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Abstract

A Frobenius group is a transitive permutation group that is not regular and
such that only the identity fixes more than one point. A digraphical, respectively
graphical, Frobenius representation, DFR and GFR for short, of a Frobenius group
F is a digraph, respectively graph, whose automorphism group as a group of per-
mutations of the vertex set is F . The problem of classifying which Frobenius groups
admit a DFR and GFR has been proposed by Mark Watkins and Thomas Tucker
and is a natural extension of the problem of classifying which groups that have a
digraphical, respectively graphical, regular representation.

In this paper, we give a partial answer to a question of Mark Watkins and
Thomas Tucker concerning Frobenius representations: “All but finitely many Frobe-
nius groups with a given Frobenius complement have a DFR”.

Mathematics Subject Classifications: 05C25, 05C20, 20B25

1 Introduction

All groups and graphs in this paper are finite. Let G be a group and let S be a subset of
G. The Cayley digraph Cay(G,S) over G with connection set S is the digraph with vertex
set G and with (x, y) being an arc if yx−1 ∈ S. (In this paper, an arc is an ordered pair of
adjacent vertices.) It is easy to see that the group G acts faithfully as a group of automor-
phisms of Cay(G,S) via the right regular representation. In particular, Cayley digraphs
offer a natural way to represent groups geometrically and combinatorially as groups of
automorphisms of digraphs. Clearly, this representation is particularly meaningful if G is
the full automorphism group of Cay(G,S).

In this context it is fairly natural to ask which groups G admit a subset S with G
being the automorphism group of Cay(G,S); that is, Aut(Cay(G,S)) = G. In this case,
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we say that G admits a digraphical regular representation (or DRR for short). Babai [1,
Theorem 2.1] has given a complete classification of the groups admitting a DRR.

In light of Babai’s result, it is natural to try to combinatorially represent groups as
automorphism groups of special classes of Cayley digraphs. Observe that if S is inverse-
closed (that is, S = {s−1 | s ∈ S} := S−1), then Cay(G,S) is undirected. Now, we say
that G admits a graphical regular representation (or GRR for short) if there exists an
inverse-closed subset S of G with Aut(Cay(G,S)) = G. With a considerable amount of
work, starting with the pioneer work of Imrich [13, 14, 15] and culminating in [10, 12],
the groups admitting a GRR have been completely classified.

We recall that a tournament is a digraph Γ := (V,A) with vertex set V and arc set
A such that, for every two distinct vertices x, y ∈ V , exactly one of (x, y) and (y, x) is in
A. After the completion of the classification of DRRs and GRRs, Babai and Imrich [3]
proved a classification of the finite groups admitting a tournament regular representation
(or TRR for short).

Much more recently, the subject of regular representations has discovered a new vitality
in a number of different directions. First, answering a question of Babai [1, Problem 2.7],
Morris and the author of this paper have classified in [21, 22, 24] the groups admitting an
oriented regular representation (or ORR for short): an oriented graph is a digraph with no
digons. Second, various researchers have tried to represent some special classes of groups
as DRR (or GRR) of very small valency, see for instance [25, 29] and the bibliography
therein.

Third, motivated by the previous work, Conder, Doyle, Tucker and Watkins [5, 9] have
considered a new intriguing variation on the theme: graphical Frobenius representations.
A Frobenius group F is a transitive permutation group that is not regular and such that
only the identity fixes more than one point. A graphical Frobenius representation (GFR
for short) of the Frobenius group F is a graph whose automorphism group, as a group of
permutations of the vertex set, is F . The definition of digraphical Frobenius representation
(DFR for short) is given analogously. The Frobenius group F is the semidirect product
N o H, where N is the nilpotent kernel of F and H is a Frobenius complement of H,
and the action of F is permutation isomorphic to the natural “affine” action of F , with
the group N acting via its right regular representation and with H acting on N via
conjugation. Now, F admits a DFR (or GFR) whenever there exists a subset S of N (S
inverse-closed in the case of GFR) with F = Aut(Cay(N,S)). Despite its appearance,
the problem of classifying the Frobenius groups admitting a DFR or a GFR is rather
different from the classification of DRR, GRR, TRR and ORR. Indeed, the rich and
highly restricted algebraic structure of Frobenius groups comes preponderantly into play.
In [9], the authors conjecture that “All but finitely many Frobenius groups with a given
Frobenius complement have a GFR”. In this paper we give a strong answer to the directed
version of this conjecture.

Theorem 1. There exists a function f : N→ N such that, if F is a finite Frobenius group
with complement H and with |F | > f(|H|), then F admits a DFR.

Our function f is rather explicit, see Section 5 and Remark 14, but very likely not
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best possible.
At this point, it is also worth noting that various researchers have shown that for

certain families of groups, almost all Cayley graphs are GRRs, or almost all Cayley
digraphs are DRRs [2, 7, 8, 10, 20]. We prove an analogous result for DFR.

Theorem 2. Let H be a finite group and let H be the family of all Frobenius groups
N oH with Frobenius kernel H. For every ε > 0, there exists nε ∈ N such that, for every
N oH ∈ H with |N | > nε, we have

|{S ⊆ N | F < Aut(Cay(N,S))}|
|{S ⊆ N | F 6 Aut(Cay(N,S))}|

< ε.

Roughly speaking, Theorem 2 says that, when N oH is a Frobenius group and |N | is
large compared to |H|, then a random H-invariant subset S of N gives rise to the DFR
Cay(N,S).1

We prove a result analogous to Theorem 2 for unlabeled Cayley graphs in Section 6.

2 Babai–Godsil estimates: first reduction

The argument in this section is completely inspired and in part taken from [2, Section 4].
For most of the arguments in this section we could simply refer to [2, Section 4], however
the hypothesis there are slightly different from our current needs. Therefore, rather than
pointing out which parts in [2, Section 4] need to be refined (and how to refine them), for
the sake of completeness we make this section self-contained and we repeat part of the
results in [2, Section 4].

Henceforth, let F := N o H be a Frobenius group with kernel N and complement
H acting on {1, . . . , n}, where n := |N |. As usual, N acts regularly on {1, . . . , n} and
the action of H on {1, . . . , n} is permutation equivalent to the action of H on N by
conjugation. Let K denote a non-trivial proper normal subgroup of F contained in N .
Let k := |K| and b := [N : K] = n/k. We let γ1, . . . , γb be coset representatives of K
in N . Moreover, we choose γ1 := 1 to be the identity in N . Observe that N/K defines
a structure of group on {1, . . . , b} by setting ij = k for every i, j, k ∈ {1, . . . , b} with
γiKγjK = γkK.

Write v0 := 1 where v0 has to be understood as a point in the N -set {1, . . . , n}.
For each i ∈ {1, . . . , b}, set Oi := v0

γiK . Observe that the Ois are the orbits of K on
{1, . . . , n}, the group K acts regularly on Oi and |Oi| = |K| = k.

