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ABSTRACT
Electroencephalography (EEG) is a medical engineering technique aimed at recording
the electric activity of the human brain. Brain signals derived from an EEG device can be
processed and analyzed through computers by using digital signal processing, computa-
tional statistics, andmachine learning techniques, that can lead to scientifically-relevant
results and outcomes about how the brain works. In the last decades, the spread of EEG
devices and the higher availability of EEG data, of computational resources, and of
software packages for electroencephalography analysis has made EEG signal processing
easier and faster to perform for any researcher worldwide. This increased ease to carry
out computational analyses of EEG data, however, has made it easier to make mistakes,
as well. And these mistakes, if unnoticed or treated wrongly, can in turn lead to wrong
results or misleading outcomes, with worrisome consequences for patients and for the
advancements of the knowledge about human brain. To tackle this problem, we present
here our ten quick tips to perform electroencephalography signal processing analyses
avoiding common mistakes: a short list of guidelines designed for beginners on what
to do, how to do it, and what not to do when analyzing EEG data with a computer. We
believe that following our quick recommendations can lead to better, more reliable and
more robust results and outcome in clinical neuroscientific research.

Subjects Human-Computer Interaction, Brain-Computer Interface
Keywords EEG, Electroencephalography, Quick tips, Signal processing, Medical signal processing

INTRODUCTION
Electroencephalography (EEG) is a convenient and common tool to record the electrical
activity of our brain in a non-invasive way, easily, at relatively low cost, and eventually
using portable devices. The EEG allows to accurately follow the fast dynamic of the brain
and to obtain quantitative measurements of the electrical activity that small portions of our
brain produce while we are accomplishing cognitive and motor tasks, as well as while we
are in resting-state. The electroencephalogram is a special case of electrogram, and should
not be confused with the electrocardiogram (ECG), which is the recording of the electrical
activity of the heart.

The EEG differs from other kinds of brain monitoring, for example functional magnetic
resonance imaging (fMRI) or magnetoencephalography, to need cheaper costs, lighter and
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simpler acquisition procedures, faster acquisition sessions, and to be portable. For these
reasons, EEG is one of the most popular methods to investigate the brain and tons of
algorithms have already been proposed to analyze this kind of signal.

The first quantitative analysis of an EEG signal dates back to the pioneering work of
Hans Berger who, in 1929, employed a Fourier transform of an EEG signal to quantify
the spectral distribution of the brain activity under different physiological and stimulation
conditions (Berger, 1929). Since then, a vast literature flourished and obtained successful
achievements in the modeling and classification of EEG data for different clinical and
research applications (Teplan, 2002). However, the use of electroencephalography presents
several challenges, with non-trivial choices to design and implement the acquisition steps,
and a critical, yet underestimated, pre-processing phase.

Researchers take advantage of EEG data processing in several scientific fields, and not
only in medicine: EGG data in fact are the core of analyses on emotion recognition (Xu,
Guo & Wang, 2022), sleep stage classification (Zaman et al., 2024), motor imagery
classification (Zaman et al., 2024; Zancanaro et al., 2021), neurorehabilitation (Ang &
Guan, 2016), seizure detection (Shen et al., 2024), just to mention a few.

Several articles serve as guides to beginners on how to understand the electroencephalog-
raphy (EEG). The studies of Beniczky & Schomer (2020) and Biasiucci, Franceschiello &
Murray (2019), for example, describe the basic features of the EEG, how its data are
encoded and how they can be analyzed.

Some studies published in the past described the main challenges and obstacles of EEG
signal computational processing (Khademi, Ebrahimi & Kordy, 2023; Sharma et al., 2023;
Rashid et al., 2020; Sun & Mou, 2023; Ein Shoka et al., 2023). These research works capture
efficiently the main issues of the EEG computational signal processing scenario, indicating
problems that we ourselves describe in the present article as well. However, the authors of
these studies do not provide practical solutions for handling these obstacles: we tackle this
problem by providing here our ten simple tips to perform EEG signal processing correctly.

So far no article in the scientific literature explains how to perform EEG signal processing
correctly avoiding common mistakes: we fill this gap by presenting here our guidelines
for this common digital signal processing activity. Our ten simple recommendations, if
taken into account, can help researchers avoid commonmistakes and perform better, more
robust analyses that, in turn, can lead to more reliable results and outcomes (Fig. 1). Even
if we wrote these guidelines for beginners, we believe they should be followed by experts,
too, in any scientific project involving EEG data.

