In this case, we can use Morrey’s and Hölder’s inequalities to deduce that, for some
constant S = S(r, p, q, n) > 0,

∥∥|∇eu|
∥∥
Lpq/(q−p)(Be

r/2
)
≤ |Be

r/2|
(q−p)/pq ·

∥∥|∇eu|
∥∥
L∞(Be

r/2
)

≤ S|Be
r/2|

(q−p)/qp

(∥∥|Hesse u|
∥∥
Lp(Be

r/2
)
+
∥∥|∇eu|

∥∥
Lp(Be

r/2
)

)
.

The proof of the lemma is complete. �
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We are now in the position to prove the following abstract result, which combined with
Proposition 2.4, proves Theorem D.

Theorem 6.2. Let 1 < p < +∞. Suppose that rW 1,q (M) > 0 for some q > max(n, p). Then
the Lp Calderón–Zygmund estimate (1.6) holds on M .

Proof. Set r̄ = rW 1,q (M)/4 and let u ∈ C∞
c (M). We preliminarily observe that there exists a

uniform constant C > 0 such that, for any z ∈M ,
∥∥|∇eu|

∥∥
Lp(Be

r̄)
≤ C

∥∥|∇u|
∥∥
Lp(B2r̄(z))

, ‖gij∂2iju‖Lp(Be
r̄)

≤ C‖∆u‖Lp(B2r̄(z)).

Using the Euclidean Calderón–Zygmund estimate [GT, Theorem 9.11] joint with Lemma 6.1,
we find a constant C = C(n, p, r̄) > 0 such that, for any z ∈M ,

∥∥|Hess(u)|
∥∥
Lp(Br̄/4(z))

≤
∥∥|Hesse u|

∥∥
Lp(Be

r̄/2
)
+
∑

ij

‖Γkij∂ku‖Lp(Be
r̄/2

)

≤ C
(
‖gij∂2iju‖Lp(Be

r̄ )
+ ‖u‖Lp(Be

r̄)
+
∥∥|∇u|

∥∥
Lp(B2r̄(z))

)

≤ C
(
‖∆u‖Lp(B2r̄(z)) + ‖u‖Lp(B2r̄(z)) +

∥∥|∇u|
∥∥
Lp(B2r̄(z))

)
.

Now, according to Remark 4.3, we cover M by a sequence of balls {Br̄/4(zj)}j∈N with the
property that the covering {B2r̄(zj)}j∈N has finite intersection multiplicity. Summing up the
local inequalities and using monotone and dominated convergence we deduce the existence of
a constant C = C(n, p,K, i) > 0 such that

C−1
∥∥|Hess(u)|

∥∥
Lp ≤ ‖∆u‖Lp + ‖u‖Lp +

∥∥|∇u|
∥∥
Lp .

To conclude we apply the Lp gradient estimates of Theorem 4.4. Accordingly, there exits a
constant C = C(n, p,K) > 0 such that

C−1
∥∥|∇u|

∥∥
Lp ≤ ‖u‖Lp + ‖∆u‖Lp

and this completes the proof. �

7. Strong W 2,p-estimates

In this section we show how to pass from a Calderón–Zygmund inequality to a strong
W 2,p-estimate. To this end, we need to learn how to absorb the Lp norm of a function and
its gradient using the positivity of the bottom of the spectrum of the Laplacian.

Definition 7.1. Let (M,g) be a complete Riemannian manifold with vol(M) = +∞. The
Cheeger constant of M is defined as

h(M) = inf
Ω⋐M,∂Ω∈C∞

|Ω|

|∂Ω|
.

It is well known from works by Cheeger and Buser, [Ch, Bu] (see also [Le, DM]) that, if
(M,g) is a complete n dimensional manifold with Ric ≥ −(n− 1)K2, then the following facts
are equivalent:

a) (Cheeger constant) h(M) > 0;
b) (Spectral gap) The bottom of the spectrum b of −∆ in L2(M) is strictly positive, i.e.

b > 0;
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c) (Lp Poincaré) For every 1 ≤ p < +∞, there exists a constant C = C(n, p,K) > 0
such that

C−1‖u‖pLp ≤
∥∥|∇u|

∥∥p
Lp , ∀u ∈ C∞

c (M).