For a subset S of N , we let Cay(N,S) be the Cayley digraph of N with connection
set S. We denote by AS the largest subgroup of Aut(Cay(N,S)) which normalizes K and
under which each orbit of K is invariant. In symbols we have

AS := {g ∈ NAut(Cay(N,S))(K) | Ogi = Oi, for each i ∈ {1, . . . , b}}.
1 During the refereeing process of this manuscript, the author developing the ideas in this paper has

given a positive solution to the GFR conjecture proposed by Conder, Doyle, Tucker and Watkins [5, 9].
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The subscript S in AS will make the notation cumbersome to use, but it constantly
emphases that the definition of “A” depends on S, because so does Cay(N,S). The
subgroup AS of A depends also on the normal subgroup K of F and hence, in principle,
we should use a double subscript for denoting AS: however, for not making the notation
too cumbersome to use, we have decided to drop this subscript because the dependency
of AS upon K (although very important) it is less relevant than the dependency of AS
upon S.

For a subgroup Y of Sym(n) and a Y -invariant subset X of {1, . . . , n}, we write
Y |X for the restriction of Y to X, that is, the image of the natural homomorphism
Y → Sym(X). For i ∈ {1, . . . , b}, set Si := S ∩ Oi and let AiS := (AS)v0 |Oi denote the
restriction to Oi of the stabilizer (AS)v0 in AS of the point v0 ∈ O1. In Lemmas 3 and 5
we use the notation established here.

Lemma 3. (See [2, Lemma 4.1].) If none of the Si, i ∈ {2, . . . , b}, is invariant under any
non-identity element of the group AiS, then AS = K.

Proof. Recall that the definition of AS depends on S and on K. Clearly, K 6 AS and,
since K is transitive on O1, from the Frattini argument we obtain AS = (AS)v0K. Fix
i ∈ {2, . . . , b}. Let f ∈ (AS)v0 . Since f ∈ Aut(Cay(N,S)), we have Sf = S and, since f
fixes every K-orbit setwise, we have Sfi = Si. Therefore, by hypothesis, the permutation
f restricted to Oi is the identity. Since this holds for each i ∈ {2, . . . , b}, we get that f
fixes pointwise {1, . . . , n} \ O1. Since this holds for every element f ∈ (AS)v0 , we see that
(AS)v0 fixes pointwise {1, . . . , n} \O1. In particular, (AS)v0 6 (AS)vγ2

0
and, as (AS)v0 and

(AS)vγ2
0

have the same order, (AS)v0 = (AS)vγ2
0

.

Finally, as (AS)v0 fixes pointwise {1, . . . , n} \ O1, we get that ((AS)v0)γ2 = (AS)vγ2
0

=

(AS)v0 fixes pointwise ({1, . . . , n} \ O1)γ2 = {1, . . . , n} \ O2. Thus (AS)v0 fixes pointwise
{1, . . . , n} and (AS)v0 = 1. Therefore AS = (AS)v0K = K.

In what follows we use repeatedly the following facts.

Remark 4. 1. Let X be a finite group. Since a chain of subgroups of X has length at
most log2 |X|, X has a generating set of cardinality at most blog2 |X|c 6 log2 |X|.

2. Let X be a finite group. Any automorphism of X is uniquely determined by the
image of the elements of a generating set for X. Therefore |Aut(X)| 6 |X|log2 |X| =
2(log2 |X|)2

.

3. Let g be a permutation of the finite set Ω and set ∆ := {ω ∈ Ω | ωg = ω}. Then g
fixes each point of ∆ and the cycles of g on Ω \∆ have length at least 2. Therefore

g fixes setwise at most 2|∆|+
|Ω\∆|

2 subsets of Ω. In particular, if |∆| 6 |Ω|/2, then g

fixes setwise at most 2
3
4
|Ω| subsets of Ω.

4. The subsets S of N with F 6 Aut(Cay(N,S)) are exactly the H-invariant subsets
of N . Since H has a unique orbit of cardinality 1 (namely {1}) and all other orbits

have cardinality |H|, we see that there are exactly 21+
|N|−1
|H| subsets S of N with

F 6 Aut(Cay(N,S)).
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In the following lemma we slightly generalize and we make the estimates in the state-
ment of [2, Lemma 4.2] more explicit.

Lemma 5. (See [2, Lemma 4.2].) For each i ∈ {2, . . . , b}, we have

|{S ⊆ N | F 6 Aut(Cay(N,S)) and there exists f ∈ (AS)v0 with f |Oi 6= 1}| 6M ′

where M ′ = max

{
2

1+n−1
|H| −

(√
n

4
−(log2 n)2

)
, 2

1+n−1
|H| −

( √
n−1−|H|

|H|(1+2|H|) log2(4/3)−2 log2

√
n+1

)}
.

Proof. First of all, recall that the definition of AS depends on S and on K.
Fix i ∈ {2, . . . , b} and denote by Φi the set

{S ⊆ N | F 6 Aut(Cay(N,S)) and there exists f ∈ (AS)v0 with f |Oi 6= 1}.

We follow the proof in [2, Lemma 4.2] without assuming that N has odd order and taking
into account the action of H on N by conjugation. We divide the proof in two cases.

Case 1: k >
√
n.

Let Li denote the normalizer in Sym(Oi) of Ki := K |Oi . The group Ki acts regularly,
and hence so does its centralizer in Sym(Oi). Therefore Li is isomorphic to a subgroup
of the holomorph K o Aut(K) of K and hence

|Li| 6 |K||Aut(K)| < k · klog2 k.

Using k 6 n/2, it is immediate to prove that k · klog2 k < nlog2 n = 2(log2 n)2
and hence

|Li| < 2(log2 n)2

.

We claim that, if ` ∈ Li\{1} fixes v ∈ Oi, then the set {x ∈ K | vx` = vx} is a subgroup
of K. Clearly, 1 lies in the set that we have just defined because v1·` = v` = v = v1.
Now, let x1, x2 ∈ K with vx1` = vx1 and vx2` = vx2 . Since ` normalizes Ki we have
(x2 |Oi)` ∈ Ki and hence there exists x3 ∈ K with x3 |Oi= (x2 |Oi)`. The image of the
point v ∈ Oi under (x2 |Oi)` is v`

−1x2` = vx2` = vx2 . Hence vx3 = vx2 and, since K acts
regularly on Oi, we get x3 = x2. Therefore x2 |Oi= (x2 |Oi)` and hence

vx1x2` = vx1`(x2)` = (vx1`)x
`
2 = (vx1)x2 = vx1x2 .

Thus, our preliminary claim is now proved.
The previous paragraph shows that, if ` ∈ Li \ {1} fixes v ∈ Oi, then ` fixes at most

k/2 elements of Oi because {k ∈ K | vx` = vx} is a proper subgroup of K. Therefore the
number of subsets Si of Oi invariant under ` ∈ Li \ {1} is at most 23k/4.

