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COVID‑19 salivary Raman 
fingerprint: innovative approach 
for the detection of current 
and past SARS‑CoV‑2 infections
C. Carlomagno  1*, D. Bertazioli2, A. Gualerzi1, S. Picciolini1, P. I. Banfi1, A. Lax1, 
E. Messina2, J. Navarro1, L. Bianchi1, A. Caronni1, F. Marenco1, S. Monteleone1, C. Arienti1 & 
M. Bedoni  1*

The pandemic of COVID-19 is continuously spreading, becoming a worldwide emergency. Early 
and fast identification of subjects with a current or past infection must be achieved to slow down 
the epidemiological widening. Here we report a Raman-based approach for the analysis of saliva, 
able to significantly discriminate the signal of patients with a current infection by COVID-19 from 
healthy subjects and/or subjects with a past infection. Our results demonstrated the differences in 
saliva biochemical composition of the three experimental groups, with modifications grouped in 
specific attributable spectral regions. The Raman-based classification model was able to discriminate 
the signal collected from COVID-19 patients with accuracy, precision, sensitivity and specificity of 
more than 95%. In order to translate this discrimination from the signal-level to the patient-level, 
we developed a Deep Learning model obtaining accuracy in the range 89–92%. These findings have 
implications for the creation of a potential Raman-based diagnostic tool, using saliva as minimal 
invasive and highly informative biofluid, demonstrating the efficacy of the classification model.

In December 2019, a novel coronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) has emerged in Hubei Province of China and has rapidly spread around the globe. The disease caused 
by the virus was named Coronavirus Disease 2019 (COVID-19) and has become a public health emergency 
of international concern as declared by the World Health Organization (WHO) 1. Nasopharyngeal and oro-
pharyngeal swabs are the recommended specimens for diagnostic tests, with Real Time reverse transcription 
Polymerase Chain Reaction (rRT-PCR) on respiratory specimens representing the gold standard method for 
detection of SARS-CoV-2 infection. However, the collection procedure is relatively invasive, it causes discom-
fort, it can occasionally induce coughing and bleeding and it requires close contact between healthcare workers 
and patients, which poses a risk of transmission of the virus to nurses and physicians also with the full personal 
protective equipment. Moreover, the analytical protocol required for the SARS-CoV-2 detection through rRT-
PCR requires time, specialized laboratories, expensive reagents and adequate personnel in a process highly 
exposed to the operator’s error, which can influence the final sensitivity of the assay. Researchers are focalized in 
studies regarding new technologies for the virus detection in other more accessible and informative biofluids2. 
Hence, this nasopharyngeal and oropharyngeal swabs are not desirable for serial monitoring of viral load and 
for massive screening. Considering that the primary route of diffusion for SARS-CoV-2 are respiratory droplets 
and aerosols, saliva was proposed as a valid alternative to nasopharyngeal swabs3,4. Saliva is an easily accessible 
biofluid that can be collected without invasive procedures and by non-specialized personnel. It is an aqueous 
mixture of molecular components secreted by major (90%) and minor (10%) salivary glands, but it may contain 
also desquamated epithelial cells, respiratory secretions, molecules circulating in the blood vessels, gastric acids 
and hormones together with microorganisms and live viruses. Salivary samples were demonstrated to have a 
high concordance rate with nasopharyngeal specimens in the detection of viruses, including coronaviruses5. 
Moreover, salivary antigen tests have been already proposed as discriminatory COVID-19 assays, but their 
sensibilities are still incomparable with the one presented by rRT-PCR6. In fact, considering patients affected by 
severe COVID-19, saliva was demonstrated to be a reliable tool for qualitative COVID-19 diagnosis through the 
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rRT-PCR procedure3,7. Looking at the temporal profile of SARS-CoV-2 load in saliva, it was found that saliva 
reached a peak during the first week from symptom onset and then declined8. Although the use of saliva can 
significantly reduce the time and the costs of specimen collection, RT-PCR for the detection of COVID-19 is a 
time-consuming procedure because sample preparation is required prior to analysis and, despite being highly 
sensitive, it has a high false negative rate9. To overcome the rRT-PCR methodological limitation, easy to perform 
and reliable immunoassays have been developed, but their limit relies on their target, i.e. IgA, IgM and IgG 
antibodies directed against the virus that are reported to increase in most patients one week after the infection 
both in blood and saliva, with characteristic expression patterns up to 3 months after the infection8,10,11. The use 
of saliva represents a good alternative for antibody testing for SARS-CoV-2 by immunoassays, showing a direct 
correlation between the serum and saliva data10,12,13. The immunological method circumvents the extraction of 
virus nucleic acid and shortens the detection time; however, it is not applicable for the early diagnosis of COVID-
19 due to the low antibody concentration at the beginning. In this framework, vibrational spectroscopies like 
Raman spectroscopy (RS) are promising alternatives in molecular diagnostics. These techniques have already 
proved their applicability in the diagnosis of infections at the point-of-care, with promising results also for early 
diagnosis and monitoring of multiple human diseases14. Besides the application in cell and tissue analysis for 
cancer detection, RS has demonstrated its reliability and promising applicability also in the analysis of complex 
biological samples like saliva for disease detection and monitoring15. The use of saliva as substrate for Raman 
analysis has demonstrated unparalleled advantages related mainly to the limited sample processing required, 
the negligible invasiveness of sample collection, coupled to the multitude of molecules and disease biomarkers 
that can be investigated for clinical purposes16. Taking advantage of Surface Enhanced Raman Scattering (SERS), 
RS challenges current fluorescent based detection methods in terms of both sensitivity and multiplexing ability, 
detecting multiple components in a mixture, including viruses, in a point-of-care platforms17–19. SERS has been 
proposed for the study of SARS-CoV-2, with nanoparticle-based biosensors used to detect SARS-CoV-2 spike 
proteins20, still the remarkable advantages of vibrational spectroscopy have not been proposed for clinical appli-
cation in COVID-19 pandemic. A potential help in the managing and decodification of the huge amount of data 
provided by RS, can be found in the application of Machine Learning (ML) and Deep Learning (DL) algorithms21. 
The computational approach for the creation of classification models in the biological and spectroscopic fields 
has been already proposed and applied for different applications including diagnostics, metabolomics, proteom-
ics and genomics22–25. The application of ML/DL methods provides a powerful instrument for the data analysis, 
providing information about hidden trends, connections and correlations. In the present study, we propose the 
use of SERS to identify a Raman fingerprint of SARS-CoV-2 in the saliva of patients affected by COVID-19. 
Thanks to the application of classification models based on ML and DL techniques, we created a fast tool for the 
discrimination of the COVID-19 condition. Interestingly, our data provide evidence that the saliva of patients 
with current infection by SARS-CoV-2 presents a biochemical signature that allows their fast detection and dis-
crimination from people with a past SARS-CoV-2 infection and from healthy subjects, with accuracy, precision, 
specificity and sensitivity of more than 90%. The correlation with the extracted data confirmed the reliability of 
the method, demonstrating statistical correlation with the clinical scales used for the COVID-19 severity clas-
sification and with the time between the first positive SARS-CoV-2 test and the last negative.

