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1 Introduction

In this paper we propose a general prescription to write extremal functions for supergravity

solutions with a holographic dual. The extremal functions depend on equivariant parameters

for the expected abelian isometries of the background and a set of parameters describing

the geometry. The extremization with respect to the parameters gives the free energy of

the supergravity solution, that is holographically equal to the central charge or free energy

of the dual conformal field theory. On the quantum field theory side, this construction is

the gravitational dual of extremizing the central charge (in even dimensions) or the sphere

partition function (in odd dimensions) in order to find the exact R-symmetry. There is a



huge literature about extremal functions for black hole, and more generally for holographic
solutions. Extremal functions of known black holes and black strings can be expressed in
terms of gravitational blocks [1] and strongly suggest that some equivariant localization is
at work. Following [2] we will indeed express the extremal functions in terms of a universal
geometrical quantity, the equivariant volume of the internal supergravity geometry.

Given a symplectic orbifold M, of real dimension 2m with a toric! action of T™ = U(1)™
generated by the Hamiltonian H, we can define the equivariant volume

V= (1)m/M2 o5 (1.1)

T = w+2nH is the equivariant Kéhler form. In addition to the vectors of the fan V4,

where w
it depends on the m equivariant parameters €; for the torus T™ action and on the Kéhler
parameter A4 of the geometry. The latter enter in the expansion of the Kéhler class in a
sum of Chern classes of toric line bundles
_[;;]_;)\Acl(LA)- (1.2)

The equivariant volume of toric orbifolds is a basic topological object. It can be computed
using a fixed point formula and it is only sensitive to the degenerations of the torus T™ near
the fixed points. In the applications to holography one encounters metrics that are not Kéahler
and not even symplectic, but with underlying spaces that are in fact symplectic toric orbifolds
and one can nevertheless define V and use it to compute topological quantities that ultimately
will not depend on the metric. In many examples when the underlying geometry is not strictly
symplectic or toric we can also define a natural generalization of V by a sort of analytical
continuation.? Given these properties, the equivariant volume is the gravitational analogue
of quantum field theory quantities like 't Hooft anomalies and supersymmetric indices that
are invariant under small deformations of the theory once symmetries and matter content are
fixed.? All these quantities are insensitive to the UV behaviour and allow to compute IR
observables by extremization principles. In [2] it was argued therefore that all extremization
problems in gravity can be reformulated in terms of the equivariant volume. It was shown
that this is true for volume minimization [7, 8] (dual to a [9] and F-maximization [10]) and
the formalism of GK geometry [11, 12] (dual to ¢ [13] and Z-extremization [14]). It was
proposed that this should be true more generally.

As a partial check of this proposal, it has been shown in [2] that all known extremization
problems for branes wrapped over a sphere or a spindle in type II and M theory can be
reformulated in terms of an extremal function

F=V®(\4,ep), (1.3)

'The toric assumption is not essential, but is made for two reasons. Firstly, if a geometry has a symmetry
group that contains T = U(1)™, we need to extremize over the corresponding m — 1 equivariant parameters
not fixed by supersymmetry, otherwise the critical point found would not be a bona fide extremum of the
gravitational action. Secondly, in this case the fixed point theorem simplifies to a sum of contributions
at isolated fixed points. More generally, it would be straightforward to proceed assuming a T* = U(1)*
Hamiltonian action, with 1 < k < m.

2This happens for geometries where the fan is not strictly convex or geometries involving S*.

3Tt was already anticipated in the literature that we can extract 't Hooft anomalies from supergravity using
equivariant co-homology. See for example [3—6].



subject to a set of flux constraints

av®»
oAg

vMy = — (1.4)

where M4 are the integer fluxes of the relevant RR or M theory antisymmetric form, obeying
D VitM4=0. (1.5)
A

v is a normalization constant* that depends on the type of brane and the dimension of the
internal geometry, and V() is the homogeneous piece of V of degree v in A4. We also note
that from (1.4) and (1.5) it follows, using the properties of V, that the constraint

vie-b = (1.6)

must be satisfied. Although it is not an independent relation, one can regard this as a
topological constraint necessary in order to impose the flux quantization, analogously to
the GK formalism [11]. The integers o and /3 depend on the type of brane. By a simple
scaling argument, it was found that

D3 branes in type IIB: a=2, =2

M2 branes in M theory: a=3, =3

M5 branes in M theory: a=3, =2 (1.7)
D4 branes in massive type ITA: a=5, =3

D2 branes in massive type IIA: a=5, B=4.

The extremal function F' can be normalized such that its extremum reproduces the central
charge of the dual field theory in even dimensions and the logarithm of the sphere partition
function in odd dimensions and we will use this convention in the following.

In this paper we show that this construction also holds for known extremization problems
for branes (partially or totally) wrapped over four-dimensional toric orbifolds. We need to
generalize our construction by introducing higher times in the equivariant volume

V= ()™ / oSt Lms My (Lay ) (L) (1.8)
MQ'm

where Ag4,..4, are symmetric tensors and a sum over repeated indices A; is understood.
Higher times have appeared only recently in the literature [15] and are still poorly studied.
The previous expression has a large gauge invariance and many parameters are redundant.
As we will see, the equivariant volume with higher times contains all the information needed
to fully capture the topological properties and the quantization of fluxes for a very large
class of supergravity solutions.

The above construction relies on even-dimensional toric orbifolds. For supergravity
backgrounds AdS; x My with odd-dimensional internal space M} the geometry to consider is

4A priori there is also an overall normalization constant in the definition of F, again depending on the
type of brane and the dimension of the internal geometry, however this can always be absorbed in a rescaling
of the A4, using the homogeneity of V(). For simplicity, in the examples we will indicate only the type of
brane as a subscript in v, omitting the dependence on the dimension of the internal geometry.

-3 -



the cone over My, as familiar from holography. This cone is often a non-compact toric Calabi-
Yau, or, in the case of supersymmetry preserved with anti-twist, a non-convex generalization.®
When M. is even-dimensional, we consider the equivariant volume of the compact M), itself.
Some M5 brane solutions have a Zy symmetry that allows to cut into half the number of
fixed point and consider an equivalent problem for a non-compact Calabi-Yau (half of the
manifold). This was done in [2] for M5 branes wrapped on a spindle.

Our approach naturally incorporates the GMS construction based on GK geometry [11, 12]
as well as the recent localization technique based on Killing spinor bilinears in M theory [17].
Indeed, we will show that, for M5 solutions with even-dimensional Mg or Mg, our approach
is effectively equivalent to the one in [17]. In particular, all the geometrical constraints that
must be imposed on a case-by-case analysis in order to find the free energy in [17] appear
naturally in our construction as an extremization with respect to all the parameters that are
not fixed by the flux quantization conditions. On the one hand, this is a nice confirmation
of our prescription. On the other hand, our approach for the toric case is more general, it
covers in a simple and universal way the even and odd-dimensional cases, it naturally extends
to massive type IIA solutions, which are not yet covered by the previous techniques, and
expresses everything in terms of the extremization of a universal quantity, the equivariant
volume of the associated geometry, without referring to supergravity quantities. We are
confident that when the explicit case-by-case supergravity analysis will be performed for the
missing backgrounds it will confirm our general prescription.

The paper is organized as follows. In section 2 we define the equivariant volume of
a general toric orbifold and we review some of its basic properties following [2]. We also
introduce the concept of higher times, which are necessary to parameterize all the fluxes
supported by a given geometry. In section 3 we analyse M theory solutions with M5 brane
flux. In section 3.1 we consider solutions associated with M5 branes wrapped over a four-
dimensional orbifold My. We show that the free energy can be obtained by extremizing the
appropriate term in the equivariant volume and that the result agrees with the field theory
computation in [2], obtained by integrating the anomaly of the M5 brane theory over My.
In section 3.2 we consider solutions that are potentially related to M5 branes wrapped on a
two-cycle in My. By extremizing the appropriate term in the equivariant volume, we reproduce
known results in the literature and extend them to predictions for solutions still to be found.
In section 3.3 we compare our prescription with the recent approach based on Killing spinor
bilinears in M theory [17]. In section 4 we consider solutions in type II string theory with
geometries that are fibrations over a four-dimensional orbifold My. In section 4.1 we consider
massive type ITA solutions associated with D4 branes wrapped around a four-dimensional
toric orbifold My and derive the free energy proposed in [18]. In section 4.2 we consider
massive type ITA solutions associated with a system of D4/D8 branes, with the former
wrapped on a two-cycle in M. Extremizing the appropriate term in the equivariant volume
we are able to reproduce the gravitational free energy computed from the explicit solution. In
section 4.3 we consider type IIB solutions with D3 flux associated with S3/Z, fibrations over
My, which could potentially arise as the near-horizon limit of a system of D3 branes wrapped
on a two-cycle of the four-dimensional orbifold My. This example can be covered by the

®See for example [16].



formalism of GK geometry, that we here extend to the case of fibrations over orbifolds, using
the equivariance with respect to the full four-torus T%. In this and other previous examples
with M5 branes, we observe that, in order to obtain the correct critical point, one should
allow all the equivariant parameters not fixed by symmetries to vary, thus rectifying some
previous results in the literature. We conclude with a discussion of open problems and future
perspectives. Three appendices contain technical aspects of some computations.

2 Equivariant volume with higher times

In this section we review and generalize some basic facts about the equivariant volume of
general toric orbifolds that will be used in the following. We adopt the conventions of [2], to
which we refer for more details and a review of equivariant localization.

We consider a toric orbifold My, with an action T™ generated by the m vector fields 0y, .
We introduce m equivariant parameters €7, with I = 1,...,m, and the vector field § = €;0y,
and consider equivariantly closed forms o satisfying

(d + 27ig)a” = 0. (2.1)

We will be dealing with varieties and orbifolds of different dimension and, when needed, we
will also write " to specify the dimension. Each toric orbifold comes equipped with a fan,
a collection of integer vectors V4 that exhibits M, as a T™ fibration over a convex polytope

P={yr €R™ [y Vi > Aa}. (2.2)

On each of the facets yIVIA = A4 a particular circle in T™ degenerates, as familiar from
toric geometry.% Each facet defines a toric divisor D4, with associated line bundle L4, and
an equivariant Chern class

T (L) = c1(La) + 2merpst = d(pitder) + 2merpst (2.3)

The functions p? play the role of moment maps. We will not need their explicit expression,
which is discussed in [2], but we will frequently use the relation

S VAT (La) = —er, (2.4)
A

which is the equivariant version of the co-homological statement ) 4 V[Acl(L 4) = 0 following
from the toric equivalence relations among divisors > 4 VIAD 4 = 0.

The equivariant volume with higher times (1.8) can be computed with a fixed point
formula that can also be taken as an operative definition

eTT Iya

V(Adpap €0) = (1) doctl,
« Yo

a=1

(2.5)

6Notice that for toric varieties the vectors V* are primitive, while in the case of generic symplectic toric

orbifolds they are not. We can define for each V4 a primitive vector V4 and a positive integer n4 such that

v =naV4. The symplectic divisor D4 has a local Z,, , singularity. For more details we refer to [2].



where vy, are the fixed points of the T™ action, d, the order of the orbifold singularity at
Ya, € the equivariant Euler class of the tangent bundle at y, and

= Aacci(La)...ci(La,)- (2.6)
k=1

To use the localization formula we assume that Ms,, has only isolated orbifold singularities.

This is the case if the fan is the union of m-dimensional cones {V41, ..., V4=}.7 Each cone
a = (Ay,...,A,) corresponds to an isolated fixed point y, with a local orbifold singularity
of order

do = |det(VAr, ..., VA, (2.7)

The restriction of the Euler class is given by

6T|ya = H C’]IT(LA«;)
A;€a

Ya

The restriction of the Chern classes at the fixed points y, are computed as follows [2]
A
{—EIdUaI iftAea

ci(Lal,, = 0 ifA¢ o

(2.9)

where U j4 are the inward normal vectors to the facets of the cone o defined and normalized
by the relation

Udi VA =d,oi; . (2.10)

Now the fixed point formula gives

e’
V(Aa.a.€)= Y, ———, (2.11)

m  eUL?
a=(A1,.,Am) Ao Hi:l do,

where 7, is the restriction of the equivariant form (2.6) to the fixed point y, and explicitly reads

m LA m LA .Ufj
Ta = _Z)\Ai (6 d B ) + Z )\AiAj <6 d < > (6 d > +... (212>
) « e o

ij=1

The equivariant volume can be expanded in power series of the higher times,

V()\Al...Akv 6]) = Z V(n) ()\Al...Aka 6[) Y (213)

n=0

where we denote with V(™ the homogeneous component of degree n in the set of higher
times A4,..a, for all k. V™ is a polynomial in €; in the compact case, while it can be a
rational function of €¢; when Ms,, is non-compact.

In the examples in [2] only single times (A4) were used. In this paper we will use single
and double times (A4 and Asp). As a general rule, to fully capture the parameters of the

"We can always resolve the fan by adding vectors if this condition is not met.



supergravity solution, we need a number of independent parameters at least equal to the
number of fixed points. Functionally, indeed V is a function of €; and 7, only. Notice that
there is a large redundancy in the description with higher times. Due to the relation (2.4),

7T is invariant under the gauge transformations

AvAp o A A
Ay Appr = My Ay, + ﬁl(r B 7 k1) Ay Ay = Aay.a, + et (2.14)

where 5}41'“‘4’“ is symmetric in the indices Ay ... Ag. Notice that the subgroup with € 1,6’?1‘“‘4’“ =

0 acts only on Aa, .4, , without mixing times of different degree and it is the only transfor-
mation allowed for single times. In the Calabi-Yau case, where the vectors in the fan lie on a
plane identified by the direction I = C'Y, say VCAY = 1,% this subgroup can also be written as

(A1 _

Ag... A
A1 A, = AAya, T (ecy V) € k) ; (2.15)

generalizing the results in [2]. Many times can be therefore gauge-fixed to zero.

As an example we give some more explicit expressions about the four-dimensional case.
These will be heavily used in the following since in this paper we will mostly consider
geometries that are fibrations over four-dimensional compact orbifolds My. For clarity of
notation, we will use capital letters (VA,A, I) for the higher-dimensional geometry and
lower-case letters (v{, a,i) for My. The fan of a four-dimensional compact orbifold is just a
collection of two-dimensional integer vectors v®, a = 1,...,d, that define a convex polygon in

a+1)

the plane. The fixed points are associated with the cones (v®,v , where we take a counter-

clockwise order for the vector and identify cyclically vo+?

= v®. Notice that in the compact
four-dimensional case the number of fixed points is equal to the number of vectors in the fan

and we can use the index a to label both. With the notations of [2] we define the quantities

a €-uf a €-uj
€ = € = 5 216
! da,aJrl ’ 2 da,aJrl ( )
where u¢ and u$ are the inward normals to the cones (v%,v**!). Explicitly
det(v*t!, € det(v?, e
€l = ( ) €y = (v?, ) (2.17)

~ det(ve, vatl) det(v®, vatl)’

where € = (€1,€2). In particular, the equivariant Euler class of the tangent bundle at a
fixed point y, reads

et], =eies, (2.18)

and the order of the local orbifold singularity is

dgq+1 = det(v?, vt (2.19)
The restriction to the fixed points of the equivariant Chern classes c] (L,) can be written as
¢i (La)l,, = ~(0apel + dapi163). (2.20)

8In this paper ecy will be identified with €3 in all examples.



The fixed point formula (2.11) for the equivariant volume specializes to the expression®’

d e*)\aﬁ‘f*)\a+16§+>\a,a(6‘11)2+2/\a7a+16‘1165+/\a+1,a+1 (€5)%+...

V()\al...aky 67;) = Z da atl 6%6% . (221)

a=1

In the following, we will also need the intersections matrix of divisors, which is independent
of the equivariant parameters €1, e [2]:

da}1,a ifb=a-1,
1 .
ifb=a+1,
Dy:Dy=Duy= | L)Ly ={ T (2.22)
My — g ifb=a,
a—1,a@a,a+1
0 otherwise .

