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This work focuses on fuzzy orthopartitions and credal partitions, which are distinct mathematical 
models representing partitions where the membership of elements to classes is only partially 
known. Firstly, we show that fuzzy orthopartitions and credal partitions are special cases 
of generalized fuzzy orthopartitions, which we introduce in this article as a new structure 
for modelling partitions with uncertainty. Next, we examine the connections between credal 
partitions and fuzzy orthopartitions, considering that both can be seen as types of fuzzy partitions 
(in particular, we deal with fuzzy probabilistic and Ruspini partitions). Moreover, we find that 
each generalized fuzzy orthopartition corresponds to a collection of zero, one, or infinitely 
many credal partitions; conversely, a credal partition maps to at most one generalized fuzzy 
orthopartition. Finally, we identify the class of all credal partitions that coincide with fuzzy 
orthopartitions.

1. Introduction

In knowledge representation and data analysis, uncertainty is an inevitable and impactful aspect. Traditional models often assume 
a precise and definite classification of elements into distinct classes, giving rise to a partition of the objects under investigation. 
However, in many real-world scenarios, such clarity and precision in categorization are not always achievable due to incomplete, 
ambiguous, or evolving information. Recognizing this, several models have been developed to address and represent uncertainty in 
partitioning elements. These models include credal partitions, fuzzy probabilistic partitions, Ruspini partitions, orthopartitions and 
fuzzy orthopartitions. By extending the conventional notion of crisp partitions, these models enable a more flexible and realistic 
representation of knowledge, accommodating the vagueness and ambiguity that naturally arise in many practical situations.

Let us now briefly delve into the diverse methodologies developed to address the representation of uncertainty in partitions, by 
focusing on two main approaches: credal partitions and fuzzy orthopartitions.

Credal partitions are relevant structures in evidential clustering used to represent partitions in cases of partial knowledge concern-

ing the membership of elements to classes [1], and they turn out to be useful in several applications (see [2–5] for some examples). 
Assuming that 𝐶 = {𝐶1, … , 𝐶𝑛} is a standard partition of a universe 𝑈 = {𝑢1, … , 𝑢𝑙}, a credal partition is a collection 𝑚 = {𝑚1, … , 𝑚𝑙}
of basic belief assignments (bba). Each bba 𝑚𝑖 expresses the relationship between the element 𝑢𝑖 and the classes of 𝐶 . More precisely, 
let 𝐴 ⊆ 𝐶 , 𝑚𝑖(𝐴), called mass of belief, quantifies the evidence supporting the claim “𝑢𝑖 belongs to a class of 𝐴” [6,7]. Credal partitions 
generalize the so-called fuzzy probabilistic partitions, which are credal partitions made up of all Bayesian bbas, namely bbas that assign 
a non-zero degree only to the singletons of 2𝑈 [8].
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Fig. 1. The hierarchy of the models studied in this article.

Fuzzy orthopartitions have been introduced in [9,10] to model (fuzzy) Ruspini partitions [11] with partial knowledge, and are 
also a generalization of orthopartitions based on classical sets [12]. Mathematically, fuzzy orthopartitions are defined as collections 
of Intuitionistic Fuzzy Sets (IFSs) satisfying a specific list of axioms. Each IFS of a fuzzy orthopartition represents a class to which 
elements belong with a degree of [0,1] that is not precisely known, but specified in an interval. A fuzzy orthopartition where the 
interval is a single point is a Ruspini partition, which is a generalized partition where blocks are represented by fuzzy sets and the 
total membership degree of each element (distributed among all blocks) must be 1. Fuzzy orthopartitions generalize also the concept 
of orthopartitions based on classical sets [12]. Orthopartitions are formally defined as collections of orthopairs (pairs of disjoint sets 
of the given universe) with some properties.

Recent studies investigate orthopartitions and fuzzy orthopartitions in knowledge representation: in [9], entropy measures and 
operations are defined on fuzzy orthopartitions; in [13], orthopartitions are bridged with possibility theory; in [14], a class of 
orthopartitions is identified as special partially-defined equivalence relations, which are equivalence relations with uncertainty.

Taking into account all the above considerations, it is clear, from one side, that there is a need to represent partitions in a flexible 
and realistic way in order to accommodate the vagueness and ambiguity that naturally arise in many practical situations and that 
from the other, the landscape of models of partition with uncertainty needs a clarification and a unique framework.

This work fills in such a gap by bridging fuzzy orthopartitions and credal partitions with the introduction of a new model: 
generalized fuzzy orthopartition. The following considerations are the starting point to reach our goal:

• Fuzzy orthopartitions and credal partitions respectively encompass the concepts of Ruspini partitions and fuzzy probabilistic 
partitions. Moreover, Ruspini partitions and fuzzy probabilistic partitions mathematically coincide.

• A fuzzy orthopartition 𝑂 can be seen as the collection 𝑂 of all Ruspini partitions that they could coincide with, as more knowledge 
about the membership class would be available. The same connection holds between a credal partition 𝑚 and a class of fuzzy 
probabilistic partitions 𝑚. Thus, we identify a fuzzy orthopartition 𝑂 with a credal partition 𝑚 when the corresponding classes 
𝑂 and 𝑚 coincide.

Building on these links we prove that generalized fuzzy partitions generalize both credal and fuzzy–ortho partitions and we 
study the relationship among all the above mentioned notions of partition with uncertainty. The hierarchy of all these models of 
generalized partitions is schematized in the diagram of Fig. 1. Thus, orthopartitions form a subclass of fuzzy orthopartitions; some 
but not all orthopartitions are special fuzzy probabilistic partitions; fuzzy probabilistic partitions can be viewed as the intersection 
of credal partitions and fuzzy orthopartitions; generalized fuzzy orthopartitions strictly include all the other models.

More in detail, the contributions of our work in each section are the following. The first section recalls the concepts of credal 
partitions and fuzzy orthopartitions (Subsections 2.1 and 2.2, respectively). Additionally, Subsection 2.3 shows that fuzzy orthopar-

titions and credal partitions can be respectively understood as Ruspini and fuzzy probabilistic partitions. This subsection ends by 
presenting a one-to-one correspondence between Ruspini and fuzzy probabilistic partitions, showing that these models syntactically 
coincide.

In Section 3, we introduce the novel notion of generalized fuzzy orthopartitions by relaxing the definition of fuzzy orthopartitions. 
Also, we prove that these models are more general than fuzzy orthopartitions, orthopartitions based on classical sets, and standard 
partitions.

In Section 4, we first recall the correspondence between fuzzy orthopartitions and Ruspini partitions already defined in [9] (Sub-

section 4.1). Subsequently, we identify credal partitions with collections of fuzzy probabilistic partitions (Subsection 4.2). Then, a 
generalized fuzzy orthopartition 𝑂 is mapped into the class  (𝑂) of all credal partitions having the same compatible fuzzy prob-

abilistic partitions of 𝑂. Additionally, we show that  (𝑂) can be empty, or made of one or infinitely many credal partitions. An 
2

analogous correspondence holds between fuzzy orthopartitions and credal partitions (Subsection 4.3).
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Table 1

Models for Partitions.

Symbol of the class Models

 Partitions

𝑂′ Orthopartitions

 Ruspini Partitions

∗ Fuzzy Probabilistic Partitions

 Fuzzy Orthopartitions

 Credal Partitions

𝐺 Generalized Fuzzy Orthopartitions

Table 2

List of notations.

Notation Definition Explanation

�̄� Definition 1 Basic Belief Assignment

𝑚 Definition 2 Credal Partition

(𝜇𝐴, 𝜈𝐴) Definition 3 Intuitionistic Fuzzy Set

ℎ𝐴(𝑢) Definition 3 Degree of Uncertainty

𝑂 Definition 4 Fuzzy Orthopartition

(𝑀,𝑁) Definition 5 Orthopair

𝐵 Definition 5 Boundary Region

𝛼 Equation (4) Function from ′ to ∗

𝛽 Equation (13) Function from  to ∗
𝐺

𝜋 Definition 7 Ruspini partition

𝑓 Equation (10) Function from  to ∗

 (𝑂) Definition 13 Collection of the Credal Partitions assigned to 𝑂

𝑂𝑚 Definition 14 Generalized Fuzzy Orthopartition assigned to 𝑚

In reverse, Section 5 assigns a generalized fuzzy orthopartition to each credal partition. This correspondence leads to an equiva-

lence relation on the set of all credal partitions (that is, we say that two credal partitions are equivalent if and only if they correspond 
to the same generalized fuzzy orthopartition). For these reasons, generalized fuzzy orthopartitions can be considered more general 
than credal partitions. Although credal partitions are special cases of generalized fuzzy orthopartitions, we show that not all of them 
can be seen as fuzzy orthopartitions. Then, we discover a necessary and sufficient condition for a credal partition to be a fuzzy or-

thopartition. Hence, we are able to characterize the collection of all credal partitions that are also fuzzy orthopartitions. Our results 
suggest interpreting generalized fuzzy orthopartitions in terms of mass function. In this way, we could obtain new models to extend 
the notion of partitions, and they can be understood as a credal partition with an additional level of uncertainty (see Remark 20).

In the last section, we present the conclusions and potential developments of this work.

We notice that the present paper extends the results already appeared in [15] as follows:

• The correspondence provided in [15] is generalized by dealing with credal partitions made of bbas that do not necessarily satisfy 
the condition of normality.

• New structures called generalized fuzzy orthopartitions are introduced to represent partitions with uncertainty and to extend the 
notions of both fuzzy orthopartitions and credal partitions.

• A necessary and sufficient condition is determined so that a credal partition coincides with a fuzzy orthopartition.

For the sake of clarity and in order to help the reader, let us fix here some notations. We will consider credal partitions and 
fuzzy orthopartitions as modelling a partially known standard partition of a finite universe 𝑈 = {𝑢1, … , 𝑢𝑙},1 that we denote as 
𝐶 = {𝐶1, … , 𝐶𝑛}. We recall that 𝐶 is a standard partition of 𝑈 if and only if 𝐶1 ∪ … ∪ 𝐶𝑛 = 𝑈 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for each 𝑖 ≠ 𝑗. 
Moreover, in Table 1 the main classes of mathematical models used in this paper with the corresponding nomenclature are reported.

We finally provide Table 2 listing the other important symbols used in this paper (first column), the references to their definition 
(second column), and their brief explanation (third column).2

2. Preliminaries

This section consists of three main parts. Subsections 2.1 and 2.2 respectively recall the main notions of credal partitions and 
fuzzy orthopartitions, which are used in this article. Subsection 2.3 highlights that fuzzy orthopartitions and credal partitions are 
respectively generalizations of the notion of Ruspini and fuzzy probabilistic partitions. Furthermore, it mathematically identifies each 
Ruspini partition with a fuzzy probabilistic partition, as known in the literature.

1 Of course, we need to suppose that 2 ≤ 𝑛 ≤ 𝑙.
3

2 We also denote with 𝑂 orthopartitions and generalized fuzzy orthopartitions that are given by Definition 6 and Definition 9.
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Table 3

Definition of the elements of 𝑚 of Example 1.

𝐴 𝑚1(𝐴) 𝑚2(𝐴) 𝑚3(𝐴) 𝑚4(𝐴)

∅ 0.2 0 0 0.1

{𝐶1} 0 0.1 0.1 0.1

{𝐶2} 0.3 0.3 0 0.1

{𝐶3} 0 0.1 0 0.2

{𝐶1, 𝐶2} 0.2 0 0.1 0.1

{𝐶1, 𝐶3} 0.1 0 0 0.1

{𝐶2, 𝐶3} 0 0 0.2 0.3

𝐶 0.2 0.5 0.6 0

Finally, the last subsection highlights that fuzzy orthopartitions and credal partitions are respectively generalizations of the 
notion of Ruspini and fuzzy probabilistic partitions. Furthermore, it mathematically identifies each Ruspini partition with a fuzzy 
probabilistic partition, as known in the literature.

2.1. Credal partitions

In the sequel, we use the symbol 2𝐶 to indicate the power set of 𝐶 .

Definition 1. [6] A basic belief assignment (bba) is a function �̄� ∶ 2𝐶 → [0, 1] satisfying∑
𝐴⊆𝐶

�̄�(𝐴) = 1. (1)

Definition 2. [1] A credal partition 𝑚 = {𝑚1, … , 𝑚𝑙} is a collection of basic belief assignments satisfying the following property: for 
each 𝐶𝑖 ∈ 𝐶 , there exists 𝑢𝑗 ∈ {𝑢1, … , 𝑢𝑙} such that 𝑝𝑙𝑗 ({𝐶𝑖}) > 0, where

𝑝𝑙𝑗 ({𝐶𝑖}) =
∑

{𝐴∈2𝐶 | {𝐶𝑖}∩𝐴≠∅}𝑚𝑗 (𝐴). (2)

For each 𝑖 ∈ {1, … , 𝑙}, the bba 𝑚𝑖 represents the partial knowledge regarding the relation between the element 𝑢𝑖 of 𝑈 and the 
classes of 𝐶 : let 𝐴 ⊆ 𝐶 , 𝑚𝑖(𝐴) is called mass of belief and quantifies the evidence supporting the claim “𝑢𝑖 belongs to a class of 𝐴”.

Example 1. Let 𝐶 = {𝐶1, 𝐶2, 𝐶3} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, then a credal partition 𝑚 = {𝑚1, 𝑚2, 𝑚3} of 𝑈 is defined by 
Table 3.

Therefore, 𝑚1({𝐶1, 𝐶2}) = 0.2 means that we have some belief that 𝑢1 belongs either to 𝐶1 or 𝐶2, and the weight of this belief is 
equal to 0.2.

A bba 𝑚 is normal when 𝑚(∅) = 0. This means that the element described by 𝑚 surely belongs to a class of the partition 𝐶 . For 
instance, the functions 𝑚2 ∶ 2𝐶 → [0, 1] and 𝑚3 ∶ 2𝐶 → [0, 1] given by Example 3 are normal bbas.

In this article, we consider credal partitions made of bbas that are not necessarily normal because we accept the open-world 
assumption stating that the elements of the initial universe 𝑈 might belong to a class denoted with 𝐶0 that is disjoint with 𝐶1, … , 𝐶𝑛. 
For instance, in the previous example, 𝑚1(∅) = 0.2 means that we believe with degree 0.2 that 𝑢1 belongs to 𝐶0 (namely, 𝑢1 is external 
to 𝐶).

Let 𝐴 ⊆ 𝐶 , we say that 𝐴 is a focal set of a bba 𝑚 if and only if 𝑚(𝐴) > 0. For instance, the focal sets of the bba 𝑚1 of Example 3

are: ∅, {𝐶2}, {𝐶1, 𝐶2}, {𝐶1, 𝐶3}, and 𝐶 .

In the next sections, we use the symbol  to denote the collection of all credal partitions of 𝑈 = {𝑢1, … , 𝑢𝑙}, which are related 
to the standard partition 𝐶 = {𝐶1, … , 𝐶𝑛}.

2.2. Fuzzy orthopartitions

Definition 3. [16] An intuitionistic fuzzy set (IFS) 𝐴 of a universe 𝑈 is a pair of functions 𝜇𝐴 ∶ 𝑈 → [0, 1] and 𝜈𝐴 ∶ 𝑈 → [0, 1] such 
that

𝜇𝐴(𝑢) + 𝜈𝐴(𝑢) ≤ 1 for each 𝑢 ∈ 𝑈 . Moreover, let 𝑢 ∈ 𝑈 , the value ℎ𝐴(𝑢) = 1 − (𝜇𝐴(𝑢) + 𝜈𝐴(𝑢)) is the degree of indeterminacy (or 
uncertainty) of 𝑢 to the IFS 𝐴.

The most common interpretation of an intuitionistic fuzzy set is the following: given 𝑢 ∈ 𝑈 , 𝜇𝐴(𝑢) and 𝜈𝐴(𝑢) are respectively the 
4

membership and non-membership degrees of 𝑢 to the set 𝐴.
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Table 4

Definition of the elements of 𝑂 of Example 2.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢) 𝜇3(𝑢) 𝜈3(𝑢)

𝑢1 0 0.1 0.1 0.3 0 0.1 0.1 0

𝑢2 0.2 0.4 0 0.2 0.1 0.1 0 0.5

𝑢3 0.2 0.4 0.1 0.4 0.2 0.5 0 0.8

𝑢4 0 0.5 0.3 0.2 0.2 0.4 0.3 0.2

Definition 4. [9] Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} be a family of IFSs of 𝑈 . Then, 𝑂 is a fuzzy orthopartition of 𝑈 if and only 
if the following properties hold for each 𝑢 ∈ 𝑈 :

a)
∑𝑛

𝑖=0 𝜇𝑖(𝑢) ≤ 1,

b) 𝜇𝑖(𝑢) + ℎ𝑗 (𝑢) ≤ 1, ∀𝑖 ≠ 𝑗,
c)

∑𝑛

𝑖=0(𝜇𝑖(𝑢) + ℎ𝑖(𝑢)) ≥ 1,

d) ∀𝑖 ∈ {0, … , 𝑛} with ℎ𝑖(𝑢) > 0, ∃𝑗 ≠ 𝑖 such that ℎ𝑗 (𝑢) > 0.

For each 𝑖 ∈ {1, … , 𝑛}, the IFS (𝜇𝑖, 𝜈𝑖) of a fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} represents the class 𝐶𝑖: let 𝑢 ∈𝑈 , 
𝜇𝑖(𝑢) and 𝜈𝑖(𝑢) are respectively the truth degrees to which “𝑢 belongs to 𝐶𝑖” and “𝑢 does not belong to 𝐶𝑖”. The IFS (𝜇0, 𝜈0) refers to the 
possibility that the elements of 𝑈 could be outside of 𝐶1 ∪… ∪𝐶𝑛, and so, it describes the relationship between the objects and the 
additional class that we have called 𝐶0. Thus, 𝜇0(𝑢) and 𝜈0(𝑢) are respectively the truth degrees concerning the statements “the object 
𝑢 does not belong to a class of 𝐶” (namely, “𝑢 belongs to 𝐶0”) and “the object 𝑢 belongs to a class of 𝐶” (namely, “𝑢 does not belong 
to 𝐶0”). Let us point out that the definition of a fuzzy orthopartition differs from that provided in [9] for the presence of (𝜇0, 𝜈0). In 
other words, in our previous works, we have supposed that each element of 𝑈 belongs to a class of 𝐶 .

It is easy to understand that Axiom (a) captures that the classes described by (𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛) must be disjoint and 
Axiom (c) is a covering requirement. However, let us focus on the interpretation of Axioms (b) and (d) of Definition 4, which is 
not intuitive. They are necessary so that a fuzzy orthopartition 𝑂 made of classical sets (i.e. 𝜇𝑖(𝑢), 𝜈𝑖(𝑢) ∈ {0, 1}) can be seen as an 
orthopartition according to Definition 6. Thus, Axioms (b) and (d) of Definition 4 are respectively generalizations of Axioms (b) and 
(d) of Definition 6, which have the following meaning. Axiom (b) of Definition 6 means that if the object 𝑢 belongs to the class 𝐶𝑖
(𝑢 ∈𝑀𝑖), then we cannot be uncertain that it may belong to another class (𝑢 ∉ 𝐵𝑗 for each 𝑖 ≠ 𝑗). Axiom (d) of Definition 6 means 
that if the object 𝑢 could belong to the class 𝐶𝑖 (𝑢 ∈ 𝐵𝑖) and 𝑢 surely does not belong to the other classes (𝑢 ∈𝑁𝑗 for each 𝑗 ≠ 𝑖), 
then 𝑢 must belong to 𝐶𝑖 (𝑢 ∈𝑀𝑖). However, we will show at the end of Subsection 2.3 that Axioms (b) and (d) of Definition 6 can 
be omitted to obtain models of partitions with uncertainty.

Example 2. Let 𝐶 = {𝐶1, 𝐶2, 𝐶3} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, then a fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2),
(𝜇3, 𝜈3)} of 𝑈 is defined by Table 4.

Then, 𝜇2(𝑢4) = 0.2 and 𝜈2(𝑢4) = 0.4 respectively are the truth degrees of the claims “𝑢4 belongs to 𝐶2” and “𝑢4 does not belong to
𝐶2”. Moreover, 𝜇0(𝑢2) = 0.2 and 𝜈0(𝑢2) = 0.4 respectively represent the truth degrees related to the claims “𝑢2 does not belong to a 
class of 𝐶” and “𝑢2 belongs to a class of 𝐶”.

In this article, we use the symbol  to denote the collection of all fuzzy orthopartitions of 𝑈 = {𝑢1, … , 𝑢𝑙}, which are related to 
the standard partition 𝐶 = {𝐶1, … , 𝐶𝑛}.

