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Abstract— Individuals with Parkinson’s disease (PD) are
characterized by gait and balance disorders limiting their
independence and quality of life. Home-based rehabilita-
tion programs, combined with drug therapy, demonstrated
to be beneficial in the daily-life activities of PD subjects.
Sensorized shoes can extract balance- and gait-related data
in home-based scenarios and allow clinicians to monitor
subjects’ activities. In this study, we verified the capability
of a pair of sensorized shoes (including pressure-sensitive
insoles and one inertial measurement unit) in assessing
ground-level walking and body weight shift exercises. The
shoes can potentially be combined with a sensory biofeed-
back module that provides vibrotactile cues to individuals.
Sensorized shoes have been assessed in terms of the
capability of detecting relevant gait events (heel strike,
flat foot, toe off), estimating spatiotemporal parameters of
gait (stance, swing, and double support duration, stride
length), estimating gait variables (vertical ground-reaction
force, vGRF; coordinate of the center of pressure along the
longitudinal axes of the feet, yCoP; and the dorsiflexion
angle of the feet, Pitch angle). The assessment compared
the outcomes with those extracted from the gold standard
equipment, namely force platforms and a motion capture
system. Results of this comparison with 9 PD subjects
showed an overall median absolute error lower than 0.03 s
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in detecting the foot-contact, foot-off, and heel-off gait
events while performing ground-level walking and lower
than 0.15 s in body weight shift exercises. The computation
of spatiotemporal parameters of gait showed median errors
of 1.62 % of the stance phase duration and 0.002 m of the
step length. Regarding the estimation of vGRF, yCoP, and
Pitch angle, the median across-subjects Pearson correla-
tion coefficient was 0.90, 0.94, and 0.91, respectively. These
results confirm the suitability of the sensorized shoes
for quantifying biomechanical features during body weight
shift and gait exercises of PD and pave the way to exploit
the biofeedback modules of the bidirectional interface in
future studies.

Index Terms— Parkinson’s Disease, instrumented
insoles, plantar pressure, wearable sensors.

I. INTRODUCTION

PARKINSON’S disease (PD) is a chronic and progressive
disease of the brain caused by a deficiency in the neu-

rotransmitter dopamine. This deficiency in the brain’s basal
ganglia region compromises motor and non-motor subjects’
abilities. Consequently to the motor symptoms, people suffer-
ing from PD are characterized by gait and balance disorders
limiting their independence and quality of life [1]. Typical
features of the Parkinsonian gait are small shuffling steps and
slowness of movements, i.e., the bradykinetic gait [2], which
results in an increment in cadence and double support phase
duration concurrently to a reduction of the stride length and
walking velocity [3]. In addition, an abnormal distribution of
the plantar force [2] and reduced heel-to-toe motion [4] might
occur.

PD subjects are usually pharmacologically treated with
levodopa, which has been shown to reduce tremors, bradyki-
nesia, and muscle rigidity. However, the aforementioned gait
impairments become drug-resistant with the progression of the
disease [5]. In combination with drug therapy, rehabilitation
programs have been demonstrated to enhance postural stability,
muscle strength, and overall functions in daily-life activi-
ties [6]. Rehabilitation programs typically include walking
overground or on a treadmill, and balance training through
body weight-shifting (BWS) exercises [7], [8]. Rehabilitation
seems even more effective when subjects commit to training in
home settings [9], as this entails a higher volume of training,
more realistic training conditions, and lower stress due to
traveling to the health facility [10].

The current validated systems to evaluate gait or posturog-
raphy require a laboratory setting to collect data. Wearable
sensing devices are emerging to enable gait and BWS
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evaluations in home settings. These devices commonly include
sensorized shoes to measure ground reaction force and/or
detect foot-ground-related events, and inertial measurement
units (IMUs), to capture joint kinematics and compute related
parameters [11]. With the aim to improve gait, wearable
sensory systems can be combined with biofeedback modules
to provide users with real-time stimuli based on specific
characteristics of the measured biomechanical variables [12],
[13], [14]. Numerous prototypes of sensorized shoes have been
presented for the gait analysis of partients with PD since the
last decade; such prototypes exploit different sensing princi-
ples (e.g. capacitive [15], piezoelettric [16], inductive [17],
and others), and are based on various algorithms for the
estimation of the ground reaction force and computation of
gait parameters (e.g. fitting methods, machine learning) [11].
A exhaustive review of the literature in this field has been
published recently [12]. Still, despite several works that have
been published, the use of wearable biofeedback devices for
PD subjects remains an open challenge. A comprehensive
evaluation of the different sensorized shoe performances in
rehabilitation scenarios, including different types of exercises,
is lacking, particularly in assessing and training subjects’
balance [18].

