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Chapter 1 GENERAL INTRODUCTION  

 

1.1 The 3D chromatin structure 
All the highly regulated steps that allow the formation of a fully functional 

multicellular organism are driven by a macromolecule inside the nucleus of the 

cells, the deoxyribonucleic acid (DNA): a unique macromolecule present in all the 

organism’s cells that, producing specific set of proteins, controls the diverse 

identities and tissues1,2. Because DNA translation into RNA has a degree of 

stochasticity3,4,  differences in the genic expression are due to the effect of all the 

epigenetic factors that directly or indirectly interact with DNA thus controlling the 

tridimensional shape of the genome inside the nucleus. This organization forms 

the chromatin that, passing by multiple levels of folding, allows almost two meters 

of human DNA to fit inside the nucleus with a cell-specific shape that finely 

regulates the gene transcription2.  

 

1.2 From histones to chromosome territories 
At the lowest level of chromatin organization, the DNA is wrapped around the 

histones, composed by four subunits, H2A, H2B, H3, and H45. One or more of 

these subunits can undergo a posttranslational modification (PTM). Among PTM 

there are histone modifications, also called histone mark (HM), which influences 

the DNA transcriptional activity6. HM can involve distinct residues of the histone 

subunits, leaving a specific covalent modification, such as methylation, 

acetylation, phosphorylation, ubiquitylation and others6. Combination of distinct 

PTM can give rise to diverse transcriptional output; for example, the trimethylation 

on the lysine K4 of the histone H3 (H3K4me3) is associated with active 

transcription7, while the H3K27me3 is associated with transcriptional silencing7. 

Interestingly, co-presence of H3K4me3 and the trimethylation on the lysine K27 

of the histone H3 (H3K27me3) on the same genomic regions is specific of the so 

called bivalent genes, transcriptionally inactive but ready to a fast switch of state7. 
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Other HMs are more stable, as the trimethylation on the lysine K9 of the histone 

H3 (H3K9me3), marker of constitutive, transcriptionally silent, heterochromatin. 

However, in certain condition, as during cell differentiation, H3K9me3 can acquire 

a more dynamic state playing a fundamental role in the gene expression8. The 

chromatin organization level on top of histone marks are chromatin loops. These 

structures derive from the extrusion of a single chromatin filament through the 

action of the cohesin (a ring-shaped protein complex)9 and put distal chromatin 

regions in physical proximity with the effect of increased DNA/DNA interactions10. 

 
Figure 1. Cartoon of chromatin organization from DNA to chromosome territories Image 

taken from The Self-Organizing Genome: Principles of Genome Architecture and Function.2 

 

These dynamics are fundamental in numerous nuclear processes such as 

enhancer-promoter interactions, gene expression, DNA repair, and DNA 

replication11. From a mechanical point of view, once cohesin starts to extrude the 

loops, it continuously slides through chromatin in a bidirectional process until it 

finds two convergent N-terminal domain of a CCCTC-binding factor (CTCF)12. At 

a higher hierarchy, larger genomic regions with a high probability of forming loops 

within are called topologically associated domains (TADs)10,13, described for the 

first time with an innovative, sequencing based technology, the HiC13, and later 
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on with the GAM (Genome Architecture Mapping)14. Both HiC and GAM are 

techniques developed to measure the physical distance between two or more 

chromatin segments. TAD borders correspond to the asymmetrical and 

convergent CTCF binding sites clusters15, suggesting that the regions of 

interaction are the same for all cells, although degrees of interactions are cell 

dependent. 

At a larger scale in the chromatin organization, there are genomic portions where 

chromatin segregates with lower or higher interaction frequencies, the A and B 

chromatin compartments (Figure 1). Whereas A compartments show lower 

interactions and correspond to the gene dense regions and transcriptionally 

active genome, B compartments display a higher interaction interactions 

frequency  which signify more densely packet regions, yet poor in gene density 

and scarcely transcribed13. The genome shows a high level of plasticity in 

switching between compartments, in a study of chromatin conformation during 

differentiation from human embryonic stem cells (ESCs) toward four different 

human ESC-derived lineages, mesenchymal stem cells, neural progenitors, 

mesendoderm and trophoblast-like cells, shows that  36% of the genome have a 

modified compartments in at least one of the cell types16.  These observation 

were corroborated by another work, in which it has been reported that during the 

differentiation from bone marrow mesenchymal stem cells to adipocytes the 

degree of genomic regions that change compartments is up to ~ 20%17. In 

particular, what undergo the most profound changes in cell differentiation are 

TADs boundaries. In fact, only 11-14% remain stable on multiple differentiated 

cell types18. In particular, few of them appear to be highly conserved across 

different tissue and also in cancer cells19, suggesting a pivotal role for these 

specific TADs. 

Finally, the highest level of the chromatin organization is the chromosome 

positioning in the nucleus2. The chromosomes are not randomly entangled; they 

occupy a discrete portion of the tridimensional nuclear space, called 

chromosomal territories20,21. They also remain conserved along similar species 

and were confirmed through FISH and chromosome painting20.  
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The entire chromatin structure is highly conserved in cell types and is inherited 

through cell cycle22. Nonetheless, it shows a high level of dynamicity with 

chromatin remodelers that modify the HM upon cell exit from quiescence23,24. An 

example of this dynamicity is represented by DNA loops, dynamically created and 

persistent for ~ 10-30 minutes in the nuclei before return to the un-looped 

state25,26. 

 

1.3 The role of the nuclear envelope in epigenome 

regulation  
The nuclear envelope (NE) is composed of a double layer membrane and 

beneath is present the Nuclear Lamina (NL). The NL is a protein meshwork 

composed of a type V filament, mainly A and B lamins, that shows a variable 

degree of thickness along the nuclear envelope27 . Lamins in mammals are 

created by three lamin genes, LMNA, LMNB1 and LMNB2, which can be spliced 

in no less than nine isoforms28,29.  Whereas the B types appear to be constitutively 

expressed, the A type is missing in some cell types30.  When present, A type 

lamins play a key role in cell differentiation. This role is also due to the interaction 

with several transcriptional factors, including the Polycomb group of proteins 

(PcG), transcriptional repressors that control the transcription of developmental 

and differentiation genes31,32. Beside the well documented role of lamin A, the 

ratio between A and B lamin amounts orchestrates cell differentiation33.  Lamins 

distribution are cell-type specific and both types were found as detergent-soluble 

pools in the NL34,35, then it has been demonstrated that the four main isoforms A, 

C, B1, and B2 form similar yet independent meshworks36. The NL have many 

roles in the cell response mediated by many binding proteins37. One of the major 

biological function of lamin proteins is their mechanotransduction role, that 

consists of transferring mechanical information from the cytoplasm to the 

genome, to control multiple functions such as cell differentiation and motility38. 

There are complexes that lie in the nuclear envelope passing through the double 

layer of the nucleus physically linking the cytoskeleton proteins and the nuclear 



 7 

lamina. These complexes, called Linker of Nucleoskeleton and Cytoskeleton 

(LINC), are also needed to provide spatial and structural integrity of the 

nucleus39,40.  

 
Figure 2. schematic representation of LINC complex and its main components. Image taken 
from Cellular Biomechanics in Skeletal Muscle Regeneration41 
 

The LINC complexes are composed by the Sad1p, UNC-84 (SUN) proteins 

(SUN1 and SUN2) in the perinuclear space of the NE. SUN proteins can be 

bound to the Klarsicht/ANC-1/Syne Homology (KASH) creating various isoforms. 

The KASH proteins have a domain which lies on the NE, which bind nesprin 

proteins 1 to 4 (spectrin-repeats proteins) and ultimately bind microtubules or F-

actin in the outer NE42(Figure 2). In the inner NE the SUN proteins interacts with 

the lamina43, that in turn directly interacts with 40% of inactive and gene-poor 

chromatin of sizes that may vary from 0.1–10 Mb in size44. These portions of 

chromatin, called lamina-associated domain (LAD), are enriched in repressive 

epigenetic markers like H3K9me2, H3K9me3 and H3K27me344,45. The presence 

of LADs lead to the radial organization of the chromosome territories while 
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keeping gene-dense regions towards the nuclear centre46,47, as recently showed 

by GPseq, a technique that, by slow diffusion of restriction enzyme, is able 

fractionate DNA by its proximity with the nuclear periphery.  

Proteins that lie in the inner nuclear membrane as lamin B receptor (LBR), 

polypeptide 2 (LAP2), emerin, and LEM domain-containing protein 3 (LEMD3 or 

MAN1) interact with heterochromatin which is in close contact with the lamina, 

with functional consequences(Figure 3).  

 
Figure 3. Cartoon representation of NE proteins interacting with chromatin. Lamina-
associated domains: peripheral matters and internal affairs48 

 

As an example, the direct binding during differentiation of emerin to muscle 

specific genes, maintains muscle progenitor identity49. Some of the lamina-

associated domains are stable in cells (defined as constitutive LADs) while some 

of them change during lineage commitment and differentiation (classified as 

facultative LADs)48,50 modifying the epigenetic repressive HM in these regions 

and subsequently the transcriptional level in the genes. LADs are dynamically 

formed during the cell cycle, with the contact frequency of LADs with the NL 

appear to be guided by H3K9me2 quantities and the H3K9 methyltransferase 

G9a and GLP151. In addition, a subsequent work demonstrate that whereas in 

the early G1 phases the contacts with the NL are wide-spread through all the 

genome, they become progressively more defined increasing size along time52. 

During differentiation, some LADs can be formed de novo, and others increase 

or decrease their extension. However, during differentiation, when the 

association with the lamina is not accompanied by a HM remodeling, the genes 
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that are associated escape to the repressive LAD environment. The final LAD 

position after completing the differentiation appear to be pre-patterned by the HM 

positions53. This could be associated with only the facultative LADs, which most 

probably would not have time to remodel the HM in the differentiation process as 

it happens after a prolonged period of time54. In fact, also if the detachment 

happens by forced mechanical stress the chromatin remodeling happens in a 

matter of days by remodeling the H3K9me2/3 in the LADS by switching to 

H3K27me3 as a compensatory mechanism55. Notably, the constitutive LADs 

show ~ 200 genes that escape the characteristic repressive environment of LADs 

and are active and transcribing. These genes shows enrichment in open 

chromatin HM as H3K4me1/3 and H3K27ac which are not affected by the 

constant positioning on the lamina56. Also TADs, which tend to group in cliques, 

interact with the nuclear lamina. In a model of adipogenic differentiation, these 

interactions get stronger and shape radial reposition of the cliques, redefining the 

heterochromatin at the nuclear periphery57. 

 

1.4 Laminopathies  
Laminopathies are a group of diseases that are caused by a mutation in the lamin 

genes. Over 600 known point mutations on the LMNA/C gene can cause 

laminopathies. These mutations occur along the LMNA gene with several “hot-

spot” regions associated with 15 distinct diseases37. The phenotype macro-areas 

of these diseases are lipodystrophies, neuropathies, bone disorders, muscular 

dystrophies as the Emery Dreifuss, cardiomyopathies and premature aging 

diseases as atypical Werner, Hutchinson- Gilford Progeria Syndrome (HGPS or 

progeria) and dermopathies58. Also, if mutated, the LMNB1 and LMNB2 can lead 

to laminopathies59. However, there are fewer reported laminopathies caused by 

LMNB genes compared to lamin A. As described in the work of Camilla 

Evangelisti et al., it is probably related to the fact that lamin B is required in 

embryonic and fetal development, thus mutations are most likely lethal59. One of 

the most notable laminopathies is HGPS, as the affected patients show in some 
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tissues an accelerated physiological ageing. This disease has caught the 

scientists’ attention because it can be used on top of the understanding of the 

pathology to learn mechanisms related to physiological aging60. 

 

1.5 Hutchinson- Gilford Progeria Syndrome 

(HGPS) 
The HGPS  is a segmental autosomal dominant ultra-rare genetic disease with 

an incidence of 1:18 million and patients affected usually do not live longer than 

13-14 years old on average60. The symptoms manifest early age, usually already 

within the first year of life. It shows phenotypes as sclerotic skin modifications, 

reduced body fat, loss of vascular smooth muscle, severe atherosclerosis, 

ubiquitous vascular stiffening and arterial occlusive diseases, protracted 

prothrombin times, conductive hearing loss, alopecia, growth impairment with 

bone abnormalities, and abnormal dentition60. The most common cause of death 

in progeria is the heart attack or stroke generated from the vascular diseases.  

Notably, HGPS patients do not face a decline in functions in many organs, such 

as kidneys and gastrointestinal tract, or the neurocognitive capacity remains 

unaffected60.  

 

1.6 Progerin and its effects on nuclear structure   
Progeria is caused by a single point mutation on the G608G site , typically caused 

by the mutation (GGC>GGT) on the exon 11 at position 1824 in the LMNA gene61. 

This mutation creates a cryptic splice site resulting in an mRNA without 150nt at 

the 3′ end. When translated, the lamin A precursor polypeptide lacks the second 

endoproteolytic cleavage site for ZMPSTE24, needed to eliminate 50 residues in 

the C-terminal tail of the protein. This leads to a persistent CaaX farnesylation 

motif and increases abnormally the farnesylated precursor62, the progerin, that 

does not correctly integrate into the nuclear lamin mesh. The lamin isoforms are 

also crucial for regulating the correct distribution and regulation of the nuclear 
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pore complexes in cells. Progerin accumulation triggers an abnormal nuclear 

envelope morphology that leads to the formation of protruding structures where 

the nuclear lamin is thinner, the nuclear blebs62,63. The nuclear blebs are depleted 

in nuclear pores64. Besides their role in molecules transportation across the NE, 

nuclear pores interact with chromatin65, regulating chromatin silencing and 

contributing to long-range interactions among Polycomb targets66. 

These blebs have been suggested to have a role in the severity of the disease 

through the overaccumulation of Sun167. In fact, in the study of Chai et al. by 

reducing the SUN1 quantity in a floxed conditional LMNA mutant of mice, the 

progression of dilated cardiomyopathy is repressed68. Interestingly, nuclear blebs 

contain more active chromatin inside, creating a strongly deregulated epigenetic 

environment69. Recently it has been reported that micronuclei formation, which 

are created by the mis-segregation of an entire chromosome portions during 

replication, also disrupts the epigenetic environment of the nucleus70–72. 

Furthermore, because the heterochromatin is more rigid than the open and active 

euchromatin, by increasing the euchromatin/ heterochromatin ratio, the nucleus 

stiffness decrease and result in creating blebs independently of the lamins73.  

Taken all together these results show the tight connection and importance of 

chromatin architecture and nuclear shape to the homeostasis of the nucleus. For 

example, nuclear blebbing can be caused initially by mechanical forces. 

However, when the LADs are detached and the histone modifications are 

remodeled in late passages, the modified stiffness can increase the severity of 

nuclear blebbing. Progerin overaccumulation changes the structure of the nuclear 

lamina by creating lamin microaggregates, this affects the nuclear lamin 

ultrastructure and alters the force propagation in the nucleus74, changing in the 

mechanical properties of the nuclei. Although this chain of event does not 

increase the nuclear fragility75, the cells can be more sensitive to mechanical 

strain76.  

 

1.7 HGPS dysfunction of biological pathways 
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HGPS affect tissues expressing lamin A, which are mainly cells derived from 

mesenchymal lineage77. Some conditions are common to all the affected tissues, 

as heterochromatin remodeling, alteration of the mechanical properties and 

mechanotransduction, increased cellular senescence and apoptosis. An 

important deregulated pathway that affect HGPS patients is caused by the 

mammalian target of rapamycin (mTOR) activity reductions.  mTOR is divided in 

two different complexes  mTORC1 and mTORC2 which are involved in a plethora 

of functions as it regulates cell proliferation, autophagy, apoptosis and nutrient 

sensing78. In progeria, as mTOR signaling activity drops, the autophagy 

dramatically increases79. In fact, inhibition of the mTOR signaling pathway 

significantly increase the HGPS mouse lifespan80.  

Another important aspect of progerin accumulation in the nucleus is the oxidative 

stress, in part caused by mitochondrial dysfunctions in morphology and 

functions81,82. Another key player of oxidative stress is the transcriptional nuclear 

factor erythroid 2-related factor 2 (NRF2). Progeria shows intense oxidative 

stress because NRF2 is sequestered away in the nuclear periphery by progerin 

its transcriptional targets83. NRF2 target knockdown, in human fibroblasts cell 

lines, triggers senescence phenocopying the progeric phenotype83. Sirtuins are 

a family of histone deacetylases involved in various roles such as DNA repair, 

resistance to DNA damage and chromatin conformation84. The function of sirtuins 

has been linked to Lamin A: in mouse embryonic fibroblasts (MEF), the 

antioxidant  resveratrol compound increases the binding of SIRT1 with A-type 

lamins stabilizing its deacetylase activity and resulting in an alleviation of 

progeroid features and retardation of cell death85. On the other hand, association 

of SIRT1 with progerin accelerates SIRT1 decline accelerating the aging in adult 

stem cells.  

It has been demonstrated that the Ig-fold motif located in the C-terminus of the 

lamins directly binds the proliferating cell nuclear antigen (PCNA) and, by direct 

consequence, influence the DNA replication efficiency86. Another emerging role 

of the lamins, is the promotion of DNA damage repair by base excision repair 

(BER) during oxidative stress. In particular, if the lamin A/C is absent, the 
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oxidative stress leaves a specific fingerprint absent in the wild type87. Instead, 

lamin B does not appear to have a direct role in DNA damage response. 

However, it does interact with the transcription factors of genes implicated in DNA 

damage and repair as breast cancer gene 1 (BRCA1), RAD51, and the small 

ubiquitin like modifier 1 (SUMO1)88. Another role of the nuclear lamina meshwork 

is that it interacts with histones with its immunoglobulin-like domain89. During 

DNA damage, lamin A interacts with γH2AX, the phosphorylated form of the 

histone H2AX, this interaction is fundamental for the stability in the 3D space of 

the DNA repair foci90. All of these impaired mechanisms in DNA damage repair 

would lead to the supposition that HGPS patients are have an increased 

susceptibility in cancer development. Conversely, the patients appear to have a 

protection mechanism91. Cancer escaping mechanism rely on BRD4, a 

transcriptional activator which, in HGPS cells, abnormally spreads on chromatin. 

The abnormal dissemination of BRD4, mediated by progerin, regulates specific 

genes which hinder the de-differentiation process and the subsequent 

carcinogenic reprogramming92,93.  

 

1.8 Epigenetic alterations in HGPS 
The chromatin remodeling in HGPS starts at the lamina-associated domains 

level. In these domains there are histone marks associated with heterochromatin 

mostly H3K9me2 or me3 and H3K27me3 at the borders (silenced, gene-poor and 

inactive)44. It has been reported that progerin increases during cell passages, 

which leads to a loss of heterochromatin governed by the histone mark 

H3K9me3, and by contrast, an increase of H4K20me3 in cells94, a repressive HM 

of promoters and transposons95. The methyltransferase SUV39H1, responsible 

for the trimethylation of H3K9me3 shows a decrease in late passages, and 

H3K27me3 displays an aberrant deposition patterns being absent on 

chromosome X94,96.  

Another essential complex for heterochromatin maintenance is the nucleosome-

remodeling and deacetylase (NuRD) complex97. In progeric cells the necessary 
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subunits that bind histones, RB Binding Protein 4 and 7 (RBBP4, RBBP7), 

Metastasis Associated 1 Family Member 3 (MTA3) and Histone Deacetylase 1 

(HDAC1) are downregulated, resulting in a depletion of focal H3K9me398. 

However, studies performed in early passages of progeric fibroblasts it has been 

reported that in presence of progerin one of the first alteration is LAD relocation 

from nuclear periphery towards the nuclear center54. This change is followed a 

low spreading and decrease of H3K27me3 quantity54. This chromatin relocation 

reflects in a subset of bivalent genes, more susceptible to variations of PcG 

bodies position which increase their expression54. On the contrary, H3K9me3 do 

not show any modification in the early passages54. Nonetheless, in late passages, 

these genomic relocations and epigenetic alterations result in H3K9me3 

depletion and are subjected to a nuclear re-compartmentalization of Polycomb54. 

This remodeling is followed by impaired chromatin interactions seen with Hi-C 

analysis96. 

Beside its direct role on chromatin, progerin expression interferes with many 

nuclear factors that control the epigenetic state of chromatin. One of them is the 

one now called ubiquitin conjugating enzyme E2I (UBE2l), the specific E2-

conjugating enzyme necessary for the SUMOylation, necessary for the 

establishment of H3K9me399. The reduction of SUMOylation has significant 

consequences on cell identity and cell-specific gene expression at least in cell 

lines as mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs 

)91. 

A growing quantity of evidences suggests that Polycomb group of proteins (PcG) 

play important roles in several tissue strongly affected in HGPS: aortic tissue, 

muscle, and skin homeostasis100–102. As the chromatin conformation is cell-type 

specific, chromatin remodeling due to progerin presence in different cell types 

would be most probably cell-type specific. However, no studies specifically 

addressed this question.  

 

1.9 Tissues alterations in HGPS  



 15 

Progerin has an impact on various tissues, affecting homeostasis and 

maintenance. In addition as pre-laminA accumulation leads to cell toxicity, 

different cell lines or mouse models are used as models to understand a specific 

type of overaccumulation and mechanisms103–105.  In osteogenesis, the Wnt/β-

catenin signaling promotes differentiation, whereas in HGPS, an impairment in 

the import of β-catenin cause defective osteogenesis by decreasing the 

mineralization106,107. In addition, increased pre-lamin A levels in mesenchymal 

stem cells cause an increase of osteogenesis-related proteins in the secretome, 

thus promoting osteoblast differentiation108. Progeria patient also shows 

impairment in the correct regulation of some central genes that oppose 

chondrocyte differentiation, thus increasing the mesenchymal stem cell 

commitment109,110. In skin, a fundamental process for the maintenance of the 

tissue is the stem cell asymmetric division, which create one cell that replenish 

the stem pool and the other committed to differentiate111. The asymmetric cell 

division is regulated by signaling pathways as Hedgehog, Notch, and Wingless 

(Wnt)112. The latter, aberrantly activated by progerin accumulation, leads to an 

increased symmetric cell division. This causes an abnormal differentiation in 

keratinocytes resulting in an unbalance in skin homeostasis113.  

In endothelial cells, progerin accumulation causes cell senescence and, thereby, 

cell loss. This results in reduced contractility, excessive buildup of extracellular 

matrix and calcification of the middle layer of the aortic wall114. In the vascular 

smooth muscles, important for vascular contraction and for the maintenance of 

the correct blood pressure, prelamin A presence hinders the capacity of 

endothelial cells to adapt to mechanical stress, resulting in cell loss and 

senescence77. In a elegant model of HGPS mice that express progerin only in 

endothelial cells, it has been shown that lack of mechanical stress adaptation is 

accompanied by alterations in the production of nitric oxide115, which is important 

for cell adhesion and inflammatory response116. Importantly, recent studies have 

shown that suppression of progerin and restoration of Lamin A levels in 

endothelial cells by a Cre recombinase in the mice model, increased the lifespan 

of these mice117. In addition, they also show that the sooner progerin is depleted, 
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the higher is the lifespan of the mice. Similar results were reported in the HGPS 

mouse model expressing progerin only in cardiomyocytes117. 

In cardiac tissue the effects of progerin expression have been studied for a long 

time. The Zmpste24−/−mouse model, a premature aged mouse mouse that lack 

the enzyme for endoproteolytic cleavage of the CaaX farnesylation motif, 

develops cardiac symptoms similar to HGPS. Furthermore, it shows reduced 

amplitude of the intracellular Ca2+ fluxes, which is central in the contractility 

regulation118. With the advent of cell reprogramming, executed also in progeria 

cells119, several studies started also in human cells. Human cardiomyocytes 

obtained from differentiating iPSCs, report morphological and biochemical 

alterations in mitochondria120. In addition, they curiously found a reduced level of 

intracellular ROS which usually increase in other tissues81. As cardiac cells are 

characterized by absence of proliferation in adult, in both progeria and 

physiological aging there are not great differences in single nucleotide variants 

(SNV). This suggest that the increased genomic instability in progeric cells do not 

affect the DNA repair machinery which remain fully functioning to maintain 

genomic integrity121. Nonetheless, at the proteomic level the alterations present 

in the hearth of progeric mouse model LmnaG609G, a knock‐in strain model with 

the same genetic mutation as a progeric patient122, are quite different from the 

physiologically aged hearts. On the other hand both, physiological and 

accelerated aging present a proteome which relate to increased levels of 

cardiometabolic diseases123.  

In adipose tissue, the role of progerin has been deeply investigated, due to the 

strong lipodystrophic phenotype observed in progeric patients. The Janus 

kinase/signal transducer and activator of transcription (JAK/STAT) signaling, an 

inflammatory pathway related also in senescence, play and important role in the 

development of lipodystrophy in HGPS. In fact, treating in vitro cells with 

baricitinib (Bar), a JAK/STAT inhibitor, ameliorated adipogenesis124. At the 

chromatin level, the differentiation from adipose stem cells show a tight relation 

with the lamina53,125. In stem cells, cliques of non-contiguous TADs naturally 

interact inside the nuclei. During adipogenic differentiation, these cliques display 
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an increased size and interaction NL, stabilizing the heterochromatin domains 

and reinforcing the silencing of developmental genes57. The role of of lamin A in 

adipocyte differentiation was described in other laminopathies that affect adipose 

tissues as partial lipodystrophy with mandibuloacral dysplasia (MAD) and 

Dunningan-type familial partial lipodystrophy (DFPLD)126. Interestingly, the 

alteration of one tissue can play a role in the dysfunction of adjacent tissues: a 

recent study described senescence-associated secretory phenotype produced 

by endothelial cells that promotes adipocyte senescence127. 

  

1.10  DNA damage in HGPS  
Several biological pathways involved in physiological cell senescence are also 

affected in progeria: telomere shortening, DNA damage and impairment of a 

correct DNA repair response, nuclear blebbing, LAD detachment followed by post 

translational modifications of heterochromatin81,128. Many factors cause DNA 

damage accumulation in progeria causing the replicative stress. In addition, these 

factor are tightly related to the nuclear lamina129. The first one, is the RAD51 

recruitment operated by lamin A in the process of homologous recombination. 

The RAD51 function is to protect DNA in the stalled replicative forks (RF); loss of 

lamin A cause a recruitment defect that increase the nucleolytic degradation of 

stalled RFs, causing genomic instability and increasing DNA damage130. When 

double strand breaks (DSB) occur in heterochromatin, the portion of the genome 

containing the DSB relocalizes to the periphery of chromocenters, with a 

mechanism that involve actin and myosin binding to lamin A131. Here damaged 

DNA recruits Rad51, that start the DNA repair. In presence of progerin the 

crosstalk between myosin and lamin A is affected132, causing an impairment in 

the double strand break repair method133. 

Both HGPS and ZMPSTE24-/- cells have abnormally high levels of the Xeroderma 

Pigmentosum Group A (XPA) protein, which is involved in nucleotide excision 

repair, at the sites of DNA damage134. The DNA damage response (DDR) is also 

affected in HGPS by the 53BP1, a lamin A interacting protein, which is a key 
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mediator in multiple DDR processes in the double strand break repair. In the 

absence of lamin A, dysfunction of 53BP1 causes genomic instability and inhibits 

DNA repair135.  Heterochromatin protein 1 (HP1) is a family of proteins mainly 

known to form heterochromatin via the recruitment of SUV39H1136. HP1α can 

interact with lamins, having a role in chromatin remodeling and DNA repair. In 

progeroid mice, HP1α increase in the nuclear matrix, while its phosphorylation 

capacity drop. This results in a delay in the formation of the DNA-repairing foci 

mediated by the γ-H2AX which end up in increasing the number of DNA breaks 

and defective DNA repair, thus causing senescence137.  