All axioms of Definition 4 are fundamental to consider fuzzy orthopartitions as an extension of the concept of orthopartitions, 
which are special collections of orthopairs.

Definition 5. [17] An orthopair (𝑀, 𝑁) of 𝑈 is a pair of disjoint subsets of 𝑈 , i.e. 𝑀, 𝑁 ⊆𝑈 and 𝑀 ∩𝑁 = ∅.

𝑀 and 𝑁 are respectively called lower approximation and impossibility domain of (𝑀, 𝑁). Also, the set defined by 𝐵 =𝑈 ⧵ (𝑀 ∪𝑁)
is the boundary region of (𝑀, 𝑁).

The orthopair (𝑀, 𝑁) represents a set containing all elements of 𝑀 and being disjoint from 𝑁 with certainty.

Definition 6. [12] A collection 𝑂 = {(𝑀0, 𝑁0), (𝑀1, 𝑁1), … , (𝑀𝑛, 𝑁𝑛)} of orthopairs of 𝑈 is an orthopartition of 𝑈 if and only if

a) 𝑀𝑖 ∩𝑀𝑗 = ∅, ∀ 𝑖 ≠ 𝑗;
b) 𝑀𝑖 ∩𝐵𝑗 =𝑀𝑗 ∩𝐵𝑖 = ∅, ∀ 𝑖 ≠ 𝑗;
c) the union of 𝑀0 ∪𝑀1 ∪… ∪𝑀𝑛 and 𝐵0 ∪𝐵1 ∪… ∪𝐵𝑛 covers 𝑈 ;

d) for each 𝑢 ∈ 𝑈 , if 𝑢 ∈ 𝐵𝑖 then there exists 𝑗 ≠ 𝑖 such that 𝑢 ∈𝐵𝑗 .

An orthopartition is understood here as a partition 𝐶 = {𝐶1, … , 𝐶𝑛} where the membership class of some elements is known 
5

with certainty: when 𝑢 ∈𝑀𝑖 for 𝑖 ∈ {1, … , 𝑛}, we know that 𝑢 ∈ 𝐶𝑖; whereas the membership class of the remaining elements is 
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Table 5

Definition of the elements of 𝑂 of Example 4.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢)

𝑢1 0 1 1 0 0 1

𝑢2 0 1 0 1 1 0

𝑢3 0 1 0 0 0 0

completely unknown: when 𝑢 ∉𝑀𝑖 for each 𝑖 ∈ {0, … , 𝑛}. Furthermore, if 𝑢 ∈𝑁𝑖, then we are sure that 𝑢 does not belong to the 
class 𝐶𝑖. The orthopair (𝑀0, 𝑁0) gives information about the elements of 𝑈 that do not belong to a class of 𝐶 : 𝑢 ∈𝑀0 denotes that 
𝑢 ∉ 𝐶1 ∪… ∪𝐶𝑛 and conversely, 𝑢 ∈𝑁0 denotes that 𝑢 belong to a class in {𝐶1, … , 𝐶𝑛}.3

Example 3. Let 𝐶 = {𝐶1, 𝐶2} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3}, then 𝑂 = {(𝑀0, 𝑁0), (𝑀1, 𝑁1), (𝑀2, 𝑁2)} is an orthopartition of 𝑈 , 
where (𝑀0, 𝑁0) = (∅, {𝑢1, 𝑢2, 𝑢3}), (𝑀1, 𝑁1) = ({𝑢1}, {𝑢2}), and (𝑀2, 𝑁2) = ({𝑢2}, {𝑢1}). Thus, we know that 𝑢1 ∈ 𝐶1 and 𝑢2 ∈ 𝐶2 with 
certainty, considering that 𝑢1 ∈𝑀1 and 𝑢2 ∈𝑀2. Concerning the object 𝑢3, we only know that 𝑢3 belongs to a class of 𝐶 (namely 
𝑢3 ∈ 𝐶1 or 𝑢3 ∈ 𝐶2) because 𝑢3 ∈𝑁0 and 𝑢3 ∈𝐵1 ∩𝐵2.

In [9], we proved that orthopartitions given by Definition 6 are special cases of fuzzy orthopartitions. This result is obtained by 
identifying orthopartitions with fuzzy orthopartitions made of Boolean functions (i.e., 𝜇0, 𝜇1, … , 𝜇𝑛 and 𝜈0, 𝜈1, … , 𝜈𝑛 assume their 
values in {0, 1}).

In details, denoting the collection of all orthopartitions with ′ and putting

∗ = {{(𝜇0, 𝜈0), (𝜇1, 𝜈1),… , (𝜇𝑛, 𝜈𝑛)} ∈ | 𝜇𝑖(𝑢), 𝜈𝑖(𝑢) ∈ {0,1} ∀𝑢 ∈𝑈 and ∀𝑖 ∈ {0,… , 𝑛}}, (3)

we can consider the mapping 𝛼 ∶′ →∗ such that let 𝑂 = {(𝑀0, 𝑁0), (𝑀1, 𝑁1), … , (𝑀𝑛, 𝑁𝑛)} ∈′,

𝛼(𝑂) = {(𝜇0, 𝜈0), (𝜇1, 𝜈1),… , (𝜇𝑛, 𝜈𝑛)}, (4)

where 𝜇0, 𝜇1, … , 𝜇𝑛 and 𝜈0, 𝜈1, … , 𝜈𝑛 are respectively the characteristic functions of 𝑀0, 𝑀1, … , 𝑀𝑛 and 𝑁0, 𝑁1, … , 𝑁𝑛, i.e.

𝜇𝑖(𝑢) =

{
1 if 𝑢 ∈𝑀𝑖,

0 otherwise,
and 𝜈𝑖(𝑢) =

{
1 if 𝑢 ∈𝑁𝑖,

0 otherwise,
(5)

∀𝑢 ∈𝑈 and ∀𝑖 ∈ {0, … , 𝑛}.

Function 𝛼 is a bijection and its inverse 𝛼−1 ∶ ∗ → ′ assigns {(𝑀0, 𝑁0), …, (𝑀𝑛, 𝑁𝑛)} ∈ ′ to each fuzzy orthopartition 
{(𝜇0, 𝜈0), … , (𝜇𝑛, 𝜈𝑛)} of ∗ so that

𝑀𝑖 = {𝑢 ∈𝑈 | 𝜇𝑖(𝑢) = 1} and 𝑁𝑖 = {𝑢 ∈𝑈 | 𝜈𝑖(𝑢) = 1}, (6)

∀𝑖 ∈ {0, … , 𝑛}.

Let us underline that 𝑂 ∈ ∗ and 𝛼(𝑂) (as well as 𝑂 ∈ ′ and 𝛼−1(𝑂)) represent the same partition with uncertainty. The 
following is an example.

Example 4. Let 𝐶 = {𝐶1, 𝐶2} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3}, then 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)} is a fuzzy orthopartition of 𝑈 , 
where its IFSs are defined by Table 5.

By (6), we can easily check that 𝛼−1(𝑂) =𝑂′, where

𝑂′ = {(∅,{𝑢1, 𝑢2, 𝑢3}), ({𝑢1},{𝑢2}), ({𝑢2},{𝑢1})}. (7)

Conversely, by (5), we get 𝛼(𝑂′) = 𝑂. Of course, 𝑂 contains the same information of 𝑂′, which is described by Example 3: we 
certainly know that 𝑢1 ∈ 𝐶1 and 𝑢2 ∈ 𝐶2 since 𝜇1(𝑢1) = 𝜇2(𝑢2) = 1, and 𝑢3 ∉ 𝐶0 given that 𝜈0(𝑢3) = 1.

Remark 1. An orthopartition {(𝑀0, 𝑁0), (𝑀1, 𝑁1), … , (𝑀𝑛, 𝑁𝑛)} such that 𝐵𝑖 = ∅ for each 𝑖 ∈ {0, … , 𝑛} is a standard partition, 
considering that the class of every element of 𝑈 is precisely known.

Example 5. The orthopartition

𝑂 = {({𝑢1},{𝑢2, 𝑢3}), ({𝑢2},{𝑢1, 𝑢3}), ({𝑢3},{𝑢1, 𝑢2})} (8)

of {𝑢1, 𝑢2, 𝑢3} is equivalent to the partition 𝑃 = {{𝑢1}, {𝑢2}, {𝑢3}}, or more exactly, to the partition {{𝑢2}, {𝑢3}}, where 𝑢1 is an 
outlier.

3 As in the case of credal partitions and fuzzy orthopartitions, we consider the set 𝐶0 containing all objects of 𝑈 that are outside of each class in 𝐶 . Therefore, 
6

(𝑀0 , 𝑁0) given in the previous definition represents the relationship between the objects of 𝑈 and the class 𝐶0 .
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Fig. 2. The hierarchy of partitions, orthopartitions, and fuzzy orthopartitions.

Table 6

Definition of the elements of 𝑂 of Example 7.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢)

𝑢1 0 1 0.2 0.8 0.8 0.2
𝑢2 0 1 0.5 0.5 0.5 0.5
𝑢3 0 1 0.6 0.4 0.4 0.6

Remark 2. A fuzzy orthopartition {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} ∈ ∗ is a partition when ℎ𝑖(𝑢) = 0 for each 𝑢 ∈ 𝑈 and for each 
𝑖 ∈ {0, … , 𝑛}.

Example 6. The fuzzy orthopartition 𝛼(𝑂) where 𝑂 is defined in Example 5, is equivalent to the partition 𝑃 = {{𝑢1}, {𝑢2}, {𝑢3}}, or 
more exactly, to the partition {{𝑢2}, {𝑢3}}, where 𝑢1 is an outlier.

Summing up, partitions are special cases of orthopartitions, which are strictly included in the class of fuzzy orthopartitions. The 
relationship among partitions, orthopartitions, and fuzzy orthopartitions is schematized in the Euler-Venn diagram of Fig. 2.

2.3. Fuzzy orthopartitions and credal partitions as fuzzy partitions

In this section, we link Fuzzy orthopartitions with Ruspini partitions then Credal partitions with Fuzzy probabilistic partitions 
and finally fuzzy probabilistic partitions with Ruspini partitions.

Fuzzy orthopartitions and Ruspini partitions

Definition 7. [11] A Ruspini partition of 𝑈 is a family 𝜋 = {𝜋0, 𝜋1, … , 𝜋𝑛} of fuzzy sets on 𝑈 such that

𝜋0(𝑢) + 𝜋1(𝑢) +…+ 𝜋𝑛(𝑢) = 1 for each 𝑢 ∈𝑈.

Let 𝑢 ∈𝑈 and let 𝑖 ∈ {0, … , 𝑛}, 𝜋𝑖(𝑢) is the truth degree to which “𝑢 belongs to 𝐶𝑖”.

Remark 3. Ruspini partitions coincide with fuzzy orthopartitions where all the degrees of uncertainty are 0. More precisely,

• a fuzzy orthopartition {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} such that

“ℎ𝑖(𝑢) = 0 for each 𝑢 ∈𝑈 and 𝑖 ∈ {0,… , 𝑛}”

is equivalent to the Ruspini partition {𝜇0, 𝜇1, … , 𝜇𝑛};

• a Ruspini partition {𝜋0, 𝜋1, … , 𝜋𝑛} is equivalent to the fuzzy orthopartition {(𝜋0, 1 − 𝜋0), (𝜋1, 1 − 𝜋1), … , (𝜋𝑛, 1 − 𝜋𝑛)}, where (1 −
𝜋𝑖)(𝑢) = 1 − 𝜋𝑖(𝑢) for each 𝑢 ∈ 𝑈 and for each 𝑖 ∈ {0, … , 𝑛}.

Example 7. Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)} be the fuzzy orthopartition of the universe {𝑢1, 𝑢2, 𝑢3}, where 𝜇0, 𝜇1, 𝜇2 and 𝜈0, 𝜈1, 𝜈2
are defined by Table 6.

It is true that ℎ0(𝑢𝑗 ) = ℎ1(𝑢𝑗 ) = ℎ2(𝑢𝑗 ) = 0 for each 𝑗 ∈ {1, 2, 3}. Also, according to Remark 3, {𝜇0, 𝜇1, 𝜇2} is a Ruspini partition 
equivalent with 𝑂 because the following equalities are true: 𝜇0(𝑢1) + 𝜇1(𝑢1) + 𝜇2(𝑢1) = 0 + 0.2 + 0.8 = 1, 𝜇0(𝑢2) + 𝜇1(𝑢2) + 𝜇2(𝑢2) =
0 + 0.5 + 0.5 = 1, and 𝜇0(𝑢3) + 𝜇1(𝑢3) + 𝜇2(𝑢3) = 0 + 0.6 + 0.4 = 1. Vice-versa, 𝑂 can be constructed from {𝜇0, 𝜇1, 𝜇2} as follows:

𝑂 = {(𝜇0,1 − 𝜇0), (𝜇1,1 − 𝜇1),… , (𝜇𝑛,1 − 𝜇𝑛)}. (9)

The previous remark naturally leads to interpreting fuzzy orthopartitions as Ruspini partitions with uncertainty.
7

The Euler-Venn diagram of Fig. 3 represents the relation between fuzzy orthopartitions and Ruspini partitions.
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Fig. 3. Hierarchy of fuzzy ortho and Ruspini partitions.

Table 7

Definition of the elements of 𝑚 of Exam-

ple 8.

𝐴 𝑚1(𝐴) 𝑚2(𝐴) 𝑚3(𝐴)

∅ 0 0 0

{𝐶1} 0.2 0.5 0.6

{𝐶2} 0.8 0.5 0.4

𝐶 0 0 0

Fig. 4. The hierarchy of credal and fuzzy probabilistic partitions.

Credal partitions and fuzzy probabilistic partitions

Definition 8. [8] A fuzzy probabilistic partition {𝑚1, … , 𝑚𝑙} of 𝑈 is a collection of Bayesian bbas, namely for each 𝑖 ∈ {1, … , 𝑙}, ∑
𝐴⊆𝐶 𝑚𝑖(𝐴) = 1 and 𝑚𝑖(𝐴) = 0 for each 𝐴 ⊆ 𝐶 that is not empty or a singleton.

Example 8. Consider the functions 𝑚1, 𝑚2, 𝑚3 defined by Table 7. Then, 𝑚 = {𝑚1, 𝑚2, 𝑚3} is a fuzzy probabilistic partition. In fact, 
𝑚1(∅) =𝑚2(∅) =𝑚3(∅) = 0 and 𝑚1(𝐶) =𝑚2(𝐶) =𝑚3(𝐶) = 0.

Trivially, fuzzy probabilistic partitions are special cases of credal partitions. Their relationship is exhibited in the Euler-Venn 
diagram of Fig. 4.

Ruspini partitions and fuzzy probabilistic partitions Let us analyze the relationship between Ruspini partitions and fuzzy probabilistic 
partitions.

Firstly, Ruspini partitions and fuzzy probabilistic partitions are more general than standard partitions. Also, we can notice that 
both can be understood as mathematical tools associating a value of [0, 1] to each pair made of an object of 𝑈 and a class of 𝐶 ∪{𝐶0}. 
Consequently, a one-to-one correspondence arises between Ruspini partitions and fuzzy probabilistic partitions.

In the sequel, we respectively denote with  and ∗ the collections of all Ruspini partitions and fuzzy probabilistic partitions.

Theorem 1. Let 𝑓 ∶ →∗ be the mapping such that let {𝜋0, 𝜋1, … , 𝜋𝑛} ∈,

𝑓 ({𝜋0, 𝜋1,… , 𝜋𝑛}) = {𝑚1,… ,𝑚𝑙}, (10)

where

𝑚𝑗 (∅) = 𝜋0(𝑢𝑗 ) and 𝑚𝑗 (𝐶𝑖) = 𝜋𝑖(𝑢𝑗 ), ∀ 𝑖 ∈ {1,… , 𝑛} and ∀𝑗 ∈ {1,… , 𝑙}. (11)
8

Then, 𝑓 is a bijection.
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Table 8

Definition of the elements of 𝑂 of Example 10.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢) 𝜇3(𝑢) 𝜈3(𝑢)

𝑢1 0 0.1 0.1 0.3 0.5 0.1 0.1 0

𝑢2 0.2 0.8 0 0.2 0.1 0.1 0 0.5

𝑢3 0.2 0.4 0.1 0.4 0.2 0.5 0 0.8

𝑢4 0 0.5 0.3 0.2 0.2 0.4 0.3 0.2

Proof. We can trivially verify that 𝑓 is well-defined, injective, and surjective. □

Example 9. Consider the Ruspini partition {𝜇0, 𝜇1, 𝜇2}, where the fuzzy sets 𝜇0, 𝜇1, and 𝜇2 are given by Table 6. Then, we can 
easily verify that 𝑓 ({𝜇0, 𝜇1, 𝜇2}) = {𝑚1, 𝑚2, 𝑚3} is the fuzzy probabilistic partition represented by Table 7. For example, we get 
𝑚1({𝐶2}) = 𝜇2(𝑢1) = 0.8; therefore, we can observe that both {𝜇0, 𝜇1, 𝜇2} and {𝑚1, 𝑚2, 𝑚3} assign the value 0.2 with the object 𝑢1
and the class 𝐶2.

Remark 4. The first mathematical correspondence between fuzzy ortho and credal partitions immediately arises from Theorem 1. 
These two models coincide when they are Ruspini are fuzzy probabilistic partitions. Indeed, by the previous theorem, 𝑓 () ⊆
 (Ruspini partitions form a subclass of credal partitions) and 𝑓−1(∗) ⊆  (fuzzy probabilistic partitions form a subclass of 
fuzzy orthopartitions); furthermore, by Subsection 2.3, we know that Ruspini partitions are special fuzzy orthopartitions and fuzzy 
probabilistic partitions are special credal partitions.

3. Generalized fuzzy orthopartitions

In this section, we introduce a new structure called generalized fuzzy orthopartition. Then, we prove that it is a more general 
notion than all models described in Section 2.

Definition 9. Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} be a family of IFSs of 𝑈 . Then, 𝑂 is a generalized fuzzy orthopartition of 𝑈 if and 
only if the following properties hold for each 𝑢 ∈ 𝑈 :

a)
∑𝑛

𝑖=0 𝜇𝑖(𝑢) ≤ 1,

b)
∑𝑛

𝑖=0 𝜇𝑖(𝑢) + ℎ𝑖(𝑢) ≥ 1.

It is easy to notice that the models given by Definition 9 are more general than fuzzy orthopartitions. Indeed, the axioms defining 
a generalized fuzzy orthopartition coincide with Axioms (a) and (c) of Definition 4.

We denote the collection of all generalized fuzzy orthopartitions with 𝐺 .

Example 10. Let 𝐶 = {𝐶1, 𝐶2, 𝐶3} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, then a generalized fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1),
(𝜇2, 𝜈2), (𝜇3, 𝜈3)} of 𝑈 is defined by Table 8.

In fact, 
∑3
𝑖=0 𝜇𝑖(𝑢1) = 0 +0.1 +0.5 +0.1 = 0.7 ≤ 1 and 

∑3
𝑖=0 𝜇𝑖(𝑢1) +ℎ𝑖(𝑢1) = 0.9 +0.7 +0.9 +1 = 3.5 ≥ 1. Also, we can immediately 

verify that Properties (a) and (b) of Definition 9 hold for 𝑢2, 𝑢3, and 𝑢4.

On the other hand, it is easy to see that 𝑂 is not a fuzzy orthopartition. For instance, Axiom (b) of Definition 13 is not satisfied: 
𝜇2(𝑢1) + ℎ0(𝑢1) = 0.5 + 0.9 > 1.

In what follows, we show that standard partitions are special cases of generalized fuzzy orthopartitions.

