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UNIVERSITÀ DI MILANO - BICOCCA

Abstract
Dipartimento di Fisica "G. Occhialini"

Doctor of Philosophy

Infrared properties of three dimensional gauge theories via
supersymmetric indices

by Emanuele Beratto

The thesis focuses on the study of various supersymmetric three-dimensional gauge
theories, mainly with at least N = 3 supersymmetry. We range between very different
theories and discuss several different aspects with the aim of validate our assumptions.
Therefore, the leitmotiv of this work resides not so much in the topics we cover, but
rather in the method that we use to obtain such results. This, in fact, consists in
analysing the gauge invariant operators of the theory forming the so-called chiral
ring. By having access to the chiral ring structure of the theory and to the operators
forming it, we gain insight to the properties that needed to confirm or debunk our
hypothesis. We will essentially use two different tools for counting and studying
such chiral operators: the Hilbert series and the three-dimensional superconformal
index. Thanks to the Hilbert series, we propose a quiver description for the mirror
theories of the circle reduction of four-dimensional twisted χ(a2N ) theories of class
S. These mirrors are, in fact, described by "almost" star-shaped quivers containing
both unitary and orthosymplectic gauge groups, along with hypermultiplets in the
fundamental representation. On the other hand, by means of the superconformal
index, we investigate the N = 2 preserving exactly marginal operators of the so called
S-fold theories. In particular, we focus on two families of such theories, constructed by
gauging the diagonal flavour symmetry of the T (U(N)) and T [2,12]

[2,12]
(SU(4)) theories.

In addition, we also examine in detail the zero-form and one-form global symmetries
of the Aharony-Bergman-Jafferis theories, with at least N = 6 supersymmetry, and
with both orthosymplectic and unitary gauge groups. A number of dualities among
all these theories are discovered and studied using the aforementioned tools.
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Chapter 1

Introduction

One of the most prolific sectors of modern theoretical physics deals with the research
of new dualities, i.e. some set of relations between apparently different theories.
These are indeed a spectacular feature of string theory and, usually, rely on some
transformation of the underlying brane systems describing the involved theories.

This phenomenon was first discovered in the N = 4 super Yang-Mills (SYM)
theory in four dimensions [139], which, in the low energy regime, describes the world-
volume field theory of a stack of N D3-branes on flat space. In this case, it turns
out that the duality is based on the action of the SL(2,Z) group on the Type-IIB
brane setup. In fact, by considering an element M of SL(2,Z), its action leaves the
D3-branes invariant, while transforms the (p, q) fivebranes as follows (see Section
(6.2.1)) (

p′

q′

)
= M

(
p
q

)
(1.0.1)

From the QFT point of view, looking at the holomorphic coupling τ defined as in
(3.6.16), the action of the SL(2,Z) duality group can be described as follows

τ → a+ bτ

c+ dτ
,

(
a b
c d

)
∈ SL(2,Z) (1.0.2)

It is thus a natural consequence of (1.0.2) to think that N = 4 SYM theories with
different coupling constants could actually be dual [137] and that we can create a du-
ality web relating all these different regimes. This result has important consequences
on the knowledge we can extract from a theory. Suppose, in fact, that the original
theory is in its strongly-coupled regime (i.e. τ is initially very large). Most of the
computations we could perform in such a QFT rely on perturbative expansions in τ .
These, however, become more and more inaccurate as the parameter increases and we
could miss some important features of the phenomena we are studying. To overcome
this problem, one can then imagine to apply a so-called S-transformation

S : τ → 1

τ
(1.0.3)

The resulting theory now sits in its weakly-coupled regime, which we know how
to deal with. From this simple example, it is clear how dualities can in general help
in gaining insight about the strong-interacting regime of gauge theories. S-duality,
indeed, played a crucial role in string theory [150], by shaping it in the unified field
that we know today and making it possible for M-theory [110] to be discovered.

In this thesis, we will be interested in three-dimensional N = 4 supersymmetric
field theories. As the aforementioned four-dimensional case, these theories too enjoy
a rich duality web. For example, a large class of such theories can be engineered in
Type IIB string theory via Hanany-Witten brane systems [107] involving finite size
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D3-branes and infinite five-branes preserving eight supercharges (see Section (3.1)).
From this perspective, S-duality acts by swapping D5 and NS5 branes [36, 142] and
manifests field-theoretically as mirror symmetry [118]. This duality, relating pair
of theories with non-trivial fixed point, acts by exchanging the Higgs and Coulomb
branches of the moduli spaces of vacua. While the first branch is simply parametrised
by non-trivial vacuum expectation values (VEVs) of the complex scalar in the N = 4
hypermultiplets; the latter is parametrised not only by VEVs of the real scalar in the
vector multiplets but also by a new type of local operators, called monopoles. Thanks
to N = 4 supersymmetry both these branches enjoy hyperkähler structures that are
swapped under mirror symmetry. However, while the Higgs branch is classically exact
(and thus can be accessed using UV knowledge only), the coulomb branch instead
receives quantum corrections. The importance of mirror symmetry thus lies on this
fact: it allows to "trade" the hard-to-deal-with quantum effects for classical ones, that
are usually easier to treat.

These very simple examples already show us the importance of finding and study-
ing new dualities. For some three-dimensional N = 4 supersymmetric theories, how-
ever, the Type IIB Hanany-Witten brane setup is not always available. In such cases a
new conjectured duality must then be proved (or at least strongly suggested) by other
methods. The one that we will prefer in the rest of this work consists in analysing the
gauge invariant operators (GIOs) forming the so-called chiral ring [47]. These are, in
fact, the GIOs that are annihilated by all the supercharges of one chosen chirality and
their VEVs parametrise the entire moduli space of the theory. Thus, having insight
on the chiral ring of the theory allows us to understand its moduli space structure
and, thus, its potential duality web by finding other theories with the same moduli
space geometry.

We will see essentially two ways of counting and studying such chiral operators:
the Hilbert series [64, 65, 105, 135, 144] and the three-dimensional superconformal
index [3, 4, 32, 33, 71, 117, 122, 126]. Even if there are many ways of looking into
the chiral ring of a theory, the philosophy behind all these methods is the same and
consists of modifying the definition of the most common counting quantity, i.e. the
partition function

Z = Tr
(
e−iβH

)
= Tr

(
tH
)

(1.0.4)

which counts all the operators of the theory without any distinction. Clearly, definition
1.0.4 can be refined by introducing other chemical potentials related to the mutually
commuting generators of the global symmetries of the theory. Once expanded in
powers of t, this refining allows us to recognise which operator is contributing at which
order in the expansion, thanks to the exponents of the other chemical potentials. These
are in fact nothing but the global charges of the operators. However, definition 1.0.4
can also be modified by inserting projection operators which restrict the trace and
change the final result of the operation. This is exactly the case for the aforementioned
Hilbert series and superconformal index.

The Hilbert series is indeed the chiral ring generating function, defined in (2.2.33)
as a sort of refined partition function restricted over the chiral ring. Even if it can
be computed as a whole, it is always more convenient to split its evaluation between
the two different branches of the moduli space. Thus, for the Higgs branch, which is
protected against quantum corrections, it can be computed using the so-called Molien
formula (2.2.53); while, for the Coulomb branch, which instead receives quantum
corrections, it can be evaluated using the so-called monopole formula (2.2.55). In
this work, we will compute both of them for a variety of three-dimensional N = 4
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supersymmetric theories obtained by performing an S-duality transformation on a
specific class of other theories. The aim of such computations is, thus, to provide
non-trivial checks of our proposed new mirror dualities. In fact, once computed, the
Coulomb branch Hilbert series of the mirror theory can be matched with that of the
Higgs branch of the original theory and vice versa, as follows

Hmirror
C = HH , Hmirror

H = HC (1.0.5)

This fact allows us to conceal the tough geometric study of the moduli space in
a way more simple task, which amounts only to count the chiral ring operators in a
graded way.

The three-dimensional superconformal index, defined in (4.2.5) as a refined parti-
tion function restricted to the δ = 0 states only, counts the BPS short multiplets up
to recombination. In this sense, it allows, in general, to have detailed access to both
the global symmetry and supersymmetry of a given theory. The underlying reason is
that, for three-dimensional superconformal field theories (SCFTs), it is possible to put
various short multiplets into equivalence classes according to how they contribute to
the index [146] (see also Scetion (4.5.5)). One can thus easily identify all the conserved
currents for the manifest global symmetries which, according to the case, can also en-
hance to a bigger symmetry group. For example, considering theories with at least
N = 3 supersymmetry, the index serves as a rather simple tool to spot the presence of
extra-supersymmetry charges, which gives rise to supersymmetry enhancement (see
e.g. [74]).

In this thesis, we will use this powerful tool to investigate the operators associated
with the N = 2 preserving exactly marginal deformations in a large class of three-
dimensional SCFTs, known as the S-fold theories [14, 91, 94, 154]. These theories
are obtained by gauging the diagonal U(N) global symmetry of the T (U(N)) theory
[85] with Chern–Simons (CS) level k and to couple it to matter systems. Indeed,
the T (U(N)) theory enjoys a U(N) × U(N) global symmetry, one factor acting on
the Coulomb and one on the Higgs branch. As a result of this gauging along with
the presence of the CS level, the description possesses N = 3 supersymmetry. The
conformal manifold, i.e. the space generated by exactly marginal deformations, has
been a long-standing subject of study in QFTs and has indeed led to a number of new
dualities [143, 145, 147]. Thus we provide a detailed study of the exactly marginal
operators in some S-fold theories.

Moreover, even if the three-dimensional superconformal index contains only de-
tailed informations about the global (zero-form) symmetries of the theory, it can also
be used to better understand its global one-form symmetry. The concept of one-form
symmetry (or q-form symmetry) comes from the generalisation of the standard notion
of symmetry. Given a standard (zero-form) symmetry group G there is in fact an
associated conserved Noether one-form current J ; thus, considering now a generalised
q-form symmetry group G[q], there will be an associated conserved Noether q-form
current J [q] in the theory1. Thus, since in three spacetime dimensions, gauging a
one-form symmetry yields a zero-form symmetry, and vice versa [87]; in many cases
the superconformal index allows us to indirectly study the one-form symmetry of the
original theory via the zero-form symmetry of the theory in which such a one-form
symmetry is gauged. Thanks to this fact, starting from well-known dualities between

1If the symmetry group G is not continuous we lack the Noether current J . We can then recast the
symmetry transformation law of a set of charged operators {OI} as the action of another operator Ug
on them, with g a group element of the global symmetry G (see (6.1.5)). Thanks to this approach,
all the results for continuous symmetries can be translated to the discrete case.
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ABJ theories with orthosymplectic and unitary gauge groups [1, 54], we try to gauge
their one-form symmetries (or subgroups). Computing the refined superconformal
index of both the ungauged and the gauged theories, we propose new dualities by
mapping the global symmetries of one theory to the other across the duality and,
thus, obtaining equal indices.

All these examples highlight not only the importance of finding new dualities, but
also the relevance of the operators indexing methods which allow us to discover and
confirm such dualities. Actually, without such methods, most of this work would not
exist.

The rest of the thesis is organized as follows. In Chapter (2) we will provide
an introduction to three-dimensional N = 2 and N = 4 supersymmetric theories.
For the latter, we will also describe most of the properties of the moduli space and
how to compute their Hilbert series. In Chapter (3), we will introduce the Hanany-
Witten brane construction along with mirror symmetry and we will define Tσρ (SU(N))
theories and show how their Coulomb branch Hilbert series can be computed. Then, by
introducing orientifold Op planes in the brane setup, we will also define Tσρ (USp′(2N))
theories again with their Coulomb branch Hilbert series. Both these types of theories
will in fact serve us later when, after reviewing the basic ideas and results of the
class-S framework, we will compute the Hilbert series for some 3d mirror theories of
the circle reduction of twisted χ(a2N ) theories of class-S.

Then, in Chapter (4) we will introduce the localization procedure and compute the
three-dimensional superconformal index. We will also give some explicit expressions of
the index that will be needed in the subsequent sections. In Chapter (5) we will study
the operators associated with the N = 2 preserving exactly marginal deformations
of some of the S-fold theories. In doing so, we will compute the superconformal
index of such theories and analyse the contributions of the short multiplets order by
order in the character expansion. As we will show, sometimes it will happen that
supersymmetry gets enhanced to a larger group. Finally, in Chapter (6) we will talk
about generalised global symmetries, focusing on the global one-form symmetries and
their possible gauging. Then, after introducing ABJM and ABJ-like theories with both
unitary and orthosymplectic gauge groups, we will propose new dualities between such
theories involving discrete one-form symmetry gaugings. We will then compute the
superconformal index for each of these theories to support the argued dualities.

We will conclude the thesis with a brief summary of the results, including some
possible future directions, in Chapter (7). For ease of reading, many technical details
are gathered in four appendices.
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Chapter 2

3d supersymmetric gauge theories

The entirety of this work has as its cornerstone three-dimensional supersymmetric
gauge theories. This family of theories have been already widely studied in literature
but it could nonetheless be useful to collect some known concepts that will be used
later on. Thus, in this chapter, we will focus the discussion only on aspects of such
3d theories which are important for this thesis.

In particular, we will talk about the moduli space of vacua and its generators,
i.e. the chiral operators. The heart of the discussion will be the introduction of the
Hilbert series; one of the possible methods for indexing such chiral operators.

2.1 3d N = 2 theories on flat space

The minimum possible amount of supersymmetry in three dimensions corresponds to
four real supercharges grouped together into two Majorana spinors QIα. Equivalently,
we can consider two complex supercharges Q and Q subject to the reality condition

Q = Q (2.1.1)

so that, in this way, we can include in a single complex supercharge all the minimal
amount of real charges in 3d. Moreover, this notation turns out to be very useful
when considering dimensional reduction from the 4d case, in that the supercharges
are simply inherited and constrained by (2.1.1).

The supersymmetry algebra then reads

{Qα,Qβ} = 2γµαβPµ + 2iεαβZ (2.1.2)

where Pµ is the momentum, Z is the real central charge and γµ are the Pauli matrices.
The R-symmetry group rotating these two supercharges is thus SO(2)R ' U(1)R

and acts as

Q → eiαQ, Q → e−iαQ (2.1.3)

The relevant matter multiplets of this theory can be easily found by dimensional
reduction of the 4d N = 1 case
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Multiplet
Content

G
d = 4 d = 3

Vector (V )

AM
Aµ

Adjoint
A3 := σ

λ λ

D D

Chiral (Φ)

φ φ

Rψ ψ

F F

(2.1.4)

where the 4d gauge vector AM decomposes into the 3d gauge vector Aµ and a real
scalar σ, the fermions λ, ψ respectively in the vector and chiral multiplet are Dirac
spinors, the vector multiplet scalar D is real and the chiral multiplet scalars φ and
F are both complex. Moreover, the vector multiplet transforms in the adjoint rep-
resentation of the gauge group G, while the chiral multiplet transforms in a given
representation R. Observe that F and D are both auxiliary scalars, which equation
of motions are related to the construction of the moduli space of vacua.

Having all these fields, we can now construct our 3d N = 2 Lagrangian spoiling
the superspace formulation of the 4d N = 1 case. This can be written as a sum of
several different components

L = LSYM + LSCS + LFI + LMatter (2.1.5)

where

1. The super Yang-Mills Lagrangian is

LSYM =
1

g2

∫
d2θTr {WαWα}+ c.c =

= Tr

{
1

4
FµνFµν +

1

2
DµσDµσ − iλγµDµλ− iλ[σ, λ] +

1

2
D2

} (2.1.6)

where Wα is the field strength superfield constructed using the N = 2 vector
multiplet and Dµ is the flat gauge covariant derivative.

2. The standard kinetic term for the vector multiplet can be supplemented in 3d
by a supersymmetric Chern–Simons term

LSCS =
k

4π
Tr

{
εµνρ

(
Aµ∂νAρ +

2

3
AµAνAρ

)
− λλ+ 2Dσ

}
(2.1.7)

where, for non-Abelian theories, the level k is quantised; for SU(N) or U(N)
gauge groups it is quantised to be an integer when the trace is in the fundamental
representation.

3. The Fayet-Iliopulos Lagrangian is

LFI = 2g
∑
A

ξA
∫
d2θd2θVA = g

∑
A

ξADA (2.1.8)
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where A = 1, . . . , n labels the abelian U(1) factors inside G

4. Finally, the matter Lagrangian is

LMatter =

∫
d2θd2θ

∑
i

Φ
(i)
e2gV Φ(i) +

∫
d2θW[Φ(i)] +

∫
d2θW[Φ

(i)
] =

= Dµφ(i)Dµφ(i) − iψ(i)
γµDµψ(i) − iψ(i)

σψ(i) − F (i)
F (i)+

+ i
√

2g
(
φ

(i)
λψ(i) + ψ

(i)
λφ(i)

)
+ gφ

(i) (
σ2 +D

)
φ(i)+

+
∂W
∂φ(i)

F (i) +
∂W

∂φ
(i)
F

(i)
+

1

2

∂2W
∂φ(i)∂φ(j)

ψ(i)ψ(j) +
1

2

∂2W

∂φ
(i)
∂φ

(j)
ψ

(i)
ψ

(j)

(2.1.9)

where we sum over i, j = 1, . . . , NF labelling the total number of matter chiral
multiplets and W is the superpotential, which is a gauge invariant holomorphic
function of Φ with R-charge 2.

2.1.1 Topological symmetry and monopole operators

To introduce a special feature of three-dimensional gauge theories, suppose now we are
studying the 3d Maxwell theory without supersymmetry. The 2-form field strength
Fµν satisfies both the equations of motion and the Bianchi identity

dF =
1

2
∂[ρFµν]dx

µ ∧ dxν ∧ dxρ = 0 (2.1.10)

d ? F =
1

2
ερµν∂[λFµν]dx

λ ∧ dxρ = 0 (2.1.11)

where the ? represents the Hodge dual operator.
In this 3d case, the Hodge dual of F is a 1-form current

Jµtop := (?F )µ =
1

2
εµρσFρσ (2.1.12)

that is conserved in virtue of Bianchi identity

dJtop = d ? F = 0 (2.1.13)

The physical theory under study enjoys a symmetry not explicitly readable from
the Lagrangian and, thus, the associated current cannot be thought as a standard
Noëther current. We call such a symmetry an hidden symmetry. Moreover, the fields
which carry a non-zero charge associated with this symmetry are not explicitly present
in the Lagrangian.

This result can be generalised to each Lie group G which contains a U(1)k sub-
group. Then there will be as many different currents as the number of such U(1)
factors. This particular hidden symmetry is called topological symmetry.

The existence of such a symmetry is related to the fact that in d = 3 the photon
is dual to a scalar ϕ called the dual photon. Since the photon possesses only one
polarisation, it is thus natural to think of it as a simple scalar field subject to some
constraints.

Let us consider the QED partition function for the gauge field
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Z =

∫
D [Aµ] exp

{
i

∫
d3x− 1

4g2
FµνF

µν

}
(2.1.14)

We can trade the measure D [Aµ] for D [Fµν ] since the Maxwell action depends
only on the 2-form. We just have to take care of the Bianchi identity d ? F = 0 which
is not predictable from the action only. This can be done introducing of a Lagrange
multiplier ϕ such that now

Z =

∫
D [Fµν ]D [ϕ] exp

{
i

∫
d3x− 1

4g2
FµνF

µν +
1

4π
ϕεµρσFρσ

}
(2.1.15)

We can now integrate out Fµν by using its new equation of motion

Fµν = − g
2

2π
εµνρ∂ρϕ (2.1.16)

This leads to the following partition function

Z =

∫
D [ϕ] exp

{
i

∫
d3x

g2

8π2
(∂µϕ)2

}
(2.1.17)

This new scalar ϕ is indeed the dual photon. By virtue of this duality, the original
equation of motion and Bianchi identity swap for ϕ

dJ ′ := d(dϕ) = dJtop = d ? F = d ? dA = 0

d ? (dϕ) = d ? Jtop = dF = d(dA) = 0
(2.1.18)

where clearly we have identified the differential of the dual photon with the topological
current of the previous dual theory:

J ′µ = Jµtop = − g2

4π2
∂µϕ (2.1.19)

which now realises the translation symmetry ϕ(x)→ ϕ(x) + α.
The topological symmetry thus acts by shifting the dual photon ϕ of a periodic

scalar α.
Now we want to look for operators possessing a non-vanishing charge under such

a topological symmetry. We can notice that the conserved quantity associated to this
symmetry is simply the magnetic flux

Qtop =

∫
d2xJ0

top =
1

2π

∫
d2xF 12 (2.1.20)

Thus we need to find a "special" local operator which represents unity of magnetic
flux. This can be achieved by editing the path integral and removing a single space-
time point x. Then a non-trivial boundary condition for the gauge field Aµ is naturally
required on any surface Σ surrounding that point. Thus we can define the monopole
creation operator V †(x) as the defect operator which imposes the unity of magnetic
flux

1

4π

∫
Σ
d2γµε

µνρFνρ = 1 (2.1.21)

This is not a surprise, since in quantum field theory local operators do not have
to be described as polynomials in the fundamental fields [121]; they may also include
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disorder or defect operators, which are obtained exactly by performing the path inte-
gral with suitable singular boundary conditions. For the upcoming discussion we will
closely follow two very nice reviews [61, 155].

Thus one can compute correlation functions involving the new operator V (x) in
the usual way inserting it in the path integral.

So, in the presence of V †(x), the topological current is no longer conserved; instead
it has a source

∂µJ
µ
top = δ3(x) (2.1.22)

Equivalently, the monopole operator is charged under U(1)top so that

U(1)top : V †(x)→ eiαV †(x) (2.1.23)

Using the dual photon picture, where the symmetry is manifest, we can implement
a monopole operator directly in the path integral by simply adding a iϕ(x) term

Z =

∫
D [Fµν ]D [ϕ] exp

{
i

∫
d3x− 1

4g2
FµνF

µν +
1

4π
ϕεµρσFρσ + ϕ

}
(2.1.24)

This ensures that the topological current has a source and thus the equation of
motion for the dual photon reads exactly

∂µJ
′µ = ∂µJ

µ
top = δ3(x) (2.1.25)

Thus in this picture a monopole operator corresponds to [5]

V †(x) ∼ eiϕ(x) (2.1.26)

from which we can see that indeed the topological symmetry is realised as a translation
on the dual photon

U(1)top : eiαV †(x) ∼ ei(ϕ(x)+α) (2.1.27)

Let us now examine in more details the features of the monopole operator in the
original theory. We will consider a generic gauge group G

By removing a point from R3, space-time becomes a manifold that cannot be
covered completely by one single patch. Since the minimum amount of patches is two,
we will parametrise the space with two emispheres

UN = {φ ∈ [0, 2π], θ ∈ [0,
π

2
+ ε]}

US = {φ ∈ [0, 2π], θ ∈ [0,
π

2
− ε]}

(2.1.28)

The corresponding two gauge connection develops a Dirac monopole singularity
[39] at the centre of the sphere x, i.e. the monopole insertion point

AN (r) ∼ m

2

1− cos θ

sin θ
dφ

AS(r) ∼ m

2

−1− cos θ

sin θ
dφ

(2.1.29)

where m, a priori, is an element of the Lie algebra g of the gauge group G.
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The magnetic flux provided by these gauge fields must then be quantised accord-
ing to Dirac quantisation. For θ 6= 0, π we can relate the gauge fields by a gauge
transformation

AN = t−1
NSAStNS − it

−1
NSdtNS (2.1.30)

where tNS is the transition function between the two patches of the bundle.
By requiring the transition function to be smooth and single-valued between the

patches, one finds the Dirac quantisation condition [73, 99]

exp{2πim} = 1G (2.1.31)

This condition requires m to belong to the weight lattice Γ of Ĝ, the Langland
dual of the group G. However, we must consider the fact that the Weyl group W

Ĝ
acts on m as on any other weight vector and so, since we will always look at gauge
invariant monopole operators only (i.e. the one that are invariants under the Weyl
group), we should restrict to m ∈ Γ

Ĝ
/W

Ĝ
.

Moreover we can always choose a gauge where in each patch m is a constant
element of the Cartan subalgebra modulo the action of the Weyl group, which allows to
define the magnetic chargem = (m1, . . . ,mr),ma ∈ Z, r = RankG. Thus, considering
for example the case of G = SU(N) = Ĝ, modding out the action of the Weyl group
WU(N) = SN , we get that the magnetic charges satisfies m1 ≥ m2 ≥ . . . ≥ mr, i.e.
m ∈ ZN/SN .

Considering now the N = 2 supersymmetric case [38], in order to have a BPS
monopole operator, one a priori has to assign similar singular behaviours to the matter
fields inside the vector multiplet. It turns out that, in order for the BPS monopole to
preserve the same amount of supersymmetry of an N = 2 chiral multiplet, one must
specify a boundary condition only for the real scalar σ of the form

σ ∼ m

2r
(2.1.32)

In this supersymmetric setup, the BPS monopole operator gets the form

V †(x) ∼ eiϕ(x)+σ(x) (2.1.33)

where the dual photon ϕ combines with the adjoint scalar σ to form this new holo-
morphic operator.

2.2 3d N = 4 theories on flat space

In the next chapters we will study superconformal indices of N = 4 theories with
eight real supercharges, satisfying

{QIα,Q
J
β} = 2δIJγµαβPµ + 2iεαβZ

[I,J ]

QI = QI
(2.2.1)

which are the generalisation of (2.1.2) and (2.1.1) with I, J = 1, 2.
The superchargesQI andQJ transforms in the vector representation of the SU(2)L×

SU(2)R ' SO(4) R-symmetry.
The previous discussion on N = 2 three dimensional theories already encloses

everything we need to construct a N = 4 gauge theory. In fact, we can choose a
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particular N = 2 subalgebra inside the N = 4 one which allows us to remain in a
N = 2 formulation with a specific field content and action.

More precisely, the N = 4 vector multiplets and hypermultiplets can be schemat-
ically decomposed in a N = 2 language as follows

Multiplet
Content G

d = 3 N = 4 d = 3 N = 2

Vector (V )

Vector (V )

Aµ

Adjoint

σ

λ

D

Chiral (Φ)

φ

ρ

F

Hyper (H)

Chiral (χ)

H

Rψ

F

Chiral (χ̃)

H̃

R∗ψ̃

F̃

(2.2.2)

where the R∗ gauge representation of the N = 2 χ̃ chiral multiplet is the complex
conjugate of the R one of the N = 2 χ chiral multiplet.

Moreover, it is interesting to observe how the various component fields combine
to give representations of the SU(2)L × SU(2)R R-symmetry group

Multiplet Content SU(2)L × SU(2)R

Vector (V )

Aµ (0, 0)

{σ,Reφ, Imφ} (0, 1)

{λ, ρ} (1
2 ,

1
2)

{D,ReF , ImF} (1, 0)

Hyper (H)

{H, H̃} (1
2 , 0)

{ψ, ψ̃} (1
2 ,

1
2)

{F, F̃} (0, 0)

(2.2.3)

Hence, the Lagrangian for a N = 4 gauge theory can be written using the expres-
sions we introduced for the N = 2 case. The expression is the same of (2.1.5), where
now

1. The super Yang-Mills Lagrangian is
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LSYM =
1

g2

∫
d2θTr {WαWα}+ c.c. +

∫
d2θd2θTr

{
Φe2gV Φ

}
=

= Tr

{
1

4
FµνFµν +

1

2
DµσDµσ − iλγµDµλ− iλ[σ, λ] +

1

2
D2+

+DµφDµφ+ [φ, σ][σ, φ]− iργµDµρ− iρ[σ, ρ]−FF+

+i
√

2g
(
φ{λ, ρ}+ {ρ, λ}φ

)
+ gD[φ, φ]

}
(2.2.4)

where now everything sits in an adjoint representation of the gauge group G.

2. The Chern–Simons Lagrangian becomes

LN=4
SCS =

k

4π
Tr

{
A ∧ dA+

2

3
A3 − λλ+ 2Dσ

}
− k

4π

∫
d2θTr

{
Φ2
}

+ c.c.

(2.2.5)

where now the second contribution makes Φ enter the superpotential in a new
way.

Note that this supersymmetric Chern–Simons term preserves only N = 3 super-
symmetry, i.e. six real supercharges rotated by an SO(3) R-symmetry group.

3. The Fayet-Iliopulos Lagrangian is

LN=4
FI = 2g

∑
A

ξA
∫
d2θd2θVA = g

∑
A

ξADA (2.2.6)

4. The Matter Lagrangian is

LN=4
Matter =

∑
i

{∫
d2θd2θ(H

(i)
e2gVH(i) + H̃

(i)
e−2gV H̃(i))+

+

∫
d2θ
√

2gH(i)ΦH̃(i) +

∫
d2θ
√

2gH̃
(i)

ΦH
(i)
}

=

=
∑
i

{[
DµH(i)DµH(i) + gH

(i) (
σ2 +D

)
H(i)+

+i
√

2g
(
H

(i)
λψ(i) + ψ

(i)
λH(i)

)]
+
[
H(i) → −H̃(i)

]
+

−iψ(i)γµDµψ
(i) − iψ(i)σψ

(i) − F (i)
F (i)+

+
√

2g
(

2H(i)ρψ̃(i) + 2ψ(i)ρH̃(i) + 2ψ(i)φψ̃(i)+

+H(i)φF̃ (i) + F (i)φH̃(i) +H(i)FH̃(i)
)

+

+
√

2g

(
H(i) → H

(i)
,Φ→ Φ, H̃(i) → H̃

(i)
)}

(2.2.7)

where, again, we sum over i = 1, . . . , NF labelling the total number of mat-
ter hypermultiplets; however the larger amount of supersymmetry now severely
constrains the form of the superpotential to be W = H(i)ΦH̃(i).
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2.2.1 Moduli space of supersymmetric vacua

Consider a generic classical field theory. We can define an equivalence relation on the
set of all vacua (i.e. the states of minimal energy) in the following way: two vacua Ω1

and Ω2 are equivalent if there exists a gauge transformation which sends Ω1 into Ω2.
The moduli space is therefore defined to be the setM of all inequivalent vacua [134].

After quantisation the energy becomes a functional, namely the Hamiltonian.
Therefore, we say that a state is a vacuum state if the expectation value of the
Hamiltonian on such state is minimal. Since all the kinetic terms in the Hamiltonian
are quadratic in the derivatives of the fields, in a vacuum field configuration, all the
fields must be constants over spacetime. Then, the Lorentz invariant nature of the
vacuum forces all fields apart from the scalars to be not only constant, but identical to
zero in any vacuum configuration. Thus only scalar fields can assume non-vanishing
vacuum expectation values and these are exactly coordinates on the moduli spaceM,
turning it into a differentiable manifold.

One of the most interesting aspects of supersymmetric gauge theories is the possi-
bility of possessing non-trivial moduli spaces. This happens whenever it is possible to
find non-trivial configuration of scalar fields that make their respective scalar poten-
tials to be zero. For a generic N = 4 supersymmetric theory, the expression of such
a scalar potential can be always written as a sum of squared quantities

Vϕ =
∑
N=2
chirals

|F |2 +
g2

2

∑
N=2
vectors

D2 ≥ 0 (2.2.8)

where F and D come from the integration of the auxiliary fields in all the N = 2
chiral and vector multiplets respectively. They are the so-called F- and D-terms and
their form depends on the space-time dimension and on the amount of supersymme-
try. Since the scalar potential is the sum of squares of F and D-terms, the moduli
space of vacua is obtained by putting these two set of expressions to zero giving rise,
respectively, to F and D-term equations.

Considering our previous N = 4 Lagrangian, i.e. (2.2.4)-(2.2.7), these equations
read:

φa(T
a) n
m H̃(i)

n = 0

H(i)n(T a) m
n φa = 0

√
2g
∑
i

H(i)T aH̃(i) − k

2π
φa = 0

−g[φ, φ]a − g
∑
i

(H
(i)
TaH

(i) + H̃
(i)
TaH̃

(i))− gξa −
k

2π
σa = 0

σa(T
a) n
m H(i)

n = 0

σa(T
a) n
m H̃(i)

n = 0

[σ, φ]a = 0

(2.2.9)

Forgetting for now the Fayet-Iliopulos and Chern–Simons terms, the existence of
two different sets of scalars, the ones in the hypermultiplets {H(i), H̃(i)}, and the ones
in the vector multiplets {σa, φa}, implies that the moduli space of vacua is composed
of two different parts (or at most three), called branches and joined together at the
origin:
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1. Coulomb Branch (CB):

H(i) = H̃(i) = 0

φa, σa 6= 0
(2.2.10)

We can spoil the fact that the only remaining scalars reorganise themselves as
a unique real scalar ηi = (σ,Re[φ], Im[φ]) transforming as a (0, 1) vector under
the R-symmetry group SU(2)L × SU(2)R.

Thus, the scalar potential can be written as

Vϕ(ηi) =
∑
i<j

TrG [ηi, ηj ]
2 ≥ 0 (2.2.11)

To obtain Vϕ(ηi) = 0 we must then take ηi to lie in the Cartan subalgebra of
the gauge group G.

Due to spontaneous Higgsing the gauge group is then broken down to its max-
imal torus U(1)r with r massless vectors and (Dim{G} − r) massive ones with
masses proportional to [η,A

(broken)
µ ].

In addition to the ηi, there are then r massless photons. Since a photon is dual
to a scalar in three space-time dimensions, there is a total of 4r massless scalars.
They can combine together to form the scalar components of r hypermultiplets
that can be thought of as living on the Coulomb branch and which VEVs can be
taken as the coordinates on it. In the geometry of the problem this is reflected
promoting the Coulomb branch manifold to an Hyperkähler maniofold.

Thus, for each gauge group Gi we are considering in the theory, the classical
Coulomb branch gets an additional real dimension of 4 Rank{Gi}, or simply
Rank{Gi} if we express it in quaternionic units:

dimH{MC} =
∑
i

Rank{Gi} (2.2.12)

The classical Coulomb branch has then to be quantum mechanically corrected
by loop corrections and instanton effects [148, 149], but his structure always
remains Hyperkähler.

2. Higgs Branch (HB):

H(i), H̃(i) 6= 0

φa = σa = 0
(2.2.13)

Nothing too general can be said about this branch since its explicit form depends
on both the representations of the hypermultiplets and their number of flavours.
The Higgsing changes accordingly. Indeed giving VEVs to these scalars breaks G
down to a certain subgroup Gunbr; clearly, when the number of hypermultiplets
is big enough, complete breaking occurs.

By construction, however, there are at least two complex scalars {H(i), H̃(i)} for
each N = 2 hypermultiplet. This automatically allows us to evaluate the Higgs
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branch dimension in quaternionic units and conclude that it must also be an
Hyperkähler manifold.

Consequently the Higgs branch dimension is given by the number of N = 4
hypermultiplets Ni charged under every gauge group Gi minus the number of
gauge fields that become massive due to Higgsing Dim{Gi} −Dim{Gunbr

i }:

dimH{MH} =
∑
i

[
Ni −

(
Dim{Gi} −Dim{Gunbr

i }
)]

(2.2.14)

where usually Dim{Gunbr
i } = 0.

It is widely believed that Higgs branch is not corrected at quantum level [11].

3. Mixed Branch (MB):

H(i), H̃(i) 6= 0

φa, σa 6= 0
(2.2.15)

In the most complicated cases, also mixed branches can appear. This requires
to find the general solution for F and D-flatness conditions. This is challenging
in general but, however, it must be stressed that also in this case the two sets
of operators participate to the dynamics independently and the mixed branch
is actually a product of two manifolds.

An example of a discussion of mixed branches for three-dimensional N = 4
theories can be found in [48].

When Chern–Simons couplings are present, the story is slightly different.
In this case the Coulomb branch, i.e. where hypermultiplets vanish H(i) = H̃(i) =

0, is completely lifted, since now F and D-terms would imply φa = σa = 0. On the
other hand, considering the Higgs branch where φa = σa = 0, it is left completely
unchanged with respect to the previous case where k = 0. Thus, the presence of
a Chern–Simons level can lift the Coulomb branch while the Higgs branch remains
untouched.

Moreover, the two sets of scalars can acquire expectation value at the same time
giving rise to mixed branches with complicated dynamics. Sometimes, the one with
maximal dimension is identified with the Coulomb branch of the theory. However, all
these branches are always Hyperkähler manifolds [36, 118, 148].

2.2.2 The chiral ring

We have seen that the vacuum structure of a supersymmetric theory is completely
characterised by the expectation values of all the scalar fields inside the theory (let us
call these collectively {φi}) subject to F and D-flatness conditions. This schematically
reads

Mcl =
{
〈φi〉 | D = F = 0

}
/ gauge transf. (2.2.16)

where one should mod out by gauge transformations, since solutions which are related
by gauge transformations are physically equivalent and describe the same vacuum
state.
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Generically it is not at all easy to solve the F and D-flatness conditions and find
a simple parametrisation of Mcl, but luckily there is another way of describing the
classical moduli space which can be found in the context of algebraic geometry. The
aim, naively, consists in find a new class of operators {Oi} for which the constraints
due to F and D-terms and the modding by gauge transformations exchange, thus
obtaining

Mcl =
{
〈Oi〉 | gauge invariant

}
/ F and D-flatness conditions (2.2.17)

This leads to the concept of chiral ring [133] that we now turn to discuss. In doing
so we will closely follow [9, 47]. Let us firstly define what a chiral operator is

Definition 2.2.1. Chiral operator
A chiral operator O(x) is a gauge invariant operator such that it is annihilated
by all the supercharges of one chirality.

[QIα,O(x)} = 0 ∀I (2.2.18)

For example the bottom component φ of a chiral multiplet Φ is annihilated by QIα
but it is not a chiral operator because it is not gauge invariant in general. However,
given a gauge invariant chiral superfield its lowest component will always be a chiral
operator. Therefore, in order to build gauge invariant operators, one should generally
use different combinations of chiral fields enclosed in traces over the gauge group G.

One crucial property is that the VEV of any time ordered product of such operators
is independent of their spacetime positions. Consider for instance the quantity

∂1
µ 〈0|T

(
O1(x1)O2(x2)

)
|0〉 =

= 〈0|T
(
∂1
µO1(x1)O2(x2))

)
|0〉+ δµ0 〈0|[O1(x1),O2(x2)]|0〉 δ(x0

1 − x0
2)

(2.2.19)

where we used the definition of time ordered product

T
(
O1(x1)O2(x2)

)
:= θ(x0

1 − x0
2)O1(x1)O2(x2) + θ(x0

2 − x0
1)O2(x2)O1(x1) (2.2.20)

and the fact that

∂1
µθ(x

0
1 − x0

2) = δµ0δ(x
0
1 − x0

2) (2.2.21)

The second term in (2.2.19) is zero because the equal time commutator vanishes,
the first is also null because, using the supersymmetry algebra

〈0|∂1
µO1(x1)O2(x2)|0〉 ∝

∝ 〈0|[Pµ,O1(x1)]O2(x2)|0〉 ∝ 〈0|[{QI ,QI},O1(x1)]O2(x2)|0〉
(2.2.22)

The idea now is to spoil the Jacobi identity and the chirality of the operators Oi
to bring QI to act on the vacuum state so that, if supersymmetric is not broken, it
vanishes. We have that
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[{QI ,QI},O1(x1)]O2(x2) = {QI , [QI ,O1(x1)]}O2(x2) (2.2.23)

and so

〈0|{QI , [QI ,O1(x1)]}O2(x2)|0〉 = 〈0|{QI , [QI ,O1(x1)]}O2(x2)}|0〉 = 0 (2.2.24)

The manipulations above can be done for any number of chiral operators, thus we
can write

〈0|T
(∏

i

Oi(xi)
)
|0〉 = 〈

∏
i

Oi〉 (2.2.25)

without specifying the positions xi. Using this invariance, we can take a correlation
function of chiral operators at distinct points, and separate the points by an arbitrarily
large distance. Cluster decomposition then implies

〈0|T
(∏

i

Oi(xi)
)
|0〉 =

∏
i

〈Oi〉 (2.2.26)

Since objects of the type [QIα, · } do not contribute to the expectation values in a
supersymmetric vacuum, it is natural to define an equivalence relation between chiral
operators. Two chiral operators O1(x) and O2(x) are then equivalent if there exist a
set of gauge invariant operators Xα

I (x) such that

O1(x) ∼ O2(x) + [QIα, Xα
I (x)} (2.2.27)

The set of equivalence classes of chiral operators forms a ring, known as the chiral
ring [133].

Definition 2.2.2. Chiral ring
Given the set of all chiral operators C0, the chiral ring is defined to be the quotient
ring of C0 over the equivalence relation between chiral operators

CR = C0/ ∼ (2.2.28)

A very important mathematical consequence of this construction is the existence
of a map from the chiral ring CR to the ring of holomorphic functions over the moduli
space

ϕ : CR → C∞(M)

O(x) 7→ f(z1, . . . , zm)
(2.2.29)

where f(z1, . . . , zm) : M→ C.
Moreover, when F and D-flatness conditions on chiral operators are taken into

account, this map becomes bijective.
Expectation values of gauge invariant combinations of chiral operators will play a

key role in the following sections when many moduli spaces of supersymmetric vacua
will be discussed in details.
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2.2.3 Monopole operators

We want now to discuss N = 4 BPS monopole operators. Luckily some of the results
of the N = 2 holds even in this case; indeed the very definition of the BPS monopole
operator is identical to the N = 2 case, i.e. the scalars belonging to the adjoint chiral
multiplet Φ do not have to acquire any singular behaviour.

However, we have the possibility to turn on a constant background for the adjoint
complex scalar φa on top of the N = 2 BPS monopole background {AN/S , σ}, while
preserving the same supersymmetry of an N = 2 chiral multiplet.

In the following we will refer to N = 2 BPS monopole operators with a background
φ = 0 as bare monopole operators, and to N = 2 BPS monopole operators with non-
vanishing φ ∈ g as dressed monopole operators. The Weyl group acts both on H and
φ, and gauge invariant monopole operators are again obtained by taking invariants
under the Weyl group in Γ

Ĝ
/W

Ĝ
.

Both classes of operators take expectation values on the Coulomb branch of an
N = 4 gauge theory and are needed to describe the chiral ring CR.

Monopole operators, which classically may only be charged under the topological
symmetry, can acquire nontrivial quantum numbers quantum-mechanically. The most
important quantum number for our future discussion is the R-charge. For a generic
non Abelian theory the R-charge of the monopole reads [18, 24, 85]

∆(m) = −
∑
α∈∆+

|α(m)|+
∑
i

(1−∆i)
∑
ρ∈Ri

|ρ(m)| (2.2.30)

where the first sum is over the set of all positive roots α ∈ ∆+ of the gauge group
G and represents the contribution arising from the N = 4 vector multiplets, while
the second sum is the contribution from the N = 4 hypermultiplets H(i), ∆i is the
R-charge of the i-th hypermultiplet and the internal sum runs over the weights ρ of
their gauge representation Ri. Here and in the following we will adopt the notation
α(m) := α ·m and the same for ρ(m).

Using the nomenclature proposed by Gaiotto and Witten [85], according to the
value of ∆(m) a theory can be:

• good if all BPS monopoles satisfy ∆(m) > 1
2 ;

In this case all monopole operators will be coupled

• ugly if all BPS monopoles satisfy ∆(m) ≥ 1
2 ;

The monopoles with ∆(m) = 1
2 which saturate the bound will be free decoupled

fields

• bad if there is one or more BPS monopoles which satisfy ∆(m) < 1
2 ;

In this case ∆(m) does not correspond to the scaling dimension of the monopole
operators since R-symmetry mixes with other accidental symmetries and the
theory becomes non-unitary.

Moreover, the monopole gauge charge with respect to a simple group with Chern–
Simons level k has the following form

Qa(m) = −kma −
∑
i

∑
ρ∈Ri

|ρ(m)|Qia (2.2.31)

where the second term represents the correction due to the hypermultiplets H(i) and
ρ, as above, is the weight of their representations Ri of the gauge group.
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Even the flavour charges get modified as follows

Fi(m) = −
∑
i

∑
ρ∈Ri

|ρ(m)|Fi (2.2.32)

where, now, Fi is the flavour charge of the i-th hypermultiplet H(i).
How corrections (2.2.30), (2.2.31) and (2.2.32) arise will be clearer in Chapter (4);

for now let us just continue the discussion.

2.2.4 The Hilbert Series

By exploiting the correspondence between chiral operators Oi and holomorphic func-
tions stated in the previous chapter, we could simply use the generators of the chiral
ring as coordinates on the moduli space.

However, it is often too hard to compute the whole chiral ring. Therefore, in this
cases, we shall limit ourselves to count the different chiral operators in a graded way,
so that we keep track of their different representations under global symmetries of the
theory.

This can be done, for example, through the Hilbert series [64, 65, 105, 135, 144].
It is defined as follows

H(t, ω, µ) = Tr
(
t∆

RankG∏
a

ωJaa

Rank Ĝ∏
i

µFii

)
CR

(2.2.33)

where the trace is taken over the chiral ring CR and is graded according to the R-
charge ∆, the topological charges Ja and the Cartan generators Fi of the flavour
symmetry Ĝ. t, ωa and µi are the corresponding fugacities.

This clearly reconstruct the character of the representation in which the chiral
operators at a given R-charge ∆ sits; considering for example a flavour symmetry
group Ĝ, we get1

∑
{Oi}

Rank Ĝ∏
i

µFii

∣∣∣
Oi

=
∑
ρ̃∈R̃

Rank Ĝ∏
i

µρ̃ii := χĜR̃(µ) (2.2.34)

where ρ̃ is the weight of the flavour representation R̃i.
The gauge invariant chiral operators of the theory are ’t Hooft monopole operators

Vm dressed by matter fields. Thus, to compute the Hilbert series, it is useful to
decompose the vector space of chiral operators in vector spaces of chiral operators of
fixed magnetic charge m. For each of these subspaces there is a unique bare chiral
monopole operator Vm, which however can be dressed by massless matter fields to
form gauge invariants. These are the matter fields contained inside all the N = 2
chiral multiplets Φ satisfying the condition∑

a

QΦ
ama = 0 (2.2.35)

where QΦ
a are the gauge electric charges of the chiral multiplet.

In order to obtain the powers of such residual matter fields, we need a function
that "counts" the symmetrized products of a given set of objects. This turns out to
be the plethystic exponential

1For all the group theory results of this section, we refer the interested reader to [158].
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Definition 2.2.3. Plethystic exponential

Given a function f : Rn → R such that f(0, 0, . . . , 0) = 0, we define the
plethystic exponential of f to be

PE[f(t1, . . . , tn)] = exp

{ ∞∑
k=1

f(tk1, . . . , t
k
n)

k

}
(2.2.36)

Moreover it enjoys the usual "sum to product" property of the ordinary exponen-
tial, which is

PE[f(t) + g(t)] = PE[f(t)] PE[g(t)] (2.2.37)

The main idea is that this function keeps track of the cardinality of the set of
all symmetric monomials at generic degree. More precisely, given n basic monomials
{a1, . . . , an}, consider the set S(n,k) whose elements are all the possible symmetric
monomials of degree k. In general, the coefficient of the k-th power of t in the Taylor
expansion of PE[nt] gives the cardinality of S(n,k). For example

PE[3t] =
1

(1− t)3
=

∞∑
k=0

dim{S(3,k)}tk (2.2.38)

where, for k = 2

S(3,2) = {a2
1, a

2
2, a

2
3, a1a2, a2a3, a3a1} (2.2.39)

Then, the grading comes from the fact that the generator of symmetrisation for n
variables can be written as

n∏
i

1

(1− ai)
=

n∏
i=1

∞∑
ni=0

anii (2.2.40)

This also is expressible in terms of plethystic exponents as

n∏
i

1

(1− ai)
=

n∏
i

PE[ai] = PE[

n∑
i

ai] (2.2.41)

Taking as generators ait, we can then use t to count the degree of the symmetri-
sation through its exponent in the taylor expansion

n∏
i

1

(1− ait)
= PE[(

n∑
i

ai)t] =

∞∑
k=0

∑
e∈S(n,k)

e(ai)t
k (2.2.42)

where e(ai) is an element of S(n,k)(ai).
Applying this reasoning to the residual matter fields, we get that the generating

function reads
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PE

∑
Φ

δ∑
aQ

Φ
ama,0

t∆Φ

RankG∏
a

zQ
Φ
a

a

Rank Ĝ∏
i

µ
FΦ
i
i

 =

=
1∏

Φ δ
∑
aQ

Φ
ama,0

(
1− t∆Φ

∏RankG
a z

QΦ
a

a
∏Rank Ĝ
i µ

FΦ
i
i

) (2.2.43)

We can make this expression more compact by noticing that the operators Qa
and Fi when acting on matter fields transforming in the representation (R, R̃) of
respectively the gauge group and the flavour group give the components of their
weight vectors ρa and ρ̃i.

Thus, introducing the notations

ab :=
∏
i

abii , a(b) := a · b =
∑
i

aibi (2.2.44)

whenever such products are implied, equation (2.2.43) simplifies to

PE

[∑
Φ

δρ(m),0t
∆zρµρ̃

]
=

1∏
Φ δρ(m),0

(
1− t∆zρµρ̃

) (2.2.45)

Our strategy to compute the Hilbert series consists in evaluating (2.2.33) and
(2.2.45) for all the operators which are annihilated by the supercharges of one kind,
but are not necessarily gauge invariant and therefore not chiral. Subsequently, we
will restrict the sum over the gauge invariant ones by means of the Molyen-Weyl
projection, which consists in integrating the Hilbert series over the whole gauge group
and thus, in a certain sense, averaging away all the non-gauge invariant operators in
the sum.

To do so we make use of the Haar Measure of a compact Lie group2. By using the
Weyl integral formula, the Haar measure can be computed explicitly

∫
dµg =

1

(2πi)r

∮
|z1|=1

· · ·
∮
|zr|=1

dz1

z1
. . .

dzr
zr

∏
α+

(
1−

r∏
k=1

z
α+
k

k

)
(2.2.46)

where the zk variables parametrise the maximal torus of the compact Lie group group
G, thus r = RankG and α+ are positive roots of the associated Lie algebra.

From our physical point of view, the maximal torus variable z of the Haar measure
represents the fugacity associated to the gauge symmetry G. However, in the presence
of dynamical magnetic charges m, the gauge group G is broken to a residual gauge
group Hm of the same rank r, but given by the commutant of the magnetic charge m
in G. This implies that the Haar measure should be modified accordingly. This can
be achieved by simply modifying the definition (2.2.46) as follows

r∏
a=1

∮
|za|=1

dza
2πiza

∏
α∈∆+

(1− zα)δα(m),0 (2.2.47)

where, for notational convenience, we introduced the space of positive roots ∆+.
Then we use orthonormality of characters to project the Hilbert series over states

with a given representation of gauge symmetry. Then if
2See footnote (1).
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∫
dµg(zi)χR(zi)χR′(zi) = δR,R′ (2.2.48)

we can project onto states with given gauge representation R by integrating (2.2.33)
and (2.2.45) with the appropriate Haar measure and multiplying by χR(zi)

Combining all these results together, since we need to project on gauge invariant
states, i.e. state with trivial representation χR(zi) = 1, the Hilbert series finally reads
[63] (see also [61, (8.1)])

H(t, ω, µ) =
∑
{m}

t∆(m)ωmµF (m)
r∏

a=1

∮
|za|=1

dza
2πiza

×

×
∏
α∈∆+

(1− zα)δα(m),0 PE

[∑
Φ

δρ(m),0t
∆zρµρ̃

] (2.2.49)

where, whenever we consider a monopole operator with m 6= 0, we need to use the
correct expressions for its quantum numbers, i.e. (2.2.30), (2.2.31) and (2.2.32).

Up to now, in (2.2.49), we have considered the complete set of chiral operators,
namely C0 in (2.2.28). This coincide with the chiral ring CR whenever the chiral
operators are unconstrained by F-flatness conditions, i.e. whenever there is no super-
potential W = 0.

Whenever W 6= 0, equation (2.2.49) must then be modified to include the F-
flatness conditions and thus count only the chiral operators inside the chiral ring
CR. This can be done by including a polynomial factor N(t, z) that enforces F-term
equations. Clearly, according to the structure of F-term equations, N(t, z) can take
different expressions.

Luckily in our 3d N = 4 case the superpotential is constrained to always have
the schematic form W = H(i)ΦH̃(i). Thanks to this fact, the only relevant F-term
becomes

Fa =
∂W
∂φa

=
∑
i

Tr
(
H(i)(T (F )

a )H̃(i)
)

= 0 (2.2.50)

which is a second order relation in the fields {H(i), H̃(i)} and carries an adjoint index
of the gauge group G.

So, in (2.2.49), there shall be a factor

N(t, z) = PE
[
−t∆H+∆

H̃zρAdj
]

(2.2.51)

for each different hypermultiplet that possesses an F-term equation (2.2.50). In fact,
if more than one gauge or flavour group is present, it is possible that different hyper-
multiplets are charged under the same gauge group. This fact can create dependences
among all the F-term equations, which reduce the number of independent ones, i.e.
the ones that generate a factor of the form (2.2.51).

Considering the group of independent F-term equations {F (α)}, we have that the
Hilbert series for a superpotential W 6= 0, becomes
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H(t, ω, µ) =
∑
{m}

t∆(m)ωmµF (m)
r∏

a=1

∮
|za|=1

dza
2πiza

∏
α∈∆+

(1− zα)δα(m),0 ×

× PE

[∑
Φ

δρ(m),0t
∆zρµρ̃

]
PE

[∑
Hα

(
−t2∆zρ

unbr
Adj

)] (2.2.52)

where now the N(t, z) factor takes into account the breaking of the gauge group G to
Hm.

Clearly this quantity is really hard to compute even for the simplest examples.
Since we will be only interested in the Coulomb and Higgs branch Hilbert series
separately (and we will also forget about mixed branches), it is useful to restrict and
simplify the expression (2.2.52) to just one of the branches.

• Higgs branch

Let us start from the simplest one, the Higgs branch. This amounts only to take
ma = 0 ∀a in (2.2.52) leading to the so-called Molien integral [46]

HH(t, µ) =
r∏

a=1

∮
|za|=1

dza
2πiza

∏
α∈∆+

(1− zα)×

× PE

[∑
Φ

t∆zρµρ̃

]
PE

[∑
Hα

(
−t2∆zρAdj

)] (2.2.53)

• Coulomb branch

On the Coulomb branch, the expression of the plethystic exponential in (2.2.52)
drastically simplifies and, after integration, give rise to a simple classical factor
expressed as

PG(t,m) =

r∏
i=1

1

1− tdi(m)
(2.2.54)

which essentially counts the Casimir invariants with degree (i.e. R-charge) di(m)
of the residual gauge group Hm left unbroken by the magnetic flux m.

This result is due to the fact that no hypermultiplet remains and consequently
the dressing of the bare monopole operators can only occur via combinations of
the complex scalar φ in the vector multiplet. These combinations are exactly
the Casimir invariants.

The Hilbert series (2.2.52) on the Coulomb branch takes thus the form of the
so-called monopole formula [64]

HC(t, ω) =
∑
{m}

t∆(m)ωmPG(t,m) (2.2.55)

In the following we will see some explicit example of this classical factor PG(t,m).

When dealing with the monopole formula, once (2.2.55) has been evaluated
explicitly, it is useful to take the inverse of the plethystic exponential, called the
plethystic logarithm
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Definition 2.2.4. Plethystic logarithm

Given a function g : Rn → R such that g(0, 0, . . . , 0) = 0, we define the
Plethystic logarithm of g to be the function

PL[g(t1, . . . , tn)] =

∞∑
k=1

µ(k)

k
log(g(tk1, . . . , t

k
n)) (2.2.56)

where µ(k) is the Möbius function defined as

µ(k) =


0, if k has one or more repeated prime factors
1, if k = 1
(−1)n, if k is the product of n distinct primes

(2.2.57)

This produces nothing but the exponent of the generating function of the Coulomb
branch and, thus, allows to better understand the chiral generators and the re-
lations among them. The generating function itself can be obtained taking the
plethystic exponent (as in the case of the Higgs branch Hilbert series.

2.2.5 Quiver diagrams

Quivers are a class of graphs with lines connecting different nodes and in which lines
starting and ending at the same node are also allowed. From a physical point of view,
quivers are extremely interesting since they provide a very compact way for writing a
Lagrangian.

An example of a quiver diagram could be

G1
k1

G2
k2 Ĝ2

A

B

C

(2.2.58)

The rule to read off the gauge group and the matter content of a theory from a
quiver graph is the following:

• Each circular node Giki of the quiver diagram corresponds to a factor Gi of the
total gauge group with Chern–Simons interaction of level ki. This node thus
encode the vector superfield related to the gauge group Gi;

• Each square node Ĝi of the quiver diagram corresponds to a factor Ĝi of the
total flavour symmetry of the theory;

• Each line corresponds to a matter superfield {A,B,C, . . .} transforming in the
bifundamental representation of the two nodes between which it stretches.

Note that these rules do not fix the Lagrangian completely. One needs to specify
the superpotential, the mass terms and the Fayet-Iliopulos terms by hand, since they
cannot be read off the quiver. In our case we will always assume, unless explicitly
stated otherwise, that all these quantities are zero.

Clearly the content of the theory changes according to which amount of super-
symmetry we choose for the quiver. In our case, for example, it can be read both in
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N = 2 or N = 4 languages considering in the first case the N = 2 vector and matter
multiplets, while the N = 4 in the other.

However, when viewed in a N = 4 language, the quiver (2.2.58) can also be
rewritten in the N = 2 one drawing explicitly the N = 2 multiplets composing the
N = 4 ones. We get

G1
k1

G2
k2 Ĝ2

{A, Ã}

{B, B̃}
{C, C̃}

Φ1 Φ2

(2.2.59)

From the quiver we can easily read off the Coulomb and Higgs branch dimensions
by means of (2.2.12) and (2.2.14).

Moreover, in this N = 4 case, also the superpotential can be read off the quiver;
for each double line {H(α), H̃(α)}, i.e. hypermultiplet, and for each gauge group
connected by this line (at most two) we associate a term of the form

W(α) = H(α)Φ1H̃
(α) − H̃(α)Φ2H

(α) (2.2.60)

then the total superpotential W will just be the sum over such multiplets.
Thanks to this fact, we can also easily construct the Hilbert series (2.2.52), taking

into account the correct expression for the F-terms factor (2.2.51).
Now we have all the ingredients to see our first example.

2.2.6 Example: 3d N = 4 U(Nc) gauge theory with Nf fundamental
hypermultiplets

We will consider as a first simple example the U(Nc) gauge theory with Nf hyper-
multiplets {Qi, Q̃i} of gauge charge ±1, whose N = 2 quiver description is as follows

Nc Nf

Q

Q̃Φ

(2.2.61)

The superpotential of this theory is just

W =
∑
i

Qai (Φ) b
a Q̃

i
b (2.2.62)

where i = 1, . . . , Nf and a, b = 1, . . . , Nc.
The fields relevant to our discussion are the one participating in the superpotential.

They have the following charges and representations (i.e. Dynkin labels)
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Field R U(1)gauge SU(Nc)gauge U(1)flavour SU(Nf )flavour

(Φ) b
a 1 0 [1, 0, . . . , 0, 1] 0 0

Qai
1
2 1 [1, 0, . . . , 0] −1 [0, . . . , 0, 1]

Q̃ia
1
2 −1 [0, . . . , 0, 1] 1 [1, 0, . . . , 0]

(2.2.63)

Thanks to (2.2.12) and (2.2.14), we can determine the Coulomb and Higgs branch
quaternionic dimensions; we have

dimH{MH} = NfNc −N2
c

dimH{MC} = Nc

(2.2.64)

where NfNc represents the total number of hypermultiplets {Qai , Q̃ia} charged under
U(Nc) and we supposed U(Nf ) big enough to completely break the gauge group (i.e.
Nf ≥ 2Nc).

We can also construct the Hilbert series (2.2.53) and (2.2.53) for both branches to
help us analyse their structure.

• Higgs branch

The results of the Higgs branch analysis for such a theory are presented in [100].

We have one relevant F-term only

∂W
∂ΦA

=
∑
i

Qai (TA) b
a Q̃

i
b = 0 (2.2.65)

which carries an adjoint A free index of U(Nc), so that the N(t, z) factor reads

N(t, z) = PE
[
−
(

1 + χ
SU(Nc)
[1,0,...,0,1](z)

)
t2
]

(2.2.66)

Then, the Higgs branch Hilbert series reads

HH(t, µ) =

∫
dµU(Nc)(z)PE

[
χ
U(Nf )

[0,...,0,1](µ)χ
U(Nc)
[1,0,...,0](z)t+

+χ
U(Nf )

[1,0,...,0](µ)χ
U(Nc)
[0,...,0,1](z)t−

(
1 + χ

SU(Nc)
[1,0,...,0,1](z)

)
t2
]

=

=

∫
dµU(1)(w)dµSU(Nc)(z)PE

[( q
w
χ
SU(Nf )

[0,...,0,1](µ)χ
SU(Nc)
[1,0,...,0](z)+

+
w

q
χ
SU(Nf )

[1,0,...,0](µ)χ
SU(Nc)
[0,...,0,1](z)

)
t−

(
1 + χ

SU(Nc)
[1,0,...,0,1](z)

)
t2
]

(2.2.67)

where we used the definition of the group character (2.2.34). In the first two
lines we took into account that Qai and Q̃

i
a transform in opposite representations

of U(Nc) and U(Nf ). In the second two lines we splitted the representations of
U(Nc/f ) into U(1)q/w×SU(Nc/f ) and defined the two U(1)s fugacities q and w
of U(Nc) and U(Nf ) respectively. In this way, the fugacities z and µ are subject
to the tracelessness constraint
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RankG∏
a

za =
Rank Ĝ∏

i

µi = 1 (2.2.68)

To do some explicit calculations, let us choose Nc = 2; in this way we get

HH(t, µ) =
1

(2πi)2

∮
|z,w|=1

dw

w

dz

z

1− z2

z
×

× PE
[(

q

w
χ
SU(Nf )

[1,0,...,0](µ) +
w

q
χ
SU(Nf )

[0,...,0,1](µ)

)(
z +

1

z

)
t−

(
2 + z2 +

1

z2

)
t2
]

(2.2.69)

where we have used the fact that for SU(2) the fundamental and anti-fundamental
representations are equal χSU(2)

[1] (z) = z + 1
z .

Then choosing, for example, Nf = 4 we get

HH(t, µ) =
1

2πi

∮
|z,w|=1

dw

w

dz

z

1− z2

z
PE

[(
q

w

(
µ1 +

µ2

µ1
+
µ3

µ2
+

1

µ2

)
+

+
w

q

(
1

µ1
+
µ1

µ2
+
µ2

µ3
+ µ3

))(
z +

1

z

)
t−
(

2 + z2 +
1

z2

)
t2
]

(2.2.70)

To extract some information from this quantity we need to preform the inte-
gration and then expand the Hilbert series in powers of t, finding the so-called
characters expansion, which is nothing but the initial trace (2.2.33). We get

HH(t, µ) = 1 + χ
SU(4)
[1,0,1] (µ)t2 +

(
χ
SU(4)
[2,0,2] (µ) + χ

SU(4)
[0,2,0] (µ)

)
t4+

+
(
χ
SU(4)
[3,0,3] (µ) + χ

SU(4)
[1,2,1] (µ)

)
t6 +

(
χ
SU(4)
[4,0,4] (µ) + χ

SU(4)
[2,2,2] (µ) + χ

SU(4)
[0,4,0] (µ)

)
t8 + . . . =

=
∑
n=0

∑
m=0

χ
SU(4)
[n,2m,n](µ)t2(n+2m)

(2.2.71)

First of all we can see that the q fugacity of the U(1)q factor of the flavour
symmetry U(Nf ) does not enter the Higgs branch Hilbert series; this is a general
feature of this type of theories since, whenever we have a unitary gauge group
and a unitary flavour symmetry, an overall U(1) factor of the latter can always
be reabsorbed into a U(1) factor of the first, e.g. defining a new U(1) gauge
fugacity u := q

w .

Moreover, we can see form (2.2.71) that the Higgs branch is generated by an
SU(4) adjoint operator of R-charge 2. Since this gauge invariant operator must
be constructed starting form the chiral fields {Qai , Q̃ia}, it is easy to see that this
is indeed the meson

M j
i = Qai Q̃

j
a (2.2.72)
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Such meson operator has to satisfy some conditions and to see them let us
return to the general case. First, since M is constructed taking the product of
two Nf ×Nc matrices, using the property

RankAB ≤ min{RankA,RankB} (2.2.73)

and the fact that Nf ≥ 2Nc, we thus get

RankM ≤ Nc (2.2.74)

Furthermore, the F-term condition (2.2.65) imposes tracelesness and nilpotency
on M

TrM = Qai Q̃
i
a = 0 , M2 = Qai Q̃

j
aQ

b
jQ̃

i
b = 0 (2.2.75)

We have thus found that the Higgs branch of (2.2.61) is

MH =
{
M ∈ GL(Nf ,C)|RankM ≤ Nc,TrM = 0,M2 = 0

}
(2.2.76)

which is known in the mathematical literature as a nilpotent orbit closure of
SU(Nf ); a space parametrised by a single (co)adjoint matrix with a nilpotency
condition (e.g. M2 = 0) and potentially other relations (e.g. RankM ≤ Nc).

Nilpotent orbits form an important class of hyper-Kähler spaces, largely due to
their simplicity, and are often associated to the branches of the moduli space.

• Coulomb branch

The results of the Coulomb branch analysis for such a theory are presented in
[64].

First of all, as we have already seen, for G = U(Nc) the magnetic charges m =
(m1, . . . ,mNc) satisfy m1 ≥ m2 ≥ . . . ≥ mNc with ma ∈ Z, i.e. m ∈ ZNc/SNc .
Then we need to evaluate the monopole R-charge (2.2.30). For simplicity, when-
ever considering a weight of some representationR, we will express it in the basis
of weights vectors {ρF1 , . . . , ρFNc} of the fundamental representation. Let us start
from the first term.

Since we can write U(Nc) = U(1) × SU(Nc), the root system factorises as a
disjoint union of vector spaces ∆U(Nc) = ∆U(1)t∆SU(Nc) where ∆U(1) is empty.

The root system ∆SU(Nc), expressed in the basis of fundamental weights, consists
of vectors in RNc whose entries sum to zero, i.e. all the n(n− 1) permutations
of (1,−1, 0, . . . , 0) ∈ RNc . Then, the subset of positive roots is composed of all
those vectors whose first non-zero entry is 1.

Thus, the first term of ∆(m) reads

−
∑

α∈∆+
SU(Nc)

|α(m)| = −
Nc∑
a<b

|ma −mb| (2.2.77)

We turn now to the matter contribution, i.e. the second term in (2.2.30). Since
we are considering Nf fundamentals, this simply reads
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1

2

Nf∑
i=1

∑
ρ∈RF

SU(Nc)

|ρ(m)| =
Nf

2

Nc∑
a

|ma| (2.2.78)

So the total monopole R-charge reads

∆(m) = −
Nc∑
a<b

|ma −mb|+
Nf

2

Nc∑
a

|ma| (2.2.79)

Since U(2) contains a U(1) factor only, the topological symmetry possess just
one fugacity ω. The topological charge thus reads

Jtop(m) =

Nc∑
a

ma (2.2.80)

Finally, to explicitly construct the classical factor PU(Nc)(t,m) we associate to
the magnetic flux m a partition of Nc

λ(m) = (λj(m)) ,
∑
j

λj(m) = Nc , λj(m) > λj+1(m) (2.2.81)

which simply encodes how many of the fluxes mi are equal when we sum over
them.