3 AdSj3; and AdSs solutions in M theory

We start by analysing M theory solutions with M5 brane flux and show that the free energy
can be obtained by extremizing the appropriate term in the equivariant volume. The case
of M5 branes wrapped on a spindle have been already studied in [2]. Here we focus on
geometries that are fibrations over a four-dimensional toric orbifold My.

3.1 AdSj3 X Mg solutions

In this section we consider AdSs x My solutions in M theory, where'® Mg is an S* fibration
over the four-dimensional orbifold My. Examples of this form have been found in [19] and
further discussed in [18, 20, 21]. They are obtained by uplifting AdSs x My solutions of
D = 7 maximal gauged supergravity to eleven dimensions. These AdS3 x Mg solutions can
be interpreted as the near-horizon geometry of a system of M5 branes wrapped around My.

We need first to identify the topological structure of the underlying geometry. We will
focus on the case of toric My. The eight-dimensional geometry Mg is not strictly toric, but it
admits an action of T% = U(1)%. If d is the dimension of the fan of My, there are 2d fixed
points of the torus action obtained by selecting a fixed point on My and combining it with
the North and South pole of S*. We will assume that there is a Zy symmetry of the fibration
that identifies the North and South pole contributions to the fixed point formula. In this
situation we can consider half of the geometry, a C? fibration over My with the geometry
of a non-compact toric CY,4. One can understand the appearance of the fibre C? from the
transverse geometry of the brane system, which is C? x R, with S* embedded inside. We
then consider a CY4 with fan generated by the vectors

Ve=(%1,t,), VI =(0,0,1,0), V2 =(0,0,1,1), (3.1)

where v*, a = 1,...,d, are the vectors of the fan of My and t, are integers specifying the
twisting of C2 over M. When supersymmetry is preserved with anti-twist [22], the toric
diagram is not convex and it does not strictly define a toric geometry. We will nevertheless

9Notice that there is no summation on @ in the exponent.
1%Tn general, M is itself an orbifold.



proceed also in this case, considering it as an extrapolation from the twist case. The non-convex
case is obtained from the formulas in this paper by sending v* — oc®v?, where ¢® = +£1.

In addition to the metric, the supergravity solution is specified by the integer fluxes of
the M theory four-form along all the non-trivial four-cycles. The toric four-cycles of the
geometry are My itself, the sphere S* and P! fibrations over the toric two-cycles ¥, C My.
In our half-geometry, the sphere S* and P' c S* are replaced with copies of C? and C.
All together, the toric four-cycles correspond to all the possible intersections of the toric
divisors D4 N Dp and we can therefore introduce a matrix of fluxes M4p. As usual, not
all toric divisors are inequivalent in co-homology. The relations }_ 4 VIAD 4 = 0 imply that
the matrix of fluxes satisfy

> VAMap =0. (3.2)
A

We are now ready to formulate our prescription for the extremal function. For M5
branes in M theory, as discussed in [2] and in the introduction, we define the free energy
to extremize as

F=V® 4, Aap,er), (3.3)

and impose the flux constraints!!

0
AAB

UMs (2—(5AB)MAB:—8 V(2)(/\A,)\AB,6]). (3.4)
Here the index A = 1,...,d + 2 runs over all the vectors of the fan of the CY,, whereas
we reserve the lower-case index a = 1,...,d for the vectors of the fan of the base My. On
the other hand, the index I = 1,2,3,4 runs over the equivariant parameters of the CYy,
and we will use i = 1,2 for the directions inside M. We have added a (2 — d4p5) factor in
the equation for the fluxes for convenience. It is easy to see using (2.11) that this equation
can be equivalently rewritten as

82

— VO (AN .
radE (A, AaB,€r), (3.5)

Uns Map =
and one may wonder if we really need higher times. The answer is yes. As we will discuss
later, with only single times the previous equation cannot be solved.!'?

In the rest of this section we will show that I’ reproduces the expected extremal function

and its factorization in gravitational blocks discussed in [2, 18].

3.1.1 The equivariant volume with double times

The T* torus action on the CYy has d fixed points, each one corresponding to a cone in the
fan with generators (V@, Vot v+l yd+2) ¢ =1, ... d. In particular, there is a one-to-one
correspondence between these fixed points and the ones of the base orbifold Mly; for the

'We put a bar on top of vas5 to stress that we are using a half-geometry. To have the correct normalization
of the free energy when using half of the geometry, the parameter vas5 must be rescaled as in formula (3.47),
as we will discuss more extensively in section 3.2.

20ne would need to restrict the t, in order to find solutions.



a1y and they

latter the fixed points correspond to two-dimensional cones of the form (v, v
can be labelled by the index a. The order of the orbifold singularities associated with the

fixed points of CY4 and My also match:
daai1.dstare = |det(Ve VAL VL var2) | — |det (v, v )| = dgat1 - (3.6)

Therefore, the fixed point formula for the equivariant volume with higher times of CYy
takes the following form:

T

e a
V )\Aa AA , € = - T4, 37
( By €I) za: doas ™ (3.7)
Here, 7, is the restriction to the fixed point a of the form (2.6)
Ta= (2 Aacl (La)+ D Mgl (La)el (Lp) || (3.8)
A A,B a
while at the denominator we have the restriction of the Euler class e
4 4 4 4 4

™, = (L) e L) ] (Lawn) o (Lasa) | (3.9)

The restrictions of the Chern classes can be computed using (2.9). The inward normals to
the faces of the cone generated by (Vg, Vii1, Vi1, Vaio) are

U® = (uy,0,0),
(uf,0,0)
Ut = (u%,0,0),
(( a )ul + ( a+1 )UQ y Qa,a+1, a,a+1) 5
Ud+2 = (_tau% - ta—i—lug 9 07 da,a—‘rl) )

where u¢ and u$ are the two-dimensional normals to the cone (v%,v®*1). Using the notations
introduced in (2.16) we find

a5 g
et (Lay1)|, = _ezl;f)lz =€,

(L], =0, b#aa+l, (3.11)
el (La)|, = —(ta = 1€} = (tay1 — 1)e§ — €5 + 4.

4
1 (Lat2)], = ta€l + tas1€5 —ea,

where for simplicity we have used Einstein notation for the sums over the index i = 1, 2.
We can write the equivariant volume of the CY4 as an integral over the base orbifold

My of four-dimensional equivariant forms with €3 and €4 as parameters. Let us denote with

T the two-dimensional torus associated with ¢; and s, and let ] (L,) be the equivariant

,10,



Chern classes associated to the restrictions of the line bundles L, to the base My. We can
then take advantage of the one-to-one correspondence between fixed point of the CY4 and
fixed points of My and, using (2.20), we can rewrite (3.7) as

T
eT
V()\A,)\AB,EI) = —_—, (3.12)
My Cay1Cayo
where
Z)\ACA+Z)\ABCACB,
A,B
Co=c1(Ly), a=1,....d,
(3.13)

Cigr1 = —€3+ €4+ Z -1) Cl a) s

Cd+2 = —€4 — Ztacl
a

Notice the relations 3, v ¢l (Lq)
The homogeneous component of degree a of the equivariant volume with higher times

= —¢; and Y4 VA Ca = —¢;, following from (2.4).13

can be expressed as

Tyo (o)
V(a)()\A,)\AB7€I):/ L: Ba
M

3.14
4 ! Cqr1Cayo ( )

)
a daaa+1 6(11 6%

()

where we have defined B; ' to be the restriction over the a-th fixed point of My of the

following equivariant form:

Ty«
gl ___ )" |
a' Cd+1 Cd+2 (3 5)
For later reference we derive the relation between B((za) and BC([B )
8
’ (@[ ) ] =
) — 7o) = “ Cas1Casa)la] 3.16
B! (Cay1Car2)la B! ! (Cat1Cai2)la [( a+1Ca2)] } (3.16)
B
al)a B 5 5
_ 5? (B) (1= ta)ed + (1 — tup1) el — e+ €)= (taed + tuprel — eg) o

When « is even this formula holds in terms of absolute values and the signs must be fixed
separately. This will not be the case for the computation of this section, so we postpone
the discussion about the signs to section 4.1.

3.1.2 Solving the flux constraints

The flux constraints (3.4) reads

ov®

Upms (2—0ap) Map = —

ap —(2-0ap)

CaCp1t

LALBT 3.17
My Cay1Cayo (3.17)

13The second relation, which can be checked by direct computation, is obviously the restriction of

4
ZA VIA a (La) = —er to My.
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or, equivalently

(1)
N CaCpt By’ - (CaCB)la
Tore Man — — st E . 3.18
M5 AB My Car1Cato —~  daa+1 €] €5 (3.18)

Let us focus on the A, B € {1,...,d} sector. Using (2.20) we find

B
VM5 Ma,aJrl = _d a+1 5
a,a
B(l) a B(l) a—1
Uags Moy = — oA ol “ (3:19)

da,a+1 6% dafl,a 6(1171 ’
Unis Mgy =0 when b#a,a+1,a—1.
These equations give constraints on the fluxes but they have a very simple solution

B((ll) = —va)N,

(3.20)
Mab = NDaba

where Dy, is the intersection matrix of divisors (2.22) and N is any integer that is a multiple
of all the products dq—1,q4 da,a+1-
This can be seen as follows. By combining the first two equations we obtain

€} sl
Ma,a = Ma,a+1 —5 + Ma,a—l Ta—1> (321)
and using the relation [2]
€% ea ! d
1 2 - _ afl,aJrl (3 22)
da,a+1 €5 da—1,a 6Lll_1 da-1,a daat1 7
we can rewrite this as
€9
Ma,a da,aJrl + Ma,afl dafl,aJrl = eTll (Ma,aJrl da,a+1 - Ma,afl dafl,a) . (323)
2

Given that the fluxes M4p and the orders of the orbifold singularity d, .41 are just integers,
the only way that this equation can be true for general values of € is for both sides to vanish.
This implies that M, is proportional to the intersections Dy, given in (2.22). We can then
conclude that the only solution to equations (3.19) is (3.20). Notice that there is just one
independent flux associated with the M,;, components of the flux matrix. This was to be
expected since this corresponds to the M theory four-form flux on S*.

The values of the remaining entries of the matrix of fluxes Msp are related to the
fibration parameters. By substituting B((ll) = —Upys N in (3.18) we find

CaCgr)la
MABZNZ (A B)|

=N | CaCg=N> 5t Dy. 3.24
3 e Rl SUCERPILELE (324

c,d
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In the last step we have used (2.22) and for convenience we have defined t§ as

% Aed{l,...,d}
th=<St.—1 A=d+1 . (3.25)
—1t. A=d+2

Given that the t, are integers, the fluxes Mp in (3.24) are all integers.
We note that the expression (3.24) for M 4p satisfies the relation required to be considered

a matrix of fluxes,

> VAMup =0. (3.26)
A

This can easily be verified by noting that

¢ I=i=1,2
SV = {Z ! . S Dy =0, (3.27)
A a

The simplest solution to the equations

Ta(Aa(er), Aap(er), er)

B = = —Uys N (3.28)
¢ (Cat1Cat2)la
is to set Ag41,d42 = —% Ups N while setting all the other A4 and Aap to zero. We note that

in general there exist no solutions to these equations with A4ap = 0 for all A, B, meaning that
the inclusion of the higher times to the equivariant volume is necessary. This stems from the
fact that when A4p = 0 only d—1 of the 7, are independent: using the gauge invariance (2.15)

4
Ad = da+ Z’y[(EgVIA —€1), (3.29)
I=1

three out of the d + 2 Kéahler moduli A4 can be set to zero.

3.1.3 The extremal function and c-extremization

We are now ready to compute the extremal function

Fler) = VO (\aler), \apler),er) - (3.30)

The dual field theory is supposed to be the two-dimensional SCFT obtained compactifying
on My the (2,0) theory living on a stack of N M5 branes. The gravitational extremization
problem should correspond to c-extremization in the dual two-dimensional SCFT.

A general comment that applies to all the examples in this paper is the following. The
free energy must be extremized with respect to all but one of the parameters €7 in order
to find the critical point. The value of the remaining parameter must be instead fixed by
requiring the correct scaling of the supercharge under the R-symmetry vector field £. This

,13,



is familiar from the constructions in [7, 8, 11, 12]. In our case, we extremize with respect
to €4, €1 and €9 with €3 fixed to a canonical value.14
Using relations (3.14) and (3.16) we find
(3)

a

a da,a—‘rl 6[11 6% ' (331)

1
BB = 6(—ﬁME, NP (1= t)e§ 4+ (1 — tar1)ed — ez + 64)2(tae'f + tor1€9 — 64)2 ,

F:

which matches the form of the conjectured formula of [18] in terms of gravitational blocks [1].1°

To make contact with the dual field theory, we can also write our result in terms of an
integral of equivariant forms over the base My as follows:

1_
F=-z Vs NS/ Cir1Clyo

:—71/M5N/ 3—64+Z 1—t,) Cl ) (€4+Zt c; (L )2.

This expression correctly reproduces the M5 brane anomaly polynomial integrated over the

(3.32)

four-dimensional orbifold My as computed in [2].!6

Let us briefly review the comparison with field theory, referring to [2] for details. The
anomaly polynomial of the 2d SCFT is obtained by integrating the eight-form anomaly
polynomial of the six-dimensional theory over My, which, at large N, gives

N3
A= [ A= [ a) a@?, (3.33)
M4 M4

where F; are the generators of the U(1) x U(1) € SO(5)gr Cartan subgroup of the (2,0)
theory R-symmetry. The ¢;(F7) can be decomposed as

c1(Fr) = Arer(FE) = vt (er(La) + 27ptier(T5) ) (3.34)

where F' }%d, J1, J2 are line bundles associated with the 2d R-symmetry and the two global
symmetries coming from the isometries of Mly. They correspond to background fields for
the two-dimensional theory with no legs along My. Substituting (3.34) in (3.33) and setting
c1(J;) = eic1(F3Y), leads to the equivariant integral

v N?
Aszq = %Cl(F}%d)2 ﬂcl(FJ%d)Q/M (A1 = piel (La))* (A2 — pseq (La))” - (3.35)

Y Notice that the free energy is homogeneous of degree two in the parameters e;, so it makes no sense to
extremize with respect to all parameters. The specific numerical value of the equivariant parameter fixed by
supersymmetry depends on the setup considered as well as on conventions. In this paper we will not fix the
numerical values of this parameter from first principles, but rather we will show that this can be absorbed by
the parameter v.

5The convention for the sign of the free energy in [18] is the opposite of ours.

16 Attention must be paid when performing the comparison since the symbol F' refers to the central charge
here, while it refers to the integral of the anomaly polynomial in [2] (see also (3.35)).
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Preserving supersymmetry with a twist requires c1(F1) + c1(Fe) = 2¢1(F3Y) — 3, e1(La)
which gives [2]

A1+ Ay =2+ det(W)e), pd +p5 =1+ det(W,v?), (3.36)

where € = (€1, €2) and W € R? is a two-dimensional constant vector.!'” The two-dimensional
central charge ¢, is extracted from (3.35) and should be extremized with respect to €; and Ay
subject to the previous constraint. We then see that the extremization of the gravitational
free energy is equivalent to c-extremization under the identifications

Al = ¢4, Ao = €3 — €4, p‘f:ta, ngI—fa, W =0, (3.37)

where we set e5 = 2 for convenience. The free energy F' is actually homogeneous of degree
two in €7. To match the free energy with the central charge we have to set 6?,)7}5\45 = —6.
The case of anti-twist is similar and can be discussed by taking a non-convex fan for My.
The most general supersymmetry condition is now c1(Fy) + ¢1(Fy) = 2¢1(FAY) — 3, 0% (Ly)
where o, = 1 as discussed in [18] and requires

A+ Ay =2+ det(W,e), P+ p5 = 0q + det(W,0%). (3.38)

This case can be just obtained by formally sending v* — o%v® everywhere, implying €} — o%¢§
and € — o%tled.