We use the symbol  to indicate the collection of all partitions of 𝑈 made of 𝑛 + 1 class. Furthermore, ∗
𝐺

denotes the collection 
of all generalized fuzzy orthopartitions that are made of all Boolean functions and have all degrees of uncertainty equal to 0:

∗
𝐺
= {𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1),… , (𝜇𝑛, 𝜈𝑛)} ∈𝐺 |∀𝑢 ∈𝑈 and ∀𝑖 ∈ {0,… , 𝑛}, 𝜇𝑖(𝑢), 𝜈𝑖(𝑢) ∈ {0,1} and ℎ𝑖(𝑢) = 0}. (12)

Theorem 2. Let 𝛽 ∶  →∗
𝐺

be a mapping such that given 𝑃 = {𝑃0, 𝑃1, … , 𝑃𝑛} ∈  ,

𝛽({𝑃0, 𝑃1,… , 𝑃𝑛}) = {(𝜇0, 𝜈0), (𝜇1, 𝜈1),… , (𝜇𝑛, 𝜈𝑛)}, (13)

where

𝜇𝑖(𝑢) =

{
1 if 𝑢 ∈ 𝑃𝑖,
0 otherwise,

and 𝜈𝑖(𝑢) = 1 − 𝜇𝑖(𝑢), (14)
9

∀𝑢 ∈𝑈 and ∀𝑖 ∈ {0, … , 𝑛}. Then, 𝛽 is a bijection.
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Table 9

Definition of the elements of 𝑂 of Example 11.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢)

𝑢1 1 0 0 1 0 1

𝑢2 0 1 1 0 0 1

𝑢3 0 1 0 1 1 0

𝑢4 0 1 0 1 1 0

Table 10

Definition of the elements of 𝑂 of Example 12.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢) 𝜇3(𝑢) 𝜈3(𝑢)

𝑢1 0 0 1 0 0 1 0 1

𝑢2 0 1 1 0 0 1 0 1

𝑢3 0 0 0 0 0 1 0 1

𝑢4 0 1 0 1 1 0 0 1

Proof. Clearly, each pair (𝜇𝑖, 𝜈𝑖) defined by (14) is an IFS by considering that the following cases can occur: “𝜇𝑖(𝑢) = 1 and 𝜈𝑖(𝑢) = 0” 
or “𝜇𝑖(𝑢) = 0 and 𝜈𝑖(𝑢) = 1”. More precisely, 𝛽({𝑃0, 𝑃1, … , 𝑃𝑛}) is a generalized fuzzy orthopartition of ∗

𝐺
:

• Axiom (a) of Definition 9 holds, namely 
∑𝑛

𝑖=0 𝜇𝑖(𝑢) = 1. Indeed, an element 𝑢 of 𝑈 belongs exactly to one class of the partition 𝑃 . 
By (14), there exists 𝑖 ∈ {0, … , 𝑛} such that 𝜇𝑖(𝑢) = 1 and 𝜇𝑗 (𝑢) = 0 for each 𝑗 ≠ 𝑖.

• Axiom (b) of Definition 9 holds, namely 
∑𝑛

𝑖=0 𝜇𝑖(𝑢) + ℎ𝑖(𝑢) = 1. By using (14) again, an element 𝑢 ∈𝑈 must belong to a class 𝑃𝑖 of 
𝑃 , thus 𝜇𝑖(𝑢) + ℎ𝑖(𝑢) = 1. Also, 𝑢 ∉ 𝑃𝑗 for each 𝑗 ≠ 𝑖. Therefore, 𝜇𝑗 (𝑢) + ℎ𝑗 (𝑢) = 0 + 0 = 0 for each 𝑗 ≠ 𝑖.

• Finally, by (14), we can easily observe that 𝜇0, 𝜇1, … , 𝜇𝑛 and 𝜈0, 𝜈1, … , 𝜈𝑛 are Boolean functions, and all degrees of uncertainty are 
0.

Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} such that 𝑂 = 𝛽({𝑃0, 𝑃1, …, 𝑃𝑛}).
Then, the function 𝛽 is clearly well-defined and injective from (14): let 𝑃 = {𝑃0, 𝑃1, … , 𝑃𝑛} and 𝑃 ′ = {𝑃 ′

0 , 𝑃
′
1 , … , 𝑃 ′

𝑛
} be partitions 

of  , 𝑃 = 𝑃 ′ if and only if 𝑃𝑖 = 𝑃 ′
𝑖

for each 𝑖 ∈ {0, … , 𝑛}, which means that 𝜇𝑖 = 𝜇′𝑖 and 𝜈𝑖 = 𝜈′𝑖 for each 𝑖 ∈ {0, … , 𝑛}, where 
𝛽(𝑃 ) = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} and 𝛽(𝑃 ′) = {(𝜇′0, 𝜈

′
0), (𝜇

′
1, 𝜈

′
1), … , (𝜇′

𝑛
, 𝜈′
𝑛
)}. Therefore, 𝛽(𝑃 ) = 𝛽(𝑃 ′).

In order to show that 𝛽 is a surjective function, we consider the generalized fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … ,
(𝜇𝑛, 𝜈𝑛)} ∈∗

𝐺
. Thus, we can construct the partition 𝑃 = {𝑃0, 𝑃1, … , 𝑃𝑛} such that 𝑃𝑖 = {𝑢 ∈𝑈 | 𝜇𝑖(𝑢) = 1} for each 𝑖 ∈ {0, … , 𝑛}. By 

(14), we can immediately understand that 𝑃 ∈  and 𝛽(𝑃 ) =𝑂. □

The previous theorem determines the existence of a one-to-one correspondence between  and ∗
𝐺

. In addition, as explained in 
the next example, 𝑃 ∈  and 𝛽(𝑃 ) contain the same information.

Example 11. Let 𝑃 = {𝑃0, 𝑃1, 𝑃2} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, where 𝑃0 = {𝑢1}, 𝑃1 = {𝑢2}, and 𝑃2 = {𝑢3, 𝑢4}. Then, 𝑂 = 𝛽(𝑃 )
is defined by Table 9.

We can see that 𝑂 is a generalized fuzzy orthopartition of ∗
𝐺

. Moreover, 𝑂 contains the same information of 𝑃 : 𝑢1 is an 
outlier because 𝜇0(𝑢1) = 1, 𝑢2 forms the first class and {𝑢3, 𝑢4} is the second class of the partition, considering that 𝜇1(𝑢2) = 1 and 
𝜇2(𝑢3) = 𝜇2(𝑢4) = 1.

Generalized fuzzy orthopartitions of 𝐺 made of Boolean functions can be viewed as collections of orthopairs verifying Axioms 
(a) and (c) of Definition 6.

Proposition 1. Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)} ∈ 𝐺 such that 𝜇0, 𝜇1, … , 𝜇𝑛 and 𝜈0, 𝜈1, … , 𝜈𝑛 are Boolean. Then, 𝑂′ =
{(𝑀0, 𝑁0), (𝑀1, 𝑁1), …, (𝑀𝑛, 𝑁𝑛)} given by (6) satisfies Axioms (a) and (c) of Definition 6.

Proof. The proof clearly follows from (6) and Definition 9. □

Remark 5. On the other hand, a generalized fuzzy orthopartition 𝑂 of 𝐺 made of Boolean functions is not an orthopartition 
according to Definition 6. More precisely, (6) transforms 𝑂 into a set of orthopairs 𝑂′ that could not satisfy Axioms (b) and (d) of 
Definition 6. The following is an example.

Example 12. Let 𝐶 = {𝐶1, 𝐶2, 𝐶3} be a partition of 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, we consider the generalized fuzzy orthopartition 𝑂 =
10

{(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2), (𝜇3, 𝜈3)} ∈𝐺 , which is defined by Table 10.
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Then, according to (6), the orthopairs corresponding to 𝑂′ are (𝑀0, 𝑁0) = (∅, {𝑢2, 𝑢4}), (𝑀1, 𝑁1) = ({𝑢1, 𝑢2}, {𝑢4}), (𝑀2, 𝑁2) =
({𝑢4}, {𝑢1, 𝑢2, 𝑢3}), and (𝑀3, 𝑁3) = (∅, {𝑢1, 𝑢2, 𝑢3, 𝑢4}), and they do not form an orthopartition. In fact, we can notice that Axiom (b) of 
Definition 6 is not satisfied because 𝑢1 ∈𝐵0 ∩𝑀1. Furthermore, Axiom (d) is not satisfied too because 𝑢1 ∈𝐵0 but 𝑢1 ∉𝐵1 ∪𝐵2 ∪𝐵3.

Despite Remark 5, we can consider generalized fuzzy orthopartitions as an extension of the concept of orthopartitions. This is 
because we can transform a collection of orthopairs 𝑂 that satisfies Axioms (a) and (c) of Definition 6 into an orthopartition that 
contains the same information provided by 𝑂.

Definition 10. Let 𝑂 = {(𝑀0, 𝑁0), (𝑀1, 𝑁1). … , (𝑀𝑛, 𝑁𝑛)} be a collection of orthopairs satisfying Axioms (𝑎) and (𝑐) of Definition 6. 
We consider

𝑂′ = {(𝑀0 ∪𝐸0,𝑁0 ∪ 𝐹0), (𝑀1 ∪𝐸1,𝑁1 ∪ 𝐹1),… , (𝑀𝑛 ∪𝐸𝑛,𝑁𝑛 ∪ 𝐹𝑛)} (15)

such that

𝐸𝑖 = {𝑢 ∈ 𝐵𝑖 | 𝑢 ∈𝑁𝑗 ∀𝑗 ≠ 𝑖} and 𝐹𝑖 = {𝑢 ∈𝐵𝑖 | 𝑢 ∈𝑀𝑗 with 𝑗 ≠ 𝑖}, (16)

for each 𝑖 ∈ {0, … , 𝑛}.

Proposition 2. Let 𝑂 be a collection of orthopairs satisfying Axioms (𝑎) and (𝑐) of Definition 6. Then, 𝑂′ given by Definition 10 is an 
orthopartition of 𝑈 .

Proof. Let 𝑂′ = {(𝑀0 ∪𝐸0, 𝑁0 ∪ 𝐹0), (𝑀1 ∪𝐸1, 𝑁1 ∪ 𝐹1), … , (𝑀𝑛 ∪𝐸𝑛, 𝑁𝑛 ∪ 𝐹𝑛)}. We first show that for each 𝑖 ∈ {0, … , 𝑛}, (𝑀𝑖 ∪
𝐸𝑖, 𝑁𝑖 ∪ 𝐹𝑖) is an orthopair of 𝑈 , i.e. 𝑀𝑖 ∪𝐸𝑖 and 𝑁𝑖 ∪ 𝐹𝑖 are disjoint. Since 𝑀𝑖, 𝑁𝑖, and 𝐵𝑖 are mutually disjoint and 𝐸𝑖, 𝐹𝑖 ⊆ 𝐵𝑖, 
we know that 𝑀𝑖 ∪𝐸𝑖 is disjoint from 𝑁𝑖 and 𝑁𝑖 ∪ 𝐹𝑖 is disjoint from 𝑀𝑖. We need to verify that 𝐸𝑖 and 𝐹𝑖 are disjoint too. Indeed, 
𝑢 ∈𝐸𝑖 implies that 𝑢 ∈𝑁𝑗 for each 𝑗 ≠ 𝑖. Hence, 𝑢 cannot belong to 𝑀𝑗 for each 𝑗 ≠ 𝑖, that is 𝑢 ∉ 𝐹𝑖. Analogously, 𝑢 ∈ 𝐹𝑖 implies that 
𝑢 ∉𝐸𝑖.

Now, let us prove that all axioms characterizing orthopartitions are satisfied by 𝑂′ .

Axiom (a). Let 𝑖 ≠ 𝑗, we intend to prove that (𝑀𝑖 ∪ 𝐸𝑖) ∩ (𝑀𝑗 ∪ 𝐸𝑗 ) = ∅. Since 𝑂 verifies Axiom (a), 𝑀𝑖 ∩𝑀𝑗 = ∅. Moreover, 
𝑀𝑖∩𝐸𝑗 = ∅ because 𝑢 ∈𝐸𝑖 means that 𝑢 ∈𝑁𝑗 , and so 𝑢 ∉𝑀𝑗 . Symmetrically, 𝑀𝑗 ∩𝐸𝑖 = ∅. Finally, we can notice that 𝐸𝑖∩𝐸𝑗 = ∅. 
Indeed, if 𝑢 ∈𝐸𝑖, then 𝑢 ∈𝐵𝑖 and 𝑢 ∈𝑁𝑗 . Since 𝐵𝑗 ∩𝑁𝑗 = ∅ and 𝐸𝑗 ⊆ 𝐵𝑗 , we can conclude that 𝑢 ∉𝐸𝑗 . Symmetrically, if 𝑢 ∈𝐸𝑗 , 
then 𝑢 ∉𝐸𝑖.

Axiom (b). Notice that the boundary region of the orthopair (𝑀𝑗 ∪ 𝐸𝑗, 𝑁𝑗 ∪ 𝐹𝑗 ) is 𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ). So, let 𝑖 ≠ 𝑗, we want to prove 
that (𝑀𝑖 ∪𝐸𝑖) ∩ (𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 )) = ∅. Let 𝑢 ∈𝑀𝑖 ∪ 𝐸𝑖. Suppose that 𝑢 ∈𝑀𝑖. If 𝑢 ∈ 𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ), then 𝑢 ∉ 𝐹𝑗 . This implies that 
𝑢 ∉𝑀𝑘 for each 𝑘 ≠ 𝑗. Then, 𝑢 ∉𝑀𝑖, which is absurd. Suppose that 𝑢 ∈𝐸𝑖 then 𝑢 ∈𝑁𝑗 and so, 𝑢 cannot belong to 𝐵𝑗 . Therefore, 
the intersection of 𝑀𝑖 ∪𝐸𝑖 and 𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ) must be empty.

Axiom (c). Let 𝑢 ∈ 𝑈 , we need to prove that 𝑢 ∈𝑀𝑖 ∪ 𝐸𝑖 or 𝑢 ∈ 𝐵𝑖 ⧵ (𝐸𝑖 ∪ 𝐹𝑖) with 𝑖 ∈ {0, … , 𝑛}. If “𝑢 ∈𝑀𝑖 with 𝑖 ∈ {0, … , 𝑛}”, 
then it is trivial that 𝑢 ∈𝑀𝑖 ∪𝐸𝑖. Suppose that “𝑢 ∉𝑀𝑖 ∀𝑖 ∈ {0, … , 𝑛}”. Since 𝑂 satisfies Axiom (c) of Definition 6, 𝑢 ∈ 𝐵𝑗 with 
𝑗 ∈ {0, … , 𝑛}”. If 𝑢 ∈𝑁𝑘 for each 𝑘 ≠ 𝑗, then 𝑢 ∈ 𝐸𝑗 , which implies that 𝑢 ∈𝑀𝑗 ∪ 𝐸𝑗 . Otherwise, 𝑢 ∉ 𝐸𝑗 . Moreover, 𝑢 cannot 
belong to 𝐹𝑗 because we have assumed that 𝑢 ∉𝑀𝑖 ∀𝑖 ∈ {0, … , 𝑛}. Lastly, 𝑢 ∈ 𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ).

Axiom (d). Let 𝑢 ∈ 𝑈 and let 𝑖 ∈ {0, … , 𝑛} such that 𝑢 ∈ 𝐵𝑖 ⧵ (𝐸𝑖 ∪ 𝐹𝑖). We have to prove that 𝑢 ∈ 𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ) with 𝑖 ≠ 𝑗. Since 
𝑢 ∉ 𝐹𝑖, it must hold that 𝑢 ∉𝑀𝑘 for each 𝑘 ≠ 𝑖. Thus, 𝑢 ∈𝐵𝑘 ∪𝑁𝑘 for each 𝑘 ≠ 𝑖. Since 𝑢 ∉𝐸𝑖, there exists 𝑗 ≠ 𝑖 such that 𝑢 ∉𝑁𝑗 . 
Then, 𝑢 ∈𝐵𝑗 . Moreover, 𝑢 ∉𝐸𝑗 ∪𝐹𝑗 because we have observed that 𝑢 ∉𝑁𝑖 (hence, 𝑢 ∉𝐸𝑗 ) and 𝑢 ∉𝑀𝑖 and 𝑢 ∉𝑀𝑘 ∀𝑘 ≠ 𝑖 (hence, 
𝑢 ∉ 𝐹𝑗 ). In the end, 𝑢 ∈𝐵𝑗 ⧵ (𝐸𝑗 ∪ 𝐹𝑗 ). □

We can notice that both 𝑂 and 𝑂′ related to Definition 10 represent the same partition with uncertainty. Let us show an example.

Example 13. We consider the set of orthopairs 𝑂 = {(𝑀0, 𝑁0), (𝑀1, 𝑁1), (𝑀2, 𝑁2)}, where (𝑀0, 𝑁0) = ({𝑢1}, {𝑢2, 𝑢4}), (𝑀1, 𝑁1) =
({𝑢2}, {𝑢3, 𝑢4}), and (𝑀2, 𝑁2) = ({𝑢4}, {𝑢2, 𝑢3}). 𝑂 only satisfies Axioms (a) and (c) of Definition 6. In fact, we can see that 𝑀0 ∩𝐵1 =
𝑀0 ∩𝐵2 = {𝑢1} (Axiom (b) does not hold) and 𝑢3 ∈𝐵0 and 𝑢3 ∈𝑁1 ∩𝑁2 (Axiom (d) does not hold).

Despite 𝑂 not being an orthopartition, it consistently represents a partition {𝐶0, 𝐶1, 𝐶2} with uncertainty. Indeed, we know with 
certainty that 𝑢1 ∈ 𝐶0, 𝑢2 ∈ 𝐶1, 𝑢4 ∈ 𝐶2. Moreover, we can deduce that 𝑢3 ∈ 𝐶0 considering that 𝑢3 cannot belong to 𝐶1 and 𝐶2.

Let us underline that 𝑀0 ∩𝐵1 = {𝑢1} does not contradict that 𝑂 represents a partition. Indeed, 𝑢1 ∈𝑀0 and 𝑢1 ∈𝐵1 respectively 
mean that “𝑢1 belongs to 𝐶0” and “𝑢1 could belong to 𝐶1 or not”. Thus, 𝑢1 ∈𝑀0 is not in contrast with 𝑢1 ∈ 𝐵1, but it specifies 
more precise information about the membership class of 𝑢1 . Analogously, 𝑢3 ∈ 𝐵0 is not in contrast with 𝑢 ∉ 𝐵1 and 𝑢 ∉ 𝐵2. Indeed, 
𝑢3 ∈ 𝐵0 means that “𝑢3 could belong to 𝐶0 or not”, 𝑢 ∉𝐵1 and 𝑢 ∉𝐵2 together with 𝑢 ∈𝑁1 and 𝑢 ∈𝑁2 specifies that “𝑢3 belongs to 
𝐶0”.

According to Definition 10, 𝑂 is transformed in 𝑂′ = {(𝑀0 ∪ 𝐸0, 𝑁0 ∪ 𝐹0), (𝑀1 ∪ 𝐸1, 𝑁1 ∪ 𝐹1), (𝑀2 ∪ 𝐸2, 𝑁2 ∪ 𝐹2)} such that 
𝑀0 ∪𝐸0 = {𝑢1} ∪{𝑢3} = {𝑢1, 𝑢3}, 𝑁0 ∪𝐹0 = {𝑢2, 𝑢4} ∪∅ = {𝑢2, 𝑢4}, 𝑀1 ∪𝐸1 = {𝑢2} ∪∅ = {𝑢2}, 𝑁1 ∪𝐹1 = {𝑢3, 𝑢4} ∪{𝑢1} = {𝑢1, 𝑢3, 𝑢4}, 
11

𝑀2 ∪𝐸2 = {𝑢4} ∪ ∅ = {𝑢4}, and 𝑁2 ∪ 𝐹2 = {𝑢2, 𝑢3} ∪ {𝑢1} = {𝑢1, 𝑢2, 𝑢3}.
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Fig. 5. The hierarchy of the models defined in Subsections 2.2 and 3.

See that 𝑂′ = {({𝑢1, 𝑢3}, {𝑢2, 𝑢3}), ({𝑢2}, {𝑢1, 𝑢3, 𝑢4}), ({𝑢4}, {𝑢1, 𝑢2, 𝑢3})} exactly contains the same information of 𝑂. More exactly, 
both 𝑂 and 𝑂′ represent the partition {{𝑢1, 𝑢3}, {𝑢2}, {𝑢4}}. The advantage to consider 𝑂′ instead of 𝑂 is that 𝑂′ does not contain 
redundant or hidden information.

In general, a collection of orthopairs 𝑂 that exclusively satisfies Axioms (a) and (c), carries redundancy and hidden information. 
These problems are solved when 𝑂 is transformed into the orthopartition 𝑂′. So, we can think that 𝑂′ arises eliminating the 
redundancy from 𝑂 and making clear the information hidden in 𝑂. Practically, Definition 10 constructs 𝑂′ starting from 𝑂 as 
follows.

• When 𝑢 ∈𝑀𝑖 and 𝑢 ∈𝐵𝑗 (Axiom (b) of Definition 6 does not hold for 𝑂), the redundant information is given by 𝑢 ∈ 𝐵𝑗 : of course, 
we already know that 𝑢 belongs to the class 𝐶𝑖 from 𝑢 ∈𝑀𝑖. Then, 𝑢 is moved from 𝐵𝑗 to the impossibility domain of the orthopair 
representing 𝐶𝑗 .