We developed a system called Bidirectional Interface
(BI), which is a wearable biofeedback device that combines
pressure-sensitive insoles and IMUs to detect gait events
in real-time and provide concurrent vibrotactile biofeedback
according to the gait performance of the user. The device has
been preliminarily evaluated with healthy individuals [19].

To use the device in applications with PD subjects,
we developed, implemented, and tested real-time algorithms to
detect gait events and compute biomechanically-relevant spa-
tiotemporal parameters. In addition, we present the results of a
study with PD subjects to investigate the system performance
in real-time monitoring and assessing pathological patterns,
in walking and balance exercises. We assessed the capability
of the BI to detect gait events, describe gait kinematics and
kinetics, and compute spatiotemporal parameters of gait that
could be used by the physiotherapist to assess the quality of
gait of the patient. To the best of our knowledge, this is the first
study that proposes a methodology to benchmark a wearable
sensory biofeedback system in diverse rehabilitation exercises,
including walking and BWS.

II. MATERIALS AND METHODS

A. BI Architecture
The BI is a wearable vibrotactile biofeedback device, com-

posed of three main modules: (i) a sensing module, consisting
of a pair of pressure-sensitive insoles and IMUs; (ii) a map-
ping module, which is a portable real-time processor and
a field-programmable gate array (FPGA) combined with a
remote receiver; and (iii) a biofeedback module, constituted
by a set of vibrotactile transducers attached to a textile belt
(Figure 1). The device has been preliminarly presented and
tested with non-disabled individuals in [19].

The pressure-sensitive insoles consist of a matrix of sensing
elements, named tactels, based on an optoelectronic tech-
nology (patent nr. WO 2013/027145, [20]) engineered for

plantar pressure measurement [21]. Each tactel is made of
a LED-photodiode pair (OSA Opto Light GmbH, Berlin,
Germany; Broadcom Ltd., formerly Avago Technologies Ltd.,
San Jose, CA, USA) and a deformable silicone cover, shaped
like a pyramidal frustum with a square base and an internal
curtain. The deformation of the cover due to external force
causes the internal curtain to progressively occlude the light
path from the emitter to the receiver. Hence, the tactel trans-
duces the force applied on the top surface of the cover into an
output voltage measured by the photodiode. Overall, 16 tactels
have been distributed over the plantar surface according to an
optimization method (patent nr. WO 2021/084427A1, [22]).
An electronic board placed on the shoe dorsum acquires
the tactel signals and, additionally, integrates a 9-degrees-of-
freedom inertial measurement unit (MPU-9250 InvenSense,
San Jose, CA, USA). The IMU sensor combines a 3-axis
gyroscope and 3-axis accelerometer (MPU-6500, measure-
ment range ±2000deg/s, and ±4g) with a 3-axis digital
compass (AK8963). The electronic board has a microcon-
troller (STM32L476RG, STMicroelectronics, Geneva, CH)
that pre-processes sensory signals and manages the transmis-
sion of the data to the mapping module. Data are sampled
and transmitted at 100 Hz through a wireless Ultra-Wide Band
protocol (UWB, DWM1000 DecaWave 6.8 Mbps data rate).

The mapping module is based on two custom electronic
boards, i.e. the so-called ‘Mezzanine’ board and the ‘Vibro’
board. The Mezzanine manages the wireless communication
with the shoe electronic box through a UWB transceiver
(DWM1000, DecaWave) and the serial communication to the
Vibro board through a standard SPI bus. The VibroBoard
houses a System-On-Module SbRIO-9651 (National Instru-
ments, Austin, TX, USA) including the real-time processor
and the FPGA (Xilinx Zynq-700, 667 MHz). The FPGA
manages SPI communication with the Mezzanine and drives
the vibrotactile transducers of the biofeedback module. The
real-time processor runs the algorithm for the estimation of the
vertical component of the ground reaction force (vG RF I ns)

and its point of application along the insole longitudinal axes
(yCoP I ns), the plantar-dorsiflexion angle (Pitch I ns), stride
length, and velocity. The Vibro board communicates to a
laptop via UDP for data visualization and setting of control
parameters.