Progeria cells also show telomere shortening, a process tightly linked with DNA 

damage138. Telomeres, the end segments of the linear chromosomes, increase 

their length by the enzyme telomerase. This enzyme activity in cells is highest 

only in the germline and absent in most of the cells after birth139. As a result, 

telomeres shorten progressively with age, contributing to aging139. Telomeres 

have a specific architecture consisting of two parts: a repeated TTAGGG region 

that is several Kb long, and a single-stranded 3' tail called the G-overhang139. To 

protect the telomeres from falsely undergo to a double strand DNA break 

repairment, the ending portions of the chromosome are protected with a particular 

structure which gave the cap structure, or the T-loop139. These structure are 

mediated by the shelterin complex which is a complex comprised of various sub-

units as telomere repeat-binding factor (TRF1, TRF2), TERF1-interacting nuclear 

factor 2 (TIN2) and protection of telomeres protein 1 (POT1)139. In human cells, 

telomeres are bound to the lamin A by the TTAGGG repeat140. As a 

consequence, several proteins of the shelterin complex interact with lamin A. 

When  the lamin A is perturbed, fewer protective structures are formed and, 

consequently, telomere are rapidly lost141. In fact, telomere shortening is 

variously reported in HGPS as a major driver of senescence142,143. Telomeres 

also interact with lamina-associated polypeptide 2 (LAP2α), a key interactor of 

lamin A. When progerin is present, it disrupts this interaction, altering telomeres 

correct positioning144. This probably has an effect on the telomeres protective 

complex shelterin as it also directly interact with LAP2α145. When the telomeric 
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DDR remain active for prolonged period of time, the cells enter cellular 

senescence146. The response of this kind of DNA damage generates non-coding 

RNA (ncRNA) which, which after a processing step mediated by the 

endoribonucleases named DROSHA and DICER, mediate the formation of the 

DDR foci147. In fact, by inhibiting the telomeric DNA damage response, the HGPS 

senescent phenotype and proliferation ability ameliorate148.  

 

1.11 The epigenetics of cellular senescence  
Cellular senescence is a stage induced by a wide range of intrinsic and/or 

extrinsic cell vexations149. These inducers are correlated with processes such as 

ageing, cancer, tumor suppression/ promotion, tissue repair, and diabetes150. 

Cellular senescence nowadays can be divided in 3 macro categories, 

physiological, stress induced and replicative. The first one is a mechanism used 

by organisms to a plethora of physiological functions: embryonic development, 

wound healing, tissue remodeling, tumor suppression and brain homeostasis 
151,152. The second is a response to stresses to impede further damage often 

called stress induced premature senescence (SIPS)153. In particular in the SIPS 

macro category include the more known oncogene induced senescence (OIS)154. 

The third one, the replicative senescence (RS) is due to the telomere shortening 

called ‘Hayflick’s limit’155.  

Despite the initial theory that assumes cellular senescence as a static process, 

this is now considered as a highly dynamic multi step process156. The early 

senescent state is delineated by morphology changes, as flattened and enlarged 

morphology with organelle abnormalities, chromatin remodeling, and, 

consequently, metabolic reprogramming, which could end up in production of a 

specific secretome signature called senescence-associated secretory phenotype 

(SASP)157. The effect of SASP can be autocrine to auto reinforce 

senescence158,159, and paracrine to both induce senescence in neighbors cells 

and signal the macrophages to remove senescent cells160. SASP can vary across 

cell types and stages161. In addition, SASP components can be categorized in 
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four distinct categories: metabolic processes, extracellular 

matrix/cytoskeleton/cell junctions, ox-redox factors, and regulators of gene 

expression162. The initiation of senescence is characterized by the arrest of the 

cell-cycle mediated by p53/p21CIP1 and p16INK4a/Rb163. Both of them subsequently 

acts as barriers to re-enter the cell cycle. In fact, depletion of both factors can re-

establish the cell proliferation164. 

Afifi et al. recently showed that cells undergo irreversible senescence after losing 

cyclin-dependent kinase 2 (CDK2) activity, which is caused by c-MYC (MYC) 

degradation. If MYC increases inside the cells, the cells re-enter in the cell 

cycle165. This c-MYC degradation appear to have an effect of blocking the cell 

cycle and let the cells enter in the senescent state stronger than the very well-

known p53/p21CIP1 and p16INK4a/Rb, as they can induce reversible arrest. Despite 

the fact that senescence is generally thought to be irreversible and the work of 

Afifi et al. strongly sustain this theory, this is still under debate as there are 

multiple evidences that cells can escape senescence and re-enter in the cell 

cycle119,164,166,167, in particular in cancer cells168,169. An important consideration to 

take into account is that more the cells remain in senescent state, more they 

diverge from the genome cell-specific program, thus increasing their 

transcriptional heterogeneity, thus changing the cell identity170.  During cellular 

senescence, chromatin is greatly remodeled with different players. At the 

molecular level, common triggers of cellular senescence during ageing are: DNA 

damage accumulation, critically short telomeres, mitochondrial defects, ROS and 

nutrient imbalance150,171. 

The DNA damage is known to be particularly effective in induce senescence, in 

particular the persistence of double strand break (DBS) not readily resolved by 

the cells triggers cellular senescence149. In particular, telomeres, when not 

accurately protected are considered by the cell a persistent DSB. When 

telomeres become critically short they do not form anymore the protective 

structure called cap. Then, they attract a DNA damage response (DDR) which is 

quite similar to normal DSB172,173.The oncogene induced senescence (OIS) cited 

above, display senescence-associated heterochromatin foci also known as 
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SAHF. These bodies are enriched in non-overlapping concentric layers of 

H3K9me3 and H3K27me3174, kept together by HP1 proteins175. In addition, 

DNMT1, a DNA methyltransferase, is an essential factor for SAHF formation176. 

Both SAHF and DDR are implicated in the OIS as they can coexist in the same 

cell, however, they are in each other proximity and do not colocalize. This 

proximity is necessary to restrain the DDR signaling177. Epigenetic alterations are 

different in replicative or not replicative senescence. In the first one, depletion of 

lamin B1 from the nuclear envelope accompanies cellular senescence178. This 

result in the partial loss of insulation and decrease in genome 

compartmentalization at TAD borders, leading to the broadly accepted 

knowledge that during ageing a generalized heterochromatin depletion is 

accompanied by LAD detachment171,179. On the other hand, the senescence 

imposed by the oncogene suppression increase compartmentalization and 

create senescence associated heterochromatin foci176. However, 

heterochromatin studies were mainly conducted in cultured cells and few 

datasets are available in the animal model. A systematic genome wide approach, 

done at different stages of lifespan, in distinct tissues could clarify the common 

mechanisms of heterochromatin alterations in senescent cells. 

 

1.12  Cellular senescence in ageing  
Aging, is loosely defined as a time-dependent deterioration of functionality that 

affects almost every organism180. Ageing is due to a plethora of cellular and 

molecular events, e.g. stem cell exhaustion, telomere shortening, DNA damage 

and epigenetic alterations. These factors are considered hallmarks of ageing are 

tightly intertwined together180. Cellular senescence is also considered a hallmark 

of aging180 and the number of senescent cells increases during lifespan. As the 

number of senescent cells increases, the amount of senescence-associated 

secretory phenotype (SASP)(described in the paragraph 1.10) increase in the 

extracellular matrix contributing to create the low-level chronic inflammation 

microenvironment in ageing, named inflammaging. The inflammaging is a 



 22 

complex status of the aged tissues in which the innate immune system, in 

particular the macrophages, are kept constantly activated181. The accumulation 

of senescent cells in tissues during aging leads to continuous release into the 

bloodstream of molecules, such as recruitment factors, damage-associated 

molecular patterns (DAMPs), and cytokines as IL-1, IL-6, interferon-gamma (IFN-

γ), tumor factor necrosis TNF-α, cytokine antagonists182,183. Because SASP 

attracts macrophages that in homeostatic condition would remove senescent 

cells, one hypothesis is that the accumulation of senescent cells can be triggered 

by a decrease in the efficiency of the immune system, that contribute to the SASP 

production184. Intriguingly, it has been shown that brief exposures to SASP 

microenvironment can increase the expression of stem cell markers and augment 

regenerative capacity151. On the other hand, long exposures promote a cell-

intrinsic senescence151.  During physiological ageing, SASP composition and 

release quantity appear to be related to both tissue and age185. 

 

1.13 Muscle aging 
During the functional decline due to ageing process, one of the most relevant and 

affected tissue is the muscle. Sarcopenia, the age-related loss of muscle mass 

and strength, is a major driver of decline in older adults186. Sarcopenic muscles 

are characterized by increased heterogeneity in muscle fiber size, increases ROS 

production, attenuated stress response capacity, and increased intramuscular 

connective and adipose tissue called marbling187. During the passage from old to 

geriatric stages muscle stem cells (MuSCs, also called satellite cells) are 

subjected to a conversion in a pre-senescent state characterized by hallmarks of 

cellular senescence as p16ink4a, and gene sets regulated by Polycomb complexes 

as Deleted In Esophageal Cancer 1 Dec1 (BHLHB2), Cyclin Dependent Kinase 

Inhibitor 1A,2B,1C (p21, p15, p57)188. Sarcopenia and senesce have a tight 

relation. In particular, SASP production parallelly increase with p38 mitogen-

activated protein kinase (MAPK) and the transcription faction NF-κB 

p38MAPK/NF-κB189. Thus, SASP components impact the correct differentiation 
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of myoblast and increase their aptoptosis190. On the other hand, the elevated 

p38/MAPK concomitant with the JAK/STAT signaling hinders the asymmetric 

division, which lead to regenerative impairment and pool exhaustion191,192.  In 

another study, a dysfunction of the Notch-p53 signaling pathway has been found 

in aged muscle stem cells;  this signalling impairment causes what it has been 

called a mitotic catastrophe, which affects the regenerative and self-renewal 

potential of the cells193.  

Also the correct regulation of lamin A/C is fundamental for a proper muscle 

maintenance and regeneration194. In the mouse model of Emery Dreifuss 

Muscular Dystrophy (EDMD), lack of lamin A leads to a redistribution of the 

H3K27me3 repressive Polycomb chromatin mark on non-target genes. This 

unbalance redistribution de-represses other genes as the cell cycle inhibitors 

(p16ink4a), determining loss of cell identity and the appearance of senescent 

traits195. Genetic ablation of Cdkn2a locus, coding for p16ink4a, reactivating the 

cell cycle, ameliorates dystrophic and cardiac phenotype195,196. Changes the 

PRC2–LaminA/C interplay have been described also in human cardiomyocytes 

derived from iPSC carrying a mutation in the LMNA gene (K219T). Lamin A 

dependent alteration of PRC2 positioning on chromatin determine an increase of 

transcriptional repression on a sodium channel gene that result in action potential 

changes affecting the contractility of the heart197. Premature muscle senescence 

has been described also in other muscular dystrophy, as in the case of Duchenne 

Muscular Dystrophy (DMD). Here the permanent state of inflammation 

dramatically increases the senescence levels of muscles which contribute to 

progression and exacerbation of the DMD symptoms198. Treatments with a 

senolytic drug can inhibit the progression of the disease in a rat model for DMD198. 
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1.14 Scope of the thesis 
In this work, we aim to investigate the role of the nuclear lamins on chromatin 

conformation dynamics in health and disease. We set up a new and improved 

version of the SAMMY-seq technology to analyze both euchromatin and 

heterochromatin.  

We used this technology to dissect the chromatin architecture in distinct cell types 

and to highlight new molecular pathways involved in cellular senescence. Finally, 

we highlight differences in pathological aging conditions. 

The thesis is divided into the following chapters: 

In Chapter 2 we illustrate the novel SAMMY-seq technology.  

In Chapter 3 we describe the different impacts of lamin A and B Knock Out (KO) 

on chromatin solubility. We use cultured fibroblasts with KO for the lamin A/C 

gene or lamin B1 and B2 genes. Here we present data analysis on the chromatin 

dynamics due to the lack of lamins in a controlled environment. 

In Chapter 4 we analyze the impact of progerin on chromatin in 3 mesenchymal 

derived cell types: skin fibroblasts, endothelial cells and muscle satellite cells.  

In Chapter 5 we present our data on muscular ageing. Using a cohort of mice 

representative of postnatal, adult, old and geriatric stages of lifespan, we deeply 

analyzed the chromatin dysregulation in muscular stem cells. 
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Chromatin three-dimensional (3D) organization inside the cell nucleus results in 

the separation of active and inactive chromatin compartments. These are driven 

by the local concentration of genomic domains with similar transcriptional activity 

and epigenetic features, as well as the local enrichment of their associated 

proteins leading to the formation of distinct subnuclear structures. The reference 

genomics techniques to map chromatin 3D architecture are based on the 

quantification of contact frequencies between genomic loci, that doesn’t’ detect 

chromatin compartments relocation across subnuclear regions. Chromatin 

domains spatially located in the same 3D nuclear neighbourhood are exposed to 

the same biochemical milieu, thus sharing similar solubility. Based on this 

rationale, we developed a new experimental technique, the 4fSAMMY-seq, 

paired with tailored bioinformatic data analysis methods to map chromatin 

accessibility, starting from the biochemical properties of genomic domains and 

using as little as 10,000 cells. We can extract information on the linear 

segmentation of euchromatic and heterochromatic genomic regions, as well as 

on their 3D segregation in active and inactive chromatin compartments. With 

4fSAMMY-seq we can recapitulate in a single experiment the characteristic 

properties of the distinct chromatin states, including the highly dynamic Polycomb 

compartment. 

 

 

2.2 INTRODUCTION 
In the interphase cell nucleus, chromatin is organized in a three-dimensional (3D) 

architecture reflecting the epigenetic and transcriptional regulation of the genome 

(1). Alterations of chromatin 3D architecture have been identified in multiple 

human diseases (2-4). On a large-scale, euchromatic (active) and 

heterochromatic (inactive) domains tend to co-localize with domains of the same 

type, thus constituting spatially separated compartments that can be mapped by 

high-throughput genome-wide chromosome conformation capture (Hi-C) (5). The 

active and inactive compartments are conventionally named "A" and "B" 
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compartments, enriched in transcribed or repressed genomic regions, 

respectively. The Nuclear Lamina (NL) contributes to this compartment 

separation by directly binding specific heterochromatic genomic regions called 

Lamina Associated Domains (LADs) (6), belonging to the "B" compartment. Over 

the years, improvements in the resolution of experimental data (7) and in the 

computational analyses (8) allowed identifying also sub-compartments, whereby 

a finer grain segmentation of "A" and "B" compartments can be associated to 

specific combinations of chromatin marks, thus achieving a more precise link 

between the 3D chromatin organization and epigenetic regulation. Additional 

methodological improvements in this field focused on achieving higher resolution 

in mapping contacts between genomic loci, e.g. with Micro-C (9,10), or a reduced 

number of starting cells, e.g. with Low-C (11). Although undoubtedly powerful, 

Hi-C is based on a multistep protocol including chemical modifications and PCR 

amplification that can contribute technical biases masking or underestimating 

small chromatin remodelling dynamics. Moreover, by measuring the pairwise 

contact frequency of genomic loci, it does not give information on whether a 

specific contact is occurring in a particular subnuclear region. To this concern, 

multiple pieces of evidence in literature highlighted that the detachment of 

chromatin from lamina causes a major reorganization of chromatin 3D 

compartmentalization that is visible by imaging techniques, but does not result in 

evident changes in Hi-C compartments (12). In a different model with triple knock-

out of lamina proteins, also the Topologically Associating Domains (TADs) 

detected by Hi-C have been shown to be largely unchanged (13). Indeed, as long 

as the local contact pairs are preserved, the chromosome conformation capture-

based techniques may not be able to detect the change of location of a domain 

across subnuclear regions. Alternative methods to overcome some technical 

limitations of ligation by proximity were proposed with GAM (14) and SPRITE (15) 

techniques. Nevertheless, these approaches, that require highly specialized 

instruments and expertise, are also based on the detection of contact frequencies 

between genomic loci. 
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In this context, we recently presented SAMMY-seq, that is based instead on the 

biochemical fractionation of chromatin, followed by sequencing of the individual 

fractions to map the constitutive heterochromatin domains. We already reported 

that SAMMY-seq is able to detect early changes in heterochromatin solubility 

when LAD association to the nuclear lamina is compromised due to a mutated 

form of Lamin A (16). Notably, in the same early passage cellular model, Hi-C 

could not detect 3D chromatin architecture changes (17). More recently, in a 

completely different model of mechanical stress induced by cell motility, where 

the deformation of cell nucleus is expected to trigger a dissociation of 

heterochromatic LADs from the lamina (18), SAMMY-seq could detect 

reorganization dynamics involving heterochromatin domains (19). 

Building on this earlier work, here we present a novel experimental protocol (4f-

SAMMY-seq) and dedicated data analyses algorithms to map the position of both 

open and closed chromatin regions along the genome, in addition to their 3D 

spatial segregation in distinct chromatin compartments. This provides crucial 

practical advantages over state-of-the-art techniques for mapping compartments 

in terms of costs, versatility and scalability. Indeed, the novel 4f-SAMMY-seq 

works on as little as 10,000 (10k) cells, it requires only a few hours of bench work 

and a limited sequencing depth, as low as 25 million reads per chromatin 

fractions. These advantages open unprecedented possibilities for characterizing 

chromatin 3D compartmentalization and scaling up its analysis in a variety of 

experimental settings. 
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2.3 MATERIAL AND METHODS 
Cell cultures 

Human primary dermal fibroblast cell line C004 (foreskin fibroblast strain #2294, 

from a 4-year-old donor) was a generous gift from the Laboratory of Molecular 

and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS (Rome, Italy). 

Human primary dermal fibroblast cell lines C001 (foreskin fibroblast AG08498, 

from a 1-year-old donor) and C002 (foreskin fibroblast AG07095, from a 2-year-

old donor) were obtained from the Coriell Institute. 

All cell lines were cultured at 37 °C, 5% CO2 in DMEM high glucose supplemented 

with GlutaMAX (Gibco, 10566-016), with further addition of 15% (v/v) FBS (Gibco, 

10270106), 100 U/mL penicillin G and 100 μg/mL Streptomycin Sulphate. 

 

Chromatin fractionation 
For 4f-SAMMY-seq, 3 million fibroblasts were detached from the culture plate by 

3 min incubation in Trypsin-EDTA solution at 37°C, 5% CO2. After two washes 

in cold PBS, the cells were resuspended in 600 μL of CSK-Triton buffer (10 mM 

PIPES pH 6.8, 100 mM NaCl, 1 mM EGTA, 300 mM Sucrose, 3 mM MgCl2, 1mM 

PMSF, 1 mM DTT, 0.5% Triton X-100, with protease inhibitors). After 10 min 

incubation on a wheel at 4°C, soluble proteins and the cytoskeletal structure were 

separated from the nuclei by centrifugation at 900g for 3 min at 4°C; the 

supernatant was labelled as S1 fraction. The pellet was then washed with an 

additional volume of CSK-Triton buffer, resuspended in 100 μL of CSK buffer (10 

mM PIPES pH 6.8, 100 mM NaCl, 1 mM EGTA, 300 mM Sucrose, 3 mM MgCl2, 

1mM PMSF, with protease inhibitors) and incubated for 60 min at 37°C with 25 U 

of RNase–free DNase I (Invitrogen, AM2222). To stop DNA digestion, ammonium 

sulphate was added in the CSK buffer to a final concentration of 250 mM. After 5 

min incubation on ice, the sample was pelleted at 900g for 3 min at 4°C; the 

supernatant, containing digested chromatin fragments, was labelled as S2 

fraction. Afterwards, the pellet was washed with 200 μL of CSK buffer and 

pelleted at 3000g for 3 min at 4°C, then resuspended in 100 μL of CSK-NaCl 
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buffer (CSK buffer with NaCl final concentration increased to 2 M) and incubated 

10 min on a wheel at 4°C. At the end of the incubation, the sample was 

centrifuged at 2300g for 3 min at 4°C and the supernatant was labelled as S3 

fraction. Finally, after two washes in 200 μL of CSK-NaCl buffer followed by 

centrifugation at 3000g for 3 min at 4°C, the pellet was solubilized in 100 μL of 8 

M urea; the final suspension was labelled as S4 fraction. 

For 50k and 10k 4f-SAMMY-seq, 50,000 and 10,000 fibroblasts were used, 

respectively. They were processed following the 4f-SAMMY-seq protocol 

described above but using 2U of RNase–free DNase I (Invitrogen, AM2222). 

For 10kh-SAMMY-seq, 10,000 fibroblasts were processed following the 4f-

SAMMY-seq protocol described above but halving the volumes in each step and 

using 12.5U of RNase–free DNase I (Invitrogen, AM2222); in this way we 

achieved a 150-fold increase in the ratio of enzyme units per starting number of 

cells, while maintaining the DNase concentration unaltered. 

 

DNA sonication and sequencing 
Fractions S2, S3 and S4 were diluted in TE (10 mM TrisHCl pH 7.5, 1mM EDTA 

pH 8.0) to a final volume of 200 µl and then incubated 90 min at 37°C with 6 μL 

of RNase cocktail (Ambion, AM2286), followed by 150 minutes at 55°C with 

Proteinase K (Invitrogen, AM2548) to a final concentration of 0.2 µg/µL. Next, 

DNA was isolated through phenol:chloroform:isoamyl alcohol (Sigma, 77617) 

extraction, precipitated in 70% ethanol, 0.3M sodium acetate and 20µg glycogen 

overnight at -20°C or 1 hour in dry ice and resuspended in nuclease-free water. 

S2 from 4f-SAMMY-seq was additionally purified using PCR DNA Purification Kit 

(Qiagen, 28106) and DNA fragments in this fraction were separated using 

AMPure XP paramagnetic beads (Beckman Coulter, A63880) to obtain S2S (< 

300 bp) and S2L (> 300 bp) fractions. Beads were added to the S2 fraction in a 

0.95x (v/v) ratio to bind fragments larger than 300bp. Magnetic separation of 

beads from supernatant allowed the physical separation of larger fragments (on 

the beads) from shorter ones (in the supernatant). Larger fragments bound on 

beads were then washed in 85% ethanol, resuspended in water and magnetically 
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separated from the beads (S2L fraction). Shorter fragments in the supernatant of 

the first step were bound to beads by adding a further 0.85x (v/v) beads ratio to 

the suspension; after washing in 85% ethanol and resuspension in water, they 

were also detached from beads (S2S fraction). Separation of S2S and S2L from 

S2 fraction of 10kh-SAMMY-seq S2 was also tested (C004_r1); since the 

enrichment profile of S2S and S2L was identical, this passage was later avoided 

(C002_r1, C004_r2). After DNA isolation, S2 (from 10kh-SAMMY-seq), S2L (from 

4f-SAMMY-seq), S3 and S4 (from both 10kh- and 4f-SAMMY-seq) fractions were 

transferred to screw cap microTUBEs (Covaris, 004078) and sonicated in a 

Covaris M220 focused-ultrasonicator to obtain a smear of DNA fragments 

peaking at 200 bp (settings: water bath 20°C, peak power 30.0, duty factor 20.0, 

cycles/burst 50; duration: 125 sec for S2 and S2L, 175 sec for S3 and S4). DNA 

in the fractions was then quantified using Qubit dsDNA HS Assay Kit (Invitrogen, 

Q32854) and a Qubit 4.0 fluorometer; quality control was performed by run on an 

Agilent 2100 Bioanalyzer System using the High Sensitivity DNA Kit (Agilent, 

5067-4626). Libraries were then created from each fraction using the NEBNext 

Ultra II DNA Library Prep Kit for Illumina (NEB, E7645L) and the Unique Dual 

Index NEBNext Multiplex Oligos for Illumina (NEB, E6440S); final qualitative and 

quantitative controls were performed through an Agilent 2100 Bioanalyzer 

System and a Qubit 4.0 fluorometer. Libraries with distinct adapter indexes were 

multiplexed and, after cluster generation on FlowCell, sequenced for 50 bases in 

paired-end mode on an Illumina NovaSeq 6000 instrument at the IEO Genomic 

Unit in Milan or for 100 bases in single-end mode on an Illumina NextSeq 2000 

instrument at Ospedale Policlinico in Milan. A sequencing depth of at least 24.9 

million raw sequencing reads was obtained for each sample. 

 

Protein analysis 
Chromatin fractions were quantified using Qubit Protein Assay Kit (Invitrogen, 

Q33212) and a Qubit 4.0 fluorometer. Equal protein amounts from each fraction 

were run on 4-12% bis-tris plus acrylamide gels (Invitrogen, NW04122) and then 

immunoblotted. Anti-tubulin alpha (Sigma T5168, mouse 1:2000), anti-H3 
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(Abcam ab1791, rabbit 1:4000 or Invitrogen #MA3-049, mouse 1:1000), anti-

Lamin A/C (Santa Cruz sc-6215, goat 1:1000) and anti-Lamin B (Santa Cruz sc-

6216, goat 1:2000) were diluted in 5% (w/v) milk in PBST (0.1% Tween in PBS) 

and used as primary antibodies. Secondary HRP-conjugated anti-mouse (Sigma, 

A9044), anti-rabbit (Sigma, A9169) and anti-goat (Sigma, A5420) antibodies 

were then revealed through SuperSignal West Dura chemiluminescence kit 

(Thermo Scientific, 34076) and signals acquired in an iBright FL1500 Imaging 

System. 

 

Public datasets 

We used publicly available ChIP-seq, SAMMY-seq 3f and RNA-seq datasets 

from our previously published article on SAMMY-seq (GEO dataset GSE118633). 

We collected publicly available ChIP-seq and DNase-seq datasets from the 

following sources: Lamin A/C ChIP-seq from (17) (SRA datasets IDs 

SRR605493, SRR605494, SRR605495 and SRR605496), Lamin B1 ChIP-seq 

from (20), DNAse-seq from ENCODE dermal fibroblasts (ENCODE data file 

https://www.encodeproject.org/files/ENCFF261OJD/), H3K27ac, H3K36me3, 

H3K4me1, H3K4me3, H3K27me3 and H3K9me3 from Roadmap Epigenomics 

(foreskin fibroblast samples: E055 and E056 samples)(21). We also downloaded 

the chromatin states defined by Roadmap Epigenomics using the chromHMM 15 

states model for the same samples, as well as the RNA-seq based gene 

expression profiles (RPKM). We downloaded the publicly available Hi-C dataset 

(dilution protocol, HFF-hTERT, HindlII) from the 4DN portal (22)(sample ID 

4DNFIMDOXUT8: raw multiple-resolution contact matrix). 

 

High-throughput sequencing reads alignment and filtering 
High-throughput sequencing reads were trimmed using Trimmomatic (v0.39) (23) 

using the following parameters for SAMMY-seq and ChIP-seq: 2 for 

seed_mismatch, 30 for palindrome_threshold, 10 for simple_threshold, 3 for 

leading, 3 for trailing and 4:15 for sliding window. The sequence minimum length 

threshold of 35 was applied to all datasets. We used the Trimmomatic “TruSeq3-
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SE.fa” (for single-end) and “TruSeq3-PE-2.fa” (for paired-end) as clip files. After 

trimming, reads were aligned using BWA (v0.7.17-r1188) (24) setting –k 

parameter as 2 and using as reference genome the UCSC hg38 genome (only 

canonical chromosomes were used) and the output saved in BAM file format. We 

uniformly used and aligned only a single read per DNA fragment for both single-

end and paired-end sequencing samples. The PCR duplicates were marked with 

Picard (v2.22; https://github.com/broadinstitute/picard) MarkDuplicates option, 

then filtered using Samtools (v1.9) (25). In addition, we filtered all the reads with 

mapping quality lower than 1. Each sequencing lane was analysed separately 

and then merged at the end of the process. For C002-rep1 and C004-rep2 two 

sequencing runs from the same library were produced and merged after 

alignment and filtering. 

The coverage estimation (as reported in Supplementary Figure 1e) has been 

performed using the Samtools (v1.16.1) “coverage” command. 

 

High-throughput sequencing reads analyses 
To compute reads distribution profile (genomic tracks), we used Deeptools 

(v3.4.3) (26) bamCoverage function. For these analyses the genome was binned 

at 50bp, the reads extended up to 250 bp and RPKM normalization method was 

used. We considered a genome size of 2701495761 bp (value suggested in the 

Deeptools manual 

https://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.

html) and we excluded regions known to be problematic in terms of sequencing 

reads coverage using the blacklist from the ENCODE portal 

(https://www.encodeproject.org/files/ENCFF356LFX/). 