• When 𝑢 ∈𝐵𝑖 and 𝑢 ∉𝐵𝑗 ∀𝑗 ≠ 𝑖 (Axiom (b) of Definition 6 does not hold for 𝑂), the information about the membership class of 𝑢 is 
hidden in 𝑂. Indeed, if there exists 𝑗 ≠ 𝑖 such that 𝑢 ∈𝑀𝑗 , then we are sure that 𝑢 belongs to 𝐶𝑗 . Therefore, in order to construct 
𝑂′, we need to move 𝑢 from 𝐵𝑖 to the impossibility domain of the orthopair representing 𝐶𝑖. If 𝑢 ∈𝑁𝑗 for each 𝑗 ≠ 𝑖, then we are 
sure that 𝑢 belongs to 𝐶𝑖, and so, 𝑢 passes from 𝐵𝑖 to the lower approximation of the orthopair representing 𝐶𝑖 .

We can conclude that collections of orthopairs satisfying Axioms (a) and (c) of Definition 6 and orthopartitions are equivalent 
and both are consistent models (i.e., they do not contain contradictions) to represent partitions in presence of partial knowledge.

The relationship among the models defined in Subsections 2.2 and 3 is exhibited in the Euler-Venn diagram Fig. 5.

4. From fuzzy orthopartitions to credal partitions

The main goal of this section is achieved in Subsection 4.3, where we construct a class of credal partitions assigned to a given 
fuzzy orthopartition. In order to do this, we need to show that

• each fuzzy orthopartition can be viewed as a collection of Ruspini partitions (Subsection 4.1);

• each credal partition can be viewed as a collection of fuzzy probabilistic partitions (Subsection 4.2).

4.1. Compatible Ruspini partitions

A fuzzy orthopartition corresponds to a collection of Ruspini partitions. Their definition is formulated by thinking that fuzzy 
orthopartitions approximate Ruspini partitions when the truth degree of elements of the initial universe is not exactly known. In fact, 
starting from a fuzzy orthopartition, the truth degree of the statement “the object 𝑢𝑗 belongs to the class 𝐶𝑖” is uncertain, considering 
that we only know that it is a value of the interval [𝜇𝑖(𝑢𝑗 ), 1 − 𝜈𝑖(𝑢𝑗 )]. If knowledge about the membership classes of the elements 
increases in such a way that it is no longer partial, we can precisely determine the degree assigned with 𝑢𝑗 and 𝐶𝑖, and obtain a 
Ruspini partition. All Ruspini partitions that potentially could coincide with a fuzzy orthopartition are formally defined as follows.

Definition 11. Let 𝑂 be a fuzzy orthopartition of 𝑈 . We say that a Ruspini partition 𝜋 is compatible with 𝑂 if and only if

𝜇𝑖(𝑢𝑗 ) ≤ 𝜋𝑖(𝑢𝑗 ) ≤ 1 − 𝜈𝑖(𝑢𝑗 ), for each 𝑖 ∈ {0,… , 𝑛} and 𝑗 ∈ {1,… , 𝑙}.

We use the symbol 𝑂 to indicate the collection of all Ruspini partitions compatible with the fuzzy orthopartition 𝑂.

Example 14. Consider the fuzzy orthopartition 𝑂 defined by Table 4. According to Definition 11, a Ruspini partition 𝜋 =
12

{𝜋0, 𝜋1, 𝜋2, 𝜋3} is compatible with 𝑂 if and only if each 𝑢𝑗 ∈ {𝑢1, 𝑢2, 𝑢3, 𝑢4} satisfies the following inequalities:
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Table 11

Definition of the elements of {𝜋0 , 𝜋1, 𝜋2, 𝜋3}
of Example 14.

𝑢 𝜋0(𝑢) 𝜋1(𝑢) 𝜋2(𝑢) 𝜋3(𝑢)

𝑢1 0.3 0.3 0.3 0.1

𝑢2 0.2 0.1 0.3 0.4

𝑢3 0.4 0.2 0.3 0.1

𝑢3 0.1 0.3 0.4 0.2

⎧⎪⎪⎨⎪⎪⎩
𝜇0(𝑢𝑗 ) ≤ 𝜋0(𝑢𝑗 ) ≤ 𝜇0(𝑢𝑗 ) + ℎ0(𝑢𝑗 ),
𝜇1(𝑢𝑗 ) ≤ 𝜋1(𝑢𝑗 ) ≤ 𝜇1(𝑢𝑗 ) + ℎ1(𝑢𝑗 ),
𝜇2(𝑢𝑗 ) ≤ 𝜋2(𝑢𝑗 ) ≤ 𝜇2(𝑢𝑗 ) + ℎ2(𝑢𝑗 ),
𝜇3(𝑢𝑗 ) ≤ 𝜋3(𝑢𝑗 ) ≤ 𝜇3(𝑢𝑗 ) + ℎ3(𝑢𝑗 ).

(17)

Then, it is easy to verify that an example of Ruspini partition {𝜋0, 𝜋1, 𝜋2, 𝜋3} compatible with 𝑂 is defined by Table 11.

For example, 𝜋0(𝑢1) = 0.3 is between 𝜇0(𝑢1) = 0 and 𝜇0(𝑢1) + ℎ0(𝑢1) = 0 + 0.9 = 0.9, 𝜋1(𝑢1) = 0.3 is between 𝜇1(𝑢1) = 0.1 and 
𝜇1(𝑢1) + ℎ1(𝑢1) = 0.1 + 0.6 = 0.7, and so on.

Remark 6. For each credal partition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), … , (𝜇𝑛, 𝜈𝑛)}, there exists at least a Ruspini partition 𝜋 = {𝜋0, 𝜋1… , 𝜋𝑛}
that is compatible with 𝑂. In fact, according to Definition 11,

• |𝑂| = 1, when 𝑂 is a Ruspini partition (all the degrees of uncertainty are equal to 0);

• |𝑂| =∞, otherwise. This is because if the degree of uncertainty ℎ𝑖(𝑢𝑗 ) is not 0 for some 𝑖 ∈ {0, … , 𝑛} and 𝑗 ∈ {1, … , 𝑙}, then we 
can choose in infinite ways a precise truth value into the interval [𝜇𝑖(𝑢𝑗 ), 1 − 𝜈𝑖(𝑢𝑗 )].

Of course, Definition 11 can be also extended to generalized fuzzy orthopartitions given by Definition 9.

4.2. Compatible fuzzy probabilistic partitions

A credal partition can be seen as a fuzzy probabilistic partition under condition of uncertainty. As such, a credal partition can 
represent several fuzzy probabilistic partitions, once the uncertainty is solved. The meaning of this correspondence is analogous 
to that held between fuzzy orthopartitions and Ruspini partitions explained in Subsection 4.1, and it is discussed in the following 
remark.

Remark 7. Imagine a dynamic situation, where knowledge about the membership class of the elements is partial and increases over 
time so that credal partitions become fuzzy probabilistic partitions. In this context, a credal partition {𝑚1, … , 𝑚𝑙} is transformed in 
{𝑚′

1, … , 𝑚′
𝑙
} such that

• 𝑚′
𝑖

is a Bayesian bba,

• 𝑚′
𝑖
(∅) belongs to the interval [𝑚𝑖(∅), 1 −𝑚𝑖(𝐶)],

• 𝑚′
𝑖
({𝐶𝑗}) belongs to the interval [𝑚𝑖({𝐶𝑗}), 

∑
{𝐴 | 𝐶𝑗∈𝐴}𝑚𝑖(𝐴)], for each 𝑗 ∈ {1, … , 𝑛}.

Therefore, if 𝐴 = {𝐶 ′
1, … , 𝐶 ′

𝑘
} where 𝐶 ′

1, … , 𝐶 ′
𝑘

belong to 𝐶 and 𝑘 ≥ 2 (i.e., 𝐴 is not a singleton), then 𝑚𝑖(𝐴) is distributed among 
the masses of belief concerning 𝐶 ′

1, … , 𝐶 ′
𝑘
, i.e., the degrees 𝑚′

𝑖
(𝐶 ′

1), … , 𝑚′
𝑖
(𝐶 ′
𝑘
) supporting the propositions “𝑢𝑖 belongs to 𝐶 ′

1”, …, “𝑢𝑖
belongs to 𝐶 ′

𝑘
”. Moreover, the limit cases 𝑚′

𝑖
({𝐶𝑗}) =𝑚𝑖({𝐶𝑗}) and 𝑚′

𝑖
({𝐶𝑗}) =

∑
{𝐴 | 𝐶𝑗∈𝐴}𝑚𝑖(𝐴) respectively occur when

• “if 𝐶𝑗 ⊂ 𝐴 and 𝑢𝑖 belongs to 𝐴, then 𝑢𝑖 belongs to 𝐴 ⧵ {𝐶𝑗}” and

• “if 𝐶𝑗 ⊂ 𝐴 and 𝑢𝑖 belongs to 𝐴, then 𝑢𝑖 belongs to 𝐶𝑗”.

Furthermore, concerning the outliers, we get the limit cases 𝑚′
𝑖
(∅) =𝑚𝑖(∅) and 𝑚′

𝑖
(∅) = 1 −𝑚𝑖(𝐶) respectively when

• “𝑢𝑖 belongs to 𝐶0” (i.e., “𝑢𝑖 is outside of 𝐶”) and

• “𝑢𝑖 does not belong to 𝐶0” (i.e., “𝑢𝑖 belongs to a class of 𝐶”).

In what follows, we formally define the class of all fuzzy probabilistic partitions assigned with a given credal partition according 
to the previous remark.

Definition 12. Let 𝑚 be a credal partition of 𝑈 . We say that a fuzzy probabilistic partition 𝑚′ is compatible with 𝑚 if and only if for 
13

each 𝑗 ∈ {1, … , 𝑙},
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Table 12

Definition of the elements of 𝑚′ of Example 15.

𝐴 𝑚′
1(𝐴) 𝑚′

2(𝐴) 𝑚′
3(𝐴) 𝑚′

4(𝐴)

∅ 0.3 0.2 0.4 0.1

{𝐶1} 0.3 0.1 0.2 0.3

{𝐶2} 0.3 0.3 0.3 0.4

{𝐶3} 0.1 0.4 0.1 0.2

(a) 𝑚𝑗 (∅) ≤𝑚′
𝑗
(∅) ≤ 1 −𝑚𝑗 (𝐶),

(b) 𝑚𝑗 ({𝐶𝑖}) ≤𝑚′
𝑗
({𝐶𝑖}) ≤

∑
{𝐴 | 𝐶𝑖∈𝐴}𝑚𝑗 (𝐴), for each 𝑖 ∈ {1, … , 𝑛}.

We use the symbol 𝑚 to indicate the collection of all fuzzy probabilistic partitions compatible with a given credal partition 𝑚.

Example 15. Consider the credal partition 𝑚 = {𝑚1, 𝑚2, 𝑚3, 𝑚4} defined by Table 3 of Example 1. By Definition 12, a fuzzy prob-

abilistic partition 𝑚′ = {𝑚′
1, 𝑚

′
2, 𝑚

′
3, 𝑚

′
4} is compatible with 𝑚 if and only if for each bba 𝑚′

𝑖
∈ 𝑚′ the following inequalities are 

satisfied:⎧⎪⎪⎨⎪⎪⎩
𝑚𝑖(∅) ≤𝑚′

𝑖
(∅) ≤ 1 −𝑚𝑖(𝐶),

𝑚𝑖({𝐶1}) ≤𝑚′
𝑖
({𝐶1}) ≤𝑚𝑖({𝐶1}) +𝑚𝑖({𝐶1,𝐶2}) +𝑚𝑖({𝐶1,𝐶3}) +𝑚𝑖(𝐶),

𝑚𝑖({𝐶2}) ≤𝑚′
𝑖
({𝐶2}) ≤𝑚𝑖({𝐶2}) +𝑚𝑖({𝐶1,𝐶2}) +𝑚𝑖({𝐶2,𝐶3}) +𝑚𝑖(𝐶),

𝑚𝑖({𝐶3}) ≤𝑚′
𝑖
({𝐶3}) ≤𝑚𝑖({𝐶3}) +𝑚𝑖({𝐶1,𝐶3}) +𝑚𝑖({𝐶2,𝐶3}) +𝑚𝑖(𝐶).

(18)

In addition, since 𝑚𝑖 is a bba, we have 𝑚′
𝑖
(∅) +𝑚′

𝑖
({𝐶1}) +𝑚′

𝑖
({𝐶2}) +𝑚′

𝑖
({𝐶3}) = 1.

Therefore, 𝑚′
1, 𝑚

′
2, 𝑚

′
3, and 𝑚′

4 represent bbas of a fuzzy partition compatible with 𝑚 if and only if the following hold:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.2 ≤𝑚′
1(∅) ≤ 0.8,

0 ≤𝑚′
1({𝐶1}) ≤ 0.5,

0.3 ≤𝑚′
1({𝐶2}) ≤ 0.7,

0 ≤𝑚′
1({𝐶3}) ≤ 0.3,

𝑚′
1(∅) +

∑3
𝑖=1𝑚

′
1({𝐶𝑖}) = 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤𝑚′
2(∅) ≤ 0.5,

0.1 ≤𝑚′
2({𝐶1}) ≤ 0.6,

0.3 ≤𝑚′
2({𝐶2}) ≤ 0.8,

0.1 ≤𝑚′
2({𝐶3}) ≤ 0.6,

𝑚′
2(∅) +

∑3
𝑖=1𝑚

′
2({𝐶𝑖}) = 1.

(19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤𝑚′
3(∅) ≤ 0.4,

0.1 ≤𝑚′
3({𝐶1}) ≤ 0.8,

0 ≤𝑚′
3({𝐶2}) ≤ 0.9,

0 ≤𝑚′
3({𝐶3}) ≤ 0.8,

𝑚′
3(∅) +

∑3
𝑖=1𝑚

′
3({𝐶𝑖}) = 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.1 ≤𝑚′
4(∅) ≤ 1,

0.1 ≤𝑚′
4({𝐶1}) ≤ 0.3,

0.1 ≤𝑚′
4({𝐶2}) ≤ 0.5,

0.2 ≤𝑚′
4({𝐶3}) ≤ 0.6,

𝑚′
4(∅) +

∑3
𝑖=1𝑚

′
4({𝐶𝑖}) = 1.

(20)

For example, the bbas 𝑚′
1, 𝑚

′
2, 𝑚

′
3, and 𝑚′

4 defined by Table 12 form a fuzzy probabilistic partition 𝑚′ compatible with 𝑚.

Remark 8. The class of fuzzy probabilistic partitions compatible with a given credal partition is non-empty. In fact, each fuzzy 
probabilistic partition 𝑚′ = {𝑚′

𝑗
| 𝑗 ∈ {1, … , 𝑙}} compatible with 𝑚 = {𝑚𝑗 | 𝑗 ∈ {1, … , 𝑙}} can be obtained by choosing for each 

𝑗 ∈ {1, … , 𝑙} the values 𝑥0, 𝑥1, … , 𝑥𝑛 so that

𝑚′
𝑗
(∅) =𝑚𝑗 (∅) + 𝑥0 and 𝑚′

𝑗
({𝐶𝑖}) =𝑚𝑗 ({𝐶𝑖}) + 𝑥𝑖 ∀𝑖 ∈ {1,… , 𝑛}, (21)

where

𝑥0 ≤ 1 − (𝑚𝑗 (∅) +𝑚𝑗 (𝐶)) and 𝑥𝑖 ≤
∑

{𝐴 | {𝐶𝑖}⊂𝐴}𝑚𝑗 (𝐴) ∀𝑖 ∈ {1,… , 𝑛}, (22)

from items (a) and (b) of Definition 12.

Moreover, since each 𝑚′
𝑗

must be a bba, we need to require that

(𝑚𝑗 (∅) + 𝑥0) + (𝑚𝑗 ({𝐶1}) + 𝑥1) +…+ (𝑚𝑗 ({𝐶𝑛}) + 𝑥𝑛) = 1. (23)

This is always possible for the following reasons. Firstly 𝑚𝑗 (∅) +𝑚𝑗 ({𝐶1}) +… +𝑚𝑗 ({𝐶𝑛}) ≤ 1 because 𝑚𝑖 is a bba. Secondly, when 
𝑥0, 𝑥1, … , 𝑥𝑛 are the greatest ones according to (22) (i.e., 𝑥0 = 1 − (𝑚𝑗 (∅) +𝑚𝑗 (𝐶)) and 𝑥𝑖 =

∑
{𝐴⊆𝐶 | {𝐶𝑖}⊂𝐴}𝑚𝑗 ({𝐶𝑖}), we get
14

(𝑚𝑗 (∅) + 𝑥0) + (𝑚𝑗 ({𝐶1}) + 𝑥1) +…+ (𝑚𝑗 ({𝐶𝑛}) + 𝑥𝑛) =
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1 −𝑚𝑗 (𝐶) +
∑

{𝐴⊆𝐶 | 𝐶1∈𝐴}𝑚𝑗 ({𝐶1}) +…+
∑

{𝐴⊆𝐶 | 𝐶𝑛∈𝐴}𝑚𝑗 ({𝐶𝑛}) ≥ 1 (24)

because 𝑚𝑖 is a bba.

In the sequel, we use the notions of compatible Ruspini and fuzzy probabilistic partitions to establish a bridge between fuzzy 
orthopartitions and credal partitions.

4.3. From a fuzzy orthopartition to a class of credal partitions

In this subsection, we mainly associate a given generalized fuzzy orthopartition 𝑂 to a class of credal partitions  (𝑂). Then, we 
show how to compute the credal partitions associated with 𝑂 and we discover that  (𝑂) can be empty, a singleton or made up of an 
infinite number of credal partitions.

Let 𝑂 ∈ 𝐺 , we intend to find the class of all credal partitions  (𝑂) such that 𝑓 (𝑂) = 𝑚 (equivalently, 𝑓−1(𝑚) = 𝑂) for 
each 𝑚 ∈  (𝑂).4 Thus, we associate with 𝑂 the collection of all credal partitions that have the same compatible fuzzy partitions of 
𝑂. This result is exhibited by Theorem 3.

Formally, the class of credal partitions corresponding to a given fuzzy orthopartition is defined as follows. Recall that we denote 
the collection of all credal partitions of 𝑙 bbas with .

Definition 13. Let 𝑂 be a generalized fuzzy orthopartition of 𝑈 . Then, we put

 (𝑂) = {𝑚 ∈ | 𝑚𝑗 (∅) = 𝜇0(𝑢𝑗 ),𝑚𝑗 (𝐶) = 𝜈0(𝑢𝑗 ), 𝑚𝑗 ({𝐶𝑖}) = 𝜇𝑖(𝑢𝑗 ), and∑
{𝐴 | 𝐶𝑖∈𝐴}𝑚𝑗 (𝐴) = 𝜇𝑗 (𝑢𝑖) + ℎ𝑗 (𝑢𝑖) ∀ 𝑖 ∈ {1,… , 𝑛} and ∀ 𝑗 ∈ {1,… , 𝑙}}. (25)

Of course, Definition 13 and all results presented in this subsection also hold when 𝑂 is a fuzzy orthopartition given by Defini-

tion 4.

Remark 9. Since 𝑚 ∈  (𝑂) is a credal partition according to Definition 2, using (2) and (25), a necessary but not sufficient condition 
for 𝑂 to be  (𝑂) ≠ ∅ is the following:

for each 𝑖 ∈ {1,… , 𝑛}, there exists 𝑢𝑗 ∈𝑈 so that 𝜇𝑖(𝑢𝑗 ) + ℎ𝑖(𝑢𝑗 ) > 0. (26)

Of course, considering that 𝜇𝑖(𝑢) + ℎ𝑖(𝑢) > 0 if and only if 𝜈𝑖(𝑢) < 1, Property (26) is not satisfied by 𝑂 when there exists a class 𝐶𝑖
that is certainly empty (namely, 𝜈𝑖(𝑢) = 1 for each 𝑢 ∈ 𝑈 ).

Thus, in the rest of this section, we assume that a given generalized fuzzy orthopartition verifies Property (26).

First of all, let us focus on  (𝑂) when 𝑛 = 2.

As shown in the following proposition, Definition 13 associates a given generalized fuzzy orthopartition 𝑂 composed of three 
IFSs (namely, 𝑛 = 2) with at most one credal partition.