As i 6= 1, Oi is not H-invariant and the H-orbit OHi := {Ohi | h ∈ H} has cardinality
|H|. In particular, when the set Si has been chosen, in order to ensure that S is H-
invariant, we need to define Sih := Shi , where ih is the unique element of {2, . . . , b} with
Ohi = Oih .
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For S ∈ Φi, observe that Sj is an arbitrary H-invariant subset of Oj when j /∈ {ih |
h ∈ H}, and as (AS) |Oi6 Li, we have at most |Li|23k/4 choices for Si. (From the previous
paragraph, Sih is uniquely determined by Si via Sih = Shi .) As KoH acts as a Frobenius
group on O1, we have 21+(k−1)/|H| choices for an H-invariant subset of O1 = K. Therefore
we get

|Φi| 6 21+(k−1)/|H|︸ ︷︷ ︸
choices for S1

|Li|23k/4︸ ︷︷ ︸
choices for Sj ,

j∈{ih|h∈H}

(2k)(b−1−|H|)/|H|︸ ︷︷ ︸
choices for

remaining Sj

< 2(log2 n)2

21+(n−1)/|H|−k/4 < 2(log2 n)2

21+(n−1)/|H|−
√
n/4,

and the lemma follows in this case.

Case 2: k <
√
n.

Let S be an H-invariant subset of N , that is, F = N o H 6 Aut(Cay(N,S)). For a
vertex u of Cay(N,S) in Oi, let σ(S, u, j) denote the common outneighbours of v0 and u
lying in Sj. It is clear that

σ(S, u, j) = S ∩ Sgu ∩ Oj = (S ∩ Oj) ∩ Sgu = Sj ∩ Sgu ,

where gu ∈ N with vgu0 = u.

Let s ∈ S with sgu ∈ Sj. Then sgu ∈ Oj = v
γjK
0 = v

Kγj
0 and sguγ

−1
j ∈ vK0 = O1.

Since gu maps the element v0 of O1 to the element u of Oi, we see that gu ∈ γiK and

s ∈ Oγjg
−1
u

1 = v
γjγ
−1
i K

0 = Oji−1 . This shows that

σ(S, u, j) = Sj ∩ Sguji−1 . (1)

For two distinct vertices u, v ∈ Oi and j ∈ {1, . . . , b}, let

Ψi(u, v, j) := {S ⊆ N | S is H-invariant and |σ(S, u, j)| ≡ |σ(S, v, j)| (mod 2)}.

Assume that j ∈ {1, . . . , b} \ {1, i} and jH 6= (ji−1)H . (Here, jH and (ji−1)H denote the
orbits of H on {1, . . . , b} containing j and ji−1 respectively.) We claim that

|Ψi(u, v, j)| 6
3

4
· 21+n−1

|H| . (2)

Since u, v ∈ Oi, we have u = vγiku0 and v = vγikv0 , for some ku, kv ∈ K. Let S ∈ Ψi(u, v, j).
From (1), we obtain

|σ(S, u, j)| = |Sji−1 ∩ Sk
−1
u γ−1

i
j | and |σ(S, v, j)| = |Sji−1 ∩ Sk

−1
v γ−1

i
j |. (3)

From this we see that the condition “|σ(S, u, j)| ≡ |σ(S, v, j)| (mod 2)” imposes no con-
straint on Sx, for x /∈ {j, ji−1}. (Of course, the only constraint is on the set S being
H-invariant and hence Sxh = Shx , for each h ∈ H.) By hypothesis, jH and (ji−1)H are
distinct H-orbits and are both different from {1}; therefore

|Ψi(u, v, j)| 6 A · 21+ k−1
|H| · (2k)

b−1−2|H|
|H| = A21+n−1

|H| −2k,
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where A is the number of subsets Sji−1 ⊆ Oji−1 and Sj ⊆ Oj with |Sji−1 ∩ Sk
−1
u γ−1

i
j | ≡

|Sji−1∩Sk
−1
v γ−1

i
j | (mod 2). (As in the case above, the factor 21+(k−1)/|H| counts the number

of choices for S1, and the factor (2k)(b−1−2|H|)/|H| counts the number of choices for Sx when
x ∈ {1, . . . , b} is neither 1 nor in jH ∪ (ji−1)H .)

Let x be the number of subsets Sj ofOj with Sk
−1
u
j = Sk

−1
v
j , and y = 2k−x. Observe that

for every subset S ⊆ N with Sk
−1
u
j = Sk

−1
v
j , we have S ∈ Ψi(u, v, j). Now k−1

v ku ∈ N \ {1}
and, if Sj = Sk

−1
v ku
j , then Sj is a union of 〈k−1

v ku〉-orbits. As |k−1
v ku| > 2 and as K acts

regularly on Oj, we have x 6 2k/2.

Next let S ∈ Ψi(u, v, j) and suppose that Sj is a subset of Oj with Sk
−1
u
j 6= Sk

−1
v
j . Now

S
k−1
u γ−1

i
j and S

k−1
v γ−1

i
j are two distinct subsets Oji−1 of the same size a, say. Let b be the

size of S
k−1
u γ−1

i
j ∩ Sk

−1
v γ−1

i
j . Observe that a− b > 0. Moreover, a subset Sji−1 of Oji−1 with

|Sji−1 ∩ Sk
−1
u γ−1

i
j | ≡ |Sji−1 ∩ Sk

−1
v γ−1

i
j | (mod 2) can be written as X ∪ Y , where X is as an

arbitrary subset of Oji−1 \ Sn
−1
v γ−1

i
j and Y is a subset of S

n−1
v γ−1

i
j \ Sn

−1
u γ−1

i
j of size having

parity uniquely determined by the parity of |X|. Therefore we have 2k−(a−b)2(a−b)−1 = 2k−1

choices for Sji−1 . Altogether we have

A = x · 2k + y · 2k−1 = x2k + 22k−1 − x2k−1 = 22k−1 + x2k−1

6 22k−1 + 2k/22k−1 = 22k

(
1

2
+

1

2k/2+1

)
6 22k

(
1

2
+

1

22

)
=

3

4
· 22k

and (2) is proved.

We now consider an auxiliary digraph X:

• the vertices of X are the H-orbits on N/K = {1, . . . , b} which are different from
the orbit {1} and the orbit iH ,

• the arcs of X are the ordered pairs (jH1 , j
H
2 ) (where jH1 and jH2 are vertices) such

that, there exist j′1 ∈ jH1 and j′2 ∈ jH2 with j′2 = j′1i
−1.

Observe that X is a directed graph. As each H-orbit has cardinality |H|, X has maximum
in-valency and maximum out-valency at most |H| and hence the valency of the underlying
undirected graph of X is at most 2|H|. Observe also that X has no isolated vertices.
Indeed, assume that jH is an isolated vertex. This means that for each j′ ∈ jH the
element j′i−1 lies in jH . This yields that jH is closed by the right multiplication by i−1

and hence jH has cardinality divisible by the order of i; however, |H| and |i| are relatively
prime because so are |H| and |N |.