TIP 1: BEFORE STARTING, CLEARLY DEFINE YOUR
SCIENTIFIC QUESTION AND YOUR EXPERIMENTAL
PROTOCOL WITH A CLINICAL NEUROSCIENTIST
The first action to take when you have a research topic in mind is to clearly define a
research question. In this field, where multidisciplinarity is an essential characteristic of
the investigation, you must discuss and converge towards a consistent and well-grounded
research question together with the clinicians and the other members of the research team
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Figure 1 Schematization of the proposed tips as a flowchart. This diagram shows all the steps we sug-
gest to follow in order to facilitate the integration and analysis of electroencephalografic data. We gener-
ated the icons through Microsoft Windows PowerPoint.

Full-size DOI: 10.7717/peerjcs.2256/fig-1

(it might include neurologists, neuroscientists, physical therapists, cognitive psychologists,
data scientists, etc.).

The research question must be well-grounded from the current state of the art,
innovative, simple to be explained, and clearly stated (Fig. 1).

Once it is formulated, a research protocol has to be properly designed. Every in-field
experiment has to be supported by a rigorous protocol that defines the methods and the
timing of the data collection. The protocol typically includes:
1. A systematic review of the state-of-the-art;
2. The research question and themain objective of the investigation as well as intermediate

objectives;
3. The methods to reach the objectives, including the type of study to conduct (for

example, a randomized clinical trial), the equipment to collect the data, the statistical
analysis and the numerical computation planned to be used, the reporting strategies,
and the validation methods;

4. The criteria to include and exclude participants from the data collection and their
assignment to the experimental groups (the ‘‘control group’’ typically includes healthy
subjects, while the ‘‘treatment group’’ is composed by patients receiving a specific
therapeutic intervention);

5. The dissemination and publication modalities at the end of the investigation.
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Research protocols ensure the robustness of the investigation (that is, of its outputs),
the safety of the participants, and the replicability of the study all over the world.

You can find templates open to be used as a basis to design your own research protocol
in Higgins & Green (2008) (particularly, its Box 2.2a) and in The Cochrane Collaboration
(2024).

If working at the hospital, the research protocol has to be approved before it can
be implemented, any research involving humans must be approved by an Institutional
Review Board (IRB), and informed consent from the subjects must be collected before
participation. Then, it is mandatory that it is presented to the hospital’s Ethical Committee,
a multidisciplinary committee formed by clinicians, statisticians, experts of medical law
and insurance, professionals in health-tech (medical equipment and devices) and possibly
other stakeholder representatives. The committee has the role of analyzing all parts of
the submitted protocol and guaranteeing its applicability and safety for the involved
participants (healthy and patients, as well).

Once you have your experimental protocol approved, you and your team can start
recruit patients and collect data (Fig. 1).

TIP 2: KEEP IN MIND THAT PART OF THE SUCCESS OF
YOUR SCIENTIFIC PROJECT DEPENDS ON THE QUALITY
OF THE EEG RECORDINGS
To ensure proper medical interpretation of the raw EEG data as well as the success of
any machine learning model (ML), it is recommended to make the best effort to obtain
high-quality EEG recordings (Fig. 1). This can be realized by following these simple
guidelines:
1. If available, use high-quality research-grade equipment. This typically provides finer

resolution (in time and amplitude) of the EEG data.
2. Carefully and properly set the acquisition parameters. First, the sampling frequency

should be high enough to allow you to detect the brain behaviour under investigation.
If brain reaction is expected a few milliseconds after a given stimulus, the sampling
frequency should be higher than 1 kiloHertz (kHz), in order to have at least 1 sample
every millisecond. Typical values for the sampling frequency are: 500, 1,000, 2,000 Hz.
Pay attention also to have a sufficient number of bit to code the values of your signals:
bit resolution should be at least 8 bit (check the technical specifications of the EEG
device you use). The number of channels is also important: having a sufficiently high
number of sensors (also called electrodes) covering the whole scalp surface allows
you to monitor the whole brain activity, that is the activity produced by all regions
of the brain. On the other hand, if the medical team has strong assumptions on the
region where the activity of interest is produced, you can decide to reduce the number
of sensors, having a lighter setup with consequent lower time for the preparation of
the participant. Finally, there are two special electrodes to place: the ground and the
reference one. Our advice is to place the reference electrode in an electrically-neutral
location (like the ear lobe or the mastoid). If possible, use the linked-mastoids or
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linked-ears function provided by the EEG equipment company, to ensure perfect
symmetry in the acquisition. For the ground, you can find indication by the company
of which electrode has to be used as ground (check the equipment user manual).