Proposition 3. Let 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜇2)} be a generalized fuzzy orthopartition of 𝑈 , we consider the following property:

“ℎ𝑖(𝑢) = 𝜈0(𝑢)” and “𝜇0(𝑢) + 𝜇1(𝑢) + 𝜇2(𝑢) + 𝜈0(𝑢) = 1” (27)

∀ 𝑖 ∈ {1, 2} and ∀ 𝑢 ∈𝑈 . Then,

| (𝑂)| ={
1 if Property (27) is satisfied by O,

0 otherwise.
(28)

Proof. By Definition 13, a credal partition 𝑚 = {𝑚1, … , 𝑚𝑙} is associated to 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)}, when

𝑚𝑗 (∅) = 𝜇0(𝑢𝑗 ),𝑚𝑗 ({𝐶1}) = 𝜇1(𝑢𝑗 ),𝑚𝑗 ({𝐶2}) = 𝜇2(𝑢𝑗 ), and 𝑚𝑗 (𝐶) = 𝜈0(𝑢𝑗 ) (29)

for each 𝑗 ∈ {1, … , 𝑙}. Therefore, since the values assumed by 𝜇0, 𝜇1, 𝜇2 and 𝜈0, 𝜈1, 𝜈2 are uniquely determined, we are sure that | (𝑂)| ≤ 1. In particular, | (𝑂)| = 1 when

(a) 𝑚1, … , 𝑚𝑙 are bbas,
15

4 Recall that the function 𝑓 is defined by Theorem 1.
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Table 13

Definition of the elements of 𝑂 of Example 16.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢)

𝑢1 0.4 0.2 0.3 0.5 0.1 0.7
𝑢2 0.1 0.5 0.2 0.3 0.2 0.3
𝑢3 0.2 0.1 0.3 0.6 0.4 0.5

Table 14

Definition of the elements 𝑚 of Exam-

ple 16.

𝐴 𝑚1(𝐴) 𝑚2(𝐴) 𝑚3(𝐴)

∅ 0.4 0.1 0.2
{𝐶1} 0.3 0.2 0.3
{𝐶2} 0.1 0.2 0.4

𝐶 0.2 0.5 0.1

Table 15

Definition of the elements of 𝑂′ of Example 16.

𝑢 𝜇′0(𝑢) 𝜈′0(𝑢) 𝜇′1(𝑢) 𝜈′1(𝑢) 𝜇′2(𝑢) 𝜈′2(𝑢)

𝑢1 0.2 0.2 0.3 0.5 0.1 0.7
𝑢2 0.1 0.5 0.3 0.3 0.2 0.3
𝑢3 0.2 0.1 0.2 0.6 0.4 0.5

(b) 𝜇1(𝑢𝑗 ) + ℎ1(𝑢𝑗 ) =𝑚𝑗 ({𝐶1}) +𝑚𝑗 (𝐶) and 𝜇2(𝑢𝑗 ) + ℎ2(𝑢𝑗 ) =𝑚𝑗 ({𝐶2}) +𝑚𝑗 (𝐶) ∀𝑗 ∈ {1, … , 𝑙} (see Definition 13).

Otherwise, | (𝑂)| = 0.

Clearly, 𝑚1, … , 𝑚𝑙 are bbas if and only if 
∑
𝐴∈2𝐶 𝑚𝑗 (𝐴) = 1 for each 𝑗 ∈ {1, … , 𝑙}. Since 𝐶 = {𝐶1, 𝐶2}, 

∑
𝐴∈2𝐶 𝑚𝑗 (𝐴) = 𝑚𝑗 (∅) +

𝑚𝑗 ({𝐶1}) +𝑚𝑗 ({𝐶2}) +𝑚𝑗 (𝐶). By (29), 𝑚𝑗 (∅) +𝑚𝑗 ({𝐶1}) +𝑚𝑗 ({𝐶2}) +𝑚𝑗 (𝐶) = 𝜇0(𝑢) + 𝜇1(𝑢) + 𝜇2(𝑢) + 𝜈0(𝑢), which must be equal to 
1. Hence, item (a) is equivalent to 𝜇0(𝑢) + 𝜇1(𝑢) + 𝜇2(𝑢) + 𝜈0(𝑢) = 1.

Moreover, by (29), it is easy to see that item (b) is equivalent to 𝜇𝑖(𝑢) + ℎ𝑖(𝑢) = 𝜇𝑖(𝑢) + 𝜈0(𝑢) ∀𝑢 ∈ 𝑈 . □

By Proposition 3, a generalized fuzzy orthopartition that represents 𝐶 = {𝐶1, 𝐶2} is a credal partition when the membership 
degree related to 𝑢 ∈ 𝐶0 (expressing how much 𝑢 is external to the classes of 𝐶) coincides with the degrees of uncertainty of 𝑢 to 𝐶1
and 𝐶2, and the sum of the membership degrees related to 𝑢 ∈ 𝐶0, 𝑢 ∈ 𝐶1, 𝑢 ∈ 𝐶2, and 𝑢 ∈ 𝐶 is exactly 1.

Example 16. Consider the generalized fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)} of 𝑈 = {𝑢1, 𝑢2, 𝑢3} defined by Table 13.

We can notice that 𝑂 satisfies Property (27): ℎ1(𝑢1) = 𝜈0(𝑢1) = 0.2, 𝜇0(𝑢1) +𝜇1(𝑢1) +𝜇2(𝑢1) +𝜈0(𝑢1) = 1, and so on. Then, according 
to the previous proposition,  (𝑂) is made of one credal partition 𝑚 = {𝑚1, 𝑚2, 𝑚3}, which is defined by Table 14.

On the other hand, we can consider the generalized fuzzy orthopartition 𝑂′ defined by Table 15 and notice that Property (27)

is not satisfied. For instance, 𝜇′0(𝑢2) + 𝜇
′
1(𝑢2) + 𝜇

′
2(𝑢2) + 𝜈

′
0(𝑢2) = 0.1 + 0.3 + 0.2 + 0.5 = 1.1 > 1 and ℎ′1(𝑢3) = 0.2 is different from 

𝜈′0(𝑢3) = 0.1. Hence, by the previous proposition, we know that  (𝑂) = ∅.

Remark 10. What happens when 𝑂 is composed of Boolean functions? In this case, by Proposition 1, 𝑂 is a collection of orthopairs 
{(𝑀0, 𝑁0), (𝑀1, 𝑁1), (𝑀2, 𝑁2)} given by (6) and satisfying Properties (a) and (c) of Definition 6. Thus, 𝑂 can be identified with a 
credal partition (namely, Property (27) is satisfied by 𝑂) if and only if one of the following conditions holds for each 𝑢 ∈ 𝑈 :

(a) 𝑢 ∈𝑁0 and 𝑢 ∈𝐵1 ∩𝐵2 (we know that 𝑢 certainly belongs to a class of 𝐶 , but we do not have any information about the specific 
class of 𝑢).

(b) 𝑢 ∈𝑀0 (we know that 𝑢 is certainly an outlier).

(c) 𝑢 ∈𝐵0, 𝑢 ∈𝑀𝑖 with 𝑖 ∈ {1, 2}, and 𝑢 ∈𝑁𝑗 with 𝑗 ≠ 𝑖 (we know that 𝑢 certainly belongs to 𝐶𝑖).

However, when {(𝑀0, 𝑁0), (𝑀1, 𝑁1), (𝑀2, 𝑁2)} is an orthopartition according to Definition 6, only items (a) and (b) can occur. In 
fact, the last case contradicts Property (b) of Definition 6.

Now, focusing on generalized fuzzy orthopartitions made of more than 3 IFSs (namely, 𝑛 ≥ 3), we show how to find the class of 
the corresponding credal partitions w.r.t. Definition 13.

By (25), in order to determine a bba 𝑚𝑗 of a credal partition 𝑚 in  (𝑂), we respectively set 𝑚𝑗 ({𝐶1}), … , 𝑚𝑗 ({𝐶𝑛}), 𝑚𝑗 (∅), and 
16

𝑚𝑗 (𝐶) to 𝜇1(𝑢𝑗 ), … , 𝜇𝑛(𝑢𝑗 ), 𝜇0(𝑢𝑗 ), and 𝜈0(𝑢𝑗 ); then, it remains to find the value of every 𝑚𝑗 (𝐴) with 2 ≤ |𝐴| < 𝑛 so that
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Table 16

Definition of the elements of 𝑂′ of Example 17.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢) 𝜇3(𝑢) 𝜈3(𝑢)

𝑢1 0.3 0.1 0 0.7 0.1 0.5 0.1 0.5

𝑢2 0.1 0.2 0 0.3 0 0.3 0.1 0.5

𝑢3 0.1 0.2 0 0.3 0.1 0.5 0 0.3

𝑢4 0.4 0.3 0 0.5 0 0.5 0 0.5

1.
∑

{𝐴 | 𝐶1∈𝐴}𝑚𝑗 (𝐴) = 𝜇1(𝑢𝑗 ) + ℎ1(𝑢𝑗 ), …, 
∑

{𝐴 | 𝐶𝑛∈𝐴}𝑚𝑗 (𝐴) = 𝜇𝑛(𝑢𝑗 ) + ℎ𝑛(𝑢𝑗 ) (from (25)) and

2.
∑
𝐴⊆𝐶 𝑚𝑗 (𝐴) = 1 (𝑚𝑗 must be a bba).

Therefore, if we consider a variable 𝑥𝑗
𝐴

for each ∅ ⊂𝐴 ⊂ 𝐶 , then the values of {𝑚𝑗 (𝐴) | 2 ≤ |𝐴| < 𝑛} form a solution of the following 
system:

𝑆𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝜇1(𝑢𝑗 ) +

∑
{𝐴 | {𝐶1}⊂𝐴⊂𝐶} 𝑥𝑗𝐴 + 𝜈0(𝑢𝑗 ) = 𝜇1(𝑢𝑗 ) + ℎ1(𝑢𝑗 ),

⋮

𝜇𝑛(𝑢𝑗 ) +
∑

{𝐴 | {𝐶𝑛}⊂𝐴⊂𝐶} 𝑥𝑗𝐴 + 𝜈0(𝑢𝑗 ) = 𝜇𝑛(𝑢𝑗 ) + ℎ𝑛(𝑢𝑗 ),
𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +…+ 𝜇𝑛(𝑢𝑗 ) +

∑
{𝐴 | 2≤|𝐴|<𝑛} 𝑥𝑗𝐴 + 𝜈0(𝑢𝑗 ) = 1.

(30)

Of course, 𝑆𝑗 can be rewritten as

𝑆𝑗 =

⎧⎪⎪⎨⎪⎪⎩

∑
{𝐴 | {𝐶1}⊂𝐴⊂𝐶} 𝑥𝑗𝐴 = ℎ1(𝑢𝑗 ) − 𝜈0(𝑢𝑗 ),

⋮∑
{𝐴 | {𝐶𝑛}⊂𝐴⊂𝐶} 𝑥𝑗𝐴 = ℎ𝑛(𝑢𝑗 ) − 𝜈0(𝑢𝑗 ),∑
{𝐴 | 2≤|𝐴|<𝑛} 𝑥𝑗𝐴 = 1 − (𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +…+ 𝜇𝑛(𝑢𝑗 )) − 𝜈0(𝑢𝑗 ).

(31)

From now on, let 𝐴 = {𝐶𝑖1 , … , 𝐶𝑖𝑘} be a subset of 𝐶 , we use the symbol 𝑥𝑗
𝑖1…𝑖𝑘

to indicate the variable assigned to 𝐴 and 𝑢𝑗 . For 
instance, in Example 2, 𝑥212 is the variable corresponding to {𝐶1, 𝐶2} and 𝑢2.

It is easy to notice that 𝑆𝑗 is a linear system with 𝑛 + 1 equations and 2𝑛 − 𝑛 − 2 variables by considering that

• 2𝑛 is the number of subsets of 𝐶 (the variables of 𝑆𝑗 are associated with subsets of 𝐶 , that is 𝐴 ↦ 𝑥
𝑗

𝐴
);

• 𝑛 is the cardinality of 𝐶 (𝑚𝑗 ({𝐶1}), … , 𝑚𝑗 ({𝐶𝑛}) are already determined by 𝜇1(𝑢𝑗 ), … , 𝜇𝑛(𝑢𝑗 ), respectively);

• 2 is the cardinality of {∅, 𝐶} (𝜇𝑗 (∅) and 𝜇𝑗 (𝐶) are already determined by 𝜇0(𝑢𝑗 ) and 𝜈0(𝑢𝑗 )).

Since 𝑆𝑗 is a system of linear equations, it has zero, one or an infinite number of solutions. Then, we can immediately deduce 
that given 𝑂 ∈𝐺 , the class  (𝑂) can be empty, or made of one or infinitely many credal partitions.

In the rest of this subsection, we deeply investigate the cardinality of  (𝑂).
Let us consider the case 𝑛 = 3.

Remark 11. If 𝑛 = 3 then, 𝑆𝑗 is made of 4 equations and 3 variables, then it has a unique solution or none. As a consequence, let 
𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2), (𝜇3, 𝜈3)}, then  (𝑂) = ∅ or  (𝑂) = {𝑚}.

Example 17. Consider the fuzzy orthopartition 𝑂 of Example 2. Then, the system

𝑆1 =

⎧⎪⎪⎨⎪⎪⎩
𝑥112 + 𝑥

1
13 = 0.5;

𝑥112 + 𝑥
1
23 = 0.8;

𝑥113 + 𝑥
1
23 = 0.8;

𝑥112 + 𝑥
1
23 + 𝑥

1
13 = 0.7,

(32)

associated with 𝑚1 has no solution. Therefore,  (𝑂) = ∅.

On the other hand, Table 16 defines a fuzzy orthopartition 𝑂′ so that | (𝑂′)| = 1.

Indeed, the linear systems related to 𝑢1, 𝑢2, 𝑢3, 𝑢4 are respectively the following and all of them have a unique solution.

𝑆1 =

⎧⎪⎪⎨⎪
𝑥112 + 𝑥

1
13 = 0.2;

𝑥112 + 𝑥
1
23 = 0.3;

𝑥113 + 𝑥
1
23 = 0.3;

𝑆2 =

⎧⎪⎪⎨⎪
𝑥212 + 𝑥

2
13 = 0.5;

𝑥212 + 𝑥
2
23 = 0.5;

𝑥213 + 𝑥
2
23 = 0.2;

(33)
17

⎪⎩𝑥112 + 𝑥123 + 𝑥113 = 0.4. ⎪⎩𝑥212 + 𝑥223 + 𝑥213 = 0.6.
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Table 17

Definition of the elements of 𝑚′ of Example 17.

𝐴 𝑚′
1(𝐴) 𝑚′

2(𝐴) 𝑚′
3(𝐴) 𝑚′

4(𝐴)

∅ 0.3 0.1 0.1 0.4

{𝐶1} 0 0 0 0

{𝐶2} 0.1 0 0.1 0

{𝐶3} 0.1 0.1 0 0

{𝐶1, 𝐶2} 0.1 0.4 0.1 0.1

{𝐶1, 𝐶3} 0.1 0.1 0.4 0.1

{𝐶2, 𝐶3} 0.2 0.1 0.1 0.1

𝐶 0.1 0.2 0.2 0.3

𝑆3 =

⎧⎪⎪⎨⎪⎪⎩
𝑥312 + 𝑥

3
13 = 0.5;

𝑥312 + 𝑥
3
23 = 0.2;

𝑥313 + 𝑥
3
23 = 0.5;

𝑥312 + 𝑥
3
23 + 𝑥

3
13 = 0.6.

𝑆4 =

⎧⎪⎪⎨⎪⎪⎩
𝑥412 + 𝑥

4
13 = 0.2;

𝑥412 + 𝑥
4
23 = 0.2;

𝑥413 + 𝑥
4
23 = 0.2;

𝑥412 + 𝑥
4
23 + 𝑥

4
13 = 0.3.

(34)

Therefore,  (𝑂′) = {𝑚′}, where 𝑚′ = {𝑚′
1, 𝑚

′
2, 𝑚

′
3, 𝑚

′
4} is defined by Table 17.

Remark 12. Let us notice that  (𝑂) can be empty also when each system in {𝑆1, … , 𝑆𝑙} is consistent but the solution of at least one 
of them is negative: the values that we find must represent masses of belief, hence, they have to belong to [0, 1].

Now, we examine the case 𝑛 ≥ 4.

Proposition 4. Let 𝑂 be a generalized fuzzy orthopartition such that |𝑂| ≥ 5 (namely, 𝑛 ≥ 4). Then, the system 𝑆𝑗 given by (30) has an 
infinite number of solutions, for each 𝑗 ∈ {1, … , 𝑙}.

Proof. We use some results of linear algebra [18]. First of all, let us prove that 𝑆𝑗 is consistent. By Rouché–Capelli theorem, 𝑆𝑗 is 
consistent if and only if “the rank of its coefficient matrix 𝐴𝑛 denoted with 𝑟𝑎𝑛𝑘(𝐴𝑛) is equal to the rank of its augmented matrix”. This 
is always true when 𝑟𝑎𝑛𝑘(𝐴𝑛) is maximum, namely 𝑟𝑎𝑛𝑘(𝐴𝑛) = 𝑛 + 1 because 𝑆𝑗 has 𝑛 + 1 equations and 2𝑛 − 𝑛 − 2 variables, and 
𝑛 + 1 < 2𝑛 − 𝑛 − 2, for each 𝑛 ≥ 4.

By induction, we want to prove that 𝑟𝑎𝑛𝑘(𝐴𝑛) = 𝑛 + 1 for each 𝑛 ≥ 4.

(Base case) Let us show that 𝑟𝑎𝑛𝑘(𝐴𝑛) = 𝑛 + 1 for 𝑛 = 4. In this case, we have

𝑆𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥12 + 𝑥13 + 𝑥14 + 𝑥123 + 𝑥124 + 𝑥134 = 𝑎;
𝑥12 + 𝑥23 + 𝑥24 + 𝑥123 + 𝑥234 + 𝑥124 = 𝑏;
𝑥13 + 𝑥23 + 𝑥34 + 𝑥123 + 𝑥134 + 𝑥234 = 𝑐;
𝑥14 + 𝑥24 + 𝑥34 + 𝑥124 + 𝑥234 + 𝑥134 = 𝑑;
𝑥12 + 𝑥13 + 𝑥14 + 𝑥23 + 𝑥24 + 𝑥34 + 𝑥123 + 𝑥124 + 𝑥134 + 𝑥234 = 𝑒,

(35)

where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are given as in (31).

Thus, the coefficient matrix 𝐴4 of 𝑆𝑗 is the following and 𝑟𝑎𝑛𝑘(𝐴4) = 5.

𝐴4 =

⎛⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠
(36)

(Induction step) Suppose that 𝑟𝑎𝑛𝑘(𝐴𝑛) = 𝑛 + 1 for 𝑛 > 4. Let us prove that 𝑟𝑎𝑛𝑘(𝐴𝑛+1) = 𝑛 + 2.

By the inductive hypothesis, 𝑟𝑎𝑛𝑘(𝐴𝑛) = 𝑛 + 1. Then, we can find a minor 𝐴∗
𝑛

of 𝐴𝑛 of order 𝑛 + 1 such that its determinant 
𝑑𝑒𝑡(𝐴∗

𝑛
) is not zero. So, the matrix 𝐴∗

𝑛
can be written as

𝐴∗
𝑛
=
⎛⎜⎜⎝
𝑎11 … 𝑎1(𝑛+1)
⋮ ⋮

𝑎(𝑛+1)1 … 𝑎(𝑛+1)(𝑛+1)

⎞⎟⎟⎠ (37)

where its elements are the coefficients of the variables of 𝑆𝑗 given by (31), which belong to 
⋃𝑛

𝑖=1{𝑥
𝑗

𝐴
| {𝐶𝑖} ⊂𝐴 ⊂ {𝐶1, … , 𝐶𝑛}}.
18

Now, let us consider the matrix 𝐴𝑛+1. Observe that the system related to 𝐴𝑛+1 can be constructed starting from 𝑆𝑗 as follows.
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Table 18

Definition of the elements of 𝑂 of Example 18.

𝜇0(𝑢1) 𝜈0(𝑢1) 𝜇1(𝑢1) 𝜈1(𝑢1) 𝜇2(𝑢1) 𝜈2(𝑢1) 𝜇3(𝑢1) 𝜈3(𝑢1) 𝜇4(𝑢1) 𝜈4(𝑢1)

0.1 0 0.1 0.2 0 0.5 0 0.4 0 0.7

• for each 𝑖 ∈ {1, … , 𝑛}, 
∑

{𝐴 | {𝐶𝑖,𝐶𝑛+1}⊆𝐴⊂{𝐶1 ,…,𝐶𝑛,𝐶𝑛+1}} 𝑥
𝑗

𝐴
is added to the first member of Equation 𝑖.

•
∑

{𝐴 | 𝐶𝑛+1⊂𝐴⊆{𝐶1 ,…,𝐶𝑛,𝐶𝑛+1}} 𝑥
𝑗

𝐴
is added to the first member of Equation 𝑛 + 1.