For each such configuration (i.e. partition) ofm, the residual gauge group which
commutes with the monopole flux is

Hm =
∏
j

U(λj(m)) (2.2.82)

The classical factor is then

PU(Nc)(t,m) =
∏
j

ZUλj(m) (2.2.83)

where

ZUk =

k∏
i=1

1

1− ti
k ≥ 1

ZU0 = 1

(2.2.84)

Now let’s take Nc = 2 and Nf = 4 as in the example of the Higgs brach Hilbert
series computation.

We get that

∆(m) = −|m1 −m2|+
3

2
(|m1|+ |m2|) (2.2.85)

and
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PU(2)(t,m) =

{
1

(1−t)(1−t2)
, m1 = m2

1
(1−t)2 , m1 6= m2

(2.2.86)

So that the monopole formula reads

HC(t, ω) =
∑

m1≥m2

t−|m1−m2|+ 3
2

(|m1|+|m2|)wm1+m2PU(2)(t,m) =

= 1 + χ
SU(2)
[2] (ω)t2 +

(
χ
SU(2)
[4] (ω) + χ

SU(2)
[2] (ω) + 1

)
t4 + . . .

(2.2.87)

Taking the plethystic logarithm of such expression we get

PL [HC(t, ω)] = χ
SU(2)
[2] (ω)(t2 + t4)− t6 − t8 (2.2.88)

which, inserted into a plethystic exponent, gives the following generating func-
tion

HC(t, ω) = PE
[
χ
SU(2)
[2] (ω)(t2 + t4)− t6 − t8

]
(2.2.89)

from which we can read that the Coulomb branches has 6 generators (i.e. two
triplets under SU(2)top) with 2 relations.

First of all, this example allows us to introduce a general feature of topological
symmetry (and other symmetries in general). Indeed, even if at the classical level
topological symmetries consists of U(1) factors only, it can however enhance to
a non-abelian group in the IR. This happens whenever we consider a "balanced"
node, i.e. a gauge node whose charged hypermultiplets are exactly twice the
number of colours

∑
iN

i
f = 2Nc. In such a case (as in this example) the classical

topological group U(1)r actually enhances to SU(r+1), thanks to the existence
in the IR of a monopole operator with conformal dimension ∆(m) = 1 which is
the lowest component of the superconformal multiplet containing this enhanced
conserved current. This is exactly the χSU(2)

[2] (ω)t2 term in (2.2.89).

Let us now see in details what are all the generators of the Coulomb branch.

First of all we shall consider the classical Casimirs of the U(2) gauge group,
which can be written in terms of the Φ adjoint field as single trace operators
Tr(Φj) with j = 1, 2.

Moreover, we already know that monopoles are labeled by the magnetic charge
with respect to the U(2) gauge group, Vm1,m2 . The whole magnetic lattice
can be covered by combinations of monopoles with lowest R-charge, in our case
V±1,0 := V±. These can also be dressed by Casimir invariants of the Hm residual
gauge group which do not contain U(2) Casimir factors, and symmetrised by
the action of the Weyl group.

An explicit way to construct these operators is to go along the moduli space and
diagonalise the adjoint field Φ = diag(φ1, φ2) by a gauge transformation. Thus,
dressing for example the V± monopoles we get

V±;(r,s) := V±φ
r
1φ

s
2 (2.2.90)
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The monopole generators of the Coulomb branch are precisely {V±;(0,s)} for
s = 0, 1; the other operators are not independent since various relations among
them can be found.

Organising all these operators by their R-charge we can construct the operators
forming the SU(2)top triplets in (2.2.89); these are

χ
SU(2)
[2] (ω)t2 : V+ , Tr(Φ) , V−

χ
SU(2)
[2] (ω)t4 : V+;(0,1) , Tr(Φ2) , V−;(0,1)

(2.2.91)

Everything we said about the Coulomb branch generators still holds in the
general case, i.e. quiver (2.2.61). In this case there are 3Nc generators, which
are

Tr(Φj) , j = 1, . . . , Nc (2.2.92)
V±;(r,s) := V±φ

r
1(φs2 + . . .+ φsNc) + permutations , r = 0, s = 0, . . . , Nc − 1

(2.2.93)

and Nc relations.

If Nf 6= 2Nc the topological symmetry does not enhance. Otherwise, if Nf =
2Nc, the 3Nc generators combines into Nc triplets of the enhanced SU(2)top
symmetry of increasing R-charge.
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Chapter 3

3d mirrors of the circle reduction of
twisted χ(a2N ) theories of class-S

This chapter starts by reviewing the basic concepts behind the Type IIB string theory
brane engineering of three-dimensional N = 4 supersymmetric theories. These will
allow us to understand mirror symmetry and define T σρ (SU(N)) theories. Then,
by introducing orientifold Op planes in the game, we will be able to define also
T σρ (USp′(2N)) theories.

These two families of theories will be important for the second part of the chapter.
Indeed, after briefly introducing the class-S framework, we will present our results
concerning the three-dimensional mirror theories of the circle reduction of the four-
dimensional χ(a2N ) theories of class-S. It turns out that such mirror theories admit
an "almost" star-shaped quiver description built by "gluing" together three different
legs, each one being of the T σρ (SU(N)) or T σρ (USp′(2N)) type.

3.1 Hanany-Witten brane construction

Three dimensional N = 4 linear quivers can be realised in Type IIB string theory
through Hanany-Witten brane engineering [107].

We start considering systems of D3, D5 and NS5 branes spanning the following
space-time directions

Type 0 1 2 3 4 5 6 7 8 9
NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×

(3.1.1)

This precise configuration preserves exactly one quarter of the original 32 super-
symmetries, i.e. 8 supercharges. Moreover the D3 branes will always have finite size
L in the x6 direction, terminating either on D5 or NS5 branes. Thanks to this, the
effective quantum field theory living on the worldvolume of the D3 branes becomes
three-dimensional since, despite the four dimensional nature of such branes, the string
modes along x6 become the Kaluza-Klein modes in a circle dimensional reduction of
radius r = L

2π . Thus, our 3d N = 4 gauge theories will always live on the D3 branes.
Notice that the Lorentz group SO(1, 9) is broken by this brane setup to SO(1, 2)012,

identified with the Lorentz group of the effective three-dimensional theory, and SO(3)345×
SO(3)789, which can be identified instead with R-symmetry SU(2)L × SU(2)R.

To simplify the notation in the following, we shall define two vectors z = (x3, x4, x5)
and w = (x7, x8, x9).

Graphically, a generic brane system has the following form:
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×

×

×

x6

w

z

(3.1.2)

where

• Each vertical line, representing an NS5 brane, has a fixed value of x6 and z and
spans w.

• Each horizontal line, representing a D3 brane, has a fixed value of w and z and
spans x6.

• Each circle, representing a D5 brane, has a fixed value of x6 and w and spans z.

To identify the effective N = 4 gauge theory starting from the brane system we
need to know what is the matter content arising from the spectrum of open strings
stretching across the various D3 and D5 branes. Thus, the exact positions of all the
branes in a given setup have important consequences on the underlying 3d theory. Let
us then start from scratch.

A single D3 brane suspended between two NS5 brane hosts a U(1) vector multiplet.
Now suppose we have instead a stack of N coincident D3 branes as in Fig. (3.1.3);
looking at the Chan-Paton factors of the spectrum of open strings stretching among
these D3 branes, we gain a U(N) vector multiplet. However, if some of the D3 branes
in the stack get separated in the w direction, the respective fundamental strings
acquire a non-trivial tension which is interpreted as the mass of a W-boson. This has
the effect of breaking the U(N) gauge group up to its maximal torus U(1)N when all
the N D3 branes get separated.

x6

w

z

NS5 NS5

N D3

U(N) Higgsing−−−−−→

NS5 NS5

...

U(1)N

D3

(3.1.3)
This mechanism reminds of what happens on the Coulomb branch. It is thus

natural to expect that the different positions wa of the N D3 branes corresponds to
the VEVs 〈φa〉 of the scalars in vector multiplets: the origin of the Coulomb branch
(i.e. 〈φa〉 = 0) corresponds to the case in which all the D3 branes are coincident,
while separating them apart amounts to go on a generic point where some of the



3.1. Hanany-Witten brane construction 35

VEVs are non-trivial. Thus, whenever D3 branes are free to move in the w direction,
a non-trivial Coulomb branch will be present in the theory.

Moreover, the coupling constant of such U(N) gauge theory is identified with the
distance along x6 of the two NS5 branes, i.e. the D3 brane extent L

1

g2
= L = |x6

1 − x6
2| (3.1.4)

In this sense, bringing the NS5 branes closer until they coincide is translated as
the strong coupling limit of the 3d QFT.

Let us now consider more than two NS5 branes and strings connecting the D3
branes in adjacent stacks as in Fig. (3.1.6). Chan-Paton factor suggest that the strings
fluctuations are nothing but bi-fundamental hypermultiplets degrees of freedom with
mass proportional to the branes displacement in the w direction

m ∝ wai − wbi+1 (3.1.5)

x6

w

z

NS5 NS5 NS5

N D3 M D3

U(N) U(M) Gaining−−−−−→
mass

NS5 NS5 NS5

N D3

M D3

U(N)

U(M)

(3.1.6)
Similarly, a string that stretches betweenN coincident D3 and a D5 brane gives rise

to an hypermultiplet in the fundamental representation of the U(N) gauge group with,
again, mass proportional to the w displacement between the two types of branes. If a
stack ofM coincident D5 branes is present (Fig. (3.1.7)), we thus gainM fundamental
hypermultiplets, i.e. a U(M) flavour symmetry.

x6

w

z

NS5 NS5

N D3

U(N)

×

U(M)

M D5 Gaining−−−−−→
mass

NS5 NS5

N D3

U(N)

× U(M)

M D5

(3.1.7)

At the same time, D3 branes linking D5 branes are free to displace in the z
direction, see Fig. (3.1.8). This displacement can be thought again as a mass for the
W-bosons. Since we can always add an arbitrary number of D5 branes, i.e. arbitrarily
increase the flavour group, we can in principle completely break the gauge group. This
is exactly what happens on the Higgs branch of the theory giving VEVs to the scalars
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inside the hypermultiplets. Thus whenever a D3 brane is free to move in z direction,
a non-trivial Higgs branch is present in the theory.

x6

w

z

NS5 NS5

N D3

U(N)

×

U(M)

M D5 Higgsing−−−−−→

NS5 NS5

N D3
×

U(M)

M D5

(3.1.8)
The last possibility to take into account consists of a D3 brane suspended between

a D5 and an NS5 brane, as in Fig. (3.1.9). However, as proven by Hanany-Witten,
this configuration can be changed into an equivalent one by moving the D5 through
the NS5 brane. This move makes the D3 brane disappear and we are left with two
disconnected D5 and NS5 branes. Clearly this equivalence also works in the reverse
situation.

x6

w

z

NS5

D3
×

D5
Hanany-Witten←−−−−−−−−→

move

NS5

×

D5

(3.1.9)
The reason of this equivalence can be better understood considering the setup of

Fig. (3.1.10). As we have seen, when the D5 brane is moved on top of the D3, the mass
of the corresponding hypermultiplet vanishes, providing a singularity corresponding
to the appearance of a massless state. If we could move the D5 brane through the NS5
brane without the creation of a D3 brane there would be no reason why a singularity
should appear. The problem is resolved conjecturing exactly the Hanany-Witten
move: a new D3 brane must be created, connecting the D5 and an NS5 brane. In this
setup a massless hypermultiplet can now appear whenever the original D3 inside the
NS5 branes and the newly originated one are aligned along the w direction.
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x6

w

z

NS5 NS5

D3

× D5

Hanany-Witten←−−−−−−−−→
move

NS5 NS5

D3

D3
× D5

(3.1.10)
The mathematically rigorous explanation of the Hanany-Witten move is related to

the conservation of the magnetic charge which can be assigned to either the NS5 or the
D5 brane, i.e. the conservation law for RR and NS three-form fluxes. For definiteness,
let us consider an NS5 brane and denote with LD5 and RD5 the number of D5 branes
to its left and to its right respectively. Similarly, LD3 and RD3 will denote the number
of D3 branes ending on the NS5 respectively from the left and from the right. Then
the total magnetic charge of the given NS5 brane, dubbed "linking number" in this
case, reads

LNS5 =
1

2
(RD5 − LD5) + (LD3 −RD3) (3.1.11)

and similarly for the linking number of a given D5 brane.
Such magnetic charge must be conserved for each fivebrane after every other brane

has moved. Thus, considering the Hanany-Witten move setup of Fig. (3.1.10), this is
why a D3 brane must be crated when the D5 brane passes through the NS5.

Moreover, the sum of the linking numbers for all the branes involved in a certain
setup has to be zero, thus constraining the form of the entire brane system.

Other constraints come from requiring unbroken supersymmetry, such as the so-
called S-rule: given an NS5 brane and a D5 brane, there can be one and only one D3
brane connecting them.

Let us now take the very first example of Fig. (3.6.35) and try to read off the
quiver diagram. First of all we have to use the Hanany-Witten move twice on the D5
brane to the right. In this way both the D3 branes get annihilated and the D5 brane
now sits between the first two NS5 branes on the left. Separating all the D5 branes
from the D3 branes and making the latter align on the same value of w, we finally get
the following setup and the following associated quiver theory

x6

w

z

× × ×

←→

1 2

2 1

(3.1.12)
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Sometimes it is also useful to start from a known quiver diagram and find the
underlying brane construction. The reasoning is exactly the same, but reversed.

3.2 Mirror symmetry

A crucial feature in the study of three dimensional N = 4 theories is the so-called
mirror symmetry [118], a duality (rather than a real symmetry) relating pair of theories
with non-trivial fixed point that flow to the same point in the IR.

Thanks to our previous discussions, we know that, due to N = 4 supersymmetry,
both branches of the moduli space are hyper-Kähler. Given a theory with an Higgs
MH and Coulomb branchMC , the duality thus conjectures the existence of a mirror
dual theory whose Higgs and Coulomb branch are exchanged

Mmirror
C =MH , Mmirror

H =MC (3.2.1)

As a consequence, mirror symmetry also exchanges the role of the two SU(2)
factors of the R-symmetry group.

Moreover, the hard-to-handle quantum mechanical effects arising on the Coulomb
branch appear as simple classical effects on the Higgs branch of the mirror dual theory,
making mirror symmetry a very useful tools in the study of 3d N = 4 moduli spaces.

Interestingly, this symmetry is easily realised in string theory and, in particular,
in the Hanany-Witten brane setup [37, 142]. It relies in fact on the S-transformation
of SL(2,Z) duality of Type IIB superstrings, whose elements can be written as

S =

(
0 −1
1 0

)
, T =

(
1 0
1 1

)
(3.2.2)

The S-transformation acts non-trivially on the two types of fivebranes by exchang-
ing them D5 ↔ NS5 (and their linking numbers too), while leaving the D3 branes
unchanged.

However, to obtain the correct mirror symmetry we also need to consider the
spatial directions spanned by the fivebranes. Thus, we need to supplement the S-
duality action with a rotation R of the spatial coordinates

w → z , z → −w (3.2.3)

In building the correct S-dual brane configuration we must perform various steps
(depicted in Fig. (3.2.4)):

1. Firstly, all the D5 branes must be aligned to the D3 branes (i.e. wD5 = wD3)
and separated along the x6 direction;

2. Then we can apply an S-transformation exchanging the D5 branes with the NS5
but without violating the S-rule and preserving the net number of D3 branes
ending on the fivebranes;

3. Finally, the newly obtained S-dual brane configuration can be refined using a
the Hanany-Witten move.
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x x x x

1.−→ x x x x
2.−→ x x

3.−→

x

x

(3.2.4)
The theory on the left of Fig. (3.2.4) is nothing but the theory of the example

in Section (2.2.6), U(2) gauge theory with 4 fundamental hypermultiplets. On the
other hand, the theory on the right is its mirror dual. The quiver description of these
theories is the following

2 4
Mirror symmetry←−−−−−−−−−→

1 2 1

2

(3.2.5)

To check mirror symmetry, we can compute the dimensions of Higgs and Coulomb
branches of both the theories and see if they swap.

Thanks to (2.2.64), we find for the first theory

dimH{MHB} = 4× 2− 4 = 4 , dimH{MCB} = 2 (3.2.6)

while for the mirror one, using the general formulas (2.2.12) and (2.2.14), we get

dimH{Mmirror
HB } = 1× 2 + 2× 2 + 2× 1− 1− 4− 1 = 2 ,

dimH{Mmirror
CB } = 1 + 2 + 1 = 4

(3.2.7)

Thus, we find, as expected, that the dimensions of the Higgs and Coulomb branches
match between the mirror pairs as in (3.2.1). Clearly this is not a complete proof of
mirror symmetry, since this matching alone does not imply that the branches, as
singular spaces, coincide across mirror duality. A more detailed analysis is needed as,
for example, checking the matching also between the Hilbert series. We will not go
into details now as there will be lots of such examples in the following sections.

3.3 T σρ (SU(N)) theories

Among all the possible N = 4 supersymmetric theories, a notable class surely consists
of the so-called Tσρ (SU(N)) theories [69, 85]. Such theories will be important for the
discussion in the following sections so here we briefly review the crucial results.

First of all, their linear quivers are always of the form
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N1 N2 · · · N`′−2 N`′−1

M1 M2 M`′−2 M`′−1

(3.3.1)

Each quiver is formed by `′−1 gauge nodes with gauge group U(Ni) and by `′−1
flavour symmetries with group U(Mi). The value of `′ and the exact form of the quiver
(3.3.1) are determined by two partitions of N ρ = (ρ1, . . . , ρ`′) and σ = (σ1, . . . , σ`)
such that

σ1 ≥ . . . ≥ σ` > 0 , ρ1 ≥ . . . ≥ ρ`′ > 0 ,
∑̀
i=1

σi =

`′∑
i=1

ρi = N . (3.3.2)

There are two ways to find out the quiver described by the two partitions ρ and
σ.

The first one [85] relies on the Hanany-Witten brane construction and the steps
are the following:

1. Starting from the left, draw a Hanany-Witten brane system consisting of ` con-
secutive D5 branes (at different values of w) and then `′ consecutive NS5 branes
along the x6 direction;

2. Considering then the elements of the σ partition, σ1 represents the total number
of D3 branes ending on the more external D5 brane on the left, σ2 the total
number of D3 branes ending on the next one moving to the right and so forth;

3. Considering now the elements of the ρ partition, ρ1 is the difference between
the number of D3 branes on the left of the more internal NS5 brane and the
number of D3 branes on its right. ρ2 plays the exact same role for the next NS5
brane on the right and so on;

4. Finally, making use of the S-rule and the Hanany-Witten move, we can uniquely
fix such an initial configuration and read off the quiver.

Fig. (3.3.3) is an example of this process for T [2,1,1]
[2,1,1] (SU(4)) theory, which we will

encounter again through this thesis.

σ1 = 2

σ2 = 1

σ3 = 1

x

x

x

ρ1 = 2

ρ2 = 1

ρ3 = 1

S-rule−−−→

x

x

x

HW−−−→
move

x

x

x

(3.3.3)
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Thanks to this construction we can easily see that under three dimensional mirror
symmetry, due to the swap of D5 and NS5 branes, ρ and σ are exchanged too. So
that Tσρ (SU(N)) is mirror dual to Tρσ (SU(N)).

The second method [69] for building the quiver diagram of such theories relies on
the fact that the two partitions ρ and σ can be interpreted as two Young tableaux,
with their elements indicating the increasing length of their rows. Moreover, it is also
convenient to introduce the transpose tableau σT of the latter partition, which can
be built swapping the rows and the columns of σ. It has the following properties

σT = (σ̂1, . . . , σ̂̂̀) , σ̂1 ≥ . . . ≥ σ̂̂̀> 0 ,

̂̀∑
i=1

σ̂i = N . (3.3.4)

The flavour symmetries U(Mj) of the theory, with 1 ≤ j ≤ `′ − 1, are thus
determined from the transpose σT as follows:

Mj = σ̂j − σ̂j+1 (3.3.5)

with σ̂i = 0, for all i ≥ ̂̀+ 1. Thus Mi = 0 for i ≥ ̂̀+ 1, so that there are at most ̂̀
flavour groups.

On the other hand, the gauge symmetries U(Nj), with 1 ≤ j ≤ `′ − 1, are given
by

Nj =
`′∑

k=j+1

ρk −
̂̀∑

i=j+1

σ̂i . (3.3.6)

This implies that the theories Tσρ (SU(N)) are defined only for σT < ρ. This
constraint is sometimes referred as the dominance ordering of Young tableaux.

The Higgs branch global symmetry can be easily read from the quiver diagram
and, in this case, is

S

∏
j=1

U(Mj)

 :=

∏
j=1

U(Mj)

/U(1) (3.3.7)

where, as in Section (2.2.6), we have modded an overall U(1) that can always be
reabsorbed into one of the gauge groups.

The Coulomb branch global symmetry group, on the other hand, consists at clas-
sical level of topological symmetries

`′−1∏
j=1

U(1)RankU(Nj) (3.3.8)

but, as in Section (2.2.6) it can enhance to a non-abelian group in the IR if one of the
gauge group happens to be balanced.

Throughout this thesis, we will focus on cases in which σ = [1N ], i.e. on theories
denoted by Tρ(SU(N)). The corresponding quivers will always reduce to
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N1 N2
. . . NdN (3.3.9)

where we redefined the number of gauge nodes as d := `′ − 1 for later convenience.
In the following, we mainly consider the three examples of Tρ(SU(2N + 1)).

The partition ρ = [12N+1]. We denote this theory simply by T (SU(2N + 1)) and
the corresponding quiver reads

1 2 3 . . . 2N 2N + 1 (3.3.10)

In general T (SU(N)), with any generic N , is invariant under mirror symmetry, i.e.
self-mirror. The Higgs and the Coulomb branches of this theory are both isomorphic
to the closure of the maximal nilpotent orbit, dubbed nilpotent cone, of SU(N), i.e.
the same space of (2.2.76) but with the additional constraints

Tr
(
Mp
)

= 0 ∀p = 1, . . . , N (3.3.11)

The quaternionic dimension of this space is therefore

dimH{M} =
1

2

(
N2 −N

)
=

1

2
N(N − 1) (3.3.12)

which in our particular case is dimH{M} = 2N(2N + 1).
The symmetries of the Higgs and Coulomb branch are thus both SU(2N + 1); the

former is manifest as a classical flavour symmetry, whereas the latter gets enhanced
in the IR from the classical topological symmetry.

The partition ρ = [N + 1, N ]. The corresponding quiver is

N 2N + 1 (3.3.13)

which is just a simple U(N) gauge theory with 2N + 1 fundamentals (see Section
(2.2.6)).

3.3.1 The Coulomb branch Hilbert series

For a partition ρ of N , the Coulomb branch Hilbert series of the Tρ(SU(N)) theory
can be computed from its quiver description using the monopole formula, described
in [64].

Alternatively, one can compute this quantity using the Hall-Littlewood formula,
without using the quiver description. This formula, involving the Hall-Littlewood
polynomials, was firstly conjectured in [67]1.

The Hall-Littlewood formula for the Coulomb branch Hilbert series of the Tρ(SU(N))
theory reads

H[Tρ(SU(N))](t;x1, . . . , x`′ ;n1, . . . , nN )

= tδU(N)(n)(1− t2)NK
U(N)
ρ (x; t)ΨnU(N)(xt

wρ ; t) ,
(3.3.14)

1In [152, section 6] the authors proved that the equivalence between the monopole and Hall-
Littlewood formulæ in the case of maximal partition ρ = [1N ] automatically implies the same equiv-
alence for any generic partition ρ.



3.3. T σρ (SU(N)) theories 43

where the notations are as follows:

1. Recall that the integer d+ 1 is the length of the partition ρ, so that d = `′ − 1
is the number of gauge groups in quiver (3.3.9).

2. The Coulomb branch symmetry of the Tρ(SU(N)) theory is[∏
k

U(rk)

]
/U(1) (3.3.15)

where rk represents the number of times the part k appears in the partition ρ
and, thus,

∑
k rk = d+ 1 = `′.

The fugacities associated to this symmetry are x1, x2, . . . , xd+1, subject to the
constraint:

d+1∏
i=1

xρii = 1 . (3.3.16)

3. The power of t in the prefactor is

δU(N)(n) =
N∑
j=1

(N + 1− 2j)nj . (3.3.17)

4. The Hall-Littlewood polynomial associated with the group U(N) is given by

ΨnU(N)(x1, . . . , xN ; t) =
∑
σ∈SN

xn1

σ(1) . . . x
nN
σ(N)

∏
1≤i<j≤N

1− tx−1
σ(i)xσ(j)

1− x−1
σ(i)xσ(j)

. (3.3.18)

5. wr denotes the weights of the SU(2) representation of dimension r:

wr = (r − 1, r − 3, . . . , 3− r, 1− r) . (3.3.19)

Hence the notation twr represents the vector

twr = (t(r−1), t(r−3), . . . , t−(r−3), t−(r−1)) . (3.3.20)

We abbreviate

ΨnU(N)(xt
wρ ; t) := Ψ

(n1,...,nN )
U(N) (x1t

wρ1 , x2t
wρ2 , . . . , xd+1t

wρd+1 ; t) . (3.3.21)

6. The prefactor KU(N)
ρ (x; t) is given by [78]
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K
U(N)
ρ (x; t) =

length(ρT )∏
i=1

ρTi∏
j,k=1

1

1− aijaik
, (3.3.22)

where ρT denotes the transpose of the partition ρ and

aij = xj tρj−i+1 , i = 1, . . . , ρj

aik = x−1
k tρk−i+1 , i = 1, . . . , ρk

(3.3.23)

For example:

• For ρ = [1N ], we have ρT = [N ] and so

K
U(N)

[1N ]
(x; t) =

∏
1≤j,k≤N

1

1− xjx−1
k t2

= PE[t2χ
U(N)
Adj (x)] . (3.3.24)

• For the partition ρ = [N + 1, N ] of 2N + 1, we have ρT = [2N , 1] and so

K
U(2N+1)
[N+1,N ] (x; t) = PE

t2N+2 + (x1x
−1
2 + x2x

−1
1 )

N∑
j=1

t2j+1 + 2

N∑
l=1

t2l

 . (3.3.25)

3.4 Orientifold planes

The Hanany-Witten brane construction realising three dimensional N = 4 theories
that we have discussed so far, can be enriched including additional objects provided
by string theory and called orientifold p-planes and denoted by Op [75, 161].

In string theory the discrete world-sheet parity transformation acts on the two
worldsheet coordinates (τ, σ) by reversing the orientation dσ ∧ dτ of the world-sheet
and, thus, by mapping the two end points of an open string to each other.

Such concept of orientability can be made precise by defining a unitary operator Ω
which implements the above discrete diffeomorphism acting on the string coordinates
and thus reversing the orientation of the string. Hence, when considering a stuck of
N branes on top of each other, one has to take into account also the action of Ω on
the Chan-Paton factors. At the massless level, this allows to trade the standard U(N)
gauge group with a given subgroup defined by the action of Ω.

One can then dress the world-sheet parity transformation by additional Z2 sym-
metries of the string theory. In this way one can define more general gauge groups.
These constructions are exactly the so-called orientifolds.

In particular, if one takes the additional Z2 symmetry to be the spatial reflection

Ip : xi → −xi ∀i = p+ 1, . . . , 9 (3.4.1)

(where for p = 2, 3 mod 4 one has to include (−1)FL with FL the left-moving fermion
number), then the combination ΩIp leads to orientifolds where the fixed locus of Ip
defines exactly the Op plane introduced above.
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One can think of these as non dynamical (at least at weak string coupling) de-
fects in space-time, which carry a mass-density and preserve the same amount of
supersymmetry of a parallel Dp brane.

In the presence of an Op plane a parallel physical Dp brane can split into two half
Dp branes, one being the image under the orientifold involution ΩIp of the other.

When p ≤ 5, the Op planes come in four varieties

Type G q

Op− SO(2N) −2p−5

Op+ USp(2N) 2p−5

Õp
−

SO(2N + 1) 1
2 − 2p−5

Õp
+

USp′(2N) 2p−5

(3.4.2)

where G denotes the gauge group associated to a stack of 2N half Dp branes sitting
on top of the Op plane, q is their fractional Dp brane charge.

Observe that half Dp branes always come in pairs. In the case of a Õp
−

plane,
we get an additional half Dp brane stuck on the orientifold plane so that we shall
consider as the real Õp

−
plane the bound state between the plane and this half brane.

Moreover, there is no difference as Lie algebras between USp′(2N) and USp(2N);
they however differ in a global factor when considered as gauge theories.

In Hanany-Witten brane configurations, in order to preserve supersymmetry, we
can only insert O3 and O5 planes. The first must be parallel to the D3 branes, the
latter to the fivebranes. We will be interested in O3 planes only.

3.4.1 O3 planes

When an O3 plane is introduced in the Hanany-Witten brane setup [75], we can split
also the fivebranes into couples of half branes related by the orientifold involution ΩI3.
We can thus move the pair of half branes to touch the O3 plane where, in principle,
they can then move freely; see Fig. (3.4.3).

NS5

O3
×

D5
splitting−−−−−→ O3

??? ???

1
2
NS51

2
NS5

× ×

1
2
D5 1

2
D5

(3.4.3)

Due to the conservation of the linking numbers (3.1.11) and the fact that O3
planes posses a D3 brane charge q, such splitting is a nontrivial dynamical process.
Thus, in touching the O3 plane, sometimes half D3 branes are created (or annihilated)
between the two half fivebranes. This different behaviour depends on which O3 plane
is present and how many half D3 branes are already attached to the initial physical
fivebrane.

Moreover the O3 plane change type when it pass through a half fivebrane. To
keep track of this behaviour and other properties, see the following table:
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Type G q S-dual half NS5 half D5

O3− SO(2N) −1
4 O3− O3+ Õ3

−

O3+ USp(2N) 1
4 Õ3

−
O3− Õ3

+

Õ3
−

SO(2N + 1) 1
4 O3+ Õ3

+
O3−

Õ3
+

USp′(2N) 1
4 Õ3

+
Õ3
−

O3+

(3.4.4)

where the fourth column displays the O3 planes relations under the S-duality of type
IIB string theory (notice that O3− and Õ3

+
are self-dual) and the last two columns

contain the type change of O3 planes crossing a half fivebrane.
In order to keep the linking numbers invariant between a half NS5 brane and a half

D5 brane connected by half D3 branes, we also need to modify the Hanany-Witten
move as follows. Suppose, as in Fig. (3.4.5), that we start with N physical D3 branes
connecting a half D5 brane on the left to a half NS5 brane on the right. Moving the
half D5 brane along x6 to pass through the half NS5 brane, we get Ñ physical D3
branes. Thanks to S-rule we know that both N, Ñ = 0, 1.

O3

1
2
NS5

N D3
×

1
2
D5

Hanany-Witten←−−−−−−−−→
move

O3

1
2
NS5

Ñ D3
×

1
2
D5

(3.4.5)
Thus:

• When the charge q of the O3 planes at the exterior of the two half fivebranes is
the same, the conservation of the linking numbers requires

N + Ñ = 1 (3.4.6)

so that there is annihilation or creation of a D3 brane in crossing.

• When the charge q of the O3 planes is the opposite, the condition reads

N = Ñ = 0 (3.4.7)

so that there can not be any D3 brane between the two half fivebranes both
before and after the crossing.

Thanks to the Hanany-Witten move, the rules of splitting physical D5 branes that
end on half NS5 branes is pretty easy. We can in fact simply split the physical D5
brane and move the two half D5 branes to left of the half NS5 brane by means of
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Hanany-Witten move, see Fig. (3.4.8). S-rule then prevents more than one physical
D3 brane to end on the same half NS5 brane.

O3

1
2
NS5

1
2
D3

1
2
D3

×

1
2
D5

×
1
2
D5

Hanany-Witten←−−−−−−−−→
move

O3

1
2
NS5

×

1
2
D5

×
1
2
D5

(3.4.8)
In the following, we will make large use of this trick to split the physical D5 branes

attached to NS5 branes to avoid the much more complicated general rules of splitting
fivebranes in other setups.

3.5 T σρ (USp
′(2N)) theories

As for the Tσρ (SU(N)) theories, the quiver diagram for Tσρ (USp′(2N)) is also linear
[69]. It however consists of alternating (S)O/USp groups depicted in (3.5.1), where
each red node with a label N denotes an O(N) or SO(N) group and each blue node
with an even label 2N denotes a USp(2N) group.

N1 N2 N3 · · · NL

M1 M2 M3 ML

(3.5.1)

This alternating nature is due to the fact that, from the string theory perspective,
quiver (3.5.1) can be realised on the worldvolume of N D3 branes parallel to an
orientifold Õ3

+
plane and ending on systems of half D5 branes and of half NS5 branes.

Similar to the Tσρ (SU(N)) theories, the partitions σ and ρ determine how the D3
branes end on the half D5 branes and on the half NS5 branes respectively. In this
case both σ and ρ are C-partitions2 of 2N , of lengths ` and `′ respectively.

In quiver (3.5.1), we defined

L =

{
`′ − 1 `′ is even
`′ `′ is odd

(3.5.2)

and if both NL and ML are zero, the nodes are removed from the quiver and the
length of the quiver is L− 1.

The Hanany-Witten brane construction of such theories is subtle and the rules we
have previously seen for Tσρ (SU(N)) theories do change. Due to the presence of the
O3 plane, we are always forced to have an even number of half D3 branes suspended
between the fivebranes. This implies that, looking at the C-partitions, two things can
happen:

2A C-partition is a partition where every odd entry must appear an even number of times.
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• When we encounter an even term, i.e. (. . . , 2k, . . .), the respective half D3
branes are simply attached to a half fivebrane;

• Whenever we encounter a couple of odd terms, i.e. (. . . , 2k + 1, 2k + 1, . . .), we
must attach the total amount of 4k + 2 half D3 branes to the same physical
fivebrane instead of two different half fivebranes.

Thus, in principle, we should pay attention to the splitting rules of every physical
fivebrane sitting in the configuration.

Nonetheless, we can spoil the mirror duality properties of such theories to trade σ
for ρ and vice versa to work with D5 branes only. In this way, since by construction
the physical D5 branes will always be attached to the NS5 ones, we can use the trick of
Fig. (3.4.8) to freely split them. Then, by means of S-duality, we can again exchange
the half D5 branes with the half NS5 and read the quiver more easily.

In Fig. (3.5.3) is depicted an example of this building technique for the T [22]
[14]

(USp′(4))

theory. The steps are the following:

1. By means of S-duality, we take the C-partition ρ = (1, 1, 1, 1) and consider a
sequence of two physical D5 branes attached by couples of half D3 branes to
some NS5 branes placed at infinity3. This construction is similar to the one
discussed in [39], except the fact that an O3 plane is put into the brane system
such that the semi-infinite D3 branes are on top of the Õ3

+
plane.

2. We can then freely split the physical D5 branes into half branes preserving the
number of half D3 branes.

3. Applying a mirror transformation, we can trade the half D5 branes for half NS5
and vice versa. Also the O3 plane transforms as in Table (3.4.4). In doing so, we
can now consider the newly transformed D5 branes that were previously placed
at infinity. Taking the C-partition σ = (2, 2), we can repeat the procedure
outlined in steps 1. and 2..

4. Finally, using S-rule and Hanany-Wittem move, we can read off the quiver dia-
gram.

O3

+̃ +̃ +̃

D5 D5

1
2
D3

ρ1

ρ2

ρ3

ρ4

2.−→ O3

+̃ + +̃ + +̃

1
2
D51

2
D5 1

2
D51

2
D5

1
2
D3

3.−→

3Since the NS5 branes are placed at infinity, we do not mind here if they are physical of half
branes.
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O3

+̃ −̃ +̃ −̃ +̃

1
2
NS51

2
NS5 1

2
NS51

2
NS5

1
2
D3

σ1

σ2

x

x

1
2
D5

1
2
D5

4.−→ O3

+̃ −̃ +̃ −̃ +̃

1
2
NS51

2
NS5 1

2
NS51

2
NS5

1
2
D3

x

x

1
2
D5

1
2
D5

(3.5.3)

So that, looking at the last part of Fig. (3.5.3), the quiver diagram of the
T

[22]
[14]

(USp′(4)) theory reads

3 2 3

2

(3.5.4)

The other building method of quiver (3.5.1) relies again on Young tableaux, as for
the Tσρ (SU(N)) theories [69].

The labels Mj , with 1 ≤ j ≤ L, for the flavour symmetries are again determined
from the transpose σT = (σ̂1, . . . , σ̂̂̀), with σ̂1 ≥ . . . ≥ σ̂̂̀> 0, of σ as follows:

Mj = σ̂j − σ̂j+1 (3.5.5)

with σ̂i = 0, for all i ≥ ̂̀+ 1.
On the other hand, the labels Nj , with 1 ≤ j ≤ L, for the gauge symmetries are

given by

Nj =



[
1 +

∑`′

k=j+1 ρk

]
+̃
−
(∑̂̀

i=j+1 σ̂i

)
for the O/SO node , if `′ is even ,[∑`′

k=j+1 ρk

]
−
−
(∑̂̀

i=j+1 σ̂i

)
for the USp node , if `′ is even ,[∑`′

k=j+1 ρk

]
+̃
−
(∑̂̀

i=j+1 σ̂i

)
for the O/SO node , if `′ is odd ,[∑`′

k=j+1 ρk

]
+
−
(∑̂̀

i=j+1 σ̂i

)
for the USp node , if `′ is odd .

(3.5.6)

Again, we will only focus on the case in which σ = [12N ] and the theory in question
is denoted by Tρ(USp′(2N)). The corresponding quiver diagram reduces to

N1 N2 N3
. . . NL2N (3.5.7)

As we justify in the main text, the red circular node with a label N in this quiver
should be taken as the special orthogonal SO(N) gauge group.

We will mainly consider the following two examples.

The partition ρ = [12N ]. We denote the theory in this case by T (USp′(2N)) and
the corresponding quiver is
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3 2 5 4 . . . 2N + 1 2N (3.5.8)

We remark this quiver is a ‘bad’ theory in the sense of [85]. Nevertheless, one can
use this description to compute many quantities, such as the Coulomb branch dimen-
sion and the Higgs branch Hilbert series. Moreover, we can bypass the ‘badness’ of
the quiver and compute the Coulomb branch Hilbert series using the Hall-Littlewood
formula as will be explained below.

Since ρ = σ = [12N ], the theory is indeed self-mirror in this case. In fact, both
Higgs and Coulomb branches of this theory are isomorphic to the nilpotent cone of
USp(2N), whose quaternionic dimension is

dimH{M} =
1

2

[
1

2
(2N)(2N + 1)−N

]
= N2 (3.5.9)

The partition ρ = [2N ]. The corresponding quiver is

1 2N (3.5.10)

where the red circular node denotes the SO(1) group, and so the gauge symmetry is
trivial in this case. This is simply a theory of free 2N half hypermultiplets.

3.5.1 The Coulomb branch Hilbert series

It is possible to compute the Coulomb branch Hilbert series from the quiver description
using the monopole formula [64], provided that the quiver is not a ‘bad’ theory in the
sense of [85].

Alternatively, for a given C-partition ρ of 2N , one can directly compute the
Coulomb branch Hilbert series of Tρ(USp′(2N)) using a simple modification of the
Hall-Littlewood formula [67], without drawing the quiver and regardless whether it is
‘bad’ or not.

The correct modification for the Coulomb branch Hilbert series in question is the
following:

HC [Tρ(USp′(2N))](t;x, n1, . . . , nN )

= tδCN (n)(1− t2)NKCN
ρ (x, t)ΨnCN (a(t,x), t) ,

(3.5.11)

where the notations are as follows:

1. The power of t in the prefactor is

δCN (n) =
N∑
j=1

(2N + 2− 2j)nj . (3.5.12)

2. The function ΨλCN (x, t) is the Hall-Littlewood polynomial associated with the
CN algebra and the partition λ is subject to λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, with all
λi ∈ N. It is given by
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ΨλCN (x1, . . . , xN ; t) =
∑

s1,...,sN=±1

∑
σ∈SN

(
N∏
i=1

xsiλiσ(i)

1− t2x−2si
σ(i)

1− x−2si
σ(i)

)
× ∏

1≤i<j≤N

1− t2x−siσ(i)x
sj
σ(j)

1− x−siσ(i)x
sj
σ(j)

·
1− t2x−siσ(i)x

−sj
σ(j)

1− x−siσ(i)x
−sj
σ(j)

 .

3. The argument a(t,x), which shall be abbreviated as a, of the Hall-Littlewood
polynomial can be determined by considering the decomposition

xCNfund(a) =

N∑
j=1

(aj + a−1
j ) =

∑
k

x
Gρk
fund(xk)χ

SU(2)
[ρk−1](t) , (3.5.13)

where the group Gρk depends on the part k of the partition ρ that appears rk
times and is defined as

Gρk =

{
USp(rk) if k is odd
SO(rk) if k is even .

(3.5.14)

For example, for ρ = [12N ], we have aj = xj for j = 1, . . . , N , and for ρ = [2N ],
we have aj = t2j−1 for j = 1, . . . , N .

4. The prefactor KCN
ρ (x, t) can be determined in two steps.

First of all, we need to identify the representations Rj of the group

Gρ =
∏
k

Gρk =
∏
k odd

USp(rk)×
∏
k even

SO(rk) (3.5.15)

from the following decomposition:

χCNAdj(a) =
∑

j=0, 1
2
,1, 3

2
,...

χ
Gρ

Rj
(xj)χ

SU(2)
[2j] (t) . (3.5.16)

Once Rj are determined, the prefactor in question is then given by

KCN
ρ (x, t) = PE

 ∑
j=0, 1

2
,1, 3

2
,...

t2j+2χ
Gρ

Rj (xj)

 . (3.5.17)

For example, for ρ = [12N ], we have

KCN
[12N ]

(x, t) = PE
[
χCNAdj(x)t2

]
(3.5.18)

and for ρ = [2N ], we have
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KCN
[12N ]

(x, t) = PE
[
t4 + t8 + . . .+ t4N

]
. (3.5.19)

For a given partition ρ, the Coulomb branch symmetry of Tρ(USp′(2N)) is Gρ,
determined by (3.5.15). In the Coulomb branch Hilbert series (3.5.11), the fugacities
x are those associated with the symmetry Gρ, and n1, . . . , nN are the background
magnetic fluxes associated with the flavour symmetry USp(2N) of the theory.

Note that in the special case of ρ = [2N ], the Hall-Littlewood polynomial is

ΨλCN (x1, . . . , xN ; t) = t−
∑N
j=1(2N+1−2j)nj PE[Nt2 − t4 − t8 − . . .− t4N ] (3.5.20)

and so the Hilbert series (3.5.11) becomes

HC [T[2N ](USp
′(2N))](t;x, n1, . . . , nN ) = tn1+n2+...+nN . (3.5.21)

This is indeed the Coulomb branch Hilbert series of the theory of free 2N half-
hypermultiplets, as described in (3.5.10).

3.6 class-S primer

Throughout this chapter, we will be interested in the S1 reduction of some four-
dimensional theories of class-S. So, first of all, let us briefly review what class-S
means [81].

Class-S theories are a large family of 4d N = 2 SCFTs that may or may not admit
a Lagrangian description. In building such a theory we start from a six-dimensional
N = (2, 0) superconformal field theory (SCFT) denoted by χ(g), that is characterized
by a simply-laced Lie algebra g4. This theory possesses 32 real supercharges organised
in two multiplets QI which transforms in the spinor representations (4,4) of the
Lorentz group SO(1, 5) and R-symmetry SO(5)R respectively.

We then compactify χ(g) on a Riemann surface Cg,n with genus g called Gaiotto
curve, while preserving 4d N = 2 supersymmetry. The Riemann surface can have a
number n of codimension-two defects known as punctures at which boundary condi-
tions must be prescribed. These boundary conditions are encoded by some data Di

with i = 1, . . . n.
Each choice of simply-laced Lie algebra g, punctured Riemann surface Cg,n and

data Di leads to a different 4d N = 2 class-S theory that we can dub T (g, Cg,n, Di).

3.6.1 The partial topological twist

Performing the compactification on Cg,n too naively would break all the symmetries
apart the four-dimensional Poincare symmetry. However, there is a precise procedure,
called partial topological twist [83], which preserves the four-dimensional N = 2
supersymmetry with any Riemann surface Cg,n.

When considering a field theory on a curved background, the metric gµν acts as
a source for the stress tensor Tµν . In the supersymmetric case, Tµν typically belongs
to the same superconformal multiplet of the R-symmetry current Jµ. The topological
twist [164, 166] amounts to mixing exactly these two currents as follows

4A simple Lie algebra g is simply-laced if all its roots have the same length. Thus, such algebras
are of the ADE type.
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Tµνtwist := Tµν + ∂µJν (3.6.1)

before placing the theory on a non-trivial background metric.
Since (3.6.1) shifts T by total derivatives, it leaves untouched the corresponding

conserved charge, i.e. the momentum operator. However, it has a non-trivial effect
on rotations; a twisted rotation acts now by a standard rotation combined with an
R-symmetry transformation.

The supercharges become either scalars or vectors under the new rotations and
when we put the theory on a curved manifold, only the scalar ones are preserved.

In this sense, to obtain the correct amount of supersymmetry when placing the
theory on Cg,n, we can use a partial topological twist, mixing only some of the R-
symmetries with some of the rotation symmetries. In order to define the correct twist
let us decompose our six-dimensional flat space as R1,5 = R1,3×R2 so that the Lorentz
group becomes

SO(1, 3)× SO(2)old ⊂ SO(1, 5) (3.6.2)

In this way, each supercharge QI decomposes into a pair of 4d Weyl spinors of
opposite chirality under SO(1, 3) and of opposite charges under SO(2)old; which means

4→ (2,1)
1
2 ⊕ (1,2)−

1
2 (3.6.3)

We also decompose the R-symmetry as

SO(3)R × SO(2)R ⊂ SO(5)R (3.6.4)

so that now each supercharge QI further decomposes into two SO(3)R spinors with
opposite SO(2)R charge; namely

4→ 2
1
2 ⊕ 2−

1
2 (3.6.5)

We thus define the twisted rotations on R2 as the diagonal SO(2)twist combination
of the SO(2)old rotations and the SO(2)R R-symmetry subgroup; obtaining

SO(1, 3)× SO(2)R × SO(3)R × SO(2)twist ⊂ SO(1, 5)× SO(5)R (3.6.6)

By construction, the SO(2)twist charge carried by the supercharges becomes the
sum of those under SO(2)old and SO(2)R. So we conclude that, under (3.6.6), the
supercharges transform as

(4,4)→

QαAz︷ ︸︸ ︷
(2,1;2)(1

2
,1)⊕

QαA︷ ︸︸ ︷
(2,1;2)(−1

2
,0)⊕

Q
α̇A︷ ︸︸ ︷

(1,2;2)(1
2
,0)⊕

Q
α̇A
z︷ ︸︸ ︷

(1,2;2)(−1
2
,−1) (3.6.7)

where α, α̇ = 1, 2 are spinor indices of SO(1, 3) distinguishing between the two chi-
ralities and A = 1, 2 is the spinor index of SO(3)R. Additionally, z is the complex
coordinate on R2 representing the SO(2)twist charges ±1.

As anticipated, when deforming R2 to any curved Riemann surface Cg,n, only the
supercharges that are scalars under ×SO(2)twist are preserved. These are {QαA, Q

α̇A}
which, in the limit where Cg,n shrinks to a point, can be identified with the 8 super-
charges of the N = 2 supersymmetric theories on R1,3.
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The R-symmetry indeed becomes

SU(2)R × U(1)R ' SO(3)R × SO(2)R (3.6.8)

3.6.2 Tubes and tinkertoys

Any Riemann surface Cg,n admits a variety of the so-called pants decompositions [51]
that deconstruct the surface into a series of three-punctured spheres, dubbed trinions,
glued together by connecting pairs of punctures with tubes.

1 ×

2 ×

× 3

× 4

1 ×

2 ×

× 3

× 4

×
3

×
4

×
1

×
2

(3.6.9)

The main building blocks of the T (g, Cg,n, Di) class-S theories are thus:

• Theory on a sphere with two punctures, i.e. a tube.

Thanks to the partial topological twist of the previous section, once compactified
on Cg,n, the 4d theory depends only on the complex structure of the Gaiotto
curve. This quantity can be described by the "length" and "twist" of each tube
of a pants decompositions.

Let us consider a generic surface Cg,n with two punctures pi of local coordinates
zi and two disks Ai surrounding them, as in Fig. (3.6.10).

Cg,n

×

×
A1

p1

A2

p2

(3.6.10)

We can trade the disks for semi-infinite cylinders thanks to the exponential map

e : Ii × S1 → Ai

(xi, θ) 7→ zi = exi+iθ
(3.6.11)

where Ii = (−∞, Li] is a semi-infinite interval such that the radius of the disk
Ai is ri = eLi (see Fig. (3.6.12)).
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ri

Ai

×
pi

·zi
exp←−−−−→

θ

S1
Ii

xi

Li −∞

(3.6.12)

By cutting the infinite ends of such cylinders at some finite cut-off, we can then
glue them together by identifying their finite ends. In doing so, we can also add
a twist to the tubes before the gluing. We thus obtain a single cylinder, starting
from the first puncture p1 and ending on the second one p2. In terms of the
complex coordinates zi, such an operation reads

z1z2 = η (3.6.13)

for some parameter η characterising the tube theory. Geometrically speaking,
in fact, its modulus |η| is related to the length-over-circumference ratio of the
tube, while its phase Arg(η) indicates how the two cylinders were twisted.

These two quantities are also related to the physics of the underlying 4d theory
on the tube as follows.

First of all, by compactifying the original 6d theory χ(g) on the circle of length
2πL5 of the tube, we get a 5d N = 2 SYM theory with gauge algebra g and
coupling g2

5d ∝ L5. Then, this theory is further restricted to an interval of length
L4 ∝ − log |η|L5 which is nothing but the length of the tube. Thus, in the limit
where Cg,n shrinks to a point, we get a 4d N = 2 gauge theory with gauge group
g and gauge coupling

1

g2
4d

∝ L4

g2
5d

∝ − log |η| (3.6.14)

On the other hand, Arg(η) is identified with the θ angle of the four-dimensional
theory. This is because the Kaluza-Klein modes along the S1 circumference of
the tube are identified with the five-dimensional instantons. These are in fact
charged under the current

Jµinst = εµνρσλ Tr
(
FνρFσλ

)
(3.6.15)

which also generates the rotations along S1 that are parametrised by the twist
Arg(η) ∝ θ.
In this sense, the tube theory gives rise to a four-dimensional N = 2 vector
multiplet in the adjoint representation of g with complexified gauge coupling

τ =
θ

2π
+

4πi

g2
4d

' Arg(η)

2π
− 4πi

log |η|
(3.6.16)

• Theory on a sphere with three punctures, i.e. a trinion.

Each trinion corresponds to a different class-S theory called "tinkertoy". Since
such tinkertoys range in complexity from free hypermultiplets to unknown SCFTs,
not much can be said in general about them.
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However, each puncture turns out to be associated with a flavour symmetry
of the underlying four-dimensional theory. In fact, for a given algebra g, there
exist different types of punctures carrying a different amount of global symmetry.
Thus, as we have seen, connecting two punctures by a tube amounts to gauging
a diagonal combination of the two flavour symmetries by means of a 4d N = 2
vector multiplet.

In this sense, the general theory T (g, Cg,n, Di) can be decomposed into such tin-
kertoys; each decomposition corresponding to a different regime in the coupling space
of the underlying 4d SCFT.

3.6.3 Punctures

As we already said in the previous paragraphs, there exist different types of punc-
tures. To correctly classify these codimension-two defects one must understand the
behaviour on the Riemann surface Cg,n of a Lie algebra valued holomorphic one-form
field Φ = Φzdz, called the Higgs field or Hitchin field [82]. In fact, the Casimirs {Oj}
of this operator, with j = 1, . . . ,Rank g, are exactly the chiral operators describing
the Coulomb branch of the underlying four-dimensional theory.

To understand what are these chiral operators, we have to study the moduli space
of vacua of the six-dimensional theory. which is dubbed "tensor branch". To do so,
let us first consider the simplest 6d N = (2, 0) theory, i.e. χ(U(1)), consisting only of
a free tensor multiplet. This contains:

• Five SO(1, 5) real scalars φ the (5) of SO(5)R;

• Four SO(1, 5) Weyl fermions λ in the (4) of SO(5)R;

• A SO(1, 5) 2-form B singlet under SO(5)R and with a self-dual field-strength
H = dB.

It turns out that the tensor branch of a generic χ(g) theory contains a U(1)Rank g

IR theory consisting of Rank g free tensor multiplets. Thus, similarly to the three-
dimensional cases of Chapter (2), it is parametrised by the VEVs of the scalar compo-
nents φ of such multiplets, belonging to the Cartan subalgebra of g modulo the action
of the Weyl group.

We can thus reconstruct the four-dimensional Coulomb branch from the tensor
branch of the parent 6d theory, by decomposing the components of the tensor multiplet
under the symmetry group

SO(1, 3)× SO(3)R × SO(2)R × SO(2)old. (3.6.17)

We get that:

• The real scalars decompose as

φz := φ1 + iφ2 → (1,1;1)(0,1) (3.6.18)

φz := φ1 − iφ2 → (1,1;1)(0,−1)

φ3,4,5 → (1,1;3)(0,0)
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• The Weyl fermions decompose as

λa → (2,1;2)(1
2
,±1

2
) ⊕ (1,2;2)(1

2
,±1

2
) (3.6.19)

After compactifying the 6d theory on the Riemann surface Cg,n, we are left with
the 4d N = 2 supercharges {QαA, Qα̇A} only. These transform under the symmetry
group (3.6.17) as

QαA → (2,1;2)(1
2
,−1

2
) , Q

α̇A → (1,2;2)(−1
2
,1
2

) (3.6.20)

We deduce that

Q
α̇A
φz = 0 (3.6.21)

because no component of λ has the appropriate SO(2)R charge 3
2
. This is clearly

similar to the definition (2.2.18) of chiral operators, apart from the gauge invariance
property.

We thus expect the four-dimensional Coulomb branch to be parametrised by the
VEVs of gauge invariant combinations of φz. These are exactly the Casimirs of g,
i.e. some polynomials Pk(φz) of degrees dk for k = 1, . . . ,Rank g. For example, as we
already saw in Section (2.2.6), if g = aN = su(N + 1), the Casimirs are simply Tr(φjz)
with j = 2, . . . , N + 15.

We thus identify

〈Oj〉 = Pj(φz) (3.6.22)

which are exactly the holomoprhic differentials of degree j encoded in the Casimirs of
the Hitchin field Φ.

This Hitchin field Φ is useful in classifying the Gaiotto curve defects since its
singular behaviour at the punctures pi fully describes their data Di.

These defects come in fact in two families:

• The so-called regular or tame punctures correspond to simple poles for the
Hitchin field [52]

Φz(z) =
T

z
+ . . . (3.6.23)

where the puncture is located at z = 0 and T is a semi-simple element of g
specifying the puncture group structure.

• The so-called irregular or wild punctures correspond to high order poles instead
[156]

Φz(z) =
T

z2+ k
b

+ . . . (3.6.24)

with b ∈ Z+, k ∈ Z and k > −b.

Moreover, the Hitchin field Φ can possess a non-trivial monodromy condition as
one circles the singualr point [52]. In fact, in the 6d N = (2, 0) theory, one can also

5The Casimir for j = 1 does exist in the unitary case only since Tr(φ) = 0 for a SU(N) valued
field φ.
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define codimension-one defects, dubbed twist lines, that connect pair of punctures
(see Fig. (3.6.27)). These twist lines correspond to the discrete global symmetries
associated to the outer-automorphism group Out(g) of the Lie algebra. This fact
further distinguishes the punctures types as follows:

• The so-called untwisted punctures have trivial monodromy condition

Φz(e
2πiz) = σg · Φz(z) (3.6.25)

for some inner automorphism σg of the Lie algebra g.

• The so-called twisted punctures have non-trivial monodromy condition

Φz(e
2πiz) = σg · o · Φz(z) (3.6.26)

for some composition of an outer-automorphism o and inner-automorphism σg
of g. These punctures can clearly be defined only when g has a nontrivial
outer-automorphism group Out(g) and, due to the presence of twist line defects
connecting them, they must always come in pairs.

Cg,n

×
×p2

p1

(3.6.27)

Clearly, these different types of punctures put different constraints on the defining
data Di, which are

Di := (Ti, ki, bi) (3.6.28)

where the elements Ti belong to some subalgebras ji of g according to the type of
puncture. To each element Ti is then associated a different partition ρi which reflects
the su(2) embedding inside ji.

In the following we will be interested in the case g = a2N = su(2N + 1) only and
we will restrict ourselves to regular defects. We are left with two types of punctures
only, namely:

• The regular untwisted puncture, for which j = a2N = su(2N + 1) and thus ρi is
a standard partition of 2N + 1;

• The regular twisted puncture, for which j = cN = sp(N) and thus ρi is a C-
partition of 2N .

For example, if N = 1, i.e. a2 = su(3), the admitted partitions are listed in the
following table:
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Untwisted Twisted

ρi Tableau ρi Tableau

[13] [12]t

[2, 1] [2]t

(3.6.29)

where the principal su(2) embedding partition [ 3 ] does not appear in the untwisted
cases as it simply does not contribute to the flavour symmetry of the trinion theory.
On the other hand, for twisted punctures, even if the principal embedding [2]t

6 gives
likewise a flavourless puncture, it however carries a non-trivial monodromy condition.

3.6.4 Argyres-Douglas theories within class-S

Argyres-Douglas theories [10] are a special class of 4d N = 2 supersymmetric theories
that are usually non-Lagrangian, possess dimensional coupling constants and have
Coulomb branch operators that are of fractional scaling dimension ∆.

Until the introduction of twisted punctures, it was a common lore that these the-
ories could only be obtained within the class-S framework considering, as a Riemann
surfaces Cg,n, a sphere decorated with irregular punctures in two possible combina-
tions:

• Only one (untwisted) irregular puncture;

• One (untwisted) irregular puncture and one (untwisted) regular puncture.

Indeed, the introduction of the irregular singularity on the sphere provides the
desired properties for the underlying 4d theory, which cannot be obtained using only
regular (untwisted) punctures.

Recently, with the introduction of twisted punctures, it has been proven by Beem
and Peelaers [20] that one can consider χ(a2N ) theories defined on trinions with regular
defects only, to produce a number of different 4d Argyres-Douglas theories. These
defects, however, must necessarily be of both untwisted and twisted type and they
can only produce Argyres-Douglas theories whose Coulomb branch generators possess
half-integer scaling dimensions.

In their paper, they focused on the N = 1 case, for which we already listed the
allowed punctures in Table (3.6.29). With these punctures the allowed trinions are
the following:

T̃3 T
(2)

su(3)

(
T

(1)

su(3)

)⊗2
R2,2 T

(1)

su(3)⊗ HM

(3.6.30)
6Throughout this work, we use the subscript t to indicate a twisted puncture.
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where for each theory we have used the labels of [20], denoting the rank-n su(3)-
instanton SCFT as T (n)

su(3). So that, in particular, T (n)
su(3) is the (A1, D4) Argyres-Douglas

theory. Finally, HM stands for a free hypermultiplet.
Note that not all choices of punctures correspond to physical 4d SCFTs. A di-

agnostic to detect disallowed combinations is to check the superconformal index (see
Chapter (3)); if its expression diverges, the theory is designated as bad. This is the
case for the [2, 1], [12]t, [12]t theory.

In the following we will be interested in the the 3d mirrors of the S1 reduction of
these twisted χ(a2) theories (and, when possible, twisted χ(a2N ) theories in general).
The results of [42] allow us to make progress in such direction and can be used as a
testing ground for our proposal. In particular, we heavily rely on the observation that
the Higgs branch of the underlying 4d SCFT should match with the Coulomb branch
of the 3d mirror theory of its S1 reduction, and that the rank of the 4d SCFT (i.e.
the complex dimension of the Coulomb branch) should match with the quaternionic
Higgs branch dimension of the corresponding mirror theory. For the former, we will
match the Coulomb branch Hilbert series of the 3d mirror theory with the Higgs
branch Hilbert series of the 4d theory. We also study the Higgs branch Hilbert series
of the mirror theory in detail. In some cases, there are more than one description
of the mirror theory for a given 4d SCFT. The Hilbert series between those mirror
theories are matched and we conjecture that they are dual to each other. In this way,
we obtain new dual pairs between 3d N = 4 gauge theories that have not be studied
elsewhere in the literature.

3.6.5 3d mirrors of χ(aN) tinkertoys

In constructing the quiver description of the 3d mirrors theories of the circle reduction
of twisted χ(a2N ) theories of class-S, we were inspired by the method of [23].

In this paper the authors studied the non-Lagrangian χ(aN−1) theories associated
to a trinion with untwisted regular punctures ρi. By compactifying them on S1,
which leads to 3d N = 4 SCFTs when the radius tends to zero, and by applying
mirror symmetry, they found out that the 3d mirror of such tinkertoy theory always
has a Lagrangian description, i.e. a quiver.

Moreover this quiver is always a star-shaped quiver with 3 legs, each one deter-
mined by a different Tρi(SU(N)) theory (whose quiver is depicted in Fig. (3.3.9))
and with their U(N) flavour nodes being commonly gauged as a central node. In this
star-shaped construction, an overall U(1) gauge symmetry needs to be modded out
and this can be done at the central node; in which case its gauge symmetry becomes
U(N)/U(1), see Fig. (3.6.31).

T3

−→ U(1) U(2) U(3)
U(1)

U(2)

U(1)

U(2)

U(1)

(3.6.31)
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As we have seen in the previous section, the tinkertoys of our interest are the
twisted χ(a2N ) theories associated with a sphere with one untwisted regular puncture
ρ and two twisted regular punctures σt and λt. Let us stress again that here ρ is a
partition of 2N + 1 and σ and λ are C-partitions of 2N (see Table (3.6.29)).

inspired by the method of [23], we thus propose that the 3d mirror in question can
obtained as follows:

1. As the 3 legs of the quiver we consider the following theories:

Tρ(SU(2N + 1)) , Tσ(USp′(2N)) , Tλ(USp′(2N)) . (3.6.32)

The Tρ(SU(N)) theory was discussed in Section (3.3) and its quiver is depicted
in (3.3.9); On the other hand, the Tσ(USp′(2N)) theory was discussed in Section
(3.5) and its quiver is depicted in (3.5.7).

2. To construct the star-shaped quiver, the USp(2N) symmetry from the flavour
symmetry of the theories listed in (3.6.32) are then gauged together. It thus
plays the role of the central gauge node in the star-shaped quiver as mentioned
in [23].

Note that in doing this, the USp(2N) flavour node of Tσ(USp′(2N)) and Tλ(USp′(2N))
turns into a gauge node in the star-shaped quiver in a straightforward manner.
However, since the flavour node of Tρ(SU(2N + 1)) is U(2N + 1), we need to
decompose the bifundamental hypermultiplet between the U(2N + 1) flavour
node and the gauge node next to it, say U(M), into

• One hypermultiplet under the U(M) gauge group;

• One bifundamental hypermultiplet between U(M) × USp(2N) (see Fig.
(3.6.33)).

M 2N + 1 −→ M 2N

1

(3.6.33)

The latter USp(2N) flavour symmetry is then gauged.

3. The resulting 3d mirror quiver is an ‘almost’ star-shaped quiver with the central
node being USp(2N) and with one flavour of the fundamental hypermultiplet
under the unitary group U(M) located next to the central USp(2N) node.

We present here, as an example, the 3d mirror theory of the S1 reduction of the
R2,2 theory, which is also known as the C2U1 theory, in Fig. (3.6.34). This can be
easily generalised to all the other theories of the same class depicted in Fig. (3.6.30),
as demonstrated throughout the following sections. A feature of such mirror theories is
that the quiver description contains unitary, symplectic and orthogonal gauge groups.
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R2,2

−→ 1 1 2

3

3

(3.6.34)

Let us now briefly comment on the motivation for using the Tσ(USp′(2N)).
First of all, a simple generalisation of the previously seen R2,2 theory, consists

in considering the twisted χ(a2N ) theory associated with a sphere with one minimal
untwisted punture [2N, 1] and two maximal twisted punctures [12N ]t. This is known
as the R2,2N theory and was studied extensively in [53].

Each maximal twisted puncture gives rise to an USp(2N) global symmetry, whereas
the minimal puncture gives rise to a U(1) global symmetry. Moreover, the USp(2N)2

symmetry gets enhanced to USp(4N), and theR2,2N theory has a resulting USp(4N)×
U(1) global symmetry.

In [152], it was pointed out that both the USp(2N)2 global symmetries carried
by the maximal twisted punctures and the enhanced USp(4N) flavour symmetry of
the R2,2N theory have a global Z2 anomaly, introduced by Witten in [160]. This was
shown within the class-S framework by turning on the mass term associated with the
minimal untwisted puncture of the R2,2N theory. In fact, in the IR, this flows to a free
theory that is described by the SO(2N + 1) gauge theory with 2N hypermultiplets in
the vector representation; here it is clear that the USp(4N) flavour symmetry of this
theory possesses a Witten anomaly. In this sense, the R2,2N theory can be regarded
as the ultraviolet completion of the SO(2N + 1) gauge theory with 2N flavours.

The SO(2N + 1) gauge theory with 2N flavours admits the Type IIA brane real-
isation [165] (see also [152, section 4]) involving an O4 plane, D4 branes and two half
NS5 branes, in the following configuration:

1
2

NS5 1
2

NS5

N D4 N D4N D4

Õ4
+

Õ4
−

Õ4
+

−→ 2N 2N + 1 2N

(3.6.35)
with N physical D4 branes stretched between two half NS5 branes on top of the
Õ4
−

plane, and N other physical semi-infinite D4 brane on top of the Õ4
+

plane
terminating on each half NS5 brane. Note that the O4 plane, exactly as the O3 one,
changes sign every time it crosses a half-NS5 brane. The SO(2N + 1) gauge group
is realised on the D4 brane segment on top of the Õ4

−
plane. The N flavours of

hypermultiplets arise when two stacks of N physical D4 branes end on a half NS5-
brane from opposite sides.

Indeed, the worldvolume of each set of semi-infinite D4 branes on top of the Õ4
+

plane realises a 5d USp(2N) symmetry with the discrete theta angle θ = π controlled
by π4(USp(2N)) = Z2 [111]. This also controls the Witten anomaly on the underlying
4d USp(2N) symmetry. Since there are in total 2N flavours of hypermultiplets trans-
forming under the vector representation of SO(2N + 1), the theory has a USp(4N)
flavour symmetry.
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As pointed out in [152], when the two half-NS5 branes are on top of each other, the
coupling of the SO(2N+1) gauge group become infinite and this brane system should
realise the R2,2N theory. Indeed, the two half-NS5 branes becomes a full phyisical NS5
brane, corresponding to the minimal untwisted puncture, and the two semi-infinite D4
branes on top of Õ4

+
on each side of the brane system corresponds to each maximal

twisted puncture. This picture provides a nice way of realising the Witten anomaly
carried by the maximal twisted puncture.

Upon reduction on S1, we expect that this construction corresponds to semi-
infinite D3 branes on top of the Õ3

+
plane. This indeed shows up in the brane

configuration of the Tσ(USp′(2N)) as discussed in Section (3.5) and depicted in the
example of Fig. (3.5.3)7.