3. Follow the International 10–20 EEG Placement System (or its extension) to correctly
place the EEG electrodes on the participant’s scalp (Homan, Herman & Purdy, 1987).
More often, an EEG cap is provided by the EEG producer which integrates all sensors
in agreement with the above-mentioned standard. On the other hand, in case you
use a portable device, the electrode placement might be different to improve the user
comfort. In this case, the reference to the International 10–20 EEG Placement System is
useful during the subsequent analysis to compare your results with other studies using
standard equipment. Ensure no hair is in between the EEG electrodes and the scalp,
or try to scrap them apart. To note, require the participant not to apply any hair foam
before the EEG experiment. Bald people might show lower signal because of a thicker
scalp. Ensure that cables from the cap to the amplifier are not stretched anywhere.

4. Ensure that the participant sits comfortably on the chair, with the monitor (if any) at
about 1 meter apart from them at their eyes’ height (so to avoid head movements).

5. To ensure the fairest comparison across different EEG studies, make sure that
participants are recorded at the same timeduring the day (to have consistent phase of the
circadian rhythm) and that the room is properly shielded from other electromagnetic
interferences.

6. During montage, fill the space between each electrode and the scalp with enough
conductive gel to have a sufficiently low impedance that allows a good signal amplitude.
You can read the impedance values in the software provided with the equipment. Check
the value of every single channel, starting from the ground and the reference ones.
Remember: the amplifier takes the voltage difference between each electrode and the
reference one, and calibrates itself on the electrical activity acquired at the ground
location. This means that if the reference and/or the ground electrodes have problems,
all the remaining electrodes will suffer from poor quality. The rule-of-thumb is to
keep the impedance value below 20 kiloOhm (but check the equipment user manual,
because this threshold might change depending on the electronics of each specific EEG
amplifier).

7. Once step 5 is completed, check the raw signals on the visualization panel (equipment
software). The signals (from any channel) is expected to have small variations in the
range of (max)±100microvolts (µV). Figure 2 represents an example of multi-channel
EEG recording. If you notice large and slow variations, you should go back to step 6
and check the impedance of the reference, the ground, and the electrodes displaying
problems.

8. Before starting the actual data recording, ask the participant to blink their eyes
repeatedly, to clench teeth, and, finally, to close eyes and relax. You should verify,
respectively, that frontal electrodes show a rhythmic activity corresponding with the
blinking rhythm, that temporal and fronto-temporal electrodes show electromyography
(EMG) activity overlapping the EEG signal while the participant is clenching, and finally
that a small periodic activity (at about 10 Hz, the famous α rhythm) appears at the
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parietal and occipital electrodes while the participant is fully relaxing. Figure 3 shows
an ideal example of clean EEG recording, with the clear occurrence of some α rhythm
events.

9. Finally, instruct the participant to stay as much relaxed as possible during the entire
experiment duration. Remember, every movement (for example, head, legs, etc.) might
induce artefactual components on the EEG recordings. If the experiment takes long,
tell them to ask for a break whenever they feel cognitive fatigue or drowsiness.

TIP 3: PROPERLY CLEAN YOUR DATA BEFORE STARTING
THE COMPUTATIONAL ANALYSIS: CHECK TIME COURSE
AND FREQUENCY SPECTRUM, AND REMOVE NOISE
Before starting any computational step, we strongly suggest you check the raw data. You
need to plot the signals both in the time and in the frequency domain. In the time domain,
check that the amplitudes do not exceed ±100 µV (well-established rule of thumb). In the
frequency domain, you should recognize the 1/f shape of the power spectrum. On the top
of the 1/f shape, you might recognize some additional narrowband peaks around 5 Hz,
10Hz and 20Hz, corresponding to the clinical theta, alpha and beta bands. These frequency
bands have a important clinical value. Remember that EEG cannot reliably capture brain
frequencies above 90 Hz. Then, if you find large peaks above that frequency, it is much
likely that they convey non-brain information and should be eliminated (Fig. 1).
To remove the unwanted components, it is common to use filters. The most general filters
you can apply are: a notch filter to remove the power line noise (50 or 60 Hz, depending on
the country where you work). Then, you need to consult the literature or your colleagues
from the clinical side, to decide other filters to apply. To make a few examples, in the case
you are studying brain processing in relation to a cognitive task or sensory task, you might
heavily filter the signal below 30 Hz (for example, to detect the popular P300 component
(Polich, 1993)). On the contrary, when dealing with movements and desynchronization of
sensorimotor rhythms (Pfurtscheller & Da Silva, 1999), we suggest you to apply a band-pass
filtering between 3 and 45 Hz (or 55 Hz, in case power line is at 60 Hz).