The main tool of this section is the following simple

Lemma 7.2. Let 1 < p ≤ 2. Suppose that Ric ≥ −(n − 1)K2 and that M has spectral gap
b > 0. Then, there exists a constant C = C(n, p,K, b) > 0 such that, for any u ∈ C∞

c (M) it
holds

C−1‖u‖Lp ≤ ‖∆u‖Lp .

Proof. Since b > 0, the Lp Poincaré inequality tells us that

C−1‖u‖Lp ≤
∥∥|∇u|

∥∥
Lp .

Now, recall from [CD2] (see also [HMRV] for a direct proof) that, since 1 < p ≤ 2, we have
the validity of the multiplicative Lp gradient estimate

C−1
∥∥|∇u|

∥∥
Lp ≤ ‖u‖

1/2
Lp ‖∆u‖

1/2
Lp(7.1)

≤ ε‖u‖Lp + ε−1‖∆u‖Lp ,

where 0 < ε≪ 1 is arbitrary. When inserted into the Poincaré inequality, this latter gives

C−1‖u‖Lp ≤ ‖∆u‖Lp

where, this time, C > 0 depends also on ε. This completes the proof. �

With this preparation we are in a position to give the

Proof (of Theorem F). Since Ric ≥ −(n − 1)K2 and 1 < p ≤ 2, by [CCT], there exists a
constant C > 0 such that, for every u ∈ C∞

c (M),

C−1
∥∥|Hess(u)|

∥∥
Lp ≤ ‖u‖Lp + ‖∆u‖Lp .

On the other hand, the Lp gradient estimates state that, for a suitable constant C > 0,

C−1
∥∥|∇u|

∥∥
Lp ≤ ‖u‖Lp + ‖∆u‖Lp .

Summarising
C−1‖u‖W 2,p ≤ ‖u‖Lp + ‖∆u‖Lp .

An application of Lemma 7.2 yields the desired strong W 2,p-estimate. �

Remark 7.3. Note that the assumption p ≤ 2 has been used only in the multiplicative
gradient estimate (7.1). While the first line of (7.1) is known to be false for p > 2 (see [CD2]),
we do not know if an inequality of the form ‖|∇u|‖Lp ≤ ε‖u‖Lp + C(ε)‖∆u‖Lp could hold
when p > 2 in the class of complete manifolds with Ric ≥ −(n− 1)K2.

8. Higher order Calderón–Zygmund inequalities

We start by recalling the following consequence of [MMV, Theorem 5.2], proved by the
second named author joint with Mauceri and Vallarino.

Theorem 8.1. Suppose that M has bounded geometry at the order 2ℓ− 2 ∈ N, namely,

|∇j Ric | ≤ K, ∀j = 0, · · · , 2ℓ− 2 and rinj(M) ≥ i,

for some constants K ≥ 0 and i > 0. Assume also that M has spectral gap b > 0. Then, for
any 1 < p ≤ 2 there exists a constant C = C(n, p, ℓ,K, b, i) > 0 such that the global Riesz
transform R2ℓ of order 2ℓ is bounded from Lp(M) to Lp(M ;T2ℓM)
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Actually, the result in [MMV] is stronger as it establishes that the global covariant Riesz
transform R2ℓ is bounded as an operator from a certain Hardy space to L1. Its Lp boundedness
for 1 < p ≤ 2 then follows from an interpolation argument.

It is natural to speculate whether some of the assumptions in Theorem 8.1 can be removed.
Our contribution is to allow b to be zero, at the expense of considering local Riesz transforms
versus the global version thereof. This is the content of Theorem G) that we are now going
to prove.

Proof (of Theorem G). All over this proof, we denote by L := −∆ the positively defined
Laplace–Beltrami operator of the underlying manifold. Suppose that (M,g) has bounded
geometry at the order 2ℓ − 2. Take the standard hyperbolic plane H

2, and consider the
Riemannian product (M × H

2, g + gH2). Then, denoting by bM = b, bH2 and bM×H2 the
bottom of the L2 spectrum of the (positive) Laplace–Beltrami operator onM , H2 andM×H

2

respectively, it holds

bM×H2 = bM + bH2 ≥ bH2 =
1

4
.

Moreover

|∇j RicN | ≤ max(1,K), j = 0, · · · , 2ℓ− 2,

and also

rinj(M ×H
2) ≥ rinj(M) ≥ i.