Finally, the biofeedback module is equipped with 6 vibro-
tactile units placed equally spaced around the waist circum-
ferences, employing an adjustable belt and Velcro strips. The
location of the vibrotactile units around the waist circumfer-
ence was motivated by previous studies showing the perception
around the waist to be invariant with gait phases and, therefore,
suitable for providing sensory feedback [19].

1) Online Computation of Biomechanical Variables: The out-
put voltages of the tactels are converted into the vG RF I ns
following a three-step procedure. First, when the user wears
the insoles, a quick de-offset procedure consists of recording
the output voltages (offset) of the pressure sensors when the
subject has the feet lifted from the ground and then removing
such offset from the sensors readings. Such de-offsetting
procedure removes the effects of the pressure given by the
tightening of the shoe laces. Second, the de-offsetted sensor
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Fig. 1. General architecture of the bidirectional interface device, including three modules, the biofeedback module, the mapping module and
the sensing module. The latter includes pressure-sensitive insoles made of custom pressure sensors, called tactless, distributed over the plantar
surface, one IMU and a control board. The mapping module computes the vertical component of the ground reaction force (vGRFIns), the center
of pressure along the longitudinal axis of the foot (yCoPIns), the planta-dorsiflexion angle (P itchIns), and runs the control logic for the gait events
detection.

readings are input to the characteristic 4th-grade polynomial
function, which translates the voltage into a force when the
output voltage is lower than a predetermined noise threshold.
The polynomial function was extracted through quasi-static
load-unload cycles using a universal testing machine (Instron
3400, Illinois Tool Works Inc., Glenview, Illinois, USA) and
more details can be found in [23]. Third, when the estimated
forces on the tactels exceed a given threshold, the values are
summed to compute the vG RF I ns , as

vG RF I ns =

16∑
i=1

Fi Fi =

{
f (V i) , Vi < Vnoise

0, Vi ≥ Vnoise

where Fi are the tactel forces (N), Vi are the tactel output
negative voltages (V) and Vnoise is the noise threshold of the
output voltage (V).

The yCoP I ns is computed by weighting the force contribu-
tion of each sensor by the insole longitudinal coordinate (yi)

and by the tactel spatial density at that coordinate (wyi ) to
account for the sensor distribution over the plantar surface:

yCoP I ns =

∑16
i=1 (Fi · wyi · yi )∑16

i=1 (Fi · wyi )

where yi are the tactel anteroposterior coordinates (cm) and
wyi are the tactel anteroposterior weights (#). The yCoP I ns
is computed only during the stance phase.

The Pitch I ns angle grounds on the gyroscope and
accelerometer signals and is computed in real-time through
the open-source Madgwick algorithm [24] by integrating the
quaternion kinematics equation from the FO to the following
FC event detected. To start the integration process, initial
conditions were determined using data from the IMUs during
the mid-stance phase of walking. The linear acceleration,
described in the global coordinates (namely, a reference frame

with the z axis aligned with the gravity vector), was first
integrated over time to derive the linear velocity. To mitigate
drift, a process known as linear de-drifting was applied to
the linear velocity at the end of each walking cycle, under
the assumption of zero-velocity of the foot. This adjusted
linear velocity was further integrated over time to calculate
the position of the foot and then the stride length and stride
velocity, estimated by determining the foot’s position at the
end of the integration period.

2) Online Gait Segmentation: The gait cycle is online seg-
mented into phases by means of the detection of three main
events: (i) the foot-contact (FC), (ii) the foot-off (FO), and
(iii) the heel-off (HO).

The FC and FO events are detected through a
threshold-based algorithm applied to the vG RF I ns and
by comparing its value in the current iteration (i) to the
previous iteration (i − 1). The threshold value, vG RF thresh ,
was set to 3 N; this value was based on the previous studies
with healthy subjects that found it suitable to detect gait
events timely and meanwhile avoid misdetections [23]:

FC ↔

{
vG RF i ≥ vG RF thresh

vG RF i−1 < vG RF thresh

F O ↔

{
vG RF i ≤ vG RF thresh

vG RF i−1 > vG RF thresh

The HO event is detected according to a logic that considers
the distribution of the load on the plantar surface and by
comparing the load distribution at the current iteration (i)
and the previous iteration (i − 1). The foot can be divided
into three areas, the rear-foot, the mid-foot, and the fore-foot
(Figure 1), that can be exploited for the detection of the HO
event. When the weight becomes entirely distributed on the
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mid- and fore-foot, the HO event is detected, as

