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Abstract

CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale
array of Li,MoO, (LMO) cryogenic calorimeters with double readout of heat and
light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino
masses in the search for neutrinoless double beta decay of “’Mo. Pile-up of stand-
ard double beta decay of the candidate isotope is a relevant background. We gen-
erate pile-up heat events via injection of Joule heater pulses with a programmable
waveform generator in a small array of LMO crystals operated underground in the
Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and
control both time difference and underlying amplitudes of individual heat pulses in
the data. We present the performance of supervised learning classifiers on data and
the attained pile-up rejection efficiency.

Keywords Convolutional neural networks - Machine learning - Cryogenic
calorimeters - CUPID - Neutrinoless double beta decay - Majorana - Pile-up

1 Introduction

Neutrinoless double beta decay (Ovff) is a posited lepton number violating process
that would probe the Majorana nature of neutrinos. Sensitive searches for such decay
have started exploring the inverted hierarchy region of neutrino masses [1-5]. To do
so, they reached high mass of candidate emitter nuclei, low background radioactiv-
ity, good energy resolution. Cryogenic calorimeters yielded some of the best energy
resolutions in Ovf g searches to date [1, 6-8].

The CUORE experiment has reached the ton scale of detector mass, an energy
resolution of ~ 7.8keV and a background index in the region of interest for Ovfp
of 1.4 x 1072 counts/(keV kg year), dominated by partly contained a decays [1].
CUORE Upgrade with Particle Identification (CUPID) aims at fully exploring
the inverted hierarchy region of neutrino masses, corresponding to half-life sen-
sitivities of > 10%7year [9]. It will use the successful cryogenic infrastructure that
hosts CUORE to deploy a ton-scale array of Li,MoO, (LMO) scintillating crystal
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bolometers equipped with Ge bolometer light detectors (LD) to achieve simultane-
ous readout of the phonon and scintillation signals [10]. The effectiveness of the
double readout technique was proved by the CUPID-0 [6, 11, 12] and CUPID-Mo
[7] experiments and will bring the expected background down to 10~ counts/(keV
kg year). The nearly simultaneous occurrence of separate 2vff decay events in the
same crystal (pile-up) within the time resolution of the detector is an irreducible
source of background that needs to be mitigated in the design phase. Given the short
half life of '®Mo of 1T, ,, = 7.1 x 10'® year and assuming ~ 300 g mass, 100%
enrichment in 'Mo and a 1 ms resolving time the expected background contribu-
tion from pile-up events is 3.5 X 10~ counts/(keV kg year) [9].

CUPID will use neutron-transmutation-doped (NTD) thermistors to read out the
phonon signal on both LMOs and LDs. The rise time of thermal pulses is a func-
tion of the NTD working resistance, which is a function of temperature, and the
capacitance of the readout line. A campaign of measurements was carried out in the
Laboratori Nazionali del Gran Sasso (LNGS) to study the time resolution for pile up
discrimination of LMO crystals. An analysis based on optimal filtering (OF) [13]
of the reconstructed pulses showed a > 90% pile-up discrimination efficiency down
to At ~ 1 ms [14]. This work is aimed at exploring the effectiveness of alternative
analysis approaches. We analyze the same data with a deep learning classification
algorithm.

2 Measurement

An array of 8 cubic LMO detectors 45 X 45 x 45 mm? arranged in a tower of 2
floors of 4 crystals each was operated at ~ 18 mK temperature in the Hall C facility
at LNGS between summer 2019 and spring 2020. Each crystal faced two light detec-
tor Ge disks; the crystals on the bottom floor were wrapped in a reflecting foil. The
shape and size of LMO crystals resemble the envisioned CUPID design. Further
details on the experimental setup can be found in [14]. Three LMO crystals were
equipped with a functioning Si heater, which was driven by an arbitrary function
generator (Tektronix AFG1062). All detectors were equipped with NTD thermis-
tors, biased with a constant current. The working resistance of the NTDs was in the
(10-50) MQ range. The typical rise time of pulses was ~ 15 ms. Each NTD was
low-pass filtered (Bessel-Thomson) with a cutoff frequency of 63 Hz and the voltage
at its ends continuously digitized and stored on disk at 2 kHz sampling frequency.
A derivative trigger algorithm was used to identify pulses. Triggered pulses were
enclosed in 5 s windows, with 1 s time before the trigger (pre-trigger) used as a
proxy for the temperature before the pulse. Random triggers were fired throughout
the data taking to collect noise samples.

We performed reference heater pulses generation paying special attention to the
accurate reproduction of the pulse rise time with respect to events originating from
natural radioactivity (physics pulses). We excited the Si heaters with waveforms
w(t;A, 7) of square, triangular (sharp rise, linear fall), exponential shape with given
voltage amplitude A and typical time z. We found that despite their different ori-
gin, triangular-shaped heater excitations best reproduced the rising edge of physics
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pulses [14]. We tuned the A and 7 parameters of each waveform to reconstruct in
the (1-2.5) MeV energy range and as close as possible to the mean of the rise time
distribution of physics pulses. The sample of reference (single) heater pulses mim-
ics the detector response to single decay signal events. The time between one pulse
generation and the following one was set to 15 s, in order to let the detector return
to the initial condition. To generate heater pile-up pulses at a time distance Az, we
superimposed excitations of the Si heater as

W (A, Ay, T) = w(t;A|, ) + w(t + ABA,, 7) e))

Let a = A, /A, be the amplitude ratio between the excitations. In order to explore
amplitude ratios in the range a = 0.24—1.4, we fixed A; = 170 mV and varied
A, = (40—-240) mV in steps of 50 mV. We explored At = (1-40) ms. For each dou-
blet (a, Af), we collected a sample of ~ 100 pulses.