It follows from Theorem 8.1 and Proposition 2.4 that, if p is in (1, 2), there exists a constant
C > 0 such that

(8.1)
∥∥|∇2ℓ

M×H2|w
∥∥
Lp(M×H2)

≤ C
∥∥LℓM×H2w

∥∥
Lp(M×H2)

, ∀w ∈ DomLp(LM×H2).

We apply this estimate to functions w of the form ϕ ⊗ ψ, where ϕ ∈ DomLp(LM ) and ψ
belongs to C∞

c (H2). Since

LℓM×H2(ϕ⊗ ψ) =
ℓ∑

j=0

(
ℓ

j

)(
LjMϕ

)
⊗ (Lℓ−j

H2 ψ)

and

∣∣∇2ℓ
M×H2(ϕ⊗ ψ)

∣∣2
M×H2 =

2ℓ∑

j=0

2

(
ℓ

j

)∣∣(∇j
Mϕ
)
⊗
(
∇2ℓ−j

H2 ψ
)∣∣2
M×H2 ,

by (8.1) we see that

∥∥|∇2ℓ
Mϕ|

∥∥
Lp(M)

∥∥ψ
∥∥
Lp(H2)

=
∥∥|(∇2ℓ

Mϕ)⊗ ψ|
∥∥
Lp(M×H2)

≤
∥∥|∇2ℓ

M×H2(ϕ⊗ ψ)|
∥∥
Lp(M×H2)

≤ C
∥∥LℓM×H2(ϕ⊗ ψ)

∥∥
Lp(M×H2)

≤ C

ℓ∑

j=0

(
ℓ

j

) ∥∥LjMϕ
∥∥
Lp(M)

∥∥Lℓ−j
H2 ψ

∥∥
Lp(H2)
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Now, suppose that ψ does not vanish identically on H
2. Then divide both sides of the previous

inequality by
∥∥ψ
∥∥
Lp(H2)

, and obtain that

∥∥|∇2ℓ
Mϕ|

∥∥
Lp(M)

≤ C σp,ℓ

ℓ∑

j=0

(
ℓ

j

) ∥∥LjMϕ
∥∥
Lp(M)

∀ϕ ∈ Lp(M).

where

σp,l := min
0≤j≤l

inf
ψ 6=0

∥∥Ll−j
H2 ψ

∥∥
Lp(H2)∥∥ψ

∥∥
Lp(H2)

,

is a finite constant. Now, since L is sectorial on Lp(M) (for LM generates the contraction
semigroup {Ht} on Lp(M)), the Moment inequality [Haa, Theorem 6.6.4] implies that

∥∥LjMϕ
∥∥
Lp(M)

≤ C
∥∥ϕ
∥∥1−j/ℓ
Lp(M)

∥∥LℓMϕ
∥∥j/ℓ
Lp(M)

,

so that
ℓ∑

j=0

(
ℓ

j

) ∥∥LjMϕ
∥∥
Lp(M)

≤ C
( ∥∥ϕ

∥∥1/l
Lp(M)

+
∥∥LℓMϕ

∥∥1/ℓ
Lp(M)

)ℓ

≤ C 2ℓ
( ∥∥ϕ

∥∥
Lp(M)

+
∥∥LℓMϕ

∥∥
Lp(M)

)
.

By combining the steps above, we find that there exists a constant C > 0 such that

(8.2)
∥∥|∇2ℓ

Mϕ|
∥∥
Lp(M)

≤ C
( ∥∥ϕ

∥∥
Lp(M)

+
∥∥LℓMϕ

∥∥
Lp(M)

)
.

A further application of Proposition 2.4 concludes the proof. �

Remark 8.2. (1) It is natural to speculate whether the Riesz transforms of higher odd
order R2ℓ−1

τ are bounded on Lp(M) when ℓ ≥ 2.
(2) It should be possible to give an alternative proof to Theorem G using C2ℓ−1,α harmonic

coordinates, which exist in our assumptions, see [AC]. Such a proof would likely work
also in the case p > 2, but it would be very technical and involved, due to the large
number of terms of the coordinate expression of ∇2ℓ to deal with; compare for instance
with the analogous result for the higher order density problem in [IRV]. For the sake
of simplicity we decided not to investigate such an approach in this paper.
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[BDG] R. Baumgarth, R.; Devyver, B.; Güneysu, B. Estimates for the covariant derivative of the

heat semigroup on differential forms, and covariant Riesz transforms Preprint (2021) available at
https://arxiv.org/pdf/2107.00311.pdf

[Bu] Buser, P. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230.
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