H O ↔


∃V rear− f oot i−1 < Vnoise ∧ ∀Vrear− f oot i ≥ Vnoise

∃Vmid− f oot i < Vnoise

∃V f ore− f oot i < Vnoise

where Vrear− f oot are the output voltages from each tactels
placed on the rear-foot, Vmid− f oot are the output voltages from
each tactels placed on the mid-foot, V f ore− f oot are the output
voltages from each tactels placed on the forefoot and Vnoise
is the noise output voltage threshold.

The gait cycle is segmented in five phases, according to a
simplified version of the model proposed by Perry in [25],
using the FC HO and FO events computed on both feet,
namely: (i) loading response, it corresponds to the initial
double-support phase, hence it begins with the one FC and
continues until the contralateral FO; (ii) mid stance, it begins
with the contralateral FO and ends with the ipsilateral HO;
(iii) terminal stance, it begins with the HO and terminates
with the contralateral FC; (iv) pre-swing, it corresponds to
the final double-support phase, therefore it continues until the
FO; (v) swing, it starts with the FO and ends with the next
ipsilateral FC.

B. Verification With PD Individuals
The experimental activities aimed to verify the performance

of the sensing and mapping modules to detect gait events and
estimate biomechanical variables (kinetic and kinematics) that
can be used to quantify spatiotemporal paramenters during gait
and BWS in PD subjects. Hence, participants were requested
to wear the device and perform gait and BWS rehabilitation
exercises. The measurements of the wearable system were
compared to those of a motion-tracking system (Figure 2).

1) Subjects: The clinical study was approved by the Italian
Ministry of Health and by Ethics Committee of Fondazione
Don Carlo Gnocchi (DGDMF.VI/P/I.5.i.m.2/2019/1297). The
clinical study was conducted in accordance with the prin-
ciples stated in the declaration of Helsinki. All participants
signed a written informed consent prior to the start of the
experimentation.

A convenience sample of nine individuals diagnosed with
idiopathic PD was included in this study (Table I). Subjects
were enrolled from the outpatient/inpatient rehabilitation ser-
vice of Fondazione Don Carlo Gnocchi (Milano, Italy), based
on the following inclusion criteria: (i) Hoehn & Yahr stage
of the disease score comprised between 2 and 3 (indicating
mild to moderate functional disability with bilateral impair-
ments and postural instability), (ii) Mini-Mental State Exam
greater than 24 (indicating the absence of relevant cognitive
impairment), (iii) ability to stand still for 30 seconds without
assistance and to perform the Timed Up and Go and the
2-minutes Walking test, (iv) stable drug usage, and (v) a
shoe size suitable for using the prototype (namely, 41-43 EU).
Exclusion criteria were the presence of a deep brain stimula-
tion implant, the necessity to use a walker, and the presence
of relevant orthopedic, neurologic, or cardiac comorbidity.
Before the start of the experiments, all subjects underwent
a clinical evaluation by the neurologist of the clinic and the

motor section (section III) of the MDS-Unified Parkinson
Disease Rating Scale (MDS-UPDRS) was used to characterize
subjects’ motor symptoms.

2) Experimental Procedures: All subjects were tested in
their ON-medication state, namely one hour after taking their
antiparkinsonian medications. Initially, an experimenter helped
all subjects to wear the BI and familiarize themselves with the
device.

Then, five reflective markers were positioned above the
shoes on the hallux tip, the heel, the fifth toe metatarsal, and on
the lateral malleolus and sacrum of the participants following
a reduced LAMB model protocol [26]. Markers trajectories
were recorded with a commercial motion capture (MoCap)
system with nine infrared cameras (Smart DX, BTS, Milan,
Italy) at a sampling rate of 250 Hz, additionally equipped with
four adjacent force platforms that synchronously acquired the
kinetic data at 1.6 kHz.

Individuals were requested to perform five tasks, namely
ground-level walking and four BWS, as shown in Figure 2.
Before the beginning of each task, subjects were instructed
to stand still and wait for the instruction of the experimenter
to begin the activity; once the task finished, they were also
requested to stand still until the experimenter told them to
rest.