To increase the spatial specificity of the signal acquired from one location, you can also
apply spatial filters such as the common average (CAR) filter, the small Laplacian filter,
or the large Laplacian filter. We recommend not to use the CAR, unless you are sure to
have clean signals from all electrodes. Spatial filtering is more beneficial in high-density
recordings (more than 64 channels), where the electrodes spacing is short.

In the latter cases, you might also decide to exclude the signal from a particularly
corrupted channel and substitute it with the interpolated version of its surrounding
channels. The latter contain similar information to the rejected channel, given their short
distance from it.

Finally, it is suggested to run independent component analysis (ICA) (Makeig et al.,
1995) to decompose the multi-channel recording into independent components, identify
those most likely associated with artefacts (for example, eye blinks), and then recompose
the signal by using only clean components. To perform this procedure, the help of domain
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Figure 2 An example of EEGmulti-channel recordings. Image released on Wikimedia Commons under
the Creative Commons CC0 1.0 Universal Public Domain Dedication (Krol, 2024). Each signal represents
one EEG recording from one single channel (channel’s name on y axis) along time (x axis).

Full-size DOI: 10.7717/peerjcs.2256/fig-2

experts or other online resources (for example Pion-Tonachini, Makeig & Kreutz-Delgado,
2024; Pion-Tonachini, Makeig & Kreutz-Delgado, 2017) is needed to properly select which
components to discard. With this method, you can reliably remove the power line noise,
blinks and, to some extent, also physiological interferences (for example, muscular or
heart activity). Once you obtain the new multi-channel EEG recording after ICA, check
the quality of the new dataset.

As a side suggestion, keep track of the signals or the components you discard. Pre-
processing in EEG is often not fully replicable, so having notes of what pieces of the signal
have been eliminated and why might be important in the case of article review or to reuse
the same dataset in the future (Tip 10) (Karimzadeh & Hoffman, 2018; Vardigan, Heus &
Thomas, 2008; Rasmussen & Blank, 2007; Fabris et al., 2022).

TIP 4: ALWAYS PAY ATTENTION TO TIME, FREQUENCY,
AND SPACE DOMAINS, SUBJECT-SPECIFICITY, AND
INTER-SUBJECT VARIABILITY OF THE EEG SIGNALS
Assuming you have a clean EEG dataset, it is of key importance to analyze it in the three
main domains: time, frequency, and space (Fig. 1). The time domain is essential to identify
specific brain responses to stimuli that might be included in the experimental protocol (a
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Figure 3 An example of clean EEG recordings with visible α ryhthm events (in the red circles).
Full-size DOI: 10.7717/peerjcs.2256/fig-3

typical example is the P300, explained in Tip 3). The frequency domain is needed especially
when you expect a particular engagement of specific brain waves. Common examples are
the steady-state visual evoked potentials (SSVEP) or the event-related desynchronization
(ERD) paradigms: in SSVEP, a visual stimulus is repeatedly administered to the subjects
letting their brain synchronize the occipital activity to the same frequency of the stimulation
(Beverina et al., 2003). In the ERD paradigm (task-oriented), while the subject is moving,
movement-related brain areas decrease their activity in two frequency bands around 10 Hz
and 20 Hz. In these cases, comparing the power spectra before and during stimulation/task
performance will make these frequency responses clearly appearing. The space domain is
fundamental to find the regions where the above time and frequency responses are more
evident. As an example, ERD is mostly found over the sensorimotor cortex (for example,
C3, Cz, C4 electrodes) (Dugué et al., 2020), SSVEP over the parietal and occipital cortex
(Ding, Sperling & Srinivasan, 2006), while P300 is mostly visible over the centro-parietal
midline (Cz, Pz).

To optimize the analysis efforts towards the most informative direction, it is critical
to have prior knowledge or hypotheses coming from the clinical side or neuroscientific
literature. Depending on the task performed by the individual (motor imagery, sleep,
rest with open eyes, etc.), the brain electrical activity can highly vary. Also, keep in mind
that other two factors can change the shape of the EEG recordings: even using the same
experimental protocol (Fig. 1), that is, asking the participants to perform the same task with
the same timing, you might see differences in their EEG signals due to possible pathology
affecting them, and also due to the inherent inter-subject variability that characterizes the
human brain.
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In the analysis of EEG data, identifying common patterns across different subjects and
investigating subject-specific responses are both important.