Results
COVID‑19 Raman fingerprint.  The salivary Raman analysis was carried out following and slightly modi-
fying the analytical protocol developed and validated by our group, leading to the observation of the whole 
biochemical pattern of saliva15. The sample preparation procedure was reduced avoiding the filtration step, mak-
ing in this way the analysis faster, cheaper and more informative, modifying consecutively the Raman acquisi-
tion parameters. The procedure was intended for the safe collection of saliva, limiting the sample handling and 
difficult or complex passages. Figure 1 shows the salivary spectra obtained from the considered experimental 
groups, Healthy Subjects (CTRL) Fig. 1a, patients affected by COVID-19 (COV +) Fig. 1b, and subjects negative 
to the SARS-CoV-2 test with an ascertained episode of COVID-19 (COV−) Fig. 1c. The principal characteristics 
peaks and bands are located at 509, 577, 716, 748, 897, 922, 1000, 1048, 1126, 1155, 1249, 1288, 1317, 1384 and 
1453 cm−1 highlighted in the overlapped spectrum (Fig. 1d). The presented spectra are mainly dominated by 
the peaks attributed to C–N stretching and CH3 rocking in protein backbone (897 and 1155 cm−1) and by the 
signal at 1453 cm−1 assigned to the C–H stretching of glycoproteins, mostly generated from mucines 26,27. Cru-
cial importance in the signal discrimination between the different experimental groups can be attributed to the 
peaks located at 748, 922, 1048, 1249 and 1126 cm−1, which present significant differences from a preliminary 
visual spectral investigation (Fig. 1d). The peak positioned at 748 cm−1 is mainly related to the O–O stretching 
in oxygenated proteins and glycoproteins including mucines and proline rich glycoprotein and to the symmetric 
breathing of tryptophan (Trp)27, while the peak at 922  cm−1 is related to simple and branched carbohydrates 
including glucose and glycogen 28. Probably, the peaks of greatest interest are located at 1048 and 1126 cm−1 that 
can be respectively attributed to the to the Trp and phenylalanine signal and to the C–N and C–C stretching29,30. 
The potential attribution of other peaks and bands are listed in Table 1. The principal differences between the 
analysed groups in terms of intensities are indicated by the subtraction spectra performed between the averages 
Raman signals obtained (Fig. 2). The highest differences can be observed in the comparison between the CTRL 
group with the COV+  and COV− groups (Fig.  2a,b). All the differences in intensities (∆I) were considered 
for ± 0.005 ∆I, identifying peaks at 748, 897, 922, 1048, 1126, 1249, 1317 and 1348 cm−1. Interestingly, peaks at 
1048 and 1126 cm−1 dominate the subtraction spectra, with important differences between the CTRL experi-
mental group and the COV+  and COV− respectively (Fig. 2 a,b). The strong signal in correspondence of these 
two regions is normally associated with an environment rich in aromatic amino acids, in particular tryptophan 
and phenylalanine (1048 cm−1, Table 1). Interestingly, the same two peaks were also identified as characteristic 
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signals from viruses of the coronavirus family, probably being involved in the viral protein structure or with the 
interactions with physiologically expressed molecules31. Recent studies conducted on SARS-CoV-2 and on other 
types of coronaviruses demonstrated the important presence of aromatic amino acids, including Trp, in the virus 
spike glycoproteins, identifying the so-called Trp-rich regions involved in the interaction between the virus and 
the receptor Angiotensin Converting Enzyme type 2 (ACE2)32–34. In terms of Raman signal, an abundance of 
aromatic amino acids and saccharides in saliva could explain the different intensities revealed in the relative 
regions for COV+  and COV− experimental groups (Fig. 2a,b). The presence in COV+  saliva of potential viral 

Figure 1.   Average Raman spectra obtained from (a) healthy subjects (CTRL), (b) patients affected by COVID-
19 (COV +) and (c) subjects with at least two negative SARS-CoV-2 tests after being positive (COV−). (d) 
Overlapped average spectra of the three experimental groups highlighting spectral differences. The grey bands 
represent the standard deviations.

