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Abstract. In this paper we propose a new iterative method for solving the asymmetric traffic equilibrium

problem when formulated as a variational inequality whose variables are the path flows. The path formulation

leads to a decomposable structure of the constraints set and allows us to obtain highly accurate solutions.

The proposed method is a column generation scheme based on a variant of the Khobotov’s extragradient

method for solving variational inequalities. Computational experiments have been carried out on several

networks of a medium-large scale. The results obtained are promising and show the applicability of the

method for solving large-scale equilibrium problems.
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1 Introduction

The purpose of this paper is to provide a method for solving the well known asymmetric traffic network

equilibrium problem. In the literature, this problem is modelled as a variational inequality [6, 31]. In

particular, there are two main formulations. In one, the variational inequality is expressed in terms of flows

on paths of the network; in the other, the variational inequality is expressed in terms of flows on the arcs of

the network. The solution methods can thus be broadly divided into two categories according to the solution

space the algorithm operates in. The traditional approaches to solving the problem have been arc-based

algorithms. Path-formulation has also been considered, for example in [3, 4, 5, 7].

We believe the formulation with path-flow variables to be preferable for several reasons. A major one

is that solving the traffic assignment problem in the path flow space automatically provides not only the

equilibrium flow, but also all the routed paths. Arc flow based algorithms need, instead, to be supplied

with a procedure to yield an equilibrium path flow. On the other hand, there are many applications were

path flow solutions are needed as input, such as origin/destination (for short, O/D) matrix estimation and

exhaust fume emission analysis [17].

It is also necessary to formulate and solve the traffic assignment problem in the space of path flows when

the path costs are non-additive. There are many cases in which it is important to relax the assumption

of additive path costs; one such case occurs when users estimate that the time required to travel a given
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path increases nonlinearly (e.g. logarithmically) in proportion to the amount of additional traffic [12]. For

many types of path cost functions, it is simply impossible to use arc flow variables to formulate and solve

the corresponding traffic assignment problem [12].

Another important reason for using path flow variables is that it allows us to determine the equilibrium

solution to any given accuracy. This can be done by using the Wardrop equilibrium conditions [2, 35]. In

fact, to show that the assignment results are correct, we provide the equilibrium path flows and their relative

costs, and observe that the costs on all used paths are equal, and less than the costs on any unused paths.

Of course this requires the knowledge of which paths are being used in the network, and the arc-based

algorithms do not provide this information. In earlier applications of the traffic assignment problem, an

accurate estimation of the arc flow solution was not a main objective. Recently, attention has been directed

to Intelligent Transportation Systems (ITS) [14] as part of the strategy for improving the operational safety,

efficiency, and security of highway networks. The advent of ITS has made it necessary to find accurate

solutions.

From a computational point of view, the simple structure of path representation allows us to decompose

the constraints set, and this turns out to be useful for solving large-scale problems.

Furthermore, when path variables are used, it is not necessary to completely enumerate, a priori, all the

paths since that would be too expensive computationally even for moderately-sized networks. In fact, there

is a standard technique (column generation) which allows us to explicitly identify only those paths that

would likely be used. In [18] the authors recognized the utility of embedding a column generation procedure

in the general equilibration algorithm proposed in [7], in order to generate paths as needed.

There has been extensive work done on arc-based models for asymmetric equilibrium problems. Several

algorithms have been developed for their solution and the relative computational results have been pre-

sented (see e.g., [19, 23, 24, 27]). Some numerical results for solving asymmetric equilibrium problems based

on path-formulation have been presented in [3, 24, 25, 26, 30]). In the following, we propose an iterative

method which allows us to solve, to any given accuracy, large-scale asymmetric traffic equilibrium problems.

The paper is organized as follows: in Section 2 we recall the path-formulation of the traffic network

equilibrium problem, in Section 3 we describe the algorithm, then in Section 4 we give a detailed discussion

of its implementation, and finally in Section 5 we report the computational results.