In the following sections, we demonstrate our proposal for the construction of
the 3d mirrors of the S1 reduction of twisted χ(a2N ) theories through a number of
examples.

3.7 Twisted χ(a2) trinions

Let us begin by examining the circle reduction of the twisted χ(a2) theories associated
with a sphere with three punctures.

3.7.1 Two copies of the (A1, D4) theory

The class-S description of this theory was proposed in [20] and was referred to as
Theory 5 in that reference. It can be constructed by compactifying 6d (2,0) theory of
the type χ(a2) on a sphere with the following punctures:

[13] , [2]t , [2]t (3.7.1)

where the subscript t indicates the twisted puncture (see Fig. (3.6.30)). Upon
compactifying this theory on S1, by adapting the prescription proposed in [23], we
conjecture that the 3d mirror theory admits a ‘star-shaped’ quiver description con-
structed by ‘gluing’ together the following theories:

T[13](SU(3)) : (U(1))− (U(2))− [U(3)]

T[2](USp
′(2)) : (SO(1))− [USp(2)]

T[2](USp
′(2)) : (SO(1))− [USp(2)]

(3.7.2)

which were discussed in Sections (3.3) and (3.5).
By gluing, we mean gauging the common symmetry USp(2) of the above theories,

whereby it is the central node of the star-shaped quiver. Since U(1) is the commutant
of USp(2) in U(3), we should split the part (U(2)) − [U(3)] of T[13](SU(3)) into
[U(1)]− (U(2))− [USp(2)].

Gluing together the above theory along USp(2) results in the following mirror
theory

7In fact, we remark that the 3d N = 4 SO(2N + 1) gauge theory with 2N flavours can be written
as T[N2](USp

′(2N)).
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1 2 2 1

1 1

(3.7.3)

Note that each of the two red circular nodes denotes the SO(1) group, and so the
corresponding gauge symmetry is trivial. We can therefore rewrite this quiver as

1 2 2 2

1

(3.7.4)

where the rightmost red square node denotes the SO(2) flavour symmetry.
In the following, we discuss about the Coulomb and Higgs branches of the mirror

theory (3.7.3) or (3.7.4). Since upon compactification on S1 the Higgs branch of the
4d theory is expected to be the same as that of the resulting 3d theory, it follows that
the Coulomb branch of the mirror theory should match with the Higgs branch of the
4d theory, namely the product of two copies of the closure of the minimal nilpotent
orbit minSU(3) of SU(3). Moreover, since the circle compactification of the (A1, D4)
theory is identified with 3d N = 4 U(1) gauge theory with 3 flavours (see e.g. [168]
and [42]8), we expect that the Higgs branch of the mirror theory (3.7.3) or (3.7.4)
should be (C2/Z3)2.

Let us first comment on the enhanced Coulomb branch symmetry of quiver (3.7.4)
along the line of [85]. Observe that the U(1) and U(2) gauge nodes in (3.7.4) are
balanced. As a consequence, one expects an SU(3) enhanced symmetry in the IR.
Since the USp(2) gauge node is also balanced, according to [85, section 5.3], this SU(3)
symmetry gets doubled and so the symmetry of the Coulomb branch is expected to be
SU(3)×SU(3). This is in agreement with the symmetry of (minSU(3))

2. Subsequently
we confirm such an enhanced symmetry using the Coulomb branch Hilbert series.

The quaternionic dimension Coulomb branch of (3.7.3) or (3.7.4) is

dimH{MC [(3.7.3) or (3.7.4)]} = 1 + 2 + 1 = 4 . (3.7.5)

This agrees with the dimension of the Higgs branch of the 4d N = 2 theory, given
by 24(c − a) = 24

(
4
3 −

7
6

)
= 4, where a and c are the conformal anomalies given in

(3.65) of [20]. In particular, this is equal to the dimension of
(
minSU(3)

)2. On the
other hand, the quaternionic dimension of the Higgs branch of (3.7.3) or (3.7.4) is

dimH{MH[(3.7.3) or (3.7.4)]} = 2 + 2 + 4 +
1

2
(2× 2)− (1 + 4 + 3) = 2 . (3.7.6)

This is in agreement with the fact that the S1 compactification of two copies
of rank-one (A1, D4) yields a 3d theory with two quaternionic dimensional Coulomb
branch, whose mirror theory has two quaternionic dimensional Higgs branch. In
particular, this is equal to the dimension of

(
C2/Z3

)2
8This reference studied carefully dimensional reductions for various Argyres-Douglas theories,

including (A1, D4), by utilising the reduction of the index in [43].



3.7. Twisted χ(a2) trinions 65

Let us now study the Coulomb and Higgs branches of the mirror theory in detail
using the Hilbert series. For the Coulomb branch, we present two methods in com-
puting the Hilbert series, namely the monopole formula [64] and the Hall-Littlewood
formula [67, 68]. For the Higgs branch, the Hilbert series can be computed using
the Molien integral in the usual way [46] (see also [26]). All these expression were
discussed in details in Sections (2.2.4), (3.3.1) and (3.3.1).

The Coulomb branch Hilbert series

The Coulomb branch Hilbert series can be computed from the monopole formula
(2.2.55) and reads

Hmon
C [(3.7.3) or (3.7.4)](t;w1, w2) =∑

m∈Z

∑
n1≥n2>−∞

∞∑
a=0

t2∆(m,n,a)PU(1)(t;m)PU(2)(t;n)PUSp(2)(t; a)wm1 w
n1+n2
2 ,

(3.7.7)

where we denote by m, n = (n1, n2) and a the magnetic fluxes associated with the
gauge group U(1), U(2) and USp(2) respectively; the function ∆(m,n, a) is the di-
mension of the monopole operator with magnetic fluxes (m,n, a)

∆(m,n, a) =
1

2

2∑
i=1

[
|m− ni|+ |ni|+ (|ni + a|+ |ni − a|)

]
+

1

2
· 1

2
(2|a|+ 2| − a|)− |n1 − n2| − |a− (−a)| ;

(3.7.8)

and the dressing factors are given by

PU(1)(t;m) = (1− t2)−1

PU(2)(t;n) =

{
(1− t2)−2 if n1 6= n2

(1− t2)−1(1− t4)−1 if n1 = n2

PUSp(2)(t; a) =

{
(1− t2)−1 if a 6= 0

(1− t4)−1 if a = 0 .

(3.7.9)

The variables w1 and w2 are the topological fugacities associated with the U(1) and
U(2) gauge group, respectively. Note that we turn off the background magnetic flux
for the flavour symmetry in the above expression. Upon computing the summation,
we may rewrite (3.7.7) as9

Hmon
C [(3.7.3) or (3.7.4)](t;w1, w2) =

[ ∞∑
k=0

χ
SU(3)
[k,k] (w1, w2)t2k

]2

. (3.7.10)

9In this notation, the adjoint representation of SU(3) is written as χSU(3)

[1,1] (w1, w2) = 2 + w1 +

w−1
1 +w2 +w−1

2 +w1w2 +w−1
1 w−1

2 . In the convention where the fundamental representation of SU(3)

is written as χSU(3)

[1,0] (x1, x2) = x1 +x2x
−1
1 +x−1

2 , this amounts to the change of variables w1 = x1x
−2
2

and w2 = x2x
−2
1 .
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Note that the quantity in the square bracket is the Hilbert series of the closure of
the minimal nilpotent orbit minSU(3) of SU(3) [26]. This result also agrees with the
Hall-Littlewood limit q → 0 of the Macdonald index (3.66) of [20]. It can be seen that
the topological symmetry U(1)×U(1), associated with the fugacities w1 and w2, gets
enhanced to SU(3). Note, however, that this SU(3) symmetry can be identified as the
diagonal subgroup of SU(3)×SU(3), which is an isometry of the product

(
minSU(3)

)2
and is also full flavour symmetry of the 4d N = 2 theory. Indeed, the mirror theory
(3.7.3) or (3.7.4) only allows for the refinement of such a diagonal subgroup in the
Coulomb branch Hilbert series (3.7.7), and the rest of the full symmetry is ‘hidden’
in the part of quiver (3.7.4) containing the USp(2) gauge group in the same way as
[120]. A similar observation was made in the context of the punctures of the trinion
in the class-S description of the 4d theory; see the discussion below (3.67) in [20].

Let us now discuss the Hall-Littlewood formula for computing the Coulomb branch
Hilbert series. It reads

HHL
C [(3.7.3) or (3.7.4)](t; y1, y2, y3) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×HC [T[13](SU(3))](t; y1, y2, y3; a, 0,−a)

HC [T[2](USp
′(2))](t; a)HC [T[2](USp

′(2))](t; a) ,

(3.7.11)

where the expression for each of the above Coulomb branch Hilbert series is given in
Sections (3.3) and (3.5).

We find that

HHL
C [(3.7.3) or (3.7.4)](t;w1, w

−1
2 , 1) = Hmon

C [(3.7.3) or (3.7.4)](t;w1, w2) = (3.7.10) .
(3.7.12)

One of the advantages of the Hall-Littlewood formula (3.7.11) is that one only
needs the information about the partitions, corresponding to the punctures of the 4d
theory of class-S, and not the detailed information about the quiver of the 3d mirror
theory. Moreover, this formula takes the same form as the TQFT’s structure constant
of the Macdonald index [78–80, 84, 132, 136] of the 4d theory; see (2.9) of [20].

The Higgs branch Hilbert series

The Higgs branch Hilbert series (2.2.53) reads

HH[(3.7.4)](t;x, y)

=

∮
|u|=1

du

2πiu

∮
|q|=1

dq

2πiq

∮
|z|=1

dz

2πiz
(1− z2)

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [2]q,z](t;u, q, z) HH[[1]x − [2]q,z](t;x, q, z)×
HH[[2]q,z − [USp(2)]v](t; q, z, v)×
HH[[USp(2)]v − [SO(2)]y](t; v, y)×
PE
[
−2t2 − (z2 + 1 + z−2)t2 − (v2 + 1 + v−2)t2

]
,

(3.7.13)

where where PE denotes the plethystic exponential (2.2.36); x and y are fugacities for
the U(1) and the SO(2) flavour symmetries respectively; and
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HH[[1]u − [2]q,z](t, u, q, z) = PE
[
t(uq−1 + u−1q)(z + z−1)

]
HH[[2]q,z − [USp(2)]v](t, q, z, v) = PE

[
t(q−1 + q)(z + z−1)(v + v−1)

]
HH[[USp(2)]v − [SO(2)]y](t, v, y) = PE

[
t(v + v−1)(y + y−1)

]
.

(3.7.14)

Evaluating the integrals, we obtain the Hilbert series of (C2/Z3)2 as expected:

HH[(3.7.4)](t;x, y) = H[C2/Z3](t;xy)H[C2/Z3](t;xy−1) (3.7.15)

where H[C2/Z3](t;w) is the Hilbert series of C2/Z3 given by

H[C2/Z3](t;w) = PE
[
t2 + t3(w + w−1)− t6

]
. (3.7.16)

We emphasise that the SO(2) symmetry in quiver (3.7.4) arises due to the proposal
that each red circular node in quiver (3.7.3) is in fact SO(1), and not O(1). This
proposal is justified by the above Higgs branch Hilbert series, since it reproduces the
Hilbert series of (C2/Z3)2 correctly. Note that if each red circular node in quiver
(3.7.3) were taken to be O(1), the quantities that carry fugacity t3(xy−1 + x−1y),
for example, would not be invariant under the O(1) gauge symmetry10. This is also
a justification to take the red circular nodes in quiver (3.5.7) to be of the special
orthogonal type.

3.7.2 The (A1, D4) theory with a free hypermultiplet

The class-S description of this theory was proposed in [20] and was referred to as
Theory 4 in that reference. It can be constructed by compactifying 6d (2,0) theory of
the type χ(a2) on a sphere with the following punctures:

[2, 1] , [12]t , [2]t . (3.7.18)

where the subscript t denotes the twisted puncture (see Fig. (3.6.30)).
The mirror of the 3d theory arising from compactifying such a 4d theory on a

circle admits a ‘star-shaped’ quiver description constructed by gauging the common
USp(2) symmetry of the following theories [23]:

T[2,1](SU(3)) : (U(1))− [U(3)]

T[12](USp
′(2)) : (SO(3))− [USp(2)]

T[2](USp
′(2)) : (SO(1))− [USp(2)]

(3.7.19)

where USp(2) plays the role of the central node of the star-shaped quiver. Since
U(1) is the commutant of USp(2) in U(3), we need to first rewrite the quiver for
T[2,1](SU(3)) as [U(1)]− (U(1))− [USp(2)] and then gauge the USp(2) group.

The 3d mirror theory in question is then
10In this case, we would have to replace the factor HH[[USp(2)]− [SO(2)]](t, z, y) by the square of

the Higgs branch Hilbert series of [USp(2)] − (O(1)). The latter is the Hilbert series of C2/Z2; see
(3.32) of [26]:

HH[[USp(2)]− (O(1))](t; z) = PE[t2(z2 + 1 + z−2)− t4] . (3.7.17)

The result is no longer the Hilbert series of (C2/Z3)2. In particular, there is no generator of the
Higgs branch at order t3.
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1 2 1

1 3

(3.7.20)

As we have proposed and justified in the previous subsection, the rightmost red
circular node with the label 1 denotes the SO(1) group, and the corresponding gauge
symmetry is trivial. The line connecting it with the blue node thus denotes a half-
hypermultiplet in the fundamental representation of the USp(2) gauge group. In the
following we study the Coulomb and Higgs branches of (3.7.20). Since the Higgs
branch of the 4d theory is C2 ×minSU(3), we expect that the Coulomb branch of the
3d mirror theory (3.7.20) is isomorphic to this space also. Moreover, similarly to the
previous subsection, we also expect that the Higgs branch of (3.7.20) is isomorphic to
C2/Z3. Due to these properties of the moduli space, we also conjecture that theory
(3.7.20) is dual to the following quiver [36, 66, 142]:

1 1

1

1 (3.7.21)

Note that the mirror of this quiver is the well-known ADHM gauge theory for one
SU(3) instanton on C2, namely the U(1) gauge theory with one adjoint and three
fundamental hypermultiplets [36, 66, 142]:

1 3 (3.7.22)

The Coulomb branch of (3.7.20) is 1 + 1 + 1 = 3 quaternionic dimensional; this
is in agreement with that of C2 ×minSU(3). On the other hand, the computation of
the Higgs branch dimension of (3.7.20) is more subtle than the previous subsection,
since the SO(3) gauge group is not completely broken at a generic point on the
hypermultiplet moduli space. In fact, it was argued in Footnote 7 of [69] that the Higgs
branch of the theory (SO(3))− [USp(2)] is the equal to that of (O(1))− [USp(2)]; the
latter turns out to be C2/Z2, which is one quaternionic dimensional. The quaternionic
Higgs branch dimension of (3.7.20) is therefore (1×1)+(1×2)+ 1

2(2×1)+1−(1+3) = 1,
which is equal to that of C2/Z3. In the following we study both branches of the moduli
space in more detail using the Hilbert series.

The Coulomb branch Hilbert series

Since the SO(3) gauge group in (3.7.20) has only one flavour of the hypermultiplet
transforming under the vector representation, this renders quiver (3.7.20) a bad theory
in the sense of [85] (see the end of Section (2.2.3)). In this case, the monopole formula
diverges due to the presence of the monopole operators whose dimension is zero.
Nevertheless, it is possible to compute the Coulomb branch Hilbert series using the
Hall-Littlewood formula. This reads
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HC [(3.7.20)](t;x1, x2, y) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×HC [T[2,1](SU(3))](t;x1, x2; a, 0,−a)

HC [T[12](USp
′(2))](t; y; a)HC [T[2](USp

′(2))](t; a) ,

(3.7.23)

where the expression for each of the above Coulomb branch Hilbert series is given in
Sections (3.3.1) and (3.3.1), and the fugacities x1, x2 have to satisfy the constraint
(3.3.16):

x2
1x2 = 1 . (3.7.24)

Evaluating the summation, we obtain

HC [(3.7.20)](t;x1, x2, y) = PE
[
(y + y−1)t

]
×

[ ∞∑
k=0

χ
SU(3)
[k,k] (u)t2k

]
(3.7.25)

where in this notation the character of the adjoint representation [1, 1] of SU(3) is
written as

χ
SU(3)
[1,1] (u) = u1u2 +

u2
1

u2
+
u1

u2
2

+
1

u1u2
+
u2

u2
1

+
u2

2

u1
+ 2 , (3.7.26)

with

u1 = (x1x
−1
2 )

1
3 y , u2 = (x−1

1 x2)
1
3 y . (3.7.27)

The Hilbert series (3.7.25) is indeed that of C2 × minSU(3). Note that the free
hypermultiplet arises from the (SO(3)) − [USp(2)] part of the quiver. The can be
seen from the the fact that the fugacity y associated with the SU(2) symmetry of
C2, parametrised by the expectation values of the free hypermultiplet, comes from
the factor HC [T[12](USp

′(2))] in the Hall-Littlewood formula. It is worth pointing out
that this SU(2) is not manifest in the description T[12](USp

′(2)) : (SO(3))− [USp(2)]
but is enhanced in the IR; the reason for this is that the theory is self-mirror and that
its flavour symmetry is SU(2). Similarly, the SU(3) symmetry of the space minSU(3)

is also not manifest in quiver (3.7.20) and is enhanced in the IR. As can be seen
from (3.7.27), the generators of the Cartan subalgebra of this SU(3) symmetry is a
linear combination of the generator of the Cartan subalgebra of SU(2), which is the
symmetry of C2, and a generator of the U(1) topological symmetry in (3.7.20).

The Higgs branch Hilbert series

The Higgs branch Hilbert series can be computed as follows:
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HH[(3.7.20)](t;w) =

∮
|u|=1

du

2πiu

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [1]w](t;u,w)HH[[1]u − [USp(2)]v](t;u, v)×
HH[[USp(2)]v − (SO(3))](t; v)×
HH[[USp(2)]v − (SO(1))](t; v)×
PE
[
−t2 − (v2 + 1 + v−2)t2

]
,

(3.7.28)

where

HH[[1]u − [1]w](t;u,w) = PE
[
(uw−1 + u−1w)t

]
HH[[1]u − [USp(2)]v](t;u, v) = PE

[
(u+ u−1)(v + v−1)t

]
HH[[USp(2)]v − (SO(3))](t; v) = H[C2/Z2](t; v) = PE[t2(v2 + 1 + v−2)− t4]

HH[[USp(2)]v − (SO(1))](t; v) = PE[(v + v−1)t]

(3.7.29)

Note that, in the third line, we have used the fact that Higgs branch of the theory
(SO(3))− [USp(2)] is isomorphic to C2/Z2. This has been discussed earlier.

Evaluating the integrals, we obtain the Hilbert series of C2/Z3 as expected:

HH[(3.7.20)](t;w) = H[C2/Z3](t;w) = PE
[
t2 + t3(w + w−1)− t6

]
. (3.7.30)

3.7.3 The rank-two SU(3) instanton SCFT

This 4d SCFT was studied extensively in [41], where it was dubbed TX11 (see also [21]).
The class-S description of this theory was recently proposed in [20] and was referred
to as Theory 3 or T (2)

SU(3) in that reference. It can be constructed by compactifying 6d
(2,0) theory of the type χ(a2) on a sphere with the following punctures:

[13] , [12]t , [2]t . (3.7.31)

where the subscript t denotes the twisted puncture (see Fig. (3.6.30)).
The mirror of the 3d theory arising from compactifying such a 4d theory on a circle

can constructed by gauging the common USp(2) symmetry of the following theories:

T[13](SU(3)) : (U(1))− (U(2)− [U(3)]

T[12](USp
′(2)) : (SO(3))− [USp(2)]

T[2](USp
′(2)) : (SO(1))− [USp(2)]

(3.7.32)

where USp(2) plays the role of the central node of the star-shaped quiver.
Similarly to the preceding subsections, the 3d mirror theory in question is then

11In fact, in [41, 44], the authors studied the T3, 3
2
theory, which flows to a free hypermultiplet and

the interacting SCFT called TX . The Higgs branch of the T3, 3
2
theory is the full moduli space of two

SU(3) instantons on C2, which also includes the C2 factor due to the centre of the instantons. Upon
decoupling the free hypermultiplet, the Higgs branch of the TX theory is identified with the reduced
instanton moduli space.
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1 2 2 1

1 3

(3.7.33)

In the following we study the Coulomb and Higgs branches of (3.7.33). The ADHM
gauge theory of the moduli space of two SU(3) instantons on C2 is the U(2) gauge
theory with one adjoint and three fundamental hypermultiplets:

2 3 (3.7.34)

The Higgs branch of (3.7.34) is C2×M̃2,SU(3), where M̃2,SU(3) is the reduced (or
centred) moduli space of two SU(3) instantons on C2, and the Coulomb branch of
(3.7.34) is the second symmetric power of C2/Z3 [36, 106], denoted by Sym2(C2/Z3).
We thus expect that the Coulomb branch of theory (3.7.33) is isomorphic to M̃2,SU(3)

and that the Higgs branch of (3.7.33) is isomorphic to Sym2(C2/Z3). Below we show
that these are indeed the case.

The Coulomb branch of (3.7.33) is 1+2+1+1 = 5 quaternionic dimensional; this is
in agreement with that of M̃2,SU(3). On the other hand, the computation of the Higgs
branch of (3.7.33) can be performed similarly to the previous subsection, i.e. by noting
that the Higgs branch of the theory (SO(3)) − [USp(2)] is the equal to C2/Z2 [69,
Footnote 7], which is one quaternionic dimensional. The quaternionic Higgs branch
dimension of (3.7.33) is therefore (1×2)+(2×1)+(2×2)+ 1

2(2×1)+1−(1+4+3) = 2,
which is equal to that of Sym2(C2/Z3). In the following we study both branches of
the moduli space in more detail using the Hilbert series.

We now discuss the Coulomb branch. Since the SO(3) gauge group has one flavour
transforming under its vector representation, the theory is ‘bad’. As a result, the
monopole formula diverges. However, as in the previous subsection, we can use the
Hall-Littlewood formula to compute the Coulomb branch Hilbert series

HC [(3.7.33)](t;x1, x2, x3, y) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×HC [T[13](SU(3))](t;x1, x2, x3; a, 0,−a)

HC [T[12](USp
′(2))](t; y; a)HC [T[2](USp

′(2))](t; a) ,

(3.7.35)

where the expression for each of the above Coulomb branch Hilbert series is given in
Sections (3.3) and (3.5), and the fugacities x1, x2, x3 have to satisfy the constraint
(3.3.16):

x1x2x3 = 1 . (3.7.36)

Evaluating the summation, we obtain the Hilbert series of M̃2,SU(3) (see [106,
(3.23)]):
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HC [(3.7.33)](t;x1, x2, x3, y)

= PE
[(
χ
SU(3)
[1,1] (x) + χ

SU(2)
[2] (y)

)
t2 +

(
χ
SU(3)
[1,1] (x)χ

SU(2)
[1] (y)

)
t3 − t4 + . . .

]
.
(3.7.37)

Let us now turn to the Higgs branch. The Higgs branch Hilbert series is given by

HH[(3.7.33)](t;x)

=

∮
|u|=1

du

2πiu

∮
|q|=1

dq

2πiq

∮
|z|=1

dz

2πiz
(1− z2)

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [2]q,z](t;u, q, z) HH[[1]x − [2]q,z](t;x, q, z)

HH[[2]q,z − [USp(2)]v](t; q, z, v)×
HH[[USp(2)]v − (SO(3))](t; v)×
HH[[USp(2)]v − (SO(1))](t; v)×
PE
[
−2t2 − (z2 + 1 + z−2)t2 − (v2 + 1 + v−2)t2

]
,

(3.7.38)

where the notations are as described in (3.7.14) and (3.7.29).
Evaluating the integrals, we find that

HH[(3.7.33)](t;x) =
1

2

[(
H[C2/Z3](t;x)

)2
+H[C2/Z3](t2;x2)

]
(3.7.39)

where the Hilbert series of C2/Z3 is given by (3.7.16). This is indeed the Hilbert series
of Sym2(C2/Z3).

3.7.4 The R2,2N theory

The class-S description of the 4d R2,2N SCFT was proposed in [53]. This is a twisted
χ(a2N ) theory associated with a sphere with punctures:

[2N, 1] , [12N ]t , [12N ]t . (3.7.40)

Let us first focus on the case of N = 1. This theory is also referred to as the C2U1

theory in the literature and it corresponds to Theory 2 in [20] (see also Fig. (3.6.30)).
Following the procedures described in the previous subsections, we obtain the

following 3d mirror theory upon reducing this theory on S1:

1 2 3

1 3

(3.7.41)

The Coulomb branch of (3.7.41) is 1 + 1 + 1 + 1 = 4 quaternionic dimensional,
in agreement with the Higgs branch dimension of the 4d theory which is equal to
24(c − a) = 24

(
19
12 −

17
12

)
= 4, where a = 17

12 and c = 19
12 are the conformal anomalies

of the 4d theory [53]. The quaternionic dimension of the Higgs branch of (3.7.41) is
(1× 1) + (1× 2) + 1 + 1− (1 + 3) = 1, which is in agreement with the fact that the
C2U1 theory is a rank-one 4d theory. In the following, we use the Hilbert series to
show that this Higgs branch is in fact isomorphic to C2/Z6.
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We remark that the S1 reduction of the C2U1 theory has recently been investigated
in [40] using a different approach. In that reference, the theory in question was studied
using the magnetic quiver with a non-simply laced edge depicted in [40, Table 2]. We
will see that the Coulomb branch Hilbert series computed in that reference is in
agreement with ours.

The Coulomb branch Hilbert series

The Coulomb branch Hilbert series is given by the following Hall-Littlewood formula:

HC [(3.7.41)](t;x1, x2, y, z) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×HC [T[2,1](SU(3))](t;x1, x2; a, 0,−a)

HC [T[12](USp
′(2))](t; y; a)HC [T[12](USp

′(2))](t; z; a) ,

(3.7.42)

where the expression for each of the above Coulomb branch Hilbert series is given in
Sections (3.3) and (3.5) and the fugacities x1, x2 satisfy the relation (3.3.16):

x2
1x2 = 1 . (3.7.43)

This Hilbert series can be written concisely in a closed form in terms of the highest
weight generating function (HWG) [104] as

HWG [HC [(3.7.41)]] = PE
[
t2(1 + µ2

1) + t3(w + w−1)µ2 + t4µ2
2 − t6µ2

2

]
. (3.7.44)

where, upon computing the power series of this expression in t, µp1
1 µ

p2
2 denotes the

representation [p1, p2], whose character written in terms of y and z, of USp(4). Here
w is the fugacity for the U(1) symmetry which can be written in terms of x1, x2 as

w = x2x
−1
1 . (3.7.45)

The highest weight generating function (3.7.44) is indeed in agreement with that
presented in [40, Table 11, row 3 with n = 2].

As can be seen from the coefficient of the order t2, the symmetry of the Coulomb
branch is indeed USp(4)× U(1).

Note that, in this notation, the adjoint representation [2, 0] of USp(4) can be
written as

χ
USp(4)
[2,0] (u) =

u2
1

u2
+
u2

1

u2
2

+ u2
1 +

u2
2

u2
1

+
u2

u2
1

+ u2 +
1

u2
1

+
1

u2
+ 2 (3.7.46)

with u1 = y and u2 = yz. Recalling that the T[12](USp
′(2)) theory is self-mirror, we

expect the Coulomb branch symmetry of the two copies of it appearing in the quiver
(3.7.41) to get enhanced in the IR to SU(2)× SU(2), corresponding to the fugacities
y and z. From the above computation we see that this SU(2) × SU(2) symmetry
is, in fact, further enhanced to USp(4). Setting w = 1, y = 1, z = 1, we obtain the
unrefined Hilbert series, as presented below [53, (3)] with τ = t2 and [40, Table 3,
row 3]. The plethystic logarithm of the Hilbert series (3.7.42) can be obtain from the
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argument inside the PE in [20, (3.30)]12 by taking the limit q → 0 of that expression.
The generators of the moduli space and their relations were analysed in that reference.

The Higgs branch Hilbert series

The Higgs branch Hilbert series can be computed as follows:

HH[(3.7.41)](t;w) =

∮
|u|=1

du

2πiu

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [1]w](t;u,w)HH[[1]u − [USp(2)]v](t;u, v)×
HH[[USp(2)]v − (SO(3))](t; v)×
HH[[USp(2)]v − (SO(3))](t; v)×
PE
[
−t2 − (v2 + 1 + v−2)t2

]
,

(3.7.47)

where the notations are as in (3.7.29).
Evaluating the integrals, we obtain the Hilbert series of C2/Z6:

HH[(3.7.41)](t;w) = PE
[
t2 + (w + w−1)t6 − t12

]
= H[C2/Z6](t;w) . (3.7.48)

The appearance of C2/Z6 can be understood by considering the S-fold realization
of the C2U1 theory [8]: In the F-theory context this model arises by probing with a D3
brane a background which is obtained by combining a 7-brane of type H2 with a Z2

S-fold action whose effect is to act as a sign flip on the Coulomb branch of the H2 (or
(A1, D4)) theory resulting in a IV ∗ geometry. Upon reduction to three dimensions the
Coulomb branch of the (A1, D4) theory becomes the hyperkahler singularity C2/Z3

as we have seen before. We should then expect the Z2 S-fold to act on this geometry,
resulting therefore in a C2/Z6 singularity.

Mirror of the S1 reduction of the R2,2N theory

We propose that the 3d mirror theory in question is

2N + 12N − 2· · ·23 2N 2N + 1 2N − 2 · · · 2 3

1

1

(3.7.49)
Note that the Coulomb branch of this quiver is 2N2 + N + 1 quaternionic di-

mensional, where we have used the fact that the Coulomb branch of TUSp′(2N) is N2

dimensional. This is in agreement with the Higgs branch dimension of the 4d theory
which can be computed from 24(c−a) = 2N2 +N+1, where the conformal anomalies
are a = 14N2+19N+1

24 and c = 8N2+10N+1
12 [53]. On the other hand, the Higgs branch

of quiver (3.7.49) is 2N2 + 2N + 1 − 1
2(2N)(2N + 1) − 1 = N , where we have used

12Note that the notation in [20] can be mapped to ours as follows: tthere = t2ours and a3 = w.
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the fact that the Higgs branch of TUSp′(2N) is also N2 dimensional. This result is in
agreement with the fact that the R2,2N theory has rank N .

Again, we remark that there is an alternative description of the mirror theory in
terms of a non-simply-laced quiver. This, together with the corresponding highest
weight generating function, were given in [40, Table 11, row 3], with n = 2N .

3.7.5 The T̃3 or T (2)
A2,2

theory

This theory was proposed and studied in [20]. It also recently appeared in [98] where
it was called T (2)

A2,2
. It has the class-S description as a twisted χ(a2) theory associated

with the sphere with punctures (see Fig. (3.6.30)):

[13] , [12]t , [12]t . (3.7.50)

Following the procedure described in the previous subsections, we obtain the fol-
lowing quiver description of the 3d mirror theory of the compactification of T̃3 on
S1:

1 2 2 3

1 3

(3.7.51)

The Coulomb branch of (3.7.52) is 1 + 2 + 1 + 1 + 1 = 6 quaternionic dimensional,
in agreement with the Higgs branch dimension of the 4d theory which is equal to
24(c − a) = 24

(
3− 11

4

)
= 6, where a = 11

4 and c = 3 are the conformal anomalies
of the 4d theory, as given in (3.1) of [20]. On the other hand, the Higgs branch of
(3.7.41) is (1× 2) + (2× 1) + (2× 2) + 1 + 1− (1 + 4 + 3) = 2, which is in agreement
with the claim in [20] that T̃3 is a rank-two theory. Again, in this computation, we
have used the fact that the SO(3) gauge theory with one flavour has the Higgs branch
isomorphic to C2/Z2, which is one quaternionic dimensional [69]. In the following, we
investigate both branches in more detail using the Hilbert series.

As in the previous subsection, the Coulomb branch Hilbert series can be computed
using the Hall-Littlewood formula:

HC [(3.7.52)](t;x1, x2, x3, y, z) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×HC [T[13](SU(3))](t;x1, x2, x3; a, 0,−a)

HC [T[12](USp
′(2))](t; y; a)HC [T[12](USp

′(2))](t; z; a) ,

(3.7.52)

where the expression for each of the above Coulomb branch Hilbert series is given
in Sections (3.3) and (3.5) and the fugacities x1, x2, x3 have to satisfy the constraint
(3.3.16):

x1x2x3 = 1 . (3.7.53)

The highest weight generating function of the Coulomb branch Hilbert series up
to t12 is
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PE
[
t2
(
µ1µ2 + ν2 + σ2

)
+ t4 (µ1µ2νσ + µ1µ2 + 1)

+ t6
(
µ3

1νσ + µ1µ2νσ + µ3
2νσ + µ3

1 + µ3
2

)
+ t8

(
µ3

1νσ + µ3
2νσ

)
− t10

(
µ4

1µ2νσ + µ1µ
4
2νσ

)
− t12(µ4

1µ2ν
2σ2 + µ3

1µ
3
2ν

2σ2 + µ2
1µ

2
2ν

2σ2 + µ1µ
4
2ν

2σ2 + µ4
1µ2νσ

+ 2µ3
1µ

3
2νσ + µ1µ

4
2νσ + µ3

2µ
3
1) + . . .

]
(3.7.54)

where, upon computing the power series of this expression in t, µp1
1 µ

p2
2 ν

rσs denotes the
representation [p1, p2; r; s], whose character can be written as χSU(3)

[p1,p2](x)χ
SU(2)
[r] (y)χ

SU(2)
[s] (z),

of SU(3) × SU(2) × SU(2). This is indeed the symmetry of the Coulomb branch of
the theory. The plethystic logarithm of the Hilbert series (3.7.52) can be obtained
from the argument inside the PE in [20, (3.3)] by taking the limit q → 0 of that
expression. The generators of the moduli space and their relations were analysed in
that reference.

Now let us examine the Higgs branch. The Hilbert series can be computed in a
similar way to the previous subsection; it is given by

HH[(3.7.52)](t;x) =

∮
|u|=1

du

2πiu

∮
|q|=1

dq

2πiq
×∮

|z|=1

dz

2πiz
(1− z2)

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [2]q,z](t;u, q, z) HH[[1]x − [2]q,z](t;x, q, z)×
HH[[2]q,z − [USp(2)]v](t; q, z, v)×
HH[[USp(2)]v − (SO(3))](t; v)×
HH[[USp(2)]v − (SO(3))](t; v)×
PE
[
−2t2 − (z2 + 1 + z−2)t2 − (v2 + 1 + v−2)t2

]
,

(3.7.55)

where the notations are as described in (3.7.14) and (3.7.29). Here x is the fugacity of
the U(1) flavour symmetry. This can be evaluated and has the following closed form:

HH[(3.7.52)](t;x)

=
1

(1− t3x)2(1− t3x−1)2(1 + t3x)2(1 + t3x−1)2
×[

1 + t2 + 2t4 + 3t6 + (5 + x2 + x−2)t8 + (6 + x2 + x−2)t10

+ (5 + x2 + x−2)t12 + . . . (palindrome) . . .+ t20
]
.

(3.7.56)

Setting x = 1, we obtain the following unrefined Hilbert series:

HH[(3.7.52)](t;x = 1) =
1− t2 + t4 + 2t6 + t8 − t10 + t12

(1− t)4(1 + t)4 (1− t+ t2)2 (1 + t+ t2)2 , (3.7.57)

where the order of the pole at t = 1 confirms that the Higgs branch is 4 complex
dimensional, or equivalently 2 quaternionic dimensional as expected. The plethystic
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logarithm is

PL [HH[(3.7.52)](t;x)] = t2 + t4 + t6
(

2x2 +
2

x2
+ 1

)
+ t8

(
x2 +

1

x2
+ 1

)
− t12

(
x2 +

1

x2
+ 4

)
− t14

(
2x2 +

2

x2
+ 4

)
− t16

(
x4 +

1

x4
+ x2 +

1

x2
+ 2

)
+ . . . .

(3.7.58)

3.8 Twisted χ(a2) theories with four punctures

In this section, we discuss the mirror theories associated with the twisted χ(a2) theories
defined on spheres with four punctures. These can be obtained by gluing two of the
twisted χ(a2) trinions in Fig. (3.6.30) with a tube theory; as we have seen, this
amounts to commonly gauge the flavour symmetries of two a2 punctures.

We consider two examples of such generalised class-S theories: the T2, 3
2
, 3
2
and

T3,2, 3
2
, 3
2
theories. Indeed the class-S description, without an irregular puncture, of

such two theories has recently been proposed in [20].

3.8.1 The T2, 3
2
, 3
2
theory

The 4d N = 2 T2, 3
2
, 3
2
SCFT was studied in [44] as an SU(2) gauge theory coupled to

a doublet of hypermultiplets and two copies of the (A1, D4) theory, where an SU(2)
subgroup of the SU(3) global symmetry of each copy is gauged. In that reference, it
was proposed that this theory is dual to another 4d N = 2 SCFT known as the I4,4

or (A3, A3) theory [168]. Upon compactifying the latter on S1, the 3d mirror theory
was proposed in [170, Figure 8] (see also [25] for a derivation) to be

1 1

11

(3.8.1)

where an overall U(1) needs to be decoupled from this quiver. Upon doing so, one
obtains the following equivalent description of the above mirror theory [44, (3.3)]:

1 1

1

1 1

1

(3.8.2)

This quiver has two interesting properties:

1. It is self-mirror.
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2. Both Higgs and Coulomb branches are isomorphic to the moduli space of one
SU(3) instanton13 on C2/Z3 with the holonomy at infinity such that SU(3) is
broken to U(1)3/U(1) ∼= U(1)2.

The first property can be understood from the Type IIB Hanany-Witten brane
construction [107] involving one complete D3 brane wrapping a circle and stretching
between three NS5 brane, with one D5 brane within each NS5 brane interval, as seen
in Fig. (3.8.3). The mirror symmetry can be realised by an action that involves
interchanging the NS5 and D5 branes, and this leaves the brane system invariant. We
thus conclude that (3.8.2) is self-mirror.

NS5

NS5 NS5

D5

D5

D5

D3

⊗

⊗

⊗
S-dual←−−−−−−→

D5

D5 D5

NS5

NS5

NS5

D3

⊗

⊗ ⊗

(3.8.3)

The second property follows from [35, 36, 55, 56, 70, 72, 77, 131, 135, 138, 142,
162].

On the other hand, the T2, 3
2
, 3
2
theory can be seen within the class-S framework, as

a twisted χ(a2) theory associated with a sphere with punctures

[2, 1] , [2, 1] , [2]t , [2]t →

T2, 3
2
, 3
2

(3.8.4)

Following the procedure described in the preceding section, we obtain the 3d mirror
of this theory compactified on S1 as

1 2 1

1

1

1

1

(3.8.5)

Since the red circular node with the label 1 denotes SO(1), this quiver can be
rewritten as

13Strictly speaking, this should be called a PU(3) ∼= PSU(3) instanton.
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1 2 21

1

1

(3.8.6)

Indeed, we conjecture that theory (3.8.2) is dual to theory (3.8.6). It is thus
expected that the two properties discussed above also hold for theory (3.8.6). In the
following we provide some non-trivial checks for these statements.

The Coulomb branch of (3.8.6) is 1+1+1 = 3 quaternionic dimensional. The Higgs
branch of (3.8.6) is also 1+2+ 1

2(2×2)+2+1−(1+3+1) = 3 quatenionic dimensional.
These are also equal to the corresponding quantities of (3.8.2). The equality of the
Higgs and Coulomb branch dimensions is as expected from the property that the
theory is self-mirror. We now study both branches in more detail using the Hilbert
series

We first consider the Higgs branch Hilbert series of (3.8.6). This is given by

HH[(3.8.6)](t;x, y, q) =∮
|u|=1

du

2πiu

∮
|w|=1

dw

2πiw

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [1]x](t;u, x)HH[[1]u − [USp(2)]v](t;u, v)×
HH[[1]w − [1]y](t;u, x)HH[[1]w − [USp(2)]v](t;w, v)×
HH[[USp(2)]v − [SO(2)]q](t; v, q)×
PE
[
−2t2 − (v2 + 1 + v−2)t2

]
,

(3.8.7)

where the notations are as in (3.7.14) and (3.7.29). Here, x, y, q are the fugacities
for each of the U(1) in the U(1)3 flavour symmetry of the theory. Evaluating the
integrals, this can be written as

HH[(3.8.6)](t;x, y, q)

= PE
[
3t2 + t3

(
qx+

q

x
+

1

qx
+
x

q
+ qy +

q

y
+

1

qy
+
y

q

)
+ t4

(
q2 +

1

q2
+ xy +

y

x
+
x

y
+

1

xy

)
− 2t6

(
q2 +

1

q2
+ xy +

y

x
+
x

y
+

1

xy
+ 2

)
− 3t7

(
qx+

q

x
+

1

qx
+
x

q
+ qy +

q

y
+

1

qy
+
y

q

)
+ . . .

]
.

(3.8.8)

The closed form for the unrefined Higgs branch Hilbert series, whereby x = y =
q = 1, is
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HH[(3.8.6)](t;x = 1, y = 1, q = 1)

=
1− 2t+ 3t2 + 2t3 − 2t4 + 2t5 + 3t6 − 2t7 + t8

(1− t)6(1 + t)2 (1 + t2) (1 + t+ t2)2 .
(3.8.9)

The order of the pole at t = 1, which is 6, is indeed the complex dimension of
the Higgs branch, and the numerator is palindromic as it should be for a Calabi-Yau
variety. It can be checked using the method described in [70, 135] that this is indeed
the Hilbert series of the moduli space of the instanton mentioned below (3.8.2).

We now focus on the Coulomb branch. Since theory (3.8.6) is ‘good’ in the sense
of [85], the Coulomb branch Hilbert series can be computed using either the monopole
formula or the Hall-Littlewood formula. Here we present the latter:

HC [(3.8.5) or (3.8.6)](t;x1, x2; y1, y2) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)×

HC [T[2,1](SU(3))](t;x1, x2; a, 0,−a)HC [T[2,1](SU(3))](t; y1, y2; a, 0,−a)×
HC [T[2](USp

′(2))](t; a)HC [T[2](USp
′(2))](t; a) .

(3.8.10)

where the fugacities x1, x2 and y1, y2 are subject to the conditions:

x2
1x2 = 1 , y2

1y2 = 1 . (3.8.11)

After imposing these conditions, we see only two U(1) fugacities appear in formula
(3.8.10). They represent the two U(1) topological symmetries associated with each
U(1) gauge node in quiver (3.8.6). From description (3.8.2) and the Higgs branch
computation we expect, however, that there should be three U(1) global symmetries.
The other U(1) symmetry is indeed ‘hidden’ in the above Coulomb branch computa-
tion, in a similar way as described in [120]. In order to match (3.8.8) with (3.8.10),
we need to unrefine one fugacity in the former:

HH[(3.8.6)](t;x3
1, y

3
1, q = 1) = HC [(3.8.5) or (3.8.6)](t;x1, x

−2
1 ; y1, y

−2
1 ) . (3.8.12)

It is also interesting to compare these results with the Higgs branch Hilbert series
of the 4d T2, 3

2
, 3
2
theory. Recall that the Higgs branch of the (A1, D4) theory is the

closure of the minimal nilpotent orbit of SU(3), whose Hilbert series is [26]

H[minSU(3)](t;u) =
∞∑
p=0

χ
SU(3)
[p,p] (u)t2p , (3.8.13)

where u = (u1, u2) are the fugacities of SU(3) such that the character of the funda-
mental representation [1, 0] is written as u1 + u2u

−1
1 + u−1

2 . We now take two copies
of the (A1, D4) theory, gauge a common SU(2) symmetry and then couple it to one
flavour of the fundamental hypermultiplets. For each copy, we need to decompose
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representations of SU(3) into those of the SU(2)× U(1) subgroup. This amounts to
using the following fugacity map:

u1 = x1/3z , u2 = x−1/3z , (3.8.14)

where z is the SU(2) fugacity, x is the U(1) fugacity, and the power 1/3 is the
normalisation of the U(1) charge such that we have the following decomposition:
[1, 0]→ [1] 1

3
+ [0] 2

3
.

The Higgs branch Hilbert series of the T2, 3
2
, 3
2
theory is then

HH[T2, 3
2
, 3
2
](t;x, y, q)

=

∮
|z|=1

dz

2πiz
(1− z2) PE

[
−t2χSU(2)

[2] (z)
]

PE
[
(z + z−1)(q + q−1)t

]
×

H[minSU(3)](t;x
1/3z, x−1/3z)H[minSU(3)](t; y

1/3z, y−1/3z)

(3.8.15)

where z is the SU(2) gauge fugacity, and each of x, y and q is the U(1) fugacity.
Evaluating the integral, we find that

HH[T2, 3
2
, 3
2
](t;x, y, q) = HH[(3.8.6)](t;x, y, q) , (3.8.16)

which is given by (3.8.8).

3.8.2 The T3,2, 3
2
, 3
2
theory

The 4d N = 2 T3,2, 3
2
, 3
2
SCFT was studied in [44] (see also [41]). It admits two known

descriptions:

• An SU(3) gauge theory coupled to two (A1, D4) theories with three flavours of
fundamental hypermultiplets,

• an SU(2) gauge theory coupled to the (A1, D4) theory and the T3, 3
2
theory14,

where the Higgs branch of the latter is the full moduli space of two SU(3)
instantons on C2. These two descriptions are related by the Argyres-Seiberg
duality [12].

In [44], it was proposed that the T3,2, 3
2
, 3
2
theory is dual to another 4d N = 2 SCFT

known as the III3×[2,2,1,1]
6,6 theory. Upon compactifying the latter on S1, the 3d mirror

theory can be obtain using the method described in [168] and the result was presented
in [44, (4.3)]:

1 1

22

(3.8.17)

14Equivalently, this is an SU(2) gauge theory coupled to the (A1, D4) theory and the T (2)

SU(3) theory
(see Section (3.7.3)), with a half-hypermultiplet in the doublet of the SU(2) gauge group.
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where an overall U(1) needs to be decoupled from this quiver. Doing so from one of
the U(1) gauge node, we obtain the following equivalent quiver:

2 2

1

1 1

1

(3.8.18)

The class-S description of the T3,2, 3
2
, 3
2
theory (see [20, (5.1), (5.2)]) can be seen as

a twisted χ(a2) theory associated with the sphere with punctures

[13] , [2, 1] , [2]t , [2]t →

T3,2, 3
2
, 3
2

(3.8.19)

Following the procedure described in the preceding sections, we obtain the 3d
mirror of this theory compactified on S1 as

1 2 2 1

11

1

1

(3.8.20)

Since the red circular node denotes SO(1), this quiver can be rewritten as

1 2 2 2

1

1

1

(3.8.21)

We conjecture that theories (3.8.18) and (3.8.21) are dual to each other. In the
following we provide number of non-trivial checks.

The Coulomb branch of (3.8.21) is 1 + 2 + 1 + 1 = 5 quaternionic dimensional.
The Higgs branch of (3.8.21) is also 2 + 2 + 4 + 1

2(2× 2) + 2 + 1− (1 + 4 + 3 + 1) = 4
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quatenionic dimensional, in agreement with the fact that the 4d T3,2, 3
2
, 3
2
theory is a

rank-four theory. Note that these are also equal to the corresponding quantities of
(3.8.18). We now study both branches in more detail using the Hilbert series

As in the previous subsection, the theory is ‘good’ and so we can compute the
Coulomb branch Hilbert series of (3.8.21) using either the monopole formula or the
Hall-Littlewood formula. The latter reads

HC [(3.8.21)](t;x1, x2, x3; y1, y2) =
∞∑
a=0

t−2|a−(−a)|PUSp(2)(t; a)HC [T[13](SU(3))](t;x1, x2, x3; a, 0,−a)

HC [T[2,1](SU(3))](t; y1, y2; a, 0,−a)×
HC [T[2](USp

′(2))](t; a)HC [T[2](USp
′(2))](t; a) .

(3.8.22)

with the following conditions on the fugacities due to (3.3.16):

x1x2x3 = 1 , y2
1y2 = 1 . (3.8.23)

Upon evaluating the summation, the result of (3.8.22) can be summarised as the
highest weight generating function up to order t8 as follows:

HWG [HC [(3.8.21)]]

= PE
[

(µ1µ2 + 1) t2 +

(
b+

1

b

)
t3 + (2µ1µ2 + 1) t4

+

(
b+

1

b

)
µ1µ2t

5 +
(
2µ3

1 + µ2µ1 + 2µ3
2 − 1

)
t6

+

(
b+

1

b

)(
µ3

1 + µ3
2

)
t7 +

(
µ3

1 − 2µ2µ1 + µ3
2

)
t8 + . . .

]
,

(3.8.24)

where, upon computing the power series of this expression in t, µp1
1 µ

p2
2 denotes the

representation [p1, p2], whose character written in terms of x1, x2, x3, of SU(3). Here
b is the fugacity for the U(1) symmetry which can be written in terms of y1, y2 as

b = y2y
−1
1 . (3.8.25)

As can be seen from the order t2, the Coulomb branch symmetry of this theory is
U(3). This is in agreement with that of theory (3.8.21) and the flavour symmetry of
the 4d theory.

The Higgs branch Hilbert series is
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HH[(3.8.21)](t;x, y, b) =∮
|u|=1

du

2πiu

∮
|w|=1

dw

2πiw

∮
|q|=1

dq

2πiq
×∮

|z|=1

dz

2πiz
(1− z2)

∮
|v|=1

dv

2πiv
(1− v2)×

HH[[1]u − [2]q,z](t;u, q, z) HH[[1]x − [2]q,z](t;x, q, z)×
HH[[2]q,z − [USp(2)]v](t; q, z, v)HH[[1]w − [USp(2)]v](t;w, v)×
HH[[1]w − [1]y](t;w, y)HH[[USp(2)]v − [SO(2)]b](t; v, b)×
PE
[
−3t2 − (v2 + 1 + v−2)t2 − (z2 + 1 + z−2)t2

]
,

(3.8.26)

where the notations are as in (3.7.14) and (3.7.29). Evaluating the integrals, we obtain

HH[(3.8.21)](t;x, y, b)

= PE
[
3t2 + t3

(
bx+

b

x
+

1

bx
+
x

b
+ by +

b

y
+

1

by
+
y

b

)
+ t4

(
b2 +

1

b2
+ xy +

y

x
+
x

y
+

1

xy
+ 1

)
+ t5

(
bx+

b

x
+

1

bx
+
x

b

)
− . . .

]
.

(3.8.27)

The order t2 indicates that the Higgs branch symmetry is U(1)3. Setting x = y =
b = 1, we obtain the closed form of the unrefined Hilbert series as

HH[(3.8.21)](t;x = 1, y = 1, b = 1)

1

(1− t)8(1 + t)4(1 + t2)2(1− t+ t2)(1 + t+ t2)3

[
1− 2t+ 3t2 + 2t3

− 2t4 + 6t5 + 3t6 − 2t7 + 12t8 − 2t9 + . . . (palindrome) . . .+ t16
]
.

(3.8.28)

This Higgs branch Hilbert series is in agreement with that for (3.8.18).

3.9 Twisted χ(a2N) theories with N ≥ 1

In this section, we discuss the generalisation of our results for the twisted χ(a2) theories
to the case of χ(a2N ) with N ≥ 1.

3.9.1 The D2[SU(2N + 1)] theory with N free hypermultiplets

The class-S description (without an irregular puncture) was proposed in [20, (6.3)].
It is a twisted χ(a2N ) theory associated with a sphere with punctures

[N + 1, N ] , [12N ]t , [2N ]t . (3.9.1)

For N = 1, this was discussed in Section (3.7.2), where the low energy theory is
the (A1, D4) SCFT with a free hypermultiplet.. For a general N , the 3d mirror theory
of the reduction of the 4d theory in question on a circle admits the following quiver
description:
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N 2N 2N + 1 2N − 2 · · · 2 3

1 1

(3.9.2)

The Coulomb branch of (3.9.2) is N+
∑N

j=1 2j = N2+2N quaternionic dimension.
This is in agreement with the Higgs branch of the 4d theory: the Higgs branch of
D2[SU(2N + 1)] is N(N + 1) quaternionic dimensional (see Appendix (A)), and the
Higgs branch of the theory of N free hypermultiplets is N quaternionic dimensional;
in total we have N2 + 2N quaternionic dimensions. The Higgs branch of (3.9.2) is
N + 2N2 +N + dimHH[T (USp′(2N))]−N2 − 1

2(2N)(2N + 1) = N , where we have
used the fact that dimHH[T (USp′(2N))] = N2. This is in agreement with the fact
that D2[SU(2N + 1)] is a rank N theory.

The Coulomb branch Hilbert series of (3.9.2) can be computed using the Hall-
Littlewood formula as follows:

HC [(3.9.2)](t;x1, x2, y1, y2, . . . , yN ) =∑
n1≥n2≥nN≥0

t−2[
∑N
j=1 |2nj |+

∑
1≤i<j≤N (|ni−nj |+|ni+nj |)]PUSp(2N)(t;n1, . . . , nN )×

HC [T[N+1,N ](SU(2N + 1))](t;x1, x2;n1, n2, . . . , nN , 0,−nN ,−nN−1, . . . ,−n1)×
HC [T[12N ](USp

′(2N))](t; y1, y2, . . . , yN ;n1, n2, . . . , nN )×
HC [T[2N ](USp

′(2N))](t;n1, . . . , nN ) ,

(3.9.3)

where

xN+1
1 xN2 = 1 . (3.9.4)

Evaluating the summations, we obtain

HC [(3.9.2)](t;x1, x2, y1, y2, . . . , yN )

= PE

 N∑
j=1

(yj + y−1
j )

×H[D2[SU(2N + 1)]](x1, x2, y1, . . . , yN ) ,
(3.9.5)

where the first factor is the Hilbert series of HN ∼= C2N and the second factor is
as described in Appendix (A). We have tested this expression for N = 1, 2, 3. This
confirms that the moduli space of the Coulomb branch is a product of HN and that
of the Higgs branch fo the D2[SU(2N + 1)] theory, as expected from the 4d theory.

The Higgs branch Hilbert series, on the other hand, can be computed as follows:
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HH[(3.9.2)](t;x) =

∫
dµU(N)(z)

∫
dµUSp(2N)(v)×

HH[[1]x − [N ]z]HH[[N ]z − [USp(2N)]v]×
HC [T[12N ](USp

′(2N))](t;v; 0, 0, . . . , 0)HH[[SO(1)]− (USp(2N))v]×

PE

−
 N∑
i,j=1

ziz
−1
j

 t2 − χUSp(2N)
[2,0,...,0] (v)t2

 ,

(3.9.6)

where we have used the fact that T[12N ](USp
′(2N)) is self-mirror and so the Higgs

branch Hilbert series of such a theory can be computed from the Coulomb branch
one. Here

HH[[1]x − [N ]z] = PE

x−1
N∑
j=1

zj + x
N∑
j=1

z−1
j

 t


HH[[N ]z − [USp(2N)]v] = PE

 N∑
j=1

zj +
N∑
j=1

z−1
j

( N∑
k=1

vk +
N∑
k=1

v−1
k

)
t


χ
USp(2N)
[2,0,...,0] (v) = N +

N∑
j=1

(v2
j + v−2

j ) +
∑

1≤i<j≤N
(vivj + v−1

i v−1
j + viv

−1
j + v−1

i vj)

dµUSp(2N)(v) =

N∏
j=1

v−1
j (1− v2

j )
∏

1≤i<j≤N
(1− vivj)(1− viv−1

j )

dµU(N)(z) =

N∏
j=1

z−1
j

∏
1≤i<j≤N

(1− ziz−1
j ) .

(3.9.7)

In the case of N = 2, for example, we have

HH[(3.9.2)N=2](t;x)

= PE
[
t2 + (x+ x−1)t3 + t4 + (x+ x−1)t5 − t8 − t10 + . . .

]
.

(3.9.8)

It can be checked that this is in agreement with the Higgs branch Hilbert series
of (A.0.1), with N = 2. This is indeed the Coulomb branch Hilbert series of the S1

reduction of the D2[SU(2N + 1)] theory.

3.9.2 Two copies of the D2[SU(2N + 1)] theory

The class-S description (without an irregular puncture) was proposed in [20, (6.4)].
It is a twisted χ(a2N ) theory associated with a sphere with punctures

[12N+1] , [2N ]t , [2N ]t . (3.9.9)

The 3d mirror of the reduction of this 4d theory on S1 can be described by the
following quiver:
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1 2 · · · 2N − 1 2N 2N 1

1 1

(3.9.10)

Since the red circular node is SO(1), this quiver can be rewritten as

1 2 · · · 2N − 1 2N 2N 2

1

(3.9.11)

For N = 1, we recover quiver (3.7.4). The Coulomb branch of (3.9.11) is
∑2N

j=1 j+
N = 2N(N + 1), in agreement with the Higgs branch dimension of a product of two
D2[SU(2N + 1)]. The Higgs branch of (3.9.11) is

∑2N−1
j=1 j(j+ 1) + 2N + 4N2 + 2N −∑2N

j=1 j
2 − N(2N + 1) = 2N , in agreement with the fact that D2[SU(2N + 1)] is a

rank N theory.
Similarly to the case of quiver (3.7.4), we can see the enhanced Coulomb branch

symmetry of quiver (3.9.11) using the observation of [85]. Since all of the U(s) gauge
nodes, with s = 1, . . . , 2N , in (3.9.11) are all balanced, one expects an SU(2N +
1) enhanced symmetry in the IR. Moreover, since the USp(2N) gauge node is also
balanced, according to [85, section 5.3], this SU(2N+1) symmetry gets doubled and so
the symmetry of the Coulomb branch is expected to be SU(2N+1)×SU(2N+1). This
is in agreement with the Higgs branch symmetry of a product of two D2[SU(2N+1)].
Shortly we confirm this using the Coulomb branch Hilbert series.

The Coulomb branch Hilbert series of (3.9.11) can be computed using either the
monopole formula or the the Hall-Littlewood formula. The latter reads

HC [(3.9.11)](t;x1, . . . , x2N+1) =∑
n1≥n2≥nN≥0

t−2[
∑N
j=1 |2nj |+

∑
1≤i<j≤N (|ni−nj |+|ni+nj |)]PUSp(2N)(t;n1, . . . , nN )×

HC [T[12N+1](SU(2N + 1))](t;x1, . . . , x2N+1;n1, n2, . . . , nN , 0,−nN ,−nN−1, . . . ,−n1)×
HC [T[2N ](USp

′(2N))](t;n1, . . . , nN )HC [T[2N ](USp
′(2N))](t;n1, . . . , nN ) ,

(3.9.12)
where

x1x2 · · ·x2N+1 = 1 . (3.9.13)

Evaluating the summations, we obtain

HC [(3.9.11)](t;x1, . . . , x2N+1) = [HH[D2[SU(2N + 1)]](x1, . . . , x2N+1)]2 , (3.9.14)

where the Higgs branch Hilbert series HH[D2[SU(2N + 1)]] of D2[SU(2N + 1)] is
given in Appendix (A). We have tested this expression for N = 1, 2, 3. Similarly
to the remark below (3.7.10), the full Coulomb branch symmetry is expected to be
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SU(2N + 1)2; however, it is possible to see only the diagonal subgroup SU(2N + 1),
corresponding to the fugacities x1, . . . , x2N+1 in the Hilbert series.

The Higgs branch Hilbert series, on the other hand, can be computed as follows:

HH[(3.9.11)](t;x, y) =

∫
dµU(2N)(z)

∫
dµUSp(2N)(v)×

HH[T[12N ](SU(2N))](t; z)×
HH[[1]x − [2N ]z]HH[[2N ]z − [USp(2N)]v]×
HH[(USp(2N))v − [SO(2)]y]×

PE

−
 2N∑
i,j=1

ziz
−1
j

 t2 − χUSp(2N)
[2,0,...,0] (v)t2

 ,

(3.9.15)

where the Higgs branch Hilbert series of T[12N ](SU(2N)) is given by [105, (3.4)]

HH[T[12N ](SU(2N))](t; z) = PE

t2 2N∑
i,j=1

ziz
−1
j

 2N∏
p=1

(1− t2p) . (3.9.16)

For example, in the case of N = 2, we obtain

HH[(3.9.11)N=2](t;x, y) = HH[(3.9.2)N=2](t;xy)HH[(3.9.2)N=2](t;xy−1) , (3.9.17)

where HH[(3.9.2)N=2](t;x), which is the Coulomb branch Hilbert series of the S1

reduction of the D2[SU(2N + 1)] theory, is given by (3.9.8).

3.9.3 A sphere with punctures [N + 1, N ], [N + 1, N ], [2N ]t, [2N ]t

We study a USp(2N) gauge theory coupled to one flavour of the fundamental hyper-
multiplets and two copies of the D2[SU(2N + 1)] theory, where a USp(2N) subgroup
of the SU(2N + 1) global symmetry of each copy is gauged. The class-S description
(without an irregular puncture) was proposed in [20, (6.5)]. It is a twisted χ(a2N )
theory associated with a sphere with punctures

[N + 1, N ] , [N + 1, N ] , [2N ]t , [2N ]t . (3.9.18)

The case of N = 1 was studied in Section (3.8.1). The 3d mirror of the reduction
of this 4d theory on S1 can be described by the following quiver:
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N 2N 1

1

1

1

N

(3.9.19)

Since the red circular node denotes SO(1), this quiver can be rewritten as

N 2N 2

1

1

N

(3.9.20)

The quaternionic dimension of the Higgs branch dimension of the 4d theory is
2N(N + 1) + 2N − 1

2(2N)(2N + 1) = 3N , where N(N + 1) is the Higgs branch
dimension of the D2[SU(2N + 1)] theory. The Coulomb branch of quiver (3.9.20) is
N + N + N = 3N quaternionic dimensional, in agreement with that of the Higgs
branch of the 4d theory. The Higgs branch of quiver (3.9.20) is N + 2N2 + 2N2 +
N + 2N −

[
N2 +N2 + 1

2(2N)(2N + 1)
]

= 3N . This is in agreement with the fact
that each copy of the D2[SU(2N + 1)] theory is of rank N and the USp(2N) gauge
group has rank N , and so in total we have 3N dimensional Coulomb branch as expect.
Observe that the Coulomb and Higgs branches of (3.9.20) have the same dimension.
Indeed, as we shall discuss below, theory (3.8.21) is self-mirror for any N , where the
case of N = 1 was indeed self-mirror as shown in Section (3.8.1).

Let us first examine the Higgs branch. The Higgs branch Hilbert series of (3.9.20)
is given by

HH[(3.9.20)](t;x, y, q) =∫
dµU(N)(u)

∫
dµU(N)(w)

∫
dµUSp(2N)(v)×

HH[[N ]u − [1]x](t;u, x)HH[[N ]u − [USp(2)]v](t;u, v)×
HH[[N ]w − [1]y](t;u, x)HH[[N ]w − [USp(2)]v](t;w, v)×
HH[[USp(2)]v − [SO(2)]q](t; v, q)×

PE

−
 N∑
i,j=1

uiu
−1
j

 t2 −

 N∑
i,j=1

wiw
−1
j

 t2 − χUSp(2N)
[2,0,...,0] (v)t2

 ,

(3.9.21)

Let us compute the integrals in the case of N = 2, we obtain
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HH[(3.9.20)N=2](t;x, y, q) =

PE
[
3t2 + t3

(
qx+

q

x
+

1

qx
+
x

q
+ qy +

q

y
+

1

qy
+
y

q

)
+ t4

(
5 + q2 +

1

q2
+ xy +

y

x
+
x

y
+

1

xy

)
+ 2t5

(
qx+

q

x
+

1

qx
+
x

q
+ qy +

q

y
+

1

qy
+
y

q

)
+ t6

(
3 + q2 +

1

q2
+ xy +

y

x
+
x

y
+

1

xy

)
+ . . .

]
.

(3.9.22)

On the other hand, the Higgs branch Hilbert series of the 4d theory is given by

HH[4d theory](t;x, y, q) =∫
dµUSp(2N)(z) PE

[
−t2χUSp(2N)

[2,0,...,0] (z)
]

PE
[
χ
USp(2N)
[1,0,...,0] (z)(q + q−1)t

]
×

HH[D2[SU(2N + 1)]](t;x
1
3 (z1, . . . , zN ), x

1
3 (z−1

1 , . . . , z−1
N ), x

2N
3 )×

HH[D2[SU(2N + 1)]](t; y
1
3 (z1, . . . , zN ), y

1
3 (z−1

1 , . . . , z−1
N ), y

2N
3 ) ,

(3.9.23)

where each of x, y, q is a U(1) fugacity and z = (z1, . . . , zN ) are the USp(2N) gauge
fugacity. The expression for HH[D2[SU(2N + 1)]] is given in Appendix (A). Here,
under the decomposition SU(2N + 1) ⊃ SU(2N)×U(1) ⊃ USp(2N)×U(1), we have

SU(2N + 1) → USp(2N)× U(1)

[1, 0, . . . , 0] → [1, 0, . . . , 0] 1
3

+ [0, . . . , 0] 2N
3
.

(3.9.24)

If we write the character of the fundamental representation [1, 0, . . . , 0] of SU(2N+
1) as

∑2N+1
j=1 uj (with

∏2N+1
j=1 uj = 1) and that of the fundamental representation

[1, 0, . . . , 0] of USp(2N) as
∑N

j=1(vj + v−1
j ), then a fugacity map is

uk =


q

1
3 vk , k = 1, 2, . . . , N

q
1
3 v−1
k−N , k = N + 1, N + 2 . . . , 2N

q
2N
3 , k = 2N + 1 ,

(3.9.25)

where q is the fugacity for the U(1) symmetry. Since theory (3.9.20) is self-mirror, its
Higgs branch Hilbert series can be equated to that of the 4d theory as follows:

HH[4d theory](t;x, y, q) = HH[(3.9.20)](t;x, y, q) . (3.9.26)

The Coulomb branch Hilbert series of (3.9.20) can be computed using either the
monopole formula or the the Hall-Littlewood formula. The latter reads



3.9. Twisted χ(a2N ) theories with N ≥ 1 91

HC [(3.9.20)](t;x1, x2, y1, y2) =∑
n1≥n2≥nN≥0

t−2[
∑N
j=1 |2nj |+

∑
1≤i<j≤N (|ni−nj |+|ni+nj |)]PUSp(2N)(t;n1, . . . , nN )×

HC [T[N+1,N ](SU(2N + 1))](t;x1, x2;n1, n2, . . . , nN , 0,−nN ,−nN−1, . . . ,−n1)×
HC [T[N+1,N ](SU(2N + 1))](t; y1, y2;n1, n2, . . . , nN , 0,−nN ,−nN−1, . . . ,−n1)×
HC [T[2N ](USp

′(2N))](t;n1, . . . , nN )HC [T[2N ](USp
′(2N))](t;n1, . . . , nN ) ,

(3.9.27)

where

xN+1
1 xN2 = yN+1

1 yN2 = 1 . (3.9.28)

Taking into account these constraints on the fugacities, we see that there are only
two U(1) fugacities that are manifest in the Hilbert series (3.9.27), whereas the full
Coulomb branch symmetry is U(1)3. This phenomenon is similar to what we have
encountered in Section (3.8.1). In order to match (3.9.21) with (3.9.27), we need to
unrefine one fugacity in the former:

HC [(3.9.27)](t;xN , x−N−1, yN , y−N−1)

= HH[(3.9.20)](t;x2N+1, y2N+1, q = 1)

= HH[4d theory](t;x2N+1, y2N+1, q = 1) ,

(3.9.29)

where we have checked this relation for N = 1, 2.
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Chapter 4

The superconformal index

This chapter will be entirely dedicated to the study of the 3d supersymmetric index,
which we shall refer to as the index for brevity, in the framework of 3d N = 2
superconformal field theories (SCFTs).