Table 1.   Clinical characteristics of the subjects involved in the study.  Data are presented as average with 
the standard deviation (± SD) or percentage (n %) and with the two sided p-values (p). Differences between 
the groups were analysed using Mann–Whitney test or One-Way ANOVA test for continuous variables and 
Chi-square test or Fisher Exact test for categorical variables. Severities and comorbidities were considered as 
described by Chen et al. 46 and following the CIRS classification. Neg. Time represents the time between the 
first positive nasopharyngeal SARS-CoV 2 test and the last negative test.

COV+  COV− CTRL

Number 30 38 33

Age (p = 0.174) 70.8 (± 13) 71.3 (± 14.4) 61.9 (± 13.3)

Male Gender (p = 0.078) 15 (50%) 18 (47.3%) 22 (66.6%)

Severity (CIRS) 1.8 (± 0.55) 1.6 (± 0.51) –

Neg. time (days) – 40.16 (± 18.9) –

Comorbidities (CIRS) 4.3 (± 2.7) 2.8 (± 1.9) –

Severity (Chen et al.)

Stage

0 3 (10%) – –

1 7 (23%) – –

2 9 (30%) – –

3 7 (23%) – –

4 4 (13%) – –
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particles in large amount can be easily explained by the high viral title reached during the COVID-19 infection 
with the oral cavity as one of the first infection sites, together with the upper and lower respiratory tracts due to 
the high expression of ACE2 receptor4,35. Moreover, the attribution of the principal differences to protein species 
and modifications could be explained also with the expression of different molecules of the immune response 
in the first and late stages of the infection. The complex and specific expression pattern of immunity proteins, 
such as IgA, IgM and IgG, can last up to 3 months leading to the detectable signals both in serum and in saliva10. 
Specifically, saliva represents a reliable biofluid for the detection being involved in the first phases of infection 
with the persistent presence of biological molecules directly involved in the SARS-CoV-2 presence36,37. Clini-
cal data collected from COV- patients, revealed periods of negativization between 8 and 90 days explaining the 
persistence in the Raman signals of differences when compared with CTRL and COV+  (Fig. 2b,c).

These results are confirmed by the less defined differences in terms of peak intensities in the subtraction 
spectrum of COV+  and COV− regarding the peaks at 1048 and 1126 cm−1 (Fig. 2c). In this case, it is possible 
to observe a different trend of the subtraction spectrum, with bands related to lipids (509 cm−1), carbohydrates 
(922 and 1155 cm−1) and structured proteins (1317 cm−1) tending to the COV+  groups respect to the COV-. 
With the information acquired from the subtraction spectra, it is possible to identify four regions of particular 
interest in the spectra acquired from CTRL, COV+  and COV− groups (Fig. 2d), where the trends of the curves 
are modified by differences in intensities and in presence of specific peaks.

Multivariate analysis and parameters extraction.  In order to verify if the differences observed are 
able to discriminate the experimental groups in a classification model, we performed a Multivariate Analysis 
(MVA) to reduce the spectral data dimensionality and to train a Leave-One-Out Cross-Validation (LOOCV) 
model. The results of the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) on the 
Raman database are presented in Fig. 3. The decision to extract and represent only the first three Principal Com-
ponents (PCs) relies on the cumulative loading obtained (45.9%), with significant loading attributed to the peak 
at 1048 cm−1 (Fig. 3a,d). The PCs 3D distribution shows a partial data overlapping, with distinguishable clus-
tered regions (Fig. 3a). The CTRL group revealed a more dispersive data distribution respect to the COV+  and 
COV−, more grouped and centred at defined positions, probably due to the common expression of biological 
molecules related to the immune system in the early and late phases of infection 10. The LDA method was used 

Figure 2.   Subtraction Raman spectra of (a) the average CTRL signal versus the average signal of COV+  , (b) 
the average CTRL signal versus the average COV- spectrum and c) the average COV+  signal versus the average 
COV− signal. The ± 0.005 ∆I interval is indicated in the graphs, confirmed by the error propagation from the 
spectra standard deviation. d) Overlapped average spectra of CTRL, COV+  and COV− with the main different 
regions highlighted.
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considering the first 15 PCs as input to LDA (PCA-LDA approach), in order to maximize the variance between 
the data and building at the same time a classification model based on the LOOCV of the Canonical Variables 
(CVs). Figure 3b shows the results of the LDA, representing the spatial dispersion of the two extracted CVs. Dif-
ferently from the results obtained in PCA, in this case, the CVs extracted from CTRL, COV+  and COV− show 
a distinct distribution with the group means highly separated in terms of relative distance (Fig. 3b). Interest-
ingly, the CTRL CVs present the most grouped distribution respect to the other two groups, leading to the fast 
discrimination of the data points. The statistical analysis performed on the CVs revealed a significant difference 
(p < 0.001) between each involved group, demonstrating the capability of RS to discriminate the signal collected 
from saliva of patients affected by COVID-19 from healthy subjects and obtaining information about the past 
infection (Fig. 3c). The potential application of the presented technique could be of crucial importance for the 
discrimination of current or past infection, accompanying the serological tests used nowadays.