TIP 5: PROPERLY PREPARE YOUR DATASET FOR THE
COMPUTATIONAL ANALYSIS
To identify those time-frequency-space patterns associated with a task or a pathological
brain behaviour, machine learning (ML) models are typically employed. However, it is
common to run a few pre-processing steps to prepare the clean dataset for being input
to the model (Fig. 1). First, segmentation is performed. This means to cut the long-time
EEG recording, into smaller chunks that will be then independently treated. Choosing the
correct segment duration is a non-trivial step. We would suggest to choose the duration
in relation to the experimental protocol: for example, if a movement task is asked to be
repeatedly performed every 10 seconds, then a good option is to cut the EEG signals to have
10s-segments. On the other hand, if no external time scheduling is imposed to the subject
(in sleep or resting state studies), you might consider 2-seconds segments. The latter is
an empirical numerical choice representing a popular choice in the EEG community, as it
should allow to ensure stationarity (that is, the same statistical properties) across different
segments and, thus, proper analysis. Besides, we strongly recommend you to segment
after filtering, to avoid filter border effects to appear in every segment, attenuating a good
amount of initial and final segment samples.

Second, normalization can be applied if you need to level out differences in those
factors that you don’t want to influence your analysis. For example, if you are interested
in the general brain response to a specific new stimulus without considering individual
differences, then normalizing EEG signals within each subject can be a good choice.

Lastly, for most ML models you need to extract a number of well-established features: a
rich list of possible features can be found in Cisotto et al. (2020b). Features can be extracted
from every single electrode, both in the time and in the frequency domain. Then, feature
selection based on prior expert knowledge or using an automatic algorithm (Cisotto et al.,
2022; Cisotto et al., 2020a) might be beneficial to let the machine learning model learn
more effectively and quickly. Once you have transformed your raw EEG dataset into the
features domain, then normalization of each single feature (across EEG samples) might be
useful to help the model learn.

If you use deep learning techniques, then feature extraction could be skipped, and you
can decide to input raw segments of EEG data into the model: however, this choice depends
on the specific architecture you use. There is no golden choice, you need to carefully study
previous literature addressing similar analysis.

However, if your objective is to prove the effectiveness of a new analytical method, then
use the same input size and preprocessing steps before compare your results with previous
literature results.

Cisotto and Chicco (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2256 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2256


TIP 6: CAREFULLY CHOOSE BETWEEN THE “SENSORS”
OR A “SOURCES” APPROACH
When talking about EEG analysis, you can decide to work with the data directly coming
from the electrodes (sensor analysis), or to infer the brain activity of deeper brain regions
using specific models to transform the recorded EEG data into the real brain sources
(source approach) (Fig. 1). The latter operation lets you find the most probable sources of
the electrical activity you have just measured at the surface of the head.

In the following, we explain how to carry source analysis and we discuss the opportunity
and the disadvantages to evaluate when deciding to work with sources or sensors. This
tip has to be a bit more technical to allow you understand the complexity, but also the
advantages, of the source approach.

In some clinical applications, it might be useful to operate the so-called electrical source
imaging (He et al., 2011; Michel & He, 2019), a transformation aimed to map the electrical
activity measured at the scalp level (by the EEG sensors) to a set of brain sources that
might have produced those superficial measurements. This processing is particularly useful
in clinical applications like the identification of the sources of epileptic foci (Bénar et al.,
2006), of the α rhythm activity during a resting-state period (Cuspineda et al., 2009), of the
sleep waves (spindles) (Del Felice et al., 2014), and in examinations where other imaging
methods (MRI, fMRI, CT, etc.) are available and can be used in co-registration with EEG
(Bénar et al., 2006).

However, implementing this transformation is a non-trivial task. There is an entire
subfield of computational neuroscience addressing the challenges related to this
transformation: in fact, a number of hypotheses has to be assumed. First, you need
to have a model of the head layers (Plummer, Harvey & Cook, 2008). Second, prior
knowledge should let you select the number and the distribution of the sources expected
to explain the superficial activity (He et al., 2011; Michel & He, 2019). Third, a variety of
possible models to actually realize the mapping are available: to name a few, the weighted
minimum norm (WMN) (de Peralta Menendez et al., 2004) , the popular low-resolution
electromagnetic tomography algorithm (LORETA) (Pascual-Marqui, Michel & Lehmann,
1994), the multiple signal classification (MUSIC) (Mosher & Leahy, 1999). The interested
reader might refer to Kaur et al. (2022), Asadzadeh et al. (2020) for recent reviews on this
topic.

Nevertheless, if you have less than 60 electrodes, it is not recommended to apply this
transformation:motivated by the fundamental theorems of linear algebra andmathematical
modeling, you need to have a sufficiently high number of sensors to reverse the modelling
problem and obtain the sources of the observed activity. Empirically, 60 sensors is a
well-accepted minimum value to have a reliable source localization within the brain from
scalp EEG recordings (Michel et al., 2004).