2 The path-formulated traffic network equilibrium problem

The usual model of a traffic network is given by a direct graph, consisting of a set of nodes N, a set of arcs

A, and a set W of O/D pairs. For each w ∈ W there is a known demand dw > 0 representing the rate of

traffic entering and exiting the network at the origin and the destination of w respectively. The demand dw
is to be distributed among the paths connecting the O/D pair w, the set of which is denoted by Pw. Let

Fp denote the portion of dw routed on path p and let F be the vector of path flows Fp, with p ∈ Pw and

w ∈W. We denote the set of feasible path flow vectors by

X =

F ≥ 0 :
∑
p∈Pw

Fp = dw, ∀ w ∈W

 . (1)

The flow fa on each arc a is the sum of all flows on paths to which the arc belongs. The arc flow vector,

f = (fa)a∈A, is then given by f = ∆F , where ∆ is the arc-path incidence matrix:

∆a,p =

{
1 if arc a ∈ p,
0 otherwise.
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For each arc a, there is a non-negative arc cost function ca(f), which represents the delay in traversing arc

a and depends upon the arc flow vector f . The corresponding path cost function is assumed to be additive;

that is, the travel time Cp(F ) on path p is the sum of the travel times on the arcs belonging to p:

Cp(F ) =
∑

arcs a ∈ p

ca(∆F ),

and thus the path cost vector function is C(F ) = ∆T c(∆F ). According to the Wardrop equilibrium principle,

the traffic network equilibrium problem is to find a path flow vector F ∗ ∈ X which consists of path flows

that are positive only on paths with minimum cost. It is well known [6, 31] that this problem is equivalent

to the following variational inequality problem (in short VI), which consist of finding a vector F ∗ ∈ X such

that

〈C(F ∗), F − F ∗〉 ≥ 0, ∀ F ∈ X, (2)

where 〈·, ·〉 denotes the inner product.

3 A double projection algorithm for solving the asymmetric traffic

equilibrium problem

Problem (2) can be solved by any general computational technique developed for VI. However, we can exploit

the structure of the constraints set to get more efficient procedures for solving the equilibrium problem. Since

we operate in the space of path flows, the feasible set X is the Cartesian product of as many simplices as

the O/D pairs, i.e.

X =
∏
w∈W

Xw, where Xw =

F ∈ R|Pw|
+ :

∑
p∈Pw

Fp = dw

 .

Due to the decomposable nature of the constraints set X, projection-type algorithms turn out to be easy

to apply. Indeed the projection on X of a vector v can be decomposed into a collection of small-sized

projections of v on the simplices Xw, that is, one projection for each O/D pair. Then, since projections onto

simplices Xw can be efficiently computed [22], projection-type methods are a natural solution strategy for

solving large-scale VI and have been used, for example, in [3, 5, 25, 26]. Among the projection-type schemes

appearing in the literature, the extragradient method [15] is very popular. There are two main reasons

for using the extragradient method as a solution algorithm for VI. The first reason is that this method is

convergent under mild assumptions on the cost operator. The second is that we do not need, a priori, to

know the Lipschitz constant of the cost operator (see Definition 3.1). It should be remarked that, among

the projection-type schemes, the hyperplane projection method [32] performs better than the extragradient

method for general VI with no special structure. However, since the hyperplane projection method requires

the projection onto the intersection between X and a suitable hyperplane, we could not exploit the inherent

Cartesian product structure of the feasible set X. The specific features of the asymmetric traffic equilibrium

problem justify the choice of the extragradient method instead of the hyperplane projection. Moreover, in

order to improve the convergence of the extragradient method, we propose a refinement by introducing a

new step. The details of the modified extragradient method for solving VI can be described as follows:
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Basic Algorithm for VI

Step 0. (Initialization) Select parameters β, ξ ∈ (0, 1) and α > 0. Let F 0 ∈ X, α0 = α and set k = 0.

Step 1. (Stopping criterion) If a stopping criterion is satisfied then STOP.