3.2 AdSs5; X Mg solutions

In this section we consider a generalization of the family of M theory solutions found in [23]
and further studied in [24]. Their geometry is AdSs x Mg where Mg is a manifold obtained
as a P! bundle over a four-dimensional compact manifold By, that can be either a Kihler-
Einstein manifold (B = KE4) or the product of two KEs (By = ¥1 x X3). The bundle is
the projectivization of the canonical bundle over By, P(K @ Q). Here we consider the case
where By is replaced by a generic four-dimensional toric orbifold My. Notice that generically
Mg can be an orbifold,'® like in the solutions discussed in [25]. In addition to recovering the
gravitational central charges of the existing solutions, we give a prediction for these more
general backgrounds that are still to be found. These solutions are potentially interpreted
as M5 branes wrapped over a two-cycle in My (see for example [3, 4]).
The topological structure of the underlying geometry can be encoded in the fan

Ve=(v%1), V=001, V*?2=(0,0,-1), a=1,...,d, (3.39)

where v® are the two-dimensional vectors in the fan of M. We will use a capital index A to
run over ¢ = 1,...,d, d+ 1 and d + 2. That this is the right geometry can be seen looking
at the symplectic reduction presentation C4*2//G of Mg. Here G is the subgroup of the
torus T2 = U(1)%+? generated by the GLSM charges

S Qhvit=o, k=1,...,d—1. (3.40)
A

IV can be gauged away, see [2].
18Using our formalism, we could easily study the case that Mg is a generic toric six-dimensional orbifold. It
would be interesting to understand what kinds of orbifold admit an holographic interpretation.

,15,



We can choose the following basis of GLSM charges
(.->a0),  (0,...,0,1,1), (3.41)
a

where ¢f are the d — 2 charges for My, >, ¢?v¢ = 0. The first d — 2 vectors define the
canonical bundle K of My with an extra copy of C. The final charge vector projectivizes
it and gives indeed the geometry we are interested in:

P(K & 0). (3.42)

We need also to specify the integer fluxes of the M theory four-form along all the non-
trivial four-cycles. There are d + 2 toric four-cycles in the geometry, associated with the
divisors D4. The divisors D, are P! fibrations over the toric two-cycles ¥, C My, while
D41 and Dgyo are copies of My sitting at the North and South pole of P!, respectively. All
together, they define a vector of fluxes M 4. The relations ) 4 VIAD 4 = 0 imply that not
all toric divisors are inequivalent and that the vector of fluxes satisfies

S ViAMa=0. (3.43)
A

Since we are dealing with M5 branes in M theory, we define the free energy as in section 3.1
F=V® (4, Aap,er), (3.44)

and, since now we have a vector of fluxes, we impose the flux constraints

vars My = —af\AV@)()\A,)\AB,q). (3.45)

Differently from the case discussed in the previous section, for these geometries there is
no general field theory result for the central charge of the dual four-dimensional SCFTs. Our
results here can therefore be seen as a prediction for the general form of the off-shell central
charge, which presumably can be obtained by integrating the M5 brane anomaly polynomial
on a suitable two-cycle inside Mg, or using the method of [3]. In order to compare with the
existing literature, we will therefore consider in some detail a number of explicit examples
of My, including KE4 and ¥; x Yo, but also other examples for which there is no known
supergravity solution, nor field-theoretic understanding. The equations to be solved in the
extremization problem typically lead to finding the zeroes of simultaneous polynomials of high
degree and are therefore not manageable. For this reason, we will proceed by making different
technical assumptions to simplify the algebra. One such general assumption is the existence of
a Zo symmetry acting on the P! fibre, as we discuss below. Furthermore, we will occasionally
restrict to non-generic fluxes in order to simplify the otherwise unwieldy expressions.

If we restrict to a class of geometries with a Zs symmetry that exchanges the North
and South poles of P!, we can consider a simplified geometry obtained by cutting P! into
half. We thus obtain a non-compact Calabi-Yau geometry given by the canonical bundle
over My. The corresponding fan is obtained by dropping V42

Ve = (1), VI =(0,01), a=1,...,d. (3.46)
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Notice that this is a (partial) resolution of a CY3 cone where V4*! is associated with a
compact divisor. Supergravity solutions with Zs symmetry have been considered in [23, 24]
where they correspond to set the parameter called c to zero. Effectively, the Zo symmetry
reduces by one the number of independent fluxes we can turn on, thus simplifying the
calculations. Notice that the on-shell equivariant volume V for the half-geometry is half of
the one for the total geometry. The relation between the parameters to use in the two cases,
in order to have the same normalization for the free energy, is the following

Uas =2 oy, (3.47)

where Tjs5 is the correct one for half-geometries.

Notice that we introduced single and double times in (3.45). We can immediately
understand the need for higher times. In a compact geometry, V(Q)()\ A) with only single
times would vanish identically.'” As we will discuss later, the double times are generically
necessary also when imposing the Zs symmetry in order to have enough parameters to

solve the equations.?’

3.2.1 Geometries with Zs symmetry

We consider first geometries with Zo symmetry. Cutting Mg into half we consider the
non-compact CY3 specified by the fan (3.46). The I = 3 condition in (3.43) gives

Mgy ==Y M,, (3.48)

thus fixing the flux along My in terms of the other fluxes. The I = 1,2 conditions in (3.43)
give two linear relations among the M,, leaving a total number d — 2 of independent fluxes.
Notice that geometries without Zs symmetry have one additional independent flux, as we
discuss later.

The fan is the union of d cones (V' V! V4+1) and we see that the number of fixed
points is the same of that of the base My. It is then easy to write the equivariant volume
with higher times as a sum over the fixed points of My

e’
V= E , 3.49
o daat1€fe5(e3 — €f — €3) (3.49)

where

3 3 3
Tg = Z)\A CTII‘ (L) + Z)\AB C’]lr (La) CTII‘ (Lp) (3.50)
A A,B a

or, more explicitly,

2 2
Ta = —Aa€] —Aat1€5 —Ag11(€3— €7 —€5) 4+ Aaa(€7]) +2)‘a,a+1€lll€%+)‘a+l,a+l(Eg) (3.51)
9 .
+2(Aa,d+ 161+ Aar1,a+1€5) (€3 — €] —€5) +Aay1,dr1(€3—€f —€3)".
YFor a compact geometry V) (A4) = —13 s AarB st ci(La)ci (L) = 0 since it is the integral of a

four-form at most on a six-dimensional manifold. In the non-compact case, this condition is evaded and
V@ (X\4) is a rational function of e;. See [2] for details.
2%Tn the case of compactification on a spindle they are not necessary [2].
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Notice that the equations (3.45) are not solvable with only single times. Mgy = -3, M, # 0
while, for Agp = 0,

OV 5~ Aaeh = Naiach = Aarales = of = )

_8)\(1 1 d , 1€a€a
+ a,a+1%1%2 (3'52)
— / <Z )\aC’]lr(La) — >\d+1 (63 + ZC'I]T(LQ))> = 0,
My a a
being the integral of a two-form at most.
The equations (3.45) explicitly read
) oM €1, n 6%_17'(1_1
1% = ,
Mo dq a+16?€%(63—6‘f—€§) da—1,0¢] " €§ (es—€l 7 —e571)
(I1) —yM5ZM (3.53)

a dq a+1€152

These equations are not independent. In particular, (I1) follows from (I).2! The equations
(I) can be written as

Ta

Btgl—)l - B(gl) = da,a+1€%§M5Ma, B(l) = —

a

(3.54)

a a '

It is then clear that these equations can be solved for 7,, but one “time”, say 77, remains
undetermined. Our prescription is to extremize the free energy with respect to all parameters
that are left undetermined after imposing the flux constraints. In this case then we extremize

VO (e, 1) (3.55)

with respect to €1, €2 and 7, with €3 set to some canonical value, fixed by the scaling of the
supercharge under the R-symmetry vector field. In the next subsection we will parameterize
the free energy in a more convenient way.

3.2.2 The extremal function for geometries with Zs symmetry

We can write the general form of the extremal function for geometries with Zo symmetry.
Let us define

TS
oYy = Z Al (La)+ > Aapcl (La) el (L), (3.56)
A,B
21Using Za v* M, = 0 and the vector identity v;'e$ +vf+1eg = ¢;, one derives ¢€; Za Py EZELGS ey = =0

from (7). Then, summing over a in (I), and using the previous identity:

v ZM Z " +€2 . Z
M5 - )
da,at1€5€5(€3 — €5 — €5) da,a+1€7€3

valid for €; # 0. For €; = 0 one should pay more attention and we will see in section 4.2 one instance where a

similar subtlety is important. In the present case we will check explicitly that both (I) and (I1) are valid.
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the equivariant form with restriction 7, at the fixed points. By restricting the form to My
and considering €3 as a parameter, we obtain

TT=Y"ACa+ > ApCaCs,
A AB

Co =i (Ly), a=1,....d, (3.57)

Cat1= —(63 + chr(La)) ;

where c] (L,) are the restrictions of the line bundles L, to the base My and T is the two-
dimensional torus spanned by €; and €. From now on, unless explicitly said, all classes
will refer to the base My. In terms of 77 the quadratic piece of the equivariant volume
can be written as

VO (Ag, Aap,€r) = 1/ L. (3.58)
’ ’ 2 vy 3+, cT(La)
The flux constraints (3.45) give
cf (La) 1"
0 et [
! o 1 (3.59)

(IT) —Uns M, :/M 7T,

For a generic fan, using the gauge transformations (2.14) and (2.15) we can set all A\, =
Aaa = Aga+l = 0.22 We will show more formally in appendix A that V) has a critical point
at A\g = Ag.a = Aga+1 = 0. Then condition (I) becomes

~Uns My = /M c1(La) <—)\d+1 — 2> Aparicr (Le) + Aag1,de1 (63 +> ij@b)))
4 b b

=" Dap(—2Xv,411 + Ads1,d41) - (3.60)
b

We can similarly compute (II) as an integral
s M = [ 7= 30 Dap~Dnan + Aarran). (3.61)
a 4 a,b

and see that it is automatically satisfied if (I) is. Since Y, v¢M, = 0, the flux constraints
fix the Ay 441 only up to the ambiguities
2
)\a,d+1 — )\a,dJrl + Z 5”)? +7,
i=1 (3.62)

Ad41,d+1 = Adt1,d+1 + 27,

22For special symmetric fans, like P2 and P! x P!, and other simple examples with low d, one of the single times
. . . . T (La) T (Ly)
1 1 —
Aq remains unfixed. However, from the combined conditions (I)+ (II) we obtain » b Na fM4 E3+Za L) 0

which implies that the remaining single time must vanish.
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where §; and ~ are free parameters. However, these free parameters can be all reabsorbed
in a redefinition of

2
Ad+1 = Ad1 +27e3 + 2 Siei (3.63)
i=1
since 3", véc] (Ly) = —¢; and they are not really independent.
The free energy is then given by
1 (T3
ve = = _ 3.64
6 /vy €3+ Za qur(La) ( )
which explicitly gives
1 2, _ 3
VO — 2 [ (et Sl (L) (hasa + X arael (L) (3.65)
6 Jmiy - Z
where we defined
Ad+1 = —Adp1 + Ad1,d11€3 Aad+1 = —2Aa,d1 + Adt1,d11 5 (3.66)
which are subject to the constraints
—UypsM, = Z Dabj\b,d-i-l . (367)
b

Substituting the solution of the flux constraints, V() becomes a function of ¢; and the
extra parameter A\g11. Indeed, as we have seen, the ambiguities (3.62) can be reabsorbed
in a redefinition of 5\d+1. A direct evaluation gives

6V(3) = 5‘3—1—1 Z Dab + 5‘3—1—1 (663 Z DabS\a,d—H +3 Z Dabcj\a,d-ﬁ-l)
ab ab

abc

+ 341 (6% Z DapdadriModar1 + 2632 DapeAa,dr1 M d+1 + Z Dabcd;\a,d—&—l;\b,d—l—l)
ab abc abed

) _ _ _ _ _ _
+ (63 > DabeAadt1 MvatiAcd+t + 263 > DabcaAa,d+1 M, d1 Ae,dt1
abc abed

+ Z Dabcdej\a,d+15\b,d+15\c,d+1)a (3.68)
abcde

where the generalized intersection numbers are defined by

Dq,..a, :/M ¢t (Lay)---ct (La,) - (3.69)
4

Notice that Dy is e-independent, while Dy, ...q, is a homogeneous function of degree p — 2
in €1 and €5. V® need to be extremized with respect to €1, €5 and 5\d+17 with €3 set to
the canonical value.

The critical point is generically at a non-zero value of €; and €. We can expect a critical
point?® at €; = e = 0 only if the background and the fluxes have some extra symmetry, as

23In the opposite direction, of course one would have as critical point €; = ez = 0 if the base By has no
continuous symmetries. This is the case for examples for del Pezzo surfaces dPj with £ > 3, which we do not
treat here. This would lead one to suspect that all KE4 have €; = €2 = 0 as critical point, but this is actually
incorrect, as the example of the toric dP3 will show.
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for examples in the cases where all U(1) isometries are enhanced to a non-abelian group. In
these particular cases, we can further simplify the expression

6V =x3,, > Dap+6€esAii1 > DapAa,ai1+3e3xa11 Y DapAasat1 Apa+1+0(€;)
ab ab ab

=351 Doy~ 6705 > MaesA3 +3630a1 Y DaphaariMas +O(€l),
ab a ab

(3.70)

and extremize it with respect to 5\d+1.

As a check of our expression, we can reproduce the central charge of the existing solutions
with Kéahler-Einstein metrics and fluxes all equal [24]. The only toric four-manifolds that
are also KE are P2, P! x P! and dP3, with fans

P2: o'=(1,1), v?*=(-1,0), v*=(0,-1),
P'xPt: o'=(1,0), +*=(0,1), v*=(-1,0), v*=(0,-1),
dPz: o'=(1,0), ?*=(1,1), ¥=(0,1), o*=(-1,0), *=(-1,-1), 5=(0,-1),

(3.71)
and intersection matrices
P?: Dy =1,
P! xP': Dy =1if|la—bl=1(mod2) and zero otherwise, (3.72)
dP3: Dgo=-1, Dge+1 =1 and zero otherwise,

where the indices are cyclically identified. To compare with the KE4 solutions, we set all
M, = N. We can then choose all 5\&7d+1 equal and we find

> Daperaart = Y Daveradr1Mvd+1 = P Dapeda,dr1Mdi1Aear1 =0, (3.73)
abc abc abe

thus ensuring that the linear terms in €; and e in V() vanish, and that there is indeed a
critical point at €, = e3 = 0. Extremizing (3.70) we get

11

for P2, P! x P! and dPs3, respectively, which agrees with (2.16) in [24] for e37y5 = 3.24
For P! x P! we can introduce a second flux. The general solution to 3" 4 VIAMA =0
is indeed

My = (N1, No, Ny, Na, —2N7 — 2N3) . (3.75)

The background has an expected SU(2) x SU(2) symmetry that it is realized in the supergravity
solution [24], that now is not in the KE class. Using the gauge transformation (2.14) we can
set 5\a+2,d+1 = 5\a7d+1. A simple computation then shows that the free energy extremized has
a critical point in €; = €5 = 0, consistently with the non-abelian isometry of the solution,
with critical value

353
VO = S (O(NF 4+ NNy + N3)Y? — (2N} + BNEN, + BNING +285) ), (3.76)

which should be compared with (2.29) in [24] with N; = pN and Ny = ¢N. This looks
superficially different, but it can be rewritten in the form above (c¢f. for example (F.14) in [3]).