One probable explanation of the statistically different data distribution could be found in the physio/patho-
logical modifications of circulating molecules when the subject is in contact with the virus. These modifications 
regard principally proteins, lipids, glycoproteins and their linked carbohydrates which can represent the circu-
lating structural part of the virus, assembled and functional (COV+  group) or fragmented and non-functional 
(COV− group), but still circulating during the convalescence and weeks after the infections (Fig. 2 and Table 1) 
42–44. Another potential explanation, which does not exclude the previous, can be found in alterations in the host’s 
proteins and lipids expression during the COVID-19 onset. The immunological response during and after the 
infection, induces numerous lasting changes in the expression patterns of immunological circulating cells, specific 
antibody presence and levels, cytokines and inflammatory mediators. These molecules, in particular cytokines 
and inflammatory mediators, together with the virus replication and penetration into tissue cells, induce the cell 
stress responses altering the redox balance and consecutively inducing damages due to Radical Oxygen Species 
(ROS) on lipids 45. All these scenarios could explain the altered salivary distribution pattern between the analysed 
experimental groups, determined by the high sensitivity of RS. The global results of the MVA provided variables, 
PCs and CVs, which can be uniquely attributed to the relative spectrum of origin, identifying in this way a set 
of parameters that can be used for the characterization of a classification model.

Single spectra classification model.  The result of the LDA is a set of variables that best separates the 
categories imposed in the supervised discriminant analysis. In order to understand the different parameters 
involved in the discrimination of the three experimental groups (CTRL, COV+  and COV−), we performed the 

Figure 3.   (a) Results of the Principal Component Analysis with the dispersion of the first three PCs values 
with the relative 95% confidence interval ellipses for the three experimental groups and (b) linear discriminant 
analysis (LDA) representing the spatial distribution of the two CVs extracted with the group means. c) Statistical 
analysis of the CVs extracted from CTRL (n = 33), COV+  (n = 30) and COV− (n = 38). *** p-value < 0.001, One-
way ANOVA test. (d) Graphical representation of the PCs loadings respect to one of the CTRL spectrum and 
(e) receiver operator characteristic (ROC) curve with the relative 95% confidence interval of the classification 
model CTRL vs COV+  vs COV−. Area under the curve = 0.9; Standard error = 0.008; Significant level p < 0.001 
for area = 0.5 calculated following Delong et al. 41.
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LOOCV on four different scenarios. The first three analysis were performed on the binary discrimination of 
CTRL vs COV+  , CTRL vs COV− and COV+  vs COV−, while the conclusive discrimination was performed 
on the ternary model between CTRL, COV+  and COV−. The results in terms of accuracy, precision, sensitiv-
ity, specificity, Matthews Correlation Coefficient (MCC) and Error-Rate for cross-validation sum on the single 
spectrum (ER) are reported in Table 2.

The classification between the CTRL group respect to the COV+  and COV− groups presents the highest 
values in terms of discriminatory power, with values of accuracy, precision, sensitivity and specificity always 
over the 95% and with the lower associated error rate for the attribution of the single spectrum (2.2%). The result 
is confirmed also by the MCC values, always close to one (Table 2, CTRL vs COV+  and CTRL vs COV−). A 
slight decrease in the classification model performances can be observed in the discrimination between COV+  
and COV− with values between 90 and 95% for accuracy, precision and specificity and 86.9% for the sensitiv-
ity (Table 2, COV+  vs COV−). In this case, the classification model loses sensitivity in the measure of positive 
subjects correctly identified as COV+  , probably due to the partial overlap in the CVs data distribution used as 
base for the model (Fig. 3b). The situation is confirmed by the MCC and ER indexes, which are respectively lower 
and higher compared to the previous discrimination models. The partial similarity between COV+  and COV− is 
reflected by the slightly higher difficulty of the model in the last ternary discrimination, with values of accuracy, 
precision, sensitivity and specificity of respectively 87.6%, 83.6%, 83.7% and 92.2% (Table 2, CTRL vs COV+  
vs COV−). The situation is proved by the lower MCC (0.79) and the higher associated ER (15.4%). The higher 
specificity rate indicates that the system is able to discriminate the fraction of negatives correctly attributed to 
the negative groups (CTRL and COV−), but it presents some attribution problems regarding the identification 
of the positives including a higher number of spectra in the COV+  group respect to the true value. The 15.4% 
in ER for the ternary model is an average error-rate sum associated for the entire binary classification model, 
with the addition of the uncertainty in the partial attribution in CTRL group. The created model presents a high 
certainty of true negative spectra attribution (CTRL and COV−), while presents more uncertainty for the ultimate 
attribution of the true positive samples (COV +). Figure 3e shows the Receiver Operator Characteristic (ROC) 
curve of the created model CTRL vs COV+  vs COV−. The area under the curve was 0.9 (p < 0.001) demonstrat-
ing the potential application of RS in the discrimination of subjects affected by COVID-19. The single spectra 
approach proposed for the classification model is useful to understand the discriminatory power of the collected 
Raman database and to obtain results about the differences in Raman signatures of different experimental groups.

Correlation of the Raman data with clinical parameters.  In order to evaluate and to assess the reli-
ability of the proposed methodology, the data extracted from the Raman database through MVA were cor-
related with the severity indexes of Chen et al.46 and Cumulative Illness Rating Scales (CIRS) and, only for the 
COV+  patients, with the time between the first positive SARS-CoV-2 assay and the last negative one (Fig. 4). 
The correlation step was carried out using as control covariates age, sex and CIRS comorbidity index of the 
patients, removing possible relationships due to the demographic or physio/pathological state not related to 
the COVID-19. Interestingly, a great part of the MVA data correlate with the clinical parameters, with CV1 that 
demonstrated the strongest statistical correlation with the scales related to COVID-19 severity (Chen severity 
p-value = 1.4 × 10–11; CIRS severity = 1.2 × 10–6) and the infection period (p-value = 9.1 × 10–12). In the same way, 
PC3 demonstrated strong correlation with the Chen severity index and with the negativization time, but not 
with the CIRS severity scale. The PCs represent independent directions, with their own specific loading on the 
result (Fig. 3d), applied to maximize the variance between the data dispersions. Their correlation with different 
clinical parameters indicate a strong dependency of the Raman data, and consecutively of the variables extracted 

Table 2.   Attribution of the most prominent signals revealed from the Raman salivary analysis (± 5 cm−1).  
Based 26,28,30,38–40. Trp tryptophan, Cys cysteine, Phe phenylalanine.