• Equation ∑
{𝐴 | {𝐶𝑛+1}⊂𝐴⊂{𝐶1 ,…,𝐶𝑛,𝐶𝑛+1}}

𝑥
𝑗

𝐴
= ℎ𝑛+1(𝑢𝑗 ) − 𝜈0(𝑢𝑗 ) (38)

is added to 𝑆𝑗 .

As a consequence, 𝐴𝑛+1 can be obtained adding one row and several columns to 𝐴𝑛, which regard the variables of

{𝑥𝑗
𝐴
| 𝐶𝑛+1 ⊂𝐴 ⊂ {𝐶1,… ,𝐶𝑛,𝐶𝑛+1}}. (39)

Therefore, a minor 𝐴∗
𝑛+1 of 𝐴𝑛+1 of order 𝑛 + 2 is

𝐴∗
𝑛+1 =

⎛⎜⎜⎜⎝
𝑎11 … 𝑎1(𝑛+1) 𝑐1
⋮ ⋮ ⋮

𝑎(𝑛+1)1 … 𝑎(𝑛+1)(𝑛+1) 𝑐𝑛+1
0 … 0 1

⎞⎟⎟⎟⎠ (40)

where 𝑐1, … , 𝑐𝑛+1 are the coefficients related to one of the variables in {𝑥𝑗
𝐴
| 𝐶𝑛+1 ⊂𝐴 ⊂ {𝐶1, … , 𝐶𝑛, 𝐶𝑛+1}}. By the properties of 

the determinants of matrices, we know that 𝑑𝑒𝑡(𝐴∗
𝑛+1) = 𝑑𝑒𝑡(𝐴

∗
𝑛
), considering the last row of 𝐴∗

𝑛+1: the (𝑛 +2, 𝑛 +2) entry is 1 and 
all other entries are 0. Since 𝑑𝑒𝑡(𝐴∗

𝑛+1) ≠ 0, 𝑟𝑎𝑛𝑘(𝐴𝑛+1) = 𝑛 + 2.

So, we have proved that 𝑆𝑗 is consistent for each 𝑛 ≥ 4. Then, since 𝑆𝑗 has more variables than equations, it has infinitely many 
solutions. □

On one hand, 𝑆𝑗 has an infinite number of solutions for 𝑛 ≥ 4 from Proposition 4; on the other hand, the solutions of 𝑆𝑗 are not 
always positive. Clearly, when the solutions of 𝑆𝑗 are negative they cannot represent masses of belief. For this reason, we need to 
require that 𝑆𝑗 is subjected to the following constraints:

𝑥
𝑗

𝐴
≥ 0 ∀ 2 ≤ |𝐴| < 𝑛.

Consequently, supposing that 𝑛 ≥ 4, we can say that

•  (𝑂) = ∅ if and only if there exists 𝑗 ∈ {1, … , 𝑙} such that 𝑆𝑗 is “inconsistent (i.e., it has no solution)” or “consistent but with only 
negative solutions (i.e., if 𝑠1, … , 𝑠𝑘 form a solution of 𝑆𝑗 , then there exists 𝑠 ∈ {𝑠1, … , 𝑠𝑘} such that 𝑠 < 0)”.

•  (𝑂) is infinite if and only if “𝑆1, … , 𝑆𝑙 are consistent and have infinitely many solutions, which are non-negative (i.e., for each 
𝑆𝑗 ∈ {𝑆1, … , 𝑆𝑙}, there exists a solution 𝑠1, … , 𝑠𝑘 of 𝑆𝑗 such that 𝑠1, … , 𝑠𝑘 ≥ 0)”.

In the sequel, we provide an example of generalized fuzzy orthopartition corresponding to a class of infinitely many credal 
partitions.

Example 18. Let 𝑂 be the generalized fuzzy orthopartition of {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} defined by Table 18. For convenience, we suppose 
that (𝜇𝑖(𝑢1), 𝜈𝑖(𝑢1)) = (𝜇𝑖(𝑢𝑗 ), 𝜈𝑖(𝑢𝑗 )) for each 𝑖 ∈ {0, 1, 2, 3, 4} and for each 𝑗 ∈ {2, 3, 4, 5, 6}.

In order to determine the credal partitions of  (𝑂), we need to find the positive solutions of the system

𝑆1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥12 + 𝑥13 + 𝑥14 + 𝑥123 + 𝑥124 + 𝑥134 = 0.7;
𝑥12 + 𝑥23 + 𝑥24 + 𝑥123 + 𝑥234 + 𝑥124 = 0.5;
𝑥13 + 𝑥23 + 𝑥34 + 𝑥123 + 𝑥134 + 𝑥234 = 0.6;
𝑥14 + 𝑥24 + 𝑥34 + 𝑥124 + 𝑥234 + 𝑥134 = 0.3;
𝑥12 + 𝑥13 + 𝑥14 + 𝑥23 + 𝑥24 + 𝑥34 + 𝑥123 + 𝑥124 + 𝑥134 + 𝑥234 = 0.8.

(41)

𝑆1 has an infinite number of solutions. One of them is represented by
19

𝑥12 = 𝑥134 = 0.2, 𝑥13 = 𝑥14 = 𝑥23 = 𝑥24 = 𝑥124 = 𝑥234 = 0, 𝑥34 = 0.1, and 𝑥123 = 0.3. (42)
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Table 19

Definition of the elements of 𝑚𝑖 and 𝑚′
𝑖

of Example 18.

𝐴 𝑚𝑖(𝐴) 𝑚′
𝑖
(𝐴)

∅ 0.1 0.1

{𝐶1} 0.1 0.1

{𝐶2} 0 0

{𝐶3} 0 0

{𝐶4} 0 0

{𝐶1, 𝐶2} 0.2 0

{𝐶1, 𝐶3} 0 0.3

{𝐶1, 𝐶4} 0 0

{𝐶2, 𝐶3} 0 0

{𝐶2, 𝐶4} 0 0

{𝐶3, 𝐶4} 0.1 0

{𝐶1, 𝐶2, 𝐶3} 0.3 0.2

{𝐶1, 𝐶2, 𝐶4} 0 0.2

{𝐶1, 𝐶3, 𝐶4} 0.2 0

{𝐶2, 𝐶3, 𝐶4} 0 0.1

{𝐶1, 𝐶2, 𝐶3, 𝐶4} 0 0

Table 20

Definition of 𝑂 w.r.t. 𝑢1 in Example 19.

𝜇0(𝑢1) 𝜈0(𝑢1) 𝜇1(𝑢1) 𝜈1(𝑢1) 𝜇2(𝑢1) 𝜈2(𝑢1) 𝜇3(𝑢1) 𝜈3(𝑢1) 𝜇4(𝑢1) 𝜈4(𝑢1)

0.1 0.3 0.2 0.6 0.1 0.6 0.3 0.6 0 0.7

Also, a second one is given by

𝑥234 = 0.1, 𝑥12 = 𝑥14 = 𝑥23 = 𝑥24 = 𝑥34 = 𝑥134 = 𝑥134 = 0, 𝑥13 = 0.3, and 𝑥123 = 𝑥124 = 0.2. (43)

Since the proposed solutions of 𝑆1 are positive, they can represent the values assumed by bbas. Lastly, two credal partitions of 
 (𝑂) are 𝑚 = {𝑚1, … , 𝑚6} and 𝑚′ = {𝑚′

1, … , 𝑚′
6} such that 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 𝑚5 = 𝑚6 and 𝑚′

1 = 𝑚
′
2 = 𝑚

′
3 = 𝑚

′
4 = 𝑚

′
5 = 𝑚

′
6, where 

𝑚𝑖 and 𝑚′
𝑖

are defined by Table 19.

The next propositions find some properties of 𝑂 for which  (𝑂) = ∅.

Proposition 5. Let 𝑂 be a generalized fuzzy orthopartition with 𝑛 ≥ 3. If there exists 𝑖 ∈ {1, … , 𝑛} and 𝑢𝑗 ∈ 𝑈 such that ℎ𝑖(𝑢𝑗 ) < 𝜈0(𝑢𝑗 ), 
then  (𝑂) = ∅.

Proof. Let us consider (31). We can observe that if ℎ𝑖(𝑢𝑗 ) < 𝜈0(𝑢𝑗 ) then 
∑

{𝐴 | {𝐶𝑖}⊂𝐴⊂𝐶} 𝑥𝑗𝐴 < 0. Then, it is trivial that among all 
values forming a solution of 𝑆𝑗 at least one of them must be negative. □

Example 19. We consider a generalized fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2), (𝜇3, 𝜈3), (𝜇4, 𝜈4)} of {𝑢1, … , 𝑢10}. Let us 
focus on the element 𝑢1, then 𝜇0(𝑢1), 𝜇1(𝑢1), …, 𝜇4(𝑢1) and 𝜈0(𝑢1), 𝜈1(𝑢1), … , 𝜈4(𝑢1) are defined by Table 20.

The system corresponding to 𝑢1 is

𝑆1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥12 + 𝑥13 + 𝑥14 + 𝑥123 + 𝑥124 + 𝑥134 = −0.1;
𝑥12 + 𝑥23 + 𝑥24 + 𝑥123 + 𝑥234 + 𝑥124 = 0;
𝑥13 + 𝑥23 + 𝑥34 + 𝑥123 + 𝑥134 + 𝑥234 = −0.2;
𝑥14 + 𝑥24 + 𝑥34 + 𝑥124 + 𝑥234 + 𝑥134 = 0;
𝑥12 + 𝑥13 + 𝑥14 + 𝑥23 + 𝑥24 + 𝑥34 + 𝑥123 + 𝑥124 + 𝑥134 + 𝑥234 = 0.

(44)

We can observe that 𝜇1(𝑢1) +ℎ1(𝑢1) = 0.4, which is less than 𝜇1(𝑢1) +𝜈0(𝑢1) = 0.2 +0.3 = 0.5. Then, 𝑆1 only has solutions including 
negative values. In fact, 𝑥12 + 𝑥13 + 𝑥14 + 𝑥123 + 𝑥124 + 𝑥134 = −0.1 implies that 𝑥 < 0 for some 𝑥 ∈ {𝑥12, 𝑥13, 𝑥14, 𝑥123, 𝑥124, 𝑥134}. 
Therefore, in agreement with the previous proposition,  (𝑂) = ∅.

Remark 13. The condition ℎ𝑖(𝑢) < 𝜈0(𝑢) given by the previous proposition is equivalent to 𝑢 ∈𝑁𝑖 ∩𝑁0, when 𝑂 is made of Boolean 
functions (recall that each (𝑀𝑖, 𝑁𝑖) is defined by (6)). As a consequence,  (𝑂) = ∅ in case 𝑁𝑖 ∩𝑁0 = ∅ for some 𝑖 ∈ {1, … , 𝑛}. 
Moreover, if 𝑂 is an orthopartition according to Definition 6,  (𝑂) = ∅ whenever we know the class of at least an element that is not 
20

an outlier (see that if 𝑢 ∈𝑀𝑖 then 𝑢 ∈𝑁0 and more in general 𝑢 ∈𝑁𝑗 for each 𝑗 ≠ 𝑖 from Axiom (b) of Definition 6).
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Table 21

Definition of 𝑂 w.r.t. 𝑢1 in Example 21.

𝜇0(𝑢1) 𝜈0(𝑢1) 𝜇1(𝑢1) 𝜈1(𝑢1) 𝜇2(𝑢1) 𝜈2(𝑢1) 𝜇3(𝑢1) 𝜈3(𝑢1) 𝜇4(𝑢1) 𝜈4(𝑢1)

0.1 0.3 0.2 0.2 0.1 0.3 0.3 0.3 0 0.4

Example 20. Consider the orthopartition {(𝑀0, 𝑁0), (𝑀1, 𝑁1), (𝑀2, 𝑁2)} = {(∅, {𝑎, 𝑏}), ({𝑎}, {𝑏}), ({𝑏}, {𝑎})} of the universe {𝑎, 𝑏, 𝑐}. 
Then, it is equivalent to the fuzzy orthopartition {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)} by means of (14). Let us focus on the element 𝑎, we 
know that 𝑎 certainly belongs to 𝐶1. Then, we get ℎ1(𝑎) = ℎ2(𝑎) = 0 and 𝜈0(𝑎) = 1. Consequently, according to the previous remark, 
 (𝑂) = ∅.

Proposition 6. Let 𝑂 be a generalized fuzzy orthopartition with 𝑛 ≥ 3. If there exist 𝑖 ∈ {1, … , 𝑛} and 𝑢𝑗 ∈ 𝑈 such that ℎ𝑖(𝑢𝑗 ) > 1 −
(𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +… + 𝜇𝑛(𝑢𝑗 )), then  (𝑂) = ∅.

Proof. Focus on (31) and consider the i-th equation and the last equation of 𝑆𝑗 . They are respectively∑
{𝐴 | {𝐶𝑖}⊂𝐴⊂𝐶}𝑥

𝑗

𝐴
= ℎ𝑖(𝑢𝑗 ) − 𝜈0(𝑢𝑗 ) (45)

and ∑
{𝐴 | 2≤|𝐴|<𝑛}𝑥

𝑗

𝐴
= 1 − (𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +…+ 𝜇𝑛(𝑢𝑗 )) − 𝜈0(𝑢𝑗 ). (46)

We can notice that (46) can be written as∑
{𝐴 | {𝐶𝑖}⊂𝐴⊂𝐶}𝑥

𝑗

𝐴
+

∑
{𝐴 | 𝐶𝑖∉𝐴 ∧ 2≤|𝐴|<𝑛}𝑥

𝑗

𝐴
= 1 − (𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +…+ 𝜇𝑛(𝑢𝑗 )) − 𝜈0(𝑢𝑗 ). (47)

Then, (45) and (47) imply that∑
{𝐴 | 𝐶𝑖∉𝐴 ∧ 2≤|𝐴|<𝑛}𝑥

𝑗

𝐴
= 𝜈𝑖(𝑢𝑗 ) − (𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +…+ 𝜇𝑛(𝑢𝑗 )). (48)

By hypothesis, 1 −ℎ𝑖(𝑢𝑗 ) − (𝜇0(𝑢𝑗 ) +𝜇1(𝑢𝑗 ) +… +𝜇𝑛(𝑢𝑗 )) < 0. Since (1 −ℎ𝑖(𝑢𝑗 )) = (𝜇𝑖(𝑢𝑗 ) + 𝜈𝑖(𝑢𝑗 )), (𝜇𝑖(𝑢𝑗 ) + 𝜈𝑖(𝑢𝑗 )) − (𝜇0(𝑢𝑗 ) +𝜇1(𝑢𝑗 ) +
… + 𝜇𝑛(𝑢𝑗 )) < 0. Then, 𝜈𝑖(𝑢𝑗 ) − (𝜇0(𝑢𝑗 ) + 𝜇1(𝑢𝑗 ) +… + 𝜇𝑛(𝑢𝑗 )) < 0. Hence, the thesis clearly holds. Indeed, let {𝑚𝑗 (𝐴) | 2 ≤𝐴 < 𝑛} be 
a solution of 𝑆𝑗 , then there exists 𝑚𝑗 (𝐴) with 𝐶𝑖 ∉𝐴 such that 𝑚𝑗 (𝐴) < 0. □

Example 21. We consider a generalized fuzzy orthopartition 𝑂 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2), (𝜇3, 𝜈3), (𝜇4, 𝜈4)} of {𝑢1, … , 𝑢10} and we 
focus on the element 𝑢1. Then, Table 21 defines 𝑂 w.r.t. 𝑢1.

By Table 21, we can see that ℎ1(𝑢1) = 0.6 and 1 − ( 𝜇0(𝑢1) + 𝜇1(𝑢1) + 𝜇2(𝑢1) + 𝜇3(𝑢1) + 𝜇4(𝑢1) ) = 1 − 0.7 = 0.3. So, in agreement 
with the previous proposition, it must be true that  (𝑂) = ∅.

In fact, the system corresponding to 𝑢1 is

𝑆1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥12 + 𝑥13 + 𝑥14 + 𝑥123 + 𝑥124 + 𝑥134 = 0.3;
𝑥12 + 𝑥23 + 𝑥24 + 𝑥123 + 𝑥234 + 𝑥124 = 0.3;
𝑥13 + 𝑥23 + 𝑥34 + 𝑥123 + 𝑥134 + 𝑥234 = 0.1;
𝑥14 + 𝑥24 + 𝑥34 + 𝑥124 + 𝑥234 + 𝑥134} = 0.3;
𝑥12 + 𝑥13 + 𝑥14 + 𝑥23 + 𝑥24 + 𝑥34 + 𝑥123 + 𝑥124 + 𝑥134 + 𝑥234 = 0.1

(49)

By the first and last equations of 𝑆1, we get 𝑥23 + 𝑥24 + 𝑥34 + 𝑥234 = −0.2. Then, if {𝑚1(𝐴) | 2 ≤ 𝐴 < 𝑛} is a solution of 𝑆1, then 
at least a value of {𝑚1({𝐶2, 𝐶3}), 𝑚1({𝐶2, 𝐶4}), 𝑚1({𝐶3, 𝐶4}), 𝑚1({𝐶2, 𝐶3, 𝐶4})} must be negative.

Remark 14. The condition ℎ𝑖(𝑢) > 1 − (𝜇0(𝑢) + 𝜇1(𝑢) +… + 𝜇𝑛(𝑢)) given by the previous proposition is equivalent to “𝑢 ∈ 𝐵𝑖 and 
𝑢 ∈𝑀𝑗 with 𝑗 ≠ 𝑖”, in case 𝑂 is made of Boolean functions (recall that the orthopair (𝑀𝑖, 𝑁𝑖) is defined by (6)). In addition, when 𝑂
is an orthopartition according to Definition 6, 𝑢 ∈𝐵𝑗 ∩𝑀𝑗 cannot occur due to Axiom (b).

As explained in Subsection 4.2, a generalized fuzzy orthopartition 𝑂 is seen as the class 𝑂 made of all its compatible Ruspini 
partitions. The next theorem shows that the same set of Ruspini partitions is equivalent (by means of the function 𝑓 given by 
Theorem 1) to the set of fuzzy probabilistic partitions compatible with a given credal partition 𝑚 ∈  (𝑂).
21

Theorem 3. Let 𝑂 be a generalized fuzzy orthopartition of 𝑈 , and let 𝑚 ∈  (𝑂). Then, 𝑚 = 𝑓 (𝑂) (equivalently, 𝑂 = 𝑓−1(𝑚)).
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Proof. If 𝑚′ ∈ 𝑚 then 𝑚𝑖(∅) ≤ 𝑚′
𝑖
(∅) ≤ 1 − 𝑚𝑖(𝐶) and 𝑚𝑖({𝐶𝑗}) ≤ 𝑚′

𝑖
({𝐶𝑗}) ≤

∑
{𝐴|𝐶𝑗∈𝐴}𝑚𝑖(𝐴) from Definition 12. Furthermore, 

𝑚 ∈  (𝑂) implies that 𝑚𝑖(∅) = 𝜇0(𝑢𝑖), 𝑚𝑖(𝐶) = 𝜈0(𝑢𝑖), 𝑚𝑖({𝐶𝑗}) = 𝜇𝑗 (𝑢𝑖) and 
∑

{𝐴|𝐶𝑗∈𝐴}𝑚𝑖(𝐴) = 𝜇𝑗 (𝑢𝑖) + ℎ𝑗 (𝑢𝑖) from Definition 13. 
Then, 𝑚′ ∈𝑂 clearly follows from Definition 11. So, we can conclude that 𝑚 ⊆ 𝑓 (𝑂).

The case 𝑓 (𝑂) ⊆𝑚 is symmetric and omitted. □

Example 22. Consider 𝑂 and 𝑚 ∈  (𝑂) defined in Example 18. According to Theorem 3, 𝑂 and 𝑚 have the same compatible fuzzy 
probabilistic partitions: 𝑓 (𝑂) =𝑚.

For example, consider 𝑚∗ such that 𝑚∗
𝑖
(∅) = 0.7, 𝑚∗

𝑖
({𝐶1}) = 0.3 and 𝑚∗

𝑖
({𝐶2}) =𝑚∗

𝑖
({𝐶3}) =𝑚∗

𝑖
({𝐶4}) = 0.

Then, we can immediately check that 𝑚∗ ∈ 𝑓 (𝑂) ∩ 𝑚. For instance, we get 𝑚𝑖(∅) ≤ 0.7 ≤ 1 −𝑚𝑖(𝐶) and 𝜇0(𝑢𝑖) ≤ 0.7 ≤ 𝜇0(𝑢𝑖) +
ℎ0(𝑢𝑖), considering that 𝑚𝑖(∅) = 𝜇0(𝑢𝑖) = 0.1 and 1 −𝑚𝑖(𝐶) = 𝜇0(𝑢𝑖) + ℎ0(𝑢𝑖) = 1.