Step 2. (Flow update)

a. (F
k

computation) Compute

F
k

= ProjX(F k − αk C(F k)).

b. (αk check)

while αk > β
‖F k − F k‖

‖C(F k)− C(F
k
)‖

do

reduce αk:

αk = min

{
ξ αk, β

‖F k − F k‖
‖C(F k)− C(F

k
)‖

}
. (3)

end

c. (Compute F k+1 and re-initialize αk) Compute

F k+1 = ProjX(F k − αk C(F
k
)),

set

αk+1 = min

{
α, β

‖F k − F k‖
‖C(F k)− C(F

k
)‖

}
, (4)

set k = k + 1 and go to step 1.

Here, ProjX(·) denotes the Euclidean projection map onto X, F k is the path flow vector at step k and

αk is a positive stepsize. It is known that the convergence rate of Khobotov’s algorithm can be very slow.

In fact, if at some iteration αk becomes small, it remains small at all successive iterations. We emphasize

that the introduction of a re-initialization of the value of αk in (4) enables us to avoid this drawback.

This algorithm is proved to converge to an equilibrium flow under some mild assumptions on the cost

operator. To make this precise, we introduce the following definitions:

Definition 3.1. C is Lipschitz continuous with constant L on X if there exists a positive constant L such

that

‖C(F1)− C(F2)‖ ≤ L ‖F1 − F2‖, ∀ F1, F2 ∈ X.

Definition 3.2. C is pseudomonotone on X if for all F1, F2 ∈ X :

〈C(F2), F1 − F2〉 ≥ 0 =⇒ 〈C(F1), F1 − F2〉 ≥ 0.

Next we establish the convergence result.

Theorem 3.1. If C is pseudomonotone and Lipschitz continuous on X, then any cluster point of the

sequence {F k}k∈N is an equilibrium flow.
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Proof. With our choice for the stepsize, we have:

0 < αk ≤ min

{
α, β

‖F k − F k‖
‖C(F k)− C(F

k
)‖

}
∀ k ∈ N.

The proof of convergence follows from [15]. �

As said above, when solving the network equilibrium problem, the first difficulty we meet is the large

number of path flow variables, a number which generally grows exponentially in the size of the network.

However, computational results (see Table 2, Section 5) show that the number of path variables that are

positive in the solution is often very small. Then, a solution strategy is to generate algorithmically, for

each O/D pair, only those paths which potentially carry a positive flow in an equilibrium solution (column

generation approach). We achieve this goal as follows: we choose a feasible flow vector and we consider the

corresponding set of used paths P0
w, for each O/D pair w. Next, at the k-th iteration, we compute link costs

with respect to the current flow vector, by applying the cost formulas. Using these arc costs, we calculate a

shortest path for each O/D pair w, which will be added to the set of paths previously obtained, Pk
w ⊆ Pw, if

it has not already been included. Therefore, at the k-th iteration, the feasible set X in (1) can be replaced

with the following:

Xk =
∏
w∈W

Xk
w,

where

Xk
w =

F ∈ R|P
k
w|

+ :
∑
p∈Pk

w

Fp = dw

 .

The flow is then updated by an iteration of the algorithm for VI previously described. An important feature

of this procedure is that, when updating the flow, each projection on the set of feasible path flows Xk can

be decomposed into a collection of smaller projections on Xk
w, for each pair w ∈W.

To accurately describe the specific algorithm developed for solving the asymmetric traffic network equi-

librium problem, we need to introduce some notation. At the k-th iteration we consider the path flow

F k
w = (F k

p )p∈Pk
w

and the path cost Cw(F k) = (Cp(F k))p∈Pk
w

, with Pk
w ⊆ Pw, for each O/D pair w. We

denote the flow vector by F k = (F k
w)w∈W and the cost vector by

C(F k) = (Cw(F k))w∈W.

Moreover, we denote by O = {o1, . . . , or} the set of origin nodes of cardinality r. Based on the above

discussion, the details of the algorithm can be formalized as follows:

Algorithm for Traffic Assignment

Step 0. (Initialization) Select parameters β, ξ ∈ (0, 1), α > 0 and a tolerance ε > 0. Let F 0 be any feasible

path flow. For each pair w ∈W, let P0
w be the set of used paths. Set α0 = α and k = 0.