As customary, let α := α(X) be the independence number of X and let jH1 , . . . , j
H
α be

an independent set of X of cardinality α. Since X has (b−1−|H|)/|H| vertices, a classical
graph theoretic result of Caro-Turán-Wei [4, 27, 28] yields that X has an independent set
of cardinality at least

(b− 1− |H|)/|H|
1 + 2|H|

=
b− 1− |H|
|H|(1 + 2|H|)

;
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therefore, α > (b− 1− |H|)/(|H|(1 + 2|H|)).
Define J := {j1, . . . , jα}. Given two distinct elements u, v in Oi, define Ψi(u, v, J) :=⋂

j∈J Ψi(u, v, j). Observe that, from (3) and from the fact that {jH1 , . . . , jHα } is an inde-
pendent set in X, the events {Ψi(u, v, j)}j∈J are pairwise independent. Thus, it follows
from (2) that

|Ψi(u, v, J)| 6
(

3

4

)α
21+n−1

|H| 6

(
3

4

) b−1−|H|
|H|(1+2|H|)

21+n−1
|H| .

We are now ready to conclude the proof of this lemma. Let S ∈ Φi and let f ∈ (AS)v0

with f |Oi 6= 1. Let u and v be distinct vertices of Cay(N,S) in Oi with uf = v. Since f
fixes v0 and fixes setwise every K-orbit, we get (σ(S, u, j))f = σ(S, uf , j) = σ(S, v, j), for
every j ∈ {2, . . . , b} and hence (in particular) S ∈ Ψi(u, v, J). Therefore, given u and v,
we have |Ψi(u, v, J)| 6 (3/4)(b−1−|H|)/(|H|(1+2|H|))21+(n−1)/|H| choices for S. As we have

(
k
2

)
choices for {u, v} and as b >

√
n, we have

|Φi| 6
(
k

2

)(
3

4

) b−1−|H|
|H|(1+2|H|)

21+n−1
|H| < 22 log2

√
n−12

√
n−1−|H|

|H|(1+2|H|) log2(3/4)21+n−1
|H|

and the lemma follows.

We are now ready to state the first reduction theorem.

Theorem 6. Let F := N o H be a Frobenius group with kernel N and complement H.
The number of subsets S of N with F 6 Aut(Cay(N,S)) and such that there exists

• a non-trivial proper normal subgroup K of N and

• an automorphism f ∈ Aut(Cay(N,S)) normalizing K, with f /∈ N and with f fixing
setwise every K-orbit

is at most 2(log2 |N |)2
(|N |/2− 1)M ′, where

M ′ := max

{
2

1+n−1
|H| −

(√
n

4
−(log2 n)2

)
, 2

1+n−1
|H| −

( √
n−1−|H|

|H|(1+2|H|) log2(4/3)−2 log2

√
n+1

)}
.

Proof. Write n := |N |. Every subgroup of N has at most log2 n generators and hence N
has at most nlog2 n = 2(log2 n)2

subgroups. In particular, we have at most 2(log2 n)2
choices

for a non-trivial proper normal subgroup K of N . Now, fix such a normal subgroup K,
and let S ⊆ N such that there exists g ∈ Aut(Cay(N,S)) \N normalizing K and fixing
setwise every K-orbit. Thus g ∈ AS \ N : recall that the definition of AS depends on
S and on K. Moreover, replacing g by gr−1, for a suitable r ∈ N if necessary, we may
assume that g fixes the vertex v0 ∈ O1, that is, g ∈ (AS)v0 \ {1}.

Now, we use the notation established in Lemmas 3 and 5. Suppose that there exists
i ∈ {2, . . . , b} and f ∈ (FS)v0 with f |Oi 6= 1. Then, by Lemma 5, we have at most
(b− 1)M ′ choices for S. (Observe that the factor b− 1 accounts for the number of choices
for i ∈ {2, . . . , b}).
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Next suppose that (AS) |Oi= 1, for every i ∈ {2, . . . , b}. Now, Lemma 3 gives AS = N
and hence (AS)v0 = 1, contradicting our choice of S. Since b 6 n/2, this proves that the
number of choices for S is at most

2(log2 n)2 · (n/2− 1) ·M ′.

3 Counting automorphisms: second reduction

Lemma 7. Let F := N oH be a Frobenius group with kernel N and complement H and
let ϕ ∈ Aut(N) with ϕ /∈ H. The number of subsets S of N with 〈ϕ, F 〉 6 Aut(Cay(N,S))
is at most

2
3
4
|N|
|H|−

1
2|H|+

1
2

+
√
|N | |H|−1

2|H| .

Proof. Let S := {n ∈ N | nϕ ∈ nH}, where as usual nH := {nh | h ∈ H} is the H-orbit
containing n. We may write S as the union S =

⋃
h∈H Sh where Sh := {n ∈ N | nϕ = nh}.

Observe that Sh = {n ∈ N | nhϕ−1
= n} = CN(hϕ−1), for every h ∈ H. Now, let h1 and

h2 be two distinct elements from H and let n ∈ Sh1 ∩ Sh2 . As nh1ϕ−1
= n = nh2ϕ−1

, we

obtain n = nh1ϕ−1(h2ϕ−1)−1
= nh1h

−1
2 . Since 1 6= h1h

−1
2 ∈ H and F = N oH is a Frobenius

group, h1h
−1
2 centralizes no non-identity element of N ; thus n = 1 and Sh1 ∩ Sh2 = {1}.

This shows that

|S| =

∣∣∣∣∣⋃
h∈H

CN(hϕ−1)

∣∣∣∣∣ =
∑
h∈H

|CN(hϕ−1)| − |H|+ 1. (4)

Let C := {n ∈ N | ϕ fixes setwise nH}. If n ∈ C, then (nH)ϕ = nH and hence
nϕ ∈ nH , that is, n ∈ S. Therefore C ⊆ S. Observe that C is ϕ-invariant and H-invariant.
Indeed, if n ∈ C, then nϕ ∈ nH and hence there exists h̄ ∈ H with nϕ = nh̄. Now,
(nϕ)H = (nh̄)H = nH and hence ϕ fixes setwise (nϕ)H ; thus nϕ ∈ C. Moreover, if h ∈ H,
then (nh)H = nH ; hence ϕ fixes setwise (nh)H and so nh ∈ C.

Let S be a subset of N with 〈ϕ, F 〉 6 Aut(Cay(N,S)). Write S := S1 ∪ S2, where
S1 := S ∩ C and S2 := S ∩ (N \ C). From the previous paragraph, S1 and S2 are both
〈ϕ,H〉-invariant. To obtain an upper bound on the number of such subsets S, we obtain
separately two upper bounds on the number of possibilities for S1 and S2. Since H acts
as a Frobenius complement on N , the number of H-orbits in C is

1 +
|C| − 1

|H|

and hence we have at most 21+
|C|−1
|H| possibilities for S1. (The summand “1” accounts for

the orbit {1} of H in its action on N .)
To obtain an upper bound on the number of possibilities for S2, we construct an

auxiliary graph Γ: the vertices of Γ are the H-orbits contained in N \ C and two H-orbits
nH and n′H are declared to be adjacent if there exist n1 ∈ nH and n2 ∈ n′H such that
nϕ1 = n2. Observe that Γ has no isolated vertices because, by definition of C, no H-orbit
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contained in N \ C is ϕ-invariant. Indeed, if nH is contained in N \ C (that is, it is not
contained in C), then there exists h ∈ H with (nh)ϕ /∈ (nh)H = nH . Therefore nH and
((nh)ϕ)H are two distinct H-orbits adjacent in Γ. Next, observe that for the subset S2 to
be both ϕ- and H-invariant, S2 must be a union of connected components of Γ. As Γ has
at most |N \ C|/2|H| connected components (because each connected component consists

of at least two vertices), we have at most 2
|N|−|C|

2|H| choices for S2.
Summing up, the number of possibilities for S is at most

21+
|C|−1
|H| 2

|N|−|C|
2|H| = 21− 1

|H|+
|N|
2|H|+

|C|
2|H| 6 21− 1

|H|+
|N|
2|H|+

|S|
2|H| .