This supersymmetric invariant quantity is nothing but the supersymmetric parti-
tion function on S2 × S1 with a peculiar periodic boundary condition for the fields
along S1 and counts the number of BPS operators. Since it is also an RG flow invari-
ant, it can be easily computed in the UV and can nonetheless give interesting insights
about the IR fixed point. Moreover, whenever the theory admits a superconformal
point, it is referred as superconformal index and thus counts the BPS short multiplets
up to recombination. As we will see, signals of supersymmetry (or global symmetry)
enhancement can be quite easily found by computing the index.

In the following, we will review the basic ideas behind the definition of the index
and we will see how to explicitly compute this quantity throughout a technique called
supersymmetric localization.

4.1 3d N = 2 superconformal algebra

Since we are interested in computing the 3d supersymmetric index for 3d N = 2 su-
perconformal field theories (SCFTs), let us briefly review their superconformal algebra
and multiplets in the notation adopted by [59].

In three dimensions the Lorentz group is SO(3) ∼ SU(2), thus its representations
are denoted by [j] where j is the integer-valued Dynkin label of su(2) and is linked to
the third component of the angular momentum j3 by j = 2j3.

Thus the conformal group is just SO(3, 2) and in a given representation, since in
radial quantization the dilaton D can be identified with the Hamiltonian H of the
system, we will always diagonalise D. Its eigenvalue ∆ is called the scaling dimension
and thus we write [j]∆ to denote the SO(3, 2) representations.

TheN = 2 superconformal algebra is thus osp(2|4) whichR-symmetry is SO(2)R ∼
U(1)R. Including the eigenvalue R of the R-symmetry, a generic representation is then
denoted by

[j]
(R)
∆ with j ∈ N, ∆, R ∈ R (4.1.1)

The 4 real supercharges of 3d N = 2 theories are recast into two independent Q
and Q̃ supercharges transforming as

Q ∈ [1]
(1)
1
2

, Q ∈ [1]
(−1)
1
2

(4.1.2)

since
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[D,Q] =
1

2
Q , [D, Q̃] =

1

2
Q̃ (4.1.3)

Thus the 4 real supercharges are explicitly

Q+
± := [±1]

(1)
1
2

, Q−± := [±1]
(−1)
1
2

(4.1.4)

Requiring the non-negativity of the norm of the fields contained in a supercon-
formal multiplet, we get the following unitarity bounds and shortening conditions for
Q

Name Superconformal primary Unitarity bound First conformal primary null state

L [j]
(R)
∆ ∆ > 1

2
j −R+ 1 -

A1 [j]
(R)
∆ , j ≥ 1 ∆ = 1

2
j −R+ 1 [j − 1]

(R−1)

∆+ 1
2

A2 [0]
(R)
∆ ∆ = −R+ 1 [0]

(R−2)
∆+1

B1 [0]
(R)
∆ ∆ = −R [1]

(R−1)

∆+ 1
2

(4.1.5)
and analogous ones for Q̃

Name Superconformal primary Unitarity bound First conformal primary null state

L [j]
(R)
∆ ∆ > 1

2
j +R+ 1 -

A1 [j]
(R)
∆ , j ≥ 1 ∆ = 1

2
j +R+ 1 [j − 1]

(R+1)

∆+ 1
2

A2 [0]
(R)
∆ ∆ = R+ 1 [0]

(R+2)
∆+1

B1 [0]
(R)
∆ ∆ = R [1]

(R+1)

∆+ 1
2

(4.1.6)
Then the N = 2 superconformal multiplets must obey both Q and Q̃ unitarity

bounds and shortening conditions. Not all the possible choices are however mutually
compatible and the consistent ones are:

LL , LA1 , LA2 , LB1 , A1A1 , A2A2 , A2B1 , B1B1 (4.1.7)

and their barred counterparts.
The N = 2 LL long multiplet is displayed in figure (4.1.8).
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[j]
(R)
∆ , ∆ > 1

2
j −R+ 1

Q−± : [j ± 1]
(R−1)

∆+ 1
2

Q−+Q
−
− : [j]

(R−2)
∆+1

Q−+Q
−
−Q

+
± : [j ± 1]

(R−1)

∆+ 3
2

Q−+Q
−
−Q

+
+Q

+
− : [j]

(R)
∆+2

Q+
±Q
−
∓ : 2[j]

(R)
∆+1 ⊕Q

+
±Q
−
± : [j ± 2]

(R)
∆+1

Q−+Q
−
−Q

+
± : [j ± 1]

(R−1)

∆+ 3
2

Q+
+Q

+
−Q
−
± : [j ± 1]

(R+1)

∆+ 3
2

Q+
± : [j ± 1]

(R+1)

∆+ 1
2

Q+
±Q
−
∓ : 2[j]

(R)
∆+1 ⊕Q

+
±Q
−
± : [j ± 2]

(R)
∆+1 Q+

+Q
+
− : [j]

(R+2)
∆+1

Q+
+Q

+
−Q
−
± : [j ± 1]

(R+1)

∆+ 3
2

Q−+Q
−
−Q

+
+Q

+
− : [j]

(R)
∆+2

(4.1.8)

The superconformal primary is the topmost state [j]
(R)
∆ while all the other states

are the conformal primaries. The arrows show schematically the action of the 4 real
supercharges inside Q and Q̃ on such highest weight states. This is the most generic
situation for ∆ > 1

2j − R + 1. For small values of ∆ we would get short multiplets,
in which some of the conformal primaries would be missing according to the first
conformal primary null states of Tables (4.1.5) and (4.1.6).

By acting with the translation operator and Lorentz generators on each conformal
primary state we can then get the infinite tower of descendants, i.e. the non-highest
weight states in the conformal representation.

4.2 The Witten index

In a theory with interactions, the partition function usually cannot be computed so
easily due to the presence of the interacting terms in the Lgrangian. Nevertheless, if
the theory possesses supersymmetry, the 3d supersymmetric index can be computed
exactly even when interactions are turned on.

The starting observation that lead Witten [163] to define such a quantity is that all
the supersymmetric states with energy E 6= 0 are two-fold degenerate: one state is in-
deed bosonic and the other fermionic. This is simply a consequence of supersymmetry,
for which the Hamiltonian operator H always commutes with the supercharges

[Q, H] = [Q, H] = 0 (4.2.1)

Thus, given any Hamiltonian eigenstate |ψ〉 with eigenvalue E 6= 0, if we consider
the state |φψ〉 := Q |ψ〉 obtained by acting on |ψ〉 with the supersymmetry charges,
then

H |φψ〉 = HQ |ψ〉 = QH |ψ〉 = EQ |ψ〉 = E |φψ〉 (4.2.2)

This implies that both |ψ〉 and |φψ〉 posses the same Hamiltonian eigenvalue E 6=
0, which means that the spectrum is paired whenever the energy is different from
zero. This pairing of non-zero energy states is a very robust phenomenon, solely
based on supersymmetry and is thus expected to hold even when the theory possesses
interactions that preserve it.
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Therefore, as we turn on the interactions, the spectrum of the theory obviously
changes; the excited states of the original free theory can become zero energy states
for the new interacting theory (or vice versa) but, thanks to supersymmetry, they
always move in couples so that, in the end, the new excited states are still paired.

Thus, slightly modifying the definition of partition function, we can building an in-
variant quantity under supersymmetric deformations called Witten index and defined
as follows

I = Tr
(

(−1)FxH
Rank Ĝ∏

i

µFii

)
(4.2.3)

where F is the fermionic number, counting the number of fermions in a given state. µi
are the fugacities with respect to the Cartan generators {Fi} of the global symmetry
Ĝ of the theory, keeping track of the different representations of the states of the
theory under Ĝ. One can always get the unrefined index by setting µi = 1 ∀i.

The insertion of the (−1)F operator inside the partition function allows for can-
cellations of bosonic and fermionic contributions at non-zero energy. Thus the Witten
index gets contributions only from zero energy states of the supersymmetric theory
and thus it does not depend on x.

Moreover, since this quantity is invariant under smooth supersymmetric deforma-
tions of the theory, it can be computed for any interacting theory by simply forgetting
about all the interactions and setting their contributions to zero.

Let us now turn our attention to the superconformal case [32, 33].
In a SCFT the Witten index is defined as everything else in radial qunatization,

thus the Hamiltonian of the system is replaced by the dilatation operator D. In radial
qunatization, this operator does not commute with the supercharges (see (4.1.3)), but
we can always define a new operator δ which both commutes with D and preserves
the aforementioned pairing property. Then, in refining the index, we shall turn on
only the fugacities for those mutually commuting operators that also commute with δ;
in this way the cancellation between the supersymmetric states with δ 6= 0 still holds.
This implies that we will be considering only the maximal tori and Cartan generators
of the superconformal group.

In the 3d N = 2 superconformal case, selecting one of the real supercharges of the
theory Q, we can define the pairing operator as

δ := {Q,Q} = ∆−R− j3 (4.2.4)

where ∆ is the scaling dimension (i.e. the eigenvalue of the Hamiltonian D in radial
quantization), R the SO(2)R R-charge and j3 the third component of the angular
momentum.

The only commuting operator with δ in Osp(2|4) is thus ∆ + j3.
Thus, in this setup the Witten index becomes the so-called superconformal index

that reads

I = Tr
(

(−1)Fx∆−R−j3
1 x∆+j3

2

Rank Ĝ∏
i

µFii

)
(4.2.5)

where, since, by construction, only states with δ = 0 contribute to the trace, the index
will not depend on x1.

It is well known that the partition function of a theory can be explicitly computed
as the path integral of the same theory defined on the background curved space
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S3; the same thing happens with the superconformal index for which, however, the
background is S2 × S1 [117, 126]. Moreover, in some favourable cases, such path
integral only receives contributions from particular constant field configurations and
it can be reduced to a finite-dimensional ordinary integral. The technique behind this
enormous simplification is called supersymmetric localization and will be the main
topic of the following sections.

4.3 Supersymmetric localization

The computations we will present in the next chapters have their foundations in the
localization procedure, so it is useful to review the main ideas behind this powerful
technique. We will mainly follow [62], more details can be found in [140, 141].

Let us consider a theory with a fermionic symmetry generated by a Grassmann
odd charge Q. We will focus on BPS observables OBPS , i.e. gauge invariant Q-closed
operators which are preserved by the supercharge QOBPS = 0. Note that we are not
interested in all the other properties of OBPS . In this sense it may be both a local or
a non-local operator, or even a product of such operators; moreover it could also be a
line operator, as a supersymmetric Wilson loop, or a surface operator and so on.

Suppose now we want to compute the expectation value of a Q-exact observable
V = QO; this however vanishes due to

〈V〉 = 〈QO〉 =

∫
F

[DX](QO)e−S[X] =

∫
F

[DX]Q(Oe−S[X]) = 0 (4.3.1)

where, the first equality holds due to the fact that the action is Q-closed, i.e. QS[X] =
0, and the latter produces integral of a total derivative in field space, which is zero
provided that there are no boundary terms.

Then, any path integral with some insertions of such BPS Q-closed observables
only depends on the Q-cohomology class [OBPS ] of the BPS operators

〈OBPS + QO〉 = 〈OBPS〉 (4.3.2)

for any gauge invariant operator O.
Suppose now OBPS = S[X]; such a deformation by a Q-exact observable does not

change the path integral (up to a boundary contribution). This idea is the starting
point of localization and, to understand how this technique works, let us compute
〈OBPS〉.

Firstly we require that the path integral is well-defined. This can be easily achieved
by placing our QFT on a compact manifold.

Since the expectation value 〈OBPS〉 only depends on the Q-cohomology class
[OBPS ], we may add to the classical action S[X] the Q-variation of a fermionic func-
tional VF without changing the quantity; in fact

〈OBPS〉S+QVF =

∫
F

[DX]OBPSe−S[X]−tQVF = 〈OBPSe−tQVF 〉S = 〈OBPS〉 ∀t

(4.3.3)
If we choose VF in a clever way, the fact that (4.3.3) holds for any value of the

parameter t can help us in evaluating 〈OBPS〉. We can in fact try to simplify the path
integral by taking a particular limit of t. Indeed, assuming that the bosonic part of
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the deformation term QVF |B is positive semi-definite and t ≥ 0, we can then evaluate
〈OBPS〉 by taking the limit

〈OBPS〉 = lim
t→+∞

∫
F

[DX]OBPSe−S[X]−tQVF (4.3.4)

In the limit (4.3.4), the integrand is dominated by the saddle points of the so-called
localising action Sloc[X] = QVF .

In a given supersimmetric QFT, there is always a canonical choice for the localizing
Lagrangian density, which is

Lloc = Q
∑
{Ψ}

((QΨ)Ψ + Ψ(QΨ)) (4.3.5)

where the sum runs over all the fermions of the theory {Ψ}.
Considering the bosonic and fermionic parts of Lloc

Lloc|B =
∑
{Ψ}

(|QΨ|2 + |QΨ|2) (4.3.6)

Lloc|F =
∑
{Ψ}

((QQΨ)Ψ + Ψ(QQΨ)) (4.3.7)

it is easy to see that this localizing Lagrangian density possesses a saddle points space
which is nothing but the so-called BPS locus

FQ = {X ∈ F | Ψ = 0, QΨ = 0} (4.3.8)

which is made of BPS configurations, where all the fermions of the theory and their
Q-variations are set to zero.

In evaluating the path integral (4.3.4), we will use a method similar to the semi-
classical approximation with ~ = 1

t .
Firstly we expand all the fields X of the theory about the saddle point configura-

tions

X = X0 +
1√
t
δX (4.3.9)

Then, by substituting (4.3.9) into the action, we get the semiclassical expansion

S[X] = S[X0] +
1

2

∫ ∫
δ2Sloc
δX2

∣∣∣∣
X=X0

(δX)2 := S[X0] +
1

2

∫ ∫
δ2
XS[X0](δX)2

(4.3.10)
where all higher orders in t vanish in the t→ +∞ limit because they are weighted by
negative powers of t.

Finally, we can integrate out the fluctuations δX normal to the localisation locus
FQ; this is easily done since their contribution gives a gaussian integral.

• For fermionic fields, the integration just gives the standard determinant det
[
δ2
XS[X0]

∣∣
F

]
of the fermionic part of δ2

XS[X0].

• For the bosonic fields, on the other hand, it can be carried out by transforming
the deformations δX to diagonalize the bosonic part of δ2

XS[X0]. In this way,
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the bosonic Gaussian path integral is reduced to an infinite product of standard
Gaussian integrals which return the inverse of the determinant det

[
δ2
XS[X0]

∣∣
B

]
.

Thus we are left with the ratio of the determinants of the operators appearing at
quadratic orders in the bosonic and fermionic fluctuations respectively, which is called
1-loop super-determinant

Sdet
[
δ2
XS[X0]

]
:=

det
[
δ2
XS[X0]

∣∣
B

]
det
[
δ2
XS[X0]

∣∣
F

] (4.3.11)

Finally, putting all together, we get the so-called localisation formula

〈OBPS〉 =

∫
FQ

[DX0] OBPS |X=X0
e−S[X0] 1

Sdet
[
δ2
XS[X0]

] (4.3.12)

Note that there is some freedom in deriving the supersymmetric localisation for-
mula (4.3.12):

• We can use any of the multiple conserved supercharges {QI} to define BPS
observables and perform localisation technique;

• Once we have chosen a localising supercharge QI = Q, we can still have the
freedom to suitably choose the fermionic operator VF , which do not necessarily
need to be the canonical one (4.3.5).

These different choices clearly affect the localisation locus FQ and, therefore, the
1-loop super-determinant. However, the result is always the same when the integration
in (4.3.12) is carried out.

As anticipated in the previous section, the superconformal index (4.2.5) can be
computed thanks to localization as the path integral of a theory defined on the compact
curved background S2× S1 [117, 126]. Thus, in the following sections, we will review
how to define 3d N = 2 theories on three manifolds.

4.4 3d N = 2 theories on a three manifold

So far, we only discussed 3d N = 2 theories on flat space. To make use of the
localization technique, however, we need to understand how such theories behave
when defined on compact curved spaces.

In general, by naively substituting flat metric and ordinary derivatives with curved
metric and covariant derivatives, one does not obtain a supersymmetric theory on a
curved space. Indeed there are two different strategies to define rigid supersymmetry
on a curved space:

• By correcting flat space supersymmetry by trial and error;

• By non-linearly coupling the supersymmetric QFT to supergravity and then
take a rigid limit which makes supergravity non-dynamical.

We will follow the latter strategy, originally outlined in [76], briefly reviewing its
main ideas. Thus, to define a supersymmetric QFT on a curved spaceM

1. We couple the theory to supergravity, so that the flat metric is replaced with a
supergravity multiplet, typically containing a fluctuating metric gµν , the grav-
itino ψµ and other auxiliary fields;
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2. We take a rigid limit (i.e. GN → 0) where dynamical supergravity decouples: all
the bosonic fields {φB} inside the supergravity multiplet are fixed to background
values while all the fermions {φF } are set to zero.

Since, thanks to point 2., the supersymmetric variations δε of the bosonic fields
inside the supergravity multiplet automatically vanish

〈δεφB〉 ∼ 〈φF 〉 = 〈ψµ〉 = 0 (4.4.1)

requiring such a background multiplet to be supersymmetric invariant only amounts
to set

〈δεφF 〉 = 〈δεψµ〉 = 0 (4.4.2)

which leads to the famous generalised Killing spinor equations for the supersymmetry
parameters ε. Since we are interested in 3d N = 2 theories, in solving such equations,
we will require that our supersymmetric field theories preserve four real supercharges
and a U(1)R R-symmetry [57, 127].

Recall from Section (2.1) that, for 3d N = 2 theories, we can consider as super-
charges two real Majorana spinors QIα or, equivalently, a complex spinor Q and its
conjugate Q, related by a reality condition (2.1.1). Since in the following we will work
in Euclidean signature, this latter notation is more convenient, because spinors and
scalars which are conjugate in Minkowskian signature are complexified and treated
as independent. So, we will highlight the fact that they must actually thought as
independent by a tilde, e.g. Q and Q̃.

Let us now consider the 4d N = 1 gravity supermultiplet and dimensionally reduce
it to the 3d N = 2 case

Multiplet
Content

d = 4 d = 3

Gravity (H )

hMN

hµν

h4µ := Cµ

h44 := Re{H}

ψM ψµ

AM
ARµ

A4 := Im{H}

(4.4.3)

where hµν is the three-dimensional metric, Cµ is a gauge field often dualised into a
conserved vector V µ = iεµρσ∂ρCσ and the scalar H is Hodge dual to its field strength
H = i

2ε
µρσ∂µBρσ. Finally, ARµ is the R-symmetry gauge field.

In the rigid limit, the supersymmetry condition (4.4.2) can thus be explicitly
written as [57]

(
Dµ − iARµ

)
ε =

(
−iVµ −

H

2
γµ −

1

2
εµρσV

ργσ

)
ε

(
Dµ + iARµ

)
ε̃ =

(
+iVµ −

H

2
γµ +

1

2
εµρσV

ργσ

)
ε̃

(4.4.4)

where the supersymmetry parameters ε and ε̃ becomes Killing spinors of R-charge 1
and −1 respectively, as highlighted by the different signs in front of ARµ . Here Dµ is
the linearised version of the curved covariant derivative acting on spinors
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Dµ := ∂µ −
i

4
ωµabε

abcγc = ∂µ −
i

2
ελρσ∂λhρµγσ (4.4.5)

with spin connection ωµab.
In the following, we will find suitable background fields {hµν , Aµ, Vµ, H} for a

given curved manifoldM, such that there will exist at least one non-trivial solution
to the Killing spinor equations (4.4.4).

4.4.1 The three-sphere S3

Let us first consider the three-sphere S3 with radius r. One can check that the
background given by

ARµ = Vµ = 0 , H = − i
r

(4.4.6)

possesses 4 linearly independent killing spinors, splitting into 2 Killing spinors εI and
2 Killing spinors ε̃I solving

DµεI =
i

2r
γµε

I (4.4.7)

Dµε̃I =
i

2r
γµε̃

I (4.4.8)

Since, thus, every supersymmetry parameters can be identified with a different
killing spinor, the round S3 is a maximally supersymmetric background for a 3d
N = 2 supersymmetric theory.

Viewing S3 as the SU(2) group manifold, we can choose a frame with vielbein
such that

Dµ = ∂µ +
i

2r
γµ → ∂µε

I = ∂µε̃
I = 0 (4.4.9)

so that the Killing spinor equations are solved by constant spinors in this particular
frame.

The supersymmetry transformations δ = δε + δε̃ of a vector multiplet on S3 are
[57, 159]

δAµ = −i(εγµλ+ ε̃γµλ)

δσ = −ελ+ ε̃λ

δλ =

(
i(D +

σ

r
)− i

2
ερσλFρσγλ − i(Dµσ)γµ

)
ε

δλ = ε̃

(
−i(D +

σ

r
)− i

2
ερσλFρσγλ + i(Dµσ)γµ

)
δD = iDµ(εγµλ− ε̃γµλ) +

1

r
(ελ− ε̃λ) + i(ε[σ, λ]− ε̃[σ, λ])

(4.4.10)

where Fρσ is the field strength of Aµ and Dµ = ∇µ−iAµ is the curved gauge covariant
derivative.

On the other hand, the supersymmetry transformations of the charged chiral mul-
tiplet are
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δφ =
√

2εψ

δφ =
√

2ε̃ψ

δψ =
√

2εF +
√

2i(σ − iR
r

)ε̃φ−
√

2iε̃γµDµφ

δψ =
√

2ε̃F −
√

2i(σ + i
R

r
)εφ+

√
2iγµεDµφ

δF = −
√

2i(σ − iR− 2

r
)ε̃ψ + 2iελφ−

√
2iDµ(ε̃γµψ)

δF =
√

2i(σ + i
R− 2

r
)εψ − 2iε̃λφ+

√
2iDµ(ψγµε)

(4.4.11)

where R is the R-charge of the multiplet.
The most generic Lagrangian (2.1.5) for such a background gets modified as fol-

lows:

1. The original super Yang-Mills Lagrangian (2.1.6), becomes

LSYM = Tr

{
1

4
FµνFµν +

1

2
DµσDµσ − iλγµDµλ+

−iλ[σ, λ] +
1

2
(D +

σ

r
)2 +

λλ

2r

} (4.4.12)

where now Dµ is the curved gauge covariant derivative.

2. The supersymmetric Chern–Simons term LSCS does not get modified by the
curved background and happens to be equal to the flat one (2.1.7).

3. The flat Fayet-Iliopulos Lagrangian (2.1.8), becomes

LFI = i
∑
A

ξA
(
D − σ

r

)
A

(4.4.13)

where A = 1, . . . ,RankG labels the abelian U(1) factors inside G

4. Finally, the matter Lagrangian (2.1.9) gets modified as follows

Lmatter = DµφDµφ− iψγµDµψ − FF+

+ i
√

2
(
φλψ + ψλφ

)
− iψ

(
σ − i2R− 1

2r

)
ψ+

+ φ

(
D + σ2 − i2R− 1

r
σ −RR− 2

r2

)
φ

(4.4.14)

where R is the R-charge of the chiral multiplet. For the sake of simplicity we
suppressed the flavour indices i, j, turned off the superpotential W = 0 and
redefined the vector multiplet fields to reabsorb the coupling constant g.

Since both Lagrangians LSYM (4.4.12) and Lmatter (4.4.14) with no superpotential
are Q- and Q̃-exact expressions, namely

εε̃LSYM = δεδε̃ Tr
{
λλ− 2Dσ

}
(4.4.15)
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εε̃Lmatter = δεδε̃

(
ψψ − 2iφσφ+ 2

R− 1

r
φφ

)
(4.4.16)

the most common choice for the localising supercharge is Q = Q + Q̃. In fact, since
our localising action must be the Q-variation of a Q-exact observable, both LSYM
and Lmatter can act as localising Lagrangians.

Alternatively one can always make the canonical choice (4.3.5), leading again to
LSYM (4.4.12) for the vector multiplet and to

εε̃Lloc = δεδε̃
(
ψψ − 2iφσφ

)
(4.4.17)

for the chiral multiplet.
As we have seen, the saddle points of these actions must coincide with the BPS

configurations (4.3.8) for the localising supercharge Q [123].
For the vector multiplet this reads

λ = 0 (4.4.18)

δλ =

(
i(D +

σ

r
)− i

2
εµνρFµνγ

ρ − iDµσγµ
)
ε = 0 (4.4.19)

The vanishing of δλ thus requires

1

2
εµνρF

µν = −Dρσ (4.4.20)

D = −σ
r

(4.4.21)

By acting on the first equation with a covariant derivative and using the Bianchi
identity (2.1.11) of the field strength Fµν , we get

εµνρDρFµν = 0 = −Dρ(Dρσ) (4.4.22)

This implies that the scalar σ must be covariantly constant, namely

Dρσ = 0 (4.4.23)

and thus, by means of (4.4.20), that Fµν = 0.
We may then pick a gauge in which Aµ = 0, so that the gauge covariant derivative

Dµ becomes just the standard curved derivative ∇µ. In this way, (4.4.23) is satisfied
when σ = σ0, with σ0 a fixed element in the Lie-algebra g of the gauge group G.

Hence (4.4.21) implies

D = −σ0

r
(4.4.24)

On the other hand, for the chiral multiplets we have

ψ = ψ = 0 (4.4.25)
δψ = εF (4.4.26)

δψ = −
√

2i(σ0 + i
R

r
)εφ+

√
2iγµεDµφ = 0 (4.4.27)
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The vanishing of δεψ and δεψ thus require

F = 0 (4.4.28)

−
√

2i(σ0 + i
R

r
)φ+

√
2iγµDµφ = 0 (4.4.29)

With the same reasoning as for the vector multiplet (but a little more work), the
solution of (4.4.29) requires simply φ = 0.

In the end, the saddle points of the localising action (2.1.5) involve vanishing chiral
multiplets and are determined by a constant background for the real scalar σ in the
vector multiplet. Since all matter fields vanish, the precise choice of the superpotential
W does not matter, provided it ensures superconformal invariance on the quantum
level.

4.4.2 S2 × S1 curved background

Since we are interested in evaluating the index (4.2.5), we will now consider the curved
background S2×S1. As we will see, this is the correct background for evaluating the
index with the localizing procedure. In the following we will adopt the same notations
of [117]; thus, let r and βr be the radius of S2 and the period of S1, respectively.
According to the case, we will use coordinates xa with a = 1, 2 for S2 and x3 for S1

separately or xµ with µ = 1, . . . , 3 when referring to S2 × S1 collectively.
Luckily most of the results of the previous section for the S3 background still hold

with minor modifications. Indeed, before considering the compact space S2 × S1, let
us consider S2 ×R insted. We will compactify the "time" direction R to S1 later on.

The four linearly independent Killing spinors on this non-compact background
split into two couples satisfying

DµεI = − 1

2r
γaγ3ε

I (4.4.30)

Dµε̃I =
1

2r
γaγ3ε̃

I (4.4.31)

if for S3 we could use any holomorphic or anti-holomorphic supersymmetry as
localizing supercharge Q, in computing the index (4.2.5) we should use only the anti-
holomorphic ones. This is due to the fact that the index encodes the spectrum of BPS
operators OBPS for which QOBPS = 0 only.

In this case, the localizing supercharge Q should then be a component of Q. With
such a choice we only preserve the ε̃ supersymmetry parameter, thus letting ε = 0.

If we now consider two linearly independent Killing spinors ε̃1 and ε̃2, they form a
doublet of the SO(3) isometry of S2 and thus we can assume they have j3 eigenvalues
±1

2 , respectively. Our localising supercharge Q will be the one associated to ε̃1.
In compactifying the "time" direction R, since the Killing equation (4.4.31) implies

ε̃1(x3) ∝ e
x3

2r (4.4.32)

the ε̃1 supersymmetry parameter cannot satisfy the standard periodic boundary con-
dition along S1. Instead, it satisfies

ε̃1(x3 + βr) = e
β
2 ε̃1(x3) (4.4.33)
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where the extra factor e
β
2 represents the insertion of a twist operator.

By using the Killing spinor quantum numbers

R(ε̃1) = −1 , j3(ε̃1) =
1

2
, Fi(ε̃

1) = 0 (4.4.34)

we can rewrite the twisted periodicity condition (4.4.33) as

ε̃1(x3 + βr) = e−β1(R+j3)eβ2j3eαiFi ε̃1(x3) (4.4.35)

where β1, β2 , and αi are real parameters satisfying β = β1 + β2.
For consistency, the same boundary condition (4.4.33) should be imposed on all

the fields {X} of the theory

X(x3 + βr) = e−β1(R+j3)eβ2j3eαiFiX(x3) (4.4.36)

Then it is easy to see that the path integral over S2×S1 with exactly this twisted
boundary condition gives the index (4.2.5) when we define

x1 := e−β1 , x2 := e−β2 , µi := e−αi (4.4.37)

The standard choice for the localizing Lagrangians on such a background with
such Killing spinors are

εε̃LlocSYM = δεδε̃ Tr

{
−1

2
λλ

}
(4.4.38)

εε̃Llocmatter = δεδε̃

(
− i

2
φF

)
(4.4.39)

which explicitly give

εε̃LlocSYM =
1

2
FµνFµν − εµρσF ρσDµσ +DµσDµσ +

1

r2
σ2+

+
2δµ,3

r
σ(εµρσF

ρσ −Dµσ) +D2 − 2λγµDµλ− 2λ[σ, λ]− 1

r
λγ3λ (4.4.40)

εε̃Llocmatter = −φDµDµφ+ φσ2φ+ iφDφ+

− ψγµDµψ − ψσψ −
√

2(ψλ)φ−
√

2φ(λψ) + FF+

+
1− 2R

r
(φD3φ+

1

2
ψγ3ψ) +R

1−R
r2

φφ (4.4.41)

If we define a vector Vµ as

Vµ =
1

2
εµρσF

ρσ −Dµσ −
δµ,3
r
σ (4.4.42)

then the localizing Lagrangian for the vector multiplet (4.4.40) heavily simplifies to

εε̃LlocSYM = VµV
µ +D2 − 2λγµDµλ− 2λ[σ, λ]− 1

r
λγ3λ (4.4.43)

Repeating the same reasoning of the previous section for S3, one can find that
the path integral localizes around Vµ = 0 which implies the following monopole back-
ground solutions



106 Chapter 4. The superconformal index

A0
µdx

µ =
l

βr
dx3 +mBadx

a , σ0 =
m

2r
:=

s

r
(4.4.44)

with all the other fields vanishing. Here, after an appropriate change of variables, the
Wilson line l around S1, the magnetic charge m of the Dirac monopole Bi and s := m

2
all take values in the Cartan part of the Lie algebra g of the gauge group G.

4.5 The superconformal index

As we have already anticipated, the index (4.2.5) is just the S2 × S1 localized path
integral

I =

∫
FQ

[DX0]e−S[X0] 1

Sdet
[
δ2Sloc[X0]

δX2
0

] (4.5.1)

where FQ is the BPS locus (4.3.8), {X0} are the values of the fields at the saddle
points configurations (4.4.44) and Sdet stands for the super-determinant (4.3.11) of
the localising action constructed form the Lagrangians (4.4.42) and (4.4.41).

Using the results of the previous section, the above formula becomes

I =
∑
{ma}

∫ (RankG∏
a

dla

)
det Je−S[la,ma] det ∆loc[la,ma]|F

det ∆loc[la,ma]|B
(4.5.2)

where J is the Jacobian of the appropriate variables change for the Wilson line l and
the monopole magnetic charge m of (4.4.44) to lie in the Cartan of the gauge group
G. Here, for simplicity, we defined ∆loc := δ2Sloc[X0]

δX2
0

.
The easiest way to compute the super-determinants of these operators ∆loc is

diagonalize them and then take the product of all their possible eigenvalues [117,
126]. In this section we will see how to do so.

4.5.1 Chiral multiplet contribution

To obtain the chiral multiplet contribution to the ∆loc operator in (4.5.2), we need
to substitute the field expansions about the saddle points (4.3.9) in the localizing
Lagrangian (4.4.41). Considering the quadratic terms only, that are the ones that
contribute to ∆loc, we get for the chiral multiplet

εε̃Llocmatter ∼ −φDµDµφ+
1

r2
φs2φ+R

1−R
r2

φφ+
1− 2R

r
φD3φ+

+
1

r
ψsψ − ψγµDµψ +

1− 2R

2r
ψγ3ψ + FF

(4.5.3)

Integrating out the auxiliary field F , we get a constant factor that can simply be
dropped.

The scalar field φ contribution Let us consider the scalar field φ first; performing
the derivatives, we get the operator

∆φ
loc = −D3D3 −DiDi +

s2

r2
+R

1−R
r2

+
1− 2R

r
D3 (4.5.4)

Now we need to diagonalize ∆φ
loc.
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First of all, whenever a D3 operator appears inside a ∆loc operator, it should be
understood as its eigenvalue. By taking the twisted boundary condition (4.4.36) into
account and the form of the gauge field (4.4.44) along S1, the eigenvalues of D3 are
thus given by

D3 =
1

βr

(
2πin− iρ(l)− (R+ j3)β1 + j3β2 + ρ̃(α)

)
with n ∈ Z (4.5.5)

where ρ and ρ̃ are respectively the weight vectors of the gauge and flavour representa-
tions (R, R̃) of the field and we made use of the same notation of (2.2.44) (see Section
(2.2.4)).

The hard part of diagonalizing the ∆loc operators thus comes from the gauge
covariant derivative Di and its combinations. However, on the S2 space, the gauge
covariant derivative acting on a generic field X becomes

Di = ∇(S2)
i − iρ(m)Bi = ∂i − iσωi − iρ(m)Bi (4.5.6)

where ∇(S2)
i is the curved covariant derivative on S2 with spin connection ωi and σ

its spin.
Thanks to the fact that on S2 the Dirac monopole Bi is related to the spin con-

nection ωi by

Bi =
1

2
ωi (4.5.7)

we can rewrite the covariant derivative as

Di = ∇eff
i := ∂i − iσeffωi with σeff = σ +

1

2
ρ(m) = σ + ρ(s) (4.5.8)

We have thus transformed the monopole contribution ρ(m) into a spin shifting
ρ(s). In this way we get an effective curved covariant derivative ∇eff

i without a gauge
component, but with modified effective spin σeff induced by the monopole background.

The diagonalization process of such effective curved covariant derivative ∇eff
i and

its combinations is well known in the literature and can be performed thanks to
harmonic expansion [116]. Indeed, on S2 we can always expand a generic field X with
spin σ into the so-called generalised spin σeff harmonics Ωσeff whose exact form and
properties depend on the original spin σ of the field [167]. These, by construction, are
in fact the eigenfunctions of the combinations of ∇eff

i appearing in the kinetic terms
of the Lagrangian on the S2 background.

For example, the scalar field φ with σ = 0 can be expanded using the generalised
spin σeff spherical harmonics

Y σeff
j,j3

(θ, φ) , j ≥ |σeff| , −j ≤ j3 ≤ j (4.5.9)

where (θ, φ) are the standard angular coordinates of S2.
These happen to be the eigenfunctions of the ∇eff

i ∇ieff operator in (4.5.4), for which

∇eff
i ∇ieffY

σeff
j,j3

= − 1

r2

(
j(j + 1)− σ2

eff

)
Y σeff
j,j3

(4.5.10)

Thus the operator ∆φ
loc in (4.5.4) diagonalizes as

∆φ
loc =

1

r2
(j +R+ rD3)(j + 1−R− rD3) (4.5.11)
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where D3 should be understood to be its eigenvalue (4.5.5).
Taking the product of all the possible eigenvalues (4.5.11), we obtain the scalar

field contribution to the super-determinat

det ∆φ
loc =

∏
ρ∈R

∞∏
j=|ρ(s)|

j∏
j3=−j

∞∏
n=−∞

(j +R+ rD3)(j + 1−R− rD3) (4.5.12)

The fermionic field ψ contribution Next, we need to consider the fermionic field
ψ contribution to ∆loc, that is the matrix operator

∆ψ
loc = γµDµ −

1− 2R

2r
γ3 +

s

r
=

(
D3 − 1−2R

2r + s
r D+

D− −D3 + 1−2R
2r + s

r

)
(4.5.13)

where we defined D± = D1 ± iD2.
This can again be diagonalised by expanding the fermionic field ψ into generalised

spin σeff monopole harmonics Ψσeff
j,j3

. Since the upper and lower components of the
spinor ψ have the effective spins σeff = ρ(s)∓ 1

2 respectively, we get

Ψ
ρ(s)− 1

2
j,j3

(θ, φ) ∝

 Y
ρ(s)− 1

2
j,j3

(θ, φ)

−Y ρ(s)+ 1
2

j,j3
(θ, φ)

 (4.5.14)

where we made use of the generalised spin σeff spherical harmonics in(4.5.9).
Indeed, these are eigenfunctions for the ∆ψ

loc matrix operator (4.5.13) which diag-
onalizes as follows

∆ψ
locΨ

ρ(s)− 1
2

j,j3
=

(
1
r

(
j + 1

2

)
+D3 − 1−2R

2r 0

0 −
[
−1
r

(
j + 1

2

)
+D3 − 1−2R

2r

])Ψ
ρ(s)− 1

2
j,j3

(4.5.15)
where the factor 1

r

(
j + 1

2

)
comes from the eigenvalue of the S2 operator γiDi + s

r for
which Ψσeff

j,j3
are eigenfunctions.

Thus to obtain the determinant of ∆ψ
loc we firstly have to take its matrix determi-

nant. Here we will denote the matrix determinant as det? to distinguish it from the
determinant of the differential operator. The result, however, differs according to the
value of the total angular momentum j.

• If j ≥ |ρ(s)|+ 1
2 , both the Y ρ(s)∓ 1

2
j,j3

components of Ψσeff
j,j3

exist and thus the matrix
determinant is

det
?

∆ψ =
1

r2
(j +R+ rD3)(j + 1−R− rD3) (4.5.16)

• In the extremal case j = |ρ(s)| − 1
2 , only one of the Y ρ(s)∓ 1

2
j,j3

components exists,
according to the value of ρ(s) ≶ 0. In this case only one eigenvalue remains,
leading to

det
?

∆ψ =
1

r
(j +R+ rD3) (4.5.17)
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Combining together these results, the full operator determinant reads

det ∆ψ =
1

r2

∏
ρ∈R


∞∏

j=|ρ(s)|− 1
2

j∏
j3=−j

∞∏
n=−∞

(j +R+ rD3) ×

×
∞∏

j=|ρ(s)|+ 1
2

j∏
j3=−j

∞∏
n=−∞

(j + 1−R− rD3)


(4.5.18)

where D3 should be understood to be its eigenvalue (4.5.5).
Luckily, looking at the two determinants (4.5.12) and (4.5.2), one can see that the

two factors are exactly the same. Thus, in order to find the closed expressions for
such determinants, we just need to look at the factors once.

Let us start with the factor (j +R+ rD3). The explicit form of this eigenvalue is

β(j+R+rD3) = 2πin− iρ(l)+(j−j3)β1 +(j+R+j3)β2 + ρ̃(α) := 2πin+z (4.5.19)

where we have defined the following recurring quantity

z := −iρ(l) + (j − j3)β1 + (j +R+ j3)β2 + ρ̃(α) (4.5.20)

Carrying out the product over n first, one obtains

2
∞∏

n=−∞
(πin+

z

2
) = 2 sinh

z

2
= e

z
2 (1− e−z) = e

z
2 exp

{
−
∞∑
n=1

1

n
e−nz

}
(4.5.21)

All the other products in the two determinants (4.5.12) and (4.5.2), can now be
turned into a summation over the exponents. Indeed, if we commonly recast the
expressions for φ and ψ as

∏
...

∞∏
n=−∞

(2πin+ z)(−1)F+1
(4.5.22)

where the first product represents all the other products apart from the one with
respect to n and F is the fermionic number of the respective field; then we get

∏
...

∞∏
n=−∞

(2πin+ z)(−1)F+1
= exp

{
−
∑
...

(−1)F
z

2

}
exp

{ ∞∑
n=1

1

n

∑
...

(−1)F e−nz

}
(4.5.23)

The second term in (4.5.23) is nothing but the plethystic exponent (2.2.36) of the
function

f(eila , x1, x2, µi) :=
∑
...

(−1)F e−z where e−z = eiρ(l)xj−j31 xj+R+j3
2 µρ̃ (4.5.24)
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which is called "letter index" from the fact that it represents the index of an elementary
excitation, also known in the literature as a letter. Here again we made use of the
notations of (2.2.44).

For a moment let us just forget about the first term in (4.5.23), we will cover it
later. Thus, the letter indices for φ and ψ are

fφ(eila , x1, x2, µi) =
∑
ρ∈R

eiρ(l)xR2 µ
ρ̃

∞∑
j=|ρ(s)|

j∑
j3=−j

(x1x2)j
(
x2

x1

)j3
(4.5.25)

fψ(eila , x1, x2, µi) = −
∑
ρ∈R

eiρ(l)xR2 µ
ρ̃

∞∑
j=|ρ(s)|

j−1∑
j3=−j

(x1x2)j
(
x2

x1

)j3
(4.5.26)

(4.5.27)

so that the total index reads

fφ+ψ(eila , x1, x2, µi) =
∑
ρ∈R

eiρ(l)xR2 µ
ρ̃

x2|ρ(s)|
2

∞∑
j=0

x2j
2

 =
∑
ρ∈R

eiρ(l)µρ̃
x

2|ρ(s)|+R
2

1− x2
2

(4.5.28)
since every term in the sum over the angular momenta j, j3 of fψ(eila , x1, x2, µi) cancels
the respective one in the same sum of fφ(eila , x1, x2, µi) apart from the term with
j3 = j.

Repeating exactly the same reasoning for the other eigenvalue (j + 1− R − rD3)
in the two determinants (4.5.12) and (4.5.2), one can find that the letter indices read

fφ(eila , x1, x2, µi) =
∑
ρ∈R

e−iρ(l)x−R2 µ−ρ̃
∞∑

j=|ρ(s)|

j∑
j3=−j

(x1x2)j+1

(
x1

x2

)j3
(4.5.29)

fψ(eila , x1, x2, µi) = −
∑
ρ∈R

e−iρ(l)x−R2 µ−ρ̃
∞∑

j=|ρ(s)|

j∑
j3=−j−1

(x1x2)j+1

(
x1

x2

)j3
(4.5.30)

(4.5.31)

so that the total index is

fφ+ψ(eila , x1, x2, µi) = −
∑
ρ∈R

e−iρ(l)x−R2 µ−ρ̃

x2|ρ(s)|
2

∞∑
j=0

x
2(j+1)
2

 =

= −
∑
ρ∈R

e−iρ(l)µ−ρ̃
x

2|ρ(s)|−2−R
2

1− x2
2

(4.5.32)

since now every term in the sum over the angular momenta j, j3 of fψ(eila , x1, x2, µi)
cancels the respective one in the sum of fφ(eila , x1, x2, µi) and only the term with
j3 = −j − 1 remains.

By summing the two contributions (4.5.28) and (4.5.32) we obtain the letter index
for one chiral multiplet Φ; then, the letter index accounting for every chiral multiplet
{Φ} in the theory is just the sum
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fΦ(eil, x2, µi) =
∑
{Φ}

∑
ρ∈RΦ

[
eiρ(l)µρ̃

x
2|ρ(s)|+R(Φ)

2

1− x2
2

− e−iρ(l)µ−ρ̃
x

2|ρ(s)|+2−R(Φ)

2

1− x2
2

]
(4.5.33)

As previously said this quantity does not depend on the variable x1 which is
consistent with the fact that only BPS states contribute to the index (4.2.5).

Then, to obtain the correct contribution to the localized formula (4.5.2), let us
stress that we need to consider the plethystic exponential of such letter index, as in
(4.5.23), namely

PE
[
fΦ(eila , x2, µi)

]
= exp

{ ∞∑
n=1

1

n
fΦ(einla , xn2 , µ

n
i )

}
(4.5.34)

4.5.2 Vector multiplet contribution

Now we shall turn our attention to the vector multiplet contribution to the localized
index (4.5.2).

Since the saddle points (4.4.44) of the localizing Lagrangian (4.4.40) are obtained
by setting Vµ = 0; to find the vector multiplet contribution we must consider the
following fluctuations around those saddle points

Aµ = A0
µ + δAµ σ = σ0 + δσ (4.5.35)

Moreover, when considering the localizing Lagrangian (4.4.40), we clearly have
the complication of fixing the gauge. This is done with the standard Fadeev-Popov
method, by introducing ghost fields c and c. The gauge-fixing Lagrangian on the
S2 × S1 background is

εε̃Lgf = −cDiDic− (DiAi)2 := −cDiDic+ VgfVgf (4.5.36)

Then the gauge-fixed localizing Lagrangian turns out to be

εε̃LlocSYM = VµV
µ − cDiDic+ VgfVgf +D2 − 2λγµDµλ− 2λ[σ, λ]− 1

r
λγ3λ (4.5.37)

Using the definitions (4.5.35), we can now substitute the field expansions about the
saddle points (4.3.9) in the localizing Lagrangian (4.5.37). Considering the quadratic
terms only, we get

εε̃LlocSYM ' VµV µ − cDiDic+ VgfVgf +D2 − 2λγµDµλ− 2
1

r
λsλ− 1

r
λγ3λ (4.5.38)

Again, we can simply integrate out the auxiliary field D, getting a constant factor
that can simply be dropped.

The ghosts c and c contribution By expanding the ghost fields c and c into
the generalised spin σeff spherical harmonics Y σeff

j,j3
of (4.5.9) and by looking to the

eigenvalue equation (4.5.10), we can easily see that their contribution is exactly
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det ∆c
loc =

∏
α∈∆

∞∏
j=|α(s)|

j∏
j3=−j

∞∏
n=−∞

(
j(j + 1)− α(s)2

)
(4.5.39)

where now, due to the fact that the vector multiplet is in the adjoint representation of
he gauge group G, the weight vector ρ simply becomes the root α of the Lie algebra
g. Here ∆ stands for the root space.

The gaugino λ contribution The contribution of the gaugino λ is exactly the
same as the one of the fermionic field ψ of the chiral multiplet Φ, Eq. , apart from
the fact that the R charge is zero and that the representation R is the adjoint; thus
we get

det ∆λ =
1

r2

∏
α∈∆


∞∏

j=|α(s)|− 1
2

j∏
j3=−j

∞∏
n=−∞

(j + rD3) ×

×
∞∏

j=|α(s)|+ 1
2

j∏
j3=−j

∞∏
n=−∞

(j + 1− rD3)


(4.5.40)

The vector contribution The only contribution left is the one of the fluctuations
of the gauge vector δAµ and the scalar δσ, which reads

∆v
loc = VµV

µ + VgfVgf (4.5.41)

For the sake of simplicity, we should redefine a vector vM := (δσ, δAµ) in a 4d
N = 1 notation. Then, we have

Vµ =

 −D(0)
1 −iα(s) −D(0)

3 D(0)
2

−D(0)
2 D(0)

3 −iα(s) −D(0)
1

−D(0)
3 − 1

r −D(0)
2 D(0)

1 −iα(s)



δσ
δA1

δA2

δA3

 (4.5.42)

Vgf =
(

0 D(0)
1 D(0)

2 0
)

δσ
δA1

δA2

δA3

 (4.5.43)

where we have split

−Dµσ = −D(0)
µ δσ + i[δAµ, σ

(0)] = −D(0)
i δσ −D3δσ − iα(s)δAµ (4.5.44)

To easily compute the matrix determinant of the ∆v
loc operator, we can expand δσ

into generalised spin σeff spherical harmonics Y ρ(s)
j,j3

(4.5.9), while each component of
the vector fluctuations δAµ can be in turn expanded into the so-called generalised spin
σeff vector harmonics Cµ

ρ(s)+λ
j,j3

with intrinsic spin λ = 0,±1 and defined as follows
[157]



4.5. The superconformal index 113

Cµ
ρ(s)+1
j,j3

=
1√

2(J 2 + ρ(s))

(
Dµ +

i

|r|
εµρσr

ρDσ
)
Y
ρ(s)
j,j3

Cµ
ρ(s)
j,j3

=
rµ
|r|
Y
ρ(s)
j,j3

Cµ
ρ(s)−1
j,j3

=
1√

2(J 2 − ρ(s))

(
Dµ −

i

|r|
εµρσr

ρDσ
)
Y
ρ(s)
j,j3

(4.5.45)

where we also defined

J 2 = j(j + 1)− ρ(s)2 (4.5.46)

Thus we get

Aµ =
∑
j,j3

∑
λ

aj,j3λ Cµ
α(s)+λ
j,j3

(4.5.47)

σ =
∑
j,j3

bj,j3
Y
α(s)
j,j3

|r|
(4.5.48)

Then it is convenient to chose a new basis

{xµ = x1, x2, x3} → {x± =
1√
2

(x1 + x2), x3} (4.5.49)

Thanks to this change of basis and to the properties of the harmonics, we can
recast the ∆v

loc operator in (4.5.41) as

∆v
loc = VMV

M (4.5.50)

where we have defined

VM =

Y
α(s)
j,j3

/r ×
C+

α(s)+1
j,j3

×
C−

α(s)−1
j,j3

×
C3

α(s)
j,j3

×


0 −s+ −s− 0
−s+ −iα(s)− irD3 0 is+

−s− 0 −iα(s) + irD3 −is−
−rD3 − 1 −is+ is− −iα(s)



b
a+

a−
a0


(4.5.51)

with

s± :=

√
J 2 ± α(s)

2
(4.5.52)

and J as in (4.5.46) with the generic weight vector ρ being a root α of the adjoint
representation.

As in the fermionic case, in evaluating the matrix determinant of such operator, we
have now to consider three different cases according to the value of the total angular
momentum j:

• If j ≥ |α(s)|+1, then all the three components of the vector harmonics Cµ
α(s)+λ
j,j3

exist and thus the matrix determinant reads
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det
?

∆v
loc = (j(j + 1)− α(s)2)(j −D3)(j + 1 +D3) (4.5.53)

• If j = |α(s)| there is no a− mode and the operator becomes

VM =

Y
α(s)
j,j3

/r ×
C+

α(s)+1
j,j3

×
C3

α(s)
j,j3

×

 0 −s+ 0
−s+ −iα(s)− iD3 is+

−D3 − 1 −is+ −iα(s)

 b
a+

a0

 (4.5.54)

so that the matrix determinant now reads

det
?

∆v
loc = ±i(j(j + 1)− α(s)2)(j + 1 +D3) (4.5.55)

where we used the fact that in this particular case |α(s)| = j.

• If j = |α(s)| − 1, the only mode left is a+ and the vector collapses into

V+ = C+
α(s)+1
j,j3

(−iα(s)− iD3) a+ (4.5.56)

In this case the matrix determinant is simply the eigenvalue

det
?

∆v
loc = ±i(j + 1 +D3) (4.5.57)

where again we used the fact that |α(s)| = j + 1.

Confronting the determinant arising from the ghost fields c and c (4.5.39) and the
determinants coming from the vector field vM (4.5.53) and (4.5.55), we see that they
share the common eigenvalue (j(j + 1)− ρ(s)2) for j ≥ |α(s)|. Thus, since the ghost
fields are fermionic, their contribution exactly cancels the respective contribution of
the vector field in det? ∆v

loc.
Taking into account this fact and combining all the results, we get the following

operator determinant

det ∆v
loc =

∏
α∈∆


∞∏

j=|α(s)|−1

j∏
j3=−j

∞∏
n=−∞

(j + 1 + rD3)




∞∏
j=|α(s)|+1

j∏
j3=−j

∞∏
n=−∞

(j − rD3)


(4.5.58)

Following the same procedure adopted with the chiral multiplet, one can show that
for the eigenvalue (j+1+rD3) the letter indices for the gaugino λ and the gauge-fixed
vector vM are then

fv(e
ila , x1, x2) =

∑
α∈∆

eiα(l)x2

∞∑
j=|α(s)|−1

j∑
j3=−j

(x1x2)j
(
x2

x1

)j3
(4.5.59)

fλ(eila , x1, x2) = −
∑
α∈∆

eiα(l)x2

∞∑
j=|α(s)|−1

j+1∑
j3=−j

(x1x2)j
(
x2

x1

)j3
(4.5.60)

(4.5.61)
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so that, when summing them together, only the j3 = j + 1 term of fλ(eila , x1, x2)
contributes to the index.

Thus the total letter index reads

fv+λ(eila , x1, x2) = −
∑
α∈∆

e−iα(l)x2

x2(|α(s)|−1)
2

∞∑
j=0

x2j+1
2

 = −
∑
α∈∆

e−iα(l)x
|α(m)|
2

1− x2
2

(4.5.62)
Similarly, from the other eigenvalue (j − rD3) we get

fv(e
ila , x1, x2) =

∑
α∈∆

e−iα(l)x−1
2

∞∑
j=|α(s)|+1

j∑
j3=−j

(x1x2)j+1

(
x1

x2

)j3
(4.5.63)

fλ(eila , x1, x2) = −
∑
α∈∆

e−iα(l)x−1
2

∞∑
j=|α(s)|+1

j∑
j3=−j+1

(x1x2)j+1

(
x1

x2

)j3
(4.5.64)

(4.5.65)

so that, when summing them together, only the j3 = −j term of fA(eila , x1, x2) will
contribute.

Thus

fv+λ(eila , x1, x2) =
∑
α∈∆

e−iα(l)x−1
2

x2(|α(s)|+1)+1
2

∞∑
j=0

x2j
2

 =
∑
α∈∆

e−iα(l)x
|α(m)|+2
2

1− x2
2

(4.5.66)
Finally, by summing up the two contributions (4.5.62) and (4.5.66), we obtain the

letter index for the vector multiplet V , namely

fV (eila , x2) =
∑
α∈∆

[
−eiα(l)x

|α(m)|
2

]
(4.5.67)

However, since there should be no net contribution to the super-determinant from
modes which do not feel the magnetic flux m, generally one should write

fV (eila , x2) =
∑
α∈∆

−eiα(l)
[
x
|α(m)|
2 − δα(m),0

]
(4.5.68)

where we subtracted from (4.5.67) the contribution from the modes possessing α(m) =
0.

Thus, the contribution of a vector multiplet to the localized formula (4.5.2) is just
the plethystic exponential

PE
[
fV (eila , x2)

]
= exp

{ ∞∑
n=1

1

n
fV (einla , xn2 )

}
(4.5.69)

4.5.3 The monopole charges corrections

Up to now we purposely forgot about the second factor in (4.5.23). This prefactor
exists for both the chiral and vector multiplets and thus its explicit form changes
according to the value of the variable z and the eigenvalue under consideration.
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To show how to compute this quantity, let us focus on the eigenvalue (j+R+rD3)
of the chiral multiplet. Then the prefactor reads

exp

{
−
∑
...

(−1)F
z

2

}
= exp

{
−
∑
...

(−1)F
1

2
[−iρ(l) + (j − j3)β1 + (j +R+ j3)β2 + ρ̃(α)]

}
(4.5.70)

Since this quantity is formally divergent, we need to correctly regularize it [126].
The most general regularization would be the insertion inside the index (4.2.5) of a
factor

eil
′
x
′−(j−j3)
1 x

′−(j+R+j3)
2 µ′−ρ̃ (4.5.71)

where, for the sake of simplicity, we dubbed these parameters as the chemical poten-
tials (apart from a prime); however they are merely regulators and should be taken
to 1 when the computation of the trace is ruled out.

The same process must be done for each other eigenvalue of both the chiral and
the vector multiplets.

The prefactor (4.5.70) is formally very similar to the letter index (4.5.24) and in
fact, once regularized as above for each eigenvalue, it turns out to be

−
∑
...

(−1)F
z

2
=

1

2
lim

eil
′
a ,x′1,x

′
2,µ
′
i→1

(∂
eil
′
a

+ β1∂x′1 + β2∂x′2 + αi∂µ′i)ftot(e
il′a , x′1, x

′
2, µ
′
i)

(4.5.72)
where, since x1 disappears from the letter indices, its contribution vanishes. Here, the
function ftot(eil

′
a , x′1, x

′
2, µ
′
i) is just the total letter index made up by summing together

the chiral multiplet contribution (4.5.33) and the vector multiplet one (4.5.68).
In the end, this regularization process gives [117]

exp

{
−
∑
...

(−1)F
z

2

}
= eib0(l)xε02

Rank Ĝ∏
i

µ
qi0
i (4.5.73)

where we have defined

• The zero-point contributions to the energy

ε0 =
1

2
lim

eil
′
a ,x′2,µ

′
i→1

∂x′2ftot(e
il′a , x′2, µ

′
i) =

∑
{Φ}

(1−R(Φ))
∑
ρ∈RΦ

|ρ(s)| −
∑
α∈∆

|α(s)|

(4.5.74)

• The zero-point contributions to the flavour charges

qi0 =
1

2
lim

eil
′
a ,x′2,µ

′
i→1

∂µ′iftot(e
il′a , x′2, µ

′
i) =

= −
∑
{Φ}

∑
ρ∈RΦ

Fi

[
1

2(x2 − 1)
+

(
1

4
+ |ρ(s)|

)
+O(x2 − 1)

] (4.5.75)

where it is clear that we need some regularization.



4.5. The superconformal index 117

However, since this quantity does not depend on the chiral multiplets R-charges
R(Φ), it is plausible that after an appropriate regularization qi0 does not depend
on x2. Thus we can neglect any term inside (4.5.75) apart from

qi0 ' −
∑
{Φ}

∑
ρ∈RΦ

|ρ(s)|Fi (4.5.76)

• The 1-loop correction to Chern–Simons terms

b0(l) =
1

2
lim

eil
′
a ,x′2,µ

′
i→1

∂eil′ftot(e
il′a , x′2, µ

′
i) = . . . = −

∑
{Φ}

∑
ρ∈RΦ

|ρ(s)|ρ(l) (4.5.77)

which is obtained by the exact same reasoning of qi0.

These are exactly the corrections to the monopole quantum numbers of equations
(2.2.30), (2.2.31) and (2.2.32) that we already encountered in Chapter (2).

Up to now, the contribution of the chiral and vector multiplets to the superdeter-
minant of the localized index (4.5.2) reads

∏
...

∞∏
n=−∞

(2πin+ z)(−1)F+1
= eib0(l)xε02 µ

q0 PE
[
ftot(e

ila , x2, µi)
]

(4.5.78)

4.5.4 The localizing formula

Before writing down the full localizing formula for the 3d superconformal index (4.5.2),
we need to explicitly compute the Vandermonde determinan det J of the change of
variables for the Wilson line l and the monopole magnetic charge m to lie in the
Cartan of the gauge group G. This reads

det J =
∏

α∈∆,α(m)=0

2i sin
α(l)

2
(4.5.79)

where, because the gauge group G is broken by the magnetic flux m (see Section
(2.2.4)), the product is restricted over the roots for the unbroken gauge group Hm

only, namely the ones that satisfy α(m) = 0.
Performing the same algebraic manipulations of (4.5.21) and below, we can rewrite

the Vandermonde determinan as

det J = PE
[
f ′(einla)

]
= exp

[ ∞∑
n=1

1

n
f ′(einla)

]
(4.5.80)

where we defined

f ′(eila) :=
∏

α∈∆,α(m)=0

[
−e−iα(l)

]
(4.5.81)

It is easy to see that the above determinant can be combined with the vector letter
index to give

det J PE
[
fV (eila , x2)

]
= PE

[∑
α∈∆

[
−eiα(l)x

|α(m)|
2

]]
(4.5.82)
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In addition to this Jacobian factor arising from the fixing of continuous gauge
symmetries, we need a statistical factor associated with the Weyl group Wm of the
unbroken gauge group Hm. For example, suppose the gauge group G is broken by
the monopoles magnetic charge m to a subgroup Hm = ⊗kU(Nk), then the statistical
factor reads

Sym =
∏
k

Nk! =

RankG∏
j=1

RankG∑
k≥j

δmj ,mk

 (4.5.83)

Thus we should include a factor 1
Sym in the definition of the integration measure

of the localized formula (4.5.2).
Taking into account everything we have achieved so far, the complete localized

formula for the superconformal index reads [117, 126]

I =
∑
{ma}

1

Sym

∫ (RankG∏
a

dla
2π

)
eikπTr{ls}eib0(l)xε02 µ

q0 PE
[
ftot(e

ila , x2, µi)
]

(4.5.84)

where the total letter index reads

ftot(e
ila , x2, µi) = −

∑
α∈∆

eiα(l)x
|α(m)|
2 +

∑
Φ

∑
ρ∈R

[
eiρ(l)µρ̃

x
2|ρ(s)|+R
2

1− x2
2

− e−iρ(l)µ−ρ̃
x

2|ρ(s)|+2−R
2

1− x2
2

]
(4.5.85)

and the contribution of the action evaluated at the localizing locus Vµ = 0 (see
(4.4.44)) is simply

S[X0] = −2ikTr{ls} (4.5.86)

which comes from the Chern–Simons part (2.1.7).
It is then convenient to introduce new complex variables za = eila which run over

unit circles in the complex plane and rewrite the plethystic exponential PE
[
ftot(e

ila , x2, µi)
]

in a more compact way [122].
To do so, we will make use of the q-Pochhammer product (w; q)n, defined as follows

(w; q)n :=
n−1∏
j=0

(1− wqj) (4.5.87)

where n could be either finite or infinite.
Specifically, let us firs consider the plethystic exponential of the letter index for a

single chiral field Φ

PE [fΦ(za, x2, µi)] =
∏
ρ∈R

exp

[ ∞∑
n=1

1

n

(
znρµnρ̃

x
n(2|ρ(s)|+R)
2

1− x2n
2

− z−nρµ−nρ̃x
n(2|ρ(s)|+2−R)
2

1− x2n
2

)]
(4.5.88)

We shall rewrite the denominator as a geometric series, namely

1

1− x2n
2

=

∞∑
k=0

x2kn
2 (4.5.89)
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Then, by interchanging the order of the two summations over n and k, we get

PE [fΦ(za, x2, µi)] =

=
∏
ρ∈R

exp

{ ∞∑
k=0

∞∑
n=1

1

n

[(
zρµρ̃x

2|ρ(s)|+R+2k
2

)n
−
(
z−ρµ−ρ̃x

2|ρ(s)|+2−R+2k
2

)n]}
=

=
∏
ρ∈R

∞∏
k=0

exp
[
− ln

(
1− zρµρ̃x2|ρ(s)|+R+2k

2

)
+ ln

(
1− z−ρµ−ρ̃x2|ρ(s)|+2−R+2k

2

)]
=

=
∏
ρ∈R

∞∏
k=0

1− z−ρµ−ρ̃x2|ρ(s)|+2−R+2k
2

1− zρµρ̃x2|ρ(s)|+R+2k
2

=
∏
ρ∈R

(z−ρµ−ρ̃x
2|ρ(s)|+2−R
2 ;x2)∞

(zρµρ̃x
2|ρ(s)|+R
2 ;x2)∞

(4.5.90)

where in the second line we recognised the series expansion of ln(1 − x) and for the
last equality we used the q-Pochhammer symbol definition (4.5.87).

Considering instead the plethystic exponential of the vector multiplet letter index,
we have

PE [fV (za, x2)] = PE

[∑
α∈∆

(
−zαx|α(m)|

2

)]
=

=
∏
α∈∆

exp

{
−
∞∑
n=1

1

n

(
zαx

|α(m)|
2

)n}
=
∏
α∈∆

(
1− zαx|α(m)|

2

) (4.5.91)

Then, using the definitions of the monopole charges corrections ε0 (4.5.74), qi0
(4.5.76) and b0(a) (4.5.77), we can finally rewrite the index (4.5.84) in a more compact
way as

I =
∑
{ma}

1

Sym

(
RankG∏

a

∮
dza

2πza
zkmaa

)
ZV ({z,m};x)

∏
Φ

ZΦ({z,m},µ;x) (4.5.92)

where we have defined

ZV ({z,m};x) :=
∏
α∈∆

x−
|α(m)|

2

(
1− zαx|α(m)|

2

)
(4.5.93)

ZΦ({z,m},µ;x) :=
∏
ρ∈R

(
x(1−R)z−ρµ−ρ̃

) |ρ(m)|
2 (z−ρµ−ρ̃x

|ρ(m)|+2−R
2 ;x2)∞

(zρµρ̃x
|ρ(m)|+R
2 ;x2)∞

(4.5.94)

and x = x2. In addition, we made use of the fact that m = 2s and introduced the
shorthand notation

{z,m} = {(z1, · · · , zRankG) , (m1, · · · ,mRankG)}
µ =

(
µ1, · · · , µDim R̃

) (4.5.95)

It is easy to note that za and µi in the chiral multiplet contribution (4.5.94) always
appear on a very similar footing. This is because they are of the same nature: both
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are variables parametrizing the maximal tori of their respective symmetry groups.
In fact, we can think of the chemical potentials µi as the S1 Wilson lines for fixed
background gauge fields which couple to the global symmetries of the theory. Thus,
we can also introduce a new magnetic flux variable ni for such background fields. At
the index level, ni will appear on the same footing of the gauge flux variable ma,
leading to the following replacement

ρ(m)→ ρ(m) + ρ̃(n) (4.5.96)

Thus, the generalized superconformal index becomes [71, 122]

I({µ,n};x) =
∑
{ma}

1

Sym

(
RankG∏

a

∮
dza

2πza
zkmaa

)
ZV ({z,m};x)

∏
Φ

ZΦ({z,m}, {µ,n};x)

(4.5.97)
where now

ZΦ({z,m}, {µ,n};x) :=
∏
ρ∈R

∏
ρ̃∈R̃

(
x(1−R)z−ρµ−ρ̃

) |ρ(m)+ρ̃(n)|
2 ×

× (z−ρµ−ρ̃x
|ρ(m)+ρ̃(n)|+2−R
2 ;x2)∞

(zρµρ̃x
|ρ(m)+ρ̃(n)|+R
2 ;x2)∞

(4.5.98)

where now R̃ is the representation of the flavour symmetry group for the chiral mul-
tiplet Φ.

In this way we can also gauge the flavour symmetries, by simply integrating and
summing over respectively the µi and the ni variables and by introducing the appro-
priate contribution for their vector multiplets (if the global symmetry is non Abelian).

Moreover, according to the cases, there are additional fugacities and magnetic
fluxes one can turn on in the index (4.5.97) .

For example, since we are working in 3d, we can consider the topological symmetry
current Jµtop (2.1.12). To determine the contribution of this symmetry to the general-
ized index, we need to repeat the procedure we used above for flavour symmetries and
couple the symmetry current Jµtop to a background vector multiplet Vtop. At the index
level, this amounts to include a new N = 2 BF term, which can be thought of as an
off-diagonal Chern–Simons term. Thus, combining these classical Chern–Simons and
BF contributions we get a factor

Zcl({z,m}, {ω, ν}) :=

RankG∏
a

ωmazkma+ν
a (4.5.99)

where ω and ν are respectively the continuous fugacity and the discrete flux for the
background vector multiplet Vtop.

Thus the final expression of the index reads
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I({µ,n};x) =
∑
{ma}

1

Sym

(
RankG∏

a

∮
dza

2πza

)
×

× Zcl({z,m}, {ω, ν})ZV ({z,m};x)
∏
Φ

ZΦ({z,m}, {µ,n};x)

(4.5.100)

Clearly, if we have more than one gauge group or more than one flavour symmetry
group, we should include all their contribution leading to more Zcl, ZV and ZΦ factors
inside (4.5.100) with different fugacities.