Position of the Raman peak Attribution

509 cm−1 Phosphorylated protein and lipids

577 cm−1 Trp, Cys

716 cm−1 Phospholipids

748 cm−1 O–O stretching, symmetric breathing of Trp

897 cm−1 Mono and disaccharides C–O–C skeletal modes

922 cm−1 Glucose/glycogen

1000 cm−1 Phe ring modes

1048 cm−1 C–N and C–C protein stretching

1126 cm−1 Trp, Phe

1155 cm−1 Glycogen

1249 cm−1 Secondary bands of amide III

1288 cm−1 Phosphodiester groups in nucleic acids

1317 cm−1 Amide III (α-helix structures)

1384 cm−1 C–H rocking in lipids

1453 cm−1 General fatty acids, C–H stretching of glycoproteins
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after the MVA, with the physio/pathological state of the patients confirming the reliability of the Raman meth-
odology applied for the saliva analysis.

Patient classification model.  Up to now, we’ve been using the PCA-LDA approach to classify the single 
Raman spectra. The PCA-LDA-based classification model is suitable for the preliminary investigation of the data 
robustness, identifying through the LOOCV and data correlation, if the created Raman dataset can be adopted 
for the creation of a single spectrum classification model. Nevertheless, the final goal of a diagnostic applica-
tion is the patient-level classification. In practice, all the Raman spectra pattern belonging to a certain patient 
may only be included either in the training or in the testing set, to avoid overfitting problems. To this extent, 
we applied Leave-One-Patient-Out Cross-Validation (LOPOCV), which is the patient-level version of LOOCV, 
where the Raman spectra belonging to all patients but one are included in the training set. As expected, by apply-
ing this evaluation method at a patient-level, the performances of classification models substantially decrease. In 
order to maintain good performances more sophisticated ML and DL models, such as Support Vector Machine 
(SVM), Random Forest (RF), Extreme Gradient Boosting (XGB), and Convolutional Neural Networks (CNNs) 
have been implemented and evaluated. CNNs revealed to be the most promising approach and the proposed 
CNN architecture with the fine-tuned hyper parameters was selected through Sequential Model Based Optimi-
zation (SMBO). The resulting model consisted of three 1-D convolutional layers for the feature extraction and 
three fully connected layers for the classification, with the final configuration represented in Fig. 5. It is impor-
tant to notice that, while the ML baseline models were trained on normalized pre-processed data, the DL model 
was tested on both raw (without the pre-processing pipeline) and processed spectra. According to the data 
reported by Liu et al. 47, the CNNs were able to reach competitive performances also with the raw data, despite 
the low-volume high-dimensional dataset.

Consequently, the classification task was performed avoiding several time-consuming data processing steps 
and limiting the computational time for the results. The CNNs architecture has been trained on the 3-classes clas-
sification problem, producing in a probability distribution related to the experimental group attribution, with the 
highest probability taken as prediction of the corresponding label. The scores of performances reported in Table 3 
are evaluated using Leave-One-Patient-Out Cross-Validation (LOPOCV), in contrast to the regular LOOCV 
applied in many studies 48 and in our preliminary analysis with the PCA-LDA model reported in Table 2. This 
enables diagnostic applications, associating the Raman spectrum not only to the pathology but also to the patient.

Since numerous spectral samples are acquired from the same individual, the labelling decision for a single 
patient can be taken based on its entire spectral set. As result, the discriminatory power in terms of accuracy, 
sensitivity and specificity were of respectively 89%, 89% and 95% (Table 3, patient-level). We noted that, among 
the misclassified patients, four were affected by severe comorbidities (but still matching the inclusion criteria). 
By excluding these patients, the DL model accuracy increased to 92%, with sensitivity and specificity of 91% 
and 96%, respectively (Table 3, patient-level COV+  = 26). In both cases, DL models outperform the classical ML 
algorithms, which only obtained up to 86% accuracy. Observing the results obtained from the multi-class and 
binary classifications regarding the attribution of COV+  , it is clear that the misclassified COVID-19 patients 
are generally classified in the wrong way as COV− subjects, while CTRL and COV− can be well discriminated 
(Table 3). These results agree with the findings exposed after the application of the MVA on the single spectra, 
where a higher error rate on the data attribution to the experimental groups were higher respect to the related 
binary classification models (Table 2). These results clearly indicate similarities in the COV+  and COV− spectra 

Figure 4.   Heat map representing the partial correlation (Pearson’s coefficients) with the relative significance of 
Canonical Variable 1 and 2 (CV1, CV2) and Principal Components 1, 2 and 3 (PC1, PC2, PC3) correlated with 
the Chen et al. 46 and CIRS severity indexes and with the time between the first positive SARS-CoV-2 assay the 
last negative (Neg Time, only for COV+  group). Age, sex and the CIRS comorbidity scale were used as control 
covariates for the partial correlation. * p < 0.05, ** p < 0.01 and *** p < 0.001, Pearson’s test.
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respect to the CTRL group, with signal trends that make more difficult the discrimination and the attribution 
to the correct group.