Step 1. (Column generation) Compute arcs cost with the current path flow F k.

For each pair w ∈W:

find a shortest path sw and

if sw /∈ Pk
w

then Pk
w = Pk

w ∪ {sw} and F k
sw = 0.

end

Step 2. (Stopping criterion) If F k satisfies a stopping criterion, then STOP.
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Step 3. (Flow update)

a. (F
k

computation) For each pair w ∈W compute

F
k

w = ProjXk
w

(F k
w − αk Cw(F k)).

b. (αk check)

while αk > β ‖Fk−Fk‖
‖C(Fk)−C(F

k
)‖

do

reduce αk:

αk = min

{
ξ αk, β

‖F k − F k‖
‖C(F k)− C(F

k
)‖

}
,

end

c. (Compute F k+1 and re-initialize αk) For each pair w ∈W compute

F k+1
w = ProjXk

w
(F k

w − αk Cw(F
k
)),

set αk+1 = min

{
α, β

‖F k − F k‖
‖C(F k)− C(F

k
)‖

}
.

For each pair w ∈W set Pk+1
w = Pk

w, k = k + 1, and go to step 1.

It is clear that a careful implementation is important for the algorithm to perform well. In particular we

need to give a procedure for finding shortest paths, the choice of the initial flow, a stopping criterion and a

procedure for performing the projection onto a simplex.

4 Implementation of the algorithm

In this section we discuss the main computer implementation issues.

4.1 Shortest path subproblem

The proposed algorithm requires iterated solutions of the shortest path problem for each column generation

step. Since the shortest paths between all O/D pairs need to be determined simultaneously before performing

a column generation step, the Dijkstra’s algorithm [8] has been used to find a shortest path tree rooted from

each origin, so that the shortest paths are determined for all O/D pairs with the same origin. Moreover, it

is not necessary to perform a column generation step in every iteration as we expect the number of paths

generated after the first iterations to be very small. Therefore in order to reduce the number of the shortest

path computations, we considered a column generation step every n iterations, with n a number to be

specified. By performing numerical experiments (see Section 5, Figure 1) we found that the best value of

this number varies between 8 and 12, depending on the network being considered.

4.2 Finding the initial solution

Usually, in the implementation of the algorithms for the traffic assignment problem, the initial solution is

obtained by sending flow on shortest paths with respect to the cost vector corresponding to the zero path

flow, referred to as all-at-once assignment. In our implementation, we have refined the initial solution as

follows: starting with the zero flow we have successively updated the flow and its cost, considering the
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origins in sequence. Namely, instead of carrying out the shortest path procedures with respect to all the

origins, we have performed that procedure for a single origin and then we have revaluated the flow vector

and the corresponding path cost vector. The initial flow thus obtained will be referred to as once-at-a-time

assignment. This procedure is sketched below:

Set F = 0 and evaluate arc costs.

for i = 1 to r do

– Build a shortest path tree Ti rooted in oi. For all w ∈W with origin oi, let sw be a shortest path

in Ti with respect to w ∈W.

– For all w ∈W with origin oi, set Fsw = dw.

– Update arc costs with the current path flow F .

end

The effect in terms of CPU time of the two different starting points is reported in Table 3, Section 5.

4.3 Algorithm for projecting onto a simplex

It is important to remark that all projections on simplices Xw can be performed in a very quick way.

According to [22], we consider the following iterative procedure for finding the projection of a vector z ∈ Rn

onto the simplex

{
x ∈ Rn

+ :
n∑

i=1

xi = d

}
.

Step 0. Set k = 0 and x0i = zi +
1

n

d− n∑
j=1

zj

 for all i = 1, . . . , n.

Step 1. if xk ≥ 0

then STOP

else compute I = {i : xki > 0}.

end

Step 2. For all i = 1, . . . , n compute

xk+1
i =


0 if i /∈ I,

xki +
1

|I|

d−∑
j∈I

xkj

 if i ∈ I,

set k = k + 1, and go to step 1.