24NCN in [24] can be identified with Mgy, = — Z M,, so that Ninere = —hNey /M = hZ M, /M where
(h, M) are defined in [24] and they have value (3,9), (4,8) and (2,6) for P2, P! x P! and dPs, respectively.
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3.2.3 Examples of geometries with non-zero critical €

So far, in all the explicit examples we have discussed we found that e; = eo = 0 is a critical
point. However, we have already pointed out that for generic toric My and/or with generic
fluxes this will not be the case. In this subsection we will investigate situations in which
at least one of €1, €9 is different from zero at the critical point, by considering geometries
with SU(2) x U(1) symmetry, as well as the case of dP3 with generic fluxes. Interestingly,
it turns out that for dPj3 there exist two special configurations of fluxes (different from
the case where they are all equal) where the critical point is again €; = e = 0, but the
corresponding supergravity solutions are not known. For four independent generic fluxes,
instead, € = ez = 0 is not a critical point.

dP3 with unequal fluxes. The symmetry of dP3 is just U(1) x U(1) and the existence of
the critical point €; = €5 = 0 of the extremization problem is not obviously implied by the
fact that there exists a KE metric on dP3. In the basis of the fan as in (3.71), the general
assignment of fluxes compatible with > 4 VIAM A = 0 can be parameterized as

My = (N1, Na, N3, Ny, N5, Ng, —2N; — 3Ny — 2N + N3) (3.77)

where we choose N1, No, N3, N5 as independent, with Ny = N7 + Ny — N5 and Ng = Ny +
N3 — N5. Upon setting Ay = Ag0 = Ag,a+1 = 0 using the gauge freedom, as discussed before,
the constraint (3.67) on A, 4.1 can be solved by taking, for example

5 _ Na+ N3 T _ N3+ M
Ald+1 = UM 5 A2 i1 = UM
T _ N1+ N 3 _ Na+ N3
A3.dt1 = UMy Addt1 = UMy (3.78)
- _ N3+N1+2(N2—N5) < _ N1+N2
As.d+1 = —VUMs5 5 ; A6,d+1 = —VM5 5
Writing out the free energy (3.68), up to linear order in €;, €2, we have
v = yv&) Lt 9, V) _pat 9, VO et O(e?) (3.79)
where the constant term is not particularly interesting and
_ Ns—DNoy .- - _
8€1V(3) =0 = VM5% {6)\24_1 — 12(N2 —l— Ng)VM563)\d+1
+ (N3 — 2N + 3N3(N + Ns) + NsNo) 7563 50
_ Ns—Nor .~ _ - '
662v(3) o = VMS% [6)\Z+1 — 12(]\72 + Nl)VM563)\d+1

+ (NG = 2NZ + 3Ni(Na + Ns) + N3 Na) 753

We see that for generic values of the fluxes the expressions above cannot be zero
simultaneously, implying that €; = 0 is not a critical point of the extremization. The complete
extremization equations are unwieldy, so in the following we will instead concentrate on
two special configurations of fluxes, with enhanced symmetry, for which ¢; = e = 0 turns
out to be a critical point.
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The first special value of fluxes is clearly obtained for N5 = N, that leaves three
fluxes Ni, Na, N3 free. In this case the parameters (3.78) acquire the cyclic symmetry
5\a7d+1 = /_\a+3,d+1, analogously to the P! x P! discussed in the previous section and indeed
the linear terms in V) manifestly vanish, so that ¢, = 0 is a critical point. The fluxes
display an enhanced symmetry:

My = (N1, Na, N3, Ny, Na, N3, —2N; — 2N, — 2N3) . (3.81)

Extremizing V®) with respect to Az yields

< 2v
N = S (N + Np + Ny)
= (3.82)
- %\/4(%2 + N2 + N2) +5(N1 Ny + NoNs + N3Ny ),
and the corresponding value of the on-shell central charge is
2173 3
Ve = %7563 [(A(NF + N + N3) +5(Ni Ny + Na Ny + NyNp)) (3.8

— (N1 + Na + N3) (8(N? + N3 + N3) + 7(NiNa + NaN; + N3Ny))|

It can be checked that this expression agrees precisely with the central charge given in
eq. (3.79) of [26] and it correctly reduces to (3.74) upon setting N; = Ny = N3 = N.
Notice that while the expression of 5\:‘; +1 depends on the specific gauge chosen for the
parameters A\, 441, the critical values € = 0 and the central charge (3.83) do not rely on this.
The second special value of fluxes that we found is Ny = N3 = N5, which implies
Ny = Ngyq2, so that the fluxes have again an enhanced symmetry:

M4 = (N1, Na, N1, Na, N1, No, —3N1 — 3N») . (3.84)

In this case, notice that the two expressions in (3.80) coincide, so that it is possible that
both linear terms vanish, for a particular value of 5\2 11, despite No # N5. However, the
parameters in (3.78) do not enjoy this new symmetry, so it is better to look for a different
gauge, where the parameters respect the additional symmetry, namely j\a,d+1 = 5\a+2,d+1-
This can be achieved choosing

— N1 + 2N2 - 2]Vl + N2
M d41 = —VMs——F—— —_—

Z 3.85
3 ’ 3 ’ (3:85)

A2.d+1 = —Vns

and cyclic permutations. In this gauge, we can now check that V® has no linear terms
in €; and e5. Therefore, extremizing VO with respect to /_\d+1a €1 and €5, we obtain the
critical values €], = 0 and

., 6(Ni+No)—\/6(5NF + 8NNy +5N3)
N1 = 5 U)N5€E3 (3.86)

and the corresponding value of the on-shell central charge is

v _ Pised | (BGNE +8N1 N, + 5N2))*/

4 27

— 2(Ny + No)(3N? + 4NNy + 3N3)

(3.87)

— 23 —



It can be checked that this expression agrees precisely with the central charge given in
eq. (3.79) of [26] and it correctly reduces to (3.74) upon setting Ny = Ny = N.

It would be interesting to construct explicit supergravity solutions corresponding to
the two special configurations of fluxes we found. If they exist, they should lie outside the
KE class considered in [23].

My = S? x Y. We now consider the toric orbifold My = S? x ¥, namely a spindle
Y = W]P’[ln+ ] fibred over a two-sphere, which is a case with only an SU(1) x U(1) symmetry.

We take the following fan
vl = (n_,0), v? = (=k, 1), v3 = (—ng,0), vt =(0,-1), (3.88)
and refer to [18] for more details about this orbifold. The total fan is as in (3.46) and the

constraint (3.43) is solved by

M, — (M’NQ,M,M) ,
n_

M = — M 3.89
n d+1 Za: a ( )

where N1, Ny parameterize the two independent fluxes, and notice that No = Ny is implied by
the SU(2) symmetry acting on the base S?. The constraint (3.67) on Xa’d+1 is solved by taking

- _ A - _ kX -
A3,d1=—Ty (VM5N2+1n’d+1) , Ady1=— (VM5N1+ ;’dﬂ +)\2,d+1) ; (3.90)
and we can choose a gauge in which
- 1 kX
A2, dt1 = —3 (DM5N1 + ;’dﬂ) : (3.91)

After using the remaining gauge freedom to fix 5\17d+1, we are then left to extremize V)
with respect to €1, €2, A\gr-1. One can show that the combination

®3) ®3)
ovy 28V —0

k Oey Oea

(3.92)

implies €5 = 0, as expected from the SU(2) symmetry, while generically €} # 0. In particular,
€] is determined solving a quartic equation, which takes about half a page to be written, so
we will refrain from reporting this. The on-shell central charge can then written in terms of
the parameters N1, No, k,ny,n_ and €]. For simplicity we shall present the results in three
special cases, where the equations are qualitatively unchanged, but simpler to write.

Firstly, let us set & = 0. This leads to the direct product My = S? x ¥ and in this
case, defining

ny +n_ ny —n_

= - = , 3.93
X n4n_ a Ny +n— ( )
it is convenient to use the remaining gauge freedom to set
< _ 2(1 — N2 — XNl
)\l,d—i-l = —Vpms ( M) i (394)

2(1+ p)x
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Upon extremizing we find that indeed €5 = 0 and

< UMEE
N = Tt 20N+ 2N) 9% (3.95)
where we defined the quantity
s1.= NEXP(xeT — 2)% = 2Na(xN1 +2N2) (1 — p)xé] +2) (1 + p)xé; —2).  (3.96)

Here, €7 is solution to the quartic equation

3[NEux3(2 — pxér) + 2N2(x N1 + 2N2) (20 + (1 — p2)xér)] sy — BN pux®(2 — pxér)?
— Na(3X* N7 + 6x N1 Na + 8N3) (121 + 4(1 — 3p®)xé1 — 3u(1 — p?)x*é]) =0,

(3.97)
the critical value of €; is given by €] = €jes and the on-shell central charge reads
VO = TS (5 et [NBG @ - i)?
48x (3.98)
+ No(3XPNE + 6xN1Ns + 8NF) (2 + (1 — p)xéf) (2 — (1+ w)é)] }-
Notice that setting ny = n_ =1 in the above expressions we get €] = 0 and reproduce the

expression (3.76) for the central charge of the P! x P! case.

Following the reasoning in [3], the total space Mg may be also viewed as an Fo fibred
over the spindle ¥ and we therefore interpret the corresponding putative AdSs x Mg solution
as arising from a stack of M5 branes at C?/Zs singularity, further wrapped on the spindle
Y. It would be very interesting to reproduce the above central charge from an anomaly
computation, or to construct the explicit AdSs x Mg supergravity solution.

A second sub-case is obtained setting n,. = n_ =1, with k£ > 0, and corresponds to the
Hirzebruch surfaces Fi. Using the remaining gauge freedom now we can set

< _ (2—=k)N.
ALd1 = _VMSW (3.99)
and we find that the remaining two extremization equations are solved by
T VM5€3 1/2
Nt = Z2[2N1 + (2 - k)Ne) £557] (3.100)

where
52 =4N{—4AN; No(&f+1) (& —14+k)— N3 (65 +1)((4—2k—k*)& —4+2k—k?) (3.101)
and €] is the solution to the quartic equation

12N (2¢1 + k) — 6N1 No(3kéT — 2(2 — 2k — k2)é; — k(1 — 2k))
— N3(3k(2 — 3k — k?)é? — 2(8 — 6k + 3k* + 3k%)é; — k(2 — 3k + 3k?))
— 32Ny (26, + k) + Nao((4 — 2k — k) — k2)]sy/2 = 0. (3.102)
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The critical value of €; is again given by €] = €]e3 and the on-shell central charge reads

=3 3
Ve = %{sg/z — 8NP 4+ 12NNy (e + 1) (& — 1+ k) (3.103)

—6NINZ(& +1)(k&2 — (2 — k — k2 +2 — 2k — k?)
= N3 (& + 1) (k(2 - 3k — k)& — 2(4 — 2k + k)] + (8 — 6k + 3k% — k%)) }.

Again, setting k = 0 in the above expressions we get €; = 0 and reproduce the expression (3.76)
for the central charge of the P! x P! case.

This result is manifestly not in agreement with the central charge given in eq. (3.79)
of [26], where by construction € = €5 = 0. In fact, we can reproduce this result if we impose
by hand that €] = €5 = 0 so that

_ b _ - _ -
VO A1) = % [8)\3“ — 6(2N1 + (2 — k) N2)varsesAar1 + 3N2 (2N — k‘Nz)V%me?a}

(3.104)
and then extremizing this with respect to the remaining parameter /_\d+1 yields
2Ny (2 K)Ny — (/AN +4(1 — B)NiNy + (4 — 2k + k)N
A1 = 1 vnpses,  (3.105)
giving the on-shell central charge
@) ye o\ _ Vs 2 2\ A7213/2
VO, = =2 [(AN? +4(1 = K)N\ Ny + (4 — 2k + k) N3) (3.106)

— (2N1 + (2= k)N2) (ANF + 2(1 = 2k) N1 N3 + (4 — k + k*)N3)] ,

coinciding with the expression given in eq. (3.79) of [26]. This, however, does not correspond to
a true extremum of V®and therefore it is unlikely that there exist corresponding supergravity
solutions, nor dual SCFTs.

Finally, let us also present the results for the particular configuration of fluxes N; = %N ,

Ny = N implying that®®

EN kN
M, = (,N, N) , (3.107)

2n_ C2ny

without any assumption on k and ny,n_. In order to simplify the expressions, we make
use of the remaining gauge freedom to set

(1= p)(4+ kpx) — kx)N

A =—v 3.108
BT TS T O X (4 k) (3.108)
The extremization problem is then solved by
T VmsezN 1/2
=y (264, (3.109)
where we defined £ = 4 + kux and
s3 = 48" — dux&& — (B2 + k) (1 — p?) — (1 — i + ") X*)é? (3.110)

25We take k to be even in this case.
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Here, €7 is solution to the quartic equation

2(1—p?) (kx+2
262 (kx +616) +4xE> (4317 )~ 3 (5 UoOINE20e) i) &
2 (3.111)

A yL1/2
~3(2€%+X(8(2+kpx) (1 —p12) — (1— 2+ p" k2 x)er)sy* =0,
and the critical value of €; is €] = €je3. The central charge in terms of €] is given by
=3 3n73 2 2
3y Uns€sN° | 372 g (&1 —p7)(hx+2p8) 3 3\ s
V()—W{Ss —x( 5 -k’ g

(3.112)
+ 257 (4 = 3pPE)E + 2x & (kx + 6p8)é} — 863} :

3.2.4 General geometries

We now discuss the general AdS; x Mg solution with no Zs symmetry. The fan (3.39)

corresponds now to a compact geometry. The fan is the union of 2d cones (V¢ Vot! yd+l)

and (V4 Vatl V4+2) corresponding to the fixed points of the torus action, that are specified

by selecting a fixed point on My and simultaneously the North or South pole of the fibre P*.
The equivariant volume is now given by

e—)\ae‘f—)\a+1eg—)\d+1(63—661’—6‘5)4-... e—)\aecll—)\a+1eg+)\d+2(63—661’—63)—1-...
V:Z a. a a a B a, a a a ’ (3113)
a da,a+1€7€5 (€3 —€f —€3) a da,a+1€7€5 (€3 —€f —€3)
where the dots at the exponents contain the higher times.

This expression can also be written as an integral over My

V(M Mg, er) / ey — ¢S (3.114)
A, AAB,€I) = — =T .
’ My €3+ g i (La)

where we have defined the North pole equivariant form 7’;{, and South pole equivariant

form Tg as

™= MCY+> Aapcicy,
A

A,B
T =3 ACi+Y ApCich,
A A,B
cN=cS=cN(L,), a=1,....d, (3.115)

Clio=—Cili =€+ Z i (La),
a
chi\jﬂ = Ccirl =0.

The flux equations are the following:

CNT’]T_CST’]I‘
— s My =0 V<2>:/ ZAN A4S 3.116
A=Y= o A (L) i

For a generic fan, using the gauge transformations (2.14) and (2.15) we can set all A\, =
Aa.a = Aaat1 = 0. However, as already mentioned, for special fans, including P? and P! x P!,
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one of the single times )\, remains unfixed. As a difference with the Zs symmetric case, an
arbitrary A, solves trivially the flux equations. Therefore we set Ay q = Ag,a+1 = 0 and keep
Aq with the understanding that the latter can be partially or totally gauged fixed to zero.
The forms 75 and 74 with all variables can then be written as

TJTV - Z )\a C’]lr(La) + (63 + Z C’]II‘(LQ)) (Xd-f—l + ZXWHJ C’JII‘(LG)) y

_ _ (3.117)
Tj?r = Z Aa qur(La) - (53 + Z erlr(LaD (Ad+2 + Z Aa,d+2 C}T(La)) )

where we have defined the \ variables as

Adt1 = €3Ad41,d+1 — Ad+1 Ady2 = —€3Ad2.d12 — Adt2, (3.118)
Abd+1 = Ad41,d+1 — 2Ab,d+1 Abd+2 = —Ad4+2,d+2 — 2Ap,d42 -

Then equations (3.116) become

—vmsMa = Dap(Apar1 + Modr2)
b

—vpsMayr = =Y Dap Modi1 (3.119)
ab

—vmsMaya =Y Dab Apdr2 -
ab

The expression for V& is

vO — % . (53 + ZC¥(La)>2[(AN>3 + (AS)3}

- ;/1\/114 (Z /\a C’{F(La)) (63 + Z C}T(La)> [(AN)2 - (AS)Q} (3.120)
#5  (C ez ¥+ %],
where we defined

AN = XdJrl + Zxa7d+1 C’]ll‘(La) s AS = Xd+2 + ZXWH C’]lr(La) . (3.121)

The flux constraints are not enough to fix all the ), so the idea is again to extremize
V®) with respect to the remaining variables. It is convenient to define Xb,Jr and Xb,, as

Mot = Apdr1 T Modia, (3.122)
so that all the A, are fixed (up to gauge transformations) by

—vnsMa =Y Dap My + (3.123)
b

whereas the Xb,_ are only subject to the following constraint:

I/M5(Md+1 + Md+2) = Z Dy Xb7, . (3124)
ab
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The extremization conditions then are

vl av®)  av®) , OVE)
T 0N Ohapn Ohae = o

0 , Vp® such that ZDabpbzo. (3.125)

a ab

In general these equations do not look easy, but in the special case Mg41 + My12 = 0 there is
a simple solution: we can set A\, = 0, A1 = A\g;2 and Xb’d+1 = Xb7d+2 so that the equations
with p® are trivially solved. The rest of the computation reduces to that of section 3.2.2
for Zy symmetric geometries. When My 1 + Mgio # 0 this simple solution is not possible
because the constraint (3.124) would not be satisfied.