Discussion
In this work, an alternative Raman approach was presented for the discrimination of current or past infection 
by SARS-CoV-2 from a really simply and safely collectable biofluid such as saliva. The sample processing and 
analytical procedure is simple, automatable, and highly informative and can be performed obtaining results in 
few minutes. The discrimination ability of the RS relies in the wide range of information that can be obtained 
from a single analysis, with the lowest concentration detectable up to 10–15 M in specific SERS regimen, in which 
complex SERS substrates have been applied49. With the SERS approach, the “global” information regarding the 
analysed biofluid can be collected, obtaining a whole signal from all the biochemical species present on the base 
of their concentration, environment, chemical nature, modifications, mutations, alterations and interactions. In 
addition, slight changes in the expression pattern of these molecules could provide a deformation of the normal 
trend in curve shape, which can be detected, analysed, computed and used to build a classification model. The 
numerous databases available in literature on the Raman analysis of biofluid can be questioned to explain the 
various peaks and bands present in the single spectrum, and to understand the potential molecular differences 
encountered between, for example, the pathological state versus the physiological state of the selected experi-
mental groups. With the rapid and continuous increase of confirmed and severe cases of COVID-19, timely 
identification of infected subjects might be helpful using a fast and minimal invasive procedure such as RS on 
saliva. In the same way, the identification of subjects with a past infection (with or without symptoms) could 
be fundamental to create epidemiological maps useful for the infection confinement. The proposed procedure 
provides information regarding the presence, concentration and modification of molecules of interest including 
nucleic acids and proteins, all with a single fast analysis of saliva. Moreover, the easy procedure, the robust and 
reproducible analytical protocol and the cheapness of the Raman substrate depict a potential ideal method for 
the discrimination of COVID-19 onset. Thus, overcoming the technical limitations present in the methodolo-
gies used nowadays for the detection of viral nucleic acids (nasopharyngeal SARS-CoV-2 test) and antigens 
(serological capillary assay), or for the identification of specific circulating IgM and IgG (serological ELISA). The 
high cost of the bench Raman instrument might be attenuated implementing the system with a portable version, 
widely available commercially with spectral resolutions and Raman shift ranges comparable with the bench 
version. The application of a portable Raman combined with the implementation of the proposed classification 

Figure 5.   Schematic representation of the 1D-CNN model configuration obtained through the hyper 
parameters optimization process.

Table 3.   Accuracy, precision, sensitivity, specificity, Matthews correlation coefficient (MCC) and error-rate for 
cross-validation sum on the single spectrum (ER) of the four classification models created using the leave-one 
out cross-validation.

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC ER(%)

CTRL vs COV+  97.8 97.8 97.5 98 0.95 2.2

CTRL vs COV− 96.8 98.8 95.5 98.5 0.93 3.1

COV+  vs COV− 91.3 92.8 86.9 95.2 0.82 8.6

CTRL vs COV+  vs COV− 87.6 83.6 83.7 92.2 0.79 15.4
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model with a larger cohort of COVID-19 patients, could lead to the creation of a point of care able to assess the 
positivity to the SARS-CoV-2 infection and to predict the severity of the disease in terms of respiratory clinical 
manifestations on the base of the detected stage. Once assessed the discrimination capability of our models, the 
performances are expected to drastically increase together with the input of new Raman and clinical data of 
more patients. In fact, introducing more data about the Raman signal collected from saliva of different patients 
belonging to specific experimental groups (e.g. longitudinal clinical course, comorbidities or asymptomatic), 
the classification model will be potentially able to discriminate more accurately the infection onset and also to 
predict the severity stage of the respiratory tract. The optimal scenario includes different Raman workstations 
connected through an online learning network, able to analyse and to furnish a huge amount of information 
for the system training. The correlations with the data extracted from the Raman database through MVA are of 
crucial importance for two reasons: the first one is an indication of the reliability of the proposed methodology, 
which explains the intrinsic relationship between the Raman analysis and the complex biochemical composition 
of saliva under pathological conditions. The second reason relies in the possibility to evaluate the COVID-19 
severity or the negativization time on the base of a simple salivary analysis. All these information were adopted 
to train two classification models, the first one was evaluated for the characterization of the specific Raman fin-
gerprint of COV+  and COV− patients (MVA, single spectrum classification model, Table  2) while the second 
one was intended for the definition of the subject condition (ML/DL, patient classification model, Table 3). Both 
the models highlighted a high accuracy rate in the attribution of the data in the exact experimental group, with 
variations in the discrimination of single categories. CTRL and COV− were attributed with higher discrimination 
power respect to the COV+  that presented slightly lower percentages of accuracy, sensitivity and specificity. The 
decrease was due to the attribution of misclassified patients to the COV− class, indicating a close relationship 
between the two groups. The slight increase in the discrimination power observed removing from the training 
the four patients with relevant comorbidities, reveals the reliability of the applied methodology that is able to 
attribute the data to the right experimental classes also in complex clinical pictures. The main advantage of the 
combined RS and DL approach relies in the increase in discriminatory power with the enlargement of the data 
provided in terms of higher patients’ number and new experimental classes. Probably, also the lower number of 
COV+  patients plays a crucial role in this attribution and, for this reason, the recruitment of a higher number 
of COVID-19 infected subjects is in progress. In conclusion, our results demonstrated the existence of a charac-
teristic salivary COVID-19 Raman fingerprint, which can be used to train and test a classification model able to 
discriminate between CTRL and COV−. The deep investigation of the collected data revealed partial similarities 
of the salivary Raman spectra patients affected by COVID-19 and subjects with a history of infection but cur-
rent negative SARS-CoV-2 assay, confirming the persistence of molecules related to the SARS-CoV-2 presence 
also months after the infection10,50–52. The proposed methodology has the potential to quickly and accurately 
diagnose the COVID-19 onset, reflecting the time and the severity of the infection, analysing an easily and safely 
collectable biofluid such as saliva.