This algorithm performs very simple computations and the projection of z on the simplex

{
x ∈ Rn

+ :
n∑

i=1

xi = d

}
is found in at most n iterations.
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4.4 Stopping criterion

As already pointed out, an efficient stopping criterion is essential when solving the traffic assignment problem.

In the literature there is a number of different stopping criteria, most of them based on the difference between

two successively computed arc flows vectors, so that the iterative procedure stops when this difference is less

than a given accuracy. However, these criteria do not allow us to know what the reached approximation

with respect to the equilibrium flow is. In our computational experiments we used a stopping criterion

based directly on the Wardrop equilibrium principle: the algorithm is stopped when for each O/D pair the

travel times at the paths carrying positive flow approximately equal the travel time of the shortest path. To

formalize this fact, we adopted the following error function:

φ(F ) = max
w∈W

 1

dw

∑
p∈P̃w

Fp

 ,

where

P̃w =

{
p ∈ Pw :

Cp(F )− Cmin
w (F )

Cmin
w (F )

> δ

}
,

Cmin
w (F ) is the shortest path cost relative to the O/D pair w; δ > 0 is a fixed tolerance

(e.g., δ = 0.01). This function computes, for each O/D pair, the portion of the demand carried on the

paths whose relative difference with respect to the shortest path cost exceeds δ. We remark that if F ∗ is an

equilibrium flow then φ(F ∗) = 0 for each tolerance δ > 0. Thus, a very small value of φ(F ) (e.g., less than

10−6) guarantees that an equilibrium flow is actually achieved. Other choices of error functions, such as the

difference of the norm between successive iterates, are less suitable. Indeed, even when the iterates are far

from an equilibrium solution, the difference of the norm between the iterates may be small (see Section 5,

Table 5). In the next section we present numerical results for some medium and large-scale networks.

5 Computational results

This section is devoted to the description of the numerical experiments and the analysis of the results. The

proposed algorithm was implemented under MATLAB 7.0.4 and tested on an Intel Pentium 4 at 2.80 GHz,

512MB RAM, running under Windows XP. The numerical tests have been performed on 5 traffic networks:

three networks commonly used in literature [1] and two real-life ones [28]. The instances we have considered

are described in Table 1.

instance nodes arcs O/D pairs

Sioux-Falls 24 76 528

Arezzo 213 598 2,423

Lazio 306 926 5,683

Barcelona 1,020 2,522 7,922

Winnipeg 1,052 2,836 4,345

Table 1: test instances.

In [1] the networks are considered with a separable cost function – namely the cost on each arc depends

only on the flow on that arc – introduced by the Bureau of Public Roads (BPR):

ca(f) = ta

[
1 + 0.15

(
fa
Ka

)4
]
,
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where ca(f) is the travel cost on arc a at the flow f , ta is the travel cost at zero flow (free flow travel time),

fa is the flow on the arc a, and Ka is the capacity of the arc a. However, to handle real-life instances where

there is interaction among traffic on different arcs of the transportation network – as for example two-way

streets – the travel cost on each arc is considered to depend upon the flow on other arcs of the network. To

deal with asymmetric models, an appropriate cost function is obtained modifying the BPR by adding a term

which takes into account the traffic flow in the opposite directions:

ca(f) = ta

[
1 + 0.15

(
fa + 0.5 fa

2Ka

)4
]
,

where a denotes the opposite arc of a. This function leads to an asymmetric equilibrium problem. The

same structure of the cost function is also used for the Arezzo and Lazio networks. Detailed data for these

networks are given in [28].

In the implementation we set parameters as follows: β = 0.8, ξ = 0.9 and ᾱ = 106. We performed the

column generation step every 10 iterations and as initial flow we considered the once-at-a-time assignment.

In order to obtain an accurate solution, we applied the stopping criterion φ(F ) ≤ 10−6.