To compute the genomic tracks for ChIP-seq IP over INPUT enrichment profiles 

(log2 normalized ratio) or for relative comparisons (relative enrichment, i.e. log2 

normalized ratio) between SAMMY-seq fractions, we used the SPP R package 

(v1.16.0) (27) and R statistical environment (v3.5.2). The reads were imported 

from the BAM files using the “read.bam.tags” function, then filtered using 

“remove.local.tag.anomalies” and finally the comparisons were performed using 
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the function “get.smoothed.enrichment.mle” setting “tag.shift = 0” and 

“background.density.scaling = TRUE”. The resulting enrichment signal 

corresponds to a log2 normalized ratio between the pair of sequencing samples. 

To compute correlations between genomic tracks, we used R (v3.5.2) base 

function "cor" with “method = Spearman”. The genomic tracks were imported in 

R using the rtracklayer (v1.42.2) (28) library. Then the files were binned at 50kb 

using the function “tileGenome” and the correlation was computed per 

chromosome. The correlation values obtained for each chromosome were then 

summarized in one value describing the genome-wide sample correlations 

through a weighted mean, where the weight of each chromosome corresponds 

to its length. 

To compute the average profile over a set of genomic regions of interest (i.e. the 

meta-profile analyses), we used DeepTools (v3.4.3) “computeMatrix” command, 

using as regions of interest the protein coding genes annotated by the Ensembl 

database (genome version GRCh38.p13) that are not overlapping to each other 

considering an extended window of 5 Kb (+/-2.5Kb around the gene) and that fall 

in a length range between 2Kb and 20Kb. The binning value was set to 10bp, the 

body region was rescaled to 3,000bp and the flanking regions included up to 2Kb 

(see Supplementary Figure 2b). In addition, the “skipZeros” option was added to 

remove regions with no coverage. The genes were separated by quartile of 

expression after separating the genes with 0 TPM. The meta-profile plots were 

then drawn using the “plotProfile” tool of DeepTools using as input the previously 

created matrix. These same filters and gene grouping criteria were applied to 

RPKM values of Roadmap Epigenomics expression profiles (for Figure 3a). 

The chromatin marks enrichment matrix associated with Roadmap Epigenomics 

chromHMM chromatin states (Supplementary Figure 4a) was computed as the 

average ChIP-seq IP over INPUT enrichment (computed with SPP package as 

described above) for each chromatin mark and state. Given the different range of 

values, the colour gradient in the heatmap has been rescaled, for each chromatin 

mark, to the maximum enrichment for that mark. For SAMMY-seq fractions, the 
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average enrichment is computed from RPKM and rescaled as a z-score to allow 

comparison of different SAMMY fractions with distinct enrichment ranges. 

 

Genomic tracks visualization 
The visualization of genomic tracks was performed with Gviz R library (v1.26.5) 

(29). The track profile was calculated using the function “DataTrack” (the input 

file was imported using the function “import” of the rtracklayer library) and plot 

using the function “plotTracks” setting the value “window = 1000”. Line plots were 

drawn setting the parameter type as ‘a’ and overlayed using the function 

“OverlayTrack”; instead, mountain plots were obtained setting the parameter type 

as "polygon". Extra elements of these plots, such as chromosome ideogram (on 

top) and genome axis, were plotted respectively using the functions 

“IdeogramTrack” and “GenomeAxisTrack”. The analysis was performed 

identically for all the datasets except for the H3K27ac tracks, where the “window” 

parameter was set to 10,000 to improve the signal visualization, and for Figure 

4c-d, where the “window” was set to 200. 

 

Chromatin compartments analysis 

We used the Hi-C and SAMMY-seq pairwise correlation matrices of normalized 

contacts and enrichment signals, respectively, binned at 250 kb (Figure 2a). Bins 

with null contacts or signals were removed from both matrices. 

Namely, for the Hi-C protocol, we first: i) balanced the raw contact matrix (cooler 

balance --cis-only, version 0.8.3), ii) loaded the balanced chromosome-wise 

contact matrix (cooler dump, version 0.8.3), and iii) normalized it by dividing each 

observed pairwise contact by the mean of the contacts at the same distance (i.e., 

the expected); secondly, we computed the correlation between all pairs of bins. 

This step required the calculation of nxn correlations of n-dimensional vectors of 

normalized contacts, where n is the number of bins. For the SAMMY-seq 

protocols, we loaded the bin enrichment tracks (RPKM) of each fraction and 

computed the correlation between pairs of bins. Here, the correlation was 

computed between m-dimensional vectors of enrichment signals, where m was 
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the number of fractions in the specific protocol (i.e., m=3 for the 3f and 10k 

protocols, m=4 for the 4f protocol). 

For each input correlation matrix, the first eigenvector was obtained through 

principal component analysis decomposition in R statistical environment 

(prcomp, stats package, center=FALSE and scale=TRUE, rotation component of 

the returned object). The sign of the first eigenvector was defined using gene 

density: the group of bins with the highest gene density was marked as "A" 

compartment (positive sign), and the group with the lowest gene density was 

marked as "B" (negative sign). Chromosome eigenvector values were divided by 

the absolute maximum value for visualisation purposes. All the analyses were 

made using R (version 3.6.0). 

 

Sub-compartments 

We partially reimplemented CALDER algorithm (version 1.0, 2020-09-01) to 

accommodate the unusual format of SAMMY-seq data, maintaining the primary 

set of core functions (remove_blank_cols, fast_cor, 

generate_compartments_bed, HighResolution2Low_k_rectangle, get_PCs, 

bisecting_kmeans, project_to_major_axis, get_best_reorder, get_cluser_levels), 

their default parameters and the steps intended in the original paper (8). 

As inputs, we used the balanced chromosome-wise contact matrix (cooler dump, 

version 0.8.3) and the pairwise distance matrix binned at 50 kb for Hi-C and 

SAMMY-seq protocols, respectively (Figure 5a). In particular, the pairwise 

distance matrix was computed using for each pair of bins the Euclidean distance 

(dist, stats package, method="euclidean") of the m-dimension vectors, where m 

was the number of fractions in the specific protocol (i.e., 4 for the 4f protocol). 

Bins with null contacts or signals were removed from both matrices. 

Briefly, for each input matrix, the algorithm: computed the pairwise correlation 

matrix and identified the sub-domain boundaries; computed the binary trend 

matrix and its decomposition using ten principal components; iteratively clustered 

the domains to obtain their hierarchy; sorted the domains hierarchy based on the 

projection of the first two components; divided them into eight groups (form the 
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most closed, i.e., B.2.2 to the most opened, i.e., A.1.1). For more details on the 

original CALDER procedure and the interpretation of sub-compartments please 

see (8). 
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2.4 RESULTS 
Mapping open chromatin regions by solubility with high resolution. 

We previously proposed the SAMMY-seq method based on the sequential 

biochemical purification and sequencing of three distinct chromatin fractions, 

hereafter called "3f" SAMMY-seq (16). These fractions were respectively isolated 

after partial digestion with an endonuclease (DNase, fraction S2), extraction with 

high salt concentration to dissolve ionic bonds (fraction S3), and treatment with 

urea buffer to dissolve the remaining protein and membrane pellet (fraction S4) 

(Figure 1a and Supplementary Figure 1a).  

 
Figure 1 - 4f-SAMMY-seq maps both euchromatin and heterochromatin with high 
resolution. a) Schematic illustration of the SAMMY-seq protocol variants and output analysis 
results. From left to right, high (euchromatin) and low solubility (heterochromatin) domains 
correspond to genomic portions with preferential segregation in different subnuclear regions. In 
both "3f" and "4f" SAMMY-seq protocols, a sequential extraction of chromatin fractions (numbered 
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from S1 to S4) results in a separation of euchromatic and heterochromatic regions that are then 
mapped to their genomic coordinates by high-throughput sequencing (applied to fractions from 
S2 through S4). The novel 4f-SAMMY-seq has DNase I (DNI) replacing Turbo DNase (TDN) as 

endonuclease and the S2 fraction is size separated. Specific data analysis procedures allow 
reconstructing chromatin domains compartmentalization in the 3D nuclear space. b) 
Representative genomic region (chr13:30,000,000-100,000,000) showing genomic tracks for 
chromatin marks in human foreskin fibroblasts (E055 Roadmap Epigenomics). From top to 
bottom: open chromatin marks ChIP-seq enrichment profiles for H3K36me3, H3K4me1, 
H3K4me3, H3K27ac; reads distribution profiles for individual fractions of a representative 
replicate of 4f-SAMMY-seq (C004_r2) and 3f-SAMMY-seq (C004_r1); closed chromatin marks 
ChIP-seq enrichment profiles for H3K27me3, H3K9me3, Lamin A/C, Lamin B1. The shaded areas 
mark two examples of regions showing enrichment for closed (blue) or open (red) chromatin 
marks. 

The latest fractions of 3f-SAMMY-seq (S3 and S4) are enriched for the 

compacted and less soluble heterochromatin domains (Figure 1b, 

Supplementary Figure 1a and 2a). To improve the resolution in characterizing the 

accessible euchromatin, usually found at actively transcribed genes and 

regulatory elements, we modulated the DNase digestion leading to S2 fraction 

isolation (Figure 1a and Supplementary Figure 1b, see Methods for details). 

Moreover, we introduced a size selection step on the DNA isolated from the S2 

fraction, to further separate more digested small-size DNA fragments (S2-Short, 

S2S, <300bp) from less digested large-size DNA fragments (S2-Long, S2L) 

(Figure 1a and Supplementary Figure 1c). The resulting four chromatin fractions 

were sequenced, thus we named this the "4f" SAMMY-seq protocol. We applied 

4f-SAMMY-seq on human primary fibroblasts and compared the results to 3f-

SAMMY-seq data on the same cells. We confirm good and comparable quality 

controls on the proteins associated with each fraction (Supplementary Figure 1a) 

as well as on the sequencing reads, achieving good coverage and reproducibility 

even with moderate sequencing depth (minimum of 25 million reads per fraction) 

(Supplementary Figure 1d-f).  
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Supplementary Figure 1 - Quality controls on SAMMY-seq experimental procedure. a) 
Representative western blots of chromatin fractions obtained with "3f" and "4f" SAMMY-seq 
protocols. In both cases we find soluble tubulin in S1 fraction, histone H3 in S3 fraction and lamins 

in S4 fraction. b) Relative abundance (y-axis) of DNA extracted from S2, S3 and S4 fractions, 
computed as ratio over their sum, in "3f" and "4f" SAMMY-seq protocols (dark and light grey, 
respectively). In the boxplots, the horizontal lines mark the median, the boxes mark the 
interquartile range (IQR) and whiskers extend up to 1.5 times the IQR. Relative abundance of 
DNA was evaluated over 3 independent biological replicates for each protocol. c) Bioanalyzer 
electropherograms of S2S and S2L DNA fragments showing their different size distributions. d) 
Stacked barplots for the number of sequencing reads obtained for each sample and chromatin 
fraction, divided in trimmed, not aligned, duplicates, filtered (discarded) and used reads (retained 
for downstream analyses). See also the associated Supplementary Table 1. e) Boxplots 
summarizing coverage across chromosomes for each sample and fraction. The percentage of 
each chromosome covered by at least one read is reported on the y-axis. In the boxplots, the 
horizontal lines mark the median, the boxes mark the interquartile range (IQR) and whiskers 
extend up to 1.5 times the IQR.  f) Scatter plots of reads distribution profiles (RPKM normalized 
coverage over 50kb bins) for individual fractions of 4f-SAMMY-seq replicates. Fractions labels 
indicated on individual rows (labels on the left) and the replicates compared in each plot are 
indicated on bottom and right-side axes.  

The S2S and S2L fractions are able to precisely recapitulate the location of 

histone marks associated with active chromatin (H3K36me3, H3K4me1, 

H3K4me3 and H3K27ac) (Figure 1b, and Supplementary Figure 2a). In particular, 

the most accessible S2S fraction achieves a spatial resolution comparable to 

DNase-seq (30) in mapping the accessibility profiles around the transcription start 

site (TSS) of annotated genes, also in their correlation with expression level, thus 

overcoming 3f-SAMMY-seq limitations to this concern (Supplementary Figure 

2b). 



 59 

 
Supplementary Figure 2 - 4f-SAMMY-seq and 10kh-SAMMY-seq recapitulate open and 
closed chromatin domains. a) Genome-wide Spearman correlation between reads distribution 
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profiles for individual selected SAMMY-seq chromatin fractions and ChIP-seq enrichment profiles 
for histone marks and lamin proteins (x-axis labels) from human foreskin fibroblasts (E055 
Roadmap Epigenomics). The "3f", "4f" or low input 4f-10k, 4f-50k and "10kh" labels on the left 

side indicate protocol versions for 3f-SAMMY-seq (3f), 4f-SAMMY-seq (4f), 4f-SAMMY-seq 
starting from 10,000 or 50,000 cells (10k and 50k, respectively), 10kh-SAMMY-seq (10kh). The 
labels for individual chromatin fractions (S2S, S2L, S3 and S4) are reported on the right. A row 
for each replicate is shown and correlation values are reported as numbers and as colour 
gradient. b) Gene centred meta-profiles for reads distribution profiles of a reference DNase-seq 
sample (dermal fibroblasts from ENCODE) 4f-SAMMY-seq S2S fraction (three replicates) and 3f-
SAMMY-seq S2 fraction (three replicates). Genes are divided by quartiles of expression level 
(TPM) and a meta-profile is drawn for each quartile, as well as for genes with zero TPM (no 
reads), as measured by RNA-seq from (16). On the x-axis, the coordinates for the relative 
genomic position around the rescaled gene body are reported. 

Overall, these data support our hypothesis that the combination of controlled 

digestion with fragments size separation allows a more precise characterization 

of open chromatin regions. 

Active and inactive chromatin mapping on a small number of cells. 
The relative sequencing reads enrichment in closed (S3) vs open (S2S) 

chromatin fractions in 4f-SAMMY-seq allows identifying constitutive lamina 

associated heterochromatin with comparable or better results with respect to 3f-

SAMMY-seq (Supplementary Figure 3a,b). We noted that this result is driven by 

S2S reads depletion over heterochromatin regions, as S3 and S4 fractions from 

4f-SAMMY-seq are not clearly enriched in closed chromatin, as they were instead 

in 3f-SAMMY-seq (Figure 1b). The lack of heterochromatin enrichment in 

insoluble S3 and S4 fractions of 4f-SAMMY-seq may be expected given the 

lighter endonuclease digestion, possibly leaving a mixture of open and closed 

chromatin in the latest fractions (Supplementary Figure 1b). To confirm this 

hypothesis, we performed the "4f" chromatin fractionation starting from 10,000 

cells and scaling up the ratio of enzyme units per starting number of cells (see 

Methods section for "10kh" SAMMY-seq experiment). In this condition, we 

confirm that the S3 fraction is clearly enriched in heterochromatic regions 

(Supplementary Figures 1d-e, 2a and 3c). Of note, in the 10kh-SAMMY-seq 
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protocol the S4 is not as informative, possibly due to the limited amount of DNA 

left in the last fraction when starting from 10,000 cells (Supplementary Figure 2a). 

 
Supplementary Figure 3 - Relative comparison of chromatin fractions recapitulate 
heterochromatin regions. a) Representative genomic region of (chr6:62,000,000-130,000,000) 
showing genomic tracks for chromatin marks in human foreskin fibroblasts (E055 Roadmap 
Epigenomics). From top to bottom: open chromatin marks ChIP-seq enrichment profiles for 
H3K36me3, H3K4me1, H3K4me3, H3K27ac; relative enrichment of closed (S3 or S4) over 
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accessible (S2 or S2S)(see color legend) chromatin fractions from "3f" and "4f" SAMMY-seq 
(labels on the left) protocol variants in all replicates; closed chromatin marks ChIP-seq enrichment 
profiles for H3K27me3, H3K9me3, Lamin A/C, Lamin B1. b) Genome-wide Spearman correlation 

between relative enrichment profiles of closed (S3 or S4) over accessible (S2 or S2S) (as 
indicated in the labels on the right) chromatin fractions from "3f" and "4f" SAMMY-seq protocol 
variants (labels on the left) for individual replicates. c) Representative genomic region of 
(chr4:80,000,000-140,000,000) showing genomic tracks for chromatin marks in human foreskin 
fibroblasts (E055 Roadmap Epigenomics). From top to bottom: open chromatin marks ChIP-seq 
enrichment profiles for H3K36me3, H3K4me1, H3K4me3, H3K27ac; reads distribution profiles for 
individual fractions of a representative replicate of 4f-SAMMY-seq on 3M (C004_r2) and 10k cells 
(C001_r1), as well as 10kh-SAMMY-seq (C002_r1); closed chromatin marks ChIP-seq 
enrichment profiles for H3K27me3, H3K9me3, Lamin A/C, Lamin B1. The shaded areas mark two 
examples of regions showing enrichment for closed (blue) or open (red) chromatin marks, with 
corresponding enrichment patterns visible in ChIP-seq as well as in SAMMY-seq fractions. 

We then tested the possibility of performing 4f-SAMMY-seq starting from as little 

as 10,000 or 50,000 cells and scaling down the DNAse enzyme units as well (see 

Methods section for 4f-SAMMY-seq 10k and 50k experiments, respectively). In 

these conditions, we recapitulate the results obtained with 3 million cells (4f-

SAMMY-seq experiments) (Supplementary Figures 1d-e, 2a and 3c). 

These results confirm, the applicability of 4f-SAMMY-seq on as little as 10,000 

cells, and the possibility of modulating the enrichment for heterochromatin in the 

less soluble fractions by tuning the endonuclease partial digestion step. 

 

SAMMY-seq based chromatin compartments consistently recapitulate 
chromatin states properties. 

SAMMY-seq protocols provide a comprehensive panel of chromatin fractions 

covering a broad spectrum of biochemical properties. Chromatin compartments 

are commonly identified based on the long-range similarity of contact profiles 

measured by Hi-C for each pair of genomic loci. We hypothesized that chromatin 

domains spatially located in the same 3D nuclear neighbourhood are exposed to 

the same biochemical milieu, thus sharing similar solubility. We compared each 

pair of genomic regions by computing their "biochemical similarity" as the 

correlation in the sequencing reads coverage across SAMMY-seq fractions (see 
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Methods) (Figure 2a). The resulting 2D matrix is similar to the pairwise correlation 

matrix of normalized Hi-C data on human fibroblasts (22) (Figure 2b). The 

matrices eigenvector decomposition confirms that the linear segmentation in "A" 

and "B" compartments is mostly concordant between Hi-C and SAMMY-seq 

protocols, with median Jaccard Index across replicates equal to 0.73, 0.62 and 

0.78 for 3f, 10kh and 4f-SAMMY-seq (3M), respectively (Figure 2c). 4f-SAMMY-

seq shows the highest concordance with Hi-C, in addition to the highest 

reproducibility of compartment calls across replicas, also when starting from as 

little as 50k or 10k cells, with median Jaccard Index across replicates equal to 

0.76 and 0.75, respectively (Figure 2c, d). 
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Figure 2 - 4f-SAMMY-seq detects chromatin domains segregation in compartments. a) 
Schematic illustration of the data analysis workflow to reconstruct chromatin compartments from 
SAMMY-seq data. For the "A" and "B" compartments identification, starting from reads distribution 
profiles for individual chromatin fractions, the Pearson correlation is computed between the 
vectors of reads coverage across fractions for each pair of genomic bins. The pairwise correlation 
matrix is computed for each chromosome separately. After performing a principal component 
analysis (PCA), the first component (corresponding to the first eigenvector of the matrix) is used 
to discriminate active "A" compartment (positive values) and inactive "B" compartment (negative 
values)(see also Methods). b) Pairwise correlation matrices of read distribution profiles for 
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individual 4f-SAMMY-seq (C002_r1) fractions (left) or distance normalized observed over 
expected Hi-C contact profiles (right) on a representative genomic region (chr18:21,250,000-
80,250,000), computed at 250Kb genomic bins resolution. On the side of each matrix the 

respective first eigenvector is reported and coloured to mark the position of active ("A" 
compartment with positive eigenvalues) and inactive regions ("B" compartment with negative 
eigenvalues). Concordant domain classification in Hi-C and 4f-SAMMY-seq are marked in orange 
("A-A") for active regions and green ("B-B") for inactive regions. In the 4f-SAMMY-seq eigenvector 
only, we marked differently the regions with a compartment classification discordant with Hi-C: a 
lighter green is used for regions classified as B in Hi-C and A in 4f-SAMMY-seq ("B->A" label), a 
lighter orange is used for the opposite case ("A->B" label). c) Genome-wide pairwise Pearson 
correlation of chromatin compartments eigenvectors (250kb size bins) defined by reference Hi-C 
and SAMMY-seq protocol variants "3f", "10kh" and "4f" starting from 3 million (3M), 50,000 (50K) 
or 10,000 (10K) cells with individual replicates reported. On the right side, for each sample, the 
stacked barplot shows the relative distribution (percentage) of genomic bins associated with 
concordant ("A-A" or "B-B") and discordant ("A->B" or "B->A") compartment classification with 
respect to Hi-C compartment calls. The chromatin compartment classification is reported using 
the same colouring and naming convention adopted in Figure 2b. d) Chromatin compartments 
eigenvectors for a representative genomic region (chr2:130,000,000-240,000,000). The samples 
order is the same as in panel b. The eigenvectors are coloured according to the same convention 
adopted in Figure 2b. 

We then analysed in details the differences between 4fSAMMY-based and HiC-

based compartmentalization. The genomic windows with a discordant 

compartment assignment were labelled as "A->B" if they are called as active by 

Hi-C and inactive by SAMMY-seq, or vice versa for those labelled "B->A" (Figure 

2b-d). We examined in details the transcriptional activity in the Hi-C vs SAMMY-

seq-based compartment definitions. We found that there is an evident and 

statistically significant pattern with SAMMY-seq correctly assigning transcribed 

genes to the "A" compartment (Figure 3a). In particular, we note that only 

SAMMY-seq consistently assigns to the "A" compartment more than 90% of the 

genes in both the "high" and "very high" expression groups. 

We further dissected these discordant genomic regions in 4f-SAMMY-seq to 

verify if they are associated with chromatin states (Figure 3b) with specific 

epigenetic signatures (Supplementary Figure 4a). We used as reference two 

alternative datasets from Roadmap Epigenomics (21) and confirmed our 
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observations also on 50k and 10k-SAMMY-seq samples (Figure 3, 

Supplementary Figure 5 and 6) (see Methods). 

 
Figure 3 - 4f-SAMMY-seq based compartments provide a detailed characterization of 
chromatin transcription and epigenetic status. a) Compartments classification comparison 
with gene expression status. Genes are divided by quartiles of expression level (RPKM values 
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from Roadmap Epigenomic E055 sample) and labelled as "Low", "Moderate", "High" and "Very 
high" according to their expression level (violin and box plot on the left). Genes with zero RPKM 
(no reads as measured by RNA-seq) are assigned to the "Not expressed" group. The stacked 

barplot shows for each 4f-SAMMY-seq replicate the relative distribution of genes across 
concordant and discordant compartments classifications with respect to Hi-C compartments 
(50kb size bins - genes assigned to bins based on the TSS position). The chromatin compartment 
classification is reported using the same colouring and naming convention adopted in Figure 2b. 
In the dot and whiskers plot on right side we show the percentage of genes mapped in A 
compartment by Hi-C (red dot) and by each 4f-SAMMY-seq replicates (whiskers for maximum 
and minimum range, dot for the median replicate). The significance of differences was tested with 
a one-sided t-test corrected by FWER with Bonferroni procedure (corrected p-values are reported 
for each group on the right-hand side) b) Classification of "A" and "B" compartments (from Hi-C 
and 4f-SAMMY-seq) and chromatin states in human foreskin fibroblasts (E055 Roadmap 
Epigenomics) for a representative region (chr2:1-90,000,000). The eigenvector tracks (green and 
orange tracks) show compartments computed from Hi-C data (top row) and individual 4f-SAMMY-
seq replicates (bottom three rows) coloured according to the same convention adopted in Figure 
2 for concordant ("A-A" or "B-B") and discordant ("A->B" or "B->A") compartments classification 
(250kb size bins). The stacked barplot in the middle row summarizes the chromatin states 
associated with each genomic bin: 15 chromatin states model (see colour legends for states 
labels and Supplementary Figure 4a for associated chromatin marks signatures). c) Relative 
occupancy of 4f-SAMMY-seq vs Hi-C based compartments for each chromatin state, computed 
as the difference in "A" compartment percentage. For each chromatin state (the same as for panel 
a), positive values (green gradient) indicate a higher percentage of "A" compartment in 4f-
SAMMY-seq-based classification, whereas negative values (red gradient) indicate a higher 
percentage of "A" compartment based on Hi-C classification (i.e. higher "B" percentage based on 
4f-SAMMY-seq). The size of each dot is proportional to the absolute value in the percentage 
difference. Chromatin states are ordered from left (positive values) to right (negative values) 

based on the average percentage difference between 4f-SAMMY-seq replicates (average 
between the three replicates) and Hi-C. 

The most prominent difference with Hi-C is on multiple chromatin states 

associated with Polycomb regulation, including monovalent repressive Polycomb 

(ReprPC, ReprPCWk) and bivalent chromatin states (BivFlnk, TssBiv, EnhBiv) 

(Figure 3b-c, Supplementary Figures 4b, 5a-b and 6a). It must be noted that, in 

line with previous literature, Hi-C generally classifies Polycomb-regulated 

domains as belonging to the "A" compartment (5). However, in our analyses, Hi-

C classifies a few of these Polycomb-regulated regions in the inactive "B" 
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compartment, whereas 4f-SAMMY-seq is more consistently classifying all of 

these Polycomb domains in the "A" compartment (Figure 4a, Supplementary 

Figures 5c and 6b). We also verified that the percentage of Polycomb-related 

chromatin states per genomic bin is more clearly correlated to the eigenvectors 

of 4f-SAMMY-seq compartments rather than to the eigenvector derived from Hi-

C, with Hi-C scatter plot also showing a more dispersed distribution (Figure 4b 

and Supplementary Figure 5d). As an example of Polycomb-regulated chromatin, 

we show the homeobox (HOX) gene clusters.  