4.5.5 Superconformal multiplets and the index

Now that we have a straightforward analytic way to compute the index, we shall go
back to the very initial definition of the index as a trace (4.2.5).

Once evaluated explicitly, we can in fact expand the localizing formula (4.5.100)
for the index in a power series in x setting for convenience all the background magnetic
fluxes for the global symmetries to zero. We thus get

I(x, µ, n = 0) =

∞∑
p=0

χp(µ)xp (4.5.101)

where χp(µ) is the character of a certain representation of the global symmetry of the
theory whose fugacity is exactly µ.

The index keeps track of the superconformal short multiplets, up to recombination.
This feature makes the reconstruction of the whole content of short multiplets from
the index an extremely hard task. Nevertheless, one may classify the equivalence
classes of the multiplets according to their contribution to each order of x in the
power series (4.5.101). To do this, we will closely follow [146] (see also [19] for the
4d counterpart). Thus first we must consider all the possible short multiplets of 3d
N = 2 superconformal theories and see if they indeed satisfy the pairing constraint

δ = ∆−R− j3 = 0 (4.5.102)

Looking at (4.2.5), these multiplets will then contribute to the index at order
p = ∆ + j3.

In studying such contributions it is useful to define the modified index as follows

Ĩ(x, µ, n = 0) = (1− x2) [I(x, µ, n = 0)− 1] (4.5.103)

where all of the terms up to order p = 2 in the modified index Ĩ are equal to those in
the original index I.

Then we can define the index contribution as

I(p, j) := (−1)j
xp

1− x2
with p = ∆ + j3 (4.5.104)

Thus, listing all the possibleN = 2 superconformal short multiplets in the notation
adopted by [59], we get
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Multiplet Contributing conformal primary Contribution to I

LA1[j ≥ 1]
(R>0)
j
2

+R+1
[j + 1]

(R+1)
j
2

+R+ 3
2

I(j + r + 2, j + 1)

LA2[0]
(R>0)
R+1 [1]

(R+1)

R+ 1
2

I(r + 2, 1)

A1L[j ≥ 1]
(R<0)
j
2
−R+1

- 0

A2L[0]
(R<0)
−R+1 - 0

LB1[0]
(R>0)
R [0]

(R)
R I(r, 0)

B1L[0]
(R<0)
−R - 0

A1A1[j ≥ 1]
(0)
j
2

+1
[j + 1]

(1)
j
2

+ 3
2

I(j + 2, j + 1)

A2A2[0]
(0)
1 [1]

(1)
3
2

I(2, 1)

A2B1[0]
( 1
2

)
1
2

[0]
( 1
2

)
1
2

I( 1
2
, 0)

B1A2[0]
(− 1

2
)

1
2

[1]
( 1
2

)

1 I( 3
2
, 1)

B1B1[0]
(0)
0 [0]

(0)
0 I(0, 0)

(4.5.105)

Then the only N = 2 multiplets that can non-trivially contribute to the modified
index (4.5.103) at order xp for p ≤ 2 are as follows

Multiplet Contribution to I Type

A2B1[0]
( 1
2

)
1
2

+x
1
2 Free fields

B1A2[0]
(− 1

2
)

1
2

−x
3
2 Free fields

LB1[0]
(1)
1 +x Relevant operators

LB1[0]
(2)
2 +x2 Marginal operators

A2A2[0]
(0)
1 −x2 Conserved currents

(4.5.106)

Indeed, the A2B1 and B1A2 multiplets are free fields and their combination form
a free chiral multiplet.

The multiplets of the LB1 type are chiral fields and thus they contribute with
relevant operators for p < 2 and marginal operators for p = 2.

Finally the A2A2 multiplet is just the standard conserved current multiplet.
So, the coefficient of x2 in the index counts the number of marginal operators

minus the number of conserved currents.
However, since the S-fold theory has at least N = 3 supersymmetry, we consider

the contribution fromN = 3 multiplets to theN = 2 index. In particular, the relevant
N = 3 current multiplets and their decomposition to N = 2 multiplets are [74]
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Type N = 3 multiplet Decomposition into N = 2 multiplets

Flavour current B1[0]
(2)
1 LB1[0]

(1)
1 +B1L[0]

(1)
−1 +A2A2[0]

(0)
1

Extra SUSY-current A2[0]
(0)
1 A2A2[0]

(0)
1 +A1A1[1]

(0)
3
2

Stress tensor A1[1]
(0)
3
2

A1A1[1]
(0)
3
2

+A1A1[2]
(0)
2

(4.5.107)

where it should be noted that the multiplets A1A1[1]
(0)
3
2

and A1A1[2]
(0)
2 contribute to

Ĩ as +x3 and −x4 respectively [146, Table 2].
From these last two tables, we see that orders x and x2 of the index contain the

following information:

Order x: N = 3 flavour currents ;

Order x2: (N = 2 preserving exactly marginal operators)
− (N = 3 flavour currents)− (N = 3 extra SUSY-currents) .

(4.5.108)

Since in the following we will be interested in the supersymmetry enhancement
phenomenon, this instructs us to focus only on the operators of the SCFTs with R-
charge up to 2. Those with R-charge 1 are in correspondence with the N = 3 flavour
currents. While, at order x2, the information of the N = 2 marginal operators leads
to the precise information of the N = 3 extra SUSY-current and, hence, the amount
of (enhanced) supersymmetry of the corresponding SCFT.

4.6 Expressions of superconformal indices

In this section, we summarise the expressions for the different factors Zcl (4.5.99), ZV
(4.5.93) and ZΦ (4.5.98) of the superconformal indices for some theories that we will
discuss later on in the rest of this work. We follow the convention adopted in [3, 4].

4.6.1 Gauge Groups

We will now write down the classical factors Zcl (4.5.99) and the factors ZV (4.5.93)
for all the gauge groups of interest for this work.

U(N)k gauge group

Let us start by considering a U(N)k gauge group with Chern–Simons level k and a
U(1) topological symmetry.

The classical factor Zcl (4.5.99) takes the simple form

Z
U(N)
cl ({z,m}, {ω, ν}) =

N∏
a=1

zkma+ν
a ωma (4.6.1)

where {ω, ν} are the fugacity and the respective magnetic flux associated with the
U(1)ω topological symmetry.

Turning now our attention to the factor ZV (4.5.93), we have explicitly
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Z
U(N)
V ({z,m}) =

N∏
a<b

x−|ma−mb|(1− (−1)ma−mbzaz
−1
b x|ma−mb|)×

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|)

(4.6.2)

Usp(2N)k gauge group

In the following we will consider also USp(2N)k gauge groups, for which we use a
different normalisation of the CS level and the topological symmetry is absent:

Z
USp(2N)
cl ({z,m}) =

N∏
a=1

z2kma
a (4.6.3)

Z
USp(2N)
V ({z,m}) =

N∏
a=1

x−2|ma|(1− (−1)2maz2
ax

2|ma|)(1− (−1)2maz−2
a x2|ma|)

(4.6.4)

SO(2N + ε)k gauge group

For compactness we denoted together the odd and the even case by SO(2N + ε)k for
ε = 0, 1. When dealing with orthogonal groups we must pay a little attention.

In fact SO(2N + ε)k gauge theories with N > 1 possess a topological discrete ZM2
symmetry but also a charge conjugation discrete ZC2 symmetry. In the following we
will call ζ and χ the fugacities for respectively the ZM2 and ZC2 symmetries. We thus
have the conditions ζ2 = χ2 = 1.

In the simplest case of SO(2)k ' U(1)k the topological symmetry is simply U(1)ζ .
The classical factor Zcl (4.5.99) thus takes the form

ZSO(2N+ε)
cl ({z,m}) =

N∏
a=1

z2kma
a ζma (4.6.5)

where we use the same normalisation of the CS level as in (4.6.3).
Moreover, if these discrete symmetries are coupled to background gauge fields and

these latter are made dynamical, the SO(2N + ε)k gauge theory is transformed into a
new gauge theory with a different gauge group. All possible gaugings of these discrete
symmetries and the respective gauge groups are depicted in Fig. (4.6.6) for a generic
SO(N).

Spin(N)

SO(N) O−(N) Pin(N)

O+(N)

M

CM

C

C

M

M

(4.6.6)

In the following, we will be interested in O+(N) gauge groups and thus we will
need to gauge the discrete charge conjugation symmetry ZC2 , i.e. to sum over χ = ±1.
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Let us consider the case χ = +1 first, the factor ZV (4.5.93) can be collectively
written as

Z
SO(2N+ε)
V ({z,m}, χ = +1) =

(
N∏
a=1

x−|ma|(1− (−1)mazax
|ma|)(1− (−1)maz−1

a x|ma|)

)ε

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|)

(4.6.7)

while for χ = −1 we have separately [4, 113, 115]

Z
SO(2N)
V ({z,m};χ = −1) =

N−1∏
a=1

x−2|ma|(1− (−1)2maz2
ax

2|ma|)(1− (−1)2maz−2
a x2|ma|)

×
N−1∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) , (4.6.8)

Z
SO(2N+1)
V ({z,m};χ = −1) =

N∏
a=1

x−|ma|(1 + (−1)mazax
|ma|)(1 + (−1)maz−1

a x|ma|)

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) . (4.6.9)

In particular, the expression for χ = −1 in the SO(2N)k case is obtained by
setting zN = 1, z−1

N = −1 and mN = 0 in the one for χ = +1, while the expression
for generic χ in the SO(2N + 1) can also be written compactly as

Z
SO(2N+1)
V ({z,m};χ) =

N∏
a=1

x−|ma|(1− (−1)maχzax
|ma|)(1− (−1)maχz−1

a x|ma|)

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) . (4.6.10)

4.6.2 Matter fields

Since we will be interested in N = 4 supersymmetric theory, in order to write down
the superconformal index (4.5.100), we need to decompose each N = 4 multiplet into
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N = 2 ones according to Table (2.2.2). Indeed the functions ZV (4.5.93) and ZΦ

(4.5.98) are valid for N = 2 vector and chiral multiplets respectively.
Moreover, in the chiral multiplets contribution ZΦ, we can turn on an additional d

fugacity corresponding to the axial symmetry U(1)d := U(1)L − U(1)R, where U(1)L
and U(1)R are the Cartan subalgebras of the SU(2)L and SU(2)R parts of the N = 4
R-symmetry SU(2)L × SU(2)R (see Section (2.2)). In the following we do not turn
on the background magnetic flux for U(1)d.

Thus the contribution ZΦ of the chiral fields can be modified as follows

ZΦ({z,m}, {µ,n}, d;x) :=
∏
ρ∈R

∏
ρ̃∈R̃

(
x(R−1)zρµρ̃d

)− |ρ(m)+ρ̃(n)|
2 ×

× ((−1)ρ(m)+ρ̃(n)z−ρµ−ρ̃d−1x
|ρ(m)+ρ̃(n)|+2−R
2 ;x2)∞

((−1)ρ(m)+ρ̃(n)zρµρ̃d x
|ρ(m)+ρ̃(n)|+R
2 ;x2)∞

(4.6.11)

In the following, we will only have two types of chiral fields: the bifundamental
chirals forming the N = 4 hypermultiplets and the adjoint chirals inside the N = 4
vector multiplets. For both these types of chirals we will rewrite the contribution
ZΦ (4.6.11) in a more explicit way, making use of the simpler contribution of a chiral
transforming under a single U(1) symmetry with fugacity and flux {z,m} respectively

Zchir ({z,m}, d;R;x) := (xR−1zd)−
|m|
2

∞∏
j=0

1− (−1)mz−1d−1x|m|+2−R+2j

1− (−1)mzdx|m|−R+2j
. (4.6.12)

Unitary case

Let us consider the unitary case first. The contributions of the chiral fields in this
case are as follows:

• The two N = 2 bifundamental chirals stretched between two U(N) and U(M)
symmetry groups contribute

Z
U(N)×U(M)
Φ ({z,m}, {w,n}, d;x)

=

N∏
i=1

M∏
j=1

Zchir

(
{ziw−1

j ,mi − nj}, d−1;
1

2
;x

)
Zchir

(
{z−1
i wj ,mj −mi}, d−1;

1

2
;x

)
=

=
N∏
i=1

M∏
j=1

[
(ziw

−1
j xR−1d−1)−

1
2

(|mi−nj |)
((−1)mi−njz−1

i wjdx
2−r+|mi−nj |d−1;x2)

((−1)mi−njziw
−1
j d−1xr+|mi−nj |d;x2)

]
.

(4.6.13)

where {z,m} and {w,n} are the fugacities and the corresponding magnetic
fluxes for U(N) and U(M) respectively.

If one of the groups is of the SU(N) type, the fugacities and the corresponding
background fluxes must then be subject to the conditions
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N∏
i=1

zi = 1 ,
N∑
i=1

mi = 0 . (4.6.14)

• The N = 2 adjoint chiral in the N = 4 vector multiplet associated to a U(N)
gauge group contributes

ZU(N)
ϕ ({z,m}, d;x) =

N∏
i,j=1

Zchir

(
{ziz−1

j ,mi −mj}, d2; 1;x
)

(4.6.15)

Orthosymplectic case

In this case, for the sake of simplicity, let us turn off the axial fugacity d = 1.

• For the hypers in the bifundamental of SO(2N + ε)×USp(2M) for ε = 0, 1 we
thus get

Z
SO(2N+ε)×USp(2M)
Φ ({z,m}, {w,n};χ = +1;x) =

=

 M∏
j=1

Zchir

(
{w−1

j ,−nj};
1

2
;x

)
Zchir

(
{wj , nj};

1

2
;x

)ε

×
N∏
i=1

M∏
j=1

Zchir

(
{ziwj ,mi + nj ; }

1

2
;x

)
Zchir

(
{ziw−1

j ,mi − nj};
1

2
;x

)

× Zchir

(
{z−1
i wj ,mi − nj};

1

2
;x

)
Zchir

(
{z−1
i w−1

j ,−mi − nj};
1

2
;x

)
,

(4.6.16)

where, as previously, {z,m} and {w,n} are the fugacities and the corresponding
fluxes for the left node and the right node respectively.

The last expression holds only for χ = +1. The correct contribution for χ = −1
for the even case ε = 0 is obtained by setting zN = 1, z−1

N = −1 and mN = 0.

For the odd case, i.e. when ε = 1, we have instead a compact expression for
generic χ

Z
SO(2N+1)×USp(2M)
Φ ({z,m}, {w,n};χ;x) =

=

M∏
j=1

Zchir

(
{χw−1

j ,−nj};
1

2
;x

)
Zchir

(
{χ−1wj , nj};

1

2
;x

)

×
N∏
i=1

M∏
j=1

Zchir

(
{ziwj ,mi + nj};

1

2
;x

)
Zchir

(
{ziw−1

j ,mi − nj};
1

2
;x

)

× Zchir

(
{z−1
i wj ,mi − nj};

1

2
;x

)
Zchir

(
{z−1
i w−1

j ,−mi − nj};
1

2
;x

)
,

(4.6.17)

• For the adjoint chiral we get instead the following expressions
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ZUSp(2N)
ϕ ({z,m};x) =

×
N∏

i,j=1

Zchir

(
{ziz−1

j ,mi −mj}, d2; 1;x
)

×
N∏
i≤j

Zchir
(
{zizj ,mi +mj}, d2; 1;x

)
Zchir

(
{z−1
i z−1

j ,−mi −mj}, d2; 1;x
)

(4.6.18)

ZSO(2N+ε)
ϕ ({z,m};χ = 1;x) =

×

[
N∏
i=1

Zchir
(
{z−1
i ,−mi}, d2; 1;x

)
Zchir

(
{zi,mi}, d2; 1;x

)]ε

×
N∏
i<j

Zchir
(
{zizj ,mi +mj}, d2; 1;x

)
Zchir

(
{ziz−1

j ,mi −mj}, d2; 1;x
)

× Zchir
(
{z−1
i zj ,−mi +mj}, d2; 1;x

)
Zchir

(
{z−1
i z−1

j ,−mi −mj}, d2; 1;x
)

(4.6.19)

where again the last expression holds only for χ = +1. The correct contribution with
χ = −1 for ε = 0 is obtained by setting zN = 1, z−1

N = −1 and mN = 0.
For ε = 1, we have instead a compact expression for generic χ

ZSO(2N+1)
ϕ ({z,m};χ = 1;x) =

×
N∏
i=1

Zchir
(
{χz−1

i ,−mi}, d2; 1;x
)
Zchir

(
{χ−1zi,mi}, d2; 1;x

)
×

N∏
i<j

Zchir
(
{zizj ,mi +mj}, d2; 1;x

)
Zchir

(
{ziz−1

j ,mi −mj}, d2; 1;x
)

× Zchir
(
{z−1
i zj ,−mi +mj}, d2; 1;x

)
Zchir

(
{z−1
i z−1

j ,−mi −mj}, d2; 1;x
)

(4.6.20)
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Chapter 5

Marginal operators and
supersymmetry enhancement in 3d
S-fold SCFTs

The main goal of this chapter is to investigate through the use of the superconformal
index the operators associated with the N = 2 preserving exactly marginal deforma-
tions1 in a large class of 3d superconformal field theories (SCFTs) with at least N = 3
supersymmetry, known as the 3d S-fold theories [14, 88, 89, 91, 93–97, 154].

Indeed, the space generated by such exactly marginal deformations, also known
as the conformal manifold, has been a long-standing subject of study in QFTs and,
when considering SCFTs, such conformal manifolds have several rich structures. For
example, as demonstrated in [101, 129, 130], conformal manifolds of 4d N = 1 and
3d N = 2 SCFTs can be described by a symplectic quotient of the space of marginal
couplings by the complexified continuous global symmetry group2. Moreover, for 4d
N = 2 SCFTs, as shown by several recent findings e.g. [143, 145, 147], the study
of conformal manifolds has led to a number of intriguing dualities; these include 4d
N = 1 weakly coupled Lagrangian descriptions of several strongly coupled 4d N = 2
SCFTs. These provide solid motivation for studying exactly marginal operators in the
SCFTs and in this chapter we will see lots of examples.

We will start by introducing the T (U(N)) and T [2,12]
[2,12]

(SU(4)) theories, along with
their indices. Then, by gauging the diagonal flavour symmetries of the two, we will
consider the 3d S-fold theories obtained with such building blocks by adding a Chern–
Simons level and fundamental hypermultiplets. The marginal operators are thus stud-
ied by means of the superconformal index.

5.1 Index of T σρ (SU(N)) theories

One of the important by-products of the detailed study of the exactly marginal opera-
tors in S-fold theories is that we can extract the information of the conserved currents,
which include N = 3 flavour currents and N = 3 extra SUSY-currents (see (4.5.108)
and below). As we have seen, from the latter, we can determine whether supersym-
metry gets enhanced at the fixed point, and if so we can also deduce the amount of
supersymmetry of the SCFT. This heavily relies on the superconformal index [3, 4, 32,
33, 71, 117, 122, 126] of the S-fold theory in question, thus in the following sections
we will be interested in the index expressions of such S-fold theories.

1It should be noted that, for any 3d N = 3 SCFT, there is no N = 3 preserving marginal
deformation [58]. This statement also holds for N ≥ 3.

2See also [34] for the conformal manifold of 3d N = 2 Chern–Simons–matter theories.
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Before doing so, however, it is important to better understand the index expres-
sions of theories of the Tσρ (SU(N)) family. The most general quiver diagram for such
theories is depicted in Fig. (3.3.1). Indeed, as we will see later, S-fold theories can be
constructed by some gaugings of this linear theories.

5.1.1 The T (SU(N)) and T (U(N)) theories

We can start by considering Tσρ (SU(N)) for σ = σ = [1N ]. In Fig. (3.3.10) we
already draw the quiver for T (SU(2N + 1)).

The different contributions to the superconformal index are:

• The couples of N = 2 bifundamental chirals forming the N = 4 hypermultiplets
stretched between the U(j) and the U(j + 1) gauge groups, whose contribution
is (4.6.13);

• The adjoint N = 2 chirals, with contributions (4.6.15), and the N = 2 vector
multiplets, with contributions (4.6.2), forming the N = 4 vector multiplets;

• The classical contribution (4.6.1) coming from each topological symmetry.

Putting all together, the index of such a theory reads

IT (SU(N))({(ω1 . . . , ωN ), (ν1, . . . , νN )}, {(µ1 . . . , µN ), (n1, . . . , nN )}, d;x)

=
∑

m
(1)
1 ∈Z

∑
m

(2)
1 ,m

(2)
2 ∈Z

· · ·
∑

m
(N−1)
1 ,...,m

(N−1)
N−1 ∈Z

N−1∏
j=1

1

j!

j∏
k=1

∮
dz

(j)
k

2πiz
(j)
k

ω
m

(j)
k

j

(
z

(j)
k

)νj
×

N−1∏
j=1

Z
U(j)×U(j+1)
Φ ({z(j),m(j)}, {z(j+1),m(j+1)}, d;x) ZU(j)

ϕ ({z(j),m(j)}, d;x)×

Z
U(N−1)×SU(N)
Φ ({z(N−1),m(N−1)}, {µ,n}, d;x)

N∏
j=1

Z
U(j)
V ({z(j),m(j)};x) ,

(5.1.1)

where {(ω1 . . . , ωN ), (ν1, . . . , νN )}, and {(µ1 . . . , µN ), (n1 . . . , nN )} are the fugacities
and the corresponding fluxes for the (enhanced) SU(N) topological simmetries and
the SU(N) flavour symmetries respectively. These, being of the SU(N) type, are
both subject to the conditions (4.6.14).

It is interesting to point out that the index of T (SU(N)) satisfies the following
property

IT (SU(N))({µ,n}, {ω,ν}, d;x)

=
ωn1+···+nN
N (µ1 · · ·µN )νN

µν1+···+νN
N (ω1 · · ·ωN )nN

× IT (SU(N))({ω,ν}, {µ,n}, d−1;x)
(5.1.2)

where, upon imposing the conditions (4.6.14), the prefactor indicated in red is equal
to unity.

The index of the T (U(N)) theory is defined as follows:

IT (U(N))({ω,ν}, {µ,n}, d;x)

= ωn1+···+nN
N (µ1 · · ·µN )νN × IT (SU(N))({ω,ν}, {µ,n}, d;x)

(5.1.3)
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where we do not impose the conditions (4.6.14) in this definition. Since T (U(N)) is
a product of T (SU(N)) and T (U(1)) [85], where T (U(1)) is an almost empty theory
containing only the mixed Chern–Simons term, we regard the blue factor as the index
of the T (U(1)) theory3. It follows from (5.1.2) that the index of T (U(N)) satisfies

IT (U(N))({µ,n}, {ω,ν}, d;x) = IT (U(N))({ω,ν}, {µ,nµ}, d−1;x) . (5.1.4)

Upon setting the background fluxes to zero, ν = n = 0, the indices of T (U(N))
and T (SU(N)) are equal. In the following, we will be interested in the power series
of such indices up to order x2.

It is important to note that both T (SU(N)) and T (U(N)) possess an SU(N)H ×
SU(N)C Higgs and Coulomb branch symmetry whose fugacities are {µ,n} and {ω,ν}
respectively.

5.1.2 The T [2,12]

[2,12] (SU(4)) theory

The T [2,12]
[2,12]

(SU(4)) is a 3d N = 4 SCFT that admits a Lagrangian description in
terms of a linear quiver [85] (see also Fig. (3.3.3))

1 1

1 2

1 1

1 2

X

X̃
L̃ L R R̃

ϕ1 ϕ2

(5.1.5)

The index of this theory can be computed from the quiver description (5.3.91) as

Î(5.3.91)({ω1, ν1}, {ω2, ν2}, {a, na}, {(b1, b2), (nb1 , nb2)}, d;x)

=
∑

m1,m2∈Z

∮
dz1

2πz1

∮
dz2

2πiz2
ωm1

1 zν1
1 ω

m2
1 zν2

2 ×

Z
L,L̃

({z1,m1}, {a, na}, d;x)Z
R,R̃

({z2,m2}, {b,nb}, d;x)×

Z
X,X̃

({z1,m1}, {z2,m2}, d;x)Zϕ1({z1,m1}, d;x)Zϕ2({z2,m2}, d;x) ,

(5.1.6)

where {ω1, ν1}, {ω2, ν2} are the topological fugacities and the corresponding fluxes for
each U(1) gauge group, {z1,m1}, {z2,m2} are gauge fugacities and fluxes for each U(1)
gauge group. The fugacities and the corresponding background fluxes for the U(1)
and U(2) flavour symmetries are denoted by {a, na} and {(b1, b2), (nb1 , nb2)} = {b,nb}
respectively. The fugacity d corresponds to the axial symmetry, as described above.

Looking at Eqs. (4.6.13) and (4.6.15), the contributions of the chiral fields in the
theory are as follows:

3The importance of this contact term for the T (U(N)) theory at the level of the S3
b partition

function was already noticed in [45, (3.26)] and in [7, (4.6)].
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Z
L,L̃

({z1,m1}, {a, na}, d;x) = Z
U(1)×U(1)
Φ ({z1,m1}, {a, na}, d;x)

Z
R,R̃

({z2,m2}, {b,nb}, d;x) = Z
U(1)×U(2)
Φ ({z2,m2}, {(b1, b2), (nb1 , nb2)}, d;x)

Z
X,X̃

({z1,m1}, {z2,m2}, d;x) = Z
U(1)×U(1)
Φ ({z1,m1}, {z2,m2}, d;x)

Zϕ1({z1,m1}, d;x) = ZU(1)
ϕ ({z1,m1}, d;x)

Zϕ2({z2,m2}, d;x) = ZU(1)
ϕ ({z2,m2}, d;x)

(5.1.7)

Setting the background magnetic fluxes to zero, ν1 = ν2 = na = nb1 = nb2 = 0,
and setting d = 1, we obtain the following series expansion of Î(5.3.91) in x:

Î(5.3.91)({ω1, 0}, {ω2, 0}, {a, 0}, {(b1, b2), (0, 0)}, d = 1;x)

= 1 + x

(
b1
b2

+
b2
b1

+ ω1 +
1

ω1
+ 4

)
+ x

3
2

(
a

b1
+
a

b2
+
b1
a

+
b2
a

+ ω1ω2 + ω2 +
1

ω2
+

1

ω1ω2

)
+ x2

(b1ω1

b2
+

b1
b2ω1

+
b2
b1ω1

+
b2ω1

b1

+
b21
b22

+
2b1
b2

+
b22
b21

+
2b2
b1

+ ω2
1 + 2ω1 +

2

ω1
+

1

ω2
1

+ 2
)

+ . . . .

(5.1.8)

Since the T [2,12]
[2,12]

(SU(4)) theory is self-mirror, the Higgs and Coulomb branch sym-

metries are equal, each of which is
(
U(2)×U(1)

U(1)

)
. We shall then rewrite Î(5.3.91) in such

a way that the fugacities and the correponding background fluxes of such symmetries
appear on equal footing. For this purpose, we make the following reparametrisation:

ω1 = w1w
−1
2 , ω2 = w2 , b1 = af1 , b2 = af2

ν1 = nw1 − nw2 , ν2 = nw2 , nb1 = na + nf1 , nb2 = na + nf2 .
(5.1.9)

Let us also define

I(5.3.91)({w,nw}, {f ,nf}, {a, na}, d)

:= Î(5.3.91)({w1w
−1
2 , nw1 − nw2}, {w2, nw2}, {a, na},

{(af1, af2), (na + nf1 , na + nf2)}, d) .

(5.1.10)

The function I(5.3.91) has the following properties:

I(5.3.91)({w,nw}, {f ,nf}, {a, na}, d;x)

= wna1 anw1I(5.3.91)({w,nw}, {f ,nf}, {1, 0}, d;x) .
(5.1.11)

and

I(5.3.91)({w,nw}, {f ,nf}, {a, na}, d;x)

=

(
wna1 anw1

fna1 anf1

)
I(5.3.91)({f ,nf}, {w,nw}, {a, na}, d−1;x) .

(5.1.12)
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If we define

Î(5.3.91)({w,nw}, {f ,nf}, {a, na}, d;x)

:= fna1 anf1 × I(5.3.91)({w,nw}, {f ,nf}, {a, na}, d;x) ,
(5.1.13)

then the identity (5.1.12) implies that the index Î(5.3.91) satisfies the following condi-
tion

Î(5.3.91)({w,nw}, {f ,nf}, {a, na}, d;x) = Î(5.3.91)({f ,nf}, {w,nw}, {a, na}, d−1;x) .

(5.1.14)

Note that the prefactor indicated in blue in (5.1.13) indicates a mixed Chern–
Simons term, similarly to the T (U(N)) theory4.

For simplicity, in the following, we will focus on the case {a, na} = {1, 0} and
define

I(5.3.91)({w,nw}, {f ,nf}, d;x) := Î(5.3.91)({w,nw}, {f ,nf}, {1, 0}, d;x) , (5.1.15)

so that the index satisfies the following property:

I(5.3.91)({w,nw}, {f ,nf}, d;x) = I(5.3.91)({f ,nf}, {w,nw}, d−1;x) . (5.1.16)

The series expansion of I(5.3.91) in x when nw = nf = (0, 0) is as follows:

I(5.3.91)({w,0}, {f ,0}, d;x)

= 1 + x

[
d−2

(
f1

f2
+
f2

f1
+ 2

)
+ d2

(
w2

w1
+
w1

w2
+ 2

)]
+

+ x3/2

[
d−3

(
f1 + f2 +

1

f2
+

1

f1

)
+ d3

(
w1 + w2 +

1

w1
+

1

w2

)]
+ x2

[f1w2

f2w1
+
f1w1

f2w2
+
f2w2

f1w1
+
f2w1

f1w2
+ d−4

(f2
1

f2
2

+
f2

2

f2
1

+
2f1

f2
+

2f2

f1
+ 3
)

+ d4
(w2

1

w2
2

+
w2

2

w2
1

+
2w1

w2
+

2w2

w1
+ 3
)
− 4
]

+ . . . .

(5.1.17)

Setting {a, na} = {1, 0} amounts to modding out the U(1) factor in the numerator
of the symmetry U(2)×U(1)

U(1) by the U(1) in the denominator; the result is then identified
with the U(2) symmetry for the Higgs or the Coulomb branch.

It is convenient to rewrite the index (5.1.17) by setting

w1 = bu , w2 = bu−1 , f1 = qh , f2 = qh−1 (5.1.18)

so that
4The importance of contact terms for the Tσρ [SU(N)] theory at the level of the S3

b partition
function was noticed in [114], see for example equation (2.56) of that reference for the case of σ =
[2, 12] and ρ = [14].
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I(5.3.91)({(bu, bu−1),0}, {(qh, qh−1),0}, d;x)

= 1 + x
[
d2
(

1 + χ
SU(2)
[2] (u)

)
+ d−2

(
1 + χ

SU(2)
[2] (h)

)]
+ x

3
2

[
d3(b+ b−1)χ

SU(2)
[1] (u) + d−3(q + q−1)χ

SU(2)
[1] (h)

]
+ x2

[
d4
(

1 + χ
SU(2)
[2] (u) + χ

SU(2)
[4] (u)

)
+ d−4

(
1 + χ

SU(2)
[2] (h) + χ

SU(2)
[4] (h)

)
+ χ

SU(2)
[2] (u)χ

SU(2)
[2] (h)−

(
χ
SU(2)
[2] (h) + 1

)
−
(
χ
SU(2)
[2] (u) + 1

)
−1
]

+ . . .

(5.1.19)

where the blue terms denote the contribution of the U(2) × U(2) global symmetry
of the theory and the brown term −1 denotes the contribution of the U(1)d axial
symmetry.

5.2 S-Fold theories

Now we have all the elements to discuss S-fold theories, so we start with the so-called
pure S-fold theories.

These theories can be realised through Hanany-Witten construction by consider-
ing D3 branes wrapping a circle with the presence of SL(2,Z) duality walls [13, 85,
102]. These are surfaces passing through which the system undergoes an S-duality
transformation and thus give rise to a local SL(2,Z) action on the worldvolume theory
of D3 branes. The brane setup is depicted in Fig. (5.2.1) where we used a red wiggle
line to denote the S-duality wall.

N D3

S

(5.2.1)

Using the same nomenclature proposed in [14], an S-duality wall is also called
S-fold, or S-flip if we want to stress the absence of Chern–Simons terms.

Elements of SL(2,Z) can be always written as combination of the two S and T
generators (3.2.2); Chern–Simons levels can be turned on considering walls for more
general elements in SL(2,Z), namely:

Jk = −ST k =

(
k 1
−1 0

)
(5.2.2)

For a duality wall associated with such an element Jk of SL(2,Z), the correspond-
ing theory can be described by the gauging of the diagonal U(N) global symmetry
of the T (U(N)) theory [85] with Chern–Simons level k [14, 88, 89, 91, 94, 154]5.
The situation is depicted in Fig. (5.2.3) where we used a red wiggle line to denote

5We emphasise that the S-fold theories considered in [88, 89, 91, 154] were constructed by gauging
the diagonal SU(N) global symmetry of the T (SU(N)) theory. These theories were studied in the
context of 3d-3d correspondence. However, the gauge groups of the theories studied in [14] were
taken to be of the unitary type. Without any further hypermultiplets added to the theory, it was
shown in [97] that the index of these two families of theories are equal. In this work, we take the
gauge groups to be of the unitary type.
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both the duality wall in the brane setup and the T (U(N)) theory with gauged global
symmetries in the quiver diagram.

N D3

Jk

−→ Nk

T (U(N))

(5.2.3)

As a result of this gauging along with the presence of the CS level, the description
possesses N = 3 supersymmetry. However, at the infrared (IR) fixed point, it was
shown that for k ≥ 3 supersymmetry gets enhanced to N = 4 in the case of N = 2
[88, 97] and in the large N limit [14].

This result can be generalised to the S-fold theories associated with multiple dual-
ity walls whose description can be written in terms of a ‘quiver diagram’ with multiple
U(N)ki gauge nodes, possibly with non-zero CS levels, connected by T (U(N)) links
[14].

. . . Nki−1 Nki Nki+1
. . .

T [U(N)] T [U(N)] T [U(N)] T [U(N)]

(5.2.4)

In addition to the pure S-fold theories, we may couple hypermultiplets to U(N)ki
gauge groups in the former. In terms of the brane configuration, this could be viewed
as adding D5 and/or NS5 branes to the aforementioned brane system in the same way
as described in [107] (see also Section (3.1)).

. . . Nki−1 Nki Nki+1
. . .

T [U(N)] T [U(N)] T [U(N)] T [U(N)]

ni−1 ni ni+1

(5.2.5)

The resulting theories were investigated in [14] for vanishing CS levels and in
[97] for general CS levels. Some of the latter were shown to exhibit supersymmetry
enhancement (even up to N = 5) and have interesting dualities that can be regarded
a generalisation of 3d mirror symmetry, discovered in [118]. We shall henceforth refer
to the pure S-fold theories, constructed as described above, and those coupled to
hypermultiplets collectively as S-fold theories with T (U(N)) building block.

As we have seen in the previous section, similarly to the T (U(N)) theory, the
T

[2,12]
[2,12]

(SU(4)) is also self-mirror. Thus, as done with the T (U(N)) theory, we can

form other S-fold theories by gauging the diagonal symmetry G =
(
U(2)×U(1)

U(1)

)
of

T
[2,12]
[2,12]

(SU(4)), possibly with a CS level. As before, we may also couple hypermul-
tiplets to the diagonal symmetry G. In principle, this construction can be applied
to a more general Tρρ (SU(N)) theory. However, due to various technicalities in the
computation, we restrict ourselves to N = 4 and ρ = [2, 12]. We shall henceforth refer
to these theories collectively as S-fold theories with the T [2,12]

[2,12]
(SU(4)) building block.
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As done with the linear quivers, in the following sections we will summarize the
index expressions for such S-fold building blocks.

5.2.1 The T (U(N)) theory as a building block

Let us now commonly gauge the diagonal subgroup of the SU(N)H Higgs and SU(N)C
Coulomb branch symmetries of the T (U(N)) theory and obtain the following theory

Nk

T (U(N))

(5.2.6)

The index of theory (5.2.6) reads

I(5.2.6);k,N ({ω, ν}, d;x) =
∑

m1,m2...,mN∈Z

1

N !

N∏
j=1

∮
dzj

2πizj
ωmjz

kmj+ν
j ×

Z
U(N)
V ({(z1, z2, . . . , zN ), (m1,m2, . . . ,mN )};x)×
IT (U(N))({(z1, z2 . . . , zN ), (m1,m2, . . . ,mN )},

{(z−1
1 , z−1

2 . . . , z−1
N ), (−m1,−m2, . . . ,−mN )}, d;x) ,

(5.2.7)
where now {ω, ν} are the fugacity and the respective flux for the topological symmetry
associated to the newly introduced gauge group U(N). In the following we will turn
off ν by setting ν = 0. Note in the T (U(N)) contribution IT (U(N)) the convention
that, when gauging the Higgs and Coulomb branch symmetries of the T (U(N)) theory,
they come in opposite way zj and z−1

j (also mj and −mj) for j = 1, . . . , N . In the
notation of [14], this corresponds to the U(N)− = diag(U(N) × U(N)†) choice of
gauging the Higgs and Coulomb branch symmetries of T (U(N)). Another choice of
gauging corresponds to the index

Î(5.2.6);k,N ({ω, ν}, d) =
∑

m1,m2...,mN∈Z

1

N !

N∏
j=1

∮
dzj

2πizj
ωmjz

kmj+ν
j ×

Z
U(N)
V ({(z1, z2, . . . , zN ), (m1,m2, . . . ,mN )};x)×
IT (U(N))({(z1, z2 . . . , zN ), (m1,m2, . . . ,mN )},

{(z1, z2 . . . , zN ), (m1,m2, . . . ,mN )}, d;x) ,

(5.2.8)

where in the notation of [14], this choice corresponds to the U(N)+ = diag(U(N) ×
U(N)) type of gauging. It follows from (5.1.3) and from the fact that the index of
T (SU(N)) is invariant under inversion of the SU(N) fugacities because of the Weyl
group of SU(N), that the indices corresponding to these two types of gauging are
related by the flipping of the sign of k together with the sign of the background
topological flux n up to the change of variables zi → z−1

i :

I(5.2.6);k,N ({ω, ν}, d;x) = Î(5.2.6);−k,N ({ω,−ν}, d;x) . (5.2.9)

For definiteness, we use the convention of (5.2.7), namely the U(N)− type of
gauging, throughout the rest of this chapter.

We can add n hypermultiplets in the fundamental representation of U(N) to theory
(5.2.6) and obtain
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Nk n

T (U(N))

(5.2.10)

Since the axial U(1)d symmetry is broken by the presence of such fundamental
hypermultiplets, we set d = 1.

The index of theory (5.2.10) is thus

I(5.2.10);k,N,n(ω; {µ,n}) =
∑

m1,m2...,mN∈Z

1

N !

N∏
j=1

∮
dzj

2πizj
ωmjz

kmj
j ×

Z
U(N)
V ({(z1, z2, . . . , zN ), (m1,m2, . . . ,mN )};x)×
IT (U(N))({(z1, z2 . . . , zN ), (m1,m2, . . . ,mN )},

{(z−1
1 , z−1

2 . . . , z−1
N ), (−m1,−m2, . . . ,−mN )}, d = 1;x)×

Z
U(N)×SU(n)
Φ ({(z1, z2 . . . , zN ), (m1,m2, . . . ,mN )},

{(µ1, µ2, . . . , µn), (n1, n2, . . . , nn)};x) .

(5.2.11)
In the above expression, we turned off the background flux for the topological

symmetry. In the following, we will also set the background flavour magnetic fluxes
to zero, n = 0.

5.2.2 The T [2,12]

[2,12] (SU(4)) theory as a building block

We now consider the following theory

2k

T
[2,12]

[2,12]
(SU(4))

(5.2.12)

formed by gauging the diagonal subgroup of the Higgs and Coulomb branch U(2)

symmetries of T [2,12]
[2,12]

(SU(4)).
Its index reads

I(5.2.12)(k; {ω, ν};x) =
∑

m1,m2∈Z

1

2!

 2∏
j=1

∮
dzj

2πizj
wmjz

kmj+n
j

ZU(2)
V ({(z1, z2), (m1,m2)};x)×

I(5.3.91)({(z1, z2), (m1,m2)}, {(z−1
1 , z−1

2 ), (−m1,−m2)}, d = 1;x) ,

(5.2.13)
where now {ω, ν} are the fugacity and the respective flux for the topological symmetry
and the contribution Z

U(2)
V of the U(2) vector multiplet is given by (4.6.2). In the

following we will turn off ν by setting ν = 0. The axial symmetry U(1)d is broken
and so we set d = 1 in the above expression.

Similarly to the case of T (U(N)), we can couple n flavours of the fundamental
hypermultiplets to the U(2) gauge group of theory (5.2.12). This results in theory

2k n

T
[2,12]

[2,12]
(SU(4))

(5.2.14)

whose index is
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I(5.2.12);k,n(ω; {µ,n};x)

=
∑

m1,m2∈Z

1

2!

 2∏
j=1

∮
dzj

2πizj
ωmjz

kmj
j

ZU(2)
V ({(z1, z2), (m1,m2)};x)×

I(5.3.91)({(z1, z2), (m1,m2)}, {(z−1
1 , z−1

2 ), (−m1,−m2)}, d = 1;x)×

Z
U(2)×SU(n)
Φ ({(z1, z2), (m1,m2)}{(µ1, µ2, . . . , µn), (n1, n2, . . . , nn)};x) .

(5.2.15)

where we turned off the background magnetic flux for the topological symmetry in
the above expression. In the following, we will also set the background fluxes for the
flavour symmetries to zero, n = 0, and use the fugacity map:

µ1 = qh1, µ2 = qh2h
−1
1 , µ3 = qh3h

−1
2 , . . . , µn = qh−1

n−1 , (5.2.16)

where h1, . . . , hn are the fugacities of the SU(n) flavour symmetry and q is the fugacity
for the U(1) flavour symmetry.

5.3 Marginal operators of the S-fold theories

The problem of enumerating all marginal operators in 3d S-fold SCFTs becomes more
complicated as the number of the operators with R-charges up to 2 increases. This
is partly due to the fact that not all gauge invariant quantities that one can possibly
write down are independent from each other. They may be subject to various relations.
Some of these relations can actually be derived from the effective superpotential of
the theory. However, as we shall see in the subsequent sections, several S-fold theories
contain gauge invariant monopole operators and dressed monopole operators in the
spectrum, whose existence is indicated by the index. There can also be relations
between these operators that cannot be obtained from the effective superpotential. In
this case, we conjecture the form of such relations based on the index and in analogue
of those known in other 3d N = 4 gauge theories presented in Appendix (B). In
this regard, the S-fold theories with the T [2,12]

[2,12]
(SU(4)) building block are much more

complicated than those with the T (U(N)) building block. In this work, we thus only
present preliminary results for the former theories.

5.3.1 S-fold theories with the T (U(N)) building block

In this section, we consider S-folds theories whose building block is the T (U(N))
theory. Several aspects of a number of such theories with N = 2 were studied in [97].
We will focus on the cases of N = 2 and N = 3 (except in subsection (5.3.1) where
we discuss only the case of N = 2) and analyse the operators with R-charge up to
two in detail.

The T (U(N)) theory

We briefly discuss some important aspects of the T (U(N)) theory in Section (5.1.1).
The indices for N = 2, 3 can be obtained from (5.1.3) and the explicit result is as
follows:
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N = 2 : 1 + x
(
d2χ

SU(2)
[2] (ω) + d−2χ

SU(2)
[2] (µ)

)
+ x2

[
d4χ

SU(2)
[4] (ω) + d−4χ

SU(2)
[4] (µ)

−
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)
−1
]

+ . . .

N ≥ 3 : 1 + x
(
d2χ

SU(N)
[1,0,...,0,1](ω) + d−2χ

SU(N)
[1,0,...,0,1](µ)

)
+ x2

[
d4χ

SU(N)
[2,0,...,0,2](ω)

+ d4χ
SU(N)
[0,1,0,...,0,1,0](ω) + d4χ

SU(N)
[1,0,...,0,1](ω) + (d→ d−1,ω → µ)

+ χ
SU(N)
[1,0,...,0,1](ω)χ

SU(N)
[1,0,...,0,1](f)

−
(
χ
SU(N)
[1,0,...,0,1](ω) + χ

SU(N)
[1,0,...,0,1](µ)

)
−1
]

+ . . .

(5.3.1)
where the term −1 highlighted in brown is the contribution of the axial U(1)d sym-
metry.

Since we shall make extensive use of N = 3 supersymmetry in subsequent dis-
cussion, it is instructive to view the result from the perspective of the N = 3 index,
where d is set to unity. The terms at order x are the contribution of the N = 3
SU(N)× SU(N) flavour currents and these terms appear again as negative terms at
order x2 and the term −1 highlighted in brown is the contribution of the N = 3 extra
SUSY-current (see (4.5.108) and below). This is as expected since the theory has
N = 4 supersymmetry. We also point out the absence of the term χ

SU(2)
[2] (ω)χ

SU(2)
[2] (µ)

at order x2 for N = 2.
The operators with R-charge 1 are the Higgs and Coulomb branch moment maps

of T (U(N)):

(µH)ij , (µC)i
′
j′ . (5.3.2)

They are subject to the nilpotent conditions (see [85, below (3.6)] and (2.2.76)):

µNH = µNC = 0 . (5.3.3)

These imply that all eigenvalues of µH and µC are zero and so

tr(µpH) = tr(µpC) = 0 , 1 ≤ p ≤ N . (5.3.4)

There are two types of marginal operators, namely the pure Higgs or Coulomb
branch operators and the mixed branch operators. The pure Higgs or Coulomb branch
marginal operators transform in a subrepresentation of

Sym2[1, 0, . . . , 0, 1] = [2, 0, . . . , 0, 2] + [1, 0, . . . , 0, 1]

+ [0, 1, 0, . . . , 0, 1, 0] + [0, . . . , 0]
(5.3.5)

of each SU(N). Such operators are

(µH)ij(µH)kl , (µC)i
′
j′(µC)k

′
l′ (5.3.6)

Since tr(µ2
H) = tr(µ2

C) = 0, the singlet [0, . . . , 0] in (5.3.5) vanishes. Thus, each
of these operators transform under the representation [2, 0, . . . , 0, 2] + [1, 0, . . . , 0, 1] +
[0, 1, 0, . . . , 0, 1, 0] of each SU(N) for N ≥ 36. For N = 2, we have stronger conditions,

6For N = 3, such a representation reduces to [2, 2] + [1, 1].
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namely µ2
H = µ2

C = 0, and so each operator in (5.3.6) transforms under [4] of each
SU(2).

Next, we consider the marginal mixed branch operators. In the case of N = 2, we
have

(µH)ij(µC)i
′
j′ = 0 , for N = 2 (5.3.7)

for the following reason. The F -terms with respect to the chiral multiplets Q and Q̃
give Qiϕ = 0 and Q̃iϕ = 0, and so (µH)ijϕ = QiQ̃jϕ = 0. Since (V+, ϕ, V−) transform
in a triplet of an unbroken SU(2) global symmetry, we have (µH)ijV± = 0 and so

(µH)ij(µC)i
′
j′ = 0. This explains the absence of the term χ

SU(2)
[2] (ω)χ

SU(2)
[2] (µ) at order

x2 in the index (5.3.1) for N = 2. Note, however, that for N ≥ 3 the operators

(µH)ij(µC)i
′
j′ (5.3.8)

do not vanish.

U(1)k−2 gauge theory

In this section, we briefly review S-fold theories with the T (U(1)) building block.
Although it turns out that these theories are simply ordinary 3d N = 3 Chern–
Simons matter theories7, they are useful for comparing and contrasting with those
constructed using the T (U(N)) theory with N > 1.

The T (U(1)) theory is an almost trivial theory with a recipe for coupling external
abelian vector multiplets containing gauge fields A1 and A2 [85]. Such a coupling is
the supersymmetric completion of the following Chern–Simons term:

− 1

2π

∫
A1 ∧ dA2 . (5.3.9)

In building an S-fold theory starting from T (U(1)), when commonly gauging the
U(1) × U(1) symmetry into U(1)k, the term (5.3.9) automatically gives rise to a
Chern–Simons level −2. After combining with the Chern–Simons level k, we see that
the S-fold theory in question is nothing but the U(1)k−2 gauge theory.

From the perspective of the index, the mixed Chern–Simons term in T (U(N)) con-
tributes ωn1+···+nN

N (µ1 · · ·µN )νN , where, as in Section (5.1.1), {ω,ν} are the U(N)
topological fugacities and the associated background fluxes and {µ,n} are the U(N)
flavour fugacities and the associated background fluxes. When both U(N) are com-
monly gauged, we set µi = zi, ωi = z−1

i , ni = mi, νi = −mi, for i = 1, . . . , N , where
zi are the gauge fugacities and mi are the corresponding gauge fluxes. This results in
(z1 · · · zN )−mN z−m1−...−mN

N . In the case of N = 1, this is simply z−2m1
1 , which is the

contribution of the U(1) gauge group with Chern–Simons level −2. Together with the
term zkm1

1 due to Chern–Simons level k of the U(1) gauge group, we have z(k−2)m1

1 ,
which is the contribution of the U(1) gauge group with Chern–Simons level k − 2, as
expected.

The superpotential for the 3d N = 3 U(1)k−2 pure gauge theory is

W = −k − 2

4π
ϕ2 . (5.3.10)

7In fact, the pure S-fold theories (i.e. those without hypermultiplet matter) of this type were
considered in [93, 94]. These are simply pure abelian Chern–Simons theories with several U(1) gauge
groups, with mixed Chern–Simons couplings between them.
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For k 6= 2, ϕ can be integrated out, and we are left with a topological field theory.
For k = 2, we have the theory of a free N = 4 abelian vector multiplet.

We can also couple n flavours of hypermultiplets to this theory and obtain the 3d
N = 3 U(1)k−2 gauge theory with n flavours, whose superpotential is

W = −k − 2

4π
ϕ2 + Q̃iϕQi , (5.3.11)

with i = 1, . . . , n. Note that, for k = 2, this is in fact the 3d N = 4 U(1) gauge theory
with n flavours.

The case of n ≥ 3 flavours

Let us focus on the case of n ≥ 3 flavours for the moment. The index of this theory,
for n ≥ 3, is

k = 2 : 1 + x
(

1 + χ
SU(n)
[1,0,...,0,1](µ)

)
+ x2

[
χ
SU(n)
[2,0,...,0,2](µ)−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+ . . .+ (ω + ω−1)x

n
2 + . . .

k 6= 2 : 1 + x
(

1 + χ
SU(n)
[1,0,...,0,1](µ)

)
+ x2

[
χ
SU(n)
[2,0,...,0,2](µ)−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+ . . .

(5.3.12)

We remark that the crucial difference between the cases of k = 2 and k 6= 2 are
the terms (ω+ω−1)x

n
2 due to the presence of the gauge invariant monopole operators

X± with R-charge n
2 . For n = 3, 4, these monopole operators contribute with the

terms at order x
3
2 and x2 respectively. For n ≥ 5, the index up to order x2 of these

cases are equal. Despite this equality, we emphasise that the operators in the cases of
k = 2 and k 6= 2 are different. We will shortly describe these in detail.

For k = 2, the term tr(ϕ2) in (5.3.11) is absent and the F -terms are

Q̃iϕ = 0 , ϕQi = 0 , Q̃iQi = 0 . (5.3.13)

Due to the last equality, the mesons M i
j = Q̃iQj satisfy

M i
i = 0 , (M2)ij = M i

kM
k
j = 0 . (5.3.14)

Moreover, we have

ϕM i
j = 0 . (5.3.15)

The operators with R-charge 1 are

ϕ , M i
j (5.3.16)
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contributing 1 + χ
SU(n)
[1,0,...,0,1](µ) at order x. The operators at order x2 that contribute

χ
SU(n)
[2,0,...,0,2](µ) are

M i
jM

k
l (5.3.17)

satisfying (5.3.14). There is, however, another marginal operator, namely

ϕ2 . (5.3.18)

The order x2 of the index in the first line of (5.3.12) should be rewritten as

. . .+ x2
[
1 + χ

SU(n)
[2,0,...,0,2](µ)−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)
−1
]

+ . . . (5.3.19)

where the contribution from the N = 3 extra SUSY-current is highlighted in brown8.
Due to the presence of this current, the corresponding IR SCFT has N = 4 super-
symmetry, as expected.

Let us now assume that k 6= 2. The F -terms are

ϕQi = 0 , Q̃iϕ = 0 , ϕ =
2π

k − 2
Q̃iQi . (5.3.20)

The meson matrix M i
j = Q̃iQj thus satisfies the conditions

ϕM i
j = 0 , ϕ =

2π

k − 2
M i
i . (5.3.21)

Note that ϕ can be integrated out using the last equality, after which the effective
superpotential is

Weff =
π

k − 2
(Q̃iQi)

2 =
π

k − 2
(M i

i )
2 . (5.3.22)

MultiplyingM j
k to both sides of the second equation of (5.3.21) and using the first

equation of (5.3.21), we obtain

(M i
i )M

j
k = 0 . (5.3.23)

Contracting the indices j and k, we see that M i
i is nilpotent:

(M i
i )

2 = 0 . (5.3.24)

The operators with R-charge 1 are
8From the perspective of the N = 2 index, this −1 can be viewed as the contribution of the axial

symmetry, denoted by U(1)d in the main text, under which ϕ carries charge +2 and each of Qi, Q̃j

carries charge −1. Note that this symmetry is broken when k 6= 2.
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M i
i , M̂ i

j := M i
j −

1

n
(Mk

k )δij . (5.3.25)

Using the identity

(M̂2)ij = (M2)ij −
2

n
(Mk

k )M i
j +

1

n2
(Mk

k )2δij , (5.3.26)

and the conditions (5.3.23) and (5.3.24), we obtain

(M̂2)ij = (M2)ij = Q̃iQkQ̃
kQj = (Mk

k )M i
j

(5.3.23)
= 0 . (5.3.27)

Thus, the marginal operators are

M̂ i
j M̂

k
l (5.3.28)

satisfying (5.3.27). These contribute the term χ
SU(n)
[2,0,...,0,2](µ) at order x2 in the index.

In this case, we do not see the presence of an extra SUSY-current. The corresponding
IR SCFT thus has N = 3 supersymmetry.

The case of n = 2 flavours

The case of k = 2 is simply the 3d N = 4 U(1) gauge theory with 2 flavours or the
T (SU(2)) theory, whose index is

1 + x
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)
+ x2

[(
χ
SU(2)
[4] (ω) + χ

SU(2)
[4] (µ)

−
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)
−1
]

+ . . . ,
(5.3.29)

where we redefined the topological fugacity ω to be ω2. The operators with R-charge
1 are M i

j , satisfying (5.3.14), together with

C =

(
ϕ X+

X− −ϕ

)
, (5.3.30)

satisfying (C2)i
′
j′ = Ci

′
k′C

k′
j′ = 0. Due to (5.3.15), we also have

Ci
′
j′M

i
j = 0 . (5.3.31)

The marginal operators are

Ci
′
j′C

k′
l′ , M i

jM
k
l . (5.3.32)

The contribution of the N = 3 extra SUSY-current is highlighted above in brown.
The index for the case of k 6= 2 is simply (5.3.12) with n = 2:
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1 + x
(

1 + χ
SU(2)
[2] (µ)

)
+ x2

[
χ
SU(2)
[4] (µ)−

(
1 + χ

SU(2)
[2] (µ)

)]
. (5.3.33)

The operators with R-charges up to 2 are as described previously.

The case of n = 1 flavour

For k = 2, we have the 3d N = 4 U(1) gauge theory with 1 flavour, which flows to
the theory of a free hypermultiplet.

For k 6= 2, the operator with R-charge 1 is M , satisfying M2 = 0 due to (5.3.24).
There is no marginal operator in this case. The indices are

k 6= 1, 2, 3 : 1 + 1x−1x2 + 2x3 + . . .

k = 1 : 1 + 1x+ (−1−ωq−1 − ω−1q)x2 + (2 + ωq−1 + ω−1q)x3 + . . .

k = 3 : 1 + 1x+ (−1−ωq − ω−1q−1)x2 + (2 + ωq + ω−1q−1)x3 + . . .

(5.3.34)

where we redefined the µ1 flavour fugacity as q to highlight its U(1) nature.
For k 6= 1, 2, 3, we don’t see the presence of an extra SUSY-current, and so we

conclude that the theory has N = 3 supersymmetry. On the other hand, for k = 1, 3,
where the theory is simply the U(1)±1 gauge theory with 1 flavours, we found two
N = 3 extra SUSY-currents, and so we conclude that the theory has enhanced N = 5
supersymmetry, as proposed in [97]. From the perspective of the N = 2 index, the
negative terms at order x2 correspond to the conserved current, which indicates that
the theory has an SU(2) ∼= Spin(3) global symmetry. This is a commutant of the
Spin(2) R-symmetry of N = 2 supersymmetry in the Spin(5) R-symmetry of N = 5
supersymmetry.

U(N)k gauge group and zero flavour

In the following discussion in this paragraph, we assume that N ≥ 2 and k 6= 0. The
superpotential is (see also [86] and [88, (31)])

W = − k

4π
tr(ϕ2) + tr ((µC + µH)ϕ) , (5.3.35)

where µH and µC are the Higgs and Coulomb branch moment maps of T (U(N)). For
k 6= 0, we can integrate out ϕ using the F -terms with respect to ϕ:

ϕab =
2π

k
(µH + µC)ab . (5.3.36)

Using (5.3.4), we obtain the effective superpotential

Weff =
2π

k
tr(µCµH) . (5.3.37)

Since µC and µH carry the axial U(1)d charges +2 and−2 respectively, the effective
superpotential preserves the axial symmetry U(1)d in this case. This observation was
actually pointed out in [88]. In fact, from the perspective of N = 3 supersymmetry,
the U(1)d symmetry plays a role as the extra SUSY-current. Indeed, U(1)d commutes
with the N = 3 R-symmetry Spin(3); the former combines with the latter to become
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Spin(4) R-symmetry of the enhanced N = 4 supersymmetry. We shall also see this
from the perspective of the index, which is given by (5.2.7).

Let us consider the case of |k| ≥ 3. The indices for N = 2 are as follows:

N = 2, |k| = 3 : 1 + 0x− 2x2 + 2(d2 + d−2)x3 + . . . .

N = 2, |k| ≥ 4 : 1 + 0x− x2 + (d2 + d−2)x3 + . . . .
(5.3.38)

The case of |k| = 3 was studied in [88], where it was pointed out that the theory
in the IR is a product to two copies of the N = 4 SCFTs described by 3d N = 2
U(1) gauge theory with CS level −3/2 and one chiral multiplet with charge +1, whose
supersymmetry gets enhanced to N = 4 in the IR. The indices for the cases of |k| ≥ 4
were studied in [97], where it was pointed out that supersymmetry gets enhanced to
N = 4 in the IR. For N = 3, the indices for |k| ≥ 3 read

N = 3, |k| ≥ 3 : 1 + 0x+ 0x2 − 2x3 + . . . . (5.3.39)

The operators up to R-charge 2 are as follows. Since trµH = trµC = 0, there is
no operator with R-charge 1. The N = 3 flavour symmetry of this theory therefore is
empty. Let us now discuss about the marginal operators. From (5.3.4), we have

tr(µ2
H) = tr(µ2

C) = (trµH)2 = (trµC)2 = 0 . (5.3.40)

Furthermore, for N = 2, we also have tr(µHµC) = 0 due to the relation (5.3.7);
thus the theory with N = 2 and |k| ≥ 3 has no marginal operator. In this case,
we are able to see clearly the contribution of the extra SUSY current at order x2

of the indices (5.3.38), since there is no cancellation between the contribution of the
conserved currents and that of the marginal operators. For N = 2 and |k| ≥ 4, from
the perspective of the N = 2 index −x2 is the contribution of the U(1)d symmetry,
whereas from the perspective of the N = 3 index this is the contribution of the extra
SUSY-current. Indeed, we conclude that N = 3 supersymmetry gets enhanced to
N = 4 for N = 2 and |k| ≥ 4 [97]. For N = 2 and |k| = 3, there are two extra SUSY
conserved currents and this is due to the fact that the theory flows to a product of
two N = 4 SCFTs9 [88].

For N = 3, on the other hand, there is precisely one marginal operator, namely
tr(µHµC), which cancels the contribution of the U(1)d symmetry in the index; this
explains the term (1− 1)x2 = 0x2 in (5.3.39). Again, we identify the U(1)d conserved
current with the N = 3 extra SUSY conserved current. We thus conclude that super-
symmetry also gets enhanced to N = 4 for all |k| ≥ 3. Although we demonstrated

9For N = 2 and |k| ≥ 3, there is no relevant, no marginal and no operator with R-charge 3, since
tr(µ3

H,C) = tr(µ2
HµC) = tr(µHµ

2
C) = 0, etc. It is thus simple to consider the contribution of the

conserved currents at order x3 of index (5.3.38) with d = 1. From Table (4.5.107) and the remark
below, we see that each of the N = 3 extra SUSY-current multiplet A2[0]

(0)
1 and the N = 3 stress

tensor multiplet A1[1]
(0)

3/2 contributes +x3 to (1 − x2)(index − 1). For N = 2 and |k| = 3, we have
(1 − x2)(index − 1) = −2x2 + 4x3 + . . .; the term +4x3 is indeed in agreement with the claim that
there are two N = 3 extra SUSY-currents and two N = 3 stress tensors, since the theory is the
product of two N = 4 SCFTs. For N = 2 and |k| ≥ 4, we have (1−x2)(index−1) = −x2 + 2x3 + . . .;
the term +2x3 is indeed in agreement with the claim that there are one N = 3 extra SUSY-current
and one N = 3 stress tensor. Unfortunately, when there are relevant and marginal operators in the
theory, the analysis of the index at order xp, with p ≥ 3, becomes very complicated. In the rest of
the section, we focus only on the operators with R-charges up to 2.
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this explicitly for N = 2 and N = 3, we conjecture that this statement holds for all
N ≥ 2.

For |k| = 2, we find that the index of the theory diverges and the theory is ‘bad’
in the sense of [85]. In fact, as we shall discuss in more detail in the next subsection,
when n flavours of fundamental hypermultiplets are coupled to the theory with k = 2,
there are gauge invariant monopole operators with R-charge n/2. In the special case
of n = 0, these monopole operators with R-charge 0 render the theory ‘bad’.

For |k| = 1 and k = 0, we find that the index is equal to unity, and it is expected
that the theory flows to a topological theory or an empty theory.

U(N)k gauge group with k 6= 0 and n ≥ 1 flavours

We propose that the superpotential for theory (5.2.10) is

W = − k

4π
tr(ϕ2) + tr ((µC + µH)ϕ) + Q̃ibϕ

b
aQ

a
i

= − k

4π
tr(ϕ2) + tr ((µC + µH + µQ)ϕ) ,

(5.3.41)

where we define

M i
j := Q̃iaQ

a
i , (µQ)ab = Q̃ibQ

a
i (5.3.42)

so that we have
M i
i = trµQ . (5.3.43)

The following relations follow respectively from the F -terms with respect to Q̃bi ,
Qia and ϕ:

ϕabQ
i
a = 0 , ϕab Q̃

b
i = 0 , ϕab =

2π

k
(µH + µC + µQ)ab , (5.3.44)

We discuss the consequences of these F -term on gauge invariant quantities in
Appendix (C).

Using the last equality, we can integrate out ϕ and obtain the effective superpo-
tential

Weff =
π

k
tr (µC + µH + µQ)2 . (5.3.45)

From this effective superpotential, the F -terms with respect to Q̃bi , Q
i
a are

(trµQ)Qib = 0 , (trµQ)Q̃ai = 0 . (5.3.46)

These imply that

(trµQ)µQ = 0 , (trµQ)2 = 0 . (5.3.47)

Let us define

M̂ i
j = M i

j −
1

n
(Mk

k )δij = M i
j −

1

n
(trµQ)δij . (5.3.48)
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From (C.0.10) and (5.3.47), we obtain

(M̂2)ij = −(µH + µC)baQ̃
i
bQ

a
j −

2

n
M̂ i
j(trµQ)

(M̂2)ii = − tr [(µH + µC)µQ] .

(5.3.49)

Apart from the gauge invariant quantities discussed above, there could possibly
be gauge invariant monopole operators for some special values of k. Subsequently, we
perform case by case analyses, with the aid of the index.

The case of |k| ≥ 3, with n ≥ 1 flavours

For |k| ≥ 3, with n ≥ 1, the indices can be computed from (5.2.11) and the results
are as follows.

n ≥ 3 : 1 + x
(

1 + χ
SU(n)
[1,0,...,0,1](µ)

)
+ x2

[
χ
SU(n)
[2,0,...,0,2](µ) + χ

SU(n)
[0,1,0,...,0,1,0](µ)+

+ 3χ
SU(n)
[1,0,...,0,1](µ) + s−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+ . . . ,

n = 2 : 1 + x
(

1 + χ
SU(2)
[2] (µ)

)
+ x2

[
χ
SU(2)
[4] (µ) + 2χ

SU(2)
[2] (µ) + s

−
(

1 + χ
SU(2)
[2] (µ)

)]
+ . . . ,

n = 1 : 1 + 1x+ (s′−1)x2 + . . .

(5.3.50)

where

s =

{
2 N = 2

3 N = 3
s′ =

{
1 N = 2

2 N = 3
(5.3.51)

Let us now analyse the operators with R-charge up to 2 for n ≥ 2. The operators
with R-charge 1 are

Mk
k = trµQ , M̂ i

j (5.3.52)

and so the flavour symmetry of the theory is U(1)× SU(n).
The marginal operators are as follows. For n ≥ 3, the marginal operators con-

tributing 3χ
SU(n)
[1,0,...,0,1](µ) to the index (5.3.50) are

M̂ i
j(trµQ) = M̂ i

j(M
k
k ) , (AH)ij , (AC)ij , (5.3.53)

where we define (AH)ij and (AC)ij as in (C.0.13):

(AH)ij := (µH)ab Q̃
i
aQ

b
j −

1

n
tr(µHµQ)δij ,

(AC)ij := (µC)ab Q̃
i
aQ

b
j −

1

n
tr(µCµQ)δij .

(5.3.54)

However, for n = 2, we have an extra relation, namely (C.0.15):

(AH)ij + (AC)ij = −M̂ i
j(trµQ) = −M̂ i

j(M
k
k ) , for n = 2 . (5.3.55)
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and so there are only two independent quantities of this type. The marginal operators
that contribute to the term χ

SU(n)
[0,1,0,...,0,1,0](µ) are

εi1i2...inεj1j2...jnM̂
j1
i1
M̂ j2
i2
. (5.3.56)

Those that contribute to the term χ
SU(n)
[2,0,...,0,2](µ) are

Rikjl (5.3.57)

which is a linear combination M̂ i
jM̂

k
l and other quantities such that any contraction

between an upper index and a lower index yields zero; for example, for n = 2, where
M̂2 satisfies (C.0.9), the marginal operators in the representation [4]µ are

Rikjl := M̂ i
jM̂

k
l +

1

6
(M̂2)ppδ

i
jδ
k
l −

1

3
(M̂2)ppδ

i
lδ
k
j , for n = 2 . (5.3.58)

The marginal operators in the singlet of SU(n) are

tr(µQµH) = (µH)ab Q̃
i
aQ

b
i , tr(µQµC) = (µC)ab Q̃

i
aQ

b
i , tr(µHµC) . (5.3.59)

Thus, there are 3 independent quantities of this type for N ≥ 3, but for N = 2
we have tr(µHµC) = 0 due to (5.3.7) and so we have only 2 independent quantities of
this type. Explicitly, the order x2 of the indices in (5.3.50) for n ≥ 2 can be written
as

N = 2 : . . .+ x2
[
. . .+ 2−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+ . . .