We summarize the computational results of our algorithm in Table 2. The first column reports the name

of the instance, the second one contains the number of iterations (iter) computed, the third one shows the

number of shortest path tree (spt) computations, the fourth and fifth columns give, respectively, the total

number of projections (proj) and arc cost function evaluations (cf) executed. The sixth column provides

the maximum dimension of each projection computed (dimproj), namely the number of variables in each

subproblem, and finally the last column is devoted to the CPU time1. It is important to note that the

dimension of each computed projection is very small. This allows us to handle equilibrium problems with a

great number of O/D pairs.

instance iter spt proj cf dimproj CPU time

Sioux-Falls 72 264 11,693 195 3 1.32

Arezzo 42 612 8,553 164 2 7.13

Lazio 64 920 47,652 243 3 25.71

Barcelona 120 1,164 156,526 372 3 130.14

Winnipeg 72 1,080 64,038 305 2 73.70

Table 2: computations results.

To show how the performance of the algorithm depends on the number of column generation steps

performed, in Figure 1 we report the computational times for the three test scenarios Lazio, Barcelona and

Winnipeg networks [1, 28], obtained by changing the number of iterations in which the column generation

step is performed.

In Table 3 we summarize the effect of considering two different starting flows, all-at-once and once-at-a-

time assignments, in terms of CPU time.

In [19] the author proposed an extragradient method with a stepsize choice similar to the one described

in Section 3, but without re-initialization of the parameter α. We have then implemented another version

of the algorithm without re-initialization of the parameter α. Table 4 shows a comparison between the two

versions, with or without α re-initialization.

1CPU time (in seconds) is obtained by using the Matlab function cputime.
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Figure 1: CPU times for different periods of column generation procedure.

initial flow

all-at-once once-at-a-time

instance (CPU time) (CPU time)

Sioux-Falls 2.00 1.32

Arezzo 7.71 7.13

Lazio 42.59 25.71

Barcelona 991.65 130.14

Winnipeg 785.48 73.70

Table 3: all-at-once vs once-at-a-time initial flows.
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α re-initialization

with without

instance (CPU time) (CPU time)

Sioux-Falls 1.32 53.45

Arezzo 7.13 924.64

Lazio 25.71 2,286.50

Barcelona 130.14 4,600.12

Winnipeg 73.70 1,136.75

Table 4: CPU times with or without α re-initialization.

A comparison between the computational times shows that the re-initialization of α improves the overall

performance of the algorithm allowing the CPU time to be substantially reduced.

To show the importance of the path-based algorithm in obtaining the desired level of accuracy of the

solution, we have also considered a stopping criterion based on arc flow formulation. Given the sequence of

arc flows corresponding to the sequence of path flows, we stop the procedure when the average relative error

is less than 1%, namely
1

|A|
∑
a∈A

∣∣∣∣fk+1
a − fka
fka

∣∣∣∣ < 1%. (5)

Let fpath = (fpatha )a∈A denote the arc flow vector solution obtained using the path-based stopping

criterion φ(F ) ≤ 10−6 and let farc = (farca )a∈A denote the arc flow vector solution obtained using the

arc-based stopping criterion (5). In Table 5 we report the average relative error, i.e.

1

|A|
∑

a∈A, fpath
a >0

∣∣∣∣farca − fpatha

fpatha

∣∣∣∣
and the maximum relative error, i.e.

max
a∈A, fpath

a >0

∣∣∣∣farca − fpatha

fpatha

∣∣∣∣
of the solution farc with respect to fpath.

average maximum

instance relative error relative error

Sioux-Falls 0.19460 0.86343

Arezzo 0.14268 7.36540

Lazio 0.10208 4.19579

Barcelona 0.24295 18.82550

Winnipeg 0.21228 48.42120

Table 5: average and maximum relative error of the arc flow obtained with the arc-based stopping criterion (5)

with respect to the arc flow obtained with the path-based stopping criterion φ(F ) ≤ 10−6.

These computational results suggest that our path-based algorithm is a valuable alternative to arc-based

algorithms in obtaining an accurate solution of the traffic assignment problem.
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6 Conclusions

We have presented a new iterative method for solving the asymmetric traffic equilibrium problem formulated

as a variational inequality with path flow variables. The decomposable structure of the constraint set allows

us to use a projection-type method. Our computational experiments show the applicability of the proposed

method for solving large-scale problems.
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