On the contrary, if you have more than 60 electrodes and you opt for the source
approach, you can find a number of software tools and libraries to help you apply this
transformation, implementing different modeling methods. To name a few: CARTOOL
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(Michel & Brunet, 2019), EEGLAB (Delorme et al., 2011), and FieldTrip (Oostenveld et al.,
2011).

Finally, it is worth tomention that models based on deep learning have been also recently
proposed, showing promising results (Liang et al., 2023; Cui et al., 2019; Pantazis & Adler,
2021).

TIP 7: FOR THE COMPUTATIONAL ANALYSIS, START WITH
THE SIMPLEST METHODS, AND USE MORE COMPLEX
METHODS ONLY IF IT IS NECESSARY
When the dataset you would like to analyze is finally pre-processed and ready to be used,
you come to an important decision which regards all the computational researchers in any
field: which computational method should I start with? We have a straight piece of advice
for this choice: start with the simplest method available. Period.

A simple technique (for example, linear regression), in fact, gives you the possibility to
understand how its statistical model works, to comprehend its functioning, and to interpret
its results and why they were generated that way. Complex methods, instead, are difficult
to implement and hard to interpret, and should be utilized only if necessary. If you obtain
sufficient results with a simple method, stick with them; otherwise, of course feel free to
use more complex methods. But do not start with complicated methods: start with simple
algorithms.

If you can achieve sufficiently relevant results with basic statistics tools (for example,
mean, standard deviation, median, minimum and maximum) or with traditional
biostatistics tests (such as Mann–Whitney U test (MacFarland et al., 2016), Student’s t
test (Mishra et al., 2019), Kruskal–Wallis test (Ostertagova, Ostertag & Kováč, 2014), chi-
squared test (McHugh, 2013, etc.), then go with them. For probability values, we suggest to
use the p< 0.005 significance threshold, as indicated by Benjamin et al. (2018).

If your analysis involves supervised machine learning, we suggest you to start with
Decision Trees, and not to start with complex or large deep learning models (Chicco,
2017; Zancanaro et al., 2021; Cisotto et al., 2023). If your analysis includes an unsupervised
machine learning phase, we advise you to start with k-means clustering and not with
spectral clustering.

Leonardo Da Vinci used to say: ‘‘Simplicity is the ultimate sophistication’’. It is true also
for EEG signal processing.

TIP 8: LOOK FOR A VALIDATION COHORT DATASET
ONLINE AND REPEAT YOUR ANALYSIS ON IT
Once a researcher has performed a computational analysis on an electroencephalographic
dataset and has discovered something relevant regarding the subjects involved, they might
tend to think that their job is done and they can focus on paper writing. Actually, scientific
findings obtained on a single dataset, although possibly useful and interesting, result being
clearly dataset-specific and lack generalizability.
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To make a scientific study sounder and more robust, a confirmatory analysis on
a validation cohort dataset is necessary (Fig. 1). Finding a dataset that is compatible
and similar to the primary cohort dataset employed in a project might be difficult, but
fortunately there are multiple online resources in the Internet for this purpose.

So, here is our tip: when you finished your computational analysis on the primary
dataset, look for a validation dataset online on resources such as the following ones:

• Google Dataset Search (Google, 2024)
• re3data.org (re3data, 2024)
• PhysioNet (PhysioNet, 2024)
• OpenNeuro.org (Markiewicz et al., 2021)
• EEGLAB Wiki (Delorme et al., 2019; Martínez-Cancino et al., 2021)
• Zenodo (Zenodo, 2024)
• Kaggle (Kaggle, 2024a)
• University of California Irvine Machine Learning Repository (University of California
Irvine, 2024)

• Figshare (Figshare, 2024)
• Brain-Computer Interface (BCI) Competition IV (Brain-Computer Interface (BCI)
Competition IV Organizers, 2024)

You might also find a suitable dataset among the articles published in the Scientific Data
journal (Babayan et al., 2019;Cao et al., 2019; Shin et al., 2018; Luciw, Jarocka & Edin, 2014;
Hollenstein et al., 2018; Won et al., 2022; Nieto et al., 2022; Pernet et al., 2019; Grootswagers
et al., 2022; Mikulan et al., 2020; Ma et al., 2022; Valdes-Sosa et al., 2021; Stevenson et al.,
2019). On Google Scholar, this search can be performed by using the following query: EEG
source:“Scientific Data"

The possibility to repeat your computational analysis on an alternative, independent
dataset, and perhaps to find similar outcomes to the ones you found on the primary dataset
would make your scientific study more reliable and relevant for the scientific community.