N = 3 : . . .+ x2
[
. . .+ 3−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+ . . .

(5.3.60)

We do not see the presence of an extra SUSY-current. We thus conclude that,
for n ≥ 2, the theory has N = 3 supersymmetry. Although we have shown this
explicitly for the cases of N = 2 and N = 3, we conjecture that this statement holds
for any N ≥ 2. We point out that, in the above analysis, there is also a symmetry
that exchange the quantities with subscripts H and C. We shall shortly see that this
symmetry is not present, for example, in the case of k = 2 and n = 2.

The above analysis also applies for n = 1 with the following extra conditions:

M̂ = AH = AC = 0 . (5.3.61)

Moreover, due to (5.3.47), M is a nilpotent operator satisfying

M2 = 0 . (5.3.62)

It then follows from (5.3.49) that

tr(µHµQ) = − tr(µCµQ) (5.3.63)

The operator with R-charge 1 is
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M = trµQ . (5.3.64)

The N = 3 flavour symmetry of the theory is therefore U(1). For N = 2, there
is one marginal operator, given by (5.3.63), contributing +1x2 to the index. For
N = 3, in addition to (5.3.63), there is another marginal operator tr(µHµC); these
two marginal operators contribute +2x2 to the index. We do not see the presence
of an extra SUSY-current for both N = 2 and N = 3. Thus, we conclude that the
theory has N = 3 supersymmetry.

The case of k = 2 and n ≥ 2 flavours

For k = 2, there are gauge invariant monopole operators with fluxes (±1, 0, . . . , 0),
denoted by X± := X(±1,0,...,0), carrying R-charge n/2 and topological fugacity ω±1.
These operators contribute contribute with the terms (ω+ω−1)x

n
2 to the index. The

presence of these operators is analogous to the T (U(1)) case presented in Section
(5.3.1), where the mixed CS term of T (U(1)) after self-gluing cancels with the bare
CS level k = 2.

For n ≥ 5, the index up to order x2 is the same as the case of |k| ≥ 3 and n ≥ 3
in (5.3.50), and so we expect that the operators up to R-charge 2 are as described
in (5.3.52)–(5.3.59). For n = 4, there are additional terms (ω + ω−1)x2 to the first
two lines of (5.3.50), and so the monopole operators X± contribute as the additional
marginal operators to those described above. For n = 3, there are additional terms
(ω + ω−1)x

3
2 to the first two lines of (5.3.50), and so X± contribute as the addition

operators with R-charge 3/2 to those describe above.

The case of k = 2 and n = 2 flavours

Let us now analyse in detail the case of k = 2 and n = 2. From (5.2.11), the indices
for N = 2 and N = 3 read

1 + x
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)
+ x2

[(
2χ

SU(2)
[4] (ω) + χ

SU(2)
[4] (µ)

+ χ
SU(2)
[2] (ω)χ

SU(2)
[2] (µ) + χ

SU(2)
[2] (µ) + s′

)
−
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)]
+ . . . ,

(5.3.65)

where we redefined the topological fugacity ω as ω2, we highlighted the contribution
of the N = 3 flavour symmetry in blue and

s′ =

{
1 N = 2 ,

2 N = 3 .
(5.3.66)

Note that the index for N = 2 was computed in (4.25) of [97]. Let us discuss
about the operators with R-charge up to 2. The operators with R-charge 1 are

[2]ω : X+ , Mk
k = trµQ , X−

[2]f : M̂ i
j

(5.3.67)

and so the N = 3 flavour symmetry is SU(2)× SU(2).
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Let us now discuss the marginal operators, corresponding to order x2 in the index.
The character 2χ

SU(2)
[4] (ω) contains the terms 2ω±4. These imply that there are two

pairs of marginal operators such that each pair carries topological charges ±2. One
of such pairs is X2

± and we propose that the other pair consists of the monopole
operators with fluxes ±(1, 1, 0, . . . , 0), denoted by X++ := X(1,1,0,...,0) and X−− :=
X(−1,−1,0,...,0), each carrying R-charge 2. This proposal is analogous to (B.1.10) of the
3d N = 4 U(2) gauge theory with one adjoint and one fundamental hypermultiplet.
Moreover, the character 2χ

SU(2)
[4] (ω) at order x2 in the index contains the terms 2ω±2.

These imply the existence of two pairs of marginal operators such that each pair
carries topological charges ±1. One pair can be immediately identified with X±(Mk

k )
and we propose that the other pair corresponds to the ‘dressed monopole operators’
X±;(0,1), defined in a similar way to (B.2.5) (see [64]):

X(±1,0);(r,s) = (±1, 0)mr
1m

s
2 + (0,±1)mr

2m
s
1 , (5.3.68)

where µQ is diagonalised as diag(m1,m2)10. This proposal is analogous to (B.2.4) of
the 3d N = 4 U(2) gauge theory with 4 flavours. In summary, the marginal operators
that correspond to the terms 2χ

SU(2)
[4] (ω) + χ

SU(2)
[2] (ω)χ

SU(2)
[2] (µ) are

[4]ω : X2
+ , X+(Mk

k ) , X+X− , X−(Mk
k ) , X2

−
[4]ω : X++ , X+;(0,1) , (M̂2)ii X−;(0,1) , X−−
[2]ω[2]f : X+M̂

i
j M̂ i

j(M
k
k ) X−M̂

i
j

(5.3.69)
The marginal operators that correspond to χSU(2)

[4] (µ) are given in (5.3.58). Noting
the relation (C.0.15), we see that the marginal operators corresponding to the term
χ
SU(2)
[2] (µ) can be taken to be either (AH)ij or (AC)ij . Picking any of these choices

necessarily breaks the symmetry that exchanges H and C.
Now let us consider the marginal operators that transform as singlets under SU(n).

Taking into account of (5.3.49), we can take two of out of three of (M̂2)ii, tr(µQµH)

and tr(µQµC) to be independent operators, but since (M̂2)ii has already been listed
above, we are left with either tr(µQµH) or tr(µQµC). Hence, for N ≥ 3, we see that
the marginal operators in the singlet of SU(n) are similar to (5.3.59), namely

either tr(µQµH) or tr(µQµC) , tr(µHµC) , (5.3.70)

and so there are two operators of this type in this case. For N = 2, tr(µHµC) = 0 due
to (5.3.7) and so we have one operators of this type, namely tr(µQµH) or tr(µQµC).
We can rewrite the indices for N = 2 and N = 3 as

N = 2 : . . .+ x2
[
. . .+ 1−

(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)]
+ . . .

N = 3 : . . .+ x2
[
. . .+ 2−

(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (µ)

)]
+ . . .

(5.3.71)

Again we do not see the presence of the extra SUSY-current. We thus conclude
that the theory has N = 3 supersymmetry. Although we have shown this explicitly
for the cases of N = 2 and N = 3, we conjecture that this statement holds for any
N ≥ 2.

10We dress the bare monopole operators with the components of µQ instead of those of ϕ, because
for k 6= 0 we have integrated out ϕ but µQ remains massless.
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The case of k = 2 and n = 1 flavour

Here we focus only on the case of N = 2 and postpone the discussion of N = 3 to
future work. This is due to the complication of the computation of the index in the
latter case. For k = 2 and n = 1, the index for N = 2 can be computed from (5.2.11)
and the result is (see also [97, (4.20)]):

1 + x
1
2

(
ω +

1

ω

)
+ x

(
2ω2 +

2

ω2
+ 2

)
+ x

3
2

(
2ω3 +

2

ω3
+ 2ω +

2

ω

)
+ x2

(
3ω4 +

3

ω4
+ 2ω2 +

2

ω2
+ 1

)
+ . . .

= 1 + x
1
2χ

SU(2)
[1] (ω) + 2xχ

SU(2)
[2] (ω) + x

3
2

[
2χ

SU(2)
[3] (ω) + χ

SU(2)
[1] (ω)− χSU(2)

[1] (ω)
]

+ x2
[
3χ

SU(2)
[4] (ω) + χ

SU(2)
[2] (ω)− 2χ

SU(2)
[2] (ω)−1

]
+ . . .

= Ifree(x;ω)×
[
1 + xχ

SU(2)
[2] (ω) + x2

(
χ
SU(2)
[4] (ω)− χSU(2)

[2] (ω)−1
)

+ . . .
]

(5.3.72)

where the monopole operators X± with fluxes (±1, 0, . . . , 0) have R-charge 1/2 and
decouple as a free hypermultiplet, which contribute to the index as

Ifree(x;ω) =
(x2− 1

2ω;x2)∞

(x
1
2ω−1;x2)∞

(x2− 1
2ω−1;x2)∞

(x
1
2ω;x2)∞

= 1 + χ
SU(2)
[1] (ω)x

1
2 + χ

SU(2)
[2] (ω)x+

[
χ
SU(2)
[3] (ω)

− χSU(2)
[1] (ω)

]
x

3
2 +

[
χ
SU(2)
[4] (ω)− χSU(2)

[2] (ω)− 1
]
x2 + . . . .

(5.3.73)

Note also that M̂ = 0 in this case.
We now analyse the operators up to R-charge 2. The operators with R-charge 1/2

are

X+ , X− , (5.3.74)

where X± denote monopole with fluxes ±(1, 0, . . . , 0).
The operators with R-charge 1 are

[2]ω : X++ , M = trµQ , X−− ,
[2]ω : X2

+ , X+X− , X2
− ,

(5.3.75)

where X++ and X−− denote monopole with fluxes ±(1, 1, 0, . . . , 0). Upon decoupling
the free hypermultiplet containing X±, we are left with only the first line, and indeed
we see that the N = 3 flavour symmetry of the interacting SCFT is SU(2).

For N = 2, the operators with R-charge 3/2 are

[3]ω : X3
+ , X2

+X− , X+X
2
− , X3

−
[3]ω : X++X+ , X++X− , X−−X+ , X−−X−
[1]ω : X+M , X−M

(5.3.76)

where, in the index (5.3.72), the contribution of the operators in the representation
[1]ω gets cancelled by the same terms with an opposite sign due to the contribution
of the free hypermultiplets; see the first term in the last line of (5.3.73). It is worth
pointing out the similarity between (5.3.76) and (B.1.11). Note that, upon decoupling
the free hypermultiplet, we no longer have an operator at order x

3
2 .
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For N = 2, the marginal operators are similar to those presented in (B.1.12). It
should be noted again that, due to (5.3.47) and (5.3.49), we have

M2 = 0 , tr(µHµQ) = − tr(µCµQ) . (5.3.77)

Here is the list of the marginal operators:

[4]ω : X2
++ , X++M , X++X−− = tr(µHµQ) = − tr(µCµQ) ,

X−−M , X2
−−

[4]ω : X4
+ , X3

+X− , X2
+X

2
− ,

X+X
3
− , X4

−
[4]ω : X++X

2
+ , X++(X+X−) , X++X

2
− = X2

+X−−
X−−(X+X−) , X−−X

2
−

[2]ω : X2
+M , X+X−M , X2

−M

(5.3.78)
where the relation

X++X−− = tr(µHµQ) = − tr(µCµQ) (5.3.79)

is analogous to (B.1.13), where the quantities on the left and right hand sides both
have magnetic flux (0, 0). Note that, upon decoupling the free hypermultiplet, we are
left with only the operators in the first two lines of (5.3.78). Due to the quantities
as listed in (5.3.78), we write the index as in (5.3.72), with the contribution of the
extra SUSY conserved current indicated in brown. This leads us to conclude that
supersymmetry gets enhanced from N = 3 to N = 4. This conclusion has in fact
been already discussed in [97].

Comments on the case of k = −2

From (5.2.11) with n = 0, we see that the index up to order x2 for k = −2 and n ≥ 3
is equal to that described in (5.3.50), and the index for k = −2 and n = 2 reads

1 + x
(

1 + χ
SU(2)
[2] (µ)

)
+ x2

[(
χ
SU(2)
[4] (µ) + 2χ

SU(2)
[2] (µ) + s′ + 2

)
−
(

1 + χ
SU(2)
[2] (µ)

)]
+ . . . ,

(5.3.80)

where

s′ =

{
1 N = 2 ,

2 N = 3 .
(5.3.81)

Let us interpret this result. The monopole operators (X+, X−) and (X++, X−−),
discussed in the case of k = 2, are no longer gauge invariant. However, the above
index suggests that quantities like X+X− and X++X−− are gauge invariant. This
can be seen from the observation that the index of the case of k = −2 can be obtained
from that of k = 2 by removing the terms involving ωp with p 6= 0; one can compare
(5.3.80) for k = −2, n = 2 with (5.3.65) for k = 2, n = 2.

We focus on the case of k = −2 and n = 2. The operators with R-charge 1 are
(5.3.52). The N = 3 flavour symmetry is SU(2)× U(1). The marginal operators are
as follows. Those in [4]µ are (5.3.145). Those in 2[2]µ are either (AH)ij or (AC)ij , and
M̂ i
j(M

k
k ). Those contribute s′ are either tr(µQµH) or tr(µQµC), and tr(µHµC), which
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is present for N = 3 and absent for N = 2. Finally, those contribute +2 are X+X−
and (M̂2)ii. We do not see the presence of the extra SUSY-current.

Let us now turn to the case of k = −2 and n = 1. From (5.2.11), the index is

N = 2 : 1 + 2x+ x2 (4−2−1) + . . .

N = 3 : 1 + 2x+ x2 (5−2−1) + . . .
(5.3.82)

This, again, can be obtain from (5.3.72) with ωp (p 6= 0) removed. We propose
that the operators with R-charge 1 are M = trµQ and X+X−. The N = 3 flavour
symmetry is therefore U(1)2. The four marginal operators of the case of N = 2 are
as follows: X++X−− = tr(µHµQ) = − tr(µCµQ), X2

+X
2
−, X++X

2
− = X2

+X−− and
X+X−M . For N = 3, there is an additional marginal operator tr(µHµC). There is
one extra SUSY-current, indicated in brown. Hence supersymmetry gets enhanced to
N = 4.

The case of k = 1 and n = 1 flavour

Here we focus only on the case of N = 2 and postpone the discussion of N = 3 to
future work, due to the technicality of the index in the latter case. From (5.2.11), the
index is

N = 2 : 1 + 1x+ (1−1−ωq−1 − ω−1q)x2 − (ωq−1 + ω−1q)x3 + . . . (5.3.83)

where we again redefined µ1 as q to highlight its U(1) nature.
This case was in fact studied in [97, Section 4.3]. In the following we discuss

the operators with R-charge up to 2. In this case, the operator with R-charge 1
corresponds to

M = trµQ . (5.3.84)

TheN = 3 flavour symmetry is therefore U(1). We indicate the contribution of the
flavour current to the index (5.3.83) in blue. Due to (5.3.47),M is a nilpotent operator
satisfyingM2 = 0. From the relation (5.3.49), namelyM2 = − tr(µHµQ)− tr(µCµQ),
we have

tr(µHµQ) = − tr(µCµQ) . (5.3.85)

This is precisely the marginal operator that contributes to the positive term +1
at order x2 in (5.3.83).

As can be seen from the brown terms in (5.3.83), there are two extra SUSY con-
served currents. This leads to the conclusion that supersymmetry gets enhanced from
N = 3 to N = 5 in the IR [97]. Note that (5.3.83) also satisfies all of the necessary
conditions for the enhanced N = 5 supersymmetry discussed in [74], including that
the coefficient of x must be 1.

In fact, if we view (5.3.83) as an N = 2 index, we see that the negative terms at
order x2 indicate that the theory has an SU(2) ∼= Spin(3) global symmetry, whose
character of the adjoint representation is 1 + ωq−1 + ω−1q. This Spin(3) symmetry
is indeed the commutant of the N = 2 R-symmetry U(1) ∼= Spin(2) in the N = 5
R-symmetry Spin(5).
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U(N)0 gauge group and n flavour

This is also known as the S-flip theory [14].
For n ≥ 3, from (5.2.11), the indices for N = 2 and N = 3 read

n ≥ 3 : 1 + x
(

1 + χ
SU(n)
[1,0,...,0,1](µ)

)
+ x2

[
χ
SU(n)
[2,0,...,0,2](µ) + χ

SU(n)
[0,1,0...,0,1,0](µ)

+ 3χ
SU(n)
[1,0,...,0,1](µ) + s−

(
1 + χ

SU(n)
[1,0,...,0,1](µ)

)]
+
(
ωχ

SU(n)
[0,...,2](µ) + ω−1χ

SU(n)
[2,0,...,0](µ)

)
x1+n

2 + . . . .

(5.3.86)

where we highlight the contribution of the N = 3 flavour currents in blue and s is
defined as

s =

{
2 N = 2

3 N = 3 .
(5.3.87)

On the other hand, for n = 2, the indices are

(N = 2, n = 2) : 1 + x
(

1 + χ
SU(2)
[2] (µ)

)
+ x2

[
χ
SU(2)
[4] (µ) + (2 + ω + ω−1)χ

SU(2)
[2] (µ)

+ 2−
(

1 + χ
SU(2)
[2] (µ)

)]
+ . . .

(N = 3, n = 2) : 1 + x
(

1 + χ
SU(2)
[2] (µ)

)
+ x2

[
χ
SU(2)
[4] (µ) + (2 + ω + ω−1)χ

SU(2)
[2] (µ)

+ 3 + (ω + ω−1)−
(

1 + χ
SU(2)
[2] (µ)

)]
+ . . . .

(5.3.88)

Note that indices (5.3.86) have the same expressions up to order x2 as the cases of
n ≥ 3 of (5.3.50), except that there are additional terms ωχSU(n)

[0,...,0,2](µ)+ω−1χ
SU(n)
[2,0,...,0](µ)

at order x1+n
2 . The latter indicate the presence of the gauge invariant dressed

monopole operators with R-charge 1 + n
2 . Note that they become marginal for n = 2.

For n ≥ 2, the operators up to R-charge 2 are therefore as described in (5.3.52)–
(5.3.59)11, together with the aforementioned monopole operators in the case of n = 2.
We do not see the presence of the extra SUSY-current. We thus conclude that the
theory has N = 3 supersymmetry.

The special case of n = 1

Let us write down explicitly the indices for N = 2 and N = 3, which can be computed
from (5.2.11):

1 + 1x+ (ωq−2 + ω−1q2)x
3
2 + (s′−1)x2 + . . . (5.3.89)

where we again redefined µ1 as q to highlight its U(1) nature and
11Curiously, for (N = 3, n = 2), the index seems to indicate the presence of extra marginal gauge

invariant monopole operators with topological fugacities ω±1. These should be identified with the
monopole operators X(±1,0,0) with fluxes (±1, 0, 0). For n ≥ 3, these operators (if exist) should carry
R-charge greater than 2 and is beyond the scope of our analysis. It would be nice to understand
these operators better in the future.
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s′ =

{
1 N = 2

2 N = 3
(5.3.90)

Note that this is similar to the case of n = 1 in (5.3.50), but with additional
terms (ωq−2 + ω−1q2) at order x

3
2 . Thus, the N = 3 flavour symmetry in each case

is U(1). The operators up to R-charge 2 are therefore as described in (5.3.64) and
below, together with the aforementioned dressed monopole operators. We do not see
the presence of the extra SUSY-current. We thus conclude that the theory has N = 3
supersymmetry, in agreement with the findings in [14, Section 3.1].

5.3.2 S-fold theories with the T [2,12]

[2,12] (SU(4)) building block: Prelimi-
nary results

The purpose of this section is to generalise the previous results on the S-fold theories
with the T (U(N)) building block to those with the Tρρ (SU(N)) building block. The
Tσρ (SU(N)) theories were introduced in [85]. They form a large class of 3d N = 4
SCFTs that admits Lagrangian descriptions in terms of linear quivers. They can also
be realised using Type IIB brane configurations, involving D3, D5 and NS5 branes
[107]. When σ = ρ the theory is self-mirror. We therefore can construct S-fold theo-
ries by commonly gauging the Higgs and Coulomb branch symmetries of Tρρ (SU(N))
in the same way as we did for T (U(N)). Due to the technicality of the index compu-
tation, we shall restrict ourselves to the T [2,12]

[2,12]
(SU(4)) theory.

We briefly review important details of the T [2,12]
[2,12]

(SU(4)) theory in Sections (5.3.2)
and (5.1.2). We then construct S-fold theories in the subsequent subsections. As we
shall see in Sections (5.3.2) and (5.3.2), for some values of CS levels, the theory
contains gauge invariant monopole operators in the spectrum. Although we try to
study the chiral ring of such operators using the index and other known theories as a
guide, we do not have a full understanding of such a chiral ring. The results for the
S-fold theories of this section should therefore be taken as preliminary and we shall
not study all possible cases as for the T (U(N)) case. We hope to revisit this problem
in the future.

The T [2,12]
[2,12]

(SU(4)) theory

Let us redraw the quiver description [85] of this theory in a N = 2 fashion:

1 1

1 2

X

X̃
L̃ L R R̃

ϕ1 ϕ2

W = Lϕ1L̃+ X̃ϕ1X −Xϕ2X̃ + R̃ϕ2R

(5.3.91)

The Higgs and Coulomb branch moment maps

The Higgs branch moment map can be written in terms of the chiral fields in (5.3.91)
as
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(µH)ij = R̃iRj , (5.3.92)

where i, j = 1, 2 are the indices of U(2)f . The F -terms with respect to ϕ1,2 imply

tr(µH) = R̃iRi = XX̃ = −LL̃ . (5.3.93)

As a result, µH satisfies the following conditions

rank(µH) ≤ 1 , (µ2
H)ij = (µH)ij tr(µH) , tr(µ2

H) = (trµH)2 . (5.3.94)

The Coulomb branch moment map can be written as

µC =

(
ϕ1 V(1;0)

V(−1;0) ϕ2

)
. (5.3.95)

where V(m;n) denotes the monopole operator carrying flux m under the left U(1)
gauge group in (5.3.91) and flux n under the right U(1) gauge group in (5.3.91).
Since T [2,12]

[2,12]
(SU(4)) is self-mirror, the Coulomb branch moment map also satisfies the

same conditions as (5.3.94) with H replaced by C:

rank(µC) ≤ 1 , (µ2
C)i
′
j′ = (µC)i

′
j′ tr(µC) , tr(µ2

C) = (trµC)2 . (5.3.96)

where i′, j′ = 1, 2 are the U(2)w indices. It then follows that

V(1;0)V(−1;0) = ϕ1ϕ2 . (5.3.97)

Moreover, from the superpotential (5.3.91), the F -terms with respect to L̃, L, R̃
and R give

Lϕ1 = 0 , L̃ϕ1 = 0 , Riϕ2 = 0 , R̃iϕ2 = 0 . (5.3.98)

It then follows that

0 = R̃iRjϕ2 = (µH)ijϕ2 , 0 = −(LL̃)ϕ1
(5.3.93)

= (trµH)ϕ1 . (5.3.99)

We can rewrite the Coulomb branch symmetry algebra as SU(2)×U(1), where the
SU(2) factor corresponds to the (enhanced) topological symmetry of the left gauge
group in (5.3.91) and the U(1) factor corresponds to that of the right one. Indeed, the
superpartners of the SU(2) current are the triplet (V(1;0), ϕ1, V(−1;0)), each of which
can be constructed from the fields in the vector multiplet of the left gauge group
in (5.3.91) in the UV. On the other hand, the field ϕ2 is the superpartner of the
aforementioned U(1) symmetry current. Since V(1;0), V(−1;0) and ϕ1 transform in the
adjoint representation of an unbroken SU(2) symmetry, it follows that the second
equality of (5.3.99) has to hold also for V(±1;0), namely:

(trµH)V(1,0) = 0 , (trµH)V(−1,0) = 0 . (5.3.100)

We will see that these quantum relations are also consistent with the index.
Contracting the indices i and j in the first equation of (5.3.99), we have (trµH)ϕ2 =

0. Combining this result with (5.3.100), we obtain
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(trµH)(µC)i
′
j′ = 0 . (5.3.101)

Using mirror symmetry and the fact that the theory is self-mirror, we also have

(trµC)(µH)ij = 0 . (5.3.102)

Contracting the indices i and j we obtain12

(trµH)(trµC) = 0 . (5.3.103)

The relevant and marginal operators

The index of the T [2,12]
[2,12]

(SU(4)) theory can be written as (see Section (5.1.2) for more
details)

1 + x
[
d2
(

1 + χ
SU(2)
[2] (u)

)
+ d−2

(
1 + χ

SU(2)
[2] (h)

)]
+ x

3
2

[
d3(b+ b−1)χ

SU(2)
[1] (u) + d−3(q + q−1)χ

SU(2)
[1] (h)

]
+ x2

[
d4
(

1 + χ
SU(2)
[2] (u) + χ

SU(2)
[4] (u)

)
+ d−4

(
1 + χ

SU(2)
[2] (h) + χ

SU(2)
[4] (h)

)
+ χ

SU(2)
[2] (u)χ

SU(2)
[2] (h)−

(
χ
SU(2)
[2] (h) + 1

)
−
(
χ
SU(2)
[2] (u) + 1

)
− 1
]

+ . . . .

(5.3.104)

Let us analyse the operators that contribute to the index up to order x2. It is
convenient to split the Higgs and Coulomb branch moment maps into the trace and
the traceless part, where the latter is denoted by

(µ̂H,C)ij := (µH,C)ij −
1

2
(trµH,C)δij . (5.3.105)

Since the rank of µH,C is at most one, we have

tr(µ̂2
H,C) =

1

2
(trµH,C)2 . (5.3.106)

The coefficient of order x of the index corresponds to the following operators:

d2
(

1 + χ
SU(2)
[2] (u)

)
: tr(µC) , (µ̂C)i

′
j′

d−2
(

1 + χ
SU(2)
[2] (h)

)
: tr(µH) , (µ̂H)ij

(5.3.107)

The coefficient of order x
3
2 of the index corresponds to the following operators:

12This result can also be obtained by contracting the indices i and j in the first equation of
(5.3.99) and then summing it with the second equation in (5.3.99), where we have used the fact that
trµC = ϕ1 + ϕ2.
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d3bχ
SU(2)
[1] (u) : U i′ := (V(1,1), V(0,1))

i′

d3b−1χ
SU(2)
[1] (u) : Ũi′ := (V(−1,−1), V(0,−1))i′

d−3qχ
SU(2)
[1] (h) : Hi := R̃iX̃L̃

d−3q−1χ
SU(2)
[1] (h) : H̃i := LXRi .

(5.3.108)

The terms at order x2 with positive sign correspond to the following marginal
operators:

d4, d−4 : tr(µ̂2
C) =

1

2
(trµC)2 , tr(µ̂2

H) =
1

2
(trµH)2

d4χ
SU(2)
[2] (u), d−4χ

SU(2)
[2] (f) : (µ̂C)i

′
j′(trµC) , (µ̂H)ij(trµH)

d4χ
SU(2)
[4] (u), d−4χ

SU(2)
[4] (f) : (µ̂C)i

′
j′(µ̂C)k

′
l′ , (µ̂H)ij(µ̂H)kl

χ
SU(2)
[2] (u)χ

SU(2)
[2] (h) : (µ̂C)i

′
j′(µ̂H)ij

(5.3.109)

The terms with minus sign confirms that the theory indeed has a U(1)b×SU(2)u×
U(1)q×SU(2)h×U(1)d global symmetry, as expected. Note that the terms +d0χ

SU(2)
[2] (u),

+d0χ
SU(2)
[2] (h) and +d0χ

SU(2)
[0] (u)χ

SU(2)
[0] (h) do not appear at order x2. The absence

of such terms confirms the relations (5.3.101), (5.3.102), (5.3.103), and thus also
(5.3.100).

U(2)k gauge group with zero flavour

We now consider the S-fold building block theory (5.2.12).
The superpotential for (5.2.12) can be written as [86, 88]

W = − k

4π
tr(ϕ2) + tr ((µC + µH)ϕ) (5.3.110)

where ϕ is a complex scalar in the vector multiplet of the U(2) gauge group, and µC
and µH are the Coulomb branch and Higgs branch moment maps of the T [2,12]

[2,12]
(SU(4))

SCFT.
Let us assume in the following analysis that k 6= 0. We can integrate out ϕ. The

F -terms with respect to ϕ give

ϕ =
2π

k
(µC + µH) . (5.3.111)

Substituting this back to (5.3.110), we obtain the effective superpotential after
integrating out ϕ to be

Weff =
π

k
tr(µC + µH)2

=
π

k

[
tr(µ2

C) + tr(µ2
H) + 2 tr(µCµH)

]
=
π

k

[
(trµC)2 + (trµH)2 + 2 tr(µCµH)

]
.

(5.3.112)
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where in the last line we have used (5.3.94) and (5.3.96). It should be noted that,
on the contrary to the effective superpotential (5.3.37) of the S-fold theory with the
T (U(N)) building block, the U(1)d axial symmetry is broken in this case13. The index
of this theory is given by (5.2.13).

The case of |k| ≥ 3

Evaluating (5.2.13), we obtain the indices for |k| ≥ 3:

I(5.2.12)(|k| ≥ 3; {ω, ν = 0}) = 1 + 2x+ 0x2 + 0x3 + . . . . (5.3.113)

where, for each k such that |k| ≥ 3, the indices differ at order of x greater than 3. For
example,

k = 3 : 1 + 2x− 2(ω + ω−1)x
7
2 + 5x4 + . . .

k ≤ −3, k ≥ 4 : 1 + 2x+ 5x4 + . . . .
(5.3.114)

The coefficient of x indicates that the theory has a U(1)×U(1) global symmetry.
Due to (5.3.111), we can write ϕ in terms of µH and µC . As a result, there are only
two independent operators with R-charge 1, namely

tr(µH) , tr(µC) , (5.3.115)

corresponding to the term 2x in the index.
Let us now consider the marginal operators. Taking into account of (5.3.111),

(5.3.94) and (5.3.96), we can rewrite any marginal operators in terms of a linear com-
bination of the following quantities: (trµH)2, (trµC)2, (trµH)(trµC) and tr(µHµC).
However, this set of quantities can be reduced further. Due to (5.3.103), we have
(trµH)(trµC) = 0. Hence, there are three independent marginal operators, which
can be taken as

(trµH)2 , (trµC)2 , tr(µHµC) . (5.3.116)

Since the coefficient of x2 in the index is equal to the number of marginal opera-
tors minus conserved currents and we have 0x2 in (5.3.113), it follows that there are
three conserved currents that precisely cancel the contribution of the three marginal
operators in (5.3.116). Two of the conserved currents are identified with the U(1)2

flavour currents, as can be seen from order x of the index, and the other one is the
extra SUSY current. We thus conclude that N = 3 supersymmetry of theory (5.2.12),
with k ≥ 3, is enhanced to N = 4 in the IR.

Finally, let us point out that there is a symmetry that exchanges µH and µC for
|k| ≥ 3. As we shall discuss shortly, this symmetry is absent for k = 2 and k = 1.

The case of k = 2

Evaluating (5.2.13), we obtain the index for k = 2:
13Recall that under the U(1)d symmetry, µC carries charge +2 and µH carries charge −2.
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I(5.2.12)(k = 2; {ω, ν = 0})

= 1 + x

(
2 + ω +

1

ω

)
+ x2

(
ω2 +

1

ω2

)
+ . . .

ω→ω2

= 1 + x
[
1 + χ

SU(2)
[2] (ω)

]
+ x2

[(
1 + χ

SU(2)
[4] (ω)

)
−
(

1 + χ
SU(2)
[2] (ω)

)]
+ . . .

(5.3.117)

where the second equality holds if we redefine ω as ω2; we also highlighted the con-
tribution of the flavour currents in blue.

From the coefficient of x we see that, in addition to the operators listed in (5.3.115),
there are two gauge invariant monopole operators with R-charge 1 that carry topo-
logical fugacities ω±2, denoted by X±. Hence the operators with R-charge 1 are

1, ω2, 1, ω−2 : tr(µH) , X+ , tr(µC) , X− , (5.3.118)

TheN = 3 flavour symmetry of the SCFT is therefore SU(2)×U(1). Note that this
is larger than that of the case of |k| ≥ 3, due to the presence of the monopole operators
X± with R-charge 1. Here we have to make a choice whether to take (X+, (trµH), X−)
or (X+, (trµC), X−) to be a moment map of SU(2). Whatever choice we make will
break the symmetry that exchanges µH and µC . This is a crucial difference between
this case and the previously discussed case of |k| ≥ 3. For definiteness, let us take the
triplet (X+, (trµC), X−) to be the moment map of SU(2) and (trµH) to be that of
U(1).14

Let us consider the marginal operators. These contribute to order x2 in the in-
dex. We first examine those in the representation [4] of SU(2), whose character is
χ
SU(2)
[4] (ω) = ω4 + ω2 + 1 + ω−2 + ω−4. The terms ω±4 should correspond to the

operators X2
±. In contrast to (5.3.69), there is no gauge invariant monopole opera-

tor X++ or X−− with fluxes (1, 1) or (−1,−1). It is also interesting to contrast to
the 3d N = 4 U(2) gauge theory with four flavours of fundamental hypermultiplets
(B.2.4) that there are no operators in the representation [2] of SU(2) in this case. The
candidates for the operators that carry fugacities ω±2 are X±(trµH) and X±(trµC).
However, we argue that the former vanishes for the following reason. Since from
(5.3.103) we have (trµH)(trµC) = 0, we must also have

(trµH)X± = 0 , (5.3.119)

due to the fact that (X+, (trµC), X−) transform in the adjoint representation of an
unbroken SU(2) flavour symmetry. We thus conclude that the marginal operators
carrying fugacities ω±2 are X±(trµC). At this point, it is also worth comment that,
in contrast to (B.2.4) and to (5.3.69), there is no dressed monopole operators, like
X(±1,0);(0,1), in this case. Finally, let us discuss the marginal operators that carry zero
charge under the topological symmetry, i.e. those with ω0. The candidates for these
are as follows:

(trµH)2 , (trµC)2 , tr(µHµC) , X+X− . (5.3.120)

From order x2 in the index, there are the following possibilities:
14Of course, we may as well take (X+, (trµH), X−) to be the moment map of SU(2) and (trµC)

to be that of U(1). The arguments below still hold with H interchanged with C.
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1. Among (5.3.120), there are only two independent operators. There is no N = 3
extra SUSY-current.

2. Among (5.3.120), there are three independent operators. There is one N = 3
extra SUSY-current.

3. All of the four operators in (5.3.120) are independent from each other. There
are two N = 3 extra SUSY-currents.

Let us discuss each of these possibilities in more detail.
Possibility 1 is the most unlikely. This is because we do not have two relations

that reduce four quantities in (5.3.120) to two independent quantities.
Possibility 2 is possible if we postulate a relation like

X+X− = (trµC)2 . (5.3.121)

We will shortly comment on the validity of this assumption. As a result, the
marginal operators transforming under the representation [4] of SU(2) are

X2
+ , X+(trµC) , X+X− = (trµC)2 , X−(trµC) , X2

− , (5.3.122)

whereas those transforming as singlets are

(trµH)2 , tr(µHµC) . (5.3.123)

In this possibility, the terms at order x2 should be rewritten as

x2
[(

2 + χ
SU(2)
[4] (ω)

)
−
(

1 + χ
SU(2)
[2] (ω)

)
−1
]

(5.3.124)

where the term −1, highlighted in purple, indicates the presence of an extra SUSY-
current. If this were true, we would conclude that the theory flows to an SCFT with
enhanced N = 4 supersymmetry. We emphasise again that this conclusion relies
heavily on assumption (5.3.121). It may be argued that this cannot be true because
if X± correspond to the monopole operators with fluxes (±1, 0), then X+X− carries
flux (1,−1)15 and not (0, 0); hence it should not be equated to (trµC)2. Indeed, the
relation of type (5.3.121) does not hold for the 3d N = 4 U(2) gauge theory with 4
flavours; see (B.2.4). It would hold if we had an abelian gauge group, like 3d N = 4
U(1) gauge theory with 2 flavours.

Possibility 3 is the most likely. In this possibility, the marginal operators trans-
forming under the representation [4] of SU(2) are

X2
+ , X+(trµC) , X+X− , X−(trµC) , X2

− , (5.3.125)

whereas those transforming as singlets are

(trµH)2 , (trµC)2 , tr(µHµC) . (5.3.126)

The terms at order x2 should then be rewritten as
15After applying the Weyl symmetry, the flux (m,n) of the monopole operator X(m,n) should be

written such that m ≥ n > −∞. The flux of of X− should thus be written as (0,−1). Since X+ has
flux (+1, 0), it follows that X+X− has flux (1,−1).
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x2
[(

3 + χ
SU(2)
[4] (ω)

)
−
(

1 + χ
SU(2)
[2] (ω)

)
−2
]

(5.3.127)

where the term −2, highlighted in purple, indicates the two N = 3 extra SUSY-
currents. Note that supersymmetry cannot get enhanced to N = 5, since this would
violate a necessary condition for N = 5 supersymmetry which states that the coef-
ficient of x has to be 1 [74]. We are obliged to conclude that the theory flows to a
product of two SCFTs, each with N = 4 supersymmetry. This situation is similar
to that studied in [88]. It would be interesting to verify this conclusion using other
methods and, if it were true, it would be also nice to identify such N = 4 SCFTs. We
leave this for future work.

The case of k = 1

Evaluating (5.2.13), we obtain the index for k = 1 as

I(5.2.12)(k = 1; {ω, ν = 0})

= 1 + x

(
2 + ω2 +

1

ω2

)
+ x2

(
−1 + ω4 +

1

ω4

)
+ x

5
2

(
−2ω − 2

ω

)
+ . . .

= 1 + x
[
1 + χ

SU(2)
[2] (ω)

]
+ x2

[
χ
SU(2)
[4] (ω)−

(
1 + χ

SU(2)
[2] (ω)

)]
− 2x

5
2χ

SU(2)
[1] (ω) + . . . .

(5.3.128)

We propose that the gauge invariant operators withR-charge 1 that carry fugacities
w±2 are the monopole operators with fluxes ±(1, 1), denoted by X++ := X(1,1) and
X−− := X(−1,−1). It is interesting to point out that there is no gauge invariant
monopole operator with fluxes ±(1, 0) in this theory, since there are no terms ω±1 at
order x. The operators with R-charge 1 are

1, ω2, 1, ω−2 : tr(µH) , X++ , tr(µC) , X−− , (5.3.129)

corresponding to the coefficient of x. The N = 3 flavour symmetry of the SCFT is
therefore SU(2) × U(1). Similarly to the case of k = 2, we have to make a choice
whether to take (X++, (trµC), X−−) or (X++, (trµH), X−−) to be a moment map
of SU(2). Picking any of these choices amounts to breaking the symmetry that ex-
changes µH and µC . For definiteness, we take the triplet (X++, (trµC), X−−) to be
the moment map of SU(2) and (trµH) to be that of U(1).16

Let us now examine the marginal operators of this theory. It is convenient to start
from those in the representation [4] of SU(2). Those carrying fugacities ω±4 are X2

++

and X2
−−. Those carrying fugacities ω±2 are X++(trµC) and X−−(trµC). It should

be noted that X++(trµH) and X−−(trµH) vanish due to the following argument
(very similar to that of the case of k = 2). Since (trµC)(trµH) = 0 due to (5.3.103)
and (X++, (trµC), X−−) transforms as a triplet under an unbroken SU(2) flavour
symmetry, we have

X++(trµH) = X−−(trµH) = 0 . (5.3.130)

The marginal operators carrying fugacity ω0 are
16Similarly to footnote (14), we may as well take (X++, (trµH), X−−) to be the moment map of

SU(2) and (trµC) to be that of U(1). The arguments below still hold with H interchanged with C.
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(trµH)2 , (trµC)2 , tr(µHµC) , X++X−− . (5.3.131)

Analogously to (B.1.13) of the U(2) gauge theory with one adjoint and one fun-
damental hypermultiplet, we propose that X++X−− satisfies a quantum relation:

X++X−− = (trµC)2 . (5.3.132)

Note that both left and right hand sides of this equation have magnetic flux (0, 0).
In summary, the marginal operators in the representation [4] of SU(2) are

X2
++ , X++(trµC) , X++X−− = (trµC)2 , X−−(trµC) , X2

−− , (5.3.133)

and those transforming as singlets under SU(2) are

(trµH)2 , tr(µHµC) . (5.3.134)

These operators contribute to the terms
(

2 + χ
SU(2)
[4] (ω)

)
at order x2 in the index.

As a result, the x2 term in (5.3.128) should be rewritten as

x2
[(

2 + χ
SU(2)
[4] (ω)

)
−
(

1 + χ
SU(2)
[2] (ω)

)
−2
]
. (5.3.135)

The extra −2, highlighted in purple, indicates the presence of two extra SUSY-
currents. The same remark for the case of k = 2 applies here. Supersymmetry cannot
get enhanced to N = 5, since it would violate a necessary condition for N = 5
supersymmetry which states that the coefficient of x has to be 1 [74]. We are again
obliged to conclude that the theory flows to a product of two SCFTs, each with N = 4
supersymmetry, similarly to the situation encountered in [88]. It would be interesting
to verify this conclusion using other methods and, if it were true, it would be also nice
to identify such N = 4 SCFTs. We leave this for future work.

U(2)k gauge group with n flavour

Let us now couple to theory (5.2.12) n flavours of hypermultiplets in the fundamental
representation of U(2) and obtain theory (5.2.14).

We propose that the superpotential for this theory is the same as (5.3.41), namely

W = − k

4π
tr(ϕ2) + tr ((µC + µH)ϕ) + Q̃ibϕ

b
aQ

a
i

= − k

4π
tr(ϕ2) + tr ((µC + µH + µQ)ϕ) ,

(5.3.136)

The F -terms are the same as (5.3.44) and the consequences of them are as analysed
in Appendix (C). The index of this theory is discussed in Section (5.2.2).
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The case of n ≥ 2 flavours

We focus on the cases of (n ≥ 3, |k| ≥ 1) and (n = 2, |k| ≥ 3). Evaluating (5.2.15)
with the background fluxes for the flavour symmetry being set to zero, n = 0, we
obtain the indices, up to order x2, as follows:

(n ≥ 3, |k| ≥ 1) : 1 + x
[
3 + χ

SU(n)
[1,0,...,0,1](h)

]
+ x2

[
2qχ

SU(n)
[1,0,...,0](h) + 2q−1χ

SU(n)
[0,...,0,1](h)

+ χ
SU(n)
[2,0,...,0,2](h) + 5χ

SU(n)
[1,0,...,0,1](h) + χ

SU(n)
[0,1,0,...,0,1,0](h) + 7

−
(

3 + χ
SU(3)
[1,0,...,0,1](h)

)]
+ . . .

(5.3.137)

(n = 2, |k| ≥ 3) : 1 + x
[
3 + χ

SU(2)
[2] (h)

]
+ x2

[
2qχ

SU(2)
[1] (h) + 2q−1χ

SU(2)
[1] (h)

+ χ
SU(2)
[4] (h) + 4χ

SU(2)
[2] (h) + 7

−
(

3 + χ
SU(2)
[2] (h)

)]
+ . . .

(5.3.138)

where we used the fugacity map (5.2.16) and highlighted the contribution of the
U(1)3 × SU(n) flavour symmetry current in blue. Let us now analyse the operators
with R-charges 1 and 2.

The operators with R-charge 1 are

trµH , trµC , Mk
k = trµQ , M̂ i

j (5.3.139)

where we remark that M̂ i
j transforms in the adjoint representation [1, 0, . . . , 0, 1] of

SU(n), and that we can always rewrite ϕ in terms of µH , µC and µQ due to (5.3.44).
Let us now discuss about the marginal operators. These contribute to positive

terms at order x2 of the index. The terms 2qχ
SU(n)
[1,0,...,0](h) and 2q−1χ

SU(n)
[0,...,0,1](h) corre-

spond to the gauge invariant combinations constructed by “dressing” Q or Q̃ to the
operators in (5.3.108):

2qχ
SU(n)
[1,0,...,0](h) : Qai H̃a , Qai Ũa ,

2q−1χ
SU(n)
[0,...,0,1](h) : Q̃iaHa , Q̃iaUa .

(5.3.140)

The term 5χ
SU(n)
[1,0,...,0,1](h) corresponds to

M̂ i
j(trµH) , M̂ i

j(trµC) , M̂ i
j(trµQ) = M̂ i

j(M
k
k ) ,

(AH)ij , (AC)ij ,
(5.3.141)

where we have defined M̂2 in (C.0.11) and AH,C in (C.0.13). It should be noted that,
from (C.0.12), the quantity (M̂2)ij can be written in terms of a linear combination of
(AH)ij , (AC)ij and M̂ i

j(M
k
k ) = M̂ i

j(trµQ). For the special case of n = 2, we have an
extra relation (C.0.15):
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(AH)ij + (AC)ij = −M̂ i
j(trµQ) = −M̂ i

j(M
k
k ) (for n = 2) (5.3.142)

and so we have only four independent quantities, which correspond to the term
4χ

SU(2)
[2] (h) in the index. The term χ

SU(n)
[0,1,0,...,0,1,0](h) corresponds to

εi1i2...inεj1j2...jnM̂
j1
i1
M̂ j2
i2
. (5.3.143)

The term χ
SU(n)
[2,0,...,0,2](h) corresponds to the quantity

Rikjl (5.3.144)

which is a linear combination M̂ i
jM̂

k
l and other quantities such that any contraction

between an upper index and a lower index yields zero; for example, for n = 2, where
M̂2 satisfies (C.0.9), the marginal operators in [4] are

Rikjl := M̂ i
jM̂

k
l +

1

6
(M̂2)ppδ

i
jδ
k
l −

1

3
(M̂2)ppδ

i
lδ
k
j , for n = 2 . (5.3.145)

Finally the candidates for the marginal operators that do not carry q and h fu-
gacities are

tr(µ2
H) = (trµH)2 , tr(µ2

C) = (trµC)2 ,

tr(µQµH) = (µH)ab Q̃
i
aQ

b
i , (trµQ)(trµH) ,

tr(µQµC) = (µC)ab Q̃
i
aQ

b
i , (trµQ)(trµC) ,

(M̂2)ii = M̂ i
jM̂

j
i , (trµQ)2 = (Mk

k )2

tr(µHµC) , (trµH)(trµC)
(5.3.103)

= 0 .

(5.3.146)

where we recall from (C.0.6) that tr(µ2
Q) is not independent from the above quantities,

since it can be written as

tr(µ2
Q) = M i

jM
j
i = M̂ i

jM̂
j
i +

1

n
(trµQ)2 = − tr(µQµH)− tr(µQµC) . (5.3.147)

However, the quantities in (5.3.146) are not all independent from each other. Let
us try to reduce them into a smaller set as follows. From (5.3.103), we see that
(trµH)(trµC) vanishes. From (C.0.10), we see that (trµQ)2 is a linear combination
of tr(µQµH) and tr(µQµC) and (M̂2)ii . In summary, we have eight of such marginal
operators:

tr(µ2
H) = (trµH)2 , tr(µ2

C) = (trµC)2 ,

tr(µQµH) = (µH)ab Q̃
i
aQ

b
i , (trµQ)(trµH) ,

tr(µQµC) = (µC)ab Q̃
i
aQ

b
i , (trµQ)(trµC) ,

(M̂2)ii = M̂ i
jM̂

j
i , tr(µHµC)

(5.3.148)

As a result, the x2 term in (5.3.137) and (5.3.138) should be rewritten as

x2
[
. . .+ 8−

(
3 + χ

SU(3)
[1,0,...,0,1](h)

)
−1
]
. (5.3.149)
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where the term −1, highlighted in brown, indicates the presence of an extra SUSY-
current. We conclude that supersymmetry gets enhanced to N = 4.

We also observe that, for k = 2, the coefficient of x
n
2

+1 in the index contains the
terms ω + ω−1. Similarly, for k = 1, the coefficient of xn+1 in the index contains the
terms ω2 + ω−2. These indicate that

• for k = 2, there are gauge invariant monopole operators X± with topological
charges ±1 with R-charge n

2 + 1; and

• for k = 1, there are gauge invariant monopole operators X++ and X−− with
topological charges ±2 with R-charge n+ 1.

In fact, we have encountered such monopole operators for the case of zero flavour
(n = 0) in sections (5.3.2) and (5.3.2). The above statements generalise the previous
results to any n. In particular, for (n = 2, k = 2), the gauge invariant monopole
operator X± are marginal operators. This can be seen from the index that can be
computed from (5.2.15) with n = 0:

(n = 2, k = 2) : 1 + x
[
3 + χ

SU(2)
[2] (h)

]
+ x2

[
2qχ

SU(2)
[1] (h) + 2q−1χ

SU(2)
[1] (h)

+ χ
SU(2)
[4] (h) + 4χ

SU(2)
[2] (h) + ω + ω−1 + 7

−
(

3 + χ
SU(2)
[3] (h)

)]
+ . . . ,

(5.3.150)

where there are extra terms ω + ω−1 at order x2 in comparison to (5.3.138).

The case of n = 1 flavour

In this subsection, we discuss the special case of n = 1. The operators are as discussed
in the previous subsection, but with the flavour indices i, j, k = 1, and so they can be
dropped. As a result, we have

M̂ = 0 , AH = 0 , AC = 0 . (5.3.151)

The cases of |k| ≥ 3

For |k| ≥ 3, the index can be computed from (5.2.15) with n = 1 and n1 = 0:

1 + 3x+
(
3 + 2q + 2q−1

)
x2 − x3 + . . .

= 1 + 3x+
(
6 + 2q + 2q−1 − 3

)
x2 − x3 + . . . ,

(5.3.152)

where we highlight the contribution of the flavour currents in blue and rewrite the
fugacity µ1 as q to emphasise its U(1) nature.

From (5.3.139) and (5.3.151), we see that the three independent operators with
R-charge 1 are

trµH , trµC , M = trµQ . (5.3.153)

The flavour symmetry of this theory is therefore U(1)3.
Let us now discuss the marginal operators. The terms 2q + 2q−1 in (5.3.152)

correspond to the operators in (5.3.140), namely
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2q : QaH̃a , QaŨa ,

2q−1 : Q̃aHa , Q̃aUa .
(5.3.154)

Note that all of the operators in (5.3.141) vanish identically for n = 1, due to
(5.3.151) and the fact that the flavour indices can be dropped. The marginal operators
that do not carry fugacity q are as listed in (5.3.148); since M̂ = 0, there are 7
independent quantities:

tr(µ2
H) = (trµH)2 , tr(µ2

C) = (trµC)2 ,
tr(µQµH) , (trµQ)(trµH) ,
tr(µQµC) , (trµQ)(trµC) ,
tr(µHµC)

(5.3.155)

These operators, together with (5.3.154), contribute 7 + 2q + 2q−1 to order x2 in
the index. The x2 term of the index should then be rewritten as (7+2q+2q−1)−3−1,
where the term −1 indicates the presence of the extra SUSY-current. Hence we
conclude that supersymmetry gets enhanced to N = 4.

The cases of k = 2

The index in this case can be computed from (5.2.15) with k = 2, n = 1 and n1 = 0:

1 + 3x+ (ω + ω−1)x
3
2 +

(
7 + 2q + 2q−1 − 3− 1

)
x2

+ (ω + ω−1)x
5
2 + (−1 + ω2 + ω−2)x3 . . . .

(5.3.156)

where we rewrite the fugacity µ1 as q to highlight its U(1) nature.
As can be seen from order x, the N = 3 flavour symmetry of the theory is U(1)3.

The operators with R-charge 1 are (5.3.153). In this case, there are also gauge in-
variant monopole operators X±, carrying topological fugacities ω±1, with R-charge
3/2. (This is consistent with the observation that the theory with k = 2 and n
flavours, there are gauge invariant monopole operators with R-charge 1

2n+ 1; see sec-
tion (5.3.2)). The marginal operators are listed in (5.3.154) and (5.3.155). Again, the
term −1 at order x2 of the index indicates the presence of the extra SUSY-current,
and we conclude that supersymmetry gets enhanced to N = 4.

The cases of k = 1

The index can be computed from (5.2.15) with k = 1, n = 1 and nf1 = 0:

1 + 3x+ x2
(
7 + 2q + 2q−1 + ω2 + ω−2−3−1

)
− x3

[
2
(
q + q−1

) (
ω + ω−1

)
+ 4

(
ω + ω−1

)
+ 2
]

+ . . . .
(5.3.157)

with the fugacity µ1 being rewritten as q to highlight its U(1) nature.
The N = 3 flavour symmetry of this theory is U(1)3, and the operators with R-

charge 1 are (5.3.153). The marginal operators are (5.3.154) and (5.3.155), together
with the gauge invariant monopole operators X++ and X−−, carrying topological fu-
gacities ω±2. (This is consistent with the observation that in the theory with k = 1
and n flavours there are gauge invariant monopole operators with topological charges
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±2 and R-charge n+ 1; see section (5.3.2)). The term −1 at order x2 of the index in-
dicates the presence of the extra SUSY-current, and we conclude that supersymmetry
gets enhanced to N = 4.
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Chapter 6

Zero-form and one-form
symmetries of the ABJ and related
theories

After a brief review of generalised global symmetries, in this chapter we will examine in
detail the zero-form and one-form global symmetries of the Aharony-Bergman-Jafferis
(ABJ) and related theories, with at least N = 6 supersymmetry in three dimensions.

The Aharony-Bergman-Jafferis-Maldacena (ABJM) U(N)k ×U(N)−k theories [6]
and the Aharony-Bergman-Jafferis (ABJ) U(N+x)k×U(N)−k theories [1] constitute
a large class of three-dimensional superconformal field theories (SCFTs) with N = 6
and in some special cases N = 8 supersymmetry.

As observed in [1] and further studied in [54], some of these theories are dual to
the ABJ theories with orthogonal and symplectic gauge groups:

O(2N)2 × USp(2N)−1 ←→ U(N)4 × U(N)−4

O(2N + 2)2 × USp(2N)−1 ←→ U(N + 2)4 × U(N)−4

O(2N + 1)2 × USp(2N)−1 ←→ U(N + 1)4 × U(N)−4

(6.0.1)

Starting from these well-known dualities, we gauge their one-form symmetries
or their subgroups and obtain new dualities. As pointed out in [2, 87], the study
of higher-form symmetries and extended operators leads to new insight on several
structures of the theory, especially distinctions between theories with the same gauge
algebra but with different global structures of the gauge group.

We thus study the refined superconformal indices of such theories and map the
symmetries across the dualities, with particular attention to their discrete part.

As a generalisation, we also find a new duality between a circular quiver with a
discrete quotient of alternating special orthogonal and symplectic gauge groups and a
three-dimensional N = 4 circular (Kronheimer-Nakajima) quiver with unitary gauge
groups, whose Higgs or Coulomb branch describes an instanton on a singular orbifold.

6.1 Generalised global symmetries

It is well known that standard symmetry transformations form a group G that can
have both a continuous or a discrete nature. If the group is continuous, for every
continuous generator, there is an associated conserved Noether current J which is a
1-form.

The conserved charge Q is constructed starting from J as the integral of the Hodge
dual ?J over a co-dimension one submanifoldM of the spacetime X; namely
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Q(M) =

∫
M
?J (6.1.1)

where, from the conservation law of J , it follows that ?J is conserved too and thus

dJ = d ? J = 0 (6.1.2)

Typically the submanifoldM is a closed d−1-dimensional space separating space-
time into two regions and it can be non-compact.

To introduce the concept of higher-form symmetries we will closely follow [87].
Thus, first of all, we shall recast the symmetry transformation as the action of an op-
erator Ug(M) with g a group element of the global symmetry G. The fact that Ug(M)
is now associated with a symmetry means that its dependence on the submanifoldM
is topological, i.e. it is unchanged whenM is slightly deformed.

In fact, considering a smooth deformation M̃ of the original manifoldM, we can
always find a d-dimensional space X(d) interpolating between the two where d ? J is
conserved as in (6.1.2), and thus∫

M
?J −

∫
M̃
?J =

∫
X(d)

d ? J = 0 (6.1.3)

The quantity (6.1.3) can be non-zero only when the deformation ofM crosses an
operator O(x) charged under the symmetry, so that the conservation fails due to the
presence of a source term; namely

d ? J = Q(M)δ(d)(x) (6.1.4)

In the continuous case, the symmetry transformation operator Ug(M) can be
easily obtained by exponentiating Q(M). By considering a sphere Sd−1 surrounding
a spacetime point x ∈ X, Ug(Sd−1) can then act on charged operators OI(x), as

Ug(S
d−1)OI(x) = gQ(Sd−1)OI(x) = RIJ(g)OJ(x) (6.1.5)

where RIJ are the generators of the group in the representation R carried by OI(x).
The symmetry transformation operators satisfy the group law

Ug(M)Ug′(M) = Ug′′(M) (6.1.6)

where g′′ = g · g′ ∈ G with · the group product.
In the discrete case, there is clearly no J current but, nonetheless, the generator

can be still associated to a co-dimension one manifold even without being an inte-
gral of a local quantity. Thus, even in the discrete case, we can define a symmetry
transformation operator Ug(M) that automatically inherits all the properties of the
continuous one.

We will thus refer to both continuous and discrete symmetries of this type as
zero-form symmetries. In fact, all the previous concepts can be easily generalised to
the so-called higher-form symmetries by changing the dimensions of the conserved
Noether current J along with the submanifoldM.

If the symmetry is continuous, we can thus define a q-form symmetry when:

• The Noether current J is a (q+ 1)-form and the generator can again be written
as an integral similarly to (6.1.1);

• The associated submanifoldM⊂ X is a co-dimension q + 1 manifold, i.e. it is
(d− q − 1)-dimensional;
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• The charged operatorsOI have dimension q, i.e. they are defined on q-dimensional
manifolds.

The symmetry transformation operator Ug(M) is then defined on a (d − q − 1)-
dimensional sphere Sd−q−1 similarly to (6.1.5). If the symmetry is discrete one must
then rely on the Ug(M) operator only.

In general, a higher form symmetry can thus be detected by the existence of
topological operators Ug(M) associated with co-dimension q + 1 manifolds M that
glue according to the group law (6.1.6). Then we get that

• If q = 0, the manifoldsM are co-dimension one and we can make sense of the
group product (6.1.6) by time ordering such manifolds. Hence operators Ug(M)
at different times might not commute and G can be non-Abelian.

• If q > 0, there cannot be such ordering; the manifold M at time t + ε can be
continuously deformed to the one at time t− ε. This means that the operators
must all commute with each other and hence G must be Abelian.

For the rest of this work, we will be interested in 3d one-form symmetries only
and thus we will only treat the case q = 1.

6.1.1 One-form symmetries in 3d Yang-Mills theories

We will now consider one-form symmetries in three dimensional Yang-Mills theories.
Let us start with pure Yang-Mills theory with gauge group G. These theories

possess a one-form electric symmetry whose 2-form Noether current is just the field
strength Fµν with conservation law (2.1.10).

The charged operators will then be the Wilson line operators

W [C] := Tr
(
Pei

∫
C A
)

(6.1.7)

where P stands for the path ordering prescription and C for the path itself. Moreover,
A is the one-form associated to the gauge boson, namely A = AaµT

R
a dx

µ, where TRa
are the generators of G in a given representation R. So, in principle, these operators
can be labelled by any representation R and associated to any weight vector in the
weight lattice Λw(g) [2].

Because the gauge bosons Aaµ are in the adjoint representation, they are blind to
any transformation which sits in the centre Z(G) of G. In fact, from the algebraic
point of view, the centre is defined as

Z(g) = {A ∈ g | [A, ·] = 0} (6.1.8)

The one-form electric symmetry thus acts by shifting the gauge field by a flat
Z(G)-valued gauge connection A such that the field strength Fµν is invariant thanks
to the fact that

dA = 0 , [A, · ] = 0 (6.1.9)

The action of this symmetry on the Wilson line operators can be easily obtained
by considering the symmetry transformation operators Ug(M).

Let us now see some examples for the unitary groups.
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Example: G = U(1)

The simplest pure Yang-Mills theory is the 3d Maxwell theory with G = U(1). This
theory possesses a global U(1)

[1]
e one-form electric symmetry with associated Noether

2-form current

Je =
1

2π
F (6.1.10)

The symmetry transformation operators Ug(M) are obtained by exponentiating
the conserved charges (6.1.1), namely

U eg∈U(1)(C) = eiα
1

2π

∫
C ?F (6.1.11)

where the group element g is just a phase and eiα.
The one-form electric symmetry acts on Wilson lines W as

W [C]→ U eeiα(S1)W [C] = eiα
1

2π

∮
?FW [C] (6.1.12)

where the charge of the Wilson line 1
2π

∮
?F is nothing but the magnetic flux through

the S1 loop.

Example: G = SU(N)

Let us now consider a pure 3dYang-Mills theory withG = SU(N). Since Z(SU(N)) =

ZN , this theory has a global discrete (Z[1]
N )e one-form electric symmetry that acts on

Wilson lines as

W [C]→ U eg∈ZN (S1)W [C] = ei
2πk
N

nW [C] (6.1.13)

where the group element g = ei
2πk
N and the charge of the Wilson line n is the so-called

N -ality and corresponds to the number of boxes (modulo N) in the Young tableau
defining the representation R of W [C].

Since this one-form symmetry is discrete we cannot define the conserved Noether
current as in the previous example.

As for these unitary theories, the starting point to understand the one-form sym-
metries for the orthosymplectic gauge groups is via their centre. Table (6.1.14) con-
tains all the centre subgroups of these groups.

Group
N (Mod4)

0 1 2 3

SO(N) Z2 1 Z2 1

O(N) Z2

USp(2N) Z2

(6.1.14)

Naively one could think that these centres are automatically identified with the
one-form symmetries of the respective theories. In a given three dimensional theory,
however, whenever a Z[0]

r zero-form symmetry is gauged, this results in an emergent
Z[1]
r one-form global symmetry for the new theory (and vice versa) [87]. Thus, since
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the O(N) gauge group is obtained by gauging the (Z[0]
2 )C charge conjugation sym-

metry of SO(N) (see Fig. (4.6.6)), we get an additional quantum (Z[1]
2 )Ĉ one-form

global symmetry which combines with the pre-existent one of Tab. (6.1.14) [60, 112].
Moreover, the exact form of the resulting one-form global symmetry group depends
on N . Since we are interested in the even case only, we get that the final form for the
one-form global symmetry of O(2N) is (Z[1]

2 )Ĉ×(Z[1]
2 )centre. In this sense, when talking

about the one-form global symmetries, Table (6.1.14) must be modified as following

Group One-form symmetry

SO(2N) Z[1]
2

O(2N) (Z[1]
2 )Ĉ × (Z[1]

2 )centre

USp(2N) Z[1]
2

(6.1.15)

where, for the sake of simplicity, we considered the even cases only.
In the following, however, we will work with 3d Chern–Simons theories of the

form Gk and not with pure Yang-Mills theories. So, we must see what happens when
introducing a Chern–Simons interaction of the form (2.1.7) in the previous theories.
Thanks to this new term, monopole operators Vm with gauge charge m =

∑RankG
a ma

acquire an electric charge proportional to km. The presence of such new charged
matter screens some of the pre-existing Wilson lines of the theory and the original
one-form symmetry group is reduced.

In the unitary cases we get:

• For N = 1 the naive U(1)[1] one-form symmetry is reduced to Z[1]
k .

This is because the most general Wilson line has charge m (see (6.1.12)) and a
collection of k such Wilson lines can be screened by the monopole operator Vm.

• For N > 1 we can write the gauge group U(N)k as

U(N)k = SU(N)k × U(1)Nk/ZN (6.1.16)

The SU(N)k theory in (6.1.16) possesses a Z[1]
N one-form symmetry since its

monopoles cannot be electrically charged, i.e.
∑

ama = 0. On the other hand,
the U(1)Nk theory in (6.1.16) possesses a Z[1]

Nk one-form symmetry. Modding
out a combined ZN from the two, we are left with a Z[1]

k one-form symmetry.

Here a Wilson line in the fundamental representation (N) has charge 1 (see
(6.1.13)), and a collection of k such Wilson lines can be screened by the unit
monopole operator V1.

In the orthosymplectic case, only the one-form symmetry for the orthogonal group
O(N)k can be modified by the presence of the CS level and, thus, its exact form will
depend on both N and k. In the even case, for example, we get

O(2N)k
k (Mod4)

0 2

One-form symmetry (Z[1]
2 )Ĉ × (Z[1]

2 )centre Z[1]
4

(6.1.17)
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where, for k = 2 Mod4, the (Z[1]
2 )Ĉ and (Z[1]

2 )centre one-form symmetries combines into
an overall Z[1]

4 .
As explained in [60, Sections 2.3 and 2.4] and [112, Section 6.2], the Z[1]

4 one-form
symmetry of the O(N)k theory arises from a "non-trivial extension" between the two
original one form symmetries. Whenever such a non-trivial extension between two
symmetries exists1, the resulting overall symmetry gets enhanced. To keep track of
such a peculiar behaviour, one can define the so-called "short exact sequence" between
the two symmetries; in this case it reads:

0 → (Z[1]
2 )Ĉ → Z[1]

4 → (Z[1]
2 )centre → 0 (6.1.18)

In the following we will see lots of examples of short exact sequences and non-trivial
extensions.

To conclude this section, let us stress that the screening process happens whenever
we insert generic charged matter into a theory. The representation R in which the
matter sits establishes which Wilson lines are screened and, thus, how the naive one-
form symmetry of the centre is reduced. Then, if this one-form symmetry shares a
non-trivial extension with some other symmetry, it can enhance to a new one.

6.1.2 One-form symmetry gauging

As any other global symmetry, the one-form symmetry of a given theory can be gauged
too [87]. If the one-form symmetry is continuous this can be done in the usual way by
coupling the one-form electric current Je to a generic background 2-form connection
B. If, on the other hand, the one-form symmetry is discrete the gauging procedure
can be performed by summing summing over all possible insertions of the symmetry
transformations operators Ug(M).

In both cases, when we gauge a subgroup C of the global one-form symmetry, we
obtain a gauge theory with gauge group G/C. This can be seen by analysing the
Wilson lines before and after the gauging is performed.

As we already saw, in the absence of charged matter, for simply-connected gauge
group G, one allows Wilson lines of any possible representation.

Suppose, however, we start with a gauge group G/C instead of G. Since the
representations of G/C are a subset of those of G, any representation that transforms
non-trivially under C is prohibited for the Wilson lines. This limits the allowed Wilson
lines of the theory to be a subgroup of those we would have had considering G as a
gauge group.

When for example G = SU(N) and C ≡ Z(G) = ZN , in the theory with gauge
group SU(N)/ZN only the Wilson lines carrying tensor products of the adjoint rep-
resentation remain. However these lines are screened by the gluons which sit in the
adjoint representation too. So in the SU(N)/ZN theory there are no unscreened
Wilson lines and, therefore, no remaining one-form symmetry.

Since the complete screening of Wilson lines corresponds to the gauging of the
entire one-form symmetry Z[1]

N of the SU(N) theory, this means that the gauged
theory must then be SU(N)/ZN .

We should remark again that every time we gauge a discrete q-form symmetry we
gain a new quantum (d− q− 2)-form symmetry. In this sense, as already anticipated,
in our three dimensional case, whenever a one-form electric symmetry C [1] is gauged,
a new zero-form magnetic global symmetry C [0] emerges in the gauged theory (and

1As we will see in the following sections, the involved symmetries can also be of different nature
such a p-form symmetry and a q-form one.
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vice versa). This feature can be detected by looking at the monopole operators of the
gauged theory; in fact some of these monopoles are absent in the original theory and
are exactly the operators charged under the new zero-form magnetic symmetry.