For each task, an analog trigger signal was sent to the BI
and the motion capture system at the beginning and the end of
the activity, for the temporal alignment of the recorded signals
from the two recording devices.

For the ground-level walking task, subjects were asked to
walk at a self-selected speed on a 10-meter straight path
that included four force platforms, and within the motion
capture system workspace. To avoid inducing alterations in
gait patterns, subjects were not explicitly asked to step over
the force plates. The task was repeated until at least 3 left and
3 right steps were correctly acquired on the force platforms.

Concerning BWS, subjects were requested to perform medi-
olateral, anteroposterior, and craniocaudal BWS exercises.
Specifically, medial-lateral BWS was performed by keep-
ing the legs slightly apart in the frontal plane and shifting
the weight from one leg to the other, and reaching the
monopodalic position (ML BWS, figure 2). Right and left
anteroposterior BWS were performed by stepping forward
on the right or left leg and reaching the bipodalic position
with the weight on the forward leg (AP BWS RX, AP BWS
LX). Craniocaudal BWS was performed moving the body
weight from the heels to the toes (HEEL-TOE). In these
tasks, subjects were asked to move across different force
plates. No specific timings were imposed to start and end the
repetitions, to avoid increasing the difficulty of the tasks. Each
BWS task was performed until three repetitions were recorded
correctly by the force plates.

C. Data Analysis

The data collected by the MoCap system were analyzed
offline through the Smart Tracker software (BTS, Milan, Italy)
to obtain the three-dimensional coordinates of the markers.
Then kinetic and kinematic data from the MoCap system,
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Fig. 2. Experimental setup and procedures. a) Representation of the five tasks, namely, ground-level walking and bodyweight shift (BWS) exercises.
Medial-lateral BWS is performed by shifting the weight from one leg to the other and reaching the monopodial position (ML BWS). Right and left
anteroposterior BWS are performed by stepping forward the right or left leg and reaching the bipodal position with the weight on the forward leg (AP
BWS RX, AP BWS LX). Craniocaudal BWS is performed moving the body weight from the heels to the toes (HEEL-TOE). b) A graphical example
of the data acquired from the pressure-sensitive insoles and the force platforms while performing the AP BWS RX task.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE ENROLLED VOLUNTEERS

the force platforms, and the BI were processed using custom
MATLAB routines (MathWorks, Inc., Natick, MA, USA).

Data acquired by the three systems were temporally aligned
by means of the synchronization trigger signal, and low-pass
filtered (3rd-order Butterworth anti-causal at 15 Hz for the
force platforms, 5th-order at 6 Hz for the motion capture,
2nd-order at 15 Hz for the BI). Strides and BWS not recorded
correctly by the force platforms were not included in the
analysis. The IMUs data of the BI were then additionally used
to estimate the spatial parameters of gait, i.e., stride length, and
velocity, following a strap-down integration method [27] and
exploiting the online gait segmentation.

MoCap data were processed to compute the ground truth
of gait variables and spatiotemporal parameters. The force
data recorded by the force plates were processed to compute
the point of application (i.e. the center of pressure, CoP) of
the ground reaction force along the foot longitudinal direction

(yCoP Fpl) using the heel and toe markers position and used
to segment kinematic data into strides. The FC and FO events
were identified by applying a threshold of 30 N on the vertical
ground reaction force, as recommended by the manufacturer’s
software. The HO events were identified from the coordinates
of the heel marker using the method described in [28]. For
the ground-level walking task, the PitchMoCap angle,the
stride velocity and the stride length were computed as
in [29].

Data of both sides, right and left, were aggregated after
verifying that there were no statistical differences across the
two sides by comparing the right and left stance durations
measured by the force plates (Wilcoxon rank sum, α = 0.05).

The BI was assessed against the gold standard in terms
of (i) accuracy of gait events detection, (ii) accuracy of
spatial parameters, (iii) repeatability, and (iv) correlation of
biomechanical variables.
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Firstly, the accuracy of gait events detection was assessed
by means of mean absolute error (MAE, (s)) of the events
detected by the BI and the force platforms data as:

M AE X = mean
(∣∣X Fpl − X I ns

∣∣)
where X Fpl is the time of the FC, FO, and HO events and
of the stance duration detected by the force platforms and
the X I ns is the time of the events or stance duration detected
by the BI. For the ground-level walking task, the MAE of
the three events was also expressed as a percentage of the
stance duration measured by the force plates, to facilitate
biomechanical interpretation.