TIP 9: ASK A CLINICAL NEUROSCIENTIST TO ASSESS
YOUR RESULTS
As we mentioned early (Tip 1), a sound medical project always starts with a clear, feasible
scientific question designed by clinical neuroscientists. A scientific question is well posed if,
once solved, its solution improves the knowledge of neurological research, and consequently
can influence medical knowledge and neurological therapies.

So here is our piece of advice. When you generate results on the EEG data you analyzed,
we suggest you to knock again on the door of the clinical neuroscientists that you met at
the beginning of your journey, and ask them to assess and review your results. They will
evaluate your outcomes and findings, providing precious feedback on what to do next, on
what to repeat, and on how to write the scientific paper about your electroencephalography
project (Fig. 1). A sound medical research project starts in the hospital and ends in the
hospital (Fig. 4).
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Figure 4 Schematic representation of a sound biomedical research project cycle. A relevant scientific
question is born in a hospital from medical doctors or clinical neuroscientists who identify a current lack
or problem in biomedical research or in clinical practice. A scientific question invented by the biomedi-
cal engineers or by health informatics researchers, without the help of clinical neuroscientists, is probably
badly posed or misleading. Scientific researchers take the medical question in custody from the hospital,
then collect the data and pre-process them for the computational analysis. They use computational meth-
ods to infer new knowledge on these data, and eventually deliver their scientific results back to the clinical
neuroscientists of the hospital where the scientific question was born at the beginning. The clinical neuro-
scientists review the results, provide feedback, comments, prompts, and insights, and possibly change their
strategy on treatments and therapies for patients. The hospital building image was released under the Cre-
ative Commons 4.0 BY-NC DEED license on PngAll.com.

Full-size DOI: 10.7717/peerjcs.2256/fig-4

In your results delivery document, we advise you to write your report in a simple
scientific language that can be understood by clinical neuroscientists, too: avoid jargon,
avoid words which have different meanings in different fields, and have a lots of patience
when working with medical doctors (Chicco & Jurman, 2023). If possible, ask your clinical
colleagues to meet and discuss your results in person.

In this case, put some effort to carefully prepare nice and intuitive figures and plots
for the clinicians. Remember to put clear labels, units, and titles on every figure and to
describe them in simple words (this can be a useful preparation to have your nice figures
for the scientific manuscript you want to write, as well). If possible, arrange the figures in
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a similar way as done in the papers you use as main references for your study. It will help
your colleagues get the meaning and impact of your results.

Our personal experiences showed that, when medical doctors were involved both for
the study design and for the results’ assessment, the final results turned out to be sounder
and more reliable (Cerono, Melaiu & Chicco, 2023; Chicco et al., 2023).

TIP 10: FOLLOW THE PRINCIPLES OF OPEN SCIENTIFIC
RESEARCH AND DOCUMENT EVERYTHING
In the history of humanity, scientific progress has happened only when information was
shared openly between people. Scientific research, as well, works better when it is open.

We can describe open scientific research through five pillars: usage of open source
software code; open software code release; open data release; open access publication; open
and complete documentation (for a more detailed, and general, approach to open and
reproducible science, also check (Cabitza & Campagner, 2021)).
1. Use only open source programming languages and platforms, such as Python and

R. Using an open programming language will allow the sharing of software scripts
between collaborators, without any issues regarding licenses. Moreover, it will allow
the reproducibility of the experiments, allowing anyone in the world with a computer
to install the desired software packages and re-run the tests you did. Python is
the most used programming language in the world, according to the PYPL index
(PYPL, 2024), to the TIOBE (TIOBE, 2024) and to the Kaggle survey (Kaggle, 2024b).
Moreover, the Python package index pypi contains around fifty software libraries for
electroencephalography signal processing in stable or mature development status (pypi,
2024). Among them, MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014), Py-EEG
(Bao, Liu & Zhang, 2011), and NeuroKit2 (Makowski et al., 2021) are the widely used.
R is another open source programming language and platform commonly utilized
in health informatics and bioinformatics. A few R software packages for EEG signal
processing exist in the Comprehensive R Archive Network (CRAN): eegkit (EEGkit,
2024), MedicalImaging (MedicalImaging, 2024), and eegUtils (EEGUtils, 2024).