Suppose in fact that G/C = U(N)k/Zk. This theory admits additional monopole
operators with respect to the U(N)k theory, corresponding to fractional magnetic
fluxes [31]

mi = j diag

(
1

k
, · · · , 1

k

)
where j ∈ Zk (6.1.19)

Indeed, after gauging the Z[1]
k one-form electric symmetry, we get a new Z[0]

k zero-
form magnetic symmetry which acts on these newly added monopole operators.

This new zero-form magnetic symmetry can then combine with the pre-existing
topological symmetry (if existing at all) and form a new global symmetry group. We
will present this phenomenon in detail later for the ABJM and ABJ theories we are
interested in.

The introduction of this fractional magnetic fluxes in the G/C theory has some
consequences on the computation of the 3d superconformal index (4.5.100). Indeed,
when summing over all the possible values of the magnetic fluxes {ma}, one must take
into account the fact that now they arrange into different sectors Sp which must be
summed up separately.

Suppose again that G/C = U(N)k/Zk. Then the different sectors are defined as
follows

Sp =
{
ma ∈ Z +

p

k
| Mod(kma, k) = p, ∀a = 1, . . . , N

}
(6.1.20)

then the summation over the magnetic fluxes in (4.5.100) becomes

∑
{ma}

gauging Zk−−−−−−−→
k−1∑
p=0

gp
∑

{ma∈Sp}

(6.1.21)

where we introduced a new fugacity g encoding the belonging of the magnetic fluxes
to a specific sector Sp. This fugacity will represent at the index level the new Z[0]

k

zero-form magnetic symmetry of the gauged theory (see, for example, (6.4.2)).

6.2 The ABJM theories

We want to apply all the concepts of the previous section to the ABJ theories with
both unitary and orthosymplectic gauge groups. These are generalizations of the
aforementioned ABJM theories which constitute the most basic cases. Thus, we will
now analyse the latter and come back later to the first.

The ABJM U(N)k×U(N)−k theories [6] are a family of three-dimensional SCFTs
with at least N = 3 supersymmetry whose quiver diagram is depicted in Fig. (6.2.1).

Nk N−k
H1

H2

(6.2.1)

They contain two hypermultiplets {H1, H2} in the bi-fundamental representation
of the two gauge groups U(N)k×U(N)−k. These two hypermultiplets can be written
in a N = 2 formalism as four chiral fields
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CI = (A1, A2, B1′ , B2′) (6.2.2)

where Aα and Bα′ transform in the (2,1) and (1,2) representations respectively of
the R-symmetry group SU(2)L × SU(2)R ⊂ SU(4)R.

The supersymmetry of such theories gets enhanced to N = 6. To see this, let us
first write down the superpotential, which takes the form

W =
k

8π
Tr
(

Φ2
(2) − Φ2

(1)

)
+
∑
α=α′

(
Tr
(
Bα′Φ(1)Aα

)
+ Tr

(
AαΦ(2)Bα′

))
(6.2.3)

Once the scalar fields Φ(i) are integrated out, the resulting superpotential can then
be rewritten in a more compact way as follows

W =
2π

k
εαβεα

′β′ Tr
(
AαBα′AβBβ′

)
(6.2.4)

which explicitly exhibits an SU(2)A × SU(2)B flavour symmetry.
This flavour symmetry does not commute with the aforementioned R-symmetry,

thus combining the two together the resulting global symmetry is SU(4)C which acts
on the four chiral fields CI collectively. Since the supercharges cannot be singlets under
this combination of flavour and R- symmetries, the supersymmetry gets enhanced to
at least N = 6 so that the R-symmetry becomes SO(6) ' SU(4).

6.2.1 Hanany-Witten brane construction

Let us now focus on the Hanany-Witten brane construction of the ABJM theories [6,
Section 3].

The Hanany-Witten brane setup for k = 0 is depicted in Fig. (6.2.5), where the
direction x6 of Table (3.1.1) has been compactified to a circle.

NS5

NS5

N D3 −→ N0 N0
(6.2.5)

Chern–Simons interaction terms can be obtained within the Hanany-Witten brane
construction by a particular mass deformation of the usual configuration of Table
(3.1.1). This deformation combines k D5 branes and a NS5 brane into a new type
of five brane which we call (1, k) fivebrane by rotating them in the (5, 9), (3, 7) and
(4, 8) planes by the same discrete θ angle, such that tan θ = k.

In the end, the new brane configuration becomes

Type 0 1 2 3 4 5 6 7 8 9
NS5 × × × × × ×
D3 × × × ×

(1, k)5 × × × (3, 7)θ (4, 8)θ (5, 9)θ (3, 7)θ (4, 8)θ (5, 9)θ
(6.2.6)



6.3. The ABJ theories 177

According to this new five brane classification, the standard NS5 brane becomes
a (1, 0) fivebrane while the standard D5 brane becomes a (0, 1) fivebrane. Thus in
general we could have (`, k) fivebrane according to how many D5 branes and NS5
brane we respectively mix in the new five brane. A generic Hanany-Witten brane
configuration of this type is depicted in Fig. (6.2.7) (see for example [109]). When all
the `i are equal to one, the worldvolume theory becomes a circular quiver with the
gauge group U(N1)k1−kn × U(N2)k2−k1 × . . .× U(Nn)kn−kn−1 .

(`1, k1)5

(`2, k2)5

(`3, k3)5

...

N1 D3 N2 D3

N3 D3N4 D3

`i=1 ∀i−−−−−−−−→

N1
k1−kn

N2
k2−k1

N3
k3−k2

...
(6.2.7)

Thus, considering, as in Fig. (6.2.8), one NS5 brane and one (1, k) fivebrane on
top of N D3 branes, we get a U(N)k × U(N)−k Yang-Mills Chern–Simons theory,
which is exactly a standard ABJM theory.

NS5 = (1, 0)5

(1, k)5

N D3 −→ Nk N−k (6.2.8)

One can then lift the Hanany-Witten brane configuration to M-theory. Here,
taking the IR limit of the new configuration, the system becomes the near-horizon
limit of M2 branes probing a C4/Zk singularity. This interesting fact will become
very useful in the following sections.

Now that we know the brane setup for the ABJM theories, it will be very easy to
generalise this construction and to build the ABJ and related theories.

6.3 The ABJ theories

The first generalization of the ABJM theories consists in the ABJ theories of the form
U(N + x)k × U(N)−k [1]. These are obtained by slightly modifying the brane setup
(6.2.8) as follows
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(1, 0)5

(1, k)5

N + x D3N D3 −→ (N + x)k N−k (6.3.1)

where we only added x D3 branes on the right part of the brane setup. According to
the rules of the previous section, this transform the U(N)k gauge node into a U(N+x)k
one by leaving untouched the hypermultiplets (their number in fact corresponds to
the number of D5 branes inserted in the setup, which, in this case, are not modified).
Clearly we could also add the x D3 branes on the left part of the brane setup (6.2.8),
leading to the U(N)k × U(N + x)−k ABJ theory.

These additional x suspended D3 branes, however, are constrained by the proper-
ties of the Hanany-Witten brane setup. First of all, since they are stretched between
two different types of five branes, they are locked into position and have fixed coordi-
nates along the (3, 4, 5) and (7, 8, 9) directions (see Sec. (3.1)). Moreover, due to the
s-rule, which prevents more than one D3 brane to be stretched between a NS5- and
a D5 brane pair, we must have k ≥ x. In other words, the number of suspended D3
branes must be less or equal to the number of D5 branes mixed in the (1, k) fivebrane.

Furthermore, we can also perform the Hanany-Witten move of Fig. (3.1.9) on the
additional x suspended D3 branes. Moving the (1, k) fivebrane through the NS5 brane,
as in Fig. (6.3.2), and taking into account the s-rule constraints, the pre-existing x
D3 branes are annihilated while k − x branes are created. The latter come from the
k − x D5 branes mixed in the (1, k) fivebrane that did not possess any stretched D3
brane prior to the move.

(1, 0)5

(1, k)5

N + x D3N D3
Hanany-Witten←−−−−−−−−→

move

(1, 0)5

(1, k)5

N + k − x D3 N D3

(6.3.2)
After the Hanany-Witten move, the resulting theory on the right side of Fig.

(6.3.2) is the U(N)k × U(N + k − x)−k ABJ theory. Since the two brane setups of
Fig. (6.3.2) are completely equivalent, the corresponding theories are dual and thus

U(N + x)k × U(N)−k ←→ U(N)k × U(N + k − x)−k (6.3.3)

Another possible variation of this setup consists in including an orientifold O3-
plane wrapped on the circle. As we already saw in Sec. (3.4), the presence of such
O3-plane makes the five branes become half branes and changes the gauge groups
related to the D3 branes according to Table (3.4.4). We can see an example in Fig.
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(6.3.4), where we depicted the brane setup for theO(2(N+x))2k×USp(2N)−k theory2.

1
2

(1, 0)5

1
2

(1, 2k)5

N + x D3N D3

O3

−+ −→ 2(N + x)2k 2N−k (6.3.4)

This allows us to obtain an entire class of new N = 5 SCFTs with gauge groups
O(M) × USp(2N) which we call "ABJ-like theories" and which exact form depend
on the type of the inserted O3-plane and on the number of D3 branes. The possible
theories are the following:

O(2N + 2x)2k × USp(2N)−k with k ≥ x− 1 (6.3.5)
USp(2N + 2x)k ×O(2N)−2k with k ≥ x+ 1 (6.3.6)
O(2N + 2x+ 1)2k × USp(2N)−k with k ≥ x (6.3.7)
USp(2N + 2x)k ×O(2N + 1)−2k with k ≥ x (6.3.8)

and other four obtained by sending k → −k. The restrictions on x, as in the unitary
case, are obtained by taking into account the s-rule constraints (see Sec. (3.4.1)).
However, when an O3-plane is introduced in the brane setup, the s-rule gets more
complicated, since the creation or annihilation of the D3 branes depends on the charge
q of the orientifold plane and, thus, one has to pay more attention.

These theories possess dual relations of the form (6.3.3) when performing the
Hanany-Witten move of Fig. (3.4.5) on the additional x suspended D3 branes. These
are

O(2N + 2x)2k × USp(2N)−k ←→ O(2N + 2(k − x+ 1))−2k × USp(2N)k

USp(2N + 2x)k ×O(2N)−2k ←→ USp(2N + 2(k − x− 1))−k ×O(2N)2k

O(2N + 2x+ 1)2k × USp(2N)−k ←→ O(2N + 2(k − x) + 1)−2k × USp(2N)k

USp(2N + 2x)k ×O(2N + 1)−2k ←→ USp(2N + 2(k − x))−k ×O(2N + 1)2k

(6.3.9)

Moreover, when considering ABJ-like theories of the form O(2N)2k×USp(2N)−k,
the brane configuration can again be lifted to M-theory. Here, in the IR, it is found to
be equal to the near-horizon limit of M2 branes probing a C4/D̂k singularity, where
D̂k is the binary dihedral group with 4k elements. Thanks to this, recalling what
we said in the previous section, the duality in the first line of (6.0.1) is evident from
the simple fact that D̂1 = Z4 as groups and thus the singularities probed by the M2
branes in the near-horizon limit are exactly the same. This duality was indeed first
conjectured in [1] on this basis and then studied in more detail in [54].

In the following, we will consider also theories of the form SO(M) × USp(2N).
Since these theories differ from the ones in (6.3.8) just for the ungaged charge con-
jugation discrete ZC2 symmetry of the SO(M) gauge node (see Fig. (4.6.6)), we will

2We remark again that each red node with a label N denotes an O(N) or SO(N) group and each
blue node with an even label 2N denotes a USp(2N) group.
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treat them as ABJ theories too.
The matter content of the ABJ-like theories of the form (S)O(2N)2k×USp(2N)−k

is exactly the same as in the unitary case (as depicted, for example, in the quiver of
Fig. (6.3.4)). However, because of the presence of orthosymplectic gauge groups, the
four N = 2 chiral fields CI (6.2.2) are now subject to the reality conditions

Aα = Bα′J (6.3.10)

where where J is the invariant antisymmetric matrix of the symplectic group. In this
sense the two N = 4 hypermultiplets {H1, H2} becomes two real "half hypermulti-
plets" preserving a subgroup USp(4)R ⊂ SU(4)R of the original R-symmetry.

Moreover, due to the identifications (6.3.10), the original SU(2)A×SU(2)B flavour
symmetry is reduced to SU(2)A only.

6.3.1 Dualities and one-form symmetry gauging

One of the main objectives of this chapter is to take the first duality of (6.0.1), namely

I : O(2N)2 × USp(2N)−1 ←→ U(N)4 × U(N)−4 (6.3.11)

and see what happens if we gauge the global one-form symmetries of the two theories
involved in the duality. To do so, however, we need to study each theory and their
global symmetries in detail. For convenience, in the following we respectively use (L)
and (R) to denote the left and right descriptions of each duality we will examine.

1. The I(R) description.

In examining the global symmetries of this theory we will closely follow [31,
Section 2.1] and make use of their notation for monopole operators. Thus, from
now on, T{mL;mR} will denote a monopole operator with fluxes mL and mR in
the left and right gauge nodes respectively. Its electric gauge charge will then
be (kmL,−kmR) with

mL =

N∑
a

(mL)a, mR =

N∑
a

(mR)a (6.3.12)

At first glance, recalling what said in Sec. (6.1.1), the one-form symmetry is
naively Z[1]

4 × Z[1]
4 , with one Z[1]

4 factor for each gauge node. To understand
the real form of this symmetry, we need however to see which Wilson line are
present in the theory and which ones are screened.

First of all, the bifundamental matter fields in the (N ,N) representation screen
the Wilson lines in the (N ,N) representation charged under the anti-diagonal
combination of Z[1]

4 × Z[1]
4 . Both have in fact electric gauge charges (1, 1) under

the two U(1) factors of the gauge groups.

Then, since there is no other charged matter field in the theory apart from
monopole operators T{m1;m2} with electric gauge charge (4m1,−4m2), Wilson
lines in the (N ,N) representation with electric gauge charge (1,−1) cannot be
screened by monopoles unless if taken in groups of four.

The resulting one-form symmetry is thus the diagonal Z[1]
4 subgroup only.

Focusing now on zero-form symmetries, theory I(R) also possesses a U(1)
[0]
top

topological symmetry which is the diagonal combination of the two U(1) factors
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coming from the two gauge nodes3. This symmetry possesses a mixed anomaly
with the Z[1]

4 one-form symmetry characterised by the following short exact
sequence:

I(R) : 0 → Z[1]
4 → Z[1]

4 × U(1)
[0]
top → U(1)

[0]
top → 0 (6.3.13)

which shows that there is no non-trivial extension between these two symmetries.

Finally, as seen in Sec (6.2), theory I(R) also possesses the standard SU(2)A ×
SU(2)B flavour symmetry of the ABJM theories.

2. The I(L) description.

As already said in Sec. (6.1.1), both O(2N) and USp(2N) gauge groups have a
Z2 centre thus the one-form symmetry is naively Z[1]

2 × Z[1]
2 . However, similarly

to the I(R) theory, the half-hypermultiplets in the bifundamental representation
screen the diagonal combination of Z[1]

2 × Z[1]
2 , and so we are left with the anti-

diagonal Z[1]
2 subgroup only, which we denote by (Z[1]

2 )centre. Then, since in
our case the CS level is k = 2, the anti-diagonal (Z[1]

2 )centre combines with
the quantum (Z[1]

2 )Ĉ into an overall Z[1]
4 one-form symmetry [60, 112]. This

symmetry is characterised by the short exact sequence (6.1.18).

Coming to the global zero-form symmetries, the U(1)
[0]
top topological symmetry

of theory I(R) is not manifest in the I(L) description but we got a discrete
(Z[0]

2 )M zero-form magnetic symmetry4 coming from the centre of the gauge
nodes. Moreover, the SU(2)A×SU(2)B flavour symmetry of the ABJM theories
is reduced to SU(2)A by the identifications (6.3.10).

Thanks to the superconformal index, in Subsection (6.4.3) we study in detail the
zero-form symmetries of the dual theories I(L) and I(R) of (6.3.11) and their matching,
which can be performed even if the symmetries are manifestly different by mapping
the index fugacities across the duality. The result of the analysis is summarized in the
first line of Table (6.3.20) along with all the zero-form symmetries and their respective
fugacities.

Now, let us see what happens to the duality (6.3.11) if we gauge the one-form
symmetry in each theory. Even if both theories I(L) and I(R) possess a Z[1]

4 one-form
symmetry, the correct way of doing this is by step, gauging only Z2 subgroups of it.
In such a way, we can understand in a clear way what happens to the theories and to
their global symmetries. Thus, in the theory I(L), this is obtained by gauging (Z[1]

2 )Ĉ ,
whereas in the theory I(R), this corresponds to gauging a generic Z[1]

2 subgroup of the
Z[1]

4 one-form symmetry. As a result, we should obtain an emergent new Z[0]
2 zero-form

symmetry in each gauged theory.
As we will see in details in the following sections, the superconformal index shows

that the resulting theories are indeed again dual to eachother and, thus, that we are
left with the duality

II : SO(2N)2 × USp(2N)−1 ←→ U(N)4 × U(N)−4/Z2 (6.3.14)
3The anti-diagonal U(1) acts non-trivially on the bifundamental matter fields and therefore defines

a U(1))
[0]
B zero-form baryonic symmetry.

4Notice also that in the special case of N = 1 this symmetry is actually continuous and becomes
U(1)

[0]
M.
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1. The II(R) description.

This new emergent Z[0]
2 zero-form symmetry is identified with the discrete topo-

logical symmetry which, naively, we call (Z[0]
2 )g. However, as pointed out in

[31, Section 2.5], the theory II(R) of the new duality (6.3.14) actually has a
U(1)[0] × Z[0]

GCD(N,2) zero-form symmetry. This can be seen by considering the

action of (Z[0]
2 )g on the new monopole operators introduced in theory II(R)

with fractional magnetic flux of the form (6.1.19). This action can in fact
be reproduced by the U(1)

[0]
top topological symmetry except for the elements

in the Z[0]
GCD(N,2) subgroup of (Z[0]

2 )g. Thus, the global symmetry actually is

U(1)[0] × Z[0]
GCD(N,2).

Similarly to [31, (2.18)], this phenomenon can also be explained as the existence
of a non-trivial extension of the U(1)

[0]
top topological symmetry and the zero-form

discrete topological symmetry (Z[0]
2 )g, characterised by the short exact sequence:

II(R) : 0 → (Z[0]
2 )g → U(1)[0] × Z[0]

GCD(N,2) → U(1)
[0]
top → 0 . (6.3.15)

Clearly, the other global symmetries and the flavour symmetries are left un-
touched by the one-form symmetry gauging.

2. The II(L) description.

The new emergent Z[0]
2 zero-form symmetry is identified with the charge conjuga-

tion symmetry (Z[0]
2 )C , making the orthogonal gauge node change from O(2N)2

to SO(2N)2. This adds up to the already existing (Z[0]
2 )M zero-form magnetic

symmetry.

Again,the flavour symmetries are unchanged by the gauging.

The mapping of the discrete zero-form symmetries across duality (6.3.14) then
qualitatively changes depending on the value of GCD(N, 2) and will be illustrated in
details in the following sections, when studying the superconformal index for some
specific values of N .

After this first Z2 gauging, each description of the duality (6.3.14) also has a
remnant Z[1]

4 /Z
[1]
2 = Z[1]

2 one-form symmetry.
Following the discussion in [151], if we start from the (6.1.18) exact sequence of

theory II(L) and gauge the (Z[1]
2 )Ĉ one-form symmetry, we obtain the new short exact

sequence:

II(L) : 0 → (Z[0]
2 )C → (Z[0]

2 )C × (Z[1]
2 )centre → (Z[1]

2 )centre → 0 (6.3.16)

with a mixed anomaly between the zero-form charge conjugation symmetry (Z[0]
2 )C

and the centre Z[1]
2 centre one-form symmetry (as discussed in [60, Section 2.4]).

Since there is no mixed anomaly between (Z[1]
2 )Ĉ and (Z[1]

2 )centre in (6.1.18), there
is no non-trivial extension between (Z[0]

2 )C and (Z[1]
2 )centre (and so the exact sequence

(6.3.16) is split).
Given the identification of the global symmetries between the theories II(L) and

II(R) that we will see later, the same statements hold on the side of theory II(R)
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between Z[0]
GCD(N,2) and the remnant Z[1]

2 . This is consistent with the fact that the

description II(R) has indeed a Z[1]
2 one-form symmetry [31], without any extension

with a zero-form symmetry. We will describe how to see the relation between the two
global symmetries of the theories, namely (Z[0]

2 )C× (Z[0]
2 )top and U(1)

[0]
top×Z[0]

GCD(N,2),
around (6.4.36) in terms of the superconformal index. See also the second line of
Table (6.3.20) for a summary of the zero-form symmetries of theories II(L) and II(R).

Finally, we gauge the remnant Z[1]
2 one-form symmetry in each description of the

duality (6.3.14). As a result, we obtain the following new duality between the gauged
theories

III : SO(2N)2 × USp(2N)−1/Z2 ←→ U(N)4 × U(N)−4/Z4 (6.3.17)

We also gain a Z[0]
2 zero-form symmetry in both descriptions of the duality (6.3.17).

For convenience, let us denote it by (Z[0]
2 )g.

1. The III(R) description.

There is a non-trivial extension Z[0]
4 zero-form symmetry that arises from the

mixed anomaly (6.3.16) between the discrete topological symmetry Z[0]
GCD(N,4)

of the theory II(R) and the remnant one-form symmetry (Z[1]
2 )centre, which we

gauged. As pointed out in [31, (2.17)], for the same reasons of theory II(R),
the description III(R) has now a U(1)[0]×Z[0]

GCD(N,4) zero-form symmetry, which

is a further non-trivial extension between the aforementioned Z[0]
4 zero-form

symmetry and the topological symmetry U(1)
[0]
top:5

III(R) : 0 → Z[0]
4 → U(1)[0] × Z[0]

GCD(N,4) → U(1)
[0]
top → 0 (6.3.18)

2. The III(L) description.

On the other hand, by the same reasoning as in [60, Section 2.4 and Footnote
20], the (abelian) zero-form symmetry is either (Z[0]

2 )g × (Z[0]
2 )M if 2N in the

SO(2N) gauge factor is not equal to 2 mod 4, or the non-trivial extension
Z[0]

4 of the former if 2N in the SO(2N) gauge factor is equal to 2 mod 4.6

Note that the U(1)
[0]
top topological symmetry is again not manifest in theory III(L).

As a result, not every generator of the U(1)[0] × Z[0]
GCD(N,4) symmetry is manifest in

theory III(L). For example, in (6.4.32), we show that in the case of N = 2, the Z[0]
2

subgroup of the U(1)[0] symmetry of theory III(R) is identified with the Z[0]
2 subgroup

of the (Z[0]
2 )g × (Z[0]

2 )M symmetry or of the Z[0]
4 symmetry of theory III(L). See also

5For N = 1 the non-trivial extension implies that the symmetry is only U(1)[0]. This is compatible
with what happens on the side of theory III(L) as discussed in Footnote (6). We show that U(1)[0]

on the side III(R) is identified with U(1)
[0]
M on the side III(L) at the level of the index in (6.4.12).

6The above statements hold only for N > 1 since [60, (2.18)] for the anomaly applies only to
discrete symmetries, while the case N = 1 where the magnetic symmetry is U(1)[0] should be treated
separately. In (6.4.10) we show at the level of the index that (Z[0]

2 )g can be absorbed into U(1)[0],
indicating that the non-trivial extension between the two symmetries occurs also for N = 1.
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the third line of Table (6.3.20) for a summary of the zero-form symmetries of theories
III(L) and III(R).

A recap is thus essential. In the previous paragraphs we analyzed the following
dualities

←→

←→

←→

I: O(2N)2 × USp(2N)−1

II: SO(2N)2 × USp(2N)−1

III: [SO(2N)2 × USp(2N)−1]/Z2

Z[1]
2

Z[1]
2

U(N)4 × U(N)−4

[U(N)4 × U(N)−4]/Z2

[U(N)4 × U(N)−4]/Z4

Z[0]
2

Z[0]
2

(6.3.19)

where a downwards arrow with the label Z[1]
2 denotes the gauging of the Z[1]

2 one-form
symmetry and an upwards arrow with the label Z[0]

2 denotes the gauging of the Z[0]
2

zero-form symmetry.
We also studied in detail the zero-form and one-form symmetries of each pair of

dual theories (L) and (R) and their matching. The result of such analysis is summa-
rized in Table (6.3.20)

Theory L Theory R Map

I
SU(2)A × (Z[0]

2 )M SU(2)A × SU(2)B × U(1)
[0]
top (6.4.65)N=1

f , ζ (ζ ′ when N = 1) u, v, w′ (6.4.76)N=2

II
SU(2)A × (Z[0]

2 )C × (Z[0]
2 )M SU(2)A × SU(2)B × U(1)[0] × Z[0]

GCD(N,2) (6.4.46)N=1

f , χ, ζ (ζ ′ when N = 1) u, v, w′, g′′ (6.4.58)N=2

III
SU(2)A × (Z[0]

2 )g × (Z[0]
2 )M SU(2)A × SU(2)B × U(1)[0] × Z[0]

GCD(N,4) (6.4.12)N=1

f , g, ζ (ω when N = 1) u, v, w, g′ (6.4.32)N=2

(6.3.20)
Let us stress that the manifest zero-form symmetries in the left (L) and right

(R) frames of each of the three dualities I, II and III do not straightforwardly match
between the dual theories, since part of the full IR symmetry can be emergent in one
or both of the dual frames, rendering the mapping of symmetries across the duality
non-trivial. In the last column of Table (6.3.20) we refer to the equations in the main
text where the such mapping is described for the N = 1 and N = 2 cases at the level
of the indices refined with fugacities for all the manifest symmetries. Note that for
the special case of N = 1 the zero-form Z2 magnetic symmetry in the first column
should be replaced by the zero-form U(1) topological symmetry.

Special cases

There are many interesting special cases that can be considered.

1. For N = 1, duality II becomes

SO(2)2 × USp(2)−1 ↔ [U(1)4 × U(1)−4]/Z2 ↔ U(1)2 × U(1)−2 . (6.3.21)
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We discuss the indices of these theories in Section (6.4.2). They are different
descriptions of the worldvolume theory of a single M2 brane on C4/Z2 singular-
ity, and so they all have N = 8 supersymmetry. The second arrow is, in fact, a
special case of the following duality for abelian theories:

[U(1)kp × U(1)−kp]/Zp ←→ U(1)k × U(1)−k . (6.3.22)

2. The theories involved in duality III are also related to others as follows.

[SO(2N)2 × USp(2N)−1]/Z2 ←→ [U(N)4 × U(N)−4]/Z4

[31, 108, 153]←→ [SU(N)4 × SU(N)−4]/ZN
(6.3.23)

(a) For N = 1, we have the theory of two free hypermultiplets:

[SO(2)2 × USp(2)−1]/Z2 ↔ [U(1)4 × U(1)−4]/Z4

↔ 2 free hypermultiplets
(6.3.22)↔ U(1)1 × U(1)−1

(6.3.24)

(b) For N = 2, we have

[SO(4)2 × USp(4)−1]/Z2 ↔ [U(2)4 × U(2)−4]/Z4

[31, 108, 153]↔ [SU(2)4 × SU(2)−4]/Z2

[153]↔ U(3)2 × U(2)−2

[153]↔ Spin(5)/Z2 or USp(4)/Z2 SYM
(6.3.25)

These theories have N = 8 supersymmetry. On the other hand, we find
that the theory SO(4)2×USp(4)−1, which is dual to [U(2)4×U(2)−4]/Z2,
has N = 6 supersymmetry (see Section (6.4.2)). The Z2 discrete quotient,
indeed, brings about extra operators carrying a non-trivial charge under the
new Z2 zero-form topological symmetry. The conserved currents associated
to these operators lead to N = 8 supersymmetry.

(c) On the other hand, for the case of N = 3 in (6.3.23), from the index com-
putation, we see that [U(3)4×U(3)−4]/Z4 possesses N = 6 supersymmetry
(see below (6.4.29)).

Generalisations

The above results can be generalised in many ways. First, we consider the U(3)4 ×
U(1)−4 and its dual O(4)2 × USp(2)−1. According to the discussion around [153,
(3.19)], such theories have a non-anomalous Z2 one-form symmetry. Upon gauging
this symmetry, we obtain a duality pair: [U(3)4×U(1)−4]/Z2 ↔ SO(4)2×USp(2)−1.
We discuss the symmetries of these theories in Sections (6.4.4) and (6.4.5).
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We then generalise (6.3.24) to a circular quiver with 2N alternating SO(2)2 and
USp(2)−1 gauge groups, with a discrete Z2 quotient. It turns out that the theories
in this class are dual to 3d N = 4 gauge theories described by a circular quiver with
a collection of N U(1) gauge groups and with a hypermultiplet with charge 1 under
each gauge group (see Fig. (6.3.26)). More details are provided in Section (6.4.6).

 2
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2

4

2

3

2

2

2

1

2

2

2

2N

/Z2 , k = 1 ←→ 11

5

1

1

4
1

1

3

1 1

2

1

1

1

1

1

N

, k = 0

(6.3.26)
Finally, we study the dual pair O(2N+1)2×USp(2N)−1 ↔ U(N+1)4×U(N)−4,

as well as the dual pair SO(2N +1)2×USp(2N)−1 ↔ [U(N +1)4×U(N)−4]/Z2. As
a surprise, it turns out that these four theories have the same superconformal indices,
even refined with fugacities for their 0-form discrete symmetries (see Section (6.4.7)).
In particular, the zero-form charge conjugation symmetry in the SO(2N + 1)2 ×
USp(2N)−1 theory acts trivially and is unfaithful, so as the Z2 zero-form symmetry
arising from the Z2 discrete gauging in the [U(N + 1)4 × U(N)−4]/Z2 theory. We
conjecture that the Z2 one-form symmetry of the first two theories acts trivially on
the spectrum of the line operators.

6.4 Dualities and superconformal indices

6.4.1 [SO(2N)2 × USp(2N)−1]/Z2 ↔ [U(N)4 × U(N)−4]/Z4

In this subsection, we consider the duality between these two theories:

III(L): [SO(2N)2 × USp(2N)−1]/Z2 ↔ III(R): [U(N)4 × U(N)−4]/Z4 (6.4.1)

The case of N = 1

For N = 1, the theory III(R): [U(1)4 × U(1)−4]/Z4 is dual to SU(1)4 × SU(1)−4 [31,
153]. We expect the latter to be identical to the theory of two free hypermultiplets,
which is also dual to the U(1)1×U(1)−1 theory. Subsequently, we study these theories
in detail with the aid of the superconformal index.

The index of theory III(R) is given by (we summarized our conventions for the
index in Section (4.6), see in particular (4.6.12) for the contribution Zchir of the chiral
multiplet)
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IN=1
III(R)(u, v, w) =

3∑
p=0

gp
∑

(m1;m2)∈(Z+ p
4 )

2

∮
dz1

2πiz1

∮
dz2

2πiz2
z4m1

1 z−4m2
2 wm1

1 wm2
2 ×

∏
s=±1

Zchir(u
sz1z

−1
2 ;m1 −m2; 1/2)Zchir(v

sz2z
−1
1 ;m2 −m1; 1/2)

=
∏
s=±1

Zchir

(
g3usw̃−1/2; 0; 1/2

)
Zchir

(
gvsw̃1/2; 0; 1/2

)
=
∏
s=±1

Zchir
(
w−1us; 0; 1/2

)
Zchir (wvs; 0; 1/2)

(6.4.2)

where u and v are the fugacities for the SU(2)A × SU(2)B flavour symmetry and w
is the fugacity for the U(1)[0] zero-form topological symmetry. In the above, g is the
Z4 discrete topological fugacity satisfying g4 = 1, but it can be absorbed into a U(1)
global symmetry by a redefinition (see Table (6.3.20)). In particular, we have defined

w̃ = (w1w2)1/2 , w = gw̃1/2 = g(w1w2)1/4 . (6.4.3)

We remark that if one makes a change of variables s1 = z1z2 and s2 = z1z
−1
2 , the

contribution of the matter fields Zchir is independent of s1 and so the integration over
s1 leads to a delta-function that sets (see also [153, (4.15)])

m1 = m2 . (6.4.4)

This is in agreement with the discussion of [65, Section 4.1.4]. As a result, only
the combination w1w2, but not w1/w2, appears in the index.

The last line of (6.4.2) is indeed the index of the theory with two free hypermulti-
plets. These are identified as the gauge invariant dressed di-baryons, discussed in [31,
(2.11)] (with N = 1 and k = 4 in their notation):

Bα = T{− 1
4

;− 1
4
}Aα , B′α′ = T{ 1

4
; 1
4
}Bα′ ; (6.4.5)

where we denote by α, β, . . . = 1, 2 the indices for the SU(2)A flavour symmetry and
by α′, β′, . . . = 1, 2 the indices for the SU(2)B flavour symmetry. Note that the gauge
invariant dressed monopole operators

(M−1)α1···α4 = T{−1;−1}Aα1 · · ·Aα4 ,

(M+1)α′1···α′4 = T{+1;+1}Bα′1 · · ·Bα′4 ,
(6.4.6)

are related to the di-baryons by the relations

(M−1)α1···α4 =
4∏
j=1

Bαj , (M+1)α′1···α′4 =
4∏
j=1

B′α′j . (6.4.7)
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In order to obtain the index for U(1)1×U(1)−1, we proceed as follows. We rewrite
the above index using the variables m̃1 = 4m1 and m̃2 = 4m2. The contribution
from the Chern–Simons levels is therefore zm̃1

1 zm̃2
2 . The summation of (m1,m2) ∈

(Z + p/4)2 is then equivalent to the summation of (m̃1, m̃2) ∈ (4Z + p)2, where p
is summed from 0 to 3. The factors corresponding to the topological fugacities are
wm1

1 wm2
2 = w

1
4
m̃1

1 w
1
4
m̃2

2 . We can now shift m̃1,2 → m̃1,2 + p and so, together with gp,
we have

(g(w1w2)
1
4 )pw

1
4
m̃1

1 w
1
4
m̃2

2 = wpw
1
4
m̃1

1 w
1
4
m̃2

2
(6.4.8)

where w = g(w1w2)
1
4 as stated in (6.4.3). Using (6.4.4), namely m̃1 = m̃2 ≡ m̃,

and writing w1 = ws and w2 = ws−1, (6.4.8) becomes wp+
1
2
m̃. Upon shifting m̃ →

m̃ − 2p, we are left with w
1
2
m̃ = w

1
4
m̃1w

1
4
m̃2 . Observe that the discrete fugacity g

as well as the factor wp disappear from the index. At this point, the summation of
p ∈ {0, 1, 2, 3} together with the summation of (m̃1; m̃2) ∈ (4Z + p)2 can be replaced
by the summation of (m̃1; m̃2) ∈ Z2. Moreover, the argument in Zchir depends only on
m1−m2, which is an integer, and so we can replace it by m̃1−m̃2. Overall, we obtain
the index for U(1)1 × U(1)−1, as required. This procedure can be easily generalised
to show duality (6.3.22), namely [U(1)kp × U(1)−kp]/Zp ↔ U(1)k × U(1)−k.

The index of theory III(L): [SO(2)2 × USp(2)−1]/Z2 is given by

IN=1
III(L)(f, ω)

=
1∑
p=0

gp
∑

(m1,m2)∈(Z+ p
2 )

2

∮
dz1

2πiz1

∮
dz2

2πiz2
z2m1

1 ζm1z−2m2
2 Z

USp(2)
V (z2,m2)×

∏
s,s1,s2=±1

Zchir(f
szs11 z

s2
2 ; s1m1 + s2m2; 1/2)

=
∏
s=±1

Zchir

(
g ζ

1
2 fs; 0; 1/2

)
Zchir

(
g ζ−

1
2 fs; 0; 1/2

)
=
∏
s=±1

Zchir (ωfs; 0; 1/2)Zchir
(
ω−1fs; 0; 1/2

)
(6.4.9)

where ζ is the fugacity of the U(1)
[0]
M magnetic (topological) symmetry of SO(2), f is

the fugacity of the SU(2)A flavour symmetry, g is the fugacity associated with the Z2

topological symmetry (see Table (6.3.20)), the fugacity ω is defined as

ω = g ζ
1
2 , (6.4.10)

and the contribution ZUSp(2)
V from the USp(2) vector multiplet is as defined in (4.6.4).

Observe that the Z2 zero-form symmetry, associated with the fugacity g, can be
absorbed into the magnetic symmetry. This results in a U(1)[0] zero-form global
symmetry with fugacity ω. The last line of (6.4.30) is indeed the index of the theory
with two free hypermultiplets. These are identified with the gauge invariants dressed
di-baryons:
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B+
α = T{ 1

2
; 1
2}Aα , B−α = T{− 1

2
;− 1

2}Aα . (6.4.11)

where in this case α = 1, 2 is an index for the SU(2)A flavour symmetry.
Comparing (6.4.2) with (6.4.30), we see that

IN=1
III(L)(f, ω) = IN=1

III(R)(u = f, v = f, w = ω) . (6.4.12)

The U(1)[0] zero-form topological symmetry of theory III(R) with fugacity w is
mapped to the U(1)[0] zero-form symmetry of theory III(L) with fugacity ω, whereas
the SU(2)A flavour symmetry of theory III(L) with fugacity f is identified with the
diagonal subgroup of the SU(2)A × SU(2)B flavour symmetry of theory III(R) with
fugacities u and v respectively.

[U(N)4 × U(N)−4]/Z4 with N ≥ 2

The index for theory III(R): [U(N)4 × U(N)−4]/Z4 can be written as

IIII(R)(u, v, w1, w2, g)

=
3∑
p=0

gp
∑
Sp

 N∏
j=1

∮
dz

(j)
1

2πiz
(j)
1

∮
dz

(j)
2

2πiz
(j)
2

(z
(j)
1 )4m

(j)
1 (z

(j)
2 )−4m

(j)
2

×
w

∑N
j=1 m

(j)
1

1 w
∑N
j=1 m

(j)
2

2

2∏
`=1

Z
U(N)
V (z

(1)
` , . . . , z

(N)
` ;m

(1)
` , . . . ,m

(N)
` )×

N∏
i,j=1

∏
s=±1

Zchir(u
sz

(i)
1 /z

(j)
2 ;m

(i)
1 −m

(j)
2 ; 1/2)Zchir(v

sz
(i)
2 /z

(j)
1 ;m

(i)
2 −m

(j)
1 ; 1/2)

(6.4.13)

where g4 = 1, the notation Sp stands for the summation over

(m
(1)
1 , . . . ,m

(N)
1 ;m

(1)
2 , . . . ,m

(N)
2 ) ∈

(
Z +

p

4

)2N
(6.4.14)

and the contribution ZU(N)
V of the U(N) vector multiplet is as defined in (4.6.2).

Note that the integration over the diagonal gauge U(1) leads to a delta-function
imposing the constraint7

7As explained in [65, Section 4.1.4], due to the D-term equations, the gauge invariant quantities
can be formed provided that the magnetic fluxes of the two gauge groups are paired:

m
(j)
1 = m

(j)
2 ≡ m(j) , j = 1, . . . , N , (6.4.15)

provided that we use the Weyl symmetry to order fluxes so that m(1)
1 ≥ m

(2)
1 ≥ · · · ≥ m

(N)
1 and

m
(1)
2 ≥ m(2)

2 ≥ · · · ≥ m(N)
2 . We point out that (6.4.15) only holds at the level of the moduli space of

vacua. In fact, it can be shown that there are non-trivial contributions to the index (at higher orders
than x3) from the magnetic fluxes that satisfy (6.4.16) but not (6.4.15). We thank Luca Viscardi for
pointing this out to us.
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N∑
j=1

m
(j)
1 =

N∑
j=1

m
(j)
2 . (6.4.16)

According to [153, Section 2.3], the apparent Z4 zero-form symmetry, associ-
ated with the fugacity g, is actually ZGCD(N,4). More generally, in the [U(N)k ×
U(N)−k]/Zk theory part of the Zk zero-form symmetry can be absorbed into the
U(1)top topological symmetry and only ZGCD(N,k) remains. By explicitly computing
the index, one can indeed check that it can be rewritten solely in terms of two new
fugacities8

w = g(w1w2)N/k , g′ = gk/GCD(N,k) , (6.4.17)

where w is the fugacity for the "new" topological symmetry U(1)[0] while g′ is the
ZGCD(N,k)-valued fugacity for the Z[0]

GCD(N,k) discrete symmetry (see Table (6.3.20)).
This means that the actual zero-form global symmetry of the theory is SU(2)A ×

SU(2)B × U(1)[0] × Z[0]
GCD(N,k).

The special case of N = 2

After redefining the fugacities as in (6.4.17)

w = g(w1w2)1/2 , g′ = g2 , (6.4.18)

the index (6.4.13) for the case of N = 2 can be written as

IN=2
III(R)(u, v, w, g

′)

= 1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) + w−1χ

SU(2)
[2] (u) + wχ

SU(2)
[2] (v)

]
+ x2

[
(g′ + 1)w−2χ

SU(2)
[4] (u) + (g′ + 1)w−1χ

SU(2)
[3] (u)χ

SU(2)
[1] (v)

+
(
w ↔ w−1, u↔ v

)
+ (g′ + 2)χ

SU(2)
[2] (u)χ

SU(2)
[2] (v) + w2 + w−2

− χSU(2)
[2] (u)− χSU(2)

[2] (v)
]

+ . . . .

(6.4.19)

The unrefined index is (cf. [90, (4.5)])

IN=2
III(R)(u = 1, v = 1, w = 1, g′ = 1) = 1 + 10x+ 75x2 + 230x3 + 449x4 + . . . .

(6.4.20)

8We normalise the power of w such that the di-baryon operators, which involve the monopole op-
erators T±{1/k, · · · , 1/k︸ ︷︷ ︸

N

; 1/k, · · · , 1/k︸ ︷︷ ︸
N

}, carry U(1)[0] topological charge ±1; see (6.4.21). This explains

the power N/k of w1w2 in (6.4.17).
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Note that the operators with R-charge 1 are9

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a

w−1χ
SU(2)
[2] (u) : Bαβ = T{− 1

4
,− 1

4
;− 1

4
,− 1

4
}(Aα)ai (Aβ)bjε

ijεab

wχ
SU(2)
[2] (v) : B′α′β′ = T{+ 1

4
,+ 1

4
;+ 1

4
,+ 1

4
}(Bα′)

i
a(Bβ′)

j
bεijε

ab

(6.4.21)

where the last two are the gauge invariant dressed di-baryons. Here a, b, . . . = 1, 2
and i, j, . . . = 1, 2 are the gauge indices for each U(2) gauge group, α, β, . . . = 1, 2
are the indices for the SU(2)A flavour symmetry, and α′, β′, . . . = 1, 2 are the indices
for the SU(2)B flavour symmetry. Let us discuss some examples of marginal opera-
tors, contributing at order x2 of the index. The combinations BB transform in the
representation Sym2[2; 0] = [4; 0] + [0; 0] of SU(2)A × SU(2)B and similarly for B′B′:

w−2χ
SU(2)
[4] (u) + w−2 : BαβBγδ

w2χ
SU(2)
[4] (v) + w2 : B′α′β′B′γ′δ′ .

(6.4.22)

Note that the index (6.4.19) can be rewritten in terms of characters of SU(4)
representations as follows:

(6.4.13)N=2 = 1 + xχ
SU(4)
[0,0,2] (s)

+ x2
[
(g′ + 1)χ

SU(4)
[0,0,4] (s) + χ

SU(4)
[0,2,0] (s)− χ

SU(4)
[1,0,1] (s)

]
+ . . . ,

(6.4.23)

where we have taken

w = q2 (6.4.24)

and have used the fugacity map10

s1 = qu , s2 = q2 , s3 = qv . (6.4.25)

Since this theory is known to be dual to the Bagger-Lambert-Gustavson [16, 103]
theory [SU(2)4 × SU(2)−4]/Z2 and the USp(4)/Z2 super-Yang-Mills (see [153, Table
1]), it has N = 8 supersymmetry. This can be seen from the index (6.4.13) as follows.
(The argument given below is the same as that of [28, Appendix C.1]11). We rewrite

9 As pointed out in [22, 24, 31, 125, 128], for a U(N)k gauge group, the monopole operators with
the magnetic fluxes (m1,m2, · · · ,mN ), with m1 ≥ m2 ≥ · · · ≥ mN , transform under the representa-
tion of the SU(N) gauge factor with the Dynkin label [k(m1−m2), k(m2−m3), · · · , k(mN−1−mN )]
and carry U(1) gauge charge k

∑N
i=1 mi. Consequently, the monopoles T{± 1

4
,± 1

4
;± 1

4
,± 1

4
} have charge

(±2,∓2) under the U(1) subgroups of the two U(1) ∼= SU(2) × U(1) gauge groups. Moreover, in
(6.4.21) the ε-tensors are with respect to the SU(2) parts. Hence, the object (Aα)ai (Aβ)bjε

ijεab is
invariant under the SU(2) parts, while it has charge (±2,∓2) under the U(1) parts, making the
operator Bαβ gauge invariant and similarly for B′α′β′ .

10In this convention, the character of the fundamental representation [1, 0, 0] of SU(4) is written
as χSU(4)

[1,0,0](s) = s1 + s2s
−1
1 + s3s

−1
2 + s−1

3 .
11See also [88, 92, 97] for other examples of supersymmetry enhancements in 3d detected with the

index.
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(6.4.19), or equivalently (6.4.23), as anN = 3 index.12 This can be achieved by setting
u = v = f and w = q2 in (6.4.19), or by using branching rules of representations of
SU(4) to those of a maximal subgroup of USp(4) in (6.4.23). Either way, we obtain
the N = 3 index in terms of characters of representations of USp(4) as

(6.4.13)N=2 = 1 + xχ
USp(4)
[2,0] (h) + x2

[
(g′ + 1)χ

USp(4)
[4,0] (h) + χ

USp(4)
[0,2] (h) + 1

+ χ
USp(4)
[0,1] (h)− χUSp(4)

[2,0] (h)− χUSp(4)
[0,1] (h)

]
+ . . .

(6.4.26)

where we have used the fugacity map13

h1 = qf , h2 = q−1f

s1 = h1 , s2 = h1h
−1
2 , s3 = h1 .

(6.4.27)

Note that (6.4.26) satisfies all of the necessary conditions for the enhanced N = 8
supersymmetry [74]. The blue term in (6.4.26) is the contribution of 5 marginal
operators in the representation [0, 1] of USp(4), whereas the red term in (6.4.26) is the
contribution of the extra supersymmetry currents. These two contributions precisely
cancel with each other. Since we have 5 extra supersymmetry currents, supersymmetry
gets enhanced from N = 3 to N = 3+5 = 8, as expected. Let us discuss the marginal
operators corresponding to the blue term in (6.4.26) in detail. First of all, since [0, 1]
is a subrepresentation of Sym2[2, 0] = [4, 0] ⊕ [0, 2] ⊕ [0, 1] ⊕ [0, 0], we expect that
such marginal operators can be constructed by appropriately multiplying those in
(6.4.21). Secondly, since the representation [0, 1] of USp(4) decomposes into those of
SU(2)f ×U(1)q as [2]0⊕ [0]−2⊕ [0]2, we propose that the corresponding operators are
respectively14

(Tr M)M̂αβ , M̂αβBγδεβγεαδ , M̂αβB′γδεβγεαδ , (6.4.28)

where α, β, γ, δ = 1, 2 are the indices for SU(2)f , which is a diagonal subgroup of
SU(2)A × SU(2)B of theory III(R), and we have defined

Tr M = Mαβε
αβ , M̂αβ = Mαβ −

1

2
(TrM)εαβ . (6.4.29)

12As a requirement of an N = 3 index, the order x receives a contribution solely from the N = 3
flavour current, and so the coefficient of x must be an adjoint representation of the flavour symmetry
of the corresponding N = 3 theory. The index (6.4.19), or equivalently (6.4.23), is an N = 2 index,
not an N = 3 index, since the coefficient of order x is not an adjoint representation of SU(4). As
can be seen below, one can rewrite this as an N = 3 index by tuning some fugacities to be equal and
reexpressing the index in terms of characters of representations of USp(4).

13In this convention, the character of the fundamental representation [1, 0] of USp(4) is written as
χ
USp(4)

[1,0] (h) = h1 + h−1
1 + h2 + h−1

2 .
14There are other two operators in the representations [0]∓2 of SU(2)f ×U(1)q that are contained

in the branching rule of the representation [4, 0] of USp(4), namely

εαβεγδ(Aα)ai (Aβ)bj(Bγ)ib(Aδ)
c
kε
jkεacT{− 1

4
,− 1

4
;− 1

4
,− 1

4
} ,

εαβεγδ(Bα)ia(Bβ)jb(Aγ)bi (Bδ)
k
c εjkε

acT{+ 1
4
,+ 1

4
;+ 1

4
,+ 1

4
} .
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Finally, let us remark that in the case of N = 2 the di-baryon operators B and B′
have R-charge 1 and so they contribute at order x of the index, which makes it fulfil
the condition for having N = 8 supersymmetry. For a general N , the di-baryons have
R-charge N/2, and so for N ≥ 3 they contribute at a higher order of the index. In the
latter case, the only contribution at order x comes from the operators M , which have
4 components. We thus expect the theory with N ≥ 3 to have N = 6 supersymmetry
[74].

[SO(2N)2 × USp(2N)−1]/Z2 with N ≥ 2

The index for the theory III(L): [SO(2N)2 × USp(2N)−1]/Z2 is

IIII(L)(f, g, ζ)

=
1∑
p=0

gp
∑
S′p

 N∏
j=1

∮
dz

(j)
1

2πiz
(j)
1

∮
dz

(j)
2

2πiz
(j)
2

(z
(j)
1 )2m

(j)
1 (z

(j)
2 )−2m

(j)
1

 ζ
∑N
j=1m

(j)
1 ×

Z
SO(2N)
V (z

(1)
1 , . . . , z

(N)
1 ;m

(1)
1 , . . . ,m

(N)
1 )Z

USp(2N)
V (z

(1)
2 , . . . , z

(N)
2 ;m

(1)
2 , . . . ,m

(N)
2 )×

N∏
i,j=1

∏
s,s1,s2=±1

Zchir

(
fs(z

(i)
1 )s1(z

(j)
2 )s2 ; s1m

(i)
1 + s2m

(j)
2 ; 1/2

)
(6.4.30)

where S ′p stands for the summation over (m
(1)
1 , . . . ,m

(N)
1 ,m

(1)
2 , . . . ,m

(N)
2 ) ∈

(
Z + p

2

)2N ,
f is the fugacity associated with the SU(2)A flavour symmetry, ζ is the fugacity as-
sociated with the (Z[0]

2 )M magnetic symmetry of the SO(2N) gauge group satisfying
ζ2 = 1, and g is the fugacity for the topological (Z[0]

2 )g symmetry satisfying g2 = 1
(see Table (6.3.20)).

Let us provide an explicit expression for N = 2 up to order x2:

IN=2
III(L)(f, g, ζ)

= 1 + x
[
1 + (g + ζ + gζ)χ

SU(2)
[2] (f)

]
+ x2

[
5χ

SU(2)
[4] (f) + 5

+ (g + ζ + gζ)
(

2χ
SU(2)
[4] (f) + 2χ

SU(2)
[2] (f)

)
− χSU(2)

[2] (f)
]

+ . . .

(6.4.31)

with the unrefined index IN=2
III(L)(f = 1, g = 1, ζ = 1) given by (6.4.20). Note that it is

not possible to absorb g with a redefinition of ζ as in (6.4.17). The manifest zero-form
global symmetry of this theory is therefore SU(2)A× (Z[0]

2 )g× (Z[0]
2 )M. We can match

the indices (6.4.19) and (6.4.31) as follows:

IN=2
III(L)(f, g = ξ, ζ = ξ) = IN=2

III(R)(u = f, v = f, w = ξ, g′ = 1)
∣∣∣
ξ2=1

. (6.4.32)

In the theory III(L) only the diagonal subgroup SU(2)A of the flavour symmetry
SU(2)A × SU(2)B of the theory III(R) is manifest. Moreover, the U(1)[0] zero-form
topological symmetry of the theory III(R) is not manifest in the theory III(L), but its
Z2 subgroup is identified with the diagonal Z2 symmetry of (Z[0]

2 )g×(Z[0]
2 )M in III(L).

Furthermore, the Z[0]
GCD(N,k) = Z[0]

2 symmetry with fugacity g′ of the theory III(R) is
not manifest in the theory III(L). Since we claim that the theories III(L) and III(R)
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are dual to each other, the theory III(L) is expected to have an emergent zero-form
symmetry SU(2)A × SU(2)B × U(1)[0] × Z[0]

2 .

6.4.2 SO(2N)2 × USp(2N)−1 ↔ [U(N)4 × U(N)−4]/Z2

In this subsection, we consider the duality between the following two theories:

II(L): SO(2N)2 × USp(2N)−1 ↔ II(R): [U(N)4 × U(N)−4]/Z2 . (6.4.33)

The theory II(L) can be obtained by gauging the (Z[0]
2 )g zero-form symmetry of

the theory III(L), where at the level of the index this corresponds to summing over
g ∈ {±1} in (6.4.30). Note also that in the description II(L) there is also a (Z[0]

2 )C
zero-form charge conjugation symmetry, whose fugacity will be denoted by χ.

On the other hand, we can obtain the theory II(R) from the theory III(R) by
gauging a Z2 subgroup of the U(1)[0] × Z[0]

GCD(N,4) zero-form symmetry. In general,
we can only gauge a Zm′ subgroup of this symmetry such that k = m′m = 4, with
m′,m ∈ Z. In our case m′ = m = 2. From the perspective of the index, this discrete
gauging can be done as follows.

First, we rewrite the index (6.4.13) using the variables w and g′ as indicated in
(6.4.17); these are indeed the correct fugacities for the U(1)[0] ×Z[0]

GCD(N,4) symmetry
to explicitly appear in the index.

Then, we define a new fugacity

g̃ ∈ Zm′ = {exp(2πi j/m′)| j = 0, 1, . . . ,m′ − 1} (6.4.34)

to substitute the g fugacity in the index (6.4.13). Thus, taking

w = g̃(w1w2)N/k , g′ = g̃k/GCD(N,k) , (6.4.35)

and summing over g̃ ∈ Zm′ , we are left with the fugacities (w1w2)N/k and g′ such that
(g′)GCD(N,k) = 1.

By computing the index one can check that we can further redefine15

w′ = g′(w1w2)N/m
′

= g′(w1w2)mN/k , g′′ = (g′)
GCD(N,k)

GCD(N,m′) , (6.4.36)

where

(g′′)GCD(N,m′) = (g′)GCD(N,k) = 1 . (6.4.37)

The zero-form symmetry of the theory II(R) is therefore SU(2)A × SU(2)B ×
U(1)[0]×Z[0]

GCD(N,m′) with fugacities u, v, w′ and g′′ respectively. This is in agreement
with the discussion in [31, Section 2.5] and, in fact, it works for any k, m and m′.

15Similarly to Footnote (8), we normalise the power of w′ such that the di-baryon operators,
which involve the monopole operators T±{1/m′, · · · , 1/m′︸ ︷︷ ︸

N

; 1/m′, · · · , 1/m′︸ ︷︷ ︸
N

}, carry U(1)[0] charge ±1;

see (6.4.52). This explains the power N/m′ = mN/k of w1w2 in (6.4.36).
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As a result of gauging a Z[0]
2 zero-form symmetry, both of II(L) and II(R) have a

Z[1]
2 one-form symmetry.

The case of N = 1

Let us examine the theory II(R): [U(1)4 × U(1)−4]/Z2. The index of this theory is
almost the same as (6.4.2), with two exceptions: the summation over (m1,m2) is in
(Z + p/2)2, and the summation over p is from p = 0 to 1. The index, up to order x2,
can be written as

IN=1
II(R) = 1 + x

[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) + w−1χ

SU(2)
[2] (u) + wχ

SU(2)
[2] (v)

]
+ x2

[
w−2χ

SU(2)
[4] (u) + w−1χ

SU(2)
[3] (u)χ

SU(2)
[1] (v) +

(
w ↔ w−1, u↔ v

)
+ χ

SU(2)
[2] (u)χ

SU(2)
[2] (v)− (w + w−1)χ

SU(2)
[1] (u)χ

SU(2)
[1] (v)

− χSU(2)
[2] (u)− χSU(2)

[2] (v)− 2
]

+ . . . .

(6.4.38)

It turns out that the theory II(R) coincides with the ABJM theory U(1)2×U(1)−2.
To see this equivalence, we make the following change of variables: m′1 = 2m1 and
m′2 = 2m2. The contribution from the Chern–Simons levels is therefore z2m′1

1 z
2m′2
2 .

The summation of (m1,m2) ∈ (Z + p/2)2 is then equivalent to the summation of
(m′1,m

′
2) ∈ (2Z + p)2, where p is summed over {0, 1}. At this point, we can just

set g = 1 since GCD(N,m) = GCD(1, 2) = 1 and take the summation of (m′1,m
′
2)

to be over Z2. Since Zchir only depends on m1 − m2, which is an integer, we can
replace the latter by m′1 −m′2. Overall, we obtain the index of U(1)2 × U(1)−2. Due
to this equivalence, we conclude that the theory [U(1)4 × U(1)4]/Z2 also has N = 8
supersymmetry.

Let us comments on the operators that contribute to the index (6.4.38). From the
perspective of the [U(1)4 × U(1)4]/Z2 theory, there are monopole operators

T±m
2
≡ T±m{ 1

2
; 1
2} , m ∈ Z , (6.4.39)

which carry gauge charges ±m(2,−2) under the gauge group U(1)4 × U(1)−4, due
to the discrete Z2 quotient. On the other hand, the monopole operators T± 1

2
do not

exist in the U(1)2 × U(1)−2 theory, but there are instead the monopole operators

V±m ≡ V±m{1;1} , m ∈ Z , (6.4.40)

which carry gauge charges ±m(2,−2) under the gauge group U(1)2 × U(1)−2. The
operators that contribute at order x are

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = AαBα′

w−1χ
SU(2)
[2] (u) : T− 1

2
AαAβ ↔ V−1AαAβ

wχ
SU(2)
[2] (v) : T+ 1

2
Bα′Bβ′ ↔ V+1Bα′Bβ′

(6.4.41)
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Observe that the di-baryon operators in [U(1)4 × U(1)4]/Z2 get mapped to the
dressed monopole operators in U(1)2×U(1)−2. The marginal operators, contributing
to order x2, are

w−2χ
SU(2)
[4] (u) : V−2Aα1Aα2Aα3Aα4

w−1χ
SU(2)
[3] (u)χ

SU(2)
[1] (v) : V−1Aα1Aα2Aα3Bα′1

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Aα1Aα2Bα′1Bα′2 ,

(6.4.42)

where in the first two lines we can obtain those correspond to the terms w2χ
SU(2)
[4] (v)

and wχSU(2)
[3] (v)χ

SU(2)
[1] (u) by simply simultaneously exchanging V−m ↔ V+m and A↔

B. These gauge invariant combinations are written from the perspective of the U(1)2×
U(1)−2 theory. In the [U(1)4 × U(1)4]/Z2 duality frame, one simply needs to replace
V±m by T±m/2 in the above expressions.

Similarly to (6.4.23) and (6.4.26), the index of the theory [U(1)4 × U(1)4]/Z2
∼=

U(1)2 × U(1)−2 can be written in terms of SU(4) characters and USp(4) characters
as follows:

IN=1
II(R) = 1 + xχ

SU(4)
[0,0,2] (s) + x2

[
χ
SU(4)
[0,0,4] (s)− χ

SU(4)
[1,0,1] (s)− 1

]
+ . . .

= 1 + xχ
USp(4)
[2,0] (h) + x2

[
χ
USp(4)
[4,0] (h)− χUSp(4)

[2,0] (h)− χUSp(4)
[0,1] (h)− 1

] (6.4.43)

where we use the fugacity maps (6.4.25) and (6.4.27). The first line should be regarded
as an N = 2 index, whereas the second line should be regarded as an N = 3 index,
since e.g. the coefficient of x is an adjoint representation of the flavour symmetry
of the N = 3 theory. The red term is the contribution of the N = 3 extra super-
symmetry currents. Since there are 5 of them in the representation [0, 1] of USp(4),
supersymmetry gets enhanced from N = 3 to N = 3 + 5 = 8. The term −1 at or-
der x2 worths some explanations. This corresponds to a conserved current associated
with the U(1) global symmetry that gives charge 1 to all of the chiral multiplets Aα
and Bα′ . For convenience, we shall denote this symmetry by U(1)D. Note that this
symmetry is specific to the abelian ABJM theory, since the superpotential vanishes.
In the non-abelian case, the superpotential (6.2.4) does not vanish and so the U(1)D
symmetry is explicitly broken. Moreover, the current of the U(1)D symmetry does
not belong to the N = 3 flavour current multiplet and so does not contribute at order
x of the index. This is because the N = 3 superpotential (6.2.3) of the abelian ABJM
theory does not allow such a charge assignment.

Let us now analyse the index of the SO(2)2 × USp(2)−1 theory. This can be
computed using (6.4.30) with two modifications: the summation of (m1,m2) is over
Z2, and the part

∑1
p=0 g

p is removed. The result is the same as (6.4.38), with u =
v = f and w = ζ. In other words, the SU(2)A flavour symmetry of theory II(L) is
identified with the diagonal subgroup of SU(2)A × SU(2)B of theory II(R), and the
U(1)M magnetic symmetry of theory II(L) is identified with the topological symmetry
of theory II(R). In fact, we can also turn on the fugacity χ for the (Z[0]

2 )C zero-
form charge conjugation symmetry [4]. For χ = 1, the index is the same as that of
SO(2)2 × USp(2)−1, i.e. as discussed before. For χ = −1, the index is



6.4. Dualities and superconformal indices 197

∑
m2∈Z

∮
dz2

2πiz2
z−2m2

2 Z
USp(2)
V (z2,m2)

∏
s,s1,s2=±1

Zchir(s1f
szs22 ; s2m2; 1/2)

= 1 +

(
−f2 − 1

f2

)
x+

(
f4 +

1

f4
+ 1

)
x2 +

(
−f6 − 1

f6

)
x3 + . . . .

(6.4.44)

Let ζ ′ be the fugacity for a Z2 subgroup of the U(1)M magnetic symmetry. The
index can be written in terms of the fugacities f , ζ ′ and χ as

1 + x
[
1 + (ζ ′ + χ+ ζ ′χ)χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + χ+ ζ ′χ+ 2)χ

SU(2)
[4] (f)− χSU(2)

[2] (f)− (ζ ′ + χ+ ζ ′χ)
]

+ . . .
(6.4.45)

where ζ ′2 = χ2 = 1. Note that ζ ′ and χ appear on an equal footing and they can be
interchanged. In this notation, we can match the indices (6.4.38) and (6.4.45) as

[(6.4.38)](u = f, v = f, w = χ)
∣∣∣
χ2=1

= [(6.4.45)](f, ζ ′ = χ, χ) . (6.4.46)

The unrefined indices of theories II(L) and II(R) with N = 1 are given by [54,
(4.2)]:

1 + 10x+ 19x2 + 26x3 + 49x4 + 26x5 + . . . . (6.4.47)

[U(2)4 × U(2)4]/Z2

The index of theory II(R): [U(2)4 × U(2)4]/Z2 can be written as

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
(g′′ + 1)w′−1χ

SU(2)
[4] (u) + (g′′ + 1)w′χ

SU(2)
[4] (v)

+ g′′(w′ + w′−1) + (g′′ + 2)χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1

− χSU(2)
[2] (u)− χSU(2)

[2] (v)− 1
]

+ . . .

(6.4.48)

where (g′′)2 = 1 and we have used the notation as discussed around (6.4.36). The
corresponding unrefined index is given by

1 + 4x+ 43x2 + 108x3 + 241x4 + . . . . (6.4.49)

The operators that contribute at order x are

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a . (6.4.50)

Due to the Z2 quotient, the elementary monopole operators are
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T± 1
2
≡ T{± 1

2
,± 1

2
;± 1

2
,± 1

2} . (6.4.51)

Arising from the discrete gauging, they transform non-trivially under the Z[0]
GCD(4,2) =

Z[0]
2 zero-form symmetry. They carry charges ±1 under the U(1)[0] zero-form topo-

logical symmetry. Moreover, T− 1
2
carries gauge charges 4

(
−1

2 −
1
2 ,

1
2 + 1

2

)
= (−4,+4)

under the U(1)×U(1) gauge subgroup of the U(2)4×U(2)−4 gauge group. Similarly,
T+ 1

2
carries such gauge charges (+4,−4).

Now let us discuss the marginal operators, contributing the positive terms at order
x2. The di-baryon gauge invariant operators are16

g′′w′−1
(
χ
SU(2)
[4] (u) + 1

)
: Bα1...α4 = T− 1

2
(Aα1)a1

i1
(Aα2)a2

i2
(Aα3)a3

i3
(Aα4)a4

i4
εi1i2εa1a2ε

i3i4εa3a4

g′′w′
(
χ
SU(2)
[4] (v) + 1

)
: B′α′1...α′4 = T+ 1

2
(Bα′1)i1a1

(Bα′2)i2a2
(Bα′3)i3a3

(Bα′4)i4a4
εi1i2ε

a1a2εi3i4ε
a3a4

(6.4.52)

where the representations [4]⊕ [0] come from the decomposition of Sym2[2] of SU(2)A
or SU(2)B. There are also the following marginal operators:

g′′χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) :

G(αβ)(α′β′) = (T{ 1
2
,− 1

2
; 1
2
,− 1

2
})

(i1i2i′3i
′
4)

(a1a2a′3a
′
4)

(Aα)a1
i1

(Aβ)a2
i2

(Bα′)
i3
a3

(Bβ′)
i4
a4
×

εi
′
3i3εi

′
4i4εa′3a3

εa′4a4
.

(6.4.53)

where we remark that the monopole operator T{ 1
2
,− 1

2
; 1
2
,− 1

2
} transforms in the repre-

sentation [40; 40] of the U(2)× U(2) gauge group. There are gauge invariant dressed
monopole operators, contributing w′−1χ

SU(2)
[4] (u) and w′χSU(2)

[4] (v) at order x2,

(M−1)α1...α4 = (T{−1,0;−1,0})
(i1···i4)
(a1···a4)(Aα1)a1

i1
(Aα2)a2

i2
(Aα3)a3

i3
(Aα4)a4

i4

(M+1)α′1...α′4 = (T{+1,0;+1,0})
(a1···a4)
(i1···i4) (Bα′1)i1a1

(Bα′2)i2a2
(Bα′3)i3a3

(Bα′4)i4a4

(6.4.54)

where, as for the ABJM theory, T±{1,0;1,0} transform in the representation [4±4; 4∓4]
of the U(2)4 × U(2)−4 gauge group.17 Finally, there are also the following marginal
operators:

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1 : Mαα′Mββ′ ,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (Aα)ai (Bα′)

i
b(Aβ)bj(Bβ′)

j
a

(6.4.55)

where the latter are subject to the relations (6.4.71) coming from the F -terms. We
will discuss these two operators in more detail around (6.4.70).