3.2.5 Examples of general geometries

In this section we consider again the examples based on P2, P! x P! and dP3 and compare
with the supergravity solutions in [24], where the additional parameter ¢ is turned on. Since
the solutions in [24] all correspond to a critical point at €; = ea = 0, for simplicity in this
section we restrict again to configurations with this feature, which as we discussed requires a
special choice of fluxes for the case of dP3, while it is automatic for generic fluxes for P? and
P! x PL. The explicit value of the central charge has been written in [3, 4, 26].

The free energy (3.120) can be expanded in a sum of integrals of equivariant Chern
classes. Since the multiple intersections (3.69) are homogeneous function of degree p — 2

in €; and ey, all the terms involving Dy, 4, with p > 2 in (3.120) vanish for €; = e = 0,

P
and the free energy simplifies to

6V® =23, 3" Doy + 37311 D" Dan(2€300,041 + Aa)

ab ab
+ 3Xa+1 Z Dap(€3ha.a+1 + Aa)(€3Npd11 + Ap)
e - - (3.126)
+Aira Y Dab +3X319 Y Dap(2€3Xa.d42 — Aa)
ab ab
+3Xat2 Y Dapl(€3haarz — Aa)(€3M,dr2 — Ab) -
ab

Using the flux constraints we can also write

VO =230 Doy + 303 esvars Mapr + 3031 D DapAd +3Xa1 Y DapAg Ay

ab ab ab
+ Adte Z Db — 3N7 4 0€3VnmsMaio + 30310 Z DapAy + 3Adt2 Z DA Ay
ab ab ab
(3.127)
where
)\z{ = 63)\a,d+1 + Ao, )\; = 63/\a,d+2 — X, (3.128)

are constrained variables.

We consider first the general case (P?, P! x P! and dP3) with all fluxes associated to the
fan of the KE4 set equal to N. The fan and intersection matrix are given in (3.71) and (3.72).
There are, in principle, d — 2 independent fluxes on My that we can turn on but in the
supergravity solution with KE metric they are equal and we first restrict to this case. The
relations ZAVIAMA = 0 require M4 = (N,...,N,Ny, Ng) with dN + Ny — Ng = 0 and
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we can parameterize Ny = M — %N and Ng = M + %N , possibly allowing an half-integer
M. Given the symmetry of the problem, we take all A\, to be equal, and similarly for the
5\a7d+1 and 5\,170”2. The condition ;. Dape = 0 holds for these models, and therefore all
linear terms in €q, €5 in ve) vanish, guaranteeing a critical point at €e; = ea = 0. The flux
conditions are solved by

o) )

N 2
)\a,d+1 = VM5 dmk y )\a,d+2 = —Vprs s (3.129)

dmk

where ), Doy, = dmy, so that my, = 3,2,1 for P2, P! x P! and dPs3, respectively. Extremizing
with respect to A\, and defining A\g1 = vars(H + K) and Agio = vars(H — K) we find

3 K?
6132 V) = 2dmy, H® - §de§,N2ﬁ —6des NH?+3esH (4KM+
k

d €3N2> . (3.130)

mg

which after extremization gives®®

V(3) _ d2V13\45€§N4
12m3 (d?N? + 12M?)?

((3d2N? —12M?)*2 — AN (5d*N? - 36M?)) . (3.131)

An analogous formula for non-necessarily toric KE has recently appeared in [26].
In the case P! x P! we can turn on two independent fluxes and have round metrics on
the Pls. We take the general assignment of fluxes compatible with 3~ 4 VIAM 4 =0:

M4 = (N1, N2, N1, N2, Ny, Ng) , (3.132)

where
2N1 4+ 2Ny + Ny — Ng =0

and we can parameterize Ny = M — N1 — Ny and Ng = M + Ny + No. Using the gauge
transformations (2.14) we can also reduce to the case

Aat2 = Aas Adat2.d01 = Madil s Aat2.dr2 = Aadta - (3.133)

Notice that, in this gauge, all the linear terms in €1, €5 in V) vanishes since, as one can check,

3" Dasl D118 = 0 (3.134)
abc
. k) .. k) _ (k) .
provided the vectors I, ’ satisfy lo ' =1, Yo We can solve the flux constraints
2M1,4+1+ 22 a2+ vms N1 =0, 4A g1 +4X0 g1 +vas(—M + N1+ Np) =0, (3.135)
20,441 +2X 2, dr2 Vs Noa =0,  4A1gy0+4X0 apo+vas(M+Ni+No) =0,
by
. - 1
Aod1 = —ALd1 + ZVMS(M — Ny — Ny),
- - N.
ALdye = —Aldsl — VM572 ; (3.136)
- . 1
X2 d+2 = Aas1 + —vms(—M — N1+ Na).

4

26Recall that to compare with section 3.2.2 we need to use the rescaling (3.47).
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Extremizing with respect to A; 2 and 5\1,d+1 and defining A\g11 = vars(H + K) and Agyo =
I/M5(H — K) we find
K2

6, VE) = 16H3—36§N1N2F—1253(]\71~|—N2)H2+363H(4KM+53N1N2), (3.137)
which after extremization gives
Vi s€SNENZ(ANE + ANy Ny + ANZ — 3M2)3/2

6(4N1 No + 3M2)2
VR3NP NG (N1 + Np)(8NT 4 4N1 N, + 8N5 — 9M?)
6(4N1 Ny + 3M2)2 ’

v® —

(3.138)

reproducing (5.7) of [4].

Finally, let us mention that in the case of dP3 we can turn on four independent fluxes along
the base plus one additional flux M, and the general extremization problem is intractable. It
is possible to solve it for the two special configurations of fluxes with enhanced symmetry
discussed previously. We leave this as an instructive exercise for the reader.

The case P! x P! has been interpreted in [3, 4] as a solution for M5 branes sitting at
the orbifold C?/Zy wrapped over one of the P!. The interpretation follows by deriving the
central charge from an anomaly polynomial computation. It would be very interesting to
understand if our general formula (3.120) can be written as the integral of the anomaly
polynomial for some M5 brane theory wrapped over a two-cycle in My and give a field
theory interpretation of the solution.

3.3 Comparison with other approaches

It is interesting to compare with the recent approach based on Killing spinor bilinears in M
theory [17]. The technique consists in considering a set of equivariantly closed differential
forms which can be constructed from Killing spinor bilinears. Three such forms have been
explicitly constructed for AdSs x Mg in [17] and for AdSs x Mg in [26, 27]. Our results in
sections 3.1 and 3.2 partially overlap with those in [26, 27] and it is interesting to compare the
two methods. We will show that they are actually equivalent, when they can be compared,
although in a non-trivial way.

For both cases, AdS11_j x M}, with k = 6,8, the authors of [26, 27| define an equivariant k-
form ® whose higher-degree component is the warped volume of M}, and the lowest component
the third power of a special locally defined function y. Up to coefficients, the integral of
® is the free energy, so we have
113|a

F=
Mk d 6Tk/2 ’

(3.139)

where « are the fixed points of the geometry, and we recognize our expression for V) for
M theory solutions?®”

3
Ta
F=vV®=%" d(eTk)/Q| , (3.140)

k/2

2"We are omitting a (—1)*/2 sign in the expression for V® . In this discussion we are ignoring all such

overall numerical factors.
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upon identifying
Ylo = Ta (3.141)

There exists also an equivariant four-form ®f whose higher-degree component is the
M theory four-form and the lowest component the first power of the function y. The flux
quantization conditions give then

(" (L)l (Lp)y)la
da e']l‘4 |a )

Map = /M OF ¢y (La)er(Lp) =

«

']TS
La)y)|
Maz [ oFer(ny) =S L))l
A /M6 c1(La) Za: doc®ln

(3.142)

for AdS3 x Mg and AdSs x Mg, respectively and it easy to see that these conditions are
equivalent, up to coefficients, to our (3.4) and (3.45) with the same identification y|, = 74.
Finally there exists another auxiliary form, a four-form ®*F" in AdS3 x Mg and a two-form
®Y in AdSs x Mg, whose lowest component is the second power of the function y.
Consider first the AdS3 x Mg solutions with wrapped M5 branes of section 3.1. The
vanishing of the ®*F flux along S* is used in [26, 27] to enforce a Zy symmetry of the solution
N|a = _yS|a7
the identification y|, = 74, our construction in section 3.1 is then equivalent to the one in [26].

by identifying y thus effectively cutting by half the number of fixed points. With

Consider next the AdSs x Mg solutions of section 3.2. The approaches are complementary.
While we consider toric orbifolds and the action of the full torus T3 = U(1)3, the authors
of [27] consider P! bundles over a smooth four-manifold By and assume that the R-symmetry
vector has no legs along By. Let us observe that this assumption can fail in general. For a
generic By with abelian isometries there is no reason to expect that the R-symmetry does not
mix with the isometries of B4 and a full-fledged computation considering the torus action on
B, is necessary. Also for the toric B4y = dP3 with a generic choice of fluxes we expect a mixing
with the isometries of By, as discussed in section 3.2.2. Under this condition, the central
charge given in [27] is not necessarily the extremum of the free energy. Obviously, whenever
the two approaches can be compared and the assumption in [27] is satisfied, we find agreement.

From a technical point of view, this might be surprising. Recall indeed that the flux
constraints do not completely fix the values of the times 7, = y|,. In our construction,
we just extremize the free energy F' with respect to the remaining parameters. In [26, 27]
instead, in a case-by-case analysis, the auxiliary form ®" is used to find additional conditions
to fix the y|o. The two methods look superficially different, but we now show that they
are effectively equivalent.

The extremization conditions with respect to the Kéhler parameters that are not fixed
by the flux constraints are written in (3.125). The first three conditions

v (3)
9 =0, A=qa,d+1,d+2, (3.143)
oAy
can also be rewritten as
v (3)
Z%BL(l—k&AB):O, 1=1,2, A=a,d+1,d+2. (3.144)
0ABa

B
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Indeed 8V ,
Z VB 1 toap)=-2[ o o (La)Y VP (Lp)
Mo B (3.145)

T T3 oV
= 2¢; T Lp)=—-2¢—,
‘ /7\166 e (La) 68)\,4

and taking the degree two component of this equation we see that all the conditions (3.144)
collapse to the extremization of the free energy with respect to the parameter \4.
The conditions (3.125) can be then written as

AU , OVG

O—Z 18/\ (14 0pa) = ZU akderl_Z

where p® is such that 3, Da p® = 0. Now, the equations

BAYAS
o

3.146
3/\bd+2 Xa: 8)\a, ( )

v 3 (TN)?2 — (19)?
1+ 9, c = T Le))la < : ’
( b ) 8)\bc za: ( ))| d, a+1€t116(21(63 - 6Lll - 6%)
oV oo (2
_ (L)la 3.147
a)\b,d—l-l Z ’ ‘ dq a+151€2 ( )
ove) Z LT
ONp,d+2 % g at1€5€d’

given the identification y|, = 7, and the fact that ®¥ has lowest component 32, translate
into the localization formulas for

oY = / e1(Le)er (Ly) Y |
Pl Mg

oY — / e1(Lap1)er(Ly)®Y | (3.148)
DN Ms

oY = / c1(Lasg)er(Ly)®Y
DJ Ms

respectively, where IP%C is the fibre taken at the fixed points D. N D; on the base (b=c=+ 1
necessarily) and the DZJ)V 9 are the divisor on the base taken at the North and South pole of
the fibre, respectively. The extremization constraints are then equivalent to the following
co-homological relations

0:21)? @Y:va NQY:ZU?
b b

b ]P)llic b b

:Zpa ( N@Y—/Sq)Y) , ¥V p% such that ZDabpb:O.
a Da Da

ab

(3.149)

The first three conditions are obvious: the cycles 3", v? PL., 3>, v? Dév’s are trivial in homology.
The last equation equates cycles sitting at the North and South pole. The corresponding
fluxes of ®¥ do not need to be equal but they must be related. We know that ¢; (Lgy2) =
c1(Lay1) + X, c1(Lq).?® Then

> o ( . oY — / ) ZP / _(61 Ld+1)—01(Ld+2)) 1(La)®Y
:—Zp/ C1 Lbcl(L YO(ZpaDabZO.

ab

(3.150)

**The I = 3 condition of Y , V/*e1(La) = 0.

— 33 —



The last step follows by expanding ®Y in a sum of Chern classes, and by writing
St c1(Lyp)e1(Lay)®Y as a sum of triple intersections D%%C on Mg. But D%ﬁ = 0 and
D%ﬂ,a,b = Dc]i\i[&f}Q,a,b = Dap.*

We see that our construction based on the equivariant volume naturally incorporates the
localization approach of [17, 26, 27|, with the advantage that all the geometrical constraints
that must be imposed case-by-case in order to find the free energy in [17, 26, 27] appear
naturally in our construction: they correspond to the extremization with respect to all
parameters that remain after imposing the flux constraints. This avoids an analysis based
on the specific topology of the background.

4 AdS., AdS3 and AdS, solutions in type II supergravities

In this section we consider solutions in type II string theory with geometries that are fibrations
over a four-dimensional orbifold My. We consider the case of massive type IIA solutions
with D4 brane flux, corresponding to D4 branes wrapped over M, and the case of type IIB
solutions with D3 brane flux. In all cases, we show that the free energy can be obtained by
extremizing the appropriate term in the equivariant volume.

4.1 AdS; X Mg solutions in massive type I11A

In this section we turn our attention to D4 branes wrapped around a generic four-dimensional
toric orbifold My [18, 20, 21]. Specifically the brane system we study corresponds to AdSa x Mg
solutions in massive type ITA, where Mg is an S* fibration over My. The geometry is similar
to the case of M5 branes wrapped around My considered in section 3.1 and we can borrow
most of the computations. Here, due to the orientifold projection,?” the Zs projection used in
section 3.1 is automatically implemented and there is only one set of fixed points, at one of
the poles of S*. The geometry to consider is then a CYy, a C? fibration over My with toric fan
generated by the vectors (3.1). As discussed in [2] and in the introduction, the prescription
for D4 in massive type IIA is also similar to (3.4), with different degrees of homogeneity:

d
vp4 (2 —0ap) Map = —mV(S)(AA,)\AB,q) . F=VO (4, Auper). (4.1)

The rest of the discussion is very similar to the section 3.1. We can write the flux
equations as

T\2 B(Q) .
vpys Map = —/ M =- o (CaCh)le (4.2)

My 2Cay1Caio

where the equivariant forms C4, 77 and the B are defined respectively by (3.13) and (3.15).

a dava+1 6% 6%

These equations are identical to the ones of section 3.1, with the only difference being that
B takes the place of BY. The solution can be read from (3.20) and (3.24):

B = —vpy N,
Map =N t4t5 Dea, (4.3)
ed
with t§ given by (3.25).
29The triple intersections on Mg are easily computed as D38, = % from (3.113).