Now, using Eq. (4), we deduce that the number of possibilities for S is at most

2
1
2

(
|N|−1
|H| +1+

∑
h∈H

|CN (hϕ−1)|
|H|

)
. (5)

For each h ∈ H, define dh := [N : CN(hϕ−1)] and d := min(dh | h ∈ H). Observe
that d > 2 because ϕ /∈ H. Fix h0 ∈ H, with dh0 = d. Let h ∈ H \ {h0} and recall
that CN(h0ϕ

−1) ∩ CN(hϕ−1) = 1 because Sh0 ∩ Sh = 1. It follows that the mapping
π : N → N/CN(h0ϕ

−1) × N/CN(hϕ−1) defined by n 7→ (nCN(h0ϕ
−1), nCN(hϕ−1)) is

injective. (Observe that this mapping is not necessarily a group homomorphism because
CN(hϕ−1) is not necessarily a normal subgroup of N .) Therefore |N | 6 dh0dh = ddh;
hence

1

dh
6

d

|N |
,

for every h ∈ H \ {h0}.
Suppose first that d >

√
|N |. Then∑

h∈H

|CN(hϕ−1)|
|H|

=
|N |
|H|

∑
h∈H

|CN(hϕ−1)|
|N |

=
|N |
|H|

∑
h∈H

1

dh

6
|N |
|H|

∑
h∈H

1

d
=
|N |
d
6
√
|N |. (6)

The proof, in this case, follows from (5) and (6) and an easy computation.
Suppose then that d <

√
|N |. Thus

∑
h∈H

|CN(hϕ−1)|
|H|

=
|N |
|H|

∑
h∈H

|CN(hϕ−1)|
|N |

=
|N |
|H|

∑
h∈H

1

dh
=
|N |
|H|

1

d
+

∑
h∈H\{h0}

1

dh


6
|N |
|H|

(
1

d
+ (|H| − 1)

d

|N |

)
6
|N |
|H|

(
1

d
+
|H| − 1√
|N |

)

6
|N |
|H|

(
1

2
+
|H| − 1√
|N |

)
. (7)

Now the proof, in this case, follows from (5) and (7).
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Corollary 8. Let F be a Frobenius group with kernel N . Then the number of subsets S
of N such that

F < NAut(Cay(N,S))(N)

is at most

2
3
4
|N|
|H|−

1
2|H|+

1
2

+
√
|N | |H|−1

2|H| +(log2 |N |)2

.

Proof. Let S be a subset of N and set A := Aut(Cay(N,S)). Suppose that F < NA(N).
As N is transitive on the vertices of Cay(N,S), there exists ϕ ∈ NA(N) \ F with 1ϕ.
In particular, the action of ϕ on the vertices of Cay(N,S) (that is, on N) is a group
automorphism. Thus ϕ ∈ Aut(N). As ϕ /∈ H, from Lemma 7, we have at most

2
3
4
|N|
|H|−

1
2|H|+

1
2

+
√
|N | |H|−1

2|H| choices for S. Since |Aut(N)| < |N |log2 |N | = 2(log2 |N |)2
, we have at

most 2(log2 |N |)2
choices for ϕ and hence the result immediately follows.

4 Tools from the theory of primitive groups

We gather some results on primitive groups that will be useful in our problem. We start
with a basic observation.

Lemma 9. Let G be a Frobenius group with kernel N . Then every normal subgroup of G
either is contained in N or contains N .

Proof. Let X be a normal subgroup of G and suppose that X � N . Then there exists
x ∈ X \N . Observe that x acts by conjugation fixed-point-freely on N \ {1}. Therefore
N = [N, x], where [N, x] is the commutator subgroup of N and x. As X CG and x ∈ X,
we get N = [N,X] 6 X.

As customary, given a group X, we denote by F(X) the Fitting subgroup of X, that
is, the largest normal nilpotent subgroup of X. Suppose that G is a Frobenius group with
Frobenius kernel N . Using the fact that N is nilpotent, it is easy to prove that F(G) = N .
In particular, the Frobenius kernel and the Frobenius complement are uniquely determined
by G as an abstract group.

Lemma 10. Let G be an almost simple primitive group on Ω with socle T and let ω ∈ Ω.
If the point stabilizer Gω is a Frobenius group as an abstract group, then Tω = T ∩Gω is
not contained in the Frobenius kernel F(Gω) of Gω.

Proof. We argue by contradiction and we suppose that Tω 6 F(Gω). Let p be a prime
dividing the order of |Tω| and let Q be a Sylow p-subgroup of Tω. Since Tω is nilpotent,
Q is characteristic in Gω; hence NG(Q) > Gω. As Gω is maximal in G, we deduce
NG(Q) = Gω and hence Tω = T ∩ Gω = T ∩NG(Q) = NT (Q). As Tω is nilpotent, we
deduce NT (Q) = QCT (Q). Since T is a non-abelian simple group, from [11, Corollary
1.2] and from NT (Q) = QCT (Q), we get p = 2. Since p was an arbitrary prime number
dividing the order of Tω, we obtain that Tω is a 2-group and that Tω is self-normalizing
in T . Thus Tω is a Sylow 2-subgroup of T .
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Since Tω 6 F(Gω) has even order and Gω is a Frobenius group, the Frobenius com-
plement of Gω has odd order and hence Gω is a solvable group. Therefore G is an almost
simple group with solvable point stabilizers. All pairs (X, Y ), with X an almost simple
group and with Y a maximal solvable subgroup of X, are classified by Li and Zhang [16,
Tables 14–20]. Therefore, (G,Gω) is one of the pairs classified by Li and Zhang. A careful
and tedious (but not hard) case-by-case analysis on the tables in [16] reveals that, in our
context, no example (G,Gω) arises. In using these tables there are two facts that can be
useful. First, T cannot be an alternating or a sporadic simple group: in fact, for these
groups [G : T ] is a power of 2, but [G : T ] = [Gω : Tω] cannot be a power of 2 because
[Gω : Tω] must be divisible by an odd prime being Gω a Frobenius group. Second, the
intersection Gω ∩ T = Tω is a 2-group.