We close this subsection with the following remark, which compares the correspondence introduced here with that of [15].

Remark 15. In [15], we have studied the correspondence between fuzzy orthopartitions and credal partitions made of normal bbas, 
where we considered orthopartitions without the IFS (𝜇0, 𝜈0) (equivalently, we supposed the absence of outliers). In that case, the 
value 𝑚𝑖(𝐶) is unknown, then the system 𝑆𝑖 for finding 𝑚𝑖 includes an additional variable, which is associated with 𝑚𝑖(𝐶).

5. From a credal partition to a fuzzy orthopartition

In this section, we explain how to associate a generalized fuzzy orthopartition to a given credal partition. The meaning of such 
correspondence is dual to that exhibited in Subsection 4.3: given a credal partition 𝑚, we intend to consider a generalized fuzzy 
orthopartition 𝑂 such that 𝑓 (𝑂) =𝑚 (equivalently, 𝑓−1(𝑚) =𝑂).

Principally, we achieve the following goals:

• we assign a generalized fuzzy orthopartition 𝑂𝑚 to each credal partition 𝑚 (Definition 14 and Theorem 4);

• we show that in general credal partitions are not fuzzy orthopartitions by means of Definition 14 (Example 23 and Remark 16);

• we determine a class of credal partitions that coincide with fuzzy orthopartitions w.r.t. Definition 14 (Theorem 5);

• we discuss the connection between ortho and credal partitions made of Boolean functions (Remark 19);

• we use our results to interpret generalized fuzzy orthopartitions in terms of mass functions (Remark 20).

The following definition assigns a generalized fuzzy orthopartition to each credal partition.

Definition 14. Let 𝑚 ∈. Then, we consider

𝑂𝑚 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1),… , (𝜇𝑛, 𝜈𝑛)} (50)

such that let 𝑢𝑖 ∈ {𝑢1, … , 𝑢𝑙},

(a) 𝜇0(𝑢𝑖) =𝑚𝑖(∅) and 𝜈0(𝑢𝑖) =𝑚𝑖(𝐶);
(b) 𝜇𝑗 (𝑢𝑖) =𝑚𝑖({𝐶𝑗}) and 𝜈𝑗 (𝑢𝑖) = 1 −

∑
{𝐴 | 𝐶𝑗∈𝐴}𝑚𝑖(𝐴), for each 𝐶𝑗 ∈ {𝐶1, … , 𝐶𝑛}.

The next theorem shows that 𝑂𝑚 assigned to 𝑚 ∈ by Definition 14 is a generalized fuzzy orthopartition.

Theorem 4. Let 𝑚 ∈, then 𝑂𝑚 is a generalized fuzzy orthopartition.

Proof. First of all, we need to verify that each (𝜇𝑗 , 𝜈𝑗 ) ∈𝑂𝑚 is an IFS. By Definition 14, for each 𝑗 ∈ {1, … , 𝑛}, we write

𝜇𝑗 (𝑢𝑖) + 𝜈𝑗 (𝑢𝑖) =𝑚𝑖(𝐶𝑗 ) + 1 −
∑

{𝐴 | 𝐶𝑗∈𝐴}𝑚𝑖(𝐴),
which is equal to

𝑚𝑖(𝐶𝑗 ) + 1 −𝑚𝑖(𝐶𝑗 ) −
∑

{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐶𝑗 ) = 1 −
∑

{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐶𝑗 ).
Since 𝑚𝑖 is a bba, 0 ≤

∑
{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐶𝑗 ) ≤ 1. Hence, we can deduce that

0 ≤ 𝜇𝑗 (𝑢𝑖) + 𝜈𝑗 (𝑢𝑖) ≤ 1.

Consequently, by Definition 3, (𝜇𝑗, 𝜈𝑗 ) is an IFS for each 𝑗 ∈ {1, … , 𝑛}.

It is clear that (𝜇0, 𝜈0) is an IFS too. In fact, by Definition 14, 𝜇0(𝑢𝑖) + 𝜈0(𝑢𝑖) = 𝑚𝑖(∅) + 𝑚𝑖(𝐶), which is less than or equal to 1 
because 𝑚𝑖 is a bba.
22

Then, we intend to prove that the axioms of Definition 9 hold for 𝑂𝑚.



Information Sciences 674 (2024) 120725S. Boffa and D. Ciucci

Table 22

Definition of the elements of 𝑂𝑚 of Example 23.

𝑢 𝜇0(𝑢) 𝜈0(𝑢) 𝜇1(𝑢) 𝜈1(𝑢) 𝜇2(𝑢) 𝜈2(𝑢) 𝜇3(𝑢) 𝜈3(𝑢)

𝑢1 0.2 0.2 0 0.5 0.3 0.3 0 0.7

𝑢2 0 0.5 0.1 0.4 0.3 0.2 0.1 0.4

𝑢3 0 0.6 0.1 0.2 0 0.1 0 0.2

𝑢4 0.1 0 0.1 0.7 0.1 0.5 0.2 0.4

a) Let 𝑢𝑖 ∈ 𝑈 . By hypothesis, 𝑚𝑖 is a bba. Then, 𝑚𝑖(∅) + 𝑚𝑖({𝐶1}) +… + 𝑚𝑖({𝐶𝑛}) ≤ 1. Thus, 𝜇0(𝑢𝑖) + 𝜇1(𝑢𝑖) +… + 𝜇𝑛(𝑢𝑖) ≤ 1 by 
considering that 𝜇0(𝑢𝑖) =𝑚𝑖(∅) and 𝜇𝑗 (𝑢𝑖) =𝑚𝑖({𝐶𝑗}) for each 𝐶𝑗 ∈ {𝐶1, … , 𝐶𝑛}. Then, Property (a) of Definition 9 holds for 𝑂𝑚.

b) Let 𝑢𝑖 ∈𝑈 . Then, (1 − 𝜈0(𝑢𝑖)) + (1 − 𝜈1(𝑢𝑖)) +… + (1 − 𝜈𝑛(𝑢𝑖)) is equal to

(1 −𝑚𝑖(𝐶)) +
∑

{𝐴 | 𝐶1∈𝐴}𝑚𝑖(𝐴) +…+
∑

{𝐴 | 𝐶𝑛∈𝐴}𝑚𝑖(𝐴) (51)

due to Definition 14. We can observe that 𝐶 ∈ {𝐴 | 𝐶𝑖 ∈𝐴} for each 𝐶𝑖 ∈ {𝐶1, … , 𝐶𝑛}. As a consequence, we can rewrite (51) as

(1 −𝑚𝑖(𝐶)) +

( ∑
{𝐴 | {𝐶1}⊆𝐴⊂𝐶}𝑚𝑖(𝐴) +𝑚𝑖(𝐶)

)
+

∑
{𝐴 | 𝐶2∈𝐴}𝑚𝑖(𝐴) +…+

∑
{𝐴 | 𝐶𝑛∈𝐴}𝑚𝑖(𝐴) =

1 +
∑

{𝐴 | {𝐶1}⊆𝐴⊂𝐶}𝑚𝑖(𝐴) +
∑

{𝐴 | 𝐶2∈𝐴}𝑚𝑖(𝐴) +…+
∑

{𝐴 | 𝐶𝑛∈𝐴}𝑚𝑖(𝐴). (52)

Of course (52) is greater than or equal to 1, considering that each value of {𝑚𝑖(𝐴) | 𝐴 ∈ 2𝐶} appears among the addends of 
(52) at least once and 𝑚𝑖 is a bba. Then, Property (b) of Definition 9 holds for 𝑂𝑚. □

Example 23. Let us consider the credal partition of Example 1. Then, 𝑂𝑚 is defined by Table 22.

Indeed, by Definition 14, we can easily verify that

• 𝜇0(𝑢1) =𝑚1(∅) = 0.2 and 𝜈0(𝑢1) =𝑚1(𝐶) = 0.2;

• 𝜇1(𝑢1) =𝑚1({𝐶1}) = 0 and 𝜈1(𝑢1) = 1 − {𝑚1({𝐶1}) +𝑚1({𝐶1, 𝐶2}) +𝑚1({𝐶1, 𝐶3}) +𝑚1(𝐶)} = 1 − {0 + 0.2 + 0.1 + 0.2} = 0.5;

• 𝜇2(𝑢1) =𝑚2({𝐶2}) = 0.3 and 𝜈2(𝑢1) = 1 − {𝑚1({𝐶2}) +𝑚1({𝐶1, 𝐶2}) +𝑚1({𝐶2, 𝐶3}) +𝑚1(𝐶)} = 1 − {0.3 + 0.2 + 0 + 0.2} = 0.3;

• 𝜇3(𝑢1) =𝑚2({𝐶3}) = 0 and 𝜈3(𝑢1) = 1 − {𝑚1({𝐶3}) +𝑚1({𝐶1, 𝐶3}) +𝑚1({𝐶2, 𝐶3}) +𝑚1(𝐶)} = 1 − {0 + 0.1 + 0 + 0.2} = 0.7.

Analogously, we can calculate the values assumed by 𝜇0, 𝜇1, 𝜇2, 𝜇3 and 𝜈0, 𝜈1, 𝜈2, 𝜈3 on 𝑢2, 𝑢3, and 𝑢4.

Clearly, 𝑂𝑚 is a generalized fuzzy orthopartition of {𝑢1, 𝑢2, 𝑢3, 𝑢4}:

Axiom (a) of Definition 9 holds for 𝑂𝑚:
∑3
𝑖=0 𝜇𝑖(𝑢1) = 0.2 + 0 + 0.3 + 0 = 0.5 ≤ 1, 

∑3
𝑖=0 𝜇𝑖(𝑢2) = 0 + 0.1 + 0.3 + 0.1 = 0.5 ≤ 1, ∑3

𝑖=0 𝜇𝑖(𝑢3) = 0 + 0.1 + 0 + 0 = 0.1 ≤ 1, and 
∑3
𝑖=0 𝜇𝑖(𝑢4) = 0.1 + 0.1 + 0.1 + 0.2 = 0.5 ≤ 1;

Axiom (b) of Definition 9 holds for 𝑂𝑚
∑3
𝑖=0(𝜇𝑖(𝑢1) + ℎ𝑖(𝑢1)) = 0.8 + 0.5 + 0.7 + 0.3 = 2.3 ≥ 1, 

∑3
𝑖=0(𝜇𝑖(𝑢2) + ℎ𝑖(𝑢2)) = 0.5 + 0.6 +

0.8 + 0.6 = 2.5 ≥ 1, 
∑3
𝑖=0(𝜇𝑖(𝑢3) + ℎ𝑖(𝑢3)) = 0.4 + 0.8 + 0.9 + 0.8 = 2.9 ≥ 1, and 

∑3
𝑖=0(𝜇𝑖(𝑢4) + ℎ𝑖(𝑢4)) = 1 + 0.3 + 0.5 + 0.6 = 2.4 ≥ 1.

Remark 16. In general, 𝑂𝑚 is not a fuzzy orthopartition according to Definition 4. Indeed, we can see that 𝑂𝑚 given by Table 22, 
does not satisfy Axiom (b) of Definition 4. For example, we get ℎ0(𝑢4) = 0.9 and 𝜇3(𝑢4) = 0.2, hence 𝜇3(𝑢4) + ℎ0(𝑢4) > 1.

In order to provide an example of credal partition 𝑚′ so that Axiom (d) of Definition 4 does not hold for 𝑂𝑚′ , we suppose that 
𝐶 = {𝐶1, 𝐶2} and 𝑈 = {𝑢1, 𝑢2, 𝑢3}. Then, we take into account 𝑚′ = {𝑚′

1, 𝑚
′
2, 𝑚

′
3} ∈ such that 𝑚′

1 = 𝑚
′
2 = 𝑚

′
3 and 𝑚′

1 is defined as 
follows:

𝑚′
1(∅) = 0.4,𝑚′

1({𝐶1}) = 0.4,𝑚′
1({𝐶2}) = 0.2, and 𝑚′

1(𝐴) = 0 for each 𝐴 ∈ {{𝐶1,𝐶2},{𝐶1,𝐶3},{𝐶2,𝐶3},𝐶}. (53)

By Definition 14, 𝑂𝑚′ = {(𝜇′0, 𝜈
′
0), (𝜇

′
1, 𝜈

′
1), (𝜇

′
2, 𝜈

′
2)}, where for each 𝑢𝑗 ∈𝑈 ,

𝜇′0(𝑢𝑗 ) = 0.4, 𝜈′0(𝑢𝑗 ) = 0, 𝜇′1(𝑢𝑗 ) = 0.4, 𝜈′1(𝑢𝑗 ) = 0.6, 𝜇′2(𝑢𝑗 ) = 0.2, and 𝜈′2(𝑢𝑗 ) = 0.8. (54)

So, we can notice that ℎ′0(𝑢𝑗 ) > 0, but ℎ′1(𝑢𝑗 ) = ℎ
′
2(𝑢𝑗 ) = 0. So, the latter statement proves that Axiom (d) of Definition 4 is not satisfied 

by 𝑂𝑚′ .

In the sequel, we determine the class of all credal partitions of  that can be identified with a generalized fuzzy orthopartition 
satisfying Axiom (b) of Definition 4.
23

Lemma 1. Let 𝑚 ∈, 𝑂𝑚 satisfies Axiom (b) of Definition 13 if and only if 𝑚𝑖({𝐶𝑗}) ≤𝑚𝑖(∅) +𝑚𝑖(𝐶) ∀ 𝑖 ∈ {1, … , 𝑙} and ∀ 𝑗 ∈ {1, … , 𝑛}.



Information Sciences 674 (2024) 120725S. Boffa and D. Ciucci

Proof. (⇐). By hypothesis, let 𝑖 ∈ {1, … , 𝑛} and 𝑗 ∈ {1, … , 𝑙}, 𝜇𝑗 (𝑢𝑖) + ℎ0(𝑢𝑖) ≤ 1. Hence, by Definition 14, 𝜇𝑗 (𝑢𝑖) = 𝑚𝑖({𝐶𝑗}) and 
ℎ0(𝑢𝑖) = 1 −𝑚𝑖(∅) −𝑚𝑖(𝐶). Then, 𝑚𝑖({𝐶𝑗}) + 1 −𝑚𝑖(∅) −𝑚𝑖(𝐶) ≤ 1, which implies that 𝑚𝑖({𝐶𝑗}) ≤𝑚𝑖(∅) +𝑚𝑖(𝐶).

(⇒). We need to prove that 𝜇𝑗 (𝑢𝑖) + ℎ𝑘(𝑢𝑖) ≤ 1 for each 𝑗, 𝑘 ∈ {0, 1, … , 𝑛} such that 𝑗 ≠ 𝑘. We separately consider three cases:

1. Suppose that 𝑗, 𝑘 ∈ {1, … , 𝑛}, then 𝜇𝑗 (𝑢𝑖) =𝑚𝑖({𝐶𝑗}) and ℎ𝑘(𝑢𝑖) =
∑

{𝐴∈2𝐶 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴). Since 𝑚𝑖 is a bba, 
∑
𝐴∈2𝐶 𝑚𝑖(𝐴) = 1. As 

a consequence, we get 𝑚𝑖({𝐶𝑗}) +
∑

{𝐴∈2𝐶 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴) ≤ 1.

2. Suppose that 𝑗 = 0 and 𝑘 ∈ {1, … , 𝑛}, then 𝜇0(𝑢𝑖) = 𝑚𝑖(∅) and ℎ𝑘(𝑢𝑖) =
∑

{𝐴∈2𝐶 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴). Analogously to the previous case, 
𝑚𝑖(∅)+∑

{𝐴∈2𝐶 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴) ≤ 1 because 𝑚𝑖 is a bba.

3. Suppose that 𝑗 ∈ {1, … , 𝑛} and 𝑘 = 0, then 𝜇𝑗 (𝑢𝑖) = 𝑚𝑖({𝐶𝑗}) and ℎ0(𝑢𝑖) = 1 − 𝑚𝑖(∅) − 𝑚𝑖(𝐶). Then, 𝜇𝑗(𝑢𝑖) + ℎ0(𝑢𝑖) = 𝑚𝑖({𝐶𝑗}) +
1 −𝑚𝑖(∅) −𝑚𝑖(𝐶). Also, by hypothesis, 𝑚𝑖({𝐶𝑗}) ≤𝑚𝑖(∅) +𝑚𝑖(𝐶). Hence, 𝑚𝑖({𝐶𝑗}) + 1 −𝑚𝑖(∅) −𝑚𝑖(𝐶) ≤ 1. □

The next lemma provides the class of all credal partitions of  that can be identified with a generalized fuzzy orthopartition 
satisfying Axiom (d) of Definition 4.

Lemma 2. Let 𝑚 ∈. Then, 𝑂𝑚 satisfies Axiom (d) of Definition 4 if and only if for each 𝑢𝑖 ∈𝑈 , “𝑚𝑖(∅) = 1” or “there exists 𝐴 ∈ 2𝐶 such 
that |𝐴| ≥ 2 and 𝑚𝑖(𝐴) > 0”.

Proof. (⇒). Let 𝑢𝑖 ∈𝑈 , assuming that Axiom (d) is satisfied, we can separately analyze two complementary cases:

1. “ℎ𝑗 (𝑢) = 0 ∀𝑗 ∈ {0, … , 𝑛}” and

2. “there exists 𝑗, 𝑘 ∈ {0, … , 𝑛} such that 𝑗 ≠ 𝑘” and ℎ𝑗 (𝑢𝑖), ℎ𝑘(𝑢𝑖) > 0.

1. First of all, ℎ0(𝑢𝑖) = 0 means that 𝑚𝑖(∅) +𝑚𝑖(𝐶) = 1. Then, since 𝑚𝑖 is a bba,

𝑚𝑖(𝐴) = 0 for each 𝐴 ∈ 2𝐶 ⧵ {∅,𝐶}. (55)

Let 𝑗 ∈ {1, … , 𝑛}, then 𝜇𝑗 (𝑢𝑖) =𝑚𝑖({𝐶𝑗}) = 0 from (55). Moreover, ℎ𝑗 (𝑢𝑖) = 0 by hypothesis. Since 𝜈𝑗 (𝑢𝑖) = 1 − (𝜇𝑗 (𝑢𝑖) + ℎ𝑗 (𝑢𝑖)), it 
must be true that 𝜈𝑗 (𝑢𝑖) = 1. By Definition 14, 

∑
{𝐴 | 𝐶𝑗∈𝐴}𝑚𝑖(𝐴) = 0. As a consequence, 𝑚𝑖(𝐶) = 0, and finally, 𝑚𝑖(∅) = 1.

2. If 𝑗, 𝑘 ∈ {0, … , 𝑛} and 𝑗 ≠ 𝑘, then 𝑗 ∈ {1, … , 𝑛} or 𝑘 ∈ {1, … , 𝑛}. Suppose that 𝑗 ∈ {1, … , 𝑛}, then ℎ𝑗 (𝑢𝑖) > 0. Consequently, it is 
true the inequality 

∑
{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴) > 0. This implies the existence of 𝐴 ∈ 2𝐶 such that |𝐴| ≥ 2 (because it strictly includes 

{𝐶𝑗}) and 𝑚𝑖(𝐴) > 0.

(⇐). If 𝑚𝑖(∅) = 1, then 𝑚𝑖(𝐴) = 0 for each 𝐴 ≠ ∅. Thus, 𝜇𝑗 (𝑢𝑖) =𝑚𝑖({𝐶𝑗}) = 0 and 𝜈𝑗 (𝑢𝑖) = 1 −
∑

{𝐴 | {𝐶𝑗}⊆𝐴}𝑚𝑖(𝐴) = 1 − 0 = 1. Hence, 
ℎ𝑗 (𝑢𝑖) = 0 for each 𝑗 ∈ {1, … , 𝑛}.

If ℎ𝑗 (𝑢𝑖) > 0 with 𝑗 ∈ {1, … , 𝑙} then 
∑

{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴) > 0. So, we can consider |�̃�| ≥ 2 containing 𝐶𝑖 so that 𝑚𝑖(�̃�) > 0. Let 
𝐶𝑘 ∈ �̃�, it is easy to understand that ℎ𝑘(𝑢𝑖) > 0.

If ℎ0(𝑢) > 0, then 1 − 𝑚𝑖(∅) − 𝑚𝑖(𝐶) > 0. Hence, 𝑚𝑖(∅) + 𝑚𝑖(𝐶) < 1. Thus, we know that 𝑚𝑖(∅) < 1. By hypothesis, there exists 
𝐴 ∈ 2𝐶 such that |𝐴| ≥ 2 and 𝑚𝑖(𝐴) > 0. Then, let 𝐶𝑗 ∈𝐴, we can immediately observe that ℎ𝑗 (𝑢𝑖) =

∑
{𝐴 | {𝐶𝑗}⊂𝐴}𝑚𝑖(𝐴) > 0. □

The following theorem shows a sufficient and necessary condition for a credal partition to correspond to a fuzzy orthopartition 
w.r.t. Definition 14.