16The dressing of the monopole operators works similarly to to what was explained in Footnote
(9).

17Here [kq] stands for a U(2) ∼= SU(2) × U(1) representation consisting of the spin k/2 represen-
tation of the SU(2) part and having charge q under the U(1) part.
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Theory II(R): [U(2)4×U(2)4]/Z2, in fact, has N = 6 supersymmetry. This can be
seen from the index as follows. It is convenient to rewrite (6.4.48) in terms of anN = 3
index simply by setting u = v = f and using the fact that [2]⊗ [2] = [4]⊕ [2]⊕ [0]:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(g′′ + 1)(w′ + w′−1)χ

SU(2)
[4] (f)

+ g′′(w′ + w′−1) + (g′′ + 2)(χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1) + 1

− χSU(2)
[2] (f)− (χ

SU(2)
[2] (f) + 1)

]
+ . . .

(6.4.56)

where the contribution of the N = 3 flavour currents is denoted in blue and the the
contribution of the N = 3 extra supersymmetry current is written in red. Since there
are 3 of the latter, we conclude that supersymmetry gets enhanced from N = 3 to
N = 3 + 3 = 6.

SO(4)2 × USp(4)−1

The index of theory II(L): SO(4)2 × USp(4)−1 can be written as

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(1 + 2(1 + χ) + (1 + χ)ζ)χ

SU(2)
[4] (f)

+ (1 + χ)ζχ
SU(2)
[2] (f) + (1 + 2(1 + χ))− (1− χ)ζ − χSU(2)

[2] (f)
]

+ . . . .
(6.4.57)

with the unrefined index given by (6.4.49). The indices (6.4.48) and (6.4.57) can be
matched as follows:

[(6.4.48)](u = v = f, w′ = 1, g′′ = χ) = [(6.4.57)](f, χ, ζ = 1) . (6.4.58)

In other words, the SU(2)A flavour symmetry of theory II(L) is identified with the
diagonal subgroup of the flavour symmetry SU(2)A × SU(2)B of theory II(R). The
Z

[0]
2 zero-form symmetry of theory II(R) with fugacity g′′ is identified with the zero-

form charge conjugation symmetry (Z[0]
2 )C of theory II(L) with fugacity χ. However,

the U(1)[0] zero-form topological symmetry of theory II(R) with fugacity w′ is not
manifest in theory II(L), whereas the magnetic symmetry (Z[0]

2 )M of theory II(L)
with fugacity ζ is not manifest in theory II(R) (see Table (6.3.20)).

6.4.3 O(2N)2 × USp(2N)−1 ↔ U(N)4 × U(N)−4

In this subsection, we consider the well-known duality between the following two
theories:

I(L): O(2N)2 × USp(2N)−1 ↔ I(R): U(N)4 × U(N)−4 . (6.4.59)

Theory I(L) can be obtained from theory II(L) by gauging the zero-form charge
conjugation symmetry of the latter. At the level of the index, this can be done by
summing over χ ∈ {−1,+1}. As a result, we are left with the fugacity f for the SU(2)A

flavour symmetry and the fugacity ζ for the (Z[0]
2 )M zero-form magnetic symmetry.
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On the other hand, theory I(R) can be obtained from theory II(R) by gauging the
zero-form symmetry Z[0]

GCD(N,2) of the latter with fugacity g′′. In particular, given the
index of theory II(R) written in terms of u, v, w′ and g′′, where (g′′)GCD(N,2) = 1, we
are summing over g′′ ∈ {e2πij/GCD(N,2) | j = 0, 1, . . . ,GCD(N, 2)− 1}. As a result, we
are left with the fugacities u and v for the SU(2)A × SU(2)B flavour symmetry and
the fugacity w′ for the U(1)

[0]
top topological symmetry.

The case of N = 1

The N = 2 index for theory I(R): U(1)4 × U(1)−4 is

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w′χ

SU(2)
[4] (v) + w′−1χ

SU(2)
[4] (u)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 2

]
+ . . .

(6.4.60)

In order to write this in terms of the N = 3 index, we set u = v = f and use the
tensor product decomposition [2]⊗ [2] = [4]⊕ [2]⊕ [0]:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w′ + w′−1)χ

SU(2)
[4] (f)

+ χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)− 1
]

+ . . . ,

(6.4.61)

where the blue terms denote the contribution of the N = 3 flavour currents in
SU(2)f × U(1)

[0]
top, and the red terms denote the contribution of the N = 3 extra

supersymmetry current. Since there are three of the latter, we conclude that super-
symmetry gets enhanced from N = 3 to N = 6, as expected. The last −1 term at
order x2 is the contribution of the current of the U(1)D symmetry, discussed below
(6.4.43).

The operators contributing at order x of (6.4.60) correspond to

Mαα′ = AαBα′ . (6.4.62)

Those contributing to the positive terms at order x2 (i.e. N = 2 preserving
marginal operators) are gauge invariant dressed monopole operators and the square
of M :

w′−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = T{−1;−1}Aα1Aα2Aα3Aα4 ,

w′χ
SU(2)
[4] (v) : (M+1)α′1···α′4 = T{+1;+1}Bα′1Bα′2Bα′3Bα′4 ,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (AαAβ)(Bα′Bβ′) = Mαα′Mββ′ .

(6.4.63)

On the other hand, the index of theory I(L): O(2)2 × USp(2)−1 can be obtained
by summing over χ ∈ {−1, 1} in (6.4.45)
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1 + x
[
1 + ζ ′ χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + 1)χ

SU(2)
[4] (f)

+ χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)− ζ ′
]

+ . . .
(6.4.64)

where (ζ ′)2 = 1.18 The indices (6.4.60) and (6.4.64) can be matched as follows:

[(6.4.60)](u = f, v = f, w′ = 1) = [(6.4.64)](f, ζ ′ = 1) . (6.4.65)

In other words, the U(1)
[0]
top topological symmetry of theory I(R) is not manifest in

theory I(L), whereas the (Z[0]
2 )M magnetic symmetry of theory I(L) is not manifest in

theory I(R). As usual, the SU(2)A flavour symmetry of theory I(L) is identified with
the diagonal subgroup of the SU(2)A×SU(2)B flavour symmetry of theory I(R) (see
Table (6.3.20)).

The unrefined indices of theories I(L) and I(R) with N = 1 are, of course, equal
and are given by [54, Table 1]:

1 + 4x+ 11x2 + 12x3 + 25x4 + 12x5 + . . . . (6.4.66)

The case of N = 2

The N = 2 index for theory I(R): U(2)4 × U(2)−4 is

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w′χ

SU(2)
[4] (v) + w′−1χ

SU(2)
[4] (u)

+ 2χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . .

(6.4.67)

As before, the N = 3 index can be obtain by setting u = v = f :

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w′ + w′−1)χ

SU(2)
[4] (f)

+ 2χ
SU(2)
[4] (f) + 2χ

SU(2)
[2] (f) + 2 + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)
]

+ . . .

(6.4.68)

The operators contributing at order x is

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a . (6.4.69)

18The magnetic symmetry ofO(2)2 is not U(1)
[0]
M, but rather (Z[0]

2 )M, see for example [60, Appendix
H]. It is interesting to point out that the index is sensitive to this. Indeed, if we compute the index of
the O(2)2 × USp(2)−1 model treating the magnetic fugacity ζ′ as a U(1)

[0]
M fugacity, that is without

imposing (ζ′)2 = 1 as in (6.4.64), we would get fractional coefficients such as 1
2
(ζ′ + 1/ζ′), which

is clearly incosistent. This signals that the actual symmetry is (Z[0]
2 )M and by accordingly setting

ζ′ = 1/ζ′ we get the sensible result (6.4.64).
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The marginal operators, which contribute to the positive terms at order x2, are19

w′−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = (T{−1,0;−1,0})

(i1···i4)
(a1···a4)(Aα1)a1

i1
· · · (Aα4)a4

i4
,

w′χ
SU(2)
[4] (v) : (M+1)α′1···α′4 = (T{+1,0;+1,0})

(a1···a4)
(i1···i4) (Bα′1)i1a1

· · · (Bα′4)i4a4
,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1 : Mαα′Mββ′ ,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (Aα)ai (Bα′)

i
b(Aβ)bj(Bβ′)

j
a

(6.4.70)

where we comment on the above operators as follows:

• The monopole operators T{+1,0;+1,0} and T{−1,0;−1,0} transform in the represen-
tations [4+4; 4−4] and [4−4; 4+4] of the gauge group U(2)× U(2), respectively.

• The gauge invariant combinations MM in the third line transform in the rep-
resentation Sym2[1; 1] = [2; 2] + [0; 0] of SU(2)A × SU(2)B.

• The gauge invariant combinations Qαβα′β′ are subject to the F -terms coming
from the superpotential of the ABJM theory (6.2.4) and so

εαβQαβα′β′ = 0 , εα
′β′Qαβα′β′ = 0 . (6.4.71)

Thus, Qαβα′β′ transform under the representation [2; 2] of SU(2)A × SU(2)B.

• Note that one could also consider the following gauge invariant combinations:

(Aα)a1
i1

(Aβ)a2
i2

(Bα′)
j1
b1

(Bβ′)
j2
b2
εa1a2ε

i1i2εb1b2εj1j2

= (Aα)a1
i1

(Aβ)a2
i2

(Bα′)
j1
b1

(Bβ′)
j2
b2
δ[b1
a1
δb2]
a2
δ

[i1
j1
δ
i2]
j2

= (Aα)a1
i1

(Bα′)
i1
a1

(Aβ)a2
i2

(Bβ′)
i2
a2
− (α′ ↔ β′)

= Mαα′Mββ′ − (α′ ↔ β′)

(6.4.72)

and so they are not independent from those in (6.4.70).

The index of theory I(L): O(4)2 × USp(4)−1 is

1 + x
[
1 + ζ ′ χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + 1)χ

SU(2)
[4] (f) + 2χ

SU(2)
[4] (f)

+ (1 + ζ ′)χ
SU(2)
[2] (f) + 2 + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f) + 1− ζ ′
]

+ . . .

(6.4.73)

Let us discuss the operators, contributing to order x, in this theory. In the fol-
lowing, i, j = 1, ..., 4 are the O(4) gauge indices; a, b = 1, ..., 4 are the USp(4) gauge
indices; and α, β = 1, 2 are the SU(2)A flavour indices. They are

19Notice that the monopoles T{±1,0;±1,0} are in a representation of the U(2)×U(2) gauge group that
have charges (±1/2,∓1/2) under the U(1)×U(1) part and that are in the symmetric representation
of each of the two SU(2) part.



6.4. Dualities and superconformal indices 203

1 : m[αβ] = (Aα)i1a1
(Aβ)i2b2δi1i2J

a1a2 ,

ζ ′ χ
SU(2)
[2] (f) : M(αβ) = (T{1,0;1,0})

(a1a2)
(i1i2) (Aα)i1a1

(Aβ)i2a2

(6.4.74)

where m transforms as a singlet under SU(2)A, due to the total antisymmetrisation
of the indices α and β, and M transforms as a triplet under SU(2)A, due to the total
symmetrisation of the gauge indices in the elementary monopole operator T{1,0;1,0}.
These operators are mapped to the mesons (6.4.69) of the unitary theory I(R). Hence,
from the perspective of the N = 3 theory, these are the moment map operators of the
U(1)×SU(2)A symmetry, whose contribution of the currents is denoted in blue. The
contributions in red are instead identified as the N = 3 extra supersymmetry-currents
that make N = 3 supersymmetry become N = 3 + 3 = 6 supersymmetry20 21.

The indices (6.4.67) and (6.4.73) can be matched as follows:

(6.4.67)[u = f, v = f, w = 1] = (6.4.73)[f, ζ ′ = 1] (6.4.76)

The fugacity ζ ′ for the (Z[0]
2 )M magnetic symmetry of theory I(L) cannot be

mapped to any fugacity in theory I(R), and so it is not manifest in theory I(R)
and should be considered as emergent in theory I(R). Similarly, the U(1)

[0]
top zero-form

topological symmetry of theory I(R) with fugacity w′ should be considered as emer-
gent in theory I(L). As usual, the SU(2)A flavour symmetry of theory I(L) is identified
as a diagonal subgroup of the SU(2)A×SU(2)B flavour symmetry of theory I(R) (see
Table (6.3.20)).

20It is also interesting to analyse this theory from the perspective of N = 5 theory. For an SCFT
with N = 5 (and not higher) supersymmetry, it is necessary that the coefficient of x in the index
must be 1 [74], whose contribution comes from the N = 5 stress-tensor multiplet decomposed into
one N = 2 multiplet LB1[0]

(1)
1 (in the notation of [59]). However, for an SCFT with N = 6 (and not

higher) supersymmetry, the coefficient of x must be 4 [74], which is the case for (6.4.73). Observe that
the singlet operator m is present in any O(2N)2k×USp(2N)−k theory, where for k ≥ 2 the theory has
N = 5 supersymmetry [1]. We thus conclude that the operator m resides in the N = 5 stress-tensor
multiplet B1[0]

(1,0)
1 , whereas the triplet operators M reside in the N = 5 extra supersymmetry-

current multiplet B1[0]
(0,2)
1 . The singlet in the tensor product decomposition of [0, 2]⊗ [0, 2], where

each [0, 2] is the representation of the latter multiplet under so(5)R symmetry, corresponds to the
U(1) global symmetry, which must be present in any N = 6 SCFT [17]. This is mapped to the
U(1)

[0]
top symmetry of the unitary theory I(R). We thank Oren Bergman for explaning and pointing

this out to us.
21To elucidate further Footnote (20), we provide, as a reference, the index of the O(4)4×USp(4)−2

theory, which has N = 5 supersymmetry:

1 + 1x+ x2
[
2 + (1 + ζ)χ

SU(2)

[4] (f)− χSU(2)

[2] (f)
]

+ . . . (6.4.75)

From N = 2 perspective, the negative term at order x2 indicates the contribution of the N =
2 SU(2)A flavour currents in the multiplet A2A2[0]

(0)
1 . From the N = 3 perspective, the three

components of SU(2)A currents split into two parts. Suppose that we write the character of the
adjoint representation of SU(2)A as f2+1+f−2. Two components (f2, f−2) of this SU(2)A symmetry
currents are identified as the N = 3 extra SUSY-currents in the multiplet A2[0]

(0)
1 ; this makes N = 3

supersymmetry become N = 3 + 2 = 5 supersymmetry. The remaining component (corresponding
to 1) of this SU(2)A symmetry currents resides in the N = 3 U(1) flavour current multiplet B1[0]

(2)
1 .

The corresponding moment map operator is the singlet operator m, contributing +1x to the index.
Thus, this U(1) symmetry from the N = 3 perspective is identified as the Cartan subalgebra of
SU(2)A.
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The unrefined indices for theories I(L) and I(R) for N = 2 are, of course, equal
and are given by [54, Table 1]:

1 + 4x+ 22x2 + 56x3 + 131x4 + 252x5 + . . . . (6.4.77)

6.4.4 SO(4)2 × USp(2)−1 ↔ [U(3)4 × U(1)−4]/Z2

As pointed out in [153, Section 3.3], the consistency conditions of the quotient [U(N+
x)k × U(N)k]/Zp are

p divides k and
kx

p2
∈ Z . (6.4.78)

In this section, we take N = 1, x = 2, k = 4 and p = 2. Indeed, the theory in
question can be obtained by gauging the Z[1]

2 one-form symmetry of the U(3)4×U(1)−4

theory. The index for [U(3)4 × U(1)−4]/Z2 reads (here we define w = (w1w2)
1
4 )

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w−1χ

SU(2)
[4] (u) + wχ

SU(2)
[4] (v)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + g(w1/2 + w−1/2)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . . .

(6.4.79)

As before, we can obtain the N = 3 index by setting u = v = f and compute the
relevant tensor product decompositions:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w + w−1)χ

SU(2)
[4] (f) + χ

SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1

+ g(w1/2 + w−1/2)− (χ
SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)
]

+ . . .

(6.4.80)

where the blue terms are the contribution of the N = 3 flavour currents and the
red term is the contribution of the N = 3 extra supersymmetry current. Therefore,
N = 3 supersymmetry gets enhanced to N = 6.

As usual, the operators contributing at order x of (6.4.79) are the mesons,

Mαα′ = (Aα)a(Bα′)a (6.4.81)

where a, b, c = 1, 2, 3 are the U(3) gauge indices. As usual, the monopole operators
T− ≡ T{−1,0,0;−1} and T+ ≡ T{+1,0,0;+1} transform in the representations [[0, 4]−4; +4]
and [[4, 0]+4;−4] of the gauge symmetry U(3)×U(1) respectively, where [0, 4]−4 and
[4, 0]+4 are from the 4th symmetric power of the antifundamental and fundamental
representation of U(3) respectively.

We can write down the marginal operators, contributing to the positive terms at
order x2, as follows:
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w−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = (T−)(a1a2a3a4)(Aα1)a1 · · · (Aα4)a4

wχ
SU(2)
[4] (v) : (M+1)α′1···α′4 = (T+)(a1a2a3a4)(Bα1)a1 · · · (Bα4)a4

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = Mβα′Mαβ′

(6.4.82)

Moreover, there are marginal operators, associated with the terms gw±1/2 at order
x2 in the index, that involve monopole operators T± 1

2
≡ T±{+ 1

2
,+ 1

2
,− 1

2
; 1
2}, arising from

the Z2 discrete quotient. Here Qαβα′β′ is defined as in (6.4.70) with the absence of
the indices i, j, andM± are the gauge invariant dressed monopole operators.

The index of SO(4)2 × USp(2)−1 reads

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(ζ + 2)χ

SU(2)
[4] (f) + ζχ+ χ+ 1− ζ − χSU(2)

[2] (f)
]

+ . . . .
(6.4.83)

The indices (6.4.79) and (6.4.83) can be matched as follows:

[(6.4.79)](u = f, v = f, w = 1, g = χ) = [(6.4.83)](f, ζ = 1, χ) . (6.4.84)

The flavour symmetry SU(2)A of the orthosymplectic theory can be identified
with the diagonal subgroup of the flavour symmetry SU(2)A×SU(2)B of the unitary
theory. The Z[0]

2 zero-form symmetry of the unitary theory with fugacity g is identified
with the (Z[0]

2 )C zero-form charge conjugation symmetry of the orthosymplectic theory.
The U(1)[0] zero-form topological symmetry of the unitary theory is not manifest in
the orthosymplectic theory, whereas the (Z[0]

2 )M zero-form magnetic symmetry of the
orthosymplectic theory is not manifest in the unitary theory.

The unrefined indices for both theories are equal to

[(6.4.79)](u = 1, v = 1, w = 1, g = 1) = [(6.4.83)](f = 1, ζ = 1, χ = 1)

= 1 + 4x+ 14x2 + 35x4 + . . . .
(6.4.85)

6.4.5 O(4)2 × USp(2)−1 ↔ U(3)4 × U(1)−4

The O(4)2 × USp(2)−1 theory can be obtained from the SO(4)2 × USp(2)−1 theory
by gauging the (Z[0]

2 )C charge conjugation symmetry of the latter. Correspondingly,
the U(3)4×U(1)−4 can be obtained from the [U(3)4×U(1)−4]/Z2 theory by gauging
the Z[0]

2 zero-form symmetry with fugacity g of the latter.
Thus, summing over g ∈ {±1} in (6.4.79), we obtain the index for the U(3)4 ×

U(1)−4 theory as

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w−1χ

SU(2)
[4] (u) + wχ

SU(2)
[4] (v)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . . .

(6.4.86)

The operators are as listed in (6.4.81) and (6.4.82), except that there are no
monopole operators T± 1

2
due to the absence of the discrete Z2 quotient. By the same
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argument as in the precedent subsection, the index indicates that the theory has
N = 6 supersymmetry, in agreement with [1].

Similarly, summing over χ ∈ {±1} in (6.4.83) gives the index of the O(4)2 ×
USp(2)−1 theory:

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(ζ + 2)χ

SU(2)
[4] (f) + 1− ζ − χSU(2)

[2] (f)
]

+ . . . . (6.4.87)

The indices (6.4.86) and (6.4.87) can be matched as follows:

[(6.4.86)](u = f, v = f, w = 1) = [(6.4.87)](f, ζ = 1) . (6.4.88)

The correspondence between the global symmetries of the U(3)4 ×U(1)−4 theory
and the O(4)2×USp(2)−1 are as discussed below (6.4.83). The SU(2)A flavour sym-
metry of the orthosymplectic theory is identified with the diagonal subgroup of the
SU(2)A × SU(2)B of the unitary theory. The U(1)

[0]
top zero-form topological symme-

try of the unitary theory is not manifest in the orthosymplectic theory, whereas the
(Z[0]

2 )M zero-form magnetic symmetry of the orthosymplectic theory is not manifest
in the unitary theory. The unrefined indices for both theories are equal

[(6.4.86)](u = 1, v = 1, w = 1) = [(6.4.87)](f = 1, ζ = 1)

= 1 + 4x+ 12x2 + 8x3 + 27x4 + 36x5 + . . . ,

(6.4.89)

as computed in [54, (2.8)].

6.4.6 Circular quivers

In this subsection, we examine the following duality for n ≥ 3:

[SO(2)2 × USp(2)−1 × · · · × SO(2)2 × USp(2)−1︸ ︷︷ ︸
2n gauge groups

]/Z2

←→ circular quiver (6.4.91)
←→ circular quiver U(1)1 × U(1)−1 × · · · × U(1)1 × U(1)−1︸ ︷︷ ︸

2n gauge groups

(6.4.90)

where the theory on the second line, also known as a Kronheimer–Nakajima quiver
[131], is described by

11

5

1

1

4
1

1

3

1 1

2

1

1

1

1

1

n

←→

NS5

NS5

NS5

NS5NS5

. .
.

D3 ×

×

×

×

×

× D5

D5

D5

D5

D5

D5 (6.4.91)
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This theory is self-mirror, and its Higgs/Coulomb branch describes one PSU(n) ∼=
U(n)/U(1) instanton on C2/Zn with the holonomy of the gauge field at infinity that
brakes PSU(n) into U(1)n/U(1).

The duality between theories in the second and third lines of (6.4.90) is well-known
and can be seen from the brane system (see e.g. [13, 135]) by applying the T t SL(2,Z)
transformation, which reads

T t = −TST =

(
1 1
0 1

)
(6.4.92)

where T and S are the generators (3.2.2) such that S2 = −1 and (ST )3 = 1.
Under such transformation the NS5 branes remain invariant but each D5 brane

turns into a (1, 1) brane, as follows

NS5 =

(
1
0

)
→
(

1 1
0 1

)(
1
0

)
=

(
1
0

)
, D5 =

(
0
1

)
→
(

1 1
0 1

)(
0
1

)
=

(
1
1

)
(6.4.93)

Upon applying the T t transformation to the brane system of Fig. (6.4.91), we
obtain the configuration of Fig. (6.4.94) giving rise to the theory in the third line of
(6.4.90).

NS5

(1, 1)5

NS5

(1, 1)5

NS5

. .
.

D3 ←→ 11

5

11

4

11

3
11

2
11

1

1−1

1−1

1−1

2n

(6.4.94)

The case of n = 1

In the case of n = 1, we have seen in Section (6.4.1) that the [SO(2)2×USp(2)−1]/Z2

theory flows to a theory of two free hypermultiplets. This is indeed dual to the special
case of (6.4.91) with n = 1, namely one U(1) instanton on C2 [15] with quiver

1 1 (6.4.95)

where the two free hypermultiplets come from the adjoint hypermultiplet of the U(1)
gauge group and the elementary monopole operators T±1. By the above argument and
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the discussion in Section (6.4.1), this is also dual to the ABJM theory U(1)1×U(1)−1

and [U(1)k × U(1)−k]/Zk.

The case of n = 2

The case of n = 2 requires a separate discussion. We find that the [SO(2)2 ×
USp(2)−1 × SO(2)2 × USp(2)−1]/Z2 theory with quiver

22

2−1

22

2−1


/Z2 (6.4.96)

is dual to

1 1 2 ←→

NS5

NS5

D3

× D5

× D5

(6.4.97)

which is the Kronheimer-Nakajima quiver whose Higgs/Coulomb branch describes one
PSU(2) ∼= U(2)/U(1) instanton on C2/Z2 with the monodromy that preserves the
PSU(2) symmetry. This is also dual to the following circular quiver:

11

1

10

2

1−1

3

10

4

←→

NS5

NS5
D3

(1,1)5

(1,1)5 (6.4.98)

The duality between (6.4.97) and (6.4.98) can be realised by applying the action
T t (6.4.92) on the brane system as discussed above. The N = 2 indices for (6.4.97)
and (6.4.98) can be written in terms of the fugacity d of the U(1)d symmetry and the
fugacities p1, p2, p3, p4 of the SU(2)4 global symmetry as follows:
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1 + x

[
d−2

2∑
i=1

χ
SU(2)
[2] (pi) + d2

4∑
i=3

χ
SU(2)
[2] (pi)

]

+ x2

[
d−4

2∑
i=1

χ
SU(2)
[4] (pi) + d4

4∑
i=3

χ
SU(2)
[4] (pi)

+ d−4χ
SU(2)
[2] (p1)χ

SU(2)
[2] (p2) + χ

SU(2)
[2] (p1)χ

SU(2)
[2] (p4)

+ d4χ
SU(2)
[2] (p3)χ

SU(2)
[2] (p4) + χ

SU(2)
[2] (p3)χ

SU(2)
[2] (p2)

−

(
4∑
i=1

χ
SU(2)
[2] (pi)

)
− 2

]
+ . . .

(6.4.99)

where the origin of the each U(1)d × SU(2)pi in each theory is as follows.
For (6.4.97), U(1)d is identified with the axial symmetry that assigns charges −1

to each chiral multiplet and +2 to the scalar fields in the vector multiplet, SU(2)p1

can be identified with the flavour symmetry that exchanges the two bifundametal
hypermultiplets, SU(2)p2 can be identified with the flavour symmetry of the two
fundamental hypermultiplets denoted by the square node, SU(2)p3 can be identified
with the enhanced U(1) topological symmetry of the left gauge node, and SU(2)p4 can
be identified with the enhanced U(1) diagonal subgroup of the U(1)×U(1) symmetry
of the left and right gauge nodes.22. Since the theory is self-mirror, the index is
invariant under the simultaneous exchange of d↔ d−1 and (p1, p2)↔ (p3, p4)

For (6.4.98), let w1, . . . , w4 be fugacities for topological symmetries of node 1 to
4 and let ci, c−1

i to be the fugacities for the U(1) symmetry that gives charge +1 and
−1 to the chiral multiplets Qi, Q̃i carrying gauge charges (1,−1), (−1, 1) between the
i-th and the (i+ 1)-th nodes. Then, we have the following fugacity maps:

p2
1 = w4, p2

2 =
c1c2

w1w2w3w4
, p2

3 = c3c4(w1w2w3w4) , p2
4 = w2 . (6.4.100)

In other words, the U(1) topological symmetries of the two nodes with zero CS lev-
els get enhanced to SU(2). The operators associated with the currents of the SU(2)p2

and SU(2)p3 flavour symmetries are, respectively, the dressed monopole operators:

T{−1;−1;−1;−1}Q1Q2 , T{+1;+1;+1;+1}Q̃1Q̃2 ,

T{+1;+1;+1;+1}Q3Q4 , T{−1;−1;−1;−1}Q̃3Q̃4 .
(6.4.101)

For (6.4.98), the U(1)d symmetry assigns the charges −1, −1, +1, +1 to the
(Q1, Q̃1), (Q2, Q̃2), (Q3, Q̃3), (Q4, Q̃4), respectively. Matching of the unrefined indices
of theories (6.4.97) and (6.4.98) is demonstrated in [90, (5.3)]:

1 + 12x+ 42x2 + 48x3 + 115x4 + . . . . (6.4.102)

The N = 3 indices of (6.4.97) and (6.4.98) can be obtained from (6.4.99) by setting
d = 1.

22Note that the monopole operators T{1;0} and T{1;1} have R-charge 1. The former corresponds to
SU(2)p3 symmetry and the latter corresponds to the SU(2)p4 symmetry.
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Let us now discuss the theory (6.4.96). As usual, not all symmetries of the unitary
quivers (6.4.97) and (6.4.98) are manifest in the orthosymplectic quiver (6.4.96). The
index of the theory (6.4.96) can be obtained from (6.4.99) by setting p3 = p2 and
p4 = p1, where the origin of U(1)d, SU(2)p1 and SU(2)p2 can be explained as follows.
Let ζ1 and ζ2 be the fugacities for the U(1) magnetic symmetries for the first and the
third SO(2) gauge group respectively. Let g be a Z2 zero-form symmetry arising from
the Z2 discrete gauging, so that g2 = 1. If we denote the half-hypermultiplets in the
bifundametal representations of the gauge groups in (6.4.96), from left to right, by
A1, A2, A3 and A4, the U(1)d symmetry assigns the charges +1, −1, +1 and −1 to
them, respectively. In this notation, the index can be written as follows

1 + x

2d−2 + 2d2 + g
∑

s1,s2,s3=±1

d2s1ζ
1
2
s2

1 ζ
1
2
s3

2

+ . . . . (6.4.103)

However, the index does not really depend on g, since it can be absorbed into
a fugacity for the magnetic symmetry. In particular, ζ1,2 and g are related to the
fugacities p1,2 as follows:

ζ
1/2
1 = gp1p2 , ζ

1/2
2 = p−1

1 p2 . (6.4.104)

Using this fugacity map, we obtain (6.4.99) with p3 = p2 and p4 = p1, as required.

The case of n = 3

The N = 2 index of the unitary theories in the second and third lines of (6.4.90) can
be written as

1 + x(3d2 + 3d−2) + x
3
2

[
d−3
(
p1p2p3 + p−1

1 p−1
2 p−1

3 +

3∑
i=1

(pi + p−1
i )
)

+ d3
(
w1w2w3 + w−1

1 w−1
2 w−1

3 +
3∑
i=1

(wi + w−1
i )
)]

+ x2
[
− 3 + (6d4 + 6d−4) + d−4

∑
1≤i<j≤3

(pipj + p−1
i p−1

j )

+ d4
∑

1≤i<j≤3

(wiwj + w−1
i w−1

j )
]

+ . . .

(6.4.105)

where the theory has a U(1)6×U(1)d global symmetry, where the fugacities for U(1)6

are denoted by p1,2,3 and w1,2,3. The N = 3 index can be obtained by setting d = 1.
For the theory (6.4.91) with n = 3, the U(1)d symmetry corresponds to the ax-

ial symmetry that gives that assigns charges −1 to each chiral multiplet and +2 to
the scalar fields in the vector multiplet; the fugacities w1,2,3 correspond to the U(1)3

topological symmetry; and the fugacities p1,2,3 correspond to the U(1)3 flavour sym-
metry. Since the theory is self-mirror, the index is invariant under the simultaneous
exchange of d ↔ d−1 and (p1, p2, p3) ↔ (w1, w2, w3). To specify our parametrisation
of p1, p2, p3, let us first define ci, c−1

i to be the fugacities for the U(1) symmetry
that gives charge +1 and −1 to the chiral multiplets Qi, Q̃i carrying gauge charges
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(1,−1), (−1, 1) between the i-th and the (i+ 1)-th gauge nodes, and let fi, f−1
i be the

flavour charges of the fundamental chiral multiplets carrying gauge charge −1 and +1
under the i-th gauge node. Then, p1,2,3 are related to these fugacities as

p1 = f1 c1 f
−1
2 , p2 = f2 c2 f

−1
3 , p3 = f3 c3 f

−1
1 . (6.4.106)

For the theory on the third line of (6.4.90), namely the circular unitary quiver
with alternating CS levels, we label the nodes as 1, . . . , 6 from left to right. The
U(1)d assigns alternating charges (−1)i+1 to the chiral multiplets (Qi, Q̃i) in the
bifundamental representation of the i-th and the (i+1)-th gauge nodes. Let us define
ci (with i = 1, 2, . . . , 6) as above. Then, p1,2,3 are related to these fugacities as

p1 = c1
w1w2

, p2 = c3
w3w4

, p3 = c5
w5w6

w1 = c2w2w3 , w2 = c4w4w5 , w3 = c6w6w1 .
(6.4.107)

where wi (with i = 1, 2, . . . , 6) the topological symmetry associated with the i-th
node.

As usual, not all symmetries of these unitary quivers are manifest in the orthosym-
plectic quiver in the first line of (6.4.90). In fact, the index of the latter can be obtained
from (6.4.105) by setting wi = pi, with i = 1, 2, 3. Indeed, if we denote by ζ1, ζ2, ζ3

the U(1)3 magnetic symmetry associated with each SO(2) gauge group from left to
right, we then have the fugacity map

ζ
1/2
1 = gp

1/2
2 p

1/2
3 , ζ

1/2
2 = p

1/2
1 p

1/2
2 , ζ

1/2
3 = p

1/2
1 p

1/2
3 , (6.4.108)

where g is the fugacity associated with a Z2 zero-form symmetry associated with the
Z2 discrete quotient in the first line of (6.4.90) such that g2 = 1. We emphasise that
g can be absorbed in a redefinition of a fugacity of the magnetic symmetry and so the
index does not really depend on g. The U(1)d symmetry assigns the charges (−1)i+1

to the half-hypermultiplets Ai, with i = 1, . . . , 6, in the bifundamental representation
of SO(2)×USp(2) from left to right in the circular quiver in the first line of (6.4.90).

This discussion can be generalised in a straightforward manner to the cases of
n > 3.

6.4.7 (S)O(2N + 1)2 × USp(2N)−1 and [U(N + 1)4 × U(N)−4](/Z2)

In this subsection, we demonstrate that the indices of the following four theories are
equal:

O(2N + 1)2 × USp(2N)−1 U(N + 1)4 × U(N)−4

SO(2N + 1)2 × USp(2N)−1 [U(N + 1)4 × U(N)−4]/Z2
(6.4.109)

The duality of the theories in the first line were pointed out in [1]. The one-form
symmetry of each theory in the first line is Z2, which can be realised as follows. For
the orthosymplectic quiver in the first line, the O(2N+1) and USp(2N) gauge groups
both have a Z2 centre and the bifundamental matter screens a diagonal combination,
so we are left with one Z2 centre symmetry. For the unitary quiver in the first line,
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namely U(N + 1)4×U(N)−4, the presence of the Z2 one-form symmetry was pointed
out in [153, Section 3.3].

The theories in the second line arise from gauging the Z2 one-form symmetries
of the theories on the first line. This is consistent because the conditions (6.4.78)
are satisfied. We thus expect that the theories in the second line are also dual to
each other. However, what is surprising is that all of the four theories have the same
indices. Let us demonstrate this point as follows.

We first provide an argument to show that the indices of the U(N + 1)4×U(N)−4

theory and the [U(N + 1)4 × U(N)−4]/Z2 theory are equal. We emphasise that, in
each of these theories, there is an overall U(1) that does not act on matter fields.
Upon integrating over such a U(1) fugacity in the index, we obtain a delta-function
which imposes the following condition that the magnetic fluxes of the U(N +1) gauge
group, m(i)

L , with i = 1, . . . , N + 1, and those of the U(N) gauge group, m(j)
R , with

j = 1, . . . , N :

N+1∑
i=1

m
(i)
L =

N∑
j=1

m
(j)
R (6.4.110)

In the [U(N + 1)4 × U(N)−4]/Z2 theory, we have to sum over the fluxes

(m
(1)
L , . . . ,m

(N+1)
L ;m

(1)
R , . . . ,m

(N)
R ) ∈ (Z + p/2)2N+1 (6.4.111)

and sum over p ∈ {0, 1}, whereas in U(N+1)4×U(N)−4 theory there is a contribution
only from the p = 0 sector. Observe that, for p = 1, if one of the two sides of (6.4.110)
is half-integral the other is integral.23 This means that there is no contribution from
the p = 1 sector to the index, since it is forbidden by (6.4.110). As a result, the index
of the [U(N + 1)4 × U(N)−4]/Z2 is the same as that of the U(N + 1)4 × U(N)−4

theory. We see that the Z2 zero-form symmetry arises from the Z2 discrete gauging of
the former theory acts trivially on the theory and hence it is an unfaithful symmetry.
This leads us to conclude that the Z2 one-form symmetry of the U(N + 1)4×U(N)−4

theory also acts trivially on the line operators.
Similarly, we can provide an argument to show that the zero-form charge conjuga-

tion symmetry of the SO(2N + 1)2 × USp(2N)−1 theory acts trivially on the theory
and hence it is unfaithful. The index of this theory can be written as

ISO(2N+1)2k×USp(2N ′)k′

=
1

2NN !

∑
m∈ZN

∮ N∏
a=1

dza
2πiza

N∏
a=1

x−|ma|(1− χ(−1)max|ma|z±1
a )

×
N∏
a<b

x−|±ma+mb|(1− (−1)±ma±mbx|±ma±mb|z±1
a z±1

b )
N∏
a=1

z2kma
a ζma

× 1

2N ′N ′!

∑
n∈ZN′

∮ N ′∏
i=1

dui
2πiui

N ′∏
i=1

x−|ni|(1− (−1)nix|ni|u±2
i )

23This argument can be generalised to any theory of the form [U(N + x)2k ×U(N)−2k]/Z2 with x
odd. In such a theory, the Z2 zero-form symmetry arising from the discrete gauging acts trivially.
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×
N ′∏
i<j

x−|±ni+nj |(1− (−1)±ni±njx|±ni±nj |u±1
i u±1

j )

N ′∏
i=1

u2k′ni
i

×
N ′∏
i=1

x
−|ui|

2

(
(−1)niχu∓1 f∓1 x

3
2

+|ni|;x2
)
∞(

(−1)niχu±1 f±1 x
1
2

+|ni|;x2
)
∞

×
N∏
a=1

N ′∏
i=1

x
−|±za+ui|

2

(
(−1)±ma+niz∓1

a u∓1 f∓1 x
3
2

+|±ma+ni|;x2
)
∞(

(−1)miz±1 u±1 f±1 x
1
2

+|±ma+ni|;x2
)
∞

, (6.4.112)

where f is the fugacity for the SU(2)A flavour symmetry, ζ is the fugacity for the
(Z[0]

2 )M topological symmetry satisfying ζ2 = 1 and χ is the fugacity for the zero-
form charge conjugation symmetry (Z[0]

2 )C . In the problem at hand, we take N ′ = N ,
k = 1 and k′ = −1, but the following argument holds for general N , k and k′.
We claim that the charge conjugation symmetry can be re-absorbed with a gauge
transformation. This can be seen in the index from the fact that if we simultaneously
rescale

za → χza, a = 1, · · · , N ui → χui, i = 1, · · · , N ′ (6.4.113)

then the fugacity χ completely disappears from the matrix integral since χ is a square
root of unity χ = eiπn with n = 0, 1. What is crucial for this to happen is that the CS
level of the SO(2N + 1)2k group is even.24 This observation leads us to conclude that
the Z2 one-form symmetry of the O(2N + 1)2×USp(2N)−1 theory also acts trivially
on the spectrum of line operators. Since we can obtain the theories in the second
line of (6.4.109) from those in the first line by gauging the Z[1]

2 one-from symmetry
in the latter, from the perspective of the U(N + 1)4 × U(N)−4 theory, such gauging
removes from the spectrum Wilson lines in representations that are not multiple of
2 of (N + 1,N). We thus conjecture that there exist only the Wilson lines in the
representation ((N + 1)2m,N2m), with m ≥ 1, in the spectrum of this theory, and so
the action of such a Z[1]

2 one-form symmetry is trivial. We leave the verification of
this statement to future work.

As a final remark, we see that the four theories in (6.4.109) seem to be dual to
each other, even though the Z2 one-form symmetry seems to be present in the theories
in the first line of (6.4.109), but not in the theories in second line. One might ask if
there exists a topological field theory that provides the Z2 one-form symmetry in the
former. The answer seems to be no. This is in contrast with, for example, the duality
appetiser [119], which is a duality between the 3d N = 2 SU(2)1 gauge theory with
one adjoint chiral multiplet and a free chiral multiplet together with a topological
quantum field theory (TQFT) given by U(1)−2. Indeed, the SU(2)1 gauge theory
has a Z2 one-form symmetry (as it can be seen from the centre of the gauge group),
whereas the theory of a free chiral multiplet does not have any one-form symmetry;
in this case the Z2 one-form symmetry is provided by the TQFT U(1)−2. The latter
can be detected by the index by turning on an appropriate background magnetic flux,
which is the one associated with the U(1) flavour symmetry, as we demonstrate in
Appendix (D). However, upon turning on background magnetic fluxes for the theories
on the first line of (6.4.109), we are not able to detect the presence of the TQFT that

24Indeed, if we consider the index of SO(2N +1)2k+1×USp(2N ′)k′ , the CS factor
∏N
a=1 z

(2k+1)ma
a

would produce odd powers of χ after the shift (6.4.113), thus leaving a non-trivial χ dependence.
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supports the Z2 one-form symmetry. We thus conclude that such a symmetry acts
trivially on the spectrum of the line operators.

Let us report the index of the theories (6.4.109) when N = 1. It turns out that,
up to order x2, those of the unitary theories are given by (6.4.86), and those of
the orthosymplectic theories are given by (6.4.87). Note, however, that from order x5

onwards, they are different; see [54, Table 1] for the unrefined indices of these theories:

(6.4.109)N=1 : 1 + 4x+ 12x2 + 8x3 + 27x4 + 32x5 + . . .

(6.4.89) : 1 + 4x+ 12x2 + 8x3 + 27x4 + 36x5 + . . .
(6.4.114)

As a final remark, we also observe that the circular quivers SO(3)2×USp(2)−1×
SO(3)2×USp(2)−1 and O(3)2×USp(2)−1×O(3)2×USp(2)−1 have the same indices;
up to order x2, they are

1 + x2
[
(ζ1 + ζ2 + ζ1ζ2 + 2)χ

SU(2)
[4] (f) + ζ1ζ2 + 1

− (ζ1 + ζ2 + ζ1ζ2 + 2)χ
SU(2)
[2] (f)

]
+ . . . ,

(6.4.115)

where ζ1,2 are fugacities for the magnetic symmetry of the (special)orthogonal gauge
groups. For the theory with special orthogonal gauge groups, the index does not
depend on the fugacity for the charge conjugation symmetry. For reference, we report
the unrefined index up to order x4 as follows:

1 + 12x2 + 4x4 + . . . . (6.4.116)
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Chapter 7

Conclusions and perspectives

In this final chapter we want to collect the main results of the original parts of the
work and point out possible future directions and leftover open problems. The aim of
the this thesis was to use the three-dimensional indices, such as the Hilbert series and
the superconformal index, to study different properties of a variety of SCFTs from
several perspectives.

In Chapter (3) we propose a description of the three-dimensional mirror dual
theories of the circle reduction of the four-dimensional twisted χ(a2N ) theories of class-
S. This is an "almost" star-shaped quiver with the central gauge node being USp(2N).
In checking such proposals, we compute the Hilbert series for both the Higgs and
Coulomb branches of such mirror theories and compare them to those of the four-
dimensional ones. We show, in fact, that the Higgs branch of the 4d SCFT matches
with the Coulomb branch of the corresponding 3d mirror theory. Furthermore, the
quaternionic dimension of the Higgs branch of such mirror theories matches with the
rank of the 4d SCFT. In many cases, there are more than one description of the
mirror theory, where one is constructed using the proposal of this paper and the other
involves only unitary gauge groups. One of the important features of these dualities
is that in many cases not all Coulomb branch symmetries of the 3d mirror quiver is
manifest in the quiver itself; in other word, one cannot turn on in the Hilbert series
all of the fugacities associated with the full global symmetry of the SCFT in the IR.

Let us discuss some of the open questions that arise from these findings. First of
all, some of the quiver descriptions that we proposed are "bad" theories in the sense of
[85]. Even though we manage to use such a description to compute various quantities,
such as the Coulomb branch dimension and the Higgs branch Hilbert series, it would
be nice to come up with a "good" description for such theories. Secondly, it would
be nice to understand better the dualities between different descriptions of the mirror
theory of the S1 reduction of the same 4d SCFT, such that as how to "derive" one
description from the others.

In Chapter (5), thanks to the superconformal index, we investigate the N = 2 pre-
serving exactly marginal operators of two different families of 3d S-fold SCFTs. One
such family is constructed by gauging the diagonal flavour symmetry of the T (U(2))
and T (U(3)) theories, and the other one by gauging the diagonal flavour symmetry of
the T [2,12]

[2,12]
(SU(4)) theory. In both cases, it is possible to turn on a Chern–Simons level

for each gauge group and to couple to each theory various numbers of hypermultiplets.
This detailed analysis, allows us to determine whether supersymmetry gets enhanced
in the infrared and to deduce the amount of supersymmetry of the corresponding
SCFT.

The results for the T [2,12]
[2,12]

(SU(4)) theory are just preliminary results since, despite
using other known theories as a guide, we do not have a full understanding of the chiral
ring of the theory. In this sense, one appealing line of possible future investigation
would be to better understand the chiral ring structure of this theory. Furthermore,
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one could study other specific cases of S-fold theories, changing the ρ and σ partitions
along with N .

In Chapter (6) we have obtained several new dualities between ABJ and related
theories, with at least N = 6 supersymmetry, by gauging zero-form or one-form
symmetries. We analysed in details the symmetries of these theories and how they
are mapped across each duality, paying particular attention on the discrete symme-
tries. This result is also generalised to a circular quiver with alternating SO(2)2 and
USp(2)−1 gauge groups and a discrete Z2 quotient.

There are several interesting directions for further study. First, it would be in-
teresting to generalise these results to theories with orthosymplectic gauge groups
with N = 5 supersymmetry, as well as more general U(N + x)k × U(N)−k and
[U(N + x)k × U(N)−k]/Zp theories with N = 6 supersymmetry. Moreover, regard-
ing the duality involving the circular quivers, it would be nice to find the analog for
the higher ranks theories, such as those involving SO(2N)2 and USp(2N)−1 gauge
groups.
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Appendix A

Reduction of the D2[SU(2N + 1)]
theory on S1

The 4d N = 2 D2[SU(2N + 1)] theory was first studied in [49, 50]. For N = 1, the
D2[SU(3)] theory is simply the (A1, D4) Argyres-Douglas theory. Upon reduction on
S1 to 3d, the mirror theory is described by the following quiver [169, Figure 3]:

1 2 . . . N − 1 N N N − 1 . . . 2 1

1 1

(A.0.1)
The quaternionic dimension of the Coulomb branch of (A.0.1) is 2

∑N
j=1 j = N(N+

1), in agreement with the dimension of the Higgs branch of the 4d D2(SU(N + 1))
theory, which is given by

dimH H[D2(SU(2N + 1))] = 24(c− a)

= 24

[
1

3
N(N + 1)− 7

24
N(N + 1)

]
= N(N + 1) ,

(A.0.2)

where a = 7
24N(N + 1) and c = 1

3N(N + 1) are the conformal anomalies [50]. The
Higgs branch of (A.0.1) is 2

∑N−1
j=1 j(j + 1) +N2 + 2N − 2

∑N
j=1 j

2 = N quaternionic
dimensional; this is in agreement with the fact that the D2[SU(2N + 1)] theory is a
rank N theory.

The Coulomb branch and Higgs branch Hilbert series can be computed as described
in the main text. The Coulomb branch symmetry is SU(2N + 1), whereas the Higgs
branch symmetry is U(1). In this work we focus mainly on the case of N = 1, 2. The
case of N = 1 was discussed in the main text in the context of the (A1, D4) theory.
For N = 2, the highest weight generating function of the Coulomb branch Hilbert
series of theory (A.0.1) admits the following simple closed form:

HWG [HC [(A.0.1)N=2]] = HWG[HH[D2[SU(5)]]]

= PE
[
t2µ1µ4 + t4µ2µ3

]
.

(A.0.3)

If we set the fugacities in the SU(5) characters to unity, we obtain the closed form
for the following unrefined Coulomb branch Hilbert series for N = 2:
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1 + 12t2 + 53t4 + 88t6 + 53t8 + 12t10 + t12

(1− t)12(1 + t)12
. (A.0.4)

Observe that the order of the pole at t = 1 is 12, equal to the complex dimension
of the Coulomb branch.
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Appendix B

Monopole operators in some 3d
N = 4 gauge theories

In this section, we analyse the Coulomb branch operators of two 3d N = 4 gauge
theories, namely the U(N) gauge theory (with N = 2, 3) with one adjoint and one
fundamental hypermultiplets and the U(2) gauge theory with four flavours, using the
indices and Coulomb branch Hilbert series. The aim is to write down explicitly the
Coulomb branch operators with R-charges up to 2 and their relations. These turn out
to be extremely useful in drawing an analogy with operators in the S-fold theories
discussed in the main text.

B.1 U(2) and U(3) gauge theories with one adjoint and
one fundamental hypermultiplets

Let us first consider the U(2) gauge group. The index of this theory is

1 + x
1
2 (d[1]w + d−1[1]c) + x(2d2[2]w + 2[1]w[1]c + 2d−2[2]c)

+ x
3
2

[
d3(2[3]w + [1]w) + 3d[2]w[1]c + 3d−1[2]c[1]w + d−3(2[3]c + [1]c)

]
+ x2

[
d4(3[4]w + [2]w + 1) + 4d2[3]w[1]c + (d→ d−1, w ↔ c) + 5[2]w[2]c

− [2]c − [2]w − 2
]

+ . . .

(B.1.1)

The terms at order x
1
2 indicate that the theory contains two free hypermultiplets,

and so the above expression can be rewritten as

Ifree(x; cd−1) Ifree(x; c−1d−1) Ifree(x;wd) Ifree(x;w−1d)

×
[
1 + x

(
d2[2]w + [1]w[1]c + d−2[2]c

)
+ x2

(
d4[4]w + d2[3]w[1]c+

+ d−4[4]c + d−2[3]c[1]w + [2]w[2]c

− d2[1]w[1]c − d−2[1]w[1]c − [2]w − [2]c − 1
)

+ . . .
] (B.1.2)

where Ifree(x;ω) is defined in (5.3.73). In fact, this index can be rewritten in terms
of characters of SU(4) representations as

Ifree(x; cd−1) Ifree(x; c−1d−1) Ifree(x;wd) Ifree(x;w−1d)

×
[
1 + [2, 0, 0]x+

(
[4, 0, 0]− [1, 0, 1]

)
x2 + . . .

]
,

(B.1.3)
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where we have used the following decompositions of representations of SU(4) into
SU(2)w × SU(2)c × U(1)d:

[2, 0, 0] −→ [2; 0]+2 + [1; 1]0 + [0; 2]−2

[4, 0, 0] −→ [4; 0]+4 + [3; 1]+2 + [2; 2]0 + [1; 3]−2 + [0; 4]−4

[1, 0, 1] −→ [1; 1]+2 + [2; 0]0 + [0; 0]0 + [0; 2]0 + [1; 1]−2 .

(B.1.4)

Let us discuss (B.1.2) from the perspective of the N = 3 index, in which case
we have to set d = 1. The index can then be rewritten in terms of characters of
USp(4) ∼= Spin(5) representations as follows:

Ifree(x; c) Ifree(x; c−1) Ifree(x;w) Ifree(x;w−1)

×
[
1 + [0, 2]x+ x2 ([0, 4]−[0, 2]−[1, 0]) + . . .

]
.

(B.1.5)

The N = 3 flavour current is in the adjoint representation [0, 2] of Spin(5). We
indicate its contribution to the index in blue. The brown negative term at order x2

in (B.1.2) implies that there are five extra SUSY conserved currents in the vector
representation [1, 0] of Spin(5). We thus conclude that the interacting SCFT part
of this theory has N = 3 + 5 = 8 enhanced supersymmetry, in agreement with [124,
Section 5.1]. Indeed, the symmetry Spin(5) is the commutant of the N = 3 R-
symmetry Spin(3) in the N = 8 R-symmetry Spin(8). Another way to see this is
to view (B.1.3) as an N = 2 index, in which the SU(4) ∼= Spin(6) global symmetry
is manifest. This is actually the commutant of the N = 2 R-symmetry Spin(2) in
Spin(8), which is the R-symmetry of an N = 8 SCFT.

We remark that, in (B.1.1), we include the contribution from the free hypermul-
tiplets. In particular they contribute negative terms −(d[1]w + d−1[1]c) at order x3/2

and −([2]w + d2[1]w[1]c + d−2[1]w[1]c + [2]c + 2) at order x2; see (5.3.73). These can
combine with the contribution of the interacting SCFT part and cancel that of the
operators constructed from products with the aforementioned free fields.

We denote the monopole operator with flux (m,n) by X(m,n), which carries topo-
logical charge m + n and R-charge 1

2(|m| + |n|). Note that one can always use the
Weyl symmetry of U(2) to arrange the flux into the form m ≥ n > −∞. As in the
main text, we use the following shorthand notations below:

X± := X(±1,0) , X++ := X(1,1) , X−− := X(−1,−1) . (B.1.6)

In the following analysis we focus on the Coulomb branch operators. Up to order
x2, these correspond to the terms with the highest power of d in (B.1.1). Another con-
venient way is to compute a quantity that counts such operators, known as Coulomb
branch Hilbert series, which can be regarded as a limit of the index (see (3.41) of
[144]). For the theory in question, the Hilbert series is computed in section 4.1 of [64]:

∑
m≥n>−∞

x
1
2

(|m|+|n|)PU(2)(x;m,n)wm+n

= PE
[
x

1
2 [1]w + x[2]w − x2

]
= 1 + x

1
2 [1]w + 2x[2]w + x

3
2 (2[3]w + [1]w) + x2(3[4]w + [2]w + 1) + . . . ,

(B.1.7)
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with

PU(2)(x;m,n) =

{
(1− x)−2 , m 6= n

(1− x)−1(1− x2)−1 , m = n
(B.1.8)

The second line of (B.1.7) indicates that the Coulomb branch is isomorphic to
C2 × (C2/Z2).

The Coulomb branch operators that carry R-charge 1/2 are the monopole opera-
tors with fluxes (±1, 0)

[1]w : X+ , X− (B.1.9)

They parametrise the C2 factor of the Coulomb branch and decouple as a free
hypermultiplet. These correspond to the term x

1
2 [1]w inside the PE in (B.1.7).

The Coulomb branch operators with R-charge 1 are

[2]w : X++ , (trϕ) , X−−
[2]w : X2

+ , X+X− , X2
− .

(B.1.10)

It should be noted that X+X− = X(1,0)X(−1,0) = X(1,0)X(0,−1) is not subject to
any relation and is an independent operator; it can be identified with the monopole op-
erator with flux (1,−1). The quantities in the first line are generators of the Coulomb
branch, corresponding to the term x[2]w inside the PE in (B.1.7).

The Coulomb branch operators with R-charge 3/2 are

[3]w : X3
+ , X2

+X− , X+X
2
− , X3

−
[3]w : X++X+ , X++X− , X−−X+ , X−−X−
[1]w : X+(trϕ) , X−(trϕ) .

(B.1.11)

The Coulomb branch operators with R-charge 2 are

[4]w : X4
+ , X3

+X− , X2
+X

2
− ,

X+X
3
− , X4

−
[4]w : X2

++ , X++(trϕ) , X++X−− = (trϕ)2 ,
X−−(trϕ) , X2

−−
[4]w : X++X

2
+ , X++(X+X−) , X++X

2
− = X2

+X−−
X−−(X+X−) , X−−X

2
−

[2]w : X2
+(trϕ) , X+X−(trϕ) , X2

−(trϕ)
[0]w : tr(ϕ2)

(B.1.12)

where the relation

X++X−− = (trϕ)2 (B.1.13)

is the defining equation of the factor C2/Z2 of the Coulomb branch. Notice that the
left hand side X++X−− = X(1,1)X(−1,−1) occupies the point (0, 0) on the magnetic
lattice and so as the right hand side. This relation corresponds to the term −x2 inside
the PE in (B.1.7). Moreover, the relation

X++X
2
− = X2

+X−− (B.1.14)

follows from the fact that the monopole operators on the left and right hand sides of
the equation occupy the same point (1,−1) in the magnetic lattice.

In the case of the U(3) gauge group, the Coulomb branch Hilbert series reads
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PE
[
x

1
2 [1]w + x[2]w + x

3
2 [3]w − x

5
2 [1]w − x3[2]w + . . .

]
= 1 + x

1
2 [1]w + 2x[2]w + x

3
2 (3[3]w + [1]w) + x2(4[4]w + 2[2]w + 2) + . . . .

(B.1.15)

The notations need to be slightly modified as follows:

X± := X(±1,0,0) , X±± := X±(1,1,0) , X±±± := X±(1,1,1) . (B.1.16)

As we can see from the above Hilbert series, the generators of the Coulomb branch
are the same as for N = 2, except that there are additional ones with R-charge 3/2
in the representation [3]w:

[3]w : X+++ , X+;(0,1) , X−;(0,1) , X−−− . (B.1.17)

The dressed monopole operators X±;(0,1) are as discussed in (5.4) of [64]:

X±;(r,s) := X(±1,0,0);(r,s) = (±1, 0, 0)φr1(φs2 + φs3) + permutations , (B.1.18)

where along the Coulomb branch ϕ can be diagonalised as diag(φ1, φ2, φ3).

B.2 U(2) gauge theory with four flavours of fundamental
hypermultiplets

The index of this theory reads

1 + x
(
d2[2]w + d−2[1, 0, 1]f

)
+ x2

[
d4([4]w + [2]w + 1) + [2]w[1, 0, 1]f

+ d−4([2, 0, 2]f + [0, 2, 0]f )− [2]w − [1, 0, 1]f − 1
]

+ . . . .
(B.2.1)

The monopole operatorX(m,n) with flux (m,n) carries the topological chargem+n
and R-charge 2(|m|+ |n|)− |m− n|. The Coulomb branch operators are captured by
the highest powers of d at each order of x in the index. The information about the
Coulomb branch chiral ring is contained in the Hilbert series, which was discussed in
(5.6) of [64]:

∑
m≥n>−∞

x2(|m|+|n|)−|m−n|PU(2)(x;m,n)w2(m+n)

= PE
[
x[2]w + x2[2]w − x3 − x4

]
= 1 + x[2]w + x2([4]w + [2]w + 1) + . . . .

(B.2.2)

The Coulomb branch operators with R-charge 1 are

[2]w : X(1,0) , (trϕ) , X(−1,0) . (B.2.3)

These correspond to the term x[2]w in the PE in (B.2.2).
The Coulomb branch operators with R-charge 2 are
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[4]w : X2
(1,0) , X(1,0)(trϕ) , X(1,0)X(−1,0) , X(−1,0)(trϕ) , X2

(−1,0)

[2]w : X(1,0);(0,1) , tr(ϕ2) , X(−1,0);(0,1)

[0]w : (trϕ)2

(B.2.4)

The second line contains the dressed monopole operators, as discussed in (5.4) of
[64]:

X(±1,0);(r,s) = (±1, 0)φr1φ
s
2 + (0,±1)φr2φ

s
1 , (B.2.5)

where along the Coulomb branch ϕ can be diagonalised as diag(φ1, φ2). The quanti-
ties in the second line correspond to the term x2[2]w inside the PE in (B.2.2). The
quantities in the first and third lines of (B.2.4) correspond to the symmetric product
Sym2[2] = [4] + [0].

In order to understand the relations at order x3 and x4, as indicated by the Hilbert
series (B.2.2), it is convenient to define the following traceless matrices, containing
the generators of the Coulomb branch:

X1 :=

(
trϕ X(1,0)

X(−1,0) − trϕ

)
, X2 :=

(
tr(ϕ2) X(1,0);(0,1)

X(−1,0);(0,1) − tr(ϕ2)

)
, (B.2.6)

each of which transforms in the adjoint representation of SU(2). Similarly to (4.19)
and (4.20) of [105], the relations at order x3 and x4 can be written respectively as

x3 : tr(X1X2) = 0

⇔ X(1,0)X(−1,0);(0,1) +X(−1,0)X(1,0);(0,1) + 2(trϕ) tr(ϕ2) = 0 ,

x4 : tr(X 2
2 ) + α(trX 2

1 )2 = 0

⇔ X(1,0);(0,1)X(−1,0);(0,1) + [tr(ϕ2)]2

+ 2α[X(1,0)X(−1,0) + (trϕ)2]2 = 0 ,

(B.2.7)

where α is a non-zero constant, which can be absorbed by a redefinition of X1 or X2.
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Appendix C

Consequences of the F -term
equations (5.3.44)

In this appendix, we discuss consequences of the F -term equations (5.3.44) on gauge
invariant quantities.

It is convenient to define

M i
j := Q̃iaQ

a
j , (µQ)ab = Q̃ibQ

a
i (C.0.1)

so that we have

M i
i = trµQ . (C.0.2)

It then follows that

QbjM
j
i

(C.0.1)
= Qai (µQ)ba

(5.3.44)
= Qai

(
k

2π
ϕ− µC − µH

)b
a

(5.3.44)
= −Qai (µC + µH)ba ,

Q̃jbM
i
j

(C.0.1)
= Q̃ia(µQ)ab

(5.3.44)
= Q̃ia

(
k

2π
ϕ− µC − µH

)a
b

(5.3.44)
= −Q̃ia(µC + µH)ab ,

(C.0.3)
or, equivalently,

Qaj

[
(µH + µC)baδ

j
i +M j

i δ
b
a

]
= 0 , Q̃ja

[
(µH + µC)abδ

i
j +M i

jδ
a
b

]
= 0 . (C.0.4)

Multiplying Q̃kb to both sides of the first equation in (C.0.4), we obtain

Mk
jM

j
i = (M2)ki = −(µH + µC)baQ̃

k
bQ

a
i . (C.0.5)

Contracting the indices k and i, we obtain

(M2)ll = tr(µ2
Q) = −(µH + µC)ab Q̃

l
aQ

b
l = − tr [(µH + µC)µQ] . (C.0.6)

For n ≥ 2, it is convenient to define

M̂ i
j = M i

j −
1

n
(Mk

k )δij = M i
j −

1

n
(trµQ)δij . (C.0.7)

It satisfies the following identifies:
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(M̂2)ij = (M2)ij −
2

n
(Mk

k )M i
j +

1

n2
(Mk

k )2δij ,

(M̂2)ii = (M2)jj −
1

n
(Mk

k )2 .

(C.0.8)

In the special case of n = 2, due to the Hamilton–Cayley theorem1, we also have

(M̂2)ij =
1

2
(M̂2)kk δ

i
j , for n = 2 . (C.0.9)

Using (C.0.2), (C.0.5), (C.0.6) and (C.0.8), we obtain

(M̂2)ij = −(µH + µC)baQ̃
i
bQ

a
j −

2

n
M̂ i
j(trµQ)− 1

n2
(trµQ)2δij ,

(M̂2)ii = − tr [(µH + µC)µQ]− 1

n
(trµQ)2 .

(C.0.10)

It is also convenient to define

(M̂2)ij := (M̂2)ij −
1

n
(M̂2)kkδ

i
j . (C.0.11)

Then, from (C.0.10), we have

(M̂2)ij = −(µH + µC)ab Q̃
i
aQ

b
j +

1

n
tr(µHµQ + µCµQ)δij −

2

n
M̂ i
j(trµQ)

= −(AH)ij − (AC)ij −
2

n
M̂ i
j(trµQ) ,

(C.0.12)

where we define

(AH)ij := (µH)ab Q̃
i
aQ

b
j −

1

n
tr(µHµQ)δij ,

(AC)ij := (µC)ab Q̃
i
aQ

b
j −

1

n
tr(µCµQ)δij .

(C.0.13)

Using (C.0.9), we also have

(M̂2)ij = 0 , for n = 2 , (C.0.14)

and so it follows from (C.0.12) that

(AH)ij + (AC)ij = −M̂ i
j(trµQ) = −M̂ i

j(M
k
k ) , for n = 2 . (C.0.15)

1For a 2× 2 matrix A, it satisfies A2 − (trA)A+ 1
2

[
(trA)2 − tr(A2)

]
12×2 = 0.
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Appendix D

Topological sectors and indices: the
example of the duality appetiser

In Section 6.4.7 we mentioned that the 3d index can be useful for detecting the presence
of topological sectors in a theory. In this appendix we give some details of this for
the case of the duality appetiser of [119]. This is a duality which relates an SU(2)1

gauge theory with one adjoint chiral to the product theory of a free chiral multiplet
plus a topological sector consisting of a U(1)−2 TQFT. The topological sector was
detected in [119] using the S3 partition function, where it was observed that the
U(1)f symmetry acting on the adjoint chiral on the SU(2)1 side of the duality is
mapped to a combination of the R-symmetry and the topological symmetry of the
U(1)−2 TQFT on the dual side. The topological sector can actually be detected also
in the index by turning on a background magnetic flux mf for the U(1)f symmetry.
The duality is indeed represented by the following identity of indices:

1

2

+∞∑
m=−∞

∮
dz

2πiz
z2mx−2m(1− x2mz±2)(f2xRΦ−1)−|mf |

(f−2 x2−RΦ+|2mf |;x2)∞

(f2 xRΦ+|2mf |;x2)∞

× (z±2f2xRΦ−1)−|±m+mf | (z
∓2 f−2 x2−RΦ+|∓2m+2mf |;x2)∞

(z±2 f2 xRΦ+|±2m+2mf |;x2)∞
=

= (f4x2RΦ−1)−|2mf |
(f−4 x2−2RΦ+|4mf |;x2)∞

(f4 x2RΦ+|4mf |;x2)∞

+∞∑
m=−∞

∮
dz

2πiz
z2m+2mf

(
xRΦ+1f2

)m
,

(D.0.1)

where f , mf are the fugacity and the flux for the U(1)f global symmetry and RΦ is the
R-charge of the adjoint chiral field. The identity holds provided that the background
flux is quantised as mf ∈ Z and for generic values of f and RΦ. Notice that the map
between the U(1)f symmetry acting on Φ and the topological symmetry of the TQFT
is compatible with the one found in [119] at the level of the S3 partition function. The
prefactor to the integral on the right hand side is the index of the free chiral, while
the remaining integral is the index of the U(1)−2 TQFT, which evaluates to

+∞∑
m=−∞

∮
dz

2πiz
z2m+2mf

(
xRΦ+1f2

)m
=
(
xRΦ+1f2

)−mf (D.0.2)

and, as we anticipated, is trivial if we turn off the background magnetic flux mf = 0,
while it is non-trivial if we take mf ∈ Z6=0. In other words, the topological sector is
detectable by the index provided that we introduce such background flux.
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The identity (D.0.1) can be tested by perturbatively expanding both sides in x.
Taking RΦ = 1

4 , which is the value corresponding to the superconformal R-symmetry
[119], we find that the indices of both of the dual theories are for mf = 0

Imf=0 = 1 + f4x
1
2 +

(
f12 − f−4

)
x

3
2 + f8x+ (f16 − 1)x2 + f20x

5
2 + f24x3+

+
(
f28 − f−4

)
x

7
2 + (f32 − 2)x4 +

(
f36 − f4

)
x

9
2 +

(
f40 + f−8

)
x5+

+ f44x
11
2 + (f48 − 2)x6 +O

(
x

13
2

)
, (D.0.3)

which is the same result that was found in [119, (9)]. Notice that −1 at order x2, which
represents the fermionic superpartner of the U(1)f conserved current. For non-trivial
mf we find that the two indices still match and that the topological sector (D.0.2) is
crucial for the matching. For example for mf = 1 we get

Imf=±1 = f−10x−
1
4 + f−6x

17
4 − f−14x

21
4 +O

(
x

25
4

)
, (D.0.4)

but we also checked (D.0.1) for several other values of mf and RΦ.
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