Via the O’Nan-Scott theorem and its refinements [17], finite primitive permutation
groups may be subdivided into eight classes, namely HA, HS, HC, SD, CD, TW, PA and
AS, such that every primitive group belongs to exactly one of these types. For terminology
regarding the types of primitive groups, we refer to [17].

Lemma 11. Let G be a finite primitive group on Ω. If Gω is a Frobenius group as an
abstract group, then G has type HA or AS.

Proof. We use the structure of finite primitive groups, as described in [17]. If G is of type
HS, HC, SD or CD, then Gω contains a normal subgroup isomorphic to a direct product
of non-abelian simple groups. However, this contradicts the fact that Gω is a Frobenius
group.

If G is of type TW, then F(Gω) = 1 by [6, Theorem 4.7B (ii)] (or see also [23]).
However, this contradicts again the fact that Gω is a Frobenius group.

Assume that G is a finite primitive group of PA type. Then G is a subgroup of the
wreath product Hwr Sym(`) endowed with its natural action on ∆` with ` > 2. Moreover,
H is an almost simple primitive group on ∆ and, if we denote by T the socle of H, then
G has a unique minimal normal subgroup N and

N = T1 × · · · × T`

where Ti ∼= T for every i ∈ {1, . . . , `}. Furthermore, NG(Ti) projects surjectively onto H
for every i ∈ {1, . . . , `}.

Fix δ ∈ ∆ and ω := (δ, . . . , δ) ∈ ∆` = Ω. As N E G and N 6= G, from the structure
of G, we deduce Nω E Gω and Nω 6= Gω, that is, Nω C Gω. Moreover, from the abstract
structure of N , we obtain Nω

∼= T `δ . Let U be the Frobenius kernel of Gω. From Lemma 9,
we get that either Nω 6 U or U 6 Nω. In both cases, U contains a non-identity element of
Nω; so, let u := (t1, . . . , t`) ∈ U∩Nω with u 6= 1. As u 6= 1, there exists i ∈ {1, . . . , `} with
ti 6= 1. Let x be the element of Nω with ti in coordinate i and 1 elsewhere. As ux = u and
Gω is a Frobenius group, x lies in the Frobenius kernel U of Gω. Let j ∈ {1, . . . , `} \ {i}.
Since (Tj)δ centralizes x ∈ U and since x is contained in the Frobenius group Gω having
kernel U , we deduce (Tj)δ 6 U . Now, U C Gω and the action of Gω by conjugation
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on the simple direct factors {T1, . . . , T`} of N is transitive; hence (Tj)δ 6 U , for every
j ∈ {1, . . . , `}. This shows that Nω = (T1)δ × · · · × (T`)δ 6 U .

Suppose that NGω(T1) 6 U . Since NG(T1) projects surjectively onto H, the group
NGω(T1) projects surjectively onto Hδ. Since U is nilpotent, we deduce that Hδ is nilpo-
tent. As Tδ CHδ, there exists z ∈ Z(Hδ) ∩ Tδ with z 6= 1. Set n := (z, . . . , z) ∈ T `δ 6 U .
Let g ∈ Gω \ U . Then we may write g = σ(h1, . . . , h`), for some σ ∈ Sym(`) and some
h1, . . . , h` ∈ Hδ. Observe that, as g /∈ U , the action of g by conjugation on U fixes no
non-identity element. Thus ng 6= n. Now,

ng = (z, . . . , z)σ(h1,...,h`) = (z, . . . , z)(h1,...,h`) = (zh1 , . . . , zh`) = (z, . . . , z) = n,

which is a contradiction. Therefore, NGω(T1) � U .
Now, let π : NGω(T1) → Hδ be the natural projection. As Gω is a Frobenius group

with kernel U not containing NGω(T1), we get that Hδ = π(NGω(T1)) is a Frobenius group
with kernel π(U) > Tδ.

Summing up, H is an almost simple primitive group on ∆, with socle T , with point
stabilizer a Frobenius group Hδ and with Frobenius kernel containing Tδ = Hδ ∩ T .
However, this contradicts Lemma 10.

Hypothesis 12. In the rest of this section we let G be a finite primitive group on a set
Ω such that, given ω ∈ Ω, the point stabilizer Gω is a Frobenius group as an abstract
group. We assume that G contains a core-free subgroup X with X transitive on Ω and
with [G : X] = |F(Gω)|.

Lemma 13. Assume Hypothesis 12. Then G is a finite primitive group of AS type and the
action of G on the right cosets of X is 2-transitive. Moreover, every non-trivial normal
subgroup of G contains a non-identity element of the Frobenius complement of Gω.

Proof. From Lemma 11, G has type HA or AS. Suppose that G is a primitive group of
HA type and let V be the socle of G. Thus V is an elementary abelian p-group, for
some prime number p. Write |V | = p`, for some ` ∈ N \ {0}. In particular, Gω acts by
conjugation irreducibly as a linear group on V . Since F(Gω) is nilpotent and F(Gω)CGω,
p is relatively prime to |F(Gω)|. Since, by hypothesis [G : X] = |F(Gω)|, we deduce from
Sylow’s theorems that V 6 X. However, this contradicts the fact that X is core-free in
G. Thus G has type AS.

As X is transitive on Ω, G = GωX and hence G admits a non-trivial factorization. A
finite group A has a non-trivial factorization if, there exist two proper subgroups B and C
of A with A = BC. The factorization A = BC is said to be maximal if both B and C are
maximal subgroups of A. Moreover, the factorization is said to be core-free if both B and
C are core-free in A.) Broadly speaking, finite almost simple groups admitting a maximal
core-free factorization are classified by Liebeck, Praeger and Saxl in [18, 19]. Specifically,
in [18], the authors classify the almost simple groups G admitting a factorization G = AB
where A and B are both maximal and core-free in G. In [19], the authors study and
classify a slightly different situation (which suits our current application): they classify
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the almost simple groups G admitting a factorization G = AB where A and B are core-
free and maximal among the core-free subgroups of G. In other words, in the factorization
G = AB, the subgroups A and B are not necessarily maximal in G, but all overgroups of
G containing properly A (or B) must contain the socle of G. This more general setting
is of interest for our application.

By hypothesis Gω is maximal in G and Gω is core-free in G. Moreover, X is core-
free in G. Among all core-free subgroups of G containing X choose one, say X ′. Thus
G = GωX

′ is a factorization classified by Liebeck, Praeger and Saxl. Let T be the socle
of G. A careful analysis of their classification reveals that one of the following holds:

1. T = Alt(p), Alt(p) 6 G 6 Sym(p), X ′ = G ∩ Sym(p − 1) and Gω = NG(C) where
C is a Sylow p-subgroup of Alt(p) and p is an odd prime with p > 5;

2. G = T = Alt(7), X ′ = Alt(6) and Gω has order 21 = 7× 3;

3. G = T = PSL2(11), X ′ = Alt(5) (there are two distinct G-conjugacy classes for
such X ′) and Gω has order 55 = 11× 5;

4. T = PSLn(q), PSLn(q) 6 G 6 PΓLn(q), n is prime, gcd(n, q − 1) = 1, X ′ = NG(B)
where B is a Borel subgroup of PSLn(q) and Gω = NG(C) where C is a Singer cycle
of PSLn(q), that is, C is a cyclic subgroup of PSLn(q) having order (qn− 1)/(q− 1).