 
Figure 4 - 4f-SAMMY-seq based compartments consistently classify Polycomb regulated 

domains. a) Violin and box plots showing for the reference Hi-C dataset and individual 4f-
SAMMY-seq replicates (labels on the upper margin) the distribution of Polycomb-regulated 
chromatin states across genomic bins of the entire genome grouped by compartments 
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classification ("A-A", "B-B", "A->B" or "B->A" defined as in Figure 2b). The upper violin and box 
plot report bivalent Polycomb states (TssBiv, EnhBiv or BivFln) the bottom ones monovalent 
repressive Polycomb chromatin states (ReprPC or ReprPCWk). The number of genomic bins in 

each group is indicated at the bottom in parentheses (x-axis). In the overlaying boxplots, the 
horizontal line marks the median, the box margins mark the interquartile range (IQR), and 
whiskers extend up to 1.5 times the IQR. Specific data points associated with HOX gene clusters 
are marked to show their positioning across groups and their associated high relative occupancy 
in Polycomb repressive and bivalent states. b) Scatter plots showing the relationship between the 
rank of the first eigenvector values used to define compartments (ranks on the x-axis) and the 
relative occupancy by chromatin states (percentage of each bin) in squared root (sqrt) scale (y-
axis). Each data point shows a 250kb genomic bin from the representative chromosome 2. Black 
dashed vertical lines mark the transition point between negative and positive values of the first 
eigenvector (from "B" to "A" compartment). Coloured solid lines highlight the overall trend (lowess 
regression), for the reference Hi-C dataset (violet line) and for each 4f-SAMMY-seq replicate 
(blue, light blue and green; labels on upper margins). Dashed salmon circles and vertical lines 
highlight the HOXD gene cluster bin. Upper plots show the chromatin states occupancy for 
bivalent Polycomb states (TssBiv, EnhBiv or BivFlnk) and bottom plots monovalent repressive 
Polycomb states (ReprPC or ReprPCWk), from E055 Roadmap Epigenomics sample. c) 
Genomic regions of the HOXA, HOXB and HOXC gene clusters showing, from top to bottom: the 
chromatin compartments classification based on 4f-SAMMY-seq (three rows for the replicates 
C002_r1, C004_r1 and C004_r2, respectively); the chromatin compartments classification based 
on Hi-C; ChIP-seq enrichment profiles for H3K27me3 and H3K4me3; location and orientation of 
a subset of annotated genes (yellow arrows). The chromatin compartments are coloured using 
the same convention adopted in Figure 2b. d) Genomic region of the HOXD gene cluster showing, 
from top to bottom: the chromatin compartments classification based on 4f-SAMMY-seq (three 
rows for the replicates C002_r1, C004_r1 and C004_r2, respectively) and based on Hi-C; ChIP-
seq enrichment profiles for H3K27me3 and H3K4me3; location and orientation of a subset of 

annotated genes (yellow arrows). The chromatin compartments are coloured using the same 
convention as in Figure 2b. e) Violin and box plots showing for the reference Hi-C dataset and for 
individual 4f-SAMMY-seq replicates (labels on the upper margin) the distribution of the Quiescent 
(Quies) chromatin states across genomic bins of the entire genome grouped by compartment 
classification ("A-A", "B-B", "A->B" or "B->A" defined as in Figure 2b). The number of genomic 
bins in each group is indicated at the bottom in parentheses (x-axis). In the overlaying boxplots, 
the horizontal lines mark the median, the boxes mark the interquartile range (IQR), and whiskers 
extend up to 1.5 times the IQR. 

These are a set of developmentally regulated highly conserved gene loci 

expected to be all marked by Polycomb-dependent H3K27me3 histone mark in 



 70 

terminally differentiated cells, or paired with H3K4me3 for the bivalent chromatin 

state. In humans, 39 HOX genes are organized in 4 distinct chromosomal 

locations: HOXA, HOXB, HOXC and HOXD gene clusters. While they all show 

the same chromatin marks, we notice that Hi-C classifies most of them in the "A" 

compartment, with the sole exception of the HOXD cluster classified in the "B" 

compartment. Instead, 4f-SAMMY-seq consistently classifies all of them in the 

"A" compartment (Figure 4c,d). 

 
Supplementary Figure 4 - 4f-SAMMY-seq chromatin fractions and chromatin marks 
association to chromatin states. a) Epigenetic marks enrichment signatures associated to 
chromHMM chromatin states (15 states model from E055 Roadmap Epigenomics). Starting from 
the left: the colour code, the name and the description of the 15 chromatin states as defined by 
Roadmap Epigenomics, the heatmaps representing the enrichment over the input for H3K27ac, 
H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me3, lamin A/C and B1, the heatmaps 
representing the enrichment over the mean (z-score) of individual SAMMY-seq fractions for 
protocol versions “4f” (3M, 50K and 10K), “3f” and “10kh” with two representative replicates for 
each of them. The histone marks originally used in the chromHMM definition of states are grouped 

in the "core marks" quadrant in the figure. b) The stacked barplot shows the percentage of regions 
associated with concordant ("A-A" or "B-B") and discordant ("A->B" or "B->A") compartment 
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classification for each chromatin state (labels on the upper margin indicating chromatin states 
and their total size). The chromatin compartments classification is reported using the same 
colouring convention adopted in Figure 2b. The barplot for 4f-SAMMY-seq compartments 

distribution is divided in three parts to report the specific result for the three replicates (C002_r1, 
C004_r1 and C004_r2, respectively). The chromatin states are ordered from left to right based 
on the average difference between Hi-C and SAMMY-seq based compartments, as calculated for 
Figure 3c. 

On the opposite trend, regions with a "Quies" chromatin state, characterized by 

weak enrichment in lamina association (Supplementary Figure 4a), are more 

consistently classified in the "B" compartment based on 4f-SAMMY-seq rather 

than Hi-C (Figure 3c and Figure 4e).  
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Supplementary Figure 5 - 4f-SAMMY-seq based compartments and sub-compartments on 
alternative epigenomic datasets. a) Distribution of "A" and "B" compartments (from Hi-C and 
4f-SAMMY-seq) across multiple chromatin states from an alternative human foreskin fibroblast 

dataset (E056 sample data from the Roadmap Epigenomics project). The stacked barplot shows 
the percentage of regions associated to concordant ("A-A" or "B-B") and discordant ("A->B" or 
"B->A") compartments classification for each chromatin state (labels on the upper margin 
indicating chromatin states and their total size). The chromatin compartments classification is 
reported using the same colouring convention adopted in Figure 2b. The barplot for 4f-SAMMY-
seq compartments distribution is divided in three parts to report the specific result for the three 
replicates (C002_r1, C004_r1 and C004_r2, respectively). b) Relative occupancy of 4f-SAMMY-
seq vs Hi-C based compartments for each chromatin state (E056 Roadmap Epigenomics 
sample), computed as the difference in "A" compartment percentage. For each chromatin state 
(columns, labels and total size for each state in the central row) positive values (green gradient) 
indicate a higher percentage of "A" compartment in 4f-SAMMY-seq based classification, whereas 
negative values (red gradient) indicate a higher percentage of "A" compartment based on Hi-C 
classification (i.e. higher "B" percentage based on 4f-SAMMY-seq). The size of each dot is 
proportional to the absolute value in the percentage difference. Chromatin states are ordered 
from left to right based on the average percentage difference across the three 4f-SAMMY-seq 
replicates (on the three rows). c) Violin and box plots showing for the reference Hi-C dataset and 
for individual 4f-SAMMY-seq replicates (labels on the upper margin) the distribution of Polycomb 
regulated chromatin states across genomic bins of the entire genome grouped by compartments 
classification ("A-A", "B-B", "A->B" or "B->A" defined as above). The upper violin plot is for bivalent 
Polycomb states (TssBiv, EnhBiv or BivFln) the bottom one for monovalent repressive Polycomb 
states (ReprPC or ReprPCWk). The number of genomic bins in each group is indicated at the 
bottom in parentheses (x-axis). In the overlaying boxplots, the horizontal lines mark the median, 
the boxes margins mark the interquartile range (IQR), and whiskers extend up to 1.5 times the 
IQR. Specific data points associated with HOX gene clusters are marked to show their positioning 

across groups and their associated high relative occupancy in Polycomb repressive and bivalent 
states. d) Scatter plots showing the relationship between first eigenvector values used to assign 
compartments (ranks on the x-axis) and the relative occupancy by chromatin states (percentage 
of each bin size) in squared root (sqrt) scale (y-axis). Each data point shows a 250kb genomic 
bin from the representative chromosome 2. Black dashed vertical lines mark the transition point 
between negative and positive eigenvalues (from "B" to "A" compartments). Chromatin states 
occupancy for bivalent Polycomb states (TssBiv, EnhBiv or BivFlnk - in the upper plot) and 
monovalent repressive Polycomb states (ReprPC or ReprPCWk - in the bottom plot) (from E056 
Roadmap Epigenomics sample). A scatter plot with its trend line (lowess smoothing) is reported 
for the reference Hi-C dataset and for each 4f-SAMMY-seq replicate (labels on the upper margin). 
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e) Genome-wide mean signal enrichment (centred and scaled by chromosome) in the eight sub-
compartments classification defined by CALDER, using as input the Hi-C (purple points and lines) 
and 4f-SAMMY-seq data (blue, light blue and green points and lines for three replicates), for 

Roadmap DNAse-seq and ChIP-seq datasets of human foreskin fibroblasts (E056 Roadmap 
Epigenomics). Sub-compartments are sorted from the most closed (left, B.2.2) to the most open 
one (right, A.1.1). 

We also found that 4f-SAMMY-seq reclassifies some regions with a weakly active 

state, such as enhancers (Enh) and weak transcription (TxWk), as "B" 

compartment (Figure 3b-c, Supplementary Figures 4b, 5a-b and 6a), while it is 

mostly concordant with Hi-C for other more unambiguously active (Tx, TssA, 

EnhG) or inactive (Het) states. 
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Supplementary Figure 6 – Compartments and sub-compartments analysis on low input 4f-
SAMMY-seq. a) Relative occupancy of 4f-SAMMY-seq (starting from either 50k or 10k cells as 
indicated on the left side labels) vs Hi-C based compartments computed as the difference in "A" 
compartment percentage. For each chromatin state (columns, labels and total size for each state 
in the central row) positive values (green gradient) indicate a higher percentage of "A" 
compartment in 4f-SAMMY-seq based classification, whereas negative values (red gradient) 
indicate a higher percentage of "A" compartment based on Hi-C classification (i.e. higher "B" 
percentage based on 4f-SAMMY-seq). The size of each dot is proportional to the absolute value 
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in the percentage difference. Chromatin states are ordered from left to right based on the average 
percentage difference across the three 4f-SAMMY-seq replicates (on the three rows). b) Violin 
and box plots showing for the reference Hi-C dataset and for individual 4f-SAMMY-seq replicates 

starting from either 50k or 10k cells (labels on the upper margin) the distribution of Polycomb 
regulated chromatin states across genomic bins of the entire genome grouped by compartments 
classification ("A-A", "B-B", "A->B" or "B->A" defined as in Figure 2b). The upper violin plot is for 
bivalent Polycomb states (TssBiv, EnhBiv or BivFln) the bottom one for monovalent repressive 
Polycomb chromatin states (ReprPC or ReprPCWk). The number of genomic bins in each group 
is indicated at the bottom in parentheses (x-axis). In the overlaying boxplots, the horizontal lines 
mark the median, the boxes margins mark the interquartile range (IQR), and whiskers extend up 
to 1.5 times the IQR. Specific data points associated with HOX gene clusters are marked to show 
their positioning across groups and their associated high relative occupancy in Polycomb 
repressive and bivalent states. c) Genome-wide mean signal enrichment (centred and scaled by 
chromosome) in the eight sub-compartments classification defined by CALDER, using as input 
the Hi-C (purple points and lines) and 4f-SAMMY-seq data obtained starting from 50K and 10K 
(red, orange and yellow points and lines), for Roadmap DNAse-seq and Chip-seq datasets of 
human foreskin fibroblasts (E055 Roadmap Epigenomics). Sub-compartments are sorted from 
the most closed (left, B.2.2) to the most open one (right, A.1.1). 

Overall, these data suggest that 4f-SAMMY-seq derived compartments may 

provide a more consistent reading on the properties of chromatin in terms of their 

connection to gene expression and chromatin states, including the Polycomb 

regulated domains, which are more challenging to be captured because of their 

dynamic nature (31). 

 

SAMMY-seq also achieves sub-compartments definition. 

To further dissect the quantitative relation between chromatin marks and 

compartments, we also computed sub-compartments using an adaptation of the 

Calder procedure (8) in both Hi-C and 4f-SAMMY-seq (see Methods) (Figure 5a). 

We called eight sub-compartments spanning from the most active A.1.1 to the 

most inactive B.2.2 compartment.  
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Figure 5 - 4f-SAMMY-seq allows detailed and reliable reconstruction of sub-compartments. 
a) Schematic illustration of the data analysis workflow to reconstruct chromatin sub-compartments 
from SAMMY-seq data. An adaptation of the CALDER procedure is applied on the pairwise 
Euclidean distance between genomic bins (see Methods). Starting from reads distribution profiles 
for individual chromatin fractions, for each pair of genomic bins the Euclidean distance is 
computed between the vectors of reads coverage across fractions. The method is then based on 
the ranking and clustering of domains (i.e., group of bins) based on the lowess interpolation of 
the first and second eigenvector of a reduced matrix summarizing the properties of the bins. From 
the projected PCA values, the ranking of domains allows the discrimination of eight sub-
compartments from the most compacted one (B.2.2.) to the most accessible one (A.1.1). b) 
Genome-wide mean signal enrichment (centred and scaled by chromosome) in the eight sub-
compartments classification defined by CALDER, using Hi-C (purple points and lines) and 4f-
SAMMY-seq data (blue, light blue and green points and lines for the three replicates), for 
Roadmap DNAse-seq and ChIP-seq datasets of human foreskin fibroblasts (E055 Roadmap 
Epigenomics). Sub-compartments are sorted from the most compacted (left, B.2.2) to the most 

accessible one (right, A.1.1). 

Both Hi-C and 4f-SAMMY-seq sub-compartments are generally highly 

concordant in their association with individual chromatin marks (Figure 5b and 

Supplementary Figure 5e), the latter also considering 50k and 10k experiments 

(Supplementary Figure 6c). In fact, markers of active chromatin (DNAse-seq, 
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H3K36me3, H3K4me3, H3K27ac and H3K4me1) show the lowest enrichment in 

the most closed B2.2 sub-compartment and the highest enrichment in the most 

open A1.1 sub-compartment. Conversely, markers of constitutive 

heterochromatin (H3K9me3, Lamin AC and Lamin B) show the highest 

enrichment in B2.2 sub-compartment and a drop of enrichment going towards 

open sub-compartments. The most evident difference is again for regions marked 

by the Polycomb-dependent H3K27me3 histone mark. Here SAMMY-seq sub-

compartments show more clear-cut H3K27me3 enrichment differences between 

the "A" and "B" sub-groups: this applies to both the most extreme A.1.1 vs B.2.2 

and the intermediate A.2.2 vs B.1.1 compartment comparisons, as the latter 

shows a flattening in the H3K27me3 enrichment trend for the Hi-C-based sub-

compartments definition (Figure 5b, Supplementary Figures 5e and 6c). The 

other main discrepancy pertains H3K9me3, for which SAMMY-seq sub-

compartments are more precise in specifically confining its enrichment to the 

most inactive B.2.2 sub-compartment, although on the other hand the A.1.1 sub-

compartment from SAMMY is not as depleted as the one from Hi-C (Figure 5b, 

Supplementary Figures 5e and 6c). 

 

DISCUSSION 

The genome is topologically and hierarchically organized on multiple levels in the 

nucleus. This 3D architecture has emerged as crucial feature for the regulation 

of transcription, replication, DNA repair and splicing (1). In particular, the physical 

separation between euchromatin, the more accessible and transcriptionally 

active part of the chromatin, and heterochromatin, the compacted and gene-poor 

part of the genome, is a hallmark of healthy cells. As such, morphological 

changes in genome organization are emerging as a pathological hallmark, and 

dysfunctional alterations of genome shape have been described in ageing, 

cancer and a plethora of other diseases (4,32-34). Silent chromatin can be further 

divided into facultative heterochromatin, regulated by the Polycomb group of 

repressing transcriptional factors (PcG), and constitutive heterochromatin, mainly 

localized at the nuclear periphery through the binding with components of the 
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nuclear lamina (35). Polycomb targets are heterogeneous from a functional and 

regulatory dynamics point of view. They include loci that are active only during 

development, cell cycle related genes and bivalent chromatin regions, the latter 

simultaneously marked by active and inactive histone modifications priming them 

for a rapid transcriptional activation. Moreover, different combinations of 

Polycomb complexes can modulate the transcriptional output as well as the 

context specific regulation of individual target loci (36). These features are 

challenging for the current methods that capture the chromatin structure. 

Here we present a novel high-throughput sequencing-based protocol paired with 

a dedicated bioinformatic data analysis approach to single-handedly identify 

euchromatin and heterochromatin domains, as well as mapping their 3D 

compartmentalization inside the cell nucleus. The new 4f-SAMMY-seq method 

builds on our previously published 3f-SAMMY-seq technique, for which we have 

already demonstrated the ability to detect lamina-associated heterochromatin 

domains dynamics (16,19). Here we developed a new protocol whereby, with a 

combination of milder partial endonuclease digestion and size separation of the 

resulting DNA fragments, we can achieve higher resolution in mapping also 

accessible chromatin regions (Figure 1). 

 

We then reasoned on the differences between our chromatin fractionation-based 

method and chromosome conformation capture techniques, such as Hi-C. Hi-C 

and other techniques mapping contacts between genomic loci are traditionally 

used to map chromatin compartmentalization. However, they are based on 

measuring the colocalization of genomic regions, without assessing directly their 

local environment in terms of associated macromolecules or subnuclear 

structures. On the other hand, SAMMY-seq derived methods rely on the 

biochemical isolation of distinct chromatin portions then assessing the differential 

enrichment of specific genomic domains across biochemical fractions. Based on 

the rationale that genomic loci close to each other will also be immersed in the 

same biochemical environment, we hypothesized that we could reconstruct 
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chromatin compartmentalization by directly measuring the similarity of 

biochemical properties across genomic loci with 4f-SAMMY-seq fractions. 

Thus, we developed and present here dedicated bioinformatic algorithms to 

reconstruct the large-scale chromatin 3D organization in compartments and sub-

compartments (Figure 2 and 5). The resulting compartments and sub-

compartments are very similar to the ones derived from Hi-C, but with some 

notable differences. First of all, we show that 4f-SAMMY-seq-based 

compartments definitions are more consistently assigning transcribed genes to 

the "A" compartment (Figure 3). This is a crucial result as the first and most 

important discrimination between euchromatin and heterochromatin is 

determined by the transcriptional activity of these regions, whereas chromatin 

states definitions are associated afterwards to compartments, mostly correlating 

them to the transcription status. 

In addition, our analyses indicate that 4f-SAMMY-seq is more efficient in 

capturing specific dynamic chromatin domains such as Polycomb regulated 

states (Figure 4 and 5). Namely, while Hi-C historically classifies Polycomb-

regulated domains as belonging to the "A" compartment (5), we found some 

discrepancies (e.g. HOXD in Figure 4c,d). on the other hand, SAMMY-seq-based 

compartments provide a more consistent and concordant classification of 

Polycomb targets (Figure 4), including the highly dynamic bivalent genes (Figure 

4a,b). Polycomb complexes have a central role in many physiological processes 

and their alterations in human diseases (37,38). In this context, the 4fSAMMY-

seq is a versatile technology with unique characteristics and can be applied to 

several experimental models. 

 

Moreover, the 4f-SAMMY-seq definition of chromatin compartments is achieved 

with several crucial practical advantages. Namely, while the standard Hi-C 

protocol requires at least 1 million cells, here we showed that our method works 

on as little as 10,000 cells, thus opening unprecedented opportunities in terms of 

applications to small biological samples (e.g. patients biopsies) or rare cell 

populations. Moreover, to achieve high resolution, Hi-C libraries are often 
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sequenced to more than one billion reads depth, whereas with 4f-SAMMY-seq 

we can use as little as 25 million reads per chromatin fraction (see Methods). 

Finally, the 4f-SAMMY-seq experimental protocol requires less than three hours 

in sample manipulation time, as opposed to at least two days for Hi-C. For all of 

these practical advantages, applying 4f-SAMMY-seq instead of more traditional 

Hi-C to map chromatin compartments would enable unparalleled scalability and 

applicability in the study of chromatin compartment dynamics. 
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Chapter 3 The impact of lamins on chromatin 
structure in mouse embryonic fibroblast 

3.1 Abstract 

 

The tridimensional chromatin structure is fundamental for the correct regulation 

of the genome function. Nuclear lamins are key players of the genome folding 

and participate in the maintenance of the chromatin structure. Lamins are divided 

in A-type and B-types, and have a plethora of functions in the nuclei, from 

mechanical properties, as resistance to forces and mechanotransduction, to the 

radial organization of chromatin in the nucleus. Lamin A and B interact with 

chromatin in specific heterochromatic regions called lamina associated domains 

(LADs). These domains are positioned in the periphery of the nucleus whereas 

the portion of chromosomes not attached to the lamina tend to go in the center 

where the euchromatin is preferentially found. However, the role of A and B 

lamins is different in the nuclei as evidenced by effects of genetic mutations. 

Using SAMMY-seq, we have previously characterized the effect of the mutated 

form of lamin A, progerin, on heterochromatin structure: in early passages 

fibroblasts from progeric patients we found a LAD remodeling with a detachment 

from the nuclear periphery. This early event leads to a deregulation of bivalent 

genes. Here we systematically analyze the conformation of both euchromatin and 

heterochromatin in the absence of lamin A or lamin B. 

3.2 Introduction  

The nuclear envelope (NE) is composed of a double layer membrane, and 

beneath is present the Nuclear Lamina (NL). The NL is a protein meshwork 

composed of a type V filament1. A and B lamins are the major constituents of the 

NL. A and B lamins differ for presence, nuclear positioning and functions2,3. Both 
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lamins bind heterochromatic portions of the genome called lamina associated 

domains (LAD)4. Some of the lamina-associated domains are stable in cells 

(defined as constitutive LADs). However, a portion of LADs change during 

lineage commitment and differentiation (classified as facultative LADs). The 

facultative LADs are cell-type specific and they determine the cell identity4,5, by 

modifying the epigenetic repressive histone marks (HMs) in these regions and 

subsequently the transcriptional level of genes6. It is known that mutations of 

Lmna and Lmnb1/2 genes cause diseases called laminopathies7,8. These 

diseases are grouped by some defective form of lamin that accumulates and 

change the type of interactions with various proteins and factors8. However, the 

impact of lamins absence on the chromatin is unclear. Triple lamins KO in the 

mouse embryonic stem cells (mESC) model and HiC analysis suggested that 

lamins to not directly regulate TADs, but they are required to properly maintain 

inter- and intra- TAD interactions9. Moreover, the total absence of lamins in 

mESC also determines the decondensation of some facultative LADs9. We 

already reported that in some cases SAMMY-seq, based on chromatin solubility, 

can be more sensitive than HiC in capturing small differences in genome 

organization10. Moreover, to our knowledge, a direct comparison between Lamin 

A and B regarding their action the chromatin has never been addressed. We 

decided to analyze the role of lamins by using 4fSAMMY-seq (see Chapter 2) 

and immortalized mouse embryonic fibroblast (MEF) generated starting from wild 

type (wt), knockout for Lmna gene (ACKO) and double knockout for Lmnb1 and 

Lmnb2 (BDKO) mice.  

 

 

 

 

3.3 4fSAMMY-seq reveal lamin-type specific 

chromatin remodeling  
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With this model we firstly evaluated the dynamic of the cell cycle, confirming by 

fluorescence-activated cell sorting (FACS) that both mutants show an alteration 

of the cell-cycle with a delay of the S phase (Figure 1). 

 
Figure 1 Cell cycle assay. Percentages of the number of cells in cell phase. The colors are black 
for wild type (wt), pink for ACKO and green for BDKO. 

To characterize SAMMY-seq signal, we downloaded published histone marks 

(HM) ChIP-seq (H3K9me3, H3K27me3, H3K9ac, H3K27ac) from the short read 

archive (SRA) database11 and we compared with S2SvsS3 (comparison) 

obtained from the differential enrichment of S2S and S3 alignments computed 

with SPP package12. To ensure maximum comparability, both histone mark 

IP/Input profiles and SAMMY-seq comparisons were analyzed using the same 

parameters. The euchromatin, identified by the H3K27ac presence is concordant 

with S2S enrichment of all three MEF samples (Figure 2A, signal above the line). 

On the opposite enrichment, the heterochromatic S3 regions appear to be 

partially covered with H3K9me3 and H3K27me3 (Figure 2A, signal below the 

line).  Some of the insoluble regions captured by SAMMY-seq do not appear to 

have heterochromatic HM. However, it is known that stem zygotic stem cells and 

progenitors do not show high levels of constitutive heterochromatin as they are 

pluripotent cells13–15. They will acquire the constitutive H3K9me3 upon lineage 

differentiation16,17. Then, we calculated the spearman correlation matrix between 
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the comparisons profiles and histone marks (HMs) (Figure 2B), finding high 

genome wide correlations with active marks raging from 0.65 to 0,79 and lower 

anticorrelations with H3K9me3 enriched heterochromatin signal (between -0,25 

to-.0,43).  On the other hand, correlations matrix across different replicates shows 

high-level reproducibility raging from 0,79 to 9,92 (Figure 2B).  
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Figure 2. SAMMY-seq signal recapitulate chromatin accessibility state. Representative 
genomic region of chromosome 1 (chr1:20.000.000-end). A. The lines in light blue, orange and 
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red are the consensus track of 4fSAMMY-seq (S2SvsS3) for wt, Lmna (ACKO) and Lmnb (BDKO) 
Knock Out, respectively. Lighter color shadows for each track represent the standard deviation. 
Positive signal enrichments correspond to the more soluble S2S regions, whereas negative signal 

enrichments represent the less soluble fraction S3. The available ChIP-seq histone marks for wt 
MEF of euchromatin-associated H3K27ac (dark yellow), facultative heterochromatin-associated 
H3K27me3 (purple) and constitutive heterochromatin-associated H3K9me3 (blue) marks are 
shown. For ChIP-seq data, the y axis range is set to zero as minimum value. B. Spearman 
correlation for 4fSAMMY-seq (S2SvsS3) between all 4fSAMMY-seq samples and histone marks 
rebinned at 50Kb. 

With the idea that A-type and B-type lamins have different roles in the chromatin 

organization, the absence of one at the time would lead to different chromatin 

changes. Firstly, we quantitatively explored the data by analyzing the consensus 

tracks of the S2SvsS3 enrichment. To remove the regions with a non-clear 

starting enrichment, we filtered out the regions with a mean signal less than ±0.1 

value in the wild type, and therefore, the corresponding regions also in the 

mutants from the computation. The scatter plots show the similarity of the mutants 

respect to the wt. The maximum overlap expected is represented on the diagonal 

with an r2 of 1. Although the entire distribution of chromatin is very similar across 

samples, we found an increased dispersion of the signal for the BDKO mutants 

with an r2 of 0.899 for ACKO mutants and 0.848 for BDKO, suggesting that the 

BDKO mutant have a global stronger effect on chromatin solubility (Figure 3 A, 

B).   
Then, we decided to perform a differential enrichment analysis of the S2SvsS3 

signals comparing each mutant (ACKO and BDKO) with the wt (Figure 3 C). We 

classified the differential soluble regions into 4 categories: S2S_up (red label),  
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Figure 3. Chromatin remodeling is lamin-type dependent. Chromosome 9 is shown. A and 
B. Genome wide scatter plot of the rebinned consensus signal at 150Kb for wt and ACKO (A) 
and BDKO (B), after removal of all the bins below the signal threshold of ±0.1. The red line is the 

linear regression, the color code shows the density of the dots, from low amount (dark blue) to 
highest (yellow). The lines on top and the right represent the distribution of the signal values. C. 
Chromosome 9 is shown. The lines in blue and red are the consensus track of 4fSAMMY-seq. 
From the top ACKO vs wt; BDKO vs wt and BDKO vs ACKO. Lighter color shadows for each 
track represent the standard deviation. Below each pair tracks, the significant regions are 
highlighted as follow: S2S_up (red), S2S_down (orange), S3_up (light blue) and S3_down (dark 
blue). D. Stacked bar plot of the percentages of genome affected by remodeling after filtering out 
the low signal > ±0.1 with the differential enrichment analysis. E. Stacked bar plot of the number 
of genes that have the TSS overlapping with the regions with a range of upstream 2500bp and 
downstream 500 bp. Both D and E share the same color code of the C panel. 

 

regions of S2S with increased accessibility in the mutant; S2S_down (orange 

label), regions of S2S with decreased accessibility in the mutant; S3_up (light 

blue label), regions of S3 with increased accessibility in the mutant and S3_down 

(dark blu label), regions of S3 with decreased accessibility in the mutant. Notably, 

with this analysis we select only genomic regions with different solubility in all 

analyzed mutants versus all wt samples. With the same pipeline we also 

compared the two ACKO and BDKO mutants. As expected by their functional 

role, the results show that both mutants show a strong heterochromatin 

remodeling (Figure 3D). In general, chromatin regions of the two mutants tend to 

lose a clear state of inaccessibility, going to a less defined state. Intriguingly, as 

evidenced by direct ACKO and BDKO comparisons, the affected regions are not 

coincident, highlighting the diverse role of lamins on genome folding. 