Secondly, the accuracy of spatiotemporal parameters was
evaluated by computing the error between the BI and gold
standard parameters in each stride and then expressed as means
and standard deviations [30]. Errors were expressed in m for
the stride length, m/s for the stride velocity and in percentage
of the gold standard measure for both spatial parameters.

Furthermore, the Bland-Altman plot was used to analyze
the agreement between the two measurement methods on the
stance duration and the stride length parameters. To compare
statistically the metrics extracted with the BI with those
extracted from the MoCap, for each subject, we extracted the
median values of the stance duration and stride length with
the two measurement methods and used a parametric paired
t-test (α = 0.05). The normality of the samples was verified
using the Lilliefors test (α = 0.05).

Thirdly, the average repeatability of the biomechanical
variables was assessed as the root mean square error (RMSE)
of the vG RF I ns , yCoP I ns and Pitch I ns for each step against
the average variable profile. The same RMSE parameters
were computed for the variables extracted from the MoCap.
To highlight differences in the repeatability of the two mea-
surement systems, for each subject, we computed the average
RMSE value for each measurement system, and then we ran a
statistical comparison of the samples using a parametric paired
t-test (α = 0.05) The normality of the samples was proved with
the Lilliefors test (α = 0.05).

Lastly, to assess the correlation of the biomechanical pro-
files, the BI variables, vG RF I ns , yCoP I ns and Pitch I ns ,
were compared to the gold standard measures, namely
vG RF F Pl , yCoP F Pl and PitchMoCap, by means of the
Pearson correlation coefficient.

Concerning the BWS tasks, the repeatability was not evalu-
ated as variable profiles had much higher variability in terms
of amplitude and duration. Furthermore, the Pitch I ns angle
was not assessed against the motion capture system due to
technical problems in acquiring the lateral malleolus and the
fifth toe metatarsal markers during the acquisitions.

III. RESULTS

The analysis included 101 strides (51 for the right and
50 for the left foot) of the ground-level walking task and
108 repetitions of the BWS tasks.

Figure 3 shows the results for the ground-level walking
tasks. Concerning the gait event detection, the performance
of the wearable system showed a median MAE between
participants equal to 0.03 s for the FC, and 0.03 s for the FO,

corresponding to 3.36%, and 3.83% of the stance duration,
respectively. The combination of FC and FO event detection
brought to an overall stance duration MAE equal to 0.01 s
corresponding to the 1.62 % of the reference stance duration.
In addition, the detection of the HO event showed a MAE of
0.03 s corresponding to 3.70% of the reference stance duration
(Figure 3 (a)). Concerning the estimation of the stride length
and velocity from the BI which uses IMU signals, the median
error across participants of -0.002 m was equivalent to 0.25%
of the reference stride length, and of -0.001 m/s equivalent to
0.19% of the reference stride velocity (Figure 3 (b)).

Figure 3 (c) shows the biomechanical profiles of a represen-
tative participant from the two measurement systems, while
the RMSE distribution (namely, the repeatability index) for
the yCoP, vGRF, and Pitch angles are shown as boxplots
in Figure 3 (d). Across subjects, the statistical comparison
between the RMSE computed on the vG RF I ns and vG RF F Pl
profiles revealed a significant difference between the two
devices (p=0.004) equal to 4.86 % BW. The compari-
son between the RMSE of the center of pressure, namely,
yCoP I ns and yCoP F Pl , showed comparable repeatability
between the BI and the force platforms (p=0.969), equal
to 0.03 cm. The repeatability index computed for the pitch
angle profile, namely, Pitch I ns and PitchMoCap, revealed a
significant difference between the two measurement systems
(p=0.022), with an absolute difference in terms of RMSE
equal to 1.58 deg.

Concerning the Pearson correlation coefficient, results of the
vG RF , yCoP , and Pitch angle were equal to 0.90, 0.94, and
0.91 respectively (Figure 3 (e)).

Regarding the accuracy of spatiotemporal parameters,
the Bland-Altman analysis(Figure 4) reported that most of
the measurements were within the limits of agreements. The
BI computed the stance duration with an average error of
0.01 s, with upper and lower limits of agreements equal to
+0.03 s, and -0.04 s respectively. Regression analysis, depicted
on the left side of Figure 4 (a), resulted in a coefficient of
determination r2 of 0.99. Concerning the stride length, the BI
estimated the parameter with an average error of 0.01 m, with
upper and lower limit of agreements equal to +0.16 m, and
-0.14 m respectively. Regression analysis, depicted on the left
side of Figure 4 (b), resulted in a coefficient of determination
r2 of 0.87. Furthermore, the stride length computed by the
BI revealed no statistical difference compared to the one esti-
mated through the MoCap (p=0.948), while stance duration
estimation resulted in a statistical difference with a p=0.041.