Now, another easy inspection on the classification of Liebeck, Praeger and Saxl yields
that X ′ = X and that the action of G on the right cosets of X in G is 2-transitive. This
inspection is straightforward and we give details only in the case (1) above. In this case,
F(Gω) is cyclic of order p and hence p = [G : X] > [G : X ′]. As X ′ is core-free in G and
G has no subgroups having index less then p, we get X ′ = X. Now, using [18, 19], we see
that X = X ′ is either Alt(p− 1) (when G = Alt(p)) or Sym(p− 1) (when G = Sym(p)).
Therefore, the action of G on the right cosets of X is 2-transitive. All other cases are
similar.

To conclude, observe that for each of the five cases above, the socle T of G contains
non-identity elements of the Frobenius complement of Gω, that is, Tω = T ∩ Gω is not
contained in the Fitting subgroup of Gω (compared also with Lemma 10).

5 Bringing together the various threads of the argument

In this section, we let F := N oH be a Frobenius group with kernel N and complement
H. Let S be the family of subsets S of N with F < Aut(Cay(N,S)). We subdivide
S := S1 ∪ S2 ∪ S3 in three (not necessarily disjoint) subsets, where

• S ∈ S1 whenever there exists a non-trivial proper normal subgroup K of N and an
automorphism f ∈ Aut(Cay(N,S)), with f /∈ N and with f fixing setwise every
K-orbit;

• S ∈ S2 whenever F < NAut(Cay(N,S))(N);
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• S ∈ S3 whenever S ∈ S \ (S1 ∪ S2).

Observe that from Theorem 6, |S1| 6 f1(|N |, |H|) with

f1(|N |, |K|) := 2(log2 |N |)2

(
|N |
2
− 1

)
·

max

{
2

1+
|N|−1
|H| −

(√
|N|
4
−(log2 |N |)2

)
, 2

1+
|N|−1
|H| −

(√
|N|−1−|H|
|H|(1+2|H|) log2(4/3)−2 log2

√
|N |+1

)}
.

Moreover, from Corollary 8, |S2| 6 f2(|N |, |H|) with

f2(|N |, |H|) := 2
3
4
|N|
|H|−

1
2|H|+

1
2

+
√
|N | |H|−1

2|H| +(log2 |N |)2

.

Set
f3(|N |, |H|) := 2

3
2

+
|N|
|H|+

1
2|H|−F3(|N |,|H|)+(log2 |N |)2

where

F3(|N |, |H|) =
1

4|H|
min

{(
2|N |
|H|

)2/3

− 2|H||N |1/2, |N |1/2, 4|N |1/2 − 2|H||N |1/4
}
.

Using the results from Section 4, we prove that |S3| is bounded above by f3(|N |, |H|).
To this end, let S ∈ S3 and write Γ := Cay(N,S) and A := Aut(Γ). Let B be a subgroup
of A with F < B and with F maximal in B. Write K :=

⋂
b∈B F

b, that is, K is the core
of F in B.

Claim A: We have K < N .

We argue by contradiction and we suppose that K is not properly contained in N . Since
K 6 F and since K is not properly contained in N , from Lemma 9, we deduce that
N 6 K. As N = F(K) is characteristic in K and K C B, we deduce that N C B and
hence F < B 6 NAut(Cay(N,S))(N), contradicting the fact that S /∈ S2. �

Let Ω be the set of right cosets of F in B. Write G := B/K for the permutation
group induced by B in its action on Ω. Set ω := F ∈ Ω. Observe that Ω is a G-set and
G is a primitive permutation group on Ω because Gω = F/K and, by construction, F is
maximal in B. Moreover, the stabilizer Gω = F/K is a Frobenius group with Frobenius
kernel N/K and Frobenius complement HK/K.

Since F is transitive on the vertices of Γ, we have B = FB1, where B1 is the stabilizer of
the identity vertex 1. Now, turning our attention to the action of B on Ω, the factorization
B = FB1 reveals that B1 acts transitively on Ω, that is, X := B1K/K is a transitive
subgroup of G. Moreover, from the modular law,

F

K
∩ B1K

K
=

(F ∩B1)K

K
=
HK

K
.

Thus [B : B1K] = [F : HK] = |N/K|, that is, [G : X] = |F(Gω)|. We claim that X is
core free in G, that is, the core of B1K in B is K. This is obvious when K = 1 because
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B1K = B1 is core-free in B; hence, only for this paragraph, we assume that K 6= 1.
Let L :=

⋂
b∈B(B1K)b be the core of B1K in B. Clearly, K 6 L. Observe that, in the

action of B on the vertices of Γ, the group B1K is the setwise stabilizer of the K-orbit
containing the identity vertex 1. Therefore L is the kernel of the action of B on the
system of imprimitivity given by the orbits of K on the vertices of Γ. In other words, the
elements in L fix setwise each K-orbit on vertices of Γ. As S /∈ S1, we have L 6 K and
hence K = L. Summing up, we have proved that Hypothesis 12 is satisfied by G (in its
action on Ω) with core-free transitive subgroup X.

From Lemma 13, the group G = B/K in its action on the right cosets of X = B1K/K
is 2-transitive. Therefore, the group B in its action on the right cosets of B1K is 2-
transitive, that is, in terms of the action of B on the vertices of Γ: B acts 2-transitively
on K-orbits.

If K = 1, then B acts 2-transitively on the vertices of Γ and hence we have only
four choices for S: namely, S ∈ {∅, {1}, N \ {1}, N}. Now, the inequality 4 = |S3| 6
f3(|H|, |N |) is easy to prove. For the rest of our discussion, we assume K 6= 1.

Claim B: We have CB(K) 6 K.

We argue by contradiction and we suppose that CB(K) � K. In particular, CB(K)
projects to a non-trivial normal subgroup of G. From Lemma 13, CB(K) contains a
non-identity element h of H. Since h acts as a fixed-point-free automorphism of N and
since h centralizes K, we deduce that K = 1, a contradiction. �

Let b := [N : K] and let γ1, . . . , γb be a family of coset representatives of K in N with
γ1 := 1. For i ∈ {1, . . . , b}, set Si := S∩Kγi. To obtain an upper bound on the number of
choices for S ∈ S3, we obtain various upper bounds for the number of choices for S1, . . . , Sb.
Recall that S is H-invariant. Let Kγi1 , . . . , Kγi(b−1)/|H| be a family of representatives for
the H-orbits on {Kγ2, . . . , Kγb} = N/K \ {K}. Since B acts 2-transitively on the K-
orbits of vertices of Γ, for every i, j ∈ {2, . . . , b}, there exists b ∈ B1 with (Kγi)

b = Kγj.
Thus Sbi = (S ∩Kγi)b = Sb ∩ (Kγi)

b = S ∩Kγj = Sj. In particular, |Si| = |Sj| for every
i, j ∈ {2, . . . , b}. Now, Si1 , . . . , Si(b−1)/|H| are sets of the same cardinality and hence we
have at most