We also checked if the remodeled regions were chromosome dependent.  We 

found that the chromosome X in the A mutant, but not in the Lamin B mutant, 

displays an extensive lack of heterochromatin insolubility, showing a sharp 

increase of S3_up regions (Supplementary Figure 1). Interestingly X 

chromosome includes another important gene responsible for Emery Dreifuss 

Muscular Dystrophy: the emerin. Thus, these data suggest that the absence of 

Lamin A directly lead to an alteration of X chromosome compaction. The same 
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experiment executed in muscular cells could elucidate if this alteration can be 

linked to emerin dysregulation and mechanisms of dystrophy. This is important 

as when emerin is mutated it give the same phenotype of the emery dreifuss 

muscular dystrophy (EDMD)19. The other chromosomes whom appear to be 

slightly more affected than the others in loosing heterochromatin in both mutants 

are the chr7, chr18. loose On the other hand, the remaining chromosomes show 

smaller differences in quantities. 

 

 
Supplementary Figure 1. Percentages of chromosome affected regions. The percentages 
are calculated from the total chromosome size analyzed after the removal of the genomic bins 
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with a signal < ±0.1. Color scheme: S2S_up (red), S2S_down (orange), S3_up (light blue), 
S3_down. A. ACKO mutant B. BDKO.   

 

As expected, in S2 fraction that correspond to euchromatin, the number of gene 

involved in the solubility change is higher than in heterochromatin (Figure 3D), 

with BDKO affecting more genes than ACKO. In the direct comparison of B and 

A mutants, the differences appear slightly less pronounced, particularly in the S3 

portion of the genome (Figure 3 A B D), accordingly to their functional common 

role at the NL.   

Then, we calculated the degree of overlap between ACKO and BDKO altered 

regions by Jaccard score calculations. Globally, some accessibility alterations are 

retained in both mutants (20% for accessible and between 30% and 40% for 

inaccessible regions), thus confirming their common role on chromatin 

conformation (Figure 4). On the other hand, other regions are affected differently 

in both lamin types as evidenced in the comparison with wt or in the direct ACKO 

BDKO comparison. 
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Figure 4. Venn diagrams of altered regions in each category. A. Venn diagram of S2S_up 
regions with a Jaccard score of 0.185 in BDKO vs wt and ACKO vs wt B. Venn diagram of 
S2S_down regions with a Jaccard score of 0.193 in BDKO vs wt and ACKO vs wt  C. Venn 
diagram of S3_up regions with a Jaccard score of 0.283 BDKO vs wt and ACKO vs wt D. Venn 
diagram of S3_down regions with a Jaccard score of 0.38 BDKO vs wt and ACKO vs wt 

 

Interestingly, the number of the common ACKO and BDKO regions differently 

captured by solubility respect to the wt is higher in the heterochromatin then 

euchromatin, accordingly with the major role of lamins in heterochromatin 

organization (figure 4). In order to address the functional role of chromatin 

solubility shift seen in ACKO and BDKO, we characterized the biological 

pathways subjected to the deregulated regions. Since available gene ontology 

packages are tailored on RNA-seq, to avoid inflated P-values, we set up a custom 

gene ontology analysis based on permutation (see methods).  

ACKO vs wt
BDKO vs wt

D
S3_down

302 322382ACKO vs wt
BDKO vs wt

C
S3_up

543 590448

ACKO vs wt
BDKO vs wt

S2S_up

81 6032

A

ACKO vs wt
BDKO vs wt

B
S2S_down

103 18569



 98 

We used this GO analysis on differentially soluble regions (S2S_up, S2S_down, 

S3_up, and S3_down). Despite the comparable total number of genes GO was 

significantly enriched only in euchromatin regions (S2S up/down). This could be 

due to a spreading of different genes in heterochromatin (S3 up/down), where 

altered regions cover larger genomic portions. In order to facilitate the view and 

interpretation, we did a semantic analysis with revigo20, for each group filtering 

all the GOs with a false discovery rate of < 0.01 (Figure 5). In the analysis of 

euchromatin remodeling we found some pathways shared between the two 

mutant, as cell cycle, cell proliferation and cell death (Figure 5 A, B), confirmed 

by cell proliferation assay (Figure 1). The most notable clusters in the semantic 

analysis of S2S_up regions specific of the ACKO suggest a direct regulation on 

development and differentiation (Figure 5 A). In the other hand, BDKO GO 

suggests a specific positive regulation of chromatin dynamics, as the histone 

methylation on K4 (Figure 5 B). In line with previous findings7,8,21,22, these first 

analyses suggest different roles in regulation of euchromatin with Lamin B 

involved in chromatin structure and Lamin A in cell specification. Moreover, data 

in BDKO suggests that lamin B KO generate specific defects in epigenetic 

regulation. 

Analyses of S2S_down regions were more difficult, because of several GOs 

terms. Thus, we separated regions in 3 categories based on the Venn diagram 

(Figure 4): ACKO and BDKO specific S2S_down regions and the overlapping 

group (Figure 5 C, D, E). In ACKO, the S2S_down related terms were largely 

described as associated to Lamin A23,24, including actin filament and cytoskeleton 

formation, protein regulation and effect on RNA splicing capacity (Figure 5 C). In 

S2S_down specific of the BDKO, we found several terms related to signaling as 

cellular response to cytokine. Interestingly, among signaling pathways we found 

the MAPK cascade containing TOR and TORC1 previously described in the lamin 

B dependent autophagy regulation25. Finally, we analyzed the shared regions, 

finding terms related to import/export of cells, regulation and processing of RNA 

and inflammation (Figure 5 E).  
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Figure 5 continues on the next page.  
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Figure 5 continues on the next page. 
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Figure 5 continues on the next page. 
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Figure 5 continues on the next page. 
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Figure 5. Semantic analysis of the Gene Ontologies derived from the genes inside 
remodeled genomic regions. A. S2S_up in ACKO mutant. B. S2S_up in BDKO mutant. C. 
S2S_down remodeled only in the ACKO mutant D. S2S_down remodeled only in the BDKO 
mutant E. S2S_down with same remodeling in both mutants. 

 
To evaluate the impact of chromatin accessibility on transcription, we performed 

RNA-seq analysis on the same cell lines. We aligned, quantified the reads 

abundances and calculate the differential expressed genes with DESeq2 (see 
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methods) comparing ACKO and BDKO with the wild type. We obtained 610 

Differential Expressed Genes (DEGs) in ACKO (417 overexpressed genes and 

193 repressed) and 920 (602 overexpressed and 318 repressed) DEGs in BDKO, 

suggesting again a stronger effect of BDKO respect to ACKO. Interestingly, 30% 

genes upregulated and dowregulated were in common between ACKO and 

BDKO mutants (Jaccard score 0.35 for upregulated and 0.33 for down regulated 

genes). These finding suggest that a subset of genes are more sensible to the 

lamin dependent heterochromatin remodeling.  

 
 

Figure 6 continues on the next page. 
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Figure 6 continues on the next page. 
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Figure 6 continues on the next page. 
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Figure 6 continues on the next page. 
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Figure 6 continues on the next page. 
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Figure 6. Overlap between DEG genes and corresponding gene ontologies A.  Venn 
diagram of DEGs of the comparisons ACKO and BDKO vs wt B. Common upregulated genes in 
ACKO and BDKO C. Common downregulated genes in ACKO and BDKO D. Genes uniquely 
upregulated in ACKO E. Genes uniquely upregulated in BDKO F. Genes uniquely downregulated 
in BDKO. The gene ontology were calculated with g:profiler226, Pvalues were corrected with 
Benjamini Hochberg and the semantic analysis were perfomed with rrvgo27.  

 

The upregulated genes in common are mostly related to RNA biosynthesis and 

morphogenesis in various tissues (Figure 6 B), while the downregulated are 

more related with development, external stimuli and cell receptors (Figure 6 C). 
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This suggest that both mutants lose the proper cell identity with a both positive 

and negative unbalance of differentiating pathways. This is in line with the 

diminished ability to correctly catch external signals to accurately differentiate 28. 

Mutant specific DEGs shows that Lamin A is more involved in mechanism for cell 

positioning, controlling pathways of cell adhesion and motility (Figure 6 D) while 

Lamin B is a regulator of several signaling pathways and inflammation (Figure 6 
E). Finally, BDKO specific downregulated genes are involved in cell development 

and differentiation (Figure 6 F).  

To identify specific biological pathways in the two mutants ad get deeper 

understanding of their deregulation, we ranked the genes with the score 

generated with -log(Pvalue) * sign of the fold change. With this we did a 

preranked GSEA analysis with 1000 permutations on the biological pathways 

downloaded on g:profiler site. We selected 3 representative GSEA per condition 

negatively and positively correlated with the mutants. 
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Figure 7. GSEA enrichment plots of biological pathways affected in lamin’s KOs. Results 
from RNA-seq GSEA. A. Enriched and B. depleted pathways in ACKO C. Enriched and D. 
depleted pathways in BDKO.  

 

We found, in ACKO, a pressure toward skeletal muscle differentiation and 

ossification as already described2,29 (Figure 7 A) and a downregulation of 

transcripts processing and protein transportation (Figure 7 B). We also find a 

positive regulation of vascular associated smooth muscle differentiation, one of 

the tissues more affected in progeria30. Surprisingly, among the significant GSEA 

in ACKO downregulation we found the pathways involved in telomerase 

maintenance. This was not expected since used MEF are immortalized. 
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Lamin B is necessary for the correct regulation of nucleosome assembly, in line 

with analysis performed on SAMMY-seq solubility (Figure 3C, 5B). These results 

show that most of the transcription levels are closely related to the biological 

pathways captured by SAMMY-seq differential solubility. 

 

Then, we asked how many DEGs lies in the statistically significant, differential 

solubility regions shown in Figure 3. Although the two distinct analysis 

highlighted similar GO categories for Lamin A and B mutants, we found a minimal 

overlap between DEGs and SAMMY-seq changes (Supplementary Figure 2), 

suggesting that chromatin solubility alterations does not directly lead to a 

transcriptional deregulation.  
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Supplementary Figure 2. Accessibility remodeling does not directly correlate with 
transcriptional dysfunction. A.  B.  Upset plot of the genes between remodeled categories (S2S 
and S3 both up and down) and DEGs (upregulated downregulated) in ACKO (A) and BDKO (B).  
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On the other hand, we wondered if DEGs display a different accessibility profile. 

We made a metaprofile of the correspondent S2SvsS3 regions rebinned at 2Kbp 

(see methods). Then, we plotted a heatmap of the solubility signal (Figure 8 A, 

C) for each mutant.  

 
Figure 8. Metaprofiles of DEGs illustrate specific epigenetic and accessibility profile. A. 
Metaprofile heatmap of S2SvsS3 in wt and ACKO for up- and downregulated genes in ACKO B. 
ChIP-seq in wt of H3K27ac, H3K27me3, H3K9ac, H3K9me3, H3K9me1 for genes shown in A C. 
Metaprofile heatmap of S2SvsS3 in wt and BDKO for up- and downregulated genes in BDKO D. 
ChIP-seq in wt of H3K27ac, H3K27me3, H3K9ac, H3K9me3, H3K9me1 for genes shown in C.   
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These heatmaps show in both mutants a decrease in solubility in genes 

downregulated in ACKO and BDKO (Figure 8 A, C, left panels), suggesting a 

direct link between solubility and transcription (see discussion). Interestingly also 

upregulated genes are accompanied by a trend of increasing accessibility. To 

characterize the chromatin state of affected genes, we analysed the available 

ChIP-seq data in wt MEF and we plotted the ChIP enrichment of the ACKO and 

BDKO DEGs (Figure 8 B, D). The deregulated genes show a general enrichment 

in euchromatin marks. However, only downregulated genes in both mutants show 

an enrichment of the Polycomb dependent H3K27me3 mark at the 

Transcriptional Start Site (TSS). This corroborated previous data showing a 

crosstalk between lamins and Polycomb2,21. 
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Supplementary Figure 3 Transcripts levels in wild type of deregulated genes are different.  
A. Transcripts per million (TPM) levels of the resulting DEGs in ACKO mutant are shown for the 
wt condition B. Transcripts per million (TPM) levels of the resulting DEGs in BDKO mutant are 
shown for the wt condition. Downregulated genes are in red, upregulated genes in blue and 
unaffected genes are in green.  
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although enriched in histone marks of euchromatin (Figure 8 B and D). On the 

other hand, downregulated genes show consistent transcription in wt condition, 

despite the presence of the repressive H3K27me3 mark. Further analysis will 

clarify if these genes are bivalent. 

Using the analysis described in chapter 2, we calculated the chromatin 

compartments starting from 4fSAMMY-seq fractions, to evaluate the knockout 

effects on the overall chromatin compartmentalization (see methods). The 

chromatin compartments are called with a resolution of 50Kb for all the condition 

replicas. The amount of chromatin compartments switches ranges from 2.5 to 4 

% genome wide, with an higher impact in Lamin B KO (Figure 9 A). This suggests 

that the overall separation between euchromatin and heterochromatin is still 

maintained after lamins KO. This is expected since compartment switch requires 

a strong remodeling of chromatin. 

 



 118 

 
Figure 9.  Compartment remodeling in lamins KO. Percentage of genome that change 
compartmentalization, from A to B and vice versa per contrast. The first condition (wt or BDKO) 
in the label name is the starting compartment.  
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Figure 10. Lamin mutants differently remodel chromatin compartments. Venn diagram of 
compartment’s switches in BDKO and ACKO. The A to B switches are in red and orange while B 
to A compartment switches are in light and dark blue.  

 
   

3.4 Materials and methods  

Cell cultures  

Immortalized wild-type (WT), knockout for Lmna gene (LMNACKO) and double 

knockout for Lmnb1 and Lmnb2 (LMNBDKO) MEFs were routinely grown in 

DMEM (Gibco, 10566-016) supplemented with 10% (v/v) FBS (Gibco,10270106), 

1% penicillin-streptomycin (Sigma-Aldrich, P0781) and 1% glutamax 

(Gibco,10566-016). Cell cultures have been kept under optimal growth 

conditions: 5% CO2 at 37°C. 

RNA extraction, library preparation and sequencing  

Total RNA was extracted from one million trypsinized cells for each condition in 

triplicate using TRI-Reagent (Sigma, T9424) following the recommended 
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guidelines. Total RNA was quantified by Qubit 4 fluorometer with Qubit RNA HS 

Assay Kit (Invitrogen, Q32852) and assessed by Agilent 2100 Bioanalyzer using 

Agilent RNA 6000 Nano Kit (Agilent, 5067-1511) to inspect RNA integration. For 

each sample, 10 ng of total RNA was used to construct strand specific RNAseq 

library with SMARTer Stranded Total RNA-Seq Kit - Pico Input (Takara, 634487). 

The quality of the libraries was assessed on Agilent 2100 Bioanalyzer using High 

Sensitivity DNA Kit (Agilent, 5067-4626). RNAseq libraries were sequenced on 

the Illumina NextSeqTM 550 system at the Ospedale Policlinico in Milan to a 

minimal target of 40 million for 75 bases in paired-ends mode.  

Cell-cycle assay  

To analyze the cell cycle profiles, 200K cells were collected, rinsed with 1× PBS 

and then fixed in 80% ice-cold ethanol at 4°C. The fixed cells were washed twice 

with ice-cold 1× PBS, followed by incubation in 1x PBS containing 25 mg/ml PI 

(PI, Sigma, P 4170) and 0.5 mg/ml RNase A at 4°C for 1 hour. Following staining, 

the cells were analyzed using flow cytometry. 

4fSAMMY-seq protocol 

SAMMY-seq protcol were done as explained in chapter 2  

Literature data processing 

The ChIP-seq data have been downloaded from the following publicly dataset 

available: GSE20271633 

All the data were downloaded as raw data with fastq-dump and re-analyzed as 

described in followed section. 

DNA sequence analysis  

The results of the sequencing have been demultiplexed with bcl2fastq 

(https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-
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conversion-software.html) (v2.20.0.422). The quality of sequencing was 

evaluated with fastqc34 (version 0.11.3) and trimmed using Trimmomatic35 (v0.39) 

with the following parameters: 2:30:10 for seed_mismatch, palindrome_threshold 

and simple_threshold, respectively; 4:15 for sliding window. The minimum 

threshold of 36 bp has been applied for all reads. Trimmed reads were aligned 

using BWA36 (v0.7.17-r1188) setting -n 2 -k 2 and using as reference genome the 

mm10 downloaded from refgenie. The alignment duplicates were marked and 

removed with Picard (v2.23.9) (https://github.com/broadinstitute/picard) 

MarkDuplicates. We further filtered all the reads with mapping quality lower than 

1 with Samtools37 (v 1.11). For each alignment a coverage analysis has been 

performed using Deeptools38 (version 3.5.2) bamCoverage function. The reads 

extended up to 250 bp and RPKM normalization method has been used. The 

mm10 size was considered of 2652783500 bp (value suggested in the Deeptools 

manual 

https://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.

html), from the analysis were excluded blacklisted regions obtained by ENCODE 

portal, (https://www.encodeproject.org/files/ENCFF547MET ).  The differential 

enrichment analysis between SAMMY fractions (comparison) was performed 

using spp package12, an R (v4.3) library. The reads were additionally filtered with 

‘remove.local.tag.anomalies’ and the differential enrichment were computed 

using ‘get.smoothed.enrichment.mle’ function setting ‘tag.shift = 0’ and 

‘background.density.scaling = TRUE’. For maximal comparability the analysis 

has been performed with the same parameters for all the datasets.  

Track representation   

The Gviz39 R library was used for visualization purposes. Each profile was 

computed using the function “DataTrack”; the samples were imported using the 

function “import” of the rtracklayer library and plotted using the function 

“plotTracks” setting the value “window = 900”. Visualization of the Consensus 

tracks were using all samples in each category setting the parameter type as ‘a’ 

and overlayed using the function “OverlayTrack”. Single samples mountain plots 



 122 

were computed by setting the parameter type as "polygon". Extra elements as 

chromosome ideogram and genome axis, were displayed using the functions 

“IdeogramTrack” and “GenomeAxisTrack” respectively.  

SAMMY-seq comparison tracks normalization and consensus track. 

The comparison signal before the analyses, is computed by rebinning at the 

specified windows of 150 Kb. The blacklisted regions were firstly merged together 

with the neighbors if the distance were less than 50Kb. After, all together the 

comparisons in the dataset are normalized by computing the quantile 

normalization with the preprocessCore42 library by the function 

"normalize.quantiles". Finally, the consensus track is generated by computing the 

mean of the signals and the standard error as intervals.   

Correlation Analysis  

The smoothed differential signal enrichment is rebinned with Deeptools 

"multiBigwigSummary" at 50Kb. Genome-wide Spearman correlations between 

SAMMY-seq samples and ChIP was computed using Deeptools using the 

function "plotCorrelation" with the following settings: "--corMethod spearman -p 

heatmap --skipZeros".  

Differential enrichment analysis of SAMMY-seq comparisons 

To compute the differential enrichment analysis of the comparisons we firstly 

rebin and normalize the tracks as described above with 150 Kb rebinning size 

and 50Kb as merging distance of the blacklisted regions. We compute the 

consensus tracks for the control condition and calculate the intervals the standard 

deviation *2 (SD*2), obtaining consensus ± SD*2 for each genomic bin. Given 

the signal distribution of the consensus bins we filtered out all the bins within a 

range value ≤ ±0.1. After the filtering, the remaining bins are assigned to the 

correspondent fraction, S2S if the control condition signal is positive and S3 if is 

negative. To find the differential enriched bins in the test condition we sub-
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selected the bins in which all samples were not in the consensus ± SD*2 intervals. 

The selected bins were then put in a category defined as “up” if all the test 

samples increased the signals, and “down” if they decreased their signals. 

Therefore, we obtained 4 distinct categories S2S_up, S2S_down, S3_up, 

S3_down.  

SAMMY compartments 

The computation of SAMMY-seq compartments were done using the same 

method explained in chapter 2, with 50Kb of resolution.  

Gene Ontology (GO) permutation test 

Available gene ontologies methods for transcriptomic analyses assume that each 

gene has the same probability of being represented. In genome analysis this is 

not the case, because we remove genes that by default that will never be 

encountered due to sequence characteristics (genes in blacklisted regions). 

Another problem to consider is: there are gene clusters with similar functions in 

the same genomic regions. These genes are often in same pathways. 

Furthermore, in SAMMY-seq, broad peaks include multiple TSS. All of these 

issues would systematically inflate the obtained P-values of the resulting GOs. 

We develop a specific analysis to address these aforementioned problems. The 

analysis consists in a permutation test, that relies on the assumption of 

exchangeability, a plausible assumption with genomic regions. The steps were: 

i) selection of all the genes that show an overlap of the TSS, in a range of 2500bp 

upstream and 500 bp downstream, with the tested genomic regions; ii) selection 

of all ontologies that incorporate the overlapping genes, keeping the count of the 

number of genes found in each ontology (X); iii) random shuffling (permutation) 

of all the accounted genomic regions along the genome keeping the size intact 

and avoiding overlapping with the blacklisted regions by masking them. Selection 

of genes (as explained in point i) after random repositioning and counting of 

number of genes  associated to the GO described in point ii (x1). This procedure 
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was repeated 10.000 times (B) for each gene ontology selected at point ii 

(x1…xB). iv) Counting for each GOs number of times when by permutation we 

found the number of genes associated with a GO to be greater than the selected 

regions. v) Dividing by the number of permutation the P-values associated to 

each GOs. This can be summarized by the formula: 

𝑃 =
∑ 𝐼(𝑥' ≥ 𝑋	),
'-.

𝐵  

Where I is the function which takes the value zero when it is false, and one when 

the is true43. vi) We then correct all GOs P-value with Benjamini Hochberg 

method. This analysis has been performed in R (v4.3) using the GO database R  

library “org.Mm.eg.db” with the database updated at 2023-Mar05. 

RNA-seq sequencing read analysis  

The sequenced reads were analyzed with the pipeline nf-core/rnaseq version44 

(v3.8). Quality reports of raw reads and preprocessed reads are generated by 

FastQC34 (v0.11.9). Quality trimming and adapter clipping are performed by 

cutadapt45 (v3.4) and trimmed reads were cleaned of ribosomal RNA (rRNA) 

sequences with SortMeRNA46 (v4.3.4) considering all the available databases. 

Reads were then mapped with STAR on mouse genome build mm10. Gene and 

transcript were quantified using Salmon47 on GENCODE (M25)48 Basic gene 

annotation filtered for only protein coding genes. Differential expression analyses 

were performed with DESeq249. Due to high P-values in differential expression 

results we also applied the lfcShrink function with type ashr50 

Gene Set Enrichment Analysis (GSEA)  

The gene list has been ranked according to Pvalue and log2 fold change (-log10( 

Pvalue ) * sign( log2fc ) ). To compute the GSEA51,52 (v4.1.0) plot we used gmt 

files available at g:profiler226 site and computed with parameters: Number 

permutations: 1000; Collapse: No; seed 42; Enrichment Statistic: classic; Max 

size: 500; Min size:15. This has been done equally for each datataset. 
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RNA-seq metaprofile  

To compute the accessibility metaprofile of the differential expressed genes, we 

rebin the comparisons and normalize them as described above (SAMMY-seq 
comparison tracks normalization and consensus track section) with a 

resolution of 2 Kb and 5 Kb as merging distance of the blacklisted regions. We 

then used Deeptools to compute the metaprofile of the enriched genes using the 

command “computeMatrix” from deeptools scale-regions --

beforeRegionStartLength 5000 --regionBodyLength 5000 --

afterRegionStartLength 5000 --skipZeros”. We then used Deeptools to plot the 

metaprofile generated using the command “plotProfile --plotType heatmap --yMin 

-1 --yMax 1”. To compute the ChIP-seq metaprofiles we used the tracks as they 

were computed by spp package and the aforementioned commands.  
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Chapter 4 In progeria 4fSAMMY-seq reveal cell-

type dependent chromatin remodeling  

4.1 Abstract 

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, autosomic dominant 

human systemic disease, caused by a point mutation in Lamin A gene. Due to its 

key role in the control of genome architecture, it is not surprising that the structural 

organization and epigenetic regulation of chromatin are altered in HGPS. 

However, molecular studies are often focused on the terminal stage of HGPS cell 

life, when primary and secondary events are already overlapping. Among the 

epigenetic mechanisms, we are interested in the genome tridimensional 

structure, a key player in genome function regulation, directly regulated by Lamin 

A. We used the Sequential Analysis of MacroMolecules accessibilitY (SAMMY-

seq), invented in our laboratory to systematically dissect chromatin conformation 

alterations of fibroblasts, endothelial cells and Satellite Muscular Stem cells in the 

HGPS mouse model at different ages. We found a cell-specific chromatin 

compartmentalization that is altered already in early stages of HGPS postnatal 

growth. Our data, showing profound changes of compartmentalization, support 

the hypothesis that the disease mainly affect the heterochromatin and that this 

alteration propagates toward euchromatin determining genome dysfunctions. 

4.2 Introduction  

Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare and fatal 

human systemic laminopathy, estimated to be present with a frequency of 1 in 

8.000.000 and caused by a point mutation in Lamin A gene1. This mutation 

produces the progerin, a truncated, splicing mutant form of the nuclear Lamin 

A protein. Progerin accumulation at the nucleus membrane causes genome 
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instability finally leading to a cellular premature senescence and a systemic 

aging. Currently no cures able to revert this disorder are available and treatments 

are mainly symptomatic and aimed in preventing secondary complications1.  

Beside its structural role, Lamin A is also an important epigenetic regulator, 

involved in the chromatin organization inside the nucleus2. Electron microscopy 

imaging of eukaryotic nuclei shows chromatin compartments with different levels 

of compaction, known as euchromatin and heterochromatin (reviewed in3,4). The 

more accessible and less condensed euchromatin is generally enriched in 

expressed genes. Instead, heterochromatin contains highly condensed DNA, 

including pericentromeric and telomeric regions5–7, and genomic regions with 

unique packaging properties maintained by the Polycomb-group proteins (PcG)8 

. Lamin A preferentially interacts with the genome at specific regions called 

Lamina Associated Domains (LADs), enriched in H3K9me2 and H3K9me3 

histone modifications that are typical of inactive heterochromatic regions9 . LAD 

borders are marked by the PRC2-dependent H3K27me3 histone mark10–12, which 

is characteristic of inactive PcG-regulated chromatin regions. The ensemble of 

lamins, chromatin marks and PcG factors around LADs creates a repressive 

environment13,14, with heterochromatin and PcG target regions adjacent to each 

other15,16. In line with these observations, we previously demonstrated that Lamin 

A functionally interacts with PcG17–20 , as later also reported by others16,21,22. In a 

work performed on HGPS primary fibroblasts, we detected early stage changes 

of heterochromatin structure and transcriptional dysregulation of PcG regulated 

bivalent genes, confirming that the tight crosstalk between Lamin A and PcG 

proteins is altered in HGPS23. More recently, these data have been confirmed on 

the mouse model and further corroborated by the analysis of LINE1, a noncoding 

element of the chromatin found altered in HGPS mice24. 

Here we decided to analyze the role of progerin by using 4fSAMMY-seq (see 

Chapter 2) and distinct cell populations coming from most affected tissues of 

progeric mice. 
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4.3 Progerin dependent chromatin remodeling 
captured by 4fSAMMY-seq  
To analyze if progerin has a different, cell-specific impact on chromatin during the 

onset of symptoms, we extracted by using FACS-sorting from mice wild type (wt) 

and the progeric mice G609G (prg) 3 different mesenchymal derived cell types at 

1 month of age (1M) and 3 months (3M) of age (Figure 1): endothelial CD31+ 

cells from aorta, fibroblasts F140+ from dorsal skin and muscle satellite alpha7+ 

cells from muscles. After, we applied the 4fSAMMY-seq to all the samples. 