Figure 5 describes results obtained for the BWS tasks in
terms of event detection accuracy and temporal profiles cor-
relation, namely the MAE and Pearson correlation coefficient.
Specifically, the MAE for the FC, HO, and FO events was
lower than 0.06 s, 0.11 s, and 0.15 s, respectively, in all
BWS tasks. Concerning the temporal profiles consistency,
the Pearson correlation coefficient of the yCoP was greater
than 0.89 in all BWS tasks. Considering the vG RF profiles,
the Pearson correlation coefficient was higher than 0.92 for
the AP and ML BWS exercises, whereas it was 0.33 in the
HEEL-TOE task, with significantly high variability across
subjects.
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Fig. 3. (a) Accuracy of the gait event detection during walking, expressed in percentage of the stance phase and in seconds. Acronyms: foot
contact (FC), foot off (FO), and heel off (HO). (b) Spatial parameters estimation error during walking. Stride length and velocity errors expressed
in m and m/s, and as a percentage of the motion capture measurements. Results are shown aggregated between subjects. (c) Median (25th, 75th
percentiles) biomechanical profiles estimated by the BI and MoCap from a representative participant. (d) Biomechanical variables repeatability
during ground-level walking. Root mean square error (RMSE) between each repetition and the average profile of the ground reaction force (vGRF),
the center of pressure (yCoP), and the planta-dorsiflexion angle (Pitch) for both pressure-sensitive insoles and gold standard systems. Results are
reported as boxplots across subjects. ∗ shows a statistically significant difference of a paired t-test(α = 0.05). (e) Correlation of the biomechanical
variables computed by the insoles and MoCap in walking.

Fig. 4. Bland-Altman plots to quantify the agreement between the sensorized shoes and the gold standard method in the estimation of the stance
duration (a) and stride length (b).

IV. DISCUSSION

A. Events Detection

Overground walking of individuals with PD is characterized
by low speed and abnormal kinematic and kinetic profiles that
make the automatic detection of gait events and consequent
computation of spatiotemporal parameters, particularly chal-
lenging when using low-resolution and low-power wearable
sensors. In this study the pressure-sensitive insoles proved
capable of detecting FC, FO, and HO events during overground
walking of PD subjects with a temporal MAE lower than 0.03 s
for the three events. The MAE was used to evaluate temporal
accuracy given its reduced sensitivity to a small number of
outliers compared to other metrics.

The results of this study outperformed the results reported
in previous investigations in which the same device was tested
with healthy subjects, showing a temporal error of 0.06 s on
average [23]. Such improvements are particularly remarkable

considering the slower walking velocity of PD participants
enrolled in this study, as lower walking velocity entails less
steep vGRF profiles in the loading response and pre-swing
phases. The lowest performance of the wearable system was
achieved in detecting the FO event, likely due to the limited
number of sensors of the pressure-sensitive insoles under the
entire plantar surface. However, in the case of the FO, the
MAE was lower than 3.80 % of the stance duration. Further-
more, the analysis of the HO detection, which was evaluated in
this study for the first time, showed performance comparable
with the other events, therefore proving the system feasible to
provide relevant indications on PD gait; in particular, through
the detection of the HO event, it is possible to study abnormal
conditions in the initiation of gait, that is particularly important
in PDs [31] and to segment the gait cycle into phases that are
relevant for describing anticipatory postural adjustments [32],
[33]. It is important to note that the gait segmentation used in
this study exploits bilateral gait information to divide the gait
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Fig. 5. Gait event detection accuracy and biomechanical variables
correlation during body weight shift tasks. Results are reported as
boxplots across subjects. (a) Mean absolute Error for the foot-contact
(FC), foot-off (FO), and heel-off (HO) events expressed in seconds.
(b) Pearson correlation coefficients between the pressure-sensitive
insoles ground reaction force (vGRFIns) and center of pressure
(yCoPIns) and the force platform measurements.

cycle into phases; in order to simplify the setup and related
algorithm, the present method could be easily modified to
consider a segmentation of the cyle into four phases using
signals gathered from a single limb, which has already been
demonstrated to be suitable for gait analysis in subjects with
PD in previous studies [34].