Methods
Patients and clinical data.  The study was approved and conducted following the directives of the Ethi-
cal Committee institutional review board at IRCCS Fondazione Don Carlo Gnocchi on 16th April 2020, which 
required the application of the criteria of the Helsinki declaration and of all the relevant regulations regard-
ing the enrolment of human patients. None of the patients was presented in prior publications regarding their 
clinical characteristics. Saliva samples, health records and clinical data were acquired at IRCCS Fondazione Don 
Carlo gnocchi ONLUS, Milan, Italy and Centro Spalenza Hospital, Rovato, Italy between 16th April 2020 to 
July 2020. The detailed description of the inclusion and exclusion criteria for patients’ selection is reported on 
ClinicalTrials.gov (ID: NCT04583306, The salivary Raman COVID-19 fingerprint). The COVID-19 diagnosis 
was conducted following the WHO guidelines, declaring a positive case after the positive result of sequencing 
or rRT-PCR assay of SARS-CoV-2 for nasopharyngeal swabs. The patients were considered COVID-19 negativ-
ized after two consecutive tests with negative results, recording the time of negativization as the time between 
the last SARS-CoV-2 positive test and first negativization assessment (two consecutive negative SARS-CoV-2 
tests). Demographic data of patients and healthy subjects were recorded, as well as eventual comorbidities (e.g. 
diabetes, cardiovascular diseases, arterial hypertension, neurological disorders, respiratory obstructive diseases 
and cancer or concomitant viral or bacterial infections) and pharmacological and/or invasive or non-invasive 
respiratory therapies. Patients clinical classification and complication definitions were carried out following the 
guidelines presented by Chen et al.46. Briefly, patients were defined as asymptomatic (0), mild (1), moderate (2), 
severe (3) and critical (4) cases on the base of the observed clinical picture.

The CIRS for severity and comorbidities were calculated. Age and sex correlated healthy subjects were 
recruited. The total number of subjects involved in the study was 30 patients affected by COVID-19 (COV+  ; 
n = 30), 38 subjects negative to the SARS-CoV-2 test with an ascertained episode of COVID-19 (COV−; n = 38) 
and 33 age and sex correlated CTRL (n = 33). All participants provided written informed consent. Table 4 reports 
the main characteristics of the subjects involved in the study. All methods and procedures reported in this study 
were carried out in accordance with relevant guidelines and regulations.

Sample collection.  Saliva collection was carried out using Salivette swabs (Sarstedt, Germany), following 
manufacturer’s instructions. Briefly, the swab was placed in the subject’s mouth and chewed for 60 s to stimulate 
salivation. The cotton swab was then closed into the provided plastic tube and centrifuged for 2 min at 1000g 
in order to remove eventual food debris and to collect saliva. Saliva samples were stored at − 20 °C. To limit the 
variability in biomolecules concentration in saliva, the collection procedure was performed at fixed time-points 
after breeding and teeth brushing. Pre-analytical parameters, including collection time, time between the col-
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lection of saliva and the Raman analysis and storage temperature, were recorded. All the data were anonymized 
preserving the subject privacy. A saliva drop (3 µl) was deposited on a glass slide covered with commercially 
available aluminum foil, in order to achieve the SERS effect, and dried at room temperature for 10–15 min. 
Aluminum foil was purchased from Merck KGaA (Germany) and used as received to cover the glass substrate 
for the SERS analysis.

Raman analysis.  SERS spectra were acquired using an Aramis Raman microscope (Horiba Jobin Yvon, 
France) equipped with a laser source of 785 nm with laser power fixed at 512 mW. The salivary Raman measure-
ments were performed following a slightly modified protocol developed by Carlomagno et al.15. Briefly, before 
each analysis, the instrument was calibrated using the reference band of silicon at 520.7 cm−1. SERS spectra were 
collected following a 25-points rectangular map (60 µm × 40 µm) for each saliva sample, positioned between the 
centre and the edge of the dried saliva drop using a 50 × objective (Olympus, Japan). Spectra were acquired in 
the region between 400 and 1600 cm−1 with a spectral resolution of 0.8 cm−1. Other parameters were predisposed 
accordingly to the followed protocol15. The incorporated software LabSpec6 (version 6.4.3.35, https​://www.horib​
a.com, Horiba Jobin Yvon, France) was used for the map definition and spectra acquisition.