2. Release your software code openly online. To enforce the reproducibility of your
study, you can also consider publishing your software code openly on GitHub, GitLab,
or SourceForge. Moreover, if your software code can be used as a package, you can
consider submitting it to a central repository of software libraries, such as pypi for
Python, CRAN for R, Julia Packages for Julia or Crates.io for Rust, for example.
Additionally, anyone will be able to assess your software scripts and understand if any
mistakes were made, making your study methodology more transparent and robust
(Barnes, 2010).

3. Release your dataset online, if you are authorized. If the subjects of the EEG experiments
gave consent, and the bioethical committee of your institution agreed, go on and
publish your EEG data openly online on public data repositories such as PhysioNet
(PhysioNet, 2024), OpenNeuro.org (Markiewicz et al., 2021), EEGLAB Wiki (Delorme
et al., 2019; Martínez-Cancino et al., 2021), Zenodo (Zenodo, 2024), Kaggle (Kaggle,
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2024a), University of California Irvine Machine Learning Repository (University of
California Irvine, 2024), or Figshare (Figshare, 2024). Releasing your dataset openly
online would make it available for secondary analyses to anyone in the world, who
might discover something new regarding clinical neurosciences. Moreover, it would
increase the impact of your study. Remember to anonymize the records prior release.

4. Publish your scientific article in an open access journal. If you have a say in what
journal you and your team can submit the article about your EEG study, we strongly
suggest to pick an open access one. By publishing your article open access, in fact, you
would make it available for free to anyone in the world, including to people in the least
developed countries, students of high schools, and taxpayers. Additionally, open access
articles obtain more citations (Tang, Bever & Yu, 2017). A list of health informatics
open access journals where to submit an article on electroencephalographic data can
be found on ScimagoJR (Scimago Journal Ranking, 2024). While carefully selecting a
journal where to submit a scientific article, it is pivotal to avoid predatory journals
(Cobey et al., 2018).

5. Write open and complete documentation. Documentation is the backbone of scientific
research (Karimzadeh & Hoffman, 2018; Witzman et al., 2020; Aghajani et al., 2020):
if you write it clearly and release it online openly without restrictions, anyone who
will reuse your software scripts will take advantage of it. On the contrary, the absence
of well-written documentation would make it impossible for other people to use
your scripts and programs. Examples of well-written tutorials for EEG software can be
found on the already-mentioned MNE-Python packagewebsite (MNE, 2024).Moreover,
keeping a detailed laboratory notebook is essential in this context (Schnell, 2015).
These practice for open scientific research, if taken into practice, will not only make your

studies more robust and reliable, but will also boost your career in several ways, giving you
more visibility (Fig. 1).

CONCLUSIONS
Understanding how the human brain works has always been a fascinating and difficult task
for scientific researchers, and electroencephalography (EEG) has been a useful tool for this
scope. Even if collecting EEG signal is a non-trivial task, analyzing electroencephalographic
data remains one of the most informative way for investigating the dynamic functioning
of human brain.

EEG is, indeed, employed in many different clinical neuroscience applications, from
diagnosis of epilepsy to motor rehabilitation and EEG-driven wheelchairs. A similar variety
is also present in the equipment that can record EEG: some are specifically dedicated
to high-level research (with lots of electrodes, implying long preparation times but also
high-quality data), others target portability and usability (being embedded with a few
electrodes allocated in a more fancy and usable support, but providing much lower data
quality). Thus, to face any type of data possibly acquired, a solid acquisition protocol and
pre-processing pipeline are needed. Therefore, we presented here our ten quick tips for EEG
signal acquisition and processing, by proposing some easy guidelines to avoid common
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mistakes in clinical neuroscientific research projects involving electroencephalographic
data. Some of these quick recommendations derive from our direct experience, while others
come from errors we noticed in other people’s studies or in published articles on EEG
acquisition and/or analysis. We presented our ten pieces of advice in a simple way, so that
they could be understood by anyone, including beginners and unexperienced researchers.
Although we originally designed these tips for novices, we believe our ten quick tips should
be followed and kept in mind by experienced researchers as well.

List of abbreviations

AEP auditory evoked potential
BCI Brain-Computer Interface
CAR common average
CC Creative Commons
CRAN Comprehensive R Archive Network
CT computed tomography
ECG electrocardiogram
EEG electroencephalography
EMG electromyograph
ERD event-related desynchronization
fMRI functional magnetic resonance imaging
Hz Hertz
ICA independent component analysis
iEEG intracranial electroencephalography
IRB Institutional Review Board
LORETA low-resolution electromagnetic tomography algorithm
ML machine learning
MUSIC multiple signal classification
NIRS near-infrared spectroscopy
p-value probability value
SSVEP steady-state visual evoked potentials
WMN weighted minimum-norm least squares
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