 

 
Figure 1. graphical abstract. A. S2S_up in prg1Mcd31_vs_wt1Mcd31 
 

We firstly characterized for each time point and cell type the consensus tracks of 

the S2SvsS3 comparisons. We removed the genomic regions with non-clear 

enrichment in the wild type, by filtering out the regions with a mean enrichment 

less than ±0.1. The scatter plots in Figure 2, shows the distance of the mutants 

from the wt condition. The red line is the linear regression generated from the 

contrasts, the maximum overlap expected would be on the diagonal with the 

coordinates (x 0,0 and y 1,1) with an r2 of 1.  
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All the cell types increase their differences from the wt condition when comparing 

one and three months of age, suggesting a continuous detrimental effect on 

chromatin solubility due to progerin accumulation in the affected cells.  
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Figure 2. Scatterplot of the S2SvsS3 consensus tracks between the progeric compared to 
the equivalent healthy tissues. Genome wide scatter plot of the rebinned consensus signal at 
150Kb, after the removal of all the bins below the signal threshold of ±0.1. The red line is the 

linear regression, the color code shows the density of the dots, from low amount (dark blue) to 
highest (yellow). The lines on top and the right represent the distribution of the signal values. A. 
prg1MCD31 vs wt1MCD31 B. prg3MCD31 vs wt3MCD31 C. prg1MF140 vs wt1MF140 D. 
prg3MF140 vs wt3MF140 E.  prg1Ma7 vs wt1Ma7 F. prg3Ma7 vs wt3Ma7. Abbreviations: prg, 
progeric; wt, wilde type; endothelial cells, CD31; fibroblasts, F140; satellite alpha7, a7.  
 

Interestingly, endothelial CD31+ progeric cells extracted from 3 month-old 

progeric aorta are the most affected (Figure 2 A, B), in line with the tissue 

involvement. On the other hand, all the analyzed cell types appear to retain most 

of the structure during the onset of symptoms at one month of age with a similar 

degree of intensity (Figure 2 A C E).  
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Figure 3. Solubility remodeling chromosome wide. Chromosome 9 is shown. The lines in blue 
and red are the consensus track of 4fSAMMY-seq between progeric samples(red) and wild type 
(blue). From top to bottom prg1MCD31 vs wt1MCD31, prg3MCD31 vs wt3MCD31, prg1MF140 
vs wt1MF140, prg3MF140 vs wt3MF140, prg1Ma7 vs wt1Ma7, prg3Ma7 vs wt3Ma7. Lighter color 
shadows for each track represents the standard deviation. Below each pair tracks, the significant 
regions are highlighted as follow: S2S_up (red), S2S_down (orange), S3_up (light blue) and 
S3_down (dark blue). Abbreviations: prg, progeric; wt, wilde type; endothelial cells, CD31; 
fibroblasts, F140; satellite alpha7, a7. 

 

To understand the exact degree of chromatin remodeling we performed a 

differential enrichment analysis for all the cell types and time points. We 

generated the consensus tracks for all cell types (Figure 3). We classified the 

differential soluble regions into 4 categories: S2S_up (red label), regions of S2S 

with increased accessibility in the progeric; S2S_down (orange label), regions of 
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S2S with decreased accessibility in the mutant; S3_up (light blue label), regions 

of S3 with increased accessibility in the mutant and S3_down (dark blu label), 

regions of S3 with decreased accessibility in the mutant. Notably, with this 

analysis we select only genomic regions with different solubility in all analysed 

mutants versus all wt samples. 

Accordingly with the scatter plot analysis (Figure 4), we found an overall increase 

in the chromatin architecture alterations with age, confirming the dominant 

negative role of progerin on genome structure. As expected, we also found that 

heterochromatin is the most affected part pof the chromatin in all cell analysed, 

confirming the key role of Lamin A in heterochromatin maintenance. Surprisingly 

the satellite muscle stem cells show an inverse trend in solubility, with more 

regions affected in one month-old mice. Since these cells are the only population 

of quiescent cells analyzed, it is possible that the absence of the cell cycle 

determine an accumulation of defects at the chromatin level. As expected by low 

gene density in heterochromatin we found an higher number of genes in 

euchromatic regions (Figure 4). 
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Figure 4. Barplot differential analysis. A. C. E. Stacked bar plot of the percentages of genome 
affected by remodeling after filtering out the low signal > ±0.1 with the differential enrichment 
analysis. B. D. F. Stacked bar plot of the number of genes that have the TSS overlapping with 

the regions with a range of upstream 2500bp and downstream 500 bp. The color code for the 
significant regions/genes found are highlighted as follow: S2S_up (red), S2S_down (orange), 
S3_up (light blue) and S3_down (dark blue). A. prg1MCD31 vs wt1MCD31 B. prg3MCD31 vs 
wt3MCD31 C. prg1MF140 vs wt1MF140 D. prg3MF140 vs wt3MF140 E.  prg1Ma7 vs wt1Ma7 F. 
prg3Ma7 vs wt3Ma7. Abbreviations: prg, progeric; wt, wilde type; endothelial cells, CD31; 
fibroblasts, F140; satellite alpha7, a7.  
 

We checked if the remodeling happened with a preference for some specific 

chromosome. At one month no major differences across chromosomes were 

found (Supplementary Figure 1 A B C). However, at 3 months from birth all 

tissues displayed a major alteration of the Y chromosome, showing higher 

heterochromatin solubility (Supplementary Figure 1 D E F).   

 

Supplementary Figure 1 continues on the next page.  
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Supplementary Figure 1 continues on the next page.  
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Supplementary Figure 1. Percentages of affected regions divided per chromosome. Each 
chromosome percentages is calculated from the total size analyzed after the removal of the 
filtered genomic bins with a signal < ±0.1. Color scheme: S2S_up (red), S2S_down (orange), 
S3_up (light blue), S3_down. A. prg1MCD31. B. prg1MF140 C. prg1Ma7 D. prg3MCD31 E. 
prg3MF140 F. prg3Ma7. Abbreviations: prg, progeric; wt, wilde type; endothelial cells, CD31; 
fibroblasts, F140; satellite alpha7, a7. 

 

Then we checked if distinct tissues share some altered genomic regions by 

comparing the genes located in those regions (Figure 4). As shown in Figure 5 

we found very little overlap across distinct tissues, confirming our idea that 

epigenetic remodeling is tissue specific. Since available gene ontology packages 

are tailored on RNA-seq, to avoid inflated P-values, we set up a custom gene 

ontology analysis based on permutation (see methods).  
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Figure 5. Venn diagrams of altered regions in each category. A. S2S_up of all cell populations 
at 1M. B. S2S_up of all cell populations at 3M C. S2S_down of all cell populations at 1M D. 
S2S_down of all cell populations at 3M E. S3_up of all cell populations at 1M. F. S3_up of all cell 

populations at 3M G. S3_down of all cell populations at 1M H. S3_down of all cell populations at 
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3M. Abbreviations: prg, progeric; wt, wilde type; endothelial cells, CD31; fibroblasts, F140; 
satellite alpha7, a7. 
 

We used this GO analysis on differentially soluble regions (S2S_up, S2S_down, 

S3_up, and S3_down). Despite the comparable total number of genes GO was 

significantly enriched only in euchromatin regions (S2S up/down). This could be 

due to a spreading of different genes in heterochromatin (S3 up/down), not 

sufficient to enrich specific ontologies. 

Endothelial cells extracted from one month old progeric mice showed an increase 

solubility (S2S_up) in regions involved in cell localization (cell adhesion, 

locomotion, cell junction, etc), filament organization (actin regulation, 

cytoskeleton organization) cell cycle (DNA replication, mitotic cytokinesis, etc) 

(Figure 6A). Interestingly we also found a GO specific of endothelial cells 

(endothelial tube morphogenesis). In the same cells regions with decrease 

solubility did not show any reliable GO. When analyzing the same cells extracted 

in 3 months old mice, we found a trend change, with significant GO only in 

euchromatin regions with decreased solubility (S2S_down). However, we found 

some categories in common with younger mice as cell adhesion and mitosis. 

However, we also found several new pathways involved in catabolism, 

membrane transportation and signaling (Figure 6B).  

Fibroblasts of one month old progeric mice showed an increase solubility 

(S2S_up) in regions involved in membrane transport, inflammation (leukocytes 

proliferation and homeostasis, cell activation) (Figure 6C). Interestingly, 

fibroblasts, as endothelial cells, have increased solubility of euchromatin regions 

involved in cell localization (cell migration and adhesion) (Figure 6C), although 

they affect distinct genes (Figure 5). GO categories of euchromatin regions with 

decreased solubility mostly regards cell morphogenesis and organization of 

filaments (Figure 6D), suggesting a defect in cell shape. In 3 months old mice, 

as seen also in endothelial cells, significant GO of fibroblasts regards 

euchromatin regions with decreased solubility (S2S_down) (Figure 6E). The 

inflammation, seen altered in one month old mice in S2S_up is now in S2S_down, 
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but with a diversification of involved pathways (natural killer, T cell and 

macrophage regulation, interleukin regulation etc) (Figure 6E). This show how 

an early alteration of chromatin structure can, with age, have a cascade effect 

involving more and more mechanisms of the same biological process. 

 

Figure 6 continues on the next page.  
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Figure 6 continues on the next page.  
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Figure 6 continues on the next page.  
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Figure 6 continues on the next page.  
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Figure 6. Semantic analysis of Gene Ontologies calculated from the genes in remodeled 
genomic regions. A. S2S_up in prg1MCD31. B. S2S_down in prg3MCD31. C. S2S_up in 
prg1MF140. D. S2S_down in prg1MF140 E. S2S_down prg3MF140 F. S2S_up in prg1Ma7 G. 
S2S_down prg1Ma7 H. S2S_down prg3Ma7. Abbreviations: prg, progeric; wt, wilde type; 
endothelial cells, CD31; fibroblasts, F140; satellite alpha7, a7.  
 

Muscle stem cells (MuSC) of one month old progeric mice showed an increase 

solubility (S2S_UP) in regions involved in cell differentiation and muscle 

regeneration (Figure 6F), confirming their strong commitment in muscle 
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formation and suggesting a premature activation in progeric mice. On the other 

hand, these cells showed decreased solubility in regions involved in cell 

localization (Figure 6G). As other cell types described above, MuSC extracted 

from three months old progeric mice showed GO significance only in regions with 

decreased solubility (S2S_down). Also in these cells we observed an increase of 

the pathways involved with age. As seen in other cell type, we found cell adhesion 

and localization, cell cycle (Figure 6H), suggesting that this common pathways 

id directly dependent on progerin. However, some specific pathways important 

for MuSC activation and homeostasis were found (regulation of MAPK cascade, 

kinase activity, fat cell differentiation). Inflammation, that in muscle is a key 

mechanisms for satellite activation and muscle regeneration, is also highlighted 

(cytokine production, immune response, regulation of lymphocyte proliferation 

and migration).  

Using the analysis described in chapter 2, we calculated the chromatin 

compartments starting from 4fSAMMY-seq fractions, to evaluate the progerin 

effects on the overall chromatin compartmentalization (see methods). The 

chromatin compartments are called with a resolution of 250Kb for all the replicas. 

We also analyzed chromatin compartments and relative switches (A-to-B and B-

to-A) (Figure 7). In this analysis, different from the previous one, we used all the 

4 fractions together to construct the solubility maps and to call compartments. In 

line with other analysis, the amount of chromatin compartments switches change 

with age, increasing over time, also in muscle stem cells. Changes are very little 

in one month-old mice. This is expected since compartment switch requires a 

strong remodeling of chromatin. Further analysis are ongoing to integrate 

solubility data (Figure 2) and compartmentalization (Figure 7). RNA-seq of the 

same pool of cells are ongoing and tailored bioinformatic analyses will provide a 

complete picture of the genome structure and function in healthy and changes 

imposed by pathological conditions. 
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Figure 6. Compartment remodeling in different tissues. Percentage of the genome subjected 
to recompartmentalization, from A to B and vice versa per contrast. The first condition in the label 
name is the wild type starting compartment. A. CD31cells. B. F140 cells C. a7 cells  

 

4.4 Materials and methods  

Extraction and FACS sorting  

Each used tissue were isolated from sacrificed mice and digested 60/75 minutes 

in 2,4 U/ml of Dispase II (Roche, 04942078001), 2 mg/ml of Collagenase A 

(Roche, 1013586001), 0,4 mM CaCl2 (Sigma, C5670), 5 mM MgCl2 (Sigma, 

M8266), 0,1 mg/mL DNase I (Roche, 1014159001) in PBS 1X at 37°C in a water 

bath. The samples were resuspended in HBSS (Gibco, 14025-050) and 

implemented with 0,2% BSA (Sigma, A7030) to stop the enzymatic digestion. 

The cell suspension was serially filtered with 70 μm and 40 μm cells strainers 

and resuspended in HBBS +++ (0,2% BSA, 1% DNase I, 1% PenStrep 

(Euroclone, ECB3001) for the night. The day after, cell suspensions were stained  

30 minutes at 4°C with the following antibodies: muscle digestion- PB- CD45 1:50 

(eBioscience 48-0451), PB-CD31 1:50 (eBioscience 48-0311), PB-Ter119 1:50 

(eBioscience 48-5921), FITC-Sca1 1:50 (eBioscience 11-5981), APC 7integrin 

1:100 (AbLab, 67- 001-05) and sorted with BD FACS ARIA SORP for: PB-CD45-

/ PB-CD31-/ PB-Ter119-/ FITC-Sca1-/APC-7integrin+ (Muscle Stem Cell); aorta- 

PB-CD31 1:50 (eBioscience 48-0311), viability dye making TO-PRO™-3 and 

sorted with BD FACS ARIA SORP for PB-CD31+; skin- PB- CD45 1:100 

(eBioscience 48-0451), PB-CD31 1:100 (eBioscience 48-0311), PB-Ter119 

1:100 (eBioscience 48-5921), PB-CD326 1:100, PE-Vio® 770-CD140b (Miltenyi 

Biotec, 130-105118) 1:25, FITC- ER-TR7 1:100, viability dye making TO-PRO™-

3 and sorted  with BD FACS ARIA SORP for PE-Vio® 770-CD140b+. 

Chromatin fractionation 
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Sorted cell types was put in Trypsin-EDTA solution at 37°C, 5% CO2. After two 

washes in cold PBS, the cells were resuspended in 600 μL of CSK-Triton buffer 

(10 mM PIPES pH 6.8, 100 mM NaCl, 1 mM EGTA, 300 mM Sucrose, 3 mM 

MgCl2, 1mM PMSF, 1 mM DTT, 0.5% Triton X-100, with protease inhibitors). 

After 10 min incubation on a wheel at 4°C, soluble proteins and the cytoskeletal 

structure were separated from the nuclei by centrifugation at 900g for 3 min at 

4°C; the supernatant was labelled as S1 fraction. The pellet was then washed 

with an additional volume of CSK-Triton buffer, resuspended in 100 μL of CSK 

buffer (10 mM PIPES pH 6.8, 100 mM NaCl, 1 mM EGTA, 300 mM Sucrose, 3 

mM MgCl2, 1mM PMSF, with protease inhibitors) and incubated for 60 min at 

37°C with 25 U of RNase–free DNase I (Invitrogen, AM2222). To stop DNA 

digestion, ammonium sulphate was added in the CSK buffer to a final 

concentration of 250 mM. After 5 min incubation on ice, the sample was pelleted 

at 900g for 3 min at 4°C; the supernatant, containing digested chromatin 

fragments, was labelled as S2 fraction. Afterwards, the pellet was washed with 

200 μL of CSK buffer and pelleted at 3000g for 3 min at 4°C, then resuspended 

in 100 μL of CSK-NaCl buffer (CSK buffer with NaCl final concentration increased 

to 2 M) and incubated 10 min on a wheel at 4°C. At the end of the incubation, the 

sample was centrifuged at 2300g for 3 min at 4°C and the supernatant was 

labelled as S3 fraction. Finally, after two washes in 200 μL of CSK-NaCl buffer 

followed by centrifugation at 3000g for 3 min at 4°C, the pellet was solubilized in 

100 μL of 8 M urea; the final suspension was labelled as S4 fraction. 

 

DNA sonication and sequencing 

Fractions S2, S3 and S4 were diluted in TE (10 mM TrisHCl pH 7.5, 1mM EDTA 

pH 8.0) to a final volume of 200 µl and then incubated 90 min at 37°C with 6 μL 

of RNase cocktail (Ambion, AM2286), followed by 150 minutes at 55°C with 

Proteinase K (Invitrogen, AM2548) to a final concentration of 0.2 µg/µL. Next, 

DNA was isolated through phenol:chloroform:isoamyl alcohol (Sigma, 77617) 

extraction, precipitated in 70% ethanol, 0.3M sodium acetate and 20µg glycogen 

overnight at -20°C or 1 hour in dry ice and resuspended in nuclease-free water. 
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S2 from 4f-SAMMY-seq was additionally purified using PCR DNA Purification Kit 

(Qiagen, 28106) and DNA fragments in this fraction were separated using 

AMPure XP paramagnetic beads (Beckman Coulter, A63880) to obtain S2S (< 

300 bp) and S2L (> 300 bp) fractions. Beads were added to the S2 fraction in a 

0.95x (v/v) ratio to bind fragments larger than 300bp. Magnetic separation of 

beads from supernatant allowed the physical separation of larger fragments (on 

the beads) from shorter ones (in the supernatant). Larger fragments bound on 

beads were then washed in 85% ethanol, resuspended in water and magnetically 

separated from the beads (S2L fraction). Shorter fragments in the supernatant of 

the first step were bound to beads by adding a further 0.85x (v/v) beads ratio to 

the suspension; after washing in 85% ethanol and resuspension in water, they 

were also detached from beads (S2S fraction). Separation of S2S and S2L from 

S2 fraction of 10kh-SAMMY-seq S2 was also tested (C004_r1); since the 

enrichment profile of S2S and S2L was identical, this passage was later avoided 

(C002_r1, C004_r2). After DNA isolation, S2 (from 10kh-SAMMY-seq), S2L (from 

4f-SAMMY-seq), S3 and S4 (from both 10kh- and 4f-SAMMY-seq) fractions were 

transferred to screw cap microTUBEs (Covaris, 004078) and sonicated in a 

Covaris M220 focused-ultrasonicator to obtain a smear of DNA fragments 

peaking at 200 bp (settings: water bath 20°C, peak power 30.0, duty factor 20.0, 

cycles/burst 50; duration: 125 sec for S2 and S2L, 175 sec for S3 and S4). DNA 

in the fractions was then quantified using Qubit dsDNA HS Assay Kit (Invitrogen, 

Q32854) and a Qubit 4.0 fluorometer; quality control was performed by run on an 

Agilent 2100 Bioanalyzer System using the High Sensitivity DNA Kit (Agilent, 

5067-4626). Libraries were then created from each fraction using the NEBNext 

Ultra II DNA Library Prep Kit for Illumina (NEB, E7645L) and the Unique Dual 

Index NEBNext Multiplex Oligos for Illumina (NEB, E6440S); final qualitative and 

quantitative controls were performed through an Agilent 2100 Bioanalyzer 

System and a Qubit 4.0 fluorometer. Libraries with distinct adapter indexes were 

multiplexed and, after cluster generation on FlowCell, sequenced for 100 bases 

in single-end mode on an Illumina NextSeq 2000 instrument at Ospedale 
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Policlinico in Milan. A sequencing depth of at least 24.9 million raw sequencing 

reads was obtained for each sample. 

described in following section . 

DNA sequence analysis  

The results of the sequencing have been demultiplexed with bcl2fastq 

(https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-

conversion-software.html)( v2.20.0.422). The quality of sequencing was 

evaluated with fastqc36 (version 0.11.3) and trimmed using Trimmomatic37 (v0.39) 

with the following parameters: 2:30:10 for seed_mismatch, palindrome_threshold 

and simple_threshold, respectively; 4:15 for sliding window. The minimum 

threshold of 36 bp has been applied for all reads. Trimmed reads were aligned 

using BWA38 (v0.7.17-r1188) setting -n 2 -k 2 and using as reference genome the 

mm10 downloaded from refgenie. The alignment duplicates were marked and 

removed with Picard (v2.23.9) (https://github.com/broadinstitute/picard) 

MarkDuplicates. We further filtered all the reads with mapping quality lower than 

1 with Samtools39 (v 1.11). For each alignment a coverage analysis has been 

performed using Deeptools40 (version 3.5.2) bamCoverage function. The reads 

extended up to 250 bp and RPKM normalization method has been used. The 

mm10 size was considered of 2652783500 bp (value suggested in the Deeptools 

manual 

https://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.

html), from the analysis were excluded blacklisted regions obtained by ENCODE 

portal, (https://www.encodeproject.org/files/ENCFF547MET ).  The differential 

enrichment analysis between SAMMY fractions (comparison) was performed 

using spp package41, an R (v4.3) library. The reads were additionally filtered with 

‘remove.local.tag.anomalies’ and the differential enrichment were computed 

using ‘get.smoothed.enrichment.mle’ function setting ‘tag.shift = 0’ and 

‘background.density.scaling = TRUE’. For maximal comparability the analysis 

has been performed with the same parameters for all the datasets.  
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Track representation   

The Gviz42 R library was used for visualization purposes. Each profile was 

computed using the function “DataTrack”; the samples were imported using the 

function “import” of the rtracklayer library and plotted using the function 

“plotTracks” setting the value “window = 900”. Visualization of the Consensus 

tracks were using all samples in each category setting the parameter type as ‘a’ 

and overlayed using the function “OverlayTrack”. Single samples mountain plots 

were computed by setting the parameter type as "polygon". Extra elements as 

chromosome ideogram and genome axis, were displayed using the functions 

“IdeogramTrack” and “GenomeAxisTrack” respectively.  

SAMMY-seq normalization and consensus track generation  

The comparison signal before the analyses, is computed by rebinning at the 

specified windows of 150 Kb. The blacklisted regions were firstly merged together 

with the neighbors if the distance were less than 50Kb. After, all together the 

comparisons in the dataset are normalized by computing the quantile 

normalization with the preprocessCore46 library by the function 

"normalize.quantiles". Finally, the consensus track is generated by computing the 

mean of the signals and the standard error as intervals.   

Rebinning and Normalization of the comparison tracks  

The comparison signal of all samples in a dataset is rebinned at the specified 

window. The blacklisted regions were merged together with the neighbor’s 

regions if the distance were less than a specified distance. After, to avoid biased 

results due only to fractionation efficiency, all comparisons in each dataset are 

normalized together by computing the quantile normalization with the 

preprocessCore library by the function "normalize.quantiles".  

Differential enrichment analysis of SAMMY-seq comparisons 
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To compute the differential enrichment analysis of the comparisons we firstly 

rebin and normalize the tracks as described above with 150 Kb rebinning size 

and 50Kb as merging distance of the blacklisted regions. We compute the 

consensus tracks for the control condition and calculate the intervals the standard 

deviation *2 (SD*2), obtaining consensus ± SD*2 for each genomic bin. Given 

the signal distribution of the consensus bins we filtered out all the bins within a 

range value ≤ ±0.1. After the filtering, the remaining bins are assigned to the 

correspondent fraction, S2S if the control condition signal is positive and S3 if is 

negative. To find the differential enriched bins in the test condition we sub-

selected the bins in which all samples were not in the consensus ± SD*2 intervals. 

The selected bins were then put in a category defined as “up” if all the test 

samples increased the signals, and “down” if they decreased their signals. 

Therefore, we obtained 4 distinct categories S2S_up, S2S_down, S3_up, 

S3_down.  

SAMMY compartments 

For the SAMMY-seq protocols, we loaded the bin enrichment tracks (RPKM) of 

each fraction and computed the correlation between pairs of bins. Here, the 

correlation was computed between m-dimensional vectors of enrichment signals, 

where m was the number of fractions in the specific protocol (i.e., m=3). 

For each input correlation matrix, the first eigenvector was obtained through 

principal component analysis decomposition in R statistical environment 

(prcomp, stats package, center=FALSE and scale=TRUE, rotation component of 

the returned object). The sign of the first eigenvector was defined using gene 

density: the group of bins with the highest gene density was marked as "A" 

compartment (positive sign), and the group with the lowest gene density was 

marked as "B" (negative sign). Chromosome eigenvector values were divided by 

the absolute maximum value for visualization purposes. All the analyses were 

made using R. We partially reimplemented CALDER algorithm (version 1.0, 

2020-09-01) to accommodate the unusual format of SAMMY-seq data, 

maintaining the primary set of core functions (remove_blank_cols, fast_cor, 
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generate_compartments_bed, HighResolution2Low_k_rectangle, get_PCs, 

bisecting_kmeans, project_to_major_axis, get_best_reorder, get_cluser_levels), 

their default parameters and the steps intended in the original paper47 (8). 

The pairwise distance matrix binned at 250 kb. In particular, the pairwise distance 

matrix was computed using for each pair of bins the Euclidean distance (dist, 

stats package, method="euclidean") of the m-dimension vectors, where m was 

the number of fractions in the specific protocol (i.e., 3). Bins with null contacts or 

signals were removed from both matrices.  

Briefly, for each input matrix, the algorithm: computed the pairwise correlation 

matrix and identified the sub-domain boundaries; computed the binary trend 

matrix and its decomposition using ten principal components; iteratively clustered 

the domains to obtain their hierarchy; sorted the domains hierarchy based on the 

projection of the first two components; divided them into 2 groups (form the most 

closed, i.e., B to the most opened, i.e., A). For more details on the original 

CALDER procedure and the interpretation of sub-compartments please see47. 

Gene Ontology (GO) permutation test 

Available gene ontologies methods for transcriptomic analyses assume that each 

gene has the same probability of being represented. In genome analysis this is 

not the case, because we remove genes that by default that will never be 

encountered due to sequence characteristics (genes in blacklisted regions). 

Another problem to consider is: there are gene clusters with similar functions in 

the same genomic regions. These genes are often in same pathways. 

Furthermore, in SAMMY-seq, broad peaks include multiple TSS. All of these 

issues would systematically inflate the obtained P-values of the resulting GOs. 

We develop a specific analysis to address these aforementioned problems. The 

analysis consists in a permutation test, that relies on the assumption of 

exchangeability, a plausible assumption with genomic regions. The steps were: 

i) selection of all the genes that show an overlap of the TSS, in a range of 2500bp 

upstream and 500 bp downstream, with the tested genomic regions; ii) selection 

of all ontologies that incorporate the overlapping genes, keeping the count of the 
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number of genes found in each ontology (X); iii) random shuffling (permutation) 

of all the accounted genomic regions along the genome keeping the size intact 

and avoiding overlapping with the blacklisted regions by masking them. Selection 

of genes (as explained in point i) after random repositioning and counting of 

number of genes associated to the GO described in point ii (x1). This procedure 

was repeated 10.000 times (B) for each gene ontology selected at point ii 

(x1…xB). iv) Counting for each GOs number of times when by permutation we 

found the number of genes associated with a GO to be greater than the selected 

regions. v) Dividing by the number of permutation the P-values associated to 

each GOs. This can be summarized by the formula: 

𝑃 =
∑ 𝐼(𝑥' ≥ 𝑋	),
'-.

𝐵  

Where I is the function which takes the value zero when it is false, and one when 

the is true48. vi) We then correct all GOs P-value with Benjamini Hochberg 

method. This analysis has been performed in R (v4.3) using the GO database R 

library “org.Mm.eg.db” with the database updated at 2023-Mar05. 
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Chapter 5 Chromatin regulation in muscle satellite 
cells in aging.  

5.1 Abstract 

It is known that the aging process hinder the homeostatic gene expression which 

is modified by multiple factors. One of the most crucial is the three-dimensional 

conformation of the genome which at homeostatic condition models the 

spatiotemporal gene expression. One of the most dangerous effects during aging 

is sarcopenia, characterized by muscle fat infiltration and reduced skeletal 

muscle performance. Sarcopenia is normally caused by a concomitant set of 

intrinsic and extrinsic factors, among them also the reduction and impairment 

function of muscle stem cell pool. To deeply characterize chromatin changes 

along the entire lifespan, we used a cohort of mice at representative stages of 

the aging process, starting from postnatal, to geriatric stage. Our findings 

highlight how MuSCs over life exhibit a progressive modification of chromatin 

solubility that may interfere with proper pool maintenance.  
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5.2 Introduction  

Aging, is defined as a gradual deterioration of functionality that affects practically 

every organism1. In particular, one affected tissue which become pathological 

over time is the skeletal muscle. This progressive deterioration in muscle strength 

and functionality is called sarcopenia2. It is characterized by fat infiltration in 

muscles (marbling), a low-level of inflammation, increased level of ROS, 

weakened stress response capacity,  and muscle stem cell exhaustion3. All these 

factors are considered hallmarks of aging and are tightly intertwined together1. 