Single spectrum classification model.  All the acquired spectra were fit with a fourth-degree polynomial 
baseline, considering 79 points at the lower spectral level, and normalized by unit vector using the software Lab-
Spec6. The aluminum substrate contribution was removed from each signal, applying at the same time a second-
degree Savitzky-Golay smoothing in order to remove the artefact spikes. All the spectra were resized, avoiding 
large peak shifts due to external factors (e.g. thermal shifts). Artefact spectra, including fluorescence-dominated 
or saturated signals, were manually removed from the dataset. At least 20 spectra were preserved for each sali-
vary sample. The specific Raman fingerprint was calculated performing the average spectrum of each experi-
mental group and comparing the resultant spectra through subtraction with error dispersion, individuating the 
significant intensities variations at the ± 0.005 ∆I level (Fig. 2a–c)53. The single spectra classification model was 
created and trained using the MVA approach, consisting in consecutive PCA and LDA on the created Raman 
database, using the whole collected spectra. The PCA was applied in order to reduce data dimensionality and to 
highlight and define relevant dispersion trends. The first three PCs were extrapolated and used for the data rep-
resentation, explaining the cumulative loading of PCs of 45.9%. The first 15 PCs were used as input to the LDA 
process, obtaining two CVs for the three experimental groups 54. LDA was used to discriminate the data and to 
maximize the variance between the groups. The classification model was built through the LOOCV approach, 
avoiding the over or under fitting due to an inappropriate selection of components considered and determining 
the prediction of error-rate associated to the classification model 48. The confusion matrix test on the LOOCV 
results was used to determine the accuracy, precision, sensitivity and specificity of the system to discriminate the 
single spectrum acquired. MCC was calculated to evaluate the quality of the classification 55. The ROC curve was 
calculated using the method reported by Delong et al. 41, reporting the curve standard deviation with a 95% con-
fidence interval and p-values < 0.001. Chi-square, Fisher exact test, ANOVA and Mann–Whitney tests were used 
to assess the differences between the experimental groups (two-sided p-value less than 0.05 were considered as 
statistically significant). Correlation and partial correlation analysis were performed using Pearson’s test and, in 
the case of partial correlation, using as correction covariates the CIRS comorbidity scales and demographic data 
including age and sex. The described procedures and the images were performed using Origin Pro 2018 (ver-
sion b9.5.1.195, https​://www.Origi​nLab.com, OriginLab Corp. USA) and MedCalc (version 14.8.1, https​://www.
medca​lc.org, Medcalc Software, Belgium).

Patient classification model.  The patient classification model was created through the definition and 
refinement of automatic spectral pre-processing, data augmentation, application and evaluation of different ML 
and DL models, hyper parameters optimization and the final evaluation of the optimized selected model. Briefly, 
all the spectra included in the Raman database were treated as follows: removal of the outliers; realignment on 
the peak at 1001 cm−1; resampling of each spectrum on a grid of 900 points between 400 and 1600 cm−1; sub-
traction of the background signal of aluminum (band centred at 1250 cm−1); removal of signals collected from 

Table 4.   (Ternary) CNN accuracy, sensitivity and specificity at the patient level of the ternary (COV+  vs 
COV− vs CTRL) classification model using leave-one patient out cross-validation, with the related COV+  
sensitivity and specificity percentages. (Binary) CNNs accuracy, sensitivity and specificity at the patient level 
for the binary (COV+  vs CTRL, COV+  vs COV− and COV− vs CTRL) classification model.

Accuracy (%) Sensitivity (%) Specificity (%) COV+  sensitivity (%) COV+  specificity

Ternary

Patient-level 89 89 95 83.3 96

Patient-level (COV+  = 26) 92 91 96 85 96

Binary

COV+  vs CTRL 89 83 94 – –

COV+  vs COV− 89.6 83 93 – –

COV− vs CTRL 91.5 89 94 – –

https://www.horiba.com
https://www.horiba.com
https://www.OriginLab.com
https://www.medcalc.org
https://www.medcalc.org
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cosmic rays applying the Whitaker–Hayes algorithm48,56,57. Concluding the pre-processing pipeline, all the spec-
tra were normalized evaluating four different techniques including Standard Normal Variate, Min–Max, Max 
value and L2. The results for these methods demonstrated no significant differences between the processes. Data 
augmentation was applied in order to generate new synthetic spectra applying variations and distortions to the 
original data by injecting a small contribution of Gaussian noise to the original spectrum at random wavenum-
bers. As consequence, we were able to improve the performances of the classification model, overcoming the 
scarcity of the data58. It is worth noticing that data augmentation has been applied only to the training set, not 
to the test set. Further details for the data augmentation mechanism and its training application are reported in 
Appendix A. For the implementation of ML and DL models, different techniques were evaluated including SVM, 
RF and XGB. Before the application of the ML-based techniques, both data pre-processing and data reduction 
steps (e.g. PCA) are needed, while the DL methods are able to directly handle unprocessed data, making the 
development of the model faster and more reliable. SVM, RF and XGB were implemented as baseline and com-
pared with DL models, in particular with CNNs. The hyper parameters optimization was performed in two dif-
ferent phases: DL structure optimization, selecting the number of convolutional or dense layers, and fine-tuning 
of their hyper parameters. The two phases were applied using SMBO with Gaussian processes and RF regressions 
as base estimators, all in combination with lower confidential bound acquisition functions. All the optimizations 
were performed in 10-folds cross-validation and the target function was minimized on the average classifica-
tion error. The CNN model is trained for a maximum of 200 epochs using early stopping. Adam optimizer and 
batch size 128 are adopted. The performances of the classification model were evaluated considering their ability 
in the CTRL, COV+  and COV− discrimination. Each subject’s label was determined according to the majority 
class assigned to her/his spectra. Therefore, we built a single spectra ML/DL classifier whose predictions were 
then aggregated at patient level. In order to overcome any classification bias due to the eventual arbitrary test-set 
choice, we applied the LOOCV. In this way, the classification model went through a robust and stable procedure 
where each test-fold is composed of the entire set of spectra from a single patient that guarantees a most accurate 
estimation of the model performances. For the classification model operating at the patient level, the data col-
lected from four COV+  patients were evaluated, trying to include or exclude them from the training. Both the 
results are reported. All the procedures and methods were coded using Python (version 3.9.1, https​://www.phyto​
n.org) and implemented through Scikit-Learn Library and Keras, the Tensorflow high-level API 59,60.

Data availability
The data supporting the main findings of this study are available from the corresponding authors upon reason-
able request. The analytical protocol is available on ClinicalTrials.gov, ID: NCT04583306, The salivary Raman 
COVID-19 fingerprint.

Code availability
The codes and algorithms used in this work are available after reasonable request from V.M. and D.B.
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