39The brane system is actually D4 in the presence of D8, which generate the cosmological constant, and an
orientifold plane O8 that cuts S* into half.
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Following prescription (4.1), the solution (4.3) must be substituted in the expression
for V), which depends on the BL(P) as

B
VOO, g er) =

. 4.4
a da,a+1 elf 6% ( )

The relation between BL(15) and Bé2) is given in equation (3.16), with the added complication
that the exponents are half-integers and thus we need to be careful about the signs:

5
22 5
B{) = Mo 57 lvpa N|?

)

3
(Car1Caso)lal’

(4.5)
na = sign ((Car1 Car2)la) - sign (o)

We note that the sign of (Cg+1 Cgy2)|q is the same as the sign of B,(IQ), and thus is fixed:

: : Ta)? :
sign ((Cd+1 Cd+2)\a> = sign <2(CCH(1&2d+2)‘ =sign(—vpaN) =o0. (4.6)
a
The sign of the 7, however is not fixed by (4.3). We can rewrite the equations B,(ZQ) = —vpy N as
Ta = 0 Mg \/—QVD4 N(CdJrl Cd+2) ’a . (47)

It is always possible to find A4 and Aap that solve these equations, whatever the value
of n, might be.
For the free energy we can write

lo
Nl

2
F=5

5~ Ta((€3— €4+ (ta— 1) €0+ (tagr — 1)€d) (€4 —ta€d —top1 €2
(_VD4N)3277((63 4t (ta—1)ef+ (tar1 —1)€g) (ea —ta€f —tat1€3))

4.8
da,a+1€5€% ’ (4.8)

a

thus reproducing the extremal function in [18].3!

The sign ambiguities remain to be fixed by a more careful analysis. For a convex fan,
supersymmetry is preserved with a topological twist and we expect that all the 7, have the
same sign [18]. This could follow from a generalization of the following argument valid for
the equivariant volume with single times only. The A4 determine the polytope

P ={yr € R*|y/Vi* > Aa}. (4.9)

Naturally P must be non-empty, so let us take y; € P. If we contract the inequalities
yi VA > A4 with (L )|a we get

—yrer > 7 Va€{l,...,d}. (4.10)

Given that P is a resolved cone and that the equivariant volume is given by an integral over P

VOuer) = [ dlyemer, (4.11)
P

31 Compare formula (5.7) in [18] and set ¢1 = €1, 92 = €3 — €4, MaP? = ta ,Map3 = 1 —t,, W = 0, and set

e3 = 2 for simplicity of comparison. Our result for the free energy then matches theirs (up to an overall sign

161

due to different conventions) upon choosing 63(—7/D4)% = — Notice that in [18] the vectors v® are taken
!

8—
to be primitive, contrary to the conventions we are using in this paper. Our v* are their 0°.
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then the exponent —yre; > 7, must be negative for convergence. This implies 7, < 0, and
thus 7, = —o. By choosing 0 = 1 we would find the result of [18].

The case of anti-twist requires taking a non-convex fan for My. This can be obtained
by formally sending v® — o%® everywhere, implying €} — o%¢ and €§ — 0%*tled. Tt was
proposed in [18] that the correct assignment of signs is 7, = —o% "1, and it would be

interesting to understand this by a geometrical argument.

4.2 AdS4 X Mg solutions in massive type I11A

In this section we consider AdSy x Mg solutions of massive type IIA supergravity, which
correspond to a system of D4 branes wrapped around a two-cycle inside a four-dimensional
toric My, in the presence of D8 branes and an orientifold plane O8. Explicit solutions of
this type have been found in [28], with Mg being a P! fibration over a four-dimensional
manifold that is either Kéhler-Einstein or a product of Riemann surfaces, cut in half by
the O8 plane. The only toric manifolds that admit such metrics are P2, P! x P! and dPs:
these are the cases we will be focussing on.

More precisely, we consider a half-geometry modelled on a non-compact CY3 correspond-
ing to the canonical bundle over My, with fan given by

Ve = (v91), Vil =(0,0,1) , a=1,....d, (4.12)

where v® are the vectors of the fan of M. This fan has the same structure as the ones
in sections 3.2.1 to 3.2.3, and for this reason the discussion in this section will share some
similarities with the former. This half-geometry can accurately describe the solutions of [28§]
when the parameters ¢ and o are set to zero. We explain this point in more detail in
appendix C, where we also compute the free energy of the solutions of [28] to be compared
with the results of our approach.

Our prescription is the following:

vpa My = —iv@)(AA,AAB,q), F=VO g ap.er), Y VAM4=0.
o4 T

(4.13)

The higher times are needed in order to find solutions to the flux constraints. Similarly to

the discussion of section 3.2, we will need to extremize the free energy with respect to any
parameter that is not fixed by the flux constraints.

Given the high-degree of symmetry of P?, P! x P! and dP3 we expect a critical point at

€1 = €2 = 0. Indeed, it can be verified with a similar logic as equation (3.73) that the linear

terms in ¢; in the expression of the free energy vanish and thus €; = €5 = 0 is a critical point.

The flux equations are

_ 1 ci (La) (TT)2
0 voa = 2 /M4 e3+ ¢t (Ly) (4.14)

1 2
II My, == T
(II)  vpaMgp 2/M4(T ),

where 77 is defined as in (3.57). For generic values of ¢; these equations are not independent:
since Y., v¢M, = 0 and 3, v¢c](Ls) = —¢;, from (I) we obtain

e./ GO MY (4.15)
g €3+ Yy cf (Ly)
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When €¢; and ¢9 are not both zero this is a non-trivial relation that we can use to write

T T)2
v M = s [ ZeAT T L gz (116
a My €3+ 25 ¢p (Lp) 2 Jmy
which is equation (I7). Crucially, this argument fails when ¢; = e = 0, which is the case
we will be focussing on. As we will see in this case equation (II) becomes independent of

(I) and provides an additional constraint.

As already discussed in section 3.2.2, we have enough gauge freedom to set \,, =
Aa,a+1 = 0. For generic fans, it is also usually possible to gauge away the A,, but this is
not the case for the highly symmetric fans that we consider in this section. For the Z,
symmetric solutions studied in section 3.2.2 it was always possible to find a critical point with
Aq = 0 regardless, as argued in appendix A. However the argument of appendix A cannot
be repurposed for the type ITA solutions of this section and we are thus forced to keep the

T can then be parameterized as

=D e (La) + (e + 26 (L)) (Rt + 2 Moarae] (L), (417)
a a b

Aa- The equivariant form 7

where
Ad+1 = —Adg1 + Adt1,d+1€3, Aad+1 = —2Xa,d41 + Adg1,de1 - (4.18)

Then for ¢4 = ea = 0 the flux equations become

(I)  vpaM, = *@ ()\d+1 Z Dy + 2 Z DabAb)

(4.19)
D+ 0= DAy + 263Ad+1 > Dabxa,dﬂ :
a ab ab
where
Ao = Ag + 6SXa,dJrl . (420)

Notice that the second equation is not a consequence of the first, as we already anticipated.
The free energy restricted to e = eo = 0 is

3
)\ A
F=V® = ( dtl ZDab + dH ZDab (38Aq + €3Aq,a41) + i;l ZDabAaAb> :
ab

(4.21)
We can eliminate deﬂ from the above expression by using the second flux constraint
n (4.19) and find

<)‘d+lzD n d+1ZD A+)\d+1ZDbAAb>,

: (4.22)
vpaMy = — d2+1 (XdJrl > Doy +2) DabAb) .
b b

The flux constraints are not sufficient to fix all parameters: one parameter, say Xd+1,
remains undetermined. Our prescription is to extremize the free energy with respect to
this leftover parameter.
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Let us consider first the case of Kdhler-Einstein base manifold, with all fluxes relative
to two-cycles in the base equal, that is M, = N. The three cases of interest are then P2,
P! x P! and dP3. We define the integers My = 3", Do and my = >, Dap, which take values
M = (9,8,6) and my, = (3,2, 1) for P2, P! x P! and dPj3 respectively. Since the fluxes M, are
all equal we can solve the flux equation by also setting all A, equal to each other, giving us

- 2Nvpyg + kairl

Ay = = 4.23
“ 2mk>\d+1 ( )
The free energy as a function of Ay, is then
F =M, Adr1 vDalNAgyy n V%4N2);d+1 , (4.24)
320 16my, 16my,
and extremizing it we find four solutions:
1 N 5/2
F:im(sf—zl)e%(”m ) M,
M (4.25)

1 N 5/2
F:im(3\/§+4)e§<VD4 ) M.

my,
The first solution, with a plus sign, reproduces the free energy of the massive type 1A

5
supergravity solutions of [28] upon setting? €213, = \%10. The details about the computation

of the free energy of the supergravity solutions are in appendix C.

Let us now consider the case of P! x P! with independent fluxes. In this case the metric
on each P! factor is round, but the two radii are different. If we impose the condition
S 4 VAM4 = 0 then the fluxes can be parameterized as follows:

M, = (Nl,NQ,Nl,NQ), Md+1 = —2(N1 —I—Nz) (426)
The flux constraints can then be solved by setting

~2 <2
- vpaNg + )\d+1 _ vpaN1 + >‘d+1

2)\d+1 2)‘d+1
The free energy takes the form
e\ ~4 +2
F= 348“ (N1 — 5vpa(N1 + No)Ayy + 505, NiNo) (4.28)
and extremizing it with respect to A\g41 yields four solutions:
2
F= i% (V8+22— (2+2%) V3 - VE+22 (vpaN)*/2,
) (4.29)
F= i% (\/8 +2z2 4 (2+ 22)) 3+ V8422 (vpsN)>/2,
where for convenience we have introduced the parameterization
Ni=(1+2z)N, Ny = (1—-2)N, lz| < 1. (4.30)

Once again the first solution, with a plus sign, reproduces the free energy of the supergravity
5

solutions of [28] upon setting €3 v3, = \6/% (see appendix C for details).

32Notice that the numerical values of vp4 and €3 here are different from those of the corresponding quantities
in the previous section.

— 38 —



4.3 AdS3 X My solutions in type 11B

In this section we consider AdS3 x My solutions in type IIB, where M7 is an S3/ Zy, fibration
over B4, which could potentially arise as the near-horizon limit of a system of D3 branes
wrapped on a two-cycle in By. Explicit solutions of this type have been found in [29, 30] for
Kaéhler-Einstein By or products of Kéhler-Einstein spaces. The case of smooth Kéahler By
has been studied in [31] using the formalism of GK geometry and the GMS construction [12].
The orbifold case has not been considered in the literature as of yet, so in this section we
take B4 to be a generic toric orbifold By = My and we also allow a general dependence on all
the equivariant parameters, including those on the base My. As we already discussed, this is
important to obtain the correct critical point for generic My without particular symmetries,
even in the smooth case. We also hope that our general formulas in terms of four-dimensional
integrals will be useful to find a field theory interpretation of these solutions.

With odd-dimensional M7 we need to add one real dimension, the radial one, as familiar
in holography. The relevant CY, geometry is given by the fibration with My as the base
and the Kihler cone over the Lens space as the fibre, that is C?/ Zy — CY4 — My. This
CYy is toric and its fan is generated by the vectors

V= (v%1,4), V1 =(0,0,1,00, VI*2=(0,0,1,p), (4.31)

where as usual the vectors v® generate the fan of My, a = 1,...,d.
Our prescription here reduces to the GMS construction [31], namely
F=V®(\y,ep) VO (A, e1) =0 vy Mg = — =2y 2 D(Aa,er) (4.32)
A, €1) 5 A, €I ) D3 Ma = s A €1), .
where
S ViAMay=0. (4.33)
A
Here V() matches the “supersymmetric action” introduced in [12] and we know from [12]
that there is no need to use higher times for these solutions. Notice that the second equation
n (4.32), which is consequence of the third and (4.33), is the “topological constraint” in [12].
When p = 1 the CY4 matches exactly the one of sections 3.1 and 4.1. The equivariant
volume is computed in the same manner, with only minor corrections. The one-to-one
correspondence between the fixed points of CY4 and My given by (Ve Vatl i+l yd+2) o
(v, v21) still holds, but the orders of the orbifold singularities now differ by a factor of p:

da,a+1,d+1,d+2 = pda,a—l—l . (434)

The inward normals to the faces of the cone generated by (V@ Vetl v+l yd+2) are now
given by

= (put,0,0),
U‘”1 (pu3,0,0), (4.35)
UM = ((ty — p)ud + (tap1 — P)uS , pdaart, —daat1) , '
U2 = (—tquf — tas1ur,0,dgqas1) -
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From these we can derive the restriction of the equivariant Chern forms of CY,4 to the
fixed points

4
cr (Lp)la = = (€} ap + €5 0as1p)
4 —(t, — p)et — (% —p)eS —pes + €
T (Larp)l = —lo =2 (‘”; Pief —pestes (4.36)
4 ta€] + tar1€5 — €4
ol (Laya)la = =22,
p
and the respective restrictions to the base My
Ca:c?lr(La)7 azl:"'7d7
—pes+er+ 3, (ta — p)et (L
Cat1 = ;( o ~p)er (L) ; (4.37)
—€4 — Za facjlr(La)

Cat2 = :
p

It is easy to verify that these forms satisfy Y, v¢ c] (L) = —¢; and Y4, VA Ca = —e1.
The second degree homogeneous component of the equivariant volume can be written
as an integral on the base My as follows:

11‘)2

VO (4, e :/ G R S SUPN 4.38
(A er) My 2P Cay1Cato %: AxA (4.38)
The flux constraints then read
CyrT B - (Ca)la
ups Ma =0y, VO (A4, e :/ ATy 2a " EA)la 4.39
p3 A= P Aaen) My PCay1Caya 7 daar1 €] €5 (4.39)

where Bgl) is the restriction to the a-th fixed point of the form

& T
BYW=———. 4.40
PCat1Caya ( )
The solution to equations (4.39) takes the following form:
vps B =bler) = > mu e (Ly)la, (4.41)
b

where the my, are such that M, = ", D, mp. Indeed, if we substitute this expression into
the right-hand side of (4.39) for A = b € {1,...,d} we obtain

B - (Cy)la
dg,a+1 €7 €5

= I/D3/ (b(GI) — Z mg C}I(LQD Cb = —Vp3 Z Dab Mg , (4.42)
a My a a
thus recovering the left-hand side of (4.39). When A = d+1,d+2 from a similar computation
we find that

ta — p)M, to M,
Mg :Z(ap)a, Mg =—> ap <, (4.43)
a a
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which are precisely the values of My, 1 and M, y9 necessary to satisfy the relation expected
from the fluxes, 3", VAM4 = 0.