Muscle stem cells or muscle satellite cells (MuSCs) are a set of almost unipotent 

stem cells that lie beneath the basal lamina of the muscle4,5. At homeostatic 

conditions these cells remain quiescent; upon damage MuSCs activate and by 

symmetric and asymmetric division they both ensure pool replenishment and 

muscle restoration6–8. The cellular and molecular events which contribute to 

aging process and concluding in senescence are plenty. In fact, during aging the 

microenvironment in the muscle changes keeping the MuSCs in a continued state 

of pre-activation, which, if not reverted, ultimately lead to senescence9. 

Molecularly, aged MuSCs are subjected to the disfunction of the Notch-p53 

signaling pathway which leads to defects in cell cycle. When the signaling 

pathway is activated it start a mitotic catastrophe, which impairs the regenerative 
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and self-renewal potential of the cells10. In addition, the p38/MAPK with the Janus 

kinases (JAKs) and signal transducer and activator of transcription proteins 

(STATs) signaling (JAK/STAT) hinders the asymmetric division, impairing 

regeneration and leading to pool exhaustion11,12. Another fundamental process 

that have a great influence on the homeostasis of the cells during the aging 

process is the chromatin remodeling as its 3D structure govern cell identity and 

spatiotemporal gene expression13,14. It is already reported that during aging, there 

is a widespread loss of compaction in heterochromatin. The cells face HM loss 

such as H3K9me3 and H3K27me3 due to a progressive depletion of lamin B1 

that cause LAD detachment and gradually prompt cellular senescence1,15,16. 

Various studies described a general increase in chromatin accessibility17–20 in old 

MuSCs versus young MuSCs, accompanied by a 4% change in the general 

chromatin compartmentalization20.  

Other works, using transcriptomics and proteomics methods applied to young 

and old MuSCs, have shown a dysregulation of histone mark profile during aging 
17,21. Mass-spectrometry-base analysis in old and young MuSCs highlighted 

increased global levels of H3K9me2 and H3K27me3 in old cells, confirming Liu’s 

noteworthy paper in muscle aging22. This data, apparently in contrast with the 

heterochromatin lost, is accompanied by an increase in open chromatin marks 

during activation, such as H3 and H4 acetylation21, suggesting a remodelling in 

both euchromatin and heterochromatin compartments. However, also LaminA/C 

play a role in interaction and compartmentalization of chromatin as it is involved 

in the PcG proteins foci establishment. This interaction leads to correct position 

of PcG and ensures a correct muscle differentiation23. Genetic mutations of lamin 

A/C cause diseases called laminopathies; among them there are a class that 

affect the skeletal muscle with a dystrophy, as in the case of Emery Dreifuss 

Muscular Dystrophy (EDMD). Studies on the mouse model of EDMD showed 

that, in MuSCs, a redistribution of H3K27me3 on off-target as the cell cycle 

inhibitors (p16ink4a) drives the cell to a loss of cell identity and premature 

senescence24. Here, we will use our innovative technique SAMMY-seq on limited 

amount of MuSCs to analyze single mice as samples. We set up a systematic 
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analysis of the most representative stages of the mouse lifespan: post-natal stage 

(19-21 days after birth), adult (7 months), old (21-24 months) and geriatric (28 

months). In addition, we will integrate RNA-seq and ChIP-seq datasets to 

elucidate the epigenome remodeling in muscular aging. 

5.3 Epigenetic remodeling activity in aging.   

We investigated the chromatin remodeling on muscle stem cells (MuSCs) at four 

different life stages: postnatal (19-21 days after birth), adult (7 months), old (21-

24 months), and geriatric (28 months). We collected at least 3 samples from each 

stage (biological replicates) with the exception of the old for which we have only 

2. For each sample, we collected muscle from the hind-limb muscle, 

enzymatically digested and fluorescently stained the cells. We then used the 

fluorescence-activated cell sorting (FACS) to separate the muscle stem cells from 

the other cell types. After sorting, we performed genome-wide analyses, such as 

RNA-seq and SAMMY-seq, on all samples(Figure 1A). First of all, we did a 

differential expression analysis of the RNA-seq. In the passage from postnatal to 

adult the GSEA shown a change in epigenetic modifiers, suggesting a genome 

remodeling (Figure 1B). This could be dependent by the high number of 

activated MuSCs in postnatal age25. To investigate the epigenome regulation 

along the ageing MuSCs we analyzed some chromatin remodelers gene activity 

involved in the deposition or removal of HMs (Figure 1C). The heatmap display 

a generalized increased level of chromatin remodelers’ transcripts in the 

postnatal stage which confirm a strong remodeling in differentiation. Notably, not 

only lamin A/C but both lamin types shows an increased RNA transcription in the 

postnatal stage which suggest their implication in the MuSCs differentiation23. 

Then, chromatin remodelers are transcriptionally downregulated until the geriatric 

stage, where we found  a trend of upregulation. To better characterize the 

epigenetic differences in adult and postnatal MuSCs, we selected already 

available ChIP-seq from already published scientific papers and produced the 

missing HM which were not already done de novo for H3K36me3, H3K4me3 (as 



 167 

euchromatin marks) or H3K9me3, H3K27me3 (as constitutive and facultative 

heterochromatin marks, respectively). 
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Figure 1. RNA expression in the passage from postnatal to adult show an upregulation of 
chromatin remodeling pathways. A. Graphical abstract B. GSEA enriched patwhays from 
Reactome database26, downloaded from Gprofiler site27. C. Heatmap of chromatin remodelers 

genes for eu and hetero chromatin expressed in Z-score calculated from TPM. 

 

The already available ChIP-seq were re-analyzed from the raw data with the 

same tools as the newly produce ones to ensure maximal comparability. Then, 

we called the peaks for each HM and associate the genes affected by each 

histone mark. The association between genes were performed differently for 

each HM based on their distribution along the genome (see methods). Then, to 

evaluate the degree of remodeling we overlapped the affected genes by each 

HM between conditions (Figure 2). We found a great overlapping of euchromatin 

HMs in the two conditions (Figure 2A, B), with an overall increase of H3K36me3 

in the adult stage.  
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Figure 2. Venn diagrams of associated genes to each HM between adult and postnatal. A. 
H3K4me3 Jaccard Score 0.89 B. H3K36me3 Jaccard Score 0.7 C. H3K27me3 Jaccard Score 
0.55 D. H3K9me3 Jaccard Score 0.28.  

 

Heterochromatin marks behave differently: H3K27me3 peaks in postnatal are 

more than those in adult stage. This is in line with the increase of heterochromatin 

due to cell differentiation, necessary to repress other cell lineage genes. 

H3K9me3, mark of constitutive heterochromatin is the more variable, covering 

different genomic regions in postnatal and adult. However, the genome coverage 

is quite different with a decrease in the adult stage (38.83% in postnatal and 

32.50% in adult). To confirm this trend we performed some immunofluorescence 

on MuSCs extracted from postnatal and adult mice (Figure 3A). We confirmed a 
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slight decrease in H3K9me3 signal intensity. Overall, these analysis suggest that 

the heterochromatin undergoes to an epigenetic remodeling  in the passage from 

postnatal to adult. 

 

 
Figure 3. Immunofluorescence assay of the H3K9me3 in postnatal and adult satellite cells. 
A. H3K9me3 IF in postnatal and adult MuSCs, B. Quantification of the IF signal intensity. Data 
are shown as mean ± SEM (Standard Error of the Mean). 

5.4 SAMMY-seq profile during aging  

Considering that our technology is able to discriminate euchromatin and 

heterochromatin within a single sample and with low number of cells (see chapter 

2) we decided to analyze the chromatin accessibility in all the aging steps taking 

advantage also from the epigenetic profiles that we generated in adult and 

postnatal MuSCs. Firstly, we evaluate the quality of SAMMY-seq postnatal  

A B
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Figure 4. 4fSAMMY-seq comparison signal recapitulate postnatal chromatin accessibility 
state. Representative genomic region of chromosome 7 (chr7:4,070,191-68,514,866). A. 
Smoothed differential signal for adult ChIP-seq and SAMMY-seq. From top to bottom: H3K4me3 
(red), H3K36me3 (purple), H3K27me3 (aqua green), 4fSAMMY-seq (S2SvsS3) comparisons of 
mouse replicates (orange and light green), H3K9me3 (dark green). B. Genome-wide Spearman 
correlation heatmap of the H3K4me3, H3K36me3, H3K27me3, H3K9me3 and postnatal SAMMY-
seq samples. 

Chr. 7
10 mb 30 mb 50 mb

−0.5

0

0.5

−2

−1

0

−1

0

1

2

−0.5

0

0.5

−0.5

0

0.5

1

−0.5

0

0.5

−0.6
−0.4
−0.2
0

0.2

H
3K
4m

e3
H
3K
27
m
e3

H
3K
9m

e3
H
3K
36
m
e3

po
st
na
ta
lS
2S

vs
S3

20 mb 40 mb 60 mb

0.26

0.67

0.60

-0.87

1.00

0.88

0.86

0.33

0.63

0.57

-0.75

0.88

1.00

0.94

0.28

0.57

0.56

-0.72

0.86

0.94

1.00

po
stn
ata
l_r
ep
1

po
stn
ata
l_r
ep
2

po
stn
ata
l_r
ep
3

H3K36me3

H3K4me3

H3K27me3

H3K9me3

postnatal_rep1

postnatal_rep2

postnatal_rep3

-0.5

0

0.5

1.0

B

A



 172 

 

Comparisons S2SvsS3 with respective ChIP-seq (Figure 4A). To evaluate the 

reproducibility and the fractionation quality, we did a genome wide correlation 

analysis (Figure 4B). The correlation matrix showed a high level of reproducibility 

between samples. In addition, SAMMY-seq postnatal samples showed a strong 

anticorrelation with H3K9me3 (from -0.72 to -0.87) which confirmed the good 

performance of the technique with heterochromatin. On the other hand also the 

S2S enriched regions displayed a good correlation with H3K4me3 mark, from 

0,56 to 0,67 of range and weaker correlation with H3K36me3 mark (range from 

0.26 to 0.33, Figure 4B). Interestingly, facultative heterochromatin, marked by 

H3K27me3, correlated with open and soluble genome portion from 0,56 to 0,60. 

This suggest that H3K27me3 enriched genomic regions adopt a specific state of 

solubility. This hypothesis is in line with other studies that describe H3K27me3 

heterochromatin highly dynamic28 . Then, a similar analysis was done in the adult 

stage (Figure 5). Again we found an high level of SAMMY-seq reproducibility 

among samples, with a range from 0.83 to 0.94 (Figure 5B). However, we found 

different trends of correlations between SAMMY-seq and the HMs (Figure 5B). 

Correlation with H3K36me3 increased to a range of 0.78-0.9 while the H3K4me3 

decreased to a range of 0.40-0.44. In parallel, anticorrelations of H3K9me3 

decreased in a range from -0.39 to -0.49 (Figure 3B). H3K27me3 display no 

correlation with SAMMY-seq having a range between -0.10 to -0.14. The high 

correlations of adult and postnatal SAMMY-seq samples (Figure 5B) suggest 

that in healthy condition whereas the degree of accessibility is not greatly 

affected, the epigenetic remodeling is subjected to various smaller changes. 
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Figure 5. SAMMY-seq signal also recapitulate adult chromatin accessibility state. 
Representative genomic region of chromosome 7 (chr7:4,070,191-68,514,866). A. Smoothed 
differential signal for adult ChIP-seq and SAMMY-seq. From top to bottom: H3K4me3 (red), 

H3K36me3 (purple), H3K27me3 (aqua green), 4fSAMMY-seq (S2SvsS3) comparisons of mouse 
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replicates (orange and light green), H3K9me3 (dark green). B. Genome-wide Spearman 
correlation heatmap of the H3K4me3, H3K36me3, H3K27me3, H3K9me3, postnatal and adult 
SAMMY-seq samples. 

To analyze these changes, we deeply analyzed the SAMMY-seq of the postnatal, 

adult, old and geriatric time points by using the consensus tracks. We decided to 

compare adult vs postnatal, adult vs old and geriatric vs old. We removed the 

regions with a non-clear enrichment, filtering the regions with a mean signal less 

than ±0.1 value in the wild type, and therefore, the corresponding regions in the 

other time point. As shown in (Figure 6), the scatter plot of the S2SvsS3 

consensus tracks display different levels of solubility dispersion.  The maximum 

overlap expected if identical would be represented on the diagonal with an r2 of 

1. 
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Figure 6. Scatter plot of the consensus signal between contrast do not show an increased 
dispersion with age. The consensus signal of the 4FSAMMY-seq comparison at genome wide 
level, rebinned at 150Kb for each time point, then compared for each contrast. After discarding 
all data points below a threshold of 0.1, the red line shows the linear regression model. The color 
of each dot represents its density, from low (dark blue) to high (yellow). The lines at the top and 
right of the plot show the distribution of each consensus signal values.  A. adult vs postnatal B. 
old vs adult C. geriatric vs old.  

 

Whereas the contrast between adult vs postnatal show a r2 of 0.958 (Figure 6A), 

the lowest dispersion signal is the adult vs old with a r2 of 0.975 (Figure 6B). This 

suggests that SAMMY-seq can capture a difference due to the activated state of  
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a subset of postnatal MuSCs. The most dramatic remodeling was seen in the 

comparison between the old vs geriatric which shows the highest level of 

dispersion, suggesting a pathological change in chromatin solubility. 

 
 
Figure 7. Chromatin remodeling increase with ageing. A. Chromosome 5 is shown as 
representative chromosome. The lines in blue and red are the consensus track of 4fSAMMY-seq. 
From top to bottom adult vs postnatal; old vs adult and geriatric vs old. The lighter color shadows 
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for each track represent the standard deviation of the consensus track. Below each track pairs, 
the differential enriched regions are highlighted as follow: S2S_up (red), S2S_down (orange), 
S3_up (light blue) and S3_down (dark blue). B. Stacked bar plot of the of genome percentage 

affected by the remodeling type. Color scheme: S2S_up (red), S2S_down (orange), S3_up (light 
blue) and S3_down (dark blue). C. Stacked bar plot of the number of genes with the TSS 
overlapping with the regions with a range of upstream 2500bp and downstream 500 bp. Color 
scheme: S2S_up (red), S2S_down (orange), S3_up (light blue) and S3_down (dark blue). 

 

We then proceeded to quantify the differential enrichment for each contrast, with 

a representative chromosome (Figure 7 A). We classified the differential soluble 

regions into 4 categories: S2S_up (red), S2S increased accessibility; S2S_down 

(orange), S2S with decreased accessibility; S3_up (light blue), S3 with increased 

accessibility and S3_down (dark blue), S3 with decreased accessibility. Notably, 

with this analysis we select only genomic regions with different solubility in all 

analysed condition versus all reference samples. The postnatal vs adult contrast 

shows less genomic portion interested by a chromatin accessibility remodeling 

compared to the adult vs old comparison (Figure 7B). We found a clear trend of 

solubility alterations going from postnatal toward old and geriatric mouse. 

Considering the dispersion shown in Figure 6A, this result could appear in 

contrast. However, the two analysis are different from a technical point of view 

and local differences can be underestimated in the genome wide analysis. 

Geriatric MuSCs showed the most extensive remodeling of chromatin solubility 

affecting ~15% of the genome (Figure 7B). Interestingly, the heterochromatin, 

whose changes were shown with light and dark blue staining, was the most 

affected by the remodeling becoming generally more accessible.  Then, we 

checked the distribution of chromatin solubility changes on chromosomes, finding 

no differences between adult and postnatal or old and adult (Supplementary 
Figure 1 A B).  
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Supplementary Figure 1. Percentages affected regions per chromosome. The percentages 
are calculated from the total chromosome sizes after the filtering of the signals < ±0.1. Color 
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scheme: S2S_up (red), S2S_down (orange), S3_up (light blue), S3_down, S2S (light grey) and 
S3 (dark grey). A. adult vs postnatal B. old vs adult C. geriatric vs adult 

 

On the other hand, we found in geriatric MuSCs a preferential increase of 

heterochromatin solubility of the chromosome X (Supplementary Figure 1). 

Considering our results on Lamin A knock out described in the chapter 3 (chapter 
3 Supplementary Figure 1), where we see a similar trend, this result suggests 

an involvement of Lamin A in the geriatric MuSC chromatin remodeling. 

We then used the GO analysis with permutation on the differential soluble regions 

(S2S_up, S2S_down, S3_up, and S3_down). Since available gene ontology 

packages are tailored on RNA-seq, to avoid inflated P-values, we set up a custom 

gene ontology analysis based on permutation (see methods).  However, only 

few sets of genomic regions lead to significantly enriched GOs (Figure 8). This 

could be due to the lower density of genes in heterochromatin (S3 up/down), 

where altered regions cover larger genomic portions. In addition, the lower 

quantity of genes inside the postnatal genomic regions would not end up to 

significant GOs. Nonetheless, were the GOs were too many, we performed the 

semantic analysis with revigo29 and for each group we filtered out the GOs with 

a FDR < 0.01 (Figure 8). The Figure 8A show the biological pathways in the old 

vs adult contrast in the S2S_down gene set. The old MuSCs showed a globally 

lowered solubility in genes involved in a correct transcription and biosynthesis of 

nucleic acids which are processes fundamental for correct transcriptional 

activities and regulation1. It also showed an impairment in solubility in the cell 

surface receptors which are fundamental for a correct sensitivity for cell activation 

and differentiation processes30. Finally, it showed impairment in entering the cell 

cycle with a focus in chromosome segregation which is closely related to lamin B 

correct function31. Similar pathways were, especially those focused on 

chromosome integrity and segregation were found in semantic analysis of the 

S2S_down in geriatric (Figure 8B). In addition, in geriatric condition we found 

several terms that regards cell specification, including muscle related pathways. 

This suggest a loss of cell identity which resemble the premature ageing 
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observed in the EDMD24. In Figure 8C the semantic analysis of S2S_up in 

geriatric vs old contrast show an activation of the satellite cells yet with increased 

stresses and apoptotic pathways. 

 

Figure 8 continues on the next page.  

cell surface
receptor
signaling
pathway

cell−cell
signaling

intracellular
signal

transduction

transmembrane
receptor protein
serine/threonine
kinase signaling

pathway

cellular
response to
endogenous
stimulus

response to
endogenous
stimulus

export
from cell

nitrogen
compound
transport

protein
localization
to organelle

regulation
of

localization

cell
cycle

chromosome
segregation

mitotic cell
cycle phase
transition

regulation of regulation of
cell cycle
checkpoint

regulation
of cell
cycle

chromosome
segregation

regulation
of mitotic
spindle

checkpoint

regulation
of sister
chromatid
segregation

regulation
of spindle
checkpoint

negative regulation
of chromosome
organization

regulation
of protein
metabolic
process

regulation
of response
to stimulus

response to
stimulus

cell junction
assembly

cell junction
organization

cell
projection
organization

cilium
assembly

cilium
organization cytoskeleton

organization

plasma
membrane
bounded cell
projection
organization

regulation
of cellular
component
biogenesis

regulation of
biological
process

regulation
of cellular
process

protein
modification
by small
protein

conjugation

protein
ubiquitination

RNA
modification

biosynthetic
process

cellular
biosynthetic
process

organic
substance
biosynthetic
process

regulation
of

biosynthetic
process

regulation
of cellular
biosynthetic
process

regulation of
macromolecule
biosynthetic
process

regulation of
transcription
by RNA

polymerase II

RNA biosynthetic
process

transcription
by RNA

polymerase
II

regulation
of molecular
function

regulation of
protein binding cell development

multicellular
organismal process

neuron
death

regulation
of

apoptotic
process

regulation
of neuron
death

regulation of
programmed
cell death

negative
regulation of
biosynthetic
process

negative
regulation
of cellular
biosynthetic
process

negative
regulation
of cellular
metabolic
process

negative
regulation of
macromolecule
biosynthetic
process

negative
regulation of

nucleobase−containing
compound metabolic

process

negative
regulation of

phosphorylation

positive regulation
of macromolecule
metabolic process

positive
regulation

of
metabolic
process

positive
regulation of

nitrogen compound
metabolic process

regulation
of cellular
metabolic
process

regulation of
DNA−templated
transcription

regulation
of RNA
metabolic
process

RNA−mediated
gene silencing

response to
decreased
oxygen levels

response to
hypoxia

response
to oxygen
levels

visual
behavior

visual
learning

circadian
sleep/wake
cycle, sleep

sleep
cell surface
receptor

signaling pathway

cellular response
to growth factor

stimulusexport from cell

homeostatic
process

mitochondrial
respirasome
assembly

mitotic cell cycle phase transition

negative
regulation
of cell

communication

negative
regulation
of protein
modification
processnegative

regulation
of response
to stimulus

plasma membrane bounded cell
projection organization

positive
regulation
of cellular
process

protein ubiquitination

proteolysis
involved in
protein
catabolic
process

regulation of
cellular

carbohydrate
metabolic process

regulation
of

circadian
rhythm

regulation
of gene

expression

regulation
of growth

regulation of
hematopoietic
progenitor

cell
differentiation

regulation of
macromolecule

biosynthetic process

regulation of
molecular function

regulation of
multicellular
organismal
development

regulation of
multicellular
organismal
process

regulation of
neuron death

regulation of nucleic
acid−templated transcription

regulation of
oxidative

phosphorylation

reproductive
process

response to
oxygen levels

sleep

small
molecule
metabolic
process

A



 181 

 

Figure 8 continues on the next page.  
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Figure 8 Semantic analysis of the Gene Ontologies computed from the genes overlapping 
the remodeled genomic regions. A. S2S_down in old vs adult. B. S2S_down in geriatric vs old 
C. S2S_up in geriatric vs old.  
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Figure 9 Compartmentalization remodeling during ageing. Percentage of genome that 
change compartmentalization, from A to B and vice versa per contrast. The first condition 
(postnatal, adult, old) in the label name is the starting compartment.  

 

Using the analysis described in chapter 2, we also investigated the chromatin 

compartments in all ageing steps datasets calculating the chromatin 

compartments starting from 4fSAMMY-seq fractions (see chapter 2 methods). 
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Due to the lack in some cases of the fraction S4 we called compartments with a 

resolution of 250Kb considering only 3 fractions, S2S, S2L and S3. The genomic 

occupancy of the chromatin compartments that switch from A to B or vice-versa 

span from 0.11 to 0.85 % (Figure 9A).  As expected from previous results (Figure 
7B), the highest difference was found in the old vs geriatric comparison. 

Integration of RNA-seq and SAMMY-seq are ongoing to elucidate the functional 

impact of the observed chromatin remodeling. All together, these preliminary 

results give us the picture of chromatin remodeling during the most relevant 

stages in the lifespan.  

5.5 Materials and methods  

Mice 

Wild-type C57BL/6 mice from "The Jackson Laboratories" were used. Mice were 

bred and maintained according to the standard facility procedure (San Raffaele 

Hospital, DIBIT 1, Milan), and all the experimental protocols were approved 

accordingly by the Italian Ministry of Health (IACUC 952). Mice were sacrificed at 

different times (P19-21, 3-7 months, 21-24 months, 28 months) by cervical 

dislocation. 

Immunofluorescence on Muscle Stem Cells 

To preserve the integrity of chromatin architecture, Skeletal muscle cell 

suspension was fixed in 1:10 formaldehyde solution (50mM Hepes-KOH pH7.5, 

100mM NaCl, 1mM EDTA, 0.5mM EGTA, 11% formaldehyde - in H2O) for 9 

minutes at room temperature in mild agitation and quenched with 125 mM Glycine 

before FACS sorting. Sorted muscle stem cells (MuSCs) were adhered on poly-

L-lysine (Sigma, P8920) pre-coated coverslips for 30 minutes at RT. Then, they 

were fixed with 4% paraformaldehyde (PFA) (Sigma 30525-89) dissolved in PBS, 

for 7 minutes at RT. After 3 washes in PBS of 5 minutes each, MuSCs were 

permeabilized in 0.5% Triton X-100/PBS for 10 minutes at RT in mild agitation. 
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Blocking was performed with 5% BSA/PBS for 1 hour at RT. Samples were 

incubated with a rabbit primary antibody anti-H3K9me3 (Abcam, ab8898) diluted 

1:1000 in 50% of blocking solution at 4 °C overnight. After 6 washes in PBS of 3 

minutes each, samples were incubated with an anti- rabbit secondary antibody 

conjugated with Alexa Fluor 568 (Invitrogen, A11036) diluted 1:1000 in Blocking 

solution, for 2 hours at RT in the dark. After 6 washes in PBS of 3 minutes each, 

DNA was stained with DAPI (1:1000) in PBS for 10 minutes at RT in the dark. 

After 6 washes with PBS, coverslips were mounted on a slide with Prolong 

diamond antifade mountant (Thermo Fisher Scientific, P36961). Images were 

acquired using a Nikon Crest microscope using 40x objectives and analyzed 

using Fiji32 

Muscle Stem Cell extraction and FACS sorting  

Hind and Fore-limb muscles were isolated from sacrificed mice and digested 

60/75 minutes in 2,4 U/ml of Dispase II (Roche, 04942078001), 2 mg/ml of 

Collagenase A (Roche, 1013586001), 0,4 mM CaCl2 (Sigma, C5670), 5 mM 

MgCl2 (Sigma, M8266), 0,1 mg/mL DNase I (Roche, 1014159001) in PBS 1X at 

37°C in a water bath. The samples were resuspended in HBSS (Gibco, 14025-

050) and implemented with 0,2% BSA (Sigma, A7030) to stop the enzymatic 

digestion. The cell suspension was serially filtered with 70 μm and 40 μm cells 

strainers and resuspended in HBBS +++ (0,2% BSA, 1% DNase I, 1% PenStrep 

(Euroclone, ECB3001) for the night. The day after, cell suspension was stained 

30 minutes at 4°C with the following antibodies: PB- CD45 1:50 (eBioscience 48-

0451), PB-CD31 1:50 (eBioscience 48-0311), PB-Ter119 1:50 (eBioscience 48-

5921), FITC-Sca1 1:50 (eBioscience 11-5981), APC 7integrin 1:100 (AbLab, 67- 

001-05) and sorted with BD FACS ARIA SORP for: PB-CD45-/ PB-CD31-/ PB-

Ter119-/ FITC-Sca1-/APC-7integrin+ (Muscle Stem Cell). 

Sammy-seq protocol 
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Chromatin fractionation on sorted Muscle Stem Cells (20k-50k) was performed 

with minor adaptations to the protocol described in Sebestien et al.33. Cells were 

counted, washed in cold PBS and resuspended in cold cytoskeleton buffer CSK: 

10 mM PIPES pH 6,8; 100 mM NaCl; 1 mM EGTA; 300 mM Sucrose; 3 mM 

MgCl2; 1X Protease Inhibitor Cocktail (Roche, 04693116001); 1 mM PMSF 

(Sigma-Aldrich, 93482) supplemented with 1 mM DTT and 0,5% Triton X-100. 

After 10 minutes on a wheel at 4°C, samples were centrifugated for 3 minutes at 

900g at 4°C and cytoplasmic and nucleoplasmic components were collected as 

S1 fraction. Pellets were washed for 10 minutes on the wheel at 4°C with an 

additional volume of the same CSK buffer (supplemented with 1 mM DTT and 

0,5% Triton X-100). Chromatin was then digested by using 25 U DNase I 

(Invitrogen, AM2222) in CSK buffer for 60 minutes at 37°C. To stop digestion, 

ammonium sulfate was added to samples to a final concentration of 250 mM and, 

after 5 minutes on ice, samples were pelleted at 900g for 3 minutes at 4°C and 

the supernatant was collected as S2 fraction. After a wash in CSK buffer, the 

pellet was further extracted with 2M NaCl in CSK buffer for 10 minutes at 4°C, 

centrifuged at 2300 g for 3 minutes at 4°C and the supernatant was conserved 

as S3 fraction. Pellets were washed twice for 10 minutes on the wheel at 4°C with 

a double volume of 2M NaCl CSK buffer. Finally, after 3 minutes of 3000g 

centrifugation at 4°C, pellets were solubilized in 8M urea for 10 minutes at RT to 

denature any remaining protein and dissolve membranes and labeled as S4. 