Theorem 5. Let 𝑚 ∈, 𝑂𝑚 is a fuzzy orthopartition if and only if one of the following properties holds for each 𝑚𝑖 ∈𝑚:

(a) 𝑚𝑖(∅) +𝑚𝑖(𝐶) = 1;

(b) 𝑚𝑖({𝐶𝑗}) ≤𝑚𝑖(∅) +𝑚𝑖(𝐶) ∀𝑗 ∈ {1, … , 𝑛} and there exists |𝐴| ≥ 2 such that 𝑚𝑖(𝐴) > 0.

Proof. Firstly, notice that 𝑚𝑖(∅) + 𝑚𝑖(𝐶) = 1 implies that 𝑚𝑖({𝐶𝑗}) = 0 for each 𝑗 ∈ {1, … , 𝑛}. Hence, the inequality 𝑚𝑖({𝐶𝑗}) ≤
𝑚𝑖(∅) +𝑚𝑖(𝐶) trivially holds.

(⇒). Let 𝑚 ∈ such that 𝑂𝑚 satisfies Axioms (b) and (d) of Definition 4. By Lemma 2, 𝑚𝑖(∅) +𝑚𝑖(𝐶) = 1 or there exists |𝐴| ≥ 2
such that 𝑚𝑖(𝐴) > 0. Furthermore, by Lemma 1, 𝑚𝑖({𝐶𝑗}) ≤𝑚𝑖(∅) +𝑚𝑖(𝐶).

(⇐). By Theorem 4, 𝑂𝑚 is a generalized fuzzy orthopartition. Then, Axioms (a) and (c) of Definition 13 are satisfied from 𝑂𝑚. 
The other axioms are clearly consequences of Lemmas 1 and 2. □

According to the previous theorem, a credal partition can be identified with a fuzzy orthopartition when it is composed by special 
bbas: “non-zero masses of belief are assigned only to ∅ and 𝐶”, or “the mass of belief of each individual class is less than or equal to 
24

the sum of the masses of belief of ∅ and 𝐶 and each bba is not Bayesian”.
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Table 23

Definition of the elements of 𝑚 of Example 24.

𝐴 𝑚1(𝐴) 𝑚2(𝐴) 𝑚3(𝐴) 𝑚4(𝐴)

∅ 0.2 0.2 0.4 1

{𝐶1} 0 0.1 0.1 0

{𝐶2} 0 0.3 0 0

𝐶 0.8 0.4 0.5 0

Example 24. Consider the credal partition defined by Table 23.

Then, 𝑂𝑚 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2)} is defined as follows:

• (𝜇0(𝑢1), 𝜈0(𝑢1)) = (0.2, 0.8), (𝜇1(𝑢1), 𝜈1(𝑢1)) = (0.2, 0), (𝜇2(𝑢1), 𝜈2(𝑢1)) = (0.2, 0),
• (𝜇0(𝑢2), 𝜈0(𝑢2)) = (0.2, 0.4), (𝜇1(𝑢2), 𝜈1(𝑢2)) = (0.1, 0.5), (𝜇2(𝑢2), 𝜈2(𝑢2)) = (0.3, 0.3),
• (𝜇0(𝑢3), 𝜈0(𝑢3)) = (0.4, 0.5), (𝜇1(𝑢3), 𝜈1(𝑢3)) = (0.1, 0.4), (𝜇2(𝑢3), 𝜈2(𝑢3)) = (0, 0.5),
• (𝜇0(𝑢4), 𝜈0(𝑢4)) = (1, 0), (𝜇1(𝑢4), 𝜈1(𝑢4)) = (0, 1), (𝜇2(𝑢4), 𝜈2(𝑢4)) = (0, 1).

We can view that 𝑚1 and 𝑚4 verify Property (a) of Theorem 5, while 𝑚2 and 𝑚3 verify Property (b) of Theorem 5.

Then, according to Theorem 5, 𝑂𝑚 is a fuzzy orthopartition, hence it satisfies all axioms of Definition 4.

Remark 17. Recall that, despite Theorem 5, fuzzy orthopartitions and credal partitions coincide when they are respectively Ruspini 
partitions and fuzzy probabilistic partitions (see Subsection 2.3).

Remark 18. Assume that 𝑚 = {𝑚1, … , 𝑚𝑙} is made of Boolean functions. Then, by the previous theorem,

𝑂𝑚 is a fuzzy orthopartition if and only if “𝑚𝑖(𝐴) = 1 with |𝐴| ≠ 1”.

By (6), 𝑂𝑚 is equivalent to the collection of orthopairs {(𝑀0, 𝑁0), (𝑀1, 𝑁1), …, (𝑀𝑛, 𝑁𝑛)}, which is an orthopartition if and only if 
∀𝑢𝑗 ∈𝑈 one of the following holds:

• 𝑢𝑗 ∈𝑀0 and 𝑢𝑗 ∈𝑁𝑖 for each 𝑖 ∈ {1, … , 𝑛}, when 𝑚𝑗 (∅) = 1;

• 𝑢𝑗 ∈𝑁0 and 𝑢𝑗 ∈𝐵𝑖 for each 𝑖 ∈ {1, … , 𝑛}, when 𝑚𝑗 (𝐶) = 1;

• 𝑢𝑗 ∈𝐵0, 𝑢𝑗 ∈ 𝐵𝑖 for each 𝐶𝑖 ∈𝐴, and 𝑢𝑗 ∈𝑁𝑖 for each 𝐶𝑖 ∉𝐴, when 𝑚𝑗 (𝐴) = 1.

In the sequel, we connect fuzzy orthopartitions and credal partitions provided by Definitions 13 and 14.

Theorem 6. Let 𝑂 be a generalized fuzzy orthopartition of 𝑈 and let 𝑚 ∈  (𝑂). Then, 𝑂𝑚 =𝑂.

Proof. The thesis clearly follows from both Definitions 13 and 14. □

In other words, we can start from a generalized fuzzy orthopartition 𝑂, consider  (𝑂) and obtain 𝑂 again by applying Defini-

tion 14 to any credal partition in  (𝑂). Lastly, it is important to notice that the previous theorem allows us to rewrite Equation (25)

as

 (𝑂) = {𝑚 ∈ | 𝑂𝑚 =𝑂}

and see 𝑂𝑚 as a fuzzy orthopartition of 𝑈 verifying 𝑓 (𝑂𝑚 ) = 𝑚. This result is dual to that provided by Theorem 3) and it is 
formalized as follows:

Theorem 7. Let 𝑚 be a credal partition of 𝑈 , then 𝑚 = 𝑓 (𝑂𝑚 ) (equivalently, 𝑓−1(𝑚) =𝑂𝑚
).

Proof. The thesis immediately follows from Theorems 3 and 6. □

Remark 19. Let us focus on the correspondence between credal partitions and orthopartitions based on Definition 4, using the results 
obtained above. So, we consider the collection ′ of all credal partitions made of Boolean bbas, then each 𝑚 ∈′ is equivalent to 
𝑂𝑚, which can be seen as a collection of orthopairs from (6). Then, the following is true.

• By Theorem 4, 𝑂𝑚 is a collection of orthopairs verifying Axioms (a) and (c) of Definition 6. As shown in subsection 5, the vice-versa 
is not always true.

• By Remark 18, 𝑂𝑚 is an orthopartition if and only if 𝑚𝑖({𝐶𝑗}) = 0 for each 𝑖 ∈ {1, … , 𝑙} and 𝑗 ∈ {1, … , 𝑚}.
25

• On the other hand, by Proposition 2, 𝑂𝑚 can be transformed in an orthopartition 𝑂′
𝑚

, which is equivalent to 𝑂𝑚.
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By the previous consideration, we deduce that orthopartitions are more general than credal partitions composed of Boolean bbas.

Let us complete our results with some corollaries.

Corollary 1. Let 𝑂𝑚 be the generalized fuzzy orthopartition of 𝑚 ∈, then 𝑂𝑚 satisfies Property (26).

Proof. The thesis clearly follows from Remark 9 and the definition of 𝑂𝑚. □

Corollary 2. Let 𝑂𝑚 be the generalized fuzzy orthopartition of 𝑚 ∈.

• If 𝑛 = 2 or 𝑛 = 3, then | (𝑂𝑚)| = 1;

• If 𝑛 ≥ 4, then | (𝑂𝑚)| =∞.

Proof. The thesis follows from the results obtained in Subsection 4.3. □

As a consequence, if we confine to credal partitions representing partitions with 2 o 3 classes, i.e., 𝑛 ∈ {2, 3}, we can prove that 
different credal partitions correspond to different fuzzy orthopartitions.

Corollary 3. Let 𝑚, 𝑚′ ∈ such that 𝑚 ≠𝑚′. If 𝑛 ∈ {2, 3}, then 𝑂𝑚 ≠𝑂𝑚′ .

Proof. The thesis follows from Corollary 2. □

However, when 𝑛 ≥ 4, two different credal partitions could be associated with the same fuzzy orthopartition. The following is an 
example.

Example 25. We consider the credal partitions 𝑚 = {𝑚1, … , 𝑚6} and 𝑚′ = {𝑚′
1, … , 𝑚′

6} of 𝑈 = {𝑢1, … , 𝑢6} associated to 𝐶 =
{𝐶1, 𝐶2, 𝐶3, 𝐶4} such that 𝑚2 =𝑚′

2, 𝑚3 =𝑚′
3, 𝑚4 =𝑚′

4, 𝑚5 =𝑚′
5, and 𝑚6 =𝑚′

6, while 𝑚1 ≠𝑚
′
1 and are defined by Table 19.

We can observe that 𝑂𝑚 = {(𝜇0, 𝜈0), (𝜇1, 𝜈1), (𝜇2, 𝜈2), (𝜇3, 𝜈3), (𝜇4, 𝜈4)} and 𝑂𝑚′ = {(𝜇′0, 𝜈
′
0), (𝜇

′
1, 𝜈

′
1), (𝜇

′
2, 𝜈

′
2), (𝜇

′
3, 𝜈

′
3), (𝜇

′
4, 𝜈

′
4)} coin-

cide. Of course, we get (𝜇𝑖(𝑢), 𝜈𝑖(𝑢)) = (𝜇′
𝑖
(𝑢), 𝜈′

𝑖
(𝑢)) for each 𝑢 ∈ {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6}. Concerning 𝑢1, we can easily check that

• (𝜇0(𝑢1), 𝜈0(𝑢1)) = (𝜇′0(𝑢1), 𝜈
′
0(𝑢1)) = (0.1, 0),

• 𝜇1(𝑢1) = 𝜇′1(𝑢1) = 0.1,

• 𝜈1(𝑢1) = 1 − {𝑚1({𝐶1}) + 𝑚1({𝐶1, 𝐶2}) + 𝑚1({𝐶1, 𝐶3}) + 𝑚1({𝐶1, 𝐶4}) + 𝑚1({𝐶1, 𝐶2, 𝐶3}) + 𝑚1({𝐶1, 𝐶2, 𝐶4}) + 𝑚1({𝐶1, 𝐶3, 𝐶4}) +
𝑚1({𝐶1, 𝐶2, 𝐶3, 𝐶4})} = 1 − {0.1 + 0.2 + 0 + 0 + 0.3 + 0 + 0.2} = 1 − 0.8 = 0.2,

• 𝜈′1(𝑢1) = 1 − {𝑚′
1({𝐶1}) + 𝑚′

1({𝐶1, 𝐶2}) + 𝑚′
1({𝐶1, 𝐶3}) + 𝑚′

1({𝐶1, 𝐶4}) + 𝑚′
1({𝐶1, 𝐶2, 𝐶3}) + 𝑚′

1({𝐶1, 𝐶2, 𝐶4}) + 𝑚′
1({𝐶1, 𝐶3, 𝐶4}) +

𝑚′
1({𝐶1, 𝐶2, 𝐶3, 𝐶4})} = 1 − {0.1 + 0 + 0.3 + 0 + 0.2 + 0.2 + 0} = 1 − 0.8 = 0.2,

The other values are similarly calculated to prove that 𝑂𝑚 =𝑂𝑚′ .

By Corollary 3, we can consider an equivalence relation 𝑅 on  so that

“let 𝑚,𝑚′ ∈, 𝑚 𝑅 𝑚′ if and only if 𝑂𝑚 =𝑂𝑚′”.

Remark 20. Let 𝑂 ∈ 𝐺 such that  (𝑂) ≠ ∅. Let us attach a new semantics to 𝑂 by supposing to deal with masses instead of truth 
degrees. Thus, 𝑂 can be understood as a credal partition with an additional level of uncertainty: some masses are known and others 
are not but need to satisfy particular conditions. 𝑂 corresponds to one of the credal partitions of  (𝑂) once all masses are determined. 
Let 𝑚 = {𝑚1, … , 𝑚𝑙} ∈  (𝑂), what can we say about the masses of 𝑚? Surely, for each 𝑢𝑗 ∈ {𝑢1, … , 𝑢𝑙} and 𝑖 ∈ {0, … , 𝑛}, the mass of 
“𝑢𝑗 belongs to 𝐶𝑖” is known because it coincides with 𝜇𝑖(𝑢𝑗 ); the mass of “𝑢𝑗 belongs to 𝐶” is known because it coincides with 𝜈0(𝑢𝑗 ). 
The remaining masses are unknown; on the other hand, for each 𝑢𝑗 ∈ {𝑢1, … , 𝑢𝑙}, the mass 𝑚𝑗 (�̃�) where 2 ≤ |�̃�| < |𝐶| must verify 
the condition

ℎ𝑘(𝑢𝑗 ) =
∑

{𝐴 | {𝐶𝑘}⊂𝐴}𝑚𝑗 (𝐴), (56)

for each 𝐶𝑘 ∈ �̃�.

The following is an illustrative example.

Example 26. Let 𝑆 be a set of students of secondary school and let  be a dataset containing the information of a survey of such 
26

students. Suppose that starting from , we can determine the degree course among “𝑆𝑐𝑖𝑒𝑛𝑐𝑒”, “𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡”, and “𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔”, 



Information Sciences 674 (2024) 120725S. Boffa and D. Ciucci

Table 24

Definition of the elements of 𝑂.

𝜇𝑂𝑡ℎ𝑒𝑟𝑠(�̄�) 0.1 𝜈𝑂𝑡ℎ𝑒𝑟𝑠(�̄�) 0.1

𝜇𝑆𝑐𝑖𝑒𝑛𝑐𝑒(�̄�) 0.1 𝜈𝑆𝑐𝑖𝑒𝑛𝑐𝑒(�̄�) 0.6

𝜇𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(�̄�) 0.2 𝜈𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(�̄�) 0.6

𝜇𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔(�̄�) 0.3 𝜈𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔(�̄�) 0.5

which is close to the inclinations of each student of 𝑆 . In particular, we can extract from  a generalized fuzzy orthopartition 𝑂 of 
𝑆 composed of three clusters 𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡, and 𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 together with an additional one 𝐶𝑂𝑡ℎ𝑒𝑟𝑠 to deal with the students 
who don’t have the aptitude for any of such degree courses. Using the notation of fuzzy orthopartitions, we set

𝐶𝑗 = (𝜇𝑗 , 𝜈𝑗 ), where 𝑗 ∈ {𝑂𝑡ℎ𝑒𝑟𝑠,𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}.

Now, let us assume that the generalized fuzzy orthopartition 𝑂 w.r.t. a student �̄� ∈ 𝑆 is defined by Table 24.

Then, according to Remark 20, 𝑂 can be viewed as a generalized credal partition. This means that let 𝑥 ∈ {𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,

𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔},

𝜇𝑥(�̄�) is the mass that “�̄� can attend the degree course in 𝑥.”

Moreover, 𝜇𝑂𝑡ℎ𝑒𝑟𝑠(�̄�) and 𝜈𝑂𝑡ℎ𝑒𝑟𝑠(�̄�) are respectively the masses that

“�̄� cannot attend any of the courses among Science, Management, and Engineering”

and

“�̄� can attend a degree course among Science, Management, Engineering”.

However, the masses related to the other subsets of {𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔} are unknown and by (56), they must 
verify the following constraints:

ℎ𝑆𝑐𝑖𝑒𝑛𝑐𝑒(�̄�) =𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡}) +𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) +𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}), (57)

ℎ𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(�̄�) =𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡}) +𝑚�̄�({𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) +𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}), (58)

ℎ𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔(�̄�) =𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) +𝑚�̄�({𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) +𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒,𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}), (59)

where ℎ𝑆𝑐𝑖𝑒𝑛𝑐𝑒(�̄�) = 0.5, ℎ𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(�̄�) = 0.2, and ℎ𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔(�̄�) = 0.2 from Table 24.

Supposing that  (𝑂) is non-empty, 𝑂 can specialize in a special credal partition of  (𝑂), once we have more information about 
students (for instance, after an interview with the students). As an example, 𝑂 can become the credal partition of  (𝑂) including a 
bba 𝑚�̄� defined as follows.

Some values of 𝑚�̄� are derived by Table 24:

• 𝑚�̄�({𝐶𝑂𝑡ℎ𝑒𝑟𝑠}) = 𝜇𝑂𝑡ℎ𝑒𝑟𝑠(�̄�) = 0.1,

• 𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒}) = 𝜇𝑆𝑐𝑖𝑒𝑛𝑐𝑒(�̄�) = 0.1,

• 𝑚�̄�({𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡}) = 𝜇𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(�̄�) = 0.2,

• 𝑚�̄�({𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) = 𝜇𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔(�̄�) = 0.3,

• 𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) = 0.1,

The remaining values of 𝑚�̄� satisfy Equations (57), (58), and (59):

• 𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡}) = 0.1,

• 𝑚�̄�({𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) = 0,

• 𝑚�̄�({𝐶𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝐶𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔}) = 0.1.

6. Conclusions and future directions

We explored the links between fuzzy orthopartitions and credal partitions unifying them by introducing the concept of generalized 
fuzzy orthopartition. In short, both fuzzy-ortho and credal partitions are

• more general than fuzzy probabilistic partitions and
27

• specific instances of generalized fuzzy orthopartitions.
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Among all credal partitions, we identified those that coincide with fuzzy orthopartitions. Our approach is mainly based on the 
idea that fuzzy-ortho and credal partitions can be seen as classes of fuzzy probabilistic partitions. Indeed, a fuzzy orthopartition, as 
well as a credal partition, is meant as a fuzzy probabilistic partition with a higher degree of uncertainty.

In the future, we plan to deepen our understanding of fuzzy-ortho and credal partitions using the findings provided in this 
article. For instance, we will transfer the operations given on fuzzy orthopartitions in [9] to credal partitions: let ⊗ be an operation 
on 𝐺 , we will determine the formula and the meaning of ⊗ so that 𝑚 ⊗ 𝑚′ = 𝑚∗ if and only if 𝑂𝑚 ⊗ 𝑂𝑚′ = 𝑂𝑚∗ , for each 
𝑚, 𝑚′ ∈. Additionally, we will compare the existing measures of uncertainty in both settings. After that, we may extend our work 
by comparing fuzzy orthopartitions with other generalized partitions, which are called three-way fuzzy partitions and introduced in 
[19]. Also, we intend to define some measures based on Definition 9 to capture how much a given set of IFSs is close to being a 
generalized orthopartition.

From a more practical perspective, two aspects deserve attention:

• the application of fuzzy orthopartitions to clustering. Boolean orthopartitions are strictly related to rough and three-way clustering 
[12] and they have been showed useful to define evaluation measures of different soft clustering approaches [20]. We would 
like to define a similar relationship between fuzzy orthopartitions and intuitionistic fuzzy clusterings. Indeed, several clustering 
algorithms for intuitionistic fuzzy sets are already proposed in the literature (see [21–25] for some example). Considering that 
fuzzy orthopartitions are special collections of intuitionistic fuzzy sets, we plan to determine the conditions under which the result 
of a intuitionistic fuzzy clustering is also a fuzzy orthopartition. The final goal is to define new evaluation measures on intuitionistic 
fuzzy clusterings.

• the construction of fuzzy orthopartitions from credal partitions. Starting from an existing method to generate credal partitions from 
data (see [26,1] for some examples), we can transform the obtained credal partitions into fuzzy orthopartitions using Definition 14

or more generally we could extend those methods to build a generic fuzzy orthopartition directly from the given data set.

Of course, both the previous points will produce methods to extract fuzzy orthopartitions from data.
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