So far we have not specified the value of b(er) in (4.41). Using the gauge invariance (2.15)
we can fix three parameters \4. Therefore only d — 1 of the restrictions of 77 to the fixed
points are independent, which translates into a relation among the Ba(tl) that we use to fix
the value of b(er). This can be seen by observing that 77 is an equivariant two-form and

thus its integral over My vanishes, giving us
0= / 7T = / p Cas1 Capa BWY . (4.44)
My My

The value of b(er) that satisfies this relation can then be written as

fM4 Cat1Cat2 2 g Ma C?(La)
S, Cav1Cara '
We observe that the reason why we had to turn on the higher times in the cases studied

b(er) = (4.45)

in the previous sections was related to the fact that d — 1 independent parameters were not
enough to solve the flux constraints. In the case considered in this section however the d — 1
independent restrictions of 77 = 37 4 A4 C4 are sufficient and there is no necessity to include
higher times. Nonetheless, it is interesting to repeat the same computation of this section
with the addition of higher times, which we report in appendix B.
The free energy is given by the second degree homogeneous component of the equivariant
volume, which we write as
(7.'11‘)2 B((IQ)

F=V® e :/ 0 Corir Cone 2= d 1 edea’ 4.46
Paen) My 2P Cat1 Cavo ;da7a+1 € €4 (4.46)

where the BC(LQ) are the restrictions of the integrand to each fixed point. The value of the

Kahler moduli, and consequently of the BC(LQ), is fixed by the flux constraints. We can easily

do this by employing the same strategy as formula (3.16) to relate the B¢(L2) to the Bél):

2
B@ = ( (") )
“ 2pCat1Cat2

2

p 2
=3 (BM)™ (Car1Cara)la (4.47)

a

v
N QLP?) (bler)+maef+mar1es)’ (pes—eat (ta—p)ef+ (tar1—p)el) (4 —tael —toy1€3).
We can also write the free energy as an integral over My as follows:
2
F=202, / (ber) = X macf(La)) Casr Cara. (4.48)
My -
Notice that the equation that fixes b(e;) can be written as
/M (ber) = X ma el (La)) Carr Carz = 0 (4.49)
4 a
and can be used to further rewrite the free energy as
p
F=—3vpy /M > ma el (La) (bler) = Y- ma ¢ (La) ) Catr Cara. (4.50)
4 q a

It would be very interesting to understand if our formulas can be written as the integral
of the anomaly polynomial for some D3 brane theory wrapped over a two-cycle in My and
thus providing a field theory interpretation of the solution.
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4.3.1 Examples: Kahler-Einstein and Hirzebruch surfaces

We can check that our general formalism reproduces the know expressions for the toric cases
P2 P! x P! and dP3 with equal fluxes. The fan and intersection matrix are given in (3.71)
and (3.72). We take all the M, = M, t, = t and m, = m equal. We find >, Do, = dmy
and M = mmy, with my, = 3,2, 1 for P2, P! x P! and dP3, respectively. Since 3. Dape = 0,
there is no linear term in €2 in V@ which is extremized at €12 = 0. By expanding (4.49)

abc

in integrals of Chern classes we find

b= m[(p€3 - 64)t + 64(]9 - t)] (451)

tp—t)

and

dM?[ezesp(p — 3t)t + 3p*t2 + €3 (p? — 3pt + 3t2)]
3 2pmy(p — )t
which reproduces formula (5.6) in [31] with e4 = e3by/2.3% This still needs to be extremized

Ve = 13 : (4.52)

with respect to bs.

As we already discussed in section 3.2, the critical point is generically at a non-zero
value of €; and €2, unless there is some extra symmetry in the background and the fluxes.
As an example where the critical point is not at e; = e = 0 we consider the case of the
Hirzebruch surface My = Fj, with fan

ol =(1,0), = (-k1), *=(-1,0), v'=(0,-1). (4.53)

The constraint 3, VAM4 = 0 leaves two independent fluxes on the base My and two fluxes
associated with the fibre

M3z = My — k M>, My = My,
Mi(t1 +t3 — 2p) + Ma(pk — 2p +to + t4 — kt3
Ms = ( ) ; ), (4.54)
Ml(tl —|—t3)—|—M2(t2—|—t4—k‘t3)
Mg = — .
p

The vectors of the fan and the fluxes have a symmetry between the second and fourth
entry, and therefore we expect that one of ¢; will be zero at the critical point. Notice also
that the physical fluxes depends only on two linear combinations of the t,. These are the
combinations invariant under

2
to = ta+ > Biv . (4.55)
i=1
In the free energy (4.50) this transformation can be reabsorbed in a redefinition of €4 using
S, vc1(Ly)T = —¢; and therefore the central charge depends only on the physical fluxes. We
also solve M, = 3", Dapymy, for example, by mg = (0,0, M, M;).2* The constraint (4.49) and

331n [31] N is the flux of the five-cycle fibred over c¢1/my in Mys. To compare the formulas we need to identify
M = ™ and t = 22 which follows from (5.5). The formulas match for esvps = 2/6.

d my
34 Any other choice would be equivalent. The equation M, = Zb Dopymy is invariant under m, — mq +

Z?:1 ~;vi. This ambiguity can be reabsorbed in a shift of b in (4.48).
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the free energy (4.50) can be expanded in a series of integral of Chern classes and expressed
in terms of the intersections Dy, .. q4,, Which are homogeneous of order k in ¢;. We see then
that b and the free energy are homogeneous of degree one and two in all the €7, respectively.
One can check explicitly that F' is extremized at e = 0. The expressions are too lengthy to
be reported so, for simplicity, we restrict to the case My = M;. We also fix t, = (t1, t2, t1, t2)
using (4.55) for convenience. The free energy restricted to €2 = 0 reads

2 2
VD3M1 A

F=— ’
8p(p(’£1 + fz) — 2’(1’(2)

(4.56)

where

A= e2p?[(k — 2)t; — 2t)? + 2ezeap[(k — 2)%(p — 261t +4(p + (k — 2)t1)ty — 8]

+ [k —4)*p* —4(k — 3)(k — 2)pty +4(k — 2)%6 + 4(k — 6)pta — 8(k — 2)t1ty + 1683]

+derk[espty ((k — Dpty — (k — 2)8 — pta) + ea(—=3(k — 2)ptT + 2(k — 2)6 + p*((k — 3)t; + 2))]

+4ei[p? (K +k — 3t + (k — Dtits — ) + pti (—(26% + k — 2)t] + (10 — 3k)t1to + 483)]

+ EER*E 4 (2k — 4)tty — 443]

(4.57)

which should be still extremized with respect to €; and e4. One easily sees that the critical
point is at a non-zero value of €. This rectifies a result given in [31] where it was assumed
that the R-symmetry does not mix with the isometries of Fy. The expression (4.56) for
k = 0 is extremized at ¢; = 0 and it correctly reduces to the P! x P! result (4.52) setting
€1 = 0 and t; = to.

5 Conclusions

In this paper we have refined the proposal of [2], that the geometry of an extensive class of
supersymmetric solutions is captured by a universal quantity, depending only on the topology
of the internal space and equivariant parameters associated with the expected symmetries
of the solutions. This quantity is an extension of the equivariant volume, familiar from
symplectic geometry, where we have introduced additional moduli dubbed higher times,
which are necessary to parameterize all the fluxes supported by a given topology. Although
we have assumed from the outset that the spaces of interest are toric, we have indicated
that this assumption may be relaxed by considering for example “non-convex” geometries
as well as configurations including a four-sphere, that are not toric geometries in the strict
mathematical sense. It is also possible to extend our construction to geometries with a number
of expected abelian symmetries which is strictly less than half of the real dimension®® of the
manifold/orbifold (or cone over it). It is well known that in many situations the metric on the
internal space (or the cone over it, in the odd-dimensional case) solving the supersymmetry
equations may not be compatible with a Kéhler or even symplectic structure. Nevertheless,
the equivariant volume is a robust topological quantity, insensitive to the details of the
metrics. Indeed, it may be regarded as a gravitational analogue of anomalies in quantum
field theory. In all cases that we have analysed, we extract an extremal function from the
equivariant volume and our prescription for fixing the parameters on which it depends consists

35The main difference is that in these cases the localization formula involves fixed point sets that are not
isolated points.
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of extremizing over all the parameters that are left undetermined by the flux quantization
conditions. This is consistent with the logic in the case of GK geometry [11] and indeed it is
analogous to the paradigm of a-maximization in field theory [9]. Geometrically, the existence
of critical points to the various extremal functions that we proposed may be interpreted as
providing necessary conditions to the existence of the corresponding supergravity solutions
and indeed it would be very interesting to study when such conditions are also sufficient.
In any case, if we assume that a solution exists, then our method calculates the relevant
observables, yielding non-trivial predictions for the holographically dual field theories. It is
worth emphasizing that in the procedure of extremization one should allow all the equivariant
parameters not fixed by symmetries to vary, otherwise it is not guaranteed that the critical
point found will be a true extremum of the gravitational action. We have demonstrated this
point in a number of explicit examples discussed in section 3.2.3 as well as section 4.3.1.

In this work we have focussed on setups involving internal geometries that are fibrations
over four-dimensional orbifolds My, that may be interpreted as arising from branes wrapping
completely or partially My. For example, the case of M5 branes completely wrapped on My
yields a proof of the gravitational block form of the trial central charge, conjectured in [18]
(and derived in the field theory side in [2]). The case of M5 branes partially wrapped on a
two-cycle inside My is still poorly understood from the field theory side, the best understood
setup being the case of My = 3, x S?, where X, is Riemann surface of genus g [3]. The full
internal space Mg may then be viewed also as the fibration of the second Hirzebruch surface
Fy ~ S? x S2 over the Riemann surface Y4, and interpreted as the backreaction of a stack of
M5 branes at a (resolved) C2/Zy singularity, further wrapped on Y, yielding insights about
the dual four-dimensional field theories. In section 3.2.3 we have discussed the example of
My = ¥ x S§%, corresponding to M5 branes probing a C?/Zy singularity, further wrapped
on a spindle ¥ and it would be interesting to confirm our predictions with a field-theoretic
computation. It would also be nice to extend the methods of [3] for computing anomalies to
setups where the M5 branes wrap a two-cycle with non-trivial normal bundle in an My.

In the context of type IIA supergravity, we have analysed the case of D4 branes completely
wrapped on a general toric four-orbifold My, proving the gravitational block form of the
entropy function conjectured in [18]. It would be very interesting to reproduce this from
a field theory calculation of the partition function of five-dimensional SCFTs on S x My,
employing the method of [32] for performing localization on orbifolds. We have also analysed
the case of D4 branes partially wrapped on a two-cycle inside My, providing a dual field
theoretic proposal for a class of solutions to massive type IIA supergravity, constructed in [28].
Finally, we have also discussed the case of D3 branes partially wrapped on a two-cycle inside
My, corresponding to type IIB geometries of the form AdSs x M7, making contact with the
framework of fibred GK geometries studied in [31]. In particular, we have improved some of
the results previously obtained in [31], by revisiting some of the examples discussed there.
In this paper we have not discussed geometries associated to M2 and D2 branes (already
briefly mentioned in [2]), which are not naturally related to four-dimensional orbifolds My,
but we expect that for these our method will generalize straightforwardly. It would be very
interesting to incorporate new classes of supersymmetric geometries in our framework, such
as for example AdSs x Mg in type IIB in order to study entropy functions of AdSs black
holes. It is tantalizing to speculate that our approach may be eventually extended to include
geometries that do not necessarily contain AdS factors.
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A Fixing the Kahler moduli of AdS5; X Mjg solutions with Z, symmetry

In this appendix we verify that for the Calabi-Yau geometry considered in section 3.2.2
there is a critical point of V(3)()\A, AAB,€r) with Ay, = A\gp = 0. Even if the group of gauge
transformations (2.14) has a sufficient number of parameters to potentially gauge away
all A, and Agp, in orbifolds My with a small number of vectors in the fan there are often
obstructions that make this impossible.
In the following we will verify that the values of the Kéhler moduli A4, Asap given by
>\a = >\ab = 07
Xa,d+1 such that >, Dabxb7d+1 = —Uys M, , (A.1)
BY _ 3)
Ad+1 such that 8/\d+1V =0,

are an extremum of V® under the constraints imposed by the flux equations
8)\AV(2)()\A,)\AB,6[) = —Tps My . (A.2)

In practice, we will show that there exists a value for the Lagrange parameters p4 such
that the function

E=V® 4+ 3" p4(0x, VP +Tp5 Ma) (A.3)
A
has null derivatives with respect to A4, Aap. The equations that we will solve are then
0 0

75()\47)\4376[7/)14) :Oa E(AA,)\AB,GI,PA) =0, (A4)

o\ A a)\AB
where the A are given by (A.1) while €1, €2 can take general values. We will study the case
€1 = €5 = 0 separately.

Case (€1,€2) 7# (0,0). We claim that values of p4 that solve (A.4) exist and they are
the solutions of the following linear system:

ZPA(CA)|b:hb7 b=1,....d,
A

<63 + Zc}r(LQ))Q (j\dﬂ + Z Xa7d+1c¥(La))21 ’b.

Indeed, when the above equations are satisfied we have

_ CaCp
B N VO 45, Ma) = ZApA—
ABEA:”A( A wsMa)= ey (L)

1

=3 " Cp (eg%-%jcqf(La)) (/_\d+1+2b:/_\b,d+1011r(Lb))2

(A.5)

1
th—§

=—0,, V),
(A.6)
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where we have used A\, = Agy = 0. This gives us 0\ ,& = 0. The 9, ,,& = 0 equations can
also be derived from (A.5) in a similar manner.

Let us now discuss the existence of solutions to the equations (A.5). The restrictions of
>4 pAC4 to the fixed points are not independent, they satisfy the following linear relation:

> apACa)lo

O:/ pAaCa = _ (A.7)
My XA: zb: i1 €5 €

However, the hy, also satisfy the same linear relation, given that the value of \j,1 is set by

the condition 8Xd+1V(3) = 0, which reads

(a+ X)) (an+ X Aaanel (L) == 3 "

(A8
b db,b+1€1€2

)L

2 Jmy
We can thus always eliminate one of the equations (A.5). Considering that shifting p4 —
pa+ > al VIA with 3°; ale; = 0 leaves the left-hand side of (A.5) invariant, we can always
gauge away pgy1,°0 and one of the p,. We are left with a system of d — 1 equations in d — 1
variables that generally is not singular and thus has a solution.

There is an edge case in which the system of equations must be further reduced: when
there is @ € {1,...,d} such that €} = 0 (and consequently ¢! = 0). Since (e, €2) # (0,0)
and My is compact we must have €¢§ # 0, egfl # 0. The b=a— 1 and b = @ equations
are (pg+1 has been gauged away)

—paes t=ha1,  —pacl =ha. (A.9)

In principle depending on the value of hz_1 and hg the above equations might not have
a solution. However if we consider that hz_1 and hg can only depend on egfl and 6?

respectively,®” and that in general dg—1a e?fl = —dza+1¢€5, then the only way for the
right-hand side of (A.8) to be finite is for
ha_ hg
=2 (A.10)
€5 €]

which means that equations (A.5) are solvable without issue.

Case (€1,€2) = (0,0). It is not immediately clear whether the solutions to equations (A.5)
are well-behaving in the limit €;, e — 0. However when €1 and ey are zero the equations (A.4)
are quite simple and we can solve them directly.

For €1 = e = 0 we have ¢ (L,) = c1(L,) and thus

Dga k=2
/ F(Lay) oo F(Lay) = {1 o (A.11)
M4 0 otherwise
From this relation it easily follows that
/ ¢i(Lay) -1 (Lay) _ ) (€3) ' Daray k=2 (A.12)
My €3+ Yt (L) 0 k>2

36We note that the (e, e2) # (0,0) hypothesis is needed to set pgi1 = 0.
3"By definition hz_; and hg are the restrictions of an equivariant form on the fixed points @ — 1 and a@.
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Using the above relations the extremization equations (A.4) become

. —2 - = _
0y, equation: % b Dav(Age1 +2€3 Aar1Mvdr1) + (€3) LS Dappp = 0

. —2
0y, equation: %63 Ags1Dab — pa+1Dap = 0

. B — —2
3>\a’d+1 equation: > Dab(e;% Ad+1Ab,d+1 + €3 X311) — 2oy Dav(pp — pat1) =0
- - - —2
o equation: 3 2ab Dab(€3 a1 Abar1 + 6 €3 Aar1 Xy ar1 + 3e3 Agyr)
e + 2 ap Dab(pp — pat1) =0

(A.13)
The 0,,, equation was omitted because it is trivial: dy,, , >4 pa (00, V@ £ Ty 5My) =0
and 9, VO = —BdeV(g’) = 0 because of (A.1).
The solution to (A.13) is®®

1

~ ¥ 1 2 +2
Pa = —€3 Adp1 Abds1 — 53 Ad41 s Pa+1 = 5 €3 Adt1 5 (A.14)

and thus (A.1) is the proper extremum of V® under the flux constraints.