2|K| · (2|K|−1)
b−1
|H| −1 = 21+

|N|−|K|
|H| −

b−1
|H|

choices for Si1 , . . . , Si(b−1)/|H| : here, the factor 2|K| represents the number of choices for an
arbitrary subset Si1 of Kγi1 , and each of the remaining (b− 1)/|H| − 1 factors represents
the number of choices for an arbitrary subset of Kγij having the same cardinality of Si1 .
Next, we deduce an upper bound for the number of choices for S1 ⊆ Kγ1 = K. From
Claim B, CB(K) 6 K and hence B1 acts faithfully by conjugation on K. Therefore,
applying Corollary 8 with F replaced by the Frobenius group K oH, we obtain that the

number of choices for S1 is at most 2
3
4
|K|
|H|−

1
2|H|+

1
2

+
√
|K| |H|−1

2|H| +(log2 |K|)2

. Summing up,

|S3| 6 21+
|N|−|K|
|H| −

b−1
|H| · 2

3
4
|K|
|H|−

1
2|H|+

1
2

+
√
|K| |H|−1

2|H| +(log2 |K|)2

6 2
3
2

+
|N|
|H|−

|K|
4|H|−

b
|H|+

1
2|H|+

√
|K|
2

+(log2 |K|)2

= 2
3
2

+
|N|
|H|+

1
2|H|−

|K|+4[N :K]−2|H|
√
|K|

4|H| +(log2 |N |)2

. (8)
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We show that, for any possible value of |K|,

|K|+ 4[N : K]− 2|H|
√
|K| > 4|H|F3(|N |, |H|). (9)

Indeed, when |K| > (2|N |/|H|)2/3, the left-hand-side of Eq. (9) is at least (2|N |/|H|)2/3−
2|H||N |1/2; when |N |1/2 6 |K| < (2|N |/|H|)2/3, the left-hand-side of Eq. (9) is at least
|N |1/2; when |K| < |N |1/2, the left-hand-side of Eq. (9) is at least 4|N |1/2 − 2|H||N |1/4.
This proves Eq. (9). Now, Eqs. (8) and (9) give |S3| 6 f3(|N |, |H|).

With what we have established so far we are ready to prove Theorem 2.

Proof of Theorem 1 and 2. The number of subsets S of N with F 6 Aut(Cay(N,S)) is

21+
|N|−1
|H| . From above,

lim
|N |→∞

|S|

21+
|N|−1
|H|

6 lim
|N |→∞

f1(|N |, |H|)

21+
|N|−1
|H|

+ lim
|N |→∞

f2(|N |, |H|)

21+
|N|−1
|H|

+ lim
|N |→∞

f3(|N |, |H|)

21+
|N|−1
|H|

= 0 + 0 + 0 = 0.

Remark 14. Observe that we have concrete functions f1, f2, f3 and hence, when the group
H is fixed, the proof of Theorem 2 can be turned into an algorithm for finding the explicit
lists of Frobenius groups with complement H not admitting a DFR. Indeed, whenever,
21+(|N |−1)/|H| > f1(|N |, |H|)+f2(|N |, |H|)+f3(|N |, |H|), the group F has a DFR. However,
when 21+(|N |−1)/|H| 6 f1(|N |, |H|) + f2(|N |, |H|) + f3(|N |, |H|), we see that |N | is small
compared to |H| and, for any given |H|, we may compute the exact values of |N | where
this inequality is satisfied. Then, the groups N having these orders can be analyzed
separately theoretically or with the aid of a computer.

Theoretically this strategy is sound, but in practice, even for relatively small groups
H, the lower bound on |N | is so large that it seems hopeless and infeasible to study the
“small” groups N with a computer.

6 Unlabeled directed Frobenius representations

An unlabeled (di)graph is simply an equivalence class of (di)graphs under the relation
“being isomorphic to”. We identify a representative with its class. Using this terminology,
we have the following unlabeled version of Theorem 2.

Theorem 15. Let F := NoH be a finite Frobenius group with kernel N and complement
H. With H fixed, the ratio of the number of unlabeled DFR for F over the number of
unlabeled Cayley digraphs on N containing F in their automorphism group tends to 1 as
|N | → ∞.

Proof. Let Γ := Cay(N,S) be a DFR for F , that is, S ⊆ F and F = Aut(Cay(N,S)).
We prove that the equivalence class of Γ contains at most 2(log2 |N |)2

digraphs, that is,
{S ′ ⊆ N | Γ ∼= Cay(N,S ′)} has cardinality bounded above by 2(log2 |N |)2

. From this, the
proof of this theorem immediately follows by repeating verbatim the proof of Theorem 2.
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Thus, let S ′ ⊆ N with Γ ∼= Cay(N,S ′) and let ϕ : N → N be a digraph isomorphism
from Γ to Cay(N,S ′). Note that ϕ induces a group automorphism from Aut(Γ) = F
to Aut(Cay(N,S ′)) = F . As N is characteristic in F , ϕ induces a group automorphism
of N ; hence ϕ ∈ Aut(N) and S and S ′ are conjugate via an element of Aut(N). Since
|Aut(N)| 6 2(log2 |N |)2

, the result follows.

References

[1] L. Babai, Finite digraphs with given regular automorphism groups, Periodica Math-
ematica Hungarica 11 (1980), 257–270.

[2] L. Babai, C. D. Godsil, On the automorphism groups of almost all Cayley graphs,
European J. Combin. 3 (1982), 9–15.

[3] L. Babai, W. Imrich, Tournaments with given regular group, Aequationes Mathemat-
icae 19 (1979), 232–244.

[4] Y. Caro, New results on the independence number, Tech. Report, Tel-Aviv University,
1979.

[5] M. Conder, T. Tucker, and M. Watkins, Graphical Frobenius Representa-
tions with even complements, https://www.math.auckland.ac.nz/~dleemans/

SCDO2016/SCDO-TALKS/Monday/Tucker.pdf.

[6] J. D. Dixon, B. Mortimer, Permutation Groups. Springer-Verlag, New York, (1996).

[7] E. Dobson, Asymptotic automorphism groups of Cayley digraphs and graphs of
abelian groups of prime-power order, Ars Math. Contemp. 3 (2010), 200–213.

[8] E. Dobson, P. Spiga, G. Verret, Cayley graphs on abelian groups, Combinatorica 36
(2016), 371–393.

[9] J. K. Doyle, T. W. Tucker, and M. E. Watkins, Graphical Frobenius Representations,
preprint.

[10] C. D. Godsil, GRRs for nonsolvable groups, Algebraic Methods in Graph The-
ory, (Szeged, 1978), 221–239, Colloq. Math. Soc. János Bolyai 25, North-Holland,
Amsterdam-New York, 1981.

[11] R. M. Guralnick, G. Malle, G. Navarro, Self-normalazing Sylow subgrous, Proc.
Amer. Math. Soc. 132, 973–979.
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