Fractions were stored at – 80°C until DNA extraction. 

DNA extraction, library preparation and sequencing 

Fractions were diluted 1:2 in TE buffer (10mM Tris-HCl pH 8.0, 1 mM EDTA) and 

incubated with 61,5 U of RNAse cocktail (Ambion, AM2286) at 37° for 90 minutes, 

followed by 40μg of Proteinase K (Invitrogen, AM2548), at 55° for 150 minutes. 

Genomic DNA was then isolated using phenol/chloroform/isoamyl (Sigma-

Aldrich, 77617) extraction followed by back extraction of 

phenol/chloroform/isoamyl with an additional volume of TE buffer. DNA was 

precipitated by adding 20ug glycogen (Ambion AM9510) in 0.3M sodium acetate 
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with 3 volumes of cold ethanol. Precipitating DNA were then incubated for 1 hour 

in dry ice or overnight at -20° and centrifuged 30 minutes at 23000g. After a wash 

in 80% ethanol, dry pellets were resuspended in 50 μl (S2) or 15 ul (S3 and S4) 

of nuclease-free water and incubated at 4°C overnight. On the next day, S2 was 

further purified using PCR DNA Purification Kit (Qiagen, 28106) and separated 

using AMPure XP paramagnetic beads (Beckman Coulter, A63880) with the ratio 

of 0,90/0,95 to obtain smaller fragments conserved as S2S (< 300 bp) and larger 

fragments labelled as S2L (> 300bp) fractions. Both were suspended in 15 ul of 

nuclease-free water. S2L, S3 and S4 fractions were sonicated in a Covaris M220 

focused-ultrasonicator using screw cap microTUBEs (Covaris, 004078) to obtain 

a smear of DNA fragments peaking at 150-350 bp (water bath 20°C, peak power 

30.0, duty factor 20.0, cycles/burst 50). 150 seconds for S2L and 175 seconds 

for S3 and S4, 150 seconds for S4. Fractions were quantified using a Qubit 4 

fluorometer with Qubit dsDNA HS Assay Kit (Invitrogen, Q32854) and run on an 

Agilent 2100 Bioanalyzer using High Sensitivity DNA Kit (Agilent, 5067-4626). 

Libraries were created from each sample using NEBNext Ultra II DNA Library 

Prep Kit for Illumina (NEB, E7645L) and Unique Dual Index NEBNextMultiplex 

Oligos for Illumina (NEB, E6440S); libraries were then qualitatively and 

quantitatively checked on Bioanalyzer 2100 using High Sensitivity DNA Kit 

(Agilent, 5067- 4626). Libraries with distinct adapter indexes were then 

multiplexed and, after cluster generation on FlowCell, sequenced for 50 bases in 

paired-ends mode on an IlluminaNovaSeq 6000 instrument at the IEO Genomic 

Unit in Milan or in one-end mode at the Division of Pathology of Fondazione 

IRCCS Ca' Granda- Ospedale Maggiore, Policlinico of Milan. A sequencing depth 

of at least 25-35 million reads was obtained for each sample. 

RNA extraction, library preparation and sequencing 

10-20K of Muscle Stem cell from the FACS-sorting were stabilized in 200μl of 1- 

Thioglycerol/Homogenization Solution of the Maxwell® RSC miRNA Tissue Kit 

(Promega, AS1460) and stored frozen at - 80°C for later total RNA automated 

purification using Maxwell® RSC 48 Instrument (Promega, AS8500) according to 
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manufacturer's instructions. Total RNA was quantified by Qubit 4 fluorometer with 

Qubit RNA HS Assay Kit (Invitrogen, Q32852) and assessed by Agilent 2100 

Bioanalyzer using Agilent RNA 6000 Pico Kit (Agilent, 5067-1513) to inspect RNA 

integration. For each sample, 1 ng of total RNA was used to construct strand- 

specific RNAseq library with SMARTer Stranded Total RNA-Seq Kit - Pico Input 

(Takara, 634487). The yield and quality of the libraries were evaluated on Agilent 

2100 Bioanalyzer using High Sensitivity DNA Kit (Agilent, 5067-4626). RNAseq 

libraries were sequenced on the Illumina NextSeqTM 550 system at the 

sequencing facilities of Humanitas or Division of Pathology of Fondazione IRCCS 

Ca' Granda-Ospedale Maggiore, Policlinico of Milan to a minimum target of 40 

million for 75-100 bases in paired-ends mode. 

Chromatin Immunoprecipitation, library preparation and sequencing 

To preserve the integrity of chromatin architecture, Skeletal muscle cell 

suspension was fixed as described in the above paragraph 

("Immunofluorescence on Muscle Stem Cells") before FACS sorting. Isolated 

Muscle Stem cells derived from different mice of the same age were pulled 

together and stored at -80°C. For ChIP analysis, 1.5 million fixed cells (derived 

from 15-20 mice) were thawed on ice and resuspended in fresh SDS buffer (10 

mM Tris-HCl pH 8.0, 2 mM EDTA, 0.25% SDS, 1X PMSF, 1X protease inhibitors) 

and sonication was performed using a Covaris M220 focused-ultrasonic with 

following settings: water bath 7 °C, peak power 75.0, duty factor 10.0, 

cycles/burst 250, duration: 720 seconds. A small aliquot of chromatin (5ul) was 

purified and used for a chromatin shearing check. For IP, equilibration buffer 

(10mM Tris pH 8.0, 233mM NaCl, 1.66% Triton X-100, 0.166% DOC, 1mM 

EDTA, 1X PMSF, 1X protease inhibitors) was added to the shared chromatin, 

followed by the incubation with 2 μg of the antibody of interest on a rotating wheel 

at 4°C overnight. A minimum of 1% of the chromatin was stored as an input 

sample. Primary antibodies: H3K9me3 (Abcam, ab8898), H3K36me3 (Abcam, 

ab9050)). The next day, protein G beads (Life Technology,1004D) were added, 

and the samples were incubated for an additional 2 hours on the rotating wheel 
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at 4°C. Samples containing the beads-antibody-protein/DNA complexes were 

washed twice with IP buffer, high-salt IP buffer (500 mM NaCl in IP buffer), RIPA-

LiCl buffer (10 mM TrisHCl pH 8.0, 1mM EDTA, 250 mM LiCl, 0.5% DOC, 0.5% 

NP-40, 1x PMSF, 1x Protease inhibitors), and TrisHCl pH 8,0. Between each 

wash, the samples were incubated for 5 minutes at 4 °C on the wheel. Finally, 

protein-DNA complexes were eluted with the Elution buffer (10 mM TrisHCl pH 

8.0, 5 mM EDTA, 300 mM NaCl, 0.4% SDS). The cross-links were reverted by 

incubating the samples (included the input previously stored) overnight at 65°C. 

DNA was isolated through standard phenol/chloroform extraction, followed by 

precipitation and resuspension in 10 mM Tris-HCl pH 8.0. Fractions were 

quantified using Qubit 4 fluorometer with Qubit dsDNA HS Assay Kit (Invitrogen, 

Q32854) and run on an Agilent 2100 Bioanalyzer using High Sensitivity DNA Kit 

(Agilent, 5067-4626). Libraries were created from each sample using NEBNext 

Ultra II DNA Library Prep Kit for Illumina (NEB, E7645L) and Unique Dual Index 

NEBNextMultiplex Oligos for Illumina (NEB, E6440S); libraries were then 

qualitatively and quantitatively checked on Bioanalyzer 2100. Libraries with 

distinct adapter indexes were then multiplexed and, after cluster generation on 

FlowCell, sequenced for 50 bases in paired-ends mode on an IlluminaNovaSeq 

6000 instrument at the IEO Genomic Unit in Milan. A sequencing depth of at least 

30 million reads was obtained for each sample. 

Literature data processing 

The ChIP-seq data have been downloaded from the following publicly datasets 

available: GSE123725 (H3K4me3, H3K27me3)24, GSE103163 (H3K27me3, 

H3K4me3)34, GSE47362 (H3K27me3, H3K36me3, H3K4me3)35. 

All the data were downloaded as raw data with fastq-dump and re-analyzed as 

described in following section . 

DNA sequence analysis  
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The results of the sequencing have been demultiplexed with bcl2fastq 

(https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-

conversion-software.html)( v2.20.0.422). The quality of sequencing was 

evaluated with fastqc36 (version 0.11.3) and trimmed using Trimmomatic37 (v0.39) 

with the following parameters: 2:30:10 for seed_mismatch, palindrome_threshold 

and simple_threshold, respectively; 4:15 for sliding window. The minimum 

threshold of 36 bp has been applied for all reads. Trimmed reads were aligned 

using BWA38 (v0.7.17-r1188) setting -n 2 -k 2 and using as reference genome the 

mm10 downloaded from refgenie. The alignment duplicates were marked and 

removed with Picard (v2.23.9) (https://github.com/broadinstitute/picard) 

MarkDuplicates. We further filtered all the reads with mapping quality lower than 

1 with Samtools39 (v 1.11). For each alignment a coverage analysis has been 

performed using Deeptools40 (version 3.5.2) bamCoverage function. The reads 

extended up to 250 bp and RPKM normalization method has been used. The 

mm10 size was considered of 2652783500 bp (value suggested in the Deeptools 

manual 

https://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.

html), from the analysis were excluded blacklisted regions obtained by ENCODE 

portal, (https://www.encodeproject.org/files/ENCFF547MET ).  The differential 

enrichment analysis between SAMMY fractions (comparison) was performed 

using spp package41, an R (v4.3) library. The reads were additionally filtered with 

‘remove.local.tag.anomalies’ and the differential enrichment were computed 

using ‘get.smoothed.enrichment.mle’ function setting ‘tag.shift = 0’ and 

‘background.density.scaling = TRUE’. For maximal comparability the analysis 

has been performed with the same parameters for all the datasets.  

Track representation   

The Gviz42 R library was used for visualization purposes. Each profile was 

computed using the function “DataTrack”; the samples were imported using the 

function “import” of the rtracklayer library and plotted using the function 

“plotTracks” setting the value “window = 900”. Visualization of the Consensus 
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tracks were using all samples in each category setting the parameter type as ‘a’ 

and overlayed using the function “OverlayTrack”. Single samples mountain plots 

were computed by setting the parameter type as "polygon". Extra elements as 

chromosome ideogram and genome axis, were displayed using the functions 

“IdeogramTrack” and “GenomeAxisTrack” respectively.  

ChiP-seq Peak calling and annotation  

Before using the ChIP-seq each sample, downloaded and created was previously 

analyzed for quality evaluation with ChIC tool43. Only samples which passed the 

quality test were used for peak calling and analysis. Peak calling for H3K4me3 

datasets was performed using macs244 (v2.2.7.1) with options -q 0.05 to filter 

peaks with q-values higher than 0.05. For broad ChIP-seq data (H3K9me3, 

H3K36me3, H3K27me3), peak calling was performed using epic245 (0.0.52), 

setting the FDR ≤ 0.05. Unwanted chromosomes were removed with the option -

d '(GL|JH|M)'. The following settings were used for each histone mark analysis: 

H3K36me3 peaks --bin-size and --gaps-allowed were left to auto-mode; 

H3K27me3, the --bin-size 200 and --gaps-allowed 3; H3K9me3 --bin-size 900 --

gaps-allowed 30. ChIP-seq peaks are annotated on the GENCODE vM25 basic 

gene annotation. For H3K4me3 and H3K27me3 histone marks, peaks were 

associated with the genes on ±1Kb around TSS. For H3K36me3, we selected 

genes based on the presence of peaks inside gene bodies. Finally, for H3K9me3, 

genes are selected if the TSS are inside a peak. Peak biological replicas, where 

present, were merged to ensure reliability. 

SAMMY-seq normalization and consensus track generation  

The comparison signal before the analyses, is computed by rebinning at the 

specified windows of 150 Kb. The blacklisted regions were firstly merged together 

with the neighbors if the distance were less than 50Kb. After, all together the 

comparisons in the dataset are normalized by computing the quantile 

normalization with the preprocessCore46 library by the function 
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"normalize.quantiles". Finally, the consensus track is generated by computing the 

mean of the signals and the standard error as intervals.   

Rebinning and Normalization of the comparison tracks  

The comparison signal of all samples in a dataset is rebinned at the specified 

window. The blacklisted regions were merged together with the neighbor’s 

regions if the distance were less than a specified distance. After, to avoid biased 

results due only to fractionation efficiency, all comparisons in each dataset are 

normalized together by computing the quantile normalization with the 

preprocessCore library by the function "normalize.quantiles".  

Correlation Analysis  

The smoothed differential signal enrichment is rebinned with Deeptools 

"multiBigwigSummary" at 50Kb. Genome-wide Spearman correlations between 

SAMMY-seq samples and ChIP was computed using Deeptools using the 

function "plotCorrelation" with the following settings: "--corMethod spearman -p 

heatmap --skipZeros".  

Differential enrichment analysis of SAMMY-seq comparisons 

To compute the differential enrichment analysis of the comparisons we firstly 

rebin and normalize the tracks as described above with 150 Kb rebinning size 

and 50Kb as merging distance of the blacklisted regions. We compute the 

consensus tracks for the control condition and calculate the intervals the standard 

deviation *2 (SD*2), obtaining consensus ± SD*2 for each genomic bin. Given 

the signal distribution of the consensus bins we filtered out all the bins within a 

range value ≤ ±0.1. After the filtering, the remaining bins are assigned to the 

correspondent fraction, S2S if the control condition signal is positive and S3 if is 

negative. To find the differential enriched bins in the test condition we sub-

selected the bins in which all samples were not in the consensus ± SD*2 intervals. 

The selected bins were then put in a category defined as “up” if all the test 
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samples increased the signals, and “down” if they decreased their signals. 

Therefore, we obtained 4 distinct categories S2S_up, S2S_down, S3_up, 

S3_down.  

SAMMY compartments 

For the SAMMY-seq protocols, we loaded the bin enrichment tracks (RPKM) of 

each fraction and computed the correlation between pairs of bins. Here, the 

correlation was computed between m-dimensional vectors of enrichment signals, 

where m was the number of fractions in the specific protocol (i.e., m=3). 

For each input correlation matrix, the first eigenvector was obtained through 

principal component analysis decomposition in R statistical environment 

(prcomp, stats package, center=FALSE and scale=TRUE, rotation component of 

the returned object). The sign of the first eigenvector was defined using gene 

density: the group of bins with the highest gene density was marked as "A" 

compartment (positive sign), and the group with the lowest gene density was 

marked as "B" (negative sign). Chromosome eigenvector values were divided by 

the absolute maximum value for visualization purposes. All the analyses were 

made using R. We partially reimplemented CALDER algorithm (version 1.0, 

2020-09-01) to accommodate the unusual format of SAMMY-seq data, 

maintaining the primary set of core functions (remove_blank_cols, fast_cor, 

generate_compartments_bed, HighResolution2Low_k_rectangle, get_PCs, 

bisecting_kmeans, project_to_major_axis, get_best_reorder, get_cluser_levels), 

their default parameters and the steps intended in the original paper47 (8). 

The pairwise distance matrix binned at 250 kb. In particular, the pairwise distance 

matrix was computed using for each pair of bins the Euclidean distance (dist, 

stats package, method="euclidean") of the m-dimension vectors, where m was 

the number of fractions in the specific protocol (i.e., 3). Bins with null contacts or 

signals were removed from both matrices.  

Briefly, for each input matrix, the algorithm: computed the pairwise correlation 

matrix and identified the sub-domain boundaries; computed the binary trend 

matrix and its decomposition using ten principal components; iteratively clustered 
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the domains to obtain their hierarchy; sorted the domains hierarchy based on the 

projection of the first two components; divided them into 2 groups (form the most 

closed, i.e., B to the most opened, i.e., A). For more details on the original 

CALDER procedure and the interpretation of sub-compartments please see47. 

Gene Ontology (GO) permutation test 

Available gene ontologies methods for transcriptomic analyses assume that each 

gene has the same probability of being represented. In genome analysis this is 

not the case, because we remove genes that by default that will never be 

encountered due to sequence characteristics (genes in blacklisted regions). 

Another problem to consider is: there are gene clusters with similar functions in 

the same genomic regions. These genes are often in same pathways. 

Furthermore, in SAMMY-seq, broad peaks include multiple TSS. All of these 

issues would systematically inflate the obtained P-values of the resulting GOs. 

We develop a specific analysis to address these aforementioned problems. The 

analysis consists in a permutation test, that relies on the assumption of 

exchangeability, a plausible assumption with genomic regions. The steps were: 

i) selection of all the genes that show an overlap of the TSS, in a range of 2500bp 

upstream and 500 bp downstream, with the tested genomic regions; ii) selection 

of all ontologies that incorporate the overlapping genes, keeping the count of the 

number of genes found in each ontology (X); iii) random shuffling (permutation) 

of all the accounted genomic regions along the genome keeping the size intact 

and avoiding overlapping with the blacklisted regions by masking them. Selection 

of genes (as explained in point i) after random repositioning and counting of 

number of genes  associated to the GO described in point ii (x1). This procedure 

was repeated 10.000 times (B) for each gene ontology selected at point ii 

(x1…xB). iv) Counting for each GOs number of times when by permutation we 

found the number of genes associated with a GO to be greater than the selected 

regions. v) Dividing by the number of permutation the P-values associated to 

each GOs. This can be summarized by the formula: 
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𝑃 =
∑ 𝐼(𝑥' ≥ 𝑋	),
'-.

𝐵  

Where I is the function which takes the value zero when it is false, and one when 

the is true48. vi) We then correct all GOs P-value with Benjamini Hochberg 

method. This analysis has been performed in R (v4.3) using the GO database R 

library “org.Mm.eg.db” with the database updated at 2023-Mar05. 

RNA-seq sequencing read analysis  

The sequenced reads were analyzed with the pipeline nf-core/rnaseq version49 

(v3.8). Quality reports of raw reads and preprocessed reads are generated by 

FastQC36 (v0.11.9). Quality trimming and adapter clipping are performed by 

cutadapt50 (v3.4) and trimmed reads were cleaned of ribosomal RNA (rRNA) 

sequences with SortMeRNA51 (v4.3.4) considering all the available databases. 

Reads were then mapped with STAR on mouse genome build mm10. Gene and 

transcript were quantified using Salmon52 on GENCODE (M25)53 Basic gene 

annotation filtered for only protein coding genes. Differential expression analyses 

were performed with DESeq254. 

Gene Set Enrichment Analysis (GSEA)  

The gene list has been ranked according to Pvalue and log2 fold change (-log10( 

Pvalue ) * sign( log2fc ) ). To compute the GSEA55,56 (v4.1.0) plot we used gmt 

files available at g:profiler227 site and computed with parameters: Number 

permutations: 1000; Collapse: No; seed 42; Enrichment Statistic: classic; Max 

size: 500; Min size:15. This has been done equally for each datataset. 
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Chapter 6 Conclusions 
Chromatin organization, which involves multiple levels of folding, is fundamental  

for the homeostatic regulation of the cells1. Perturbations in chromatin folding 

influence the transcriptional regulation of the genome. Variations of chromatin 

structure can be physiological, for example, those accompanying lineage 

specification or stress response. On the other hand, diseases are often 

associated to a pathological remodeling of chromatin that can be tissue specific 

or systemic. One of the most studied phenomenon of pathological chromatin 

remodeling is the cellular senescence2. The induction of cellular senescence can 

be triggered by many factors, such as DNA damage accumulation, critically short 

telomeres, mitochondrial defects, ROS and nutrient imbalance3,4.  

The induction of cellular senescence lead to chromatin remodeling, which 

consequently lead to a metabolic cellular reprogramming5. However, other 

factors could play a role triggering cellular senescence and/or chromatin 

remodeling. The lamin A for example, a fundamental nuclear protein which lies 

beneath the nuclear membrane, have a role in DNA damage response, telomeres 

correct capping, and correct distribution of the H3K27me3 heterochromatin mark 

on target genes, all genomic features of cellular senescence3,4. With our 

3fSAMMY-seq technology we already demonstrated that we can observe early 

heterochromatin solubility changes in HGPS cells6. As the solubility is different 

from the classical notion of chromatin interaction introduced by other techniques, 

we can now use it as a new parameter to better understand chromatin function6. 

However, 3fSAMMY-seq has the limitation in capturing only heterochromatin. In 

recent years we further improve the method, using a milder DNAse digestion and 

fragment separation by size, and we successfully isolate also euchromatin 

fragments (Figure 1, Chapter 2). With the new improved method, the 4fSAMMY-

seq, we can describe both euchromatin and heterochromatin solubility starting 

from 10K cells. Moreover, with a dedicated bioinformatic algorithm we can 

successfully reconstruct chromatin 3D organization in compartments and sub-

compartments (Figure 2, Chapter 2). These advancements in the technique were 
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crucial during my PhD thesis to study chromatin dynamics during early 

senescence in various cellular models. While the vast majority of existing 

quantitative bioinformatics tools were developed for RNA-seq analyses, few tools 

are available for DNA analysis, and none of them specifically suited for SAMMY-

seq which capture ~80% of the genome in large domains. Thus, during my thesis 

I modified and/or developed various tools and pipelines to study SAMMY-seq 

data. Working on multiple biological samples we created a consensus track to 

simultaneously evaluate at the genome-wide level the mean solubility and the 

variability due to the biological samples. This facilitated the identification of 

genomic regions mostly affected by chromatin remodeling. Then, to 

systematically compare different conditions, we set up a method to point out the 

genomic regions that change their solubility. To analyze the role of lamins A and 

B and their detrimental effect on chromatin, we used the immortalized mouse 

embryonic fibroblast (MEF) generated starting from mice knockout for Lmna gene 

and double knockout for Lmnb1 and Lmnb2. We found that both lamin, A and B, 

are required for the heterochromatin maintenance (Figure 3, Chapter 3). 

Moreover, our data showed that lack of lamin A or lamin B has different effects 

on the genome solubility, with Lamin B affecting larger genomic regions. To 

investigate the regions differently enriched in mutants we used a modified version 

of the Gene Ontology (GO) analysis. Existing GO methods for transcriptome 

analysis assume that all genes are equally likely to be represented in the dataset. 

This is not true for the entire genome, for multiple reasons: genes could be 

included in a blacklisted region, excluded from the analysis; each broad SAMMY 

peak can include several genes that could confound the analysis; gene clusters 

with similar functions normally share the genomic localization, increasing the GO 

p-value. Hence, we set up a permutation analysis on the SAMMY-seq genomic 

regions selected to find the significant enriched GOs. From the GO analysis of 

affected chromatin regions, we found different roles in regulation of euchromatin 

with Lamin B involved in chromatin structure and Lamin A in cell specification 

(Figure 5, Chapter 3). It is already reported that the relative amounts of lamin A 

and B influences the differentiation in a specific lineage differentiation7. Mouse 
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embryonic fibroblasts (MEF), used in this project are still plastic cells, able to 

differentiate in different lineages8. Our data confirmed the idea that different 

laminA/laminB ratios can trigger distinct lineage specification.  We extensively 

studied the link between chromatin solubility and transcription. Although GO 

analysis of differential solubility regions and of differential expressed genes 

(DEGs) overlap, showing several common pathways, we found that only few 

DEGs are localized in regions with different solubility (Supplementary Figure 2, 

Chapter 3). However, when we specifically analyzed the metaprofile of the mutant 

DEGs, we found a clear solubility change in the downregulated genes, congruent 

with the transcriptional switch (Figure 8, Chapter 3). From the technical point of 

view, this incongruity could be explained by differences in genomic resolution of 

the two experiments (see methods, Chapter 3). On the other hand, these data 

suggest that while the solubility create large windows of opportunity in several 

genomic regions, only in some cases this will determine the transcriptional switch. 

Using the same bioinformatic tools that I developed in the project described in 

Chapter 3, we also analyze different tissues of progeric mice at distinct stage of 

disease: early (1 month-old mice) and advanced (3 months-old mice). We 

selected the three mainly affected tissues in progeria: aorta, skin, and striated 

muscles. From these tissues, we extracted the cells derived from mesenchymal 

lineage, normally more affected by progerin: endothelial cells (CD31+) from aorta, 

dorsal skin fibroblasts (F140+), and muscle satellite cells (a7+)9. In progeric cells 

we found a progressive increase of chromatin remodeling during age in 

endothelial CD31+ cells and in skin fibroblasts (Figure 3, Chapter 4). This trend 

was not observed in muscle stem cells (MuSC) which show an opposite trend. 

However, other analysis based on chromatin compartmentalization or by the 

consensus dispersion showed also in MuSC the same trend (Figure 2 and 6, 

Chapter 4). This discrepancy can be justified in the nature of MuSC, quiescent, 

not cycling cells, that are activated upon muscle damage10. In one month-old 

mice the MuSC enter the quiescent forming the stem cell niche, while in adult 3 

months-old mice MuSC are stably quiescent. The effect that we see only in the 

solubility profile can be due to a higher sensibility of chromatin to progerin in that 



 204 

stage. Further analysis on transcriptome derived from the same cells will 

elucidate if those solubility changes are accompanied by transcriptional 

deregulation.  Analysis of GO terms associated to solubility changes suggest that 

remodeled regions are cell type specific (Figure 5, Chapter 4). However, we also 

found some biological pathways altered in all cellular types such as cell adhesion 

and localization and cell cycle, suggesting that these pathways could be directly 

dependent on progerin.  

In my last project, we analyzed the chromatin evolution during muscle 

physiological ageing to understand the development of sarcopenia. Sarcopenia 

is characterized by muscle fat infiltration and reduced skeletal muscle 

performance11. Among the reasons that cause sarcopenia, muscle stem cell 

exhaustion is one of the most important ones12. To achieve the aim of the project, 

we used muscle satellite cells with four most representative life stages: postnatal, 

adult, old and geriatric. The close relationship between aging and epigenetic 

mechanisms has been highlighted in adult stem cells13,14. In muscle, aging-

associated alterations of stem cell niche affect extrinsic signals that sustain 

MuSC activation and differentiation15. In parallel, MuSC-intrinsic molecular 

mechanisms might provoke normal muscle stem cell function failure16. Extrinsic 

and intrinsic causes determine a change in the MuSC niche during aging, with a 

decline of genuine, stemness-like quiescent satellite cells17. Molecularly, it has 

been reported a general increase in chromatin accessibility in geriatric MuSC18–

21. We first compared postnatal stage, characterized by an intense MuSC activity 

required for muscle growth and adult in which mostly MuSC are quiescent. We 

found few solubility changes, compatible with differentiating stage of these cells 

(Figure 7, Chapter 5). On the other hand, analysis of adult, old and geriatric stage 

highlighted a progressive change in the chromatin solubility, especially affecting 

the heterochromatin (Figure 7, Chapter 5).  

The GO terms analysis associated to solubility changes shown that aged MuSCs 

a decreased solubility in the cell receptors which can obstruct the activation and 

differentiation processes22 (Figure 8, Chapter 5). In geriatric stage show a global 

picture which resemble the loss of cell identity already described in our previous 



 205 

work on MuSC premature ageing caused by lack of lamin A 23 (Figure 8, Chapter 

5).  

The transcriptional results show us an increased level of chromatin remodelers’ 

transcripts in both postnatal and geriatric. In the first stage, this confirm a 

chromatin remodeling in differentiation. In the latter, we found a trend of 

upregulation which suggest a dysregulation of the homeostatic quiescence 

processes (Figure 8, Chapter 5). Overall, our results propose chromatin solubility 

as a new epigenetic parameter that can describe chromatin function. Moreover, 

here we presented several insights that chromatin remodeling may facilitate the 

triggering of senescence in a cell specific manner.   
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