B AdS3; X My solutions with the addition of higher times

In this appendix we revisit the computation of section 4.3, now with the inclusion of second
and triple times in the equivariant volume. For the AdSs x M7 solutions we considered in
section 4.3 there was no need to add any higher times. We will now show that it is still
possible to perform the computation even when the equivariant volume is over-parameterized.
The extremization procedure for the parameters in excess plays a crucial role this time:
relations that where automatically verified when V@ only included single times are now
derived as extremization conditions. This provides further evidence that extremization is the
correct way to deal with any parameter A that is not fixed by the flux constraints.

The second degree homogeneous component of the equivariant volume with triple times
is given by

) (r7)?
V¥ (A4, aB, aBc ,€1) = —
My 2P Cay1Caq2 (B.1)
TT=>"XaCa+ > MpCaCr+ D>, MapcCaCpCc.
A A,B A,B,C

We need to impose the following flux constraints:

Ca7t
—vp3 Ma =, VB \a, ap,  apc,er) = / 4 (B.2)

My PCat1Cara’
Proceeding in a similar way as we did in section 4.3, we will set all the A to zero except for
Ad+1,d+2 and Agiq, a42 4. This assumption is justified by the fact that in principle the group
of gauge transformation for the single, double and triple times has enough parameters to gauge

3¥When we plug this solution into the left-hand side of the dy, 41,441 €quation we do not get zero straight
away, but rather we get the same expression as 8Xd+1V<3), which is zero by (A.1).
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away all the A except Ag41, 442 and Agi1,d42, 4.7 At the end of this appendix we will quickly
check that V® does indeed have a critical point for A\gp = Ao pa+1 = Aapdr2 = Aape = 0,
thus verifying the correctness of this choice of A. The flux constraints (B.2) now read

1 _
—vp3 My = — / c1(La) <)\d+1,d+2 + > Adt1,d+2, A CA) =Y D)y, (B.3)
P My A b
where \ \ (o \ )
_ — t _
X, = d+1,d+2,a d+1,d+1,d+2 4l d+1,d+1,d+2 _ d+1,d+2,d+2) (B.4)
b b
Up to gauge transformations, the )\, are then fixed to be \, = —vp3m,, where the m,

are such that Y, Dgymy = M,.
We notice that the flux constraints did not fix all the A, but rather there is one such
parameter left:

1 2
v = B Car1Caqa <)\d+1,d+2 + Z Ad+1,d+2, A CA)
D JMy A
(B.5)
_P 9 Sy T 2
=5 Vs /M4 Ca+1Cayo (A za:ma €1 (La)> ;
where
N Adt+1,d+2 — €3 Adt1,d+1, d+2 L (Ad41,d+1,d+2 — Adt1,d+2,d+2) . (B.6)

PVpD3 p2 VD3

Our procedure prescribes to fix the value of X by extremizing V) with respect to it. If
we call b(e7) the extremal value of )\, we find that

0
0=—=V® =pi2, /M Cas1Cqio (b(q) — E Mg c}T(LQ)) . (B.7)
4 a

)
Notably, the equation we obtain is the exact same as (4.49). In the context of the computation
without higher times, equation (4.49) was a trivial relation, a predictable consequence of the
fact that there are only d — 1 single times, but d fixed points. In the computation of this
appendix the same relation is now derived as an extremization condition.
If we substitute (B.7) into V) we get

p
v = P, /M Catr Cara (ber) = 3" ma e (L)) 3 ma ¢ (La) (B.8)
4 a a

which is the same as the main result of section 4.3.

We can quickly verify that the values of A that we have fixed are an extremum of V(%)
by employing the same strategy as appendix A. We can find the values of the Lagrange
parameters pa such that the function

EAa, B, e er,pa) = VO +3 (05, VP +vpg M) (B.9)
A

3 Note that Aa.p, Aabdi1, Aapdairz and Agp do not appear inside V® unless a,b,c € {a@,a+ 1} for some
ae{l,...,d}.
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has null derivatives with respect to A4, Aap, Aapc by solving the following linear system:

> pa(Ca)l, = —pvps [cdﬂ Cara (bler) = Y ma c“lf(La))] - (B.10)
A a

Using the same line of reasoning as in appendix A, solutions to this system exist and thus (B.8)
is the proper extremal value of V(& (with respect to the extremization in \).

C AdS, X Mg gravity solutions

In this appendix we study the family of AdS4 x Mg solutions to massive type IIA supergravity
constructed in [28]. The internal space is a P! bundle over a four-dimensional compact
manifold, P! < Mg — By, where the base space can be either a Kahler-Einstein manifold
(B4 = KE4) or the product of two Riemann surfaces (By = X1 X X3). In the general class
of solutions in [28], the P! bundle is the projectivization of the canonical bundle over By,
P(K @ O). In what follows, we will focus on spaces with positive curvature and set to zero
the constant parameter ¢ appearing in [28]. This last choice is motivated by our interest
for systems with only D4 and D8 branes, therefore all fluxes, except for Fg) and Fly), must

vanish. In both configurations, the metric in the string frame is*°

ds? ¢ = e24 (dsids4 + ds?%) , (C.1)

S.

where dsid&l is the metric on AdS4 with unit radius. The details of the internal space, along
with the expressions for the dilaton and the form fluxes, will be given case by case. The
solutions in [28] corresponding to the geometries discussed in section 4.2 are cut into half
along the equator of the P! fibre due to the presence of an O8 plane.

C.1 Kaihler-Einstein base space

We begin considering By = KE4, in which case the metric on Mg is given by (setting
k = +1 in [28])

/ /

q q q
sy, = - da® — —1— Dy? + py—— dskg, » (C.2)

4dxq xq' — 4q

where 1
o
q(z) :x6+§x4+4x3—§,
with o a real parameter. Here, we introduced D = dvy + p, where the one-form p is defined
on KE4 and is such that dsp = —R, with R the Ricci form of KE4. The line element

ds%E4 is normalized such that its scalar curvature is Rxg = 4. The background under exam

(C.3)

corresponds to ¢ > —9, in which case the metric is smooth and well-defined given that 1
is 2m-periodic and x € [0,z4], with z, the only positive root of g(z). In z = 0 the S*
fibre parameterized by 1 does not shrink and here is located an O8-plane [28]. The warp
factor of the ten-dimensional metric is

x2q' — 4xq

e2A — L2 -
q

: (C.4)

4ONotice the different normalization of dsﬁfﬁ with respect to [28].
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with L a real constant. The dilaton reads

20 _ 7214 xq (qu’ - 4:cq>3/2
fg (3q/ _ :cq”)2 q/ ’

where we find convenient to introduce the constant fy in order to parameterize the Ro-

(C.5)

mans I1nass

Jo
Fo)= 73> (C.6)
and the four-form flux is given by
L fo [3x(25—523 —0x—5 920 + 5023 +452>
Fpyy = L0 [32@ 25000 75) 4 py agy S TBOT TR0 o (o

12 (1—x3)2 6(1—23)

All the other fields, namely the two-forms B(y) and F(), vanish.
The first step we take in the analysis is the quantization of the fluxes, which imposes

1
(QWKS)F(O) =ng €7, W - F(4) = NE4 eZ (CS)
for any four-cycle ¥4 on Mg. Letting X, be a basis of two-cycles for Hy(KEy, Z), we take as
a basis for Hy(Mg,Z) the set {Cq, C1}, where C,, are the four-cycles obtained by considering
the fibration P! < C, — X, and C, is a copy of the KE base space at x = x,. Performing

the integrals, we obtain the fluxes

L fo 22 (323 + 2024 + 15)

N. =
«a 6(27‘(’55)3 1 —J):_)”_ mgNg , (C 9)
L fo 925 4+ 5oad + 4522 + o '
N+ = — 1 3 3 Mka
8(27ls) 11—y
where we defined the integers
1
Yo) = — R = M, = — RAR. C.10
no) =5 [ R=mena. M= [ (C.10)

my, is the Fano index of the KE4 and is the largest positive integer such that all of the
ne are integers. These integers take the values my = (3,2,1) and M;, = (9,8,6) for P2,
P! x P! and dP3, respectively.

For the rest of this subsection we will restrict to the case ¢ = 0. In order to understand
this assumption, we first need to make contact with the equivariant volume extremization
procedure. The toric manifold KE4 is completely described by its fan v®, which defines
the toric divisors ¥, and their associated line bundles L,. The set of divisors D, C Mg is
naturally induced as the P! fibrations over ¥, to which we must add Dy, 1, a copy of KE4
at the pole of the half P'. The corresponding integer fluxes are defined as

1

and, for a = 1,...,d, they read

M, — 7L fo 2% (323 +20§:+ + 15) " / R
12(210, )3 1— a3 .

(C.12)
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Recalling that >, c1(Ls) = c1(TKE4) = R/(27), we obtain
1

Z/ R = Z/ RAeLa) =5 |  RAR, (C.13)

KE4

which allows us to compute the sum

’L 3 2 15
ZM _ Lo 232+ e ) My (C.14)
6(2mls)3 1—a3
Identifying My,1 with Ny we have
7L fyo
Mya=>» M,+ N M, C.15
R ©19

and consistency with the I = 3 component of the third condition in (4.13), which reads
>aMy = 0, imposes 0 = 0.
When o vanishes, the zeros of (C.3) can be computed analytically,

3 vy — (S—M)”s, ©.16)

3
' =-2+ — —
V2

V2

and the fluxes simplify to

2L fo [(3+2V2 L fo [(3+2V2
2(2ml4)3 ( V2 2(2ml4)3 < V2

In order for N, and N, to be integers, as imposed by (C.8), we require

1/3 1/3
N, = > mi Ny Ny =— > M. (C.17)

(C.18)

2L fo (3+2\/§>1/3 N
2(27l4)3 V2 b’

where N is an arbitrary integer and h = hef (M}, my,). Specifically, h = (3,2, 1) for P2, P! x P!
and dPg, respectively. On the other hand, the first condition of (C.8) yields

f n
L% = 2;2 . (C.19)

Combining (C.18) and (C.19) we obtain the following quantization conditions on the pa-
rameters L and fj

L = e 2GS 20 ()
B B 2ng h)’ (C.20)
PEPCR TR |
0 B 3 h '

The free energy of our AdSy x Mg background with KE base space can be read off from
the four-dimensional effective Newton constant G4 as [33]

T 1673 _
F = o = @l / SA=2% 4o1(Mp) (C.21)
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which gives the general result

1 8nOLYfE 5 0 s
Gl 135 x5 (92 + Soxy + 45) My, . (C.22)

F=

In this computation we used the fact that, in our conventions, the Kéhler form is Jxg =R,
therefore the total volume of the KE4 can be determined from

1
Vol(KEy) = 5 . RAR =21M,, . (C.23)
4

Setting o = 0 and substituting the expressions of x4, L and fj into (C.22), the free energy
then reads

/
P 32V23 - 2v2)r (N>5 QMk’ (C.24)

5né/2 h

which agrees with the first equation in (4.25) with a plus sign, taking into account that,
for our examples, h = my.

C.2 82 x S? base space

We now move to the second case, By = S7 x S3, whose six-dimensional metric is (setting
K1 = K2 = +1 in [28])

2 q 2 q 2 q 2 q 2
d =———dz*———D —d —d C.25
%M 4xq o xq — 4q VT TUL Ssp T TUo 553 ( )

where ;
6,9, 4 3
qz) ="+ 2" +2(1 +t)z° — -,
(x) Tt 2+ 1) -
ui(z) = 122(1 — 23), ug(z) = 12z(t — ),

with ¢ and t real constants. D1 = d¢ + p, where p is a one-form on S? x S2 such that

dyp = —(R1+Rz2), with R; Ricci form of S2, while each ds?gg is the metric on a two-sphere with

unit radius. The configuration of interest is realized when t > 0 and o > —9 - 4=1/3(1 4 1)%/3,
and in this region the metric is smooth and well-defined given that 1 is 2w-periodic and
x € [0, x4], with z the only positive root of ¢(z). Also in this case, we have an O8-plane in
x = 0. The warp factor has the same expression as in the previous case, namely

2¢/ — 4
R Ny (i (C.27)
q
whereas the dilaton is now given by
4 / 2. 3/2
2o = 2L 4 (m g 4”5‘1) . (C.28)
J§ Turug q
The remaining non-vanishing fields are the Romans mass
Jo
Foy =73 (C.29)
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with fo € R, and the four-form flux
L fo [32(2® — (t +4)2® — oz — (2t + 3))
12 (1—a3)2
3z (2% — (4t + 1)a3 — ot — t(3t + 2))
(=2
928 + 5ox® + 18(t + 1)2° — 20 (t + 1)23 — 9(t? + 3t + 1) —
a 3(1 — 23)(t — 23)
In order to quantize the fluxes as in (C.8), we take as a basis for Hy(Mg,Z) the set
{C1,Cy,C}, where C; are the fibrations P! < C; — S? (at a fixed point on the other sphere)
and C, is a copy of S? x S5 at x = x,. The expressions of the three fluxes are

L fo 2% (323 + 2024 + 3(2t + 3))

F(4): d$AD¢AR1

dz A DYy ARy (C.30)

t
P RIAR,| .

N1 = ,
3(2mls)3 1—a3
2L 2 (323 +2 3(3t 42
N2 _ T fO J:-i-( .’L’++ O'CC+3+ ( + )) ’ (031)
3(27ls)3 t— a3
N AL fo 928 + 5oa% + 18(t + 1)25 — 20(t + 1)a3 — 9(t? + 3t + 1)2% — ot
T 9(2ne,)? (1—a23)(t—a2) ’
where we made use of the relation
1
7/ Ri=x(52) = 2. (C.32)
2T 52

As before, we will restrict to configurations with ¢ = 0, in which case the equation
q(xz) = 0 can be solved analytically, giving

t+2)(2t+1 t4+2)(2t+1 1/3
3= —(t+1)+ (+)(2+) = = ( H)(QH—(tH)) : (C.33)
When o vanishes Ny = —2(N; + N3), therefore we will focus exclusively on the quantization

of the fluxes N7 and Na, since the quantization of N, follows immediately. Setting o = 0,
the fluxes simplify to

2L fo a3 (2} + 2t + 3) 2L fo 2% (2} + 3t +2)

LT (2nt,)3 1—a3 ’ 27 (2nl,)3 t— a3 ’ ( )
and taking their ratio we can immediately determine ¢
2
{\/9Nl2 + 14Ny Ny + ONZ & 3(N; — NQ)}
t= . (C.35)

32N1 N,
Since t needs to be positive, N1 and N2 must have the same sign, i.e. Ny Ny > 0; for the sake
of simplicity, we will take both of them positive. Taking the product of the fluxes (C.34)
and making use of (C.19) we obtain

/ /
LY = (2nt,)" — (2)< <t+2><2t+1>_(t+1))”(N1N2>1/27

mno 1 2 (C.36)
1/2 3/4 1/2 '
7= (mtt 2 (2) (D ) v
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The free energy of the AdS, solution under exam can be computed performing the
integral (C.21) and takes the general expression

1 3275142

=
(2mls)8 135

22 (1873 + 10024 +45(t + 1)), (C.37)

which, once all the ingredients are substituted, becomes

42
F= \{/Z (N1 + N2)y/9N7 + 14N1 Ny +9N3 — (3NE + 2N1 N, + 3N3)

Bn, (C.38)
x \/3(N1 + Ng) — \/ON? + 14N; Np + 9NZ .

Parameterizing the fluxes as N1 = (1 +z)N, Ny = (1 — z)N, with |z| < 1, we obtain

Ja—L (VB+22 - (2+2%) V3 - VE+22N?2, (C.39)

5n(1)/2

which agrees with the first equation in (4.29) with a plus sign. Setting z = 0 we consistently
retrieve the result (C.24) specified to the case P! x PL.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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