3 Data Analysis

The data analysis can be divided into two steps, a low-level processing and high-
level analysis. The former is aimed at selecting a clean sample of heater pulses; the
latter is the actual pile-up discrimination analysis. This study closely follows [8] as
far as the low-level processing is concerned and implements machine learning algo-
rithms in the high level analysis step.

The low-level processing acts on 5 s time windows (waveforms) around trig-
gered events. Each waveform is filtered with an OF [13]. The energy of each event is
obtained calibrating the amplitude of filtered pulses with a 232Th source. We reject
waveforms that contain more than one triggered pulse, or where the pre-trigger slope
is not compatible with 0. To discriminate heater from physics pulses, we first select
events according to their timestamp. Then, for each pulser configuration, we further
restrict our sample of heater pulses to those that fulfill

|E = Epneql <5 X Eyap )

where E is the reconstructed energy, E, .4 is the median reconstructed energy and
Eyiap 1s the median absolute deviation. Equivalent results can be obtained replacing
the energy variable in Eq. (2) with the raw amplitude of the pulse before filtering,
effectively decoupling the deep learning algorithm from other steps of the analysis.
Since the rate of physics pulses is much lower than the one of heater pulses, this
procedure is effective in removing the outliers of the heater pulse distribution due to
either natural radioactivity, unidentified pile-up events or pulses produced in unsta-
ble detector conditions.

The high-level analysis is based on the Keras [15] implementation of a convolu-
tional neural network (CNN) classifier algorithm. The CNN was designed to read
full windows of raw pulses, before any OF is applied. We pre-process the data by
subtracting the average sampled voltage in the pre-trigger part of the pulse (base-
line) and linearly scaling individual pulses to obtain unit amplitude.
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The CNN includes 10 deep convolutional blocks, each made of 8 filters 20 sam-
ples long with a ReLU activation function, followed by a MaxPooling layer with a
factor 2 subsampling. A fully connected feed-forward classifier layer connects the
output layer with a Softmax activation function. Training was performed minimizing
a categorical cross-entropy loss function for 200 epochs with the Adam algorithm
[16] and a constant learning rate of 107, For a comprehensive review on machine
learning, see [17] and references therein.

Due to the small size of the available dataset, we rely on cross-validation tech-
niques [18] to assess the performance of the CNN model to classify pile-up events.
We use a fivefold cross-validation. We randomize the data and split them into 5 non-
overlapping subsets. From each of the subsets, we retain a 20% fraction of events to
assess the model performance after training is completed (test set). We further split
the remaining part to build a training set (80%) and a validation set (20%). We train
independently 5 identical CNN models with the same choice of hyperparameters
(learning rate, number of epochs, etc.) and architecture (layer structure). We opti-
mize hyperparameters keeping the test sets blinded. The output layer of the CNN
returns a classifier score in the (0, 1) range. For each data subset, we compute the
predicted score on the test set using the corresponding CNN model. We compare
the prediction with the label assigned to each test pulse according to its timestamp.
We evaluate the classification efficiency as a function of At as the ratio between the
number of correctly labeled events over the total number of events. We fit the clas-
sification efficiency curve (Fig. 1) with an exponential saturation function

e(Ar) = py(1 —e™7) 3)

and define the pile-up time resolution of each channel as the Az > 0 at which the
90% classification efficiency is reached.

4 Results

We present the performance of a new technique based on a deep learning classi-
fier to discriminate pile-up events in cryogenic LMO bolometers. The classifier is
trained on single-pulse and pile-up samples generated exciting a Si heater with a
programmable function generator and tested on an independent sample of events
generated with the same technique. We achieve a > 90% reconstruction efficiency
of signal events and a > 90% rejection efficiency for At > 1—2 ms depending on the
channel. The deep-learning and OF based pile-up rejection approaches yield so far
equivalent results [14].

This work is part of a technical optimization campaign of the CUPID detec-
tor design and data processing techniques. A detailed Monte Carlo simulation of
the detector response incorporating pile-up rejection is underway to disentangle
the interplay of parameters such as the noise level, sampling and Bessel cutoff
frequencies, pulse rise time and signal-to-noise ratio. Preliminary results indicate
that similar performances can be achieved for physics pulses. In future measure-
ments, we plan to improve the cryogenic stability, noise conditions and excitation
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Fig. 1 Pile-up classification performance on single channel. The data points show the classification effi-
ciency on pulser data (fivefold cross-validation method) as a function of A and a fit with an exponential
saturation function. The green band corresponds to the signal (single-pulse) efficiency. The At error bars
correspond to the bin size. (Color figure online)

methods to better reproduce both the rising and falling edge of physics pulses and
eventually explore smaller pile-up time differences.
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