Concerning temporal absolute error of events detection,
comparable results were achieved while performing AP BWS
task. In the ML BWS exercise, instead, the algorithm showed
higher median error, likely as a consequence of the sensor
distribution over the insole surface that favoured the antero-
posterior direction and therefore the detection of events during
tasks performed along that direction.

Temporal errors reported in this study are comparable with
other state-of-art studies in which pressure-sensitive insoles
based on capacitive [35] or piezoresistive [36] sensors were
tested in overground walking. Bamberg et al. [16], in a study
on a sensorized shoe prototype (called GaitShoe) involving
healthy participants and PD subjects, reported a mean error of
−0.0065 ± 0.0229 s and −0.0029 ± 0.0169 s in the detection
of the heel-strike and toe-off events. The high number and type
of sensors in the GaitShoe prototype (including IMU, force-
resisting sensors, ultrasound sensors, polyvinylidene fluoride
stripes, and others) were exploited for accurate detection of
the gait events, but likely increasing the complexity of the
sensory system. Overall, it should be noted that, to the authors’
knowledge, the present study is the first one in the state of
the art that investigated the performance of a sensorized shoe
not only in overground walking activities but also in balance
exercises including BWS, namely tasks that are performed in
the rehabilitation of PD subjects. In this scenario, the system
proved feasible for providing an accurate assessment of the
subject’s capability to perform the walking and balance tasks.

Moreover, the accurate estimation of the stance/swing
phases duration (MAE lower than 0.02 s of the stance duration)
proposes the pressure-sensitive insoles as a valuable tool for
gait’s temporal parameters evaluation and to discern differ-
ences between PD and healthy gait, as previously done by
the PDshoe prototype (stride duration difference of 0.04 s)
[37]. Furthermore, these results suggest the suitability of the
BI to provide real-time step-synchronized biofeedback similar
to what has been done [13], [14] and during BWS tasks.

B. Estimation of Biomechanical Variables
Concerning the estimation of biomechanical variables, the

vGRF, the yCoP, and the Pitch profiles measured by the
instrumented shoes showed a Pearson correlation coefficient
higher than 0.8 in ground-level walking and the AP and ML
BWS activities, demonstrating high correlation [38]. The only
exception was for the vGRF correlation coefficient in the
HEEL-TOE task. In this task, subjects were requested to shift
their body weight from the heel to the toe (and vice versa)
and repeat the movement without lifting the feet from the
ground. Hence, this exercise consisted of a movement within
a restricted portion of the foot (across the plantar arch), which
is covered by a limited number of sensors and thus reduced
the sensitivity of the system significantly in the measurement
of the vGRF. Indeed, while the limited portion of the plantar
area covered with sensors limits the accuracy of the vGRF
estimation in all tasks this limitation is particularly evident in
the HEEL-TOE BWS task as the body weight is distributed in
the portion of the foot that is covered only by a few sensors.
Overall, the limited performance in estimating vGRF profiles
is demonstrated by the smaller amplitude of the vG RF I ns
than the vG RF F Pl (also reported in studies with healthy
subjects [23]). This limitation is directly consequent to the
tactels number and distribution, as well as to the voltage-to-
force computation of forces acting on each tactel, which used
the polynomial characteristic equation extracted through quasi-
static load-unload cycles. Data-driven model between voltages
and force might improve the overall amplitude accuracy of the
vGRF estimation but would require subject and/or task specific
calibration procedures that may be impractical to repeat in the
desired clinical use scenarios.

The agreement between the BI measurements and the force
platform reference system is confirmed by the Bland-Altman
analysis. In fact, for both stance duration and stride length
parameters, the average error results almost zero and the
95.05 % of samples fell within the limits of agreements.
Furthermore, both parameters resulted in a high grade of
coefficient of determination (≥ 0.87) and the stride length
estimation was statistically comparable to the gold standard
measurement. These results suggest the suitability of these
spatiotemporal parameters for monitoring subjects’ activi-
ties in walking rehabilitation exercise analysis and open the
possibility of exploiting them in the design of biofeedback
rehabilitation strategies.

The RMSE was used to assess the measurement repeata-
bility of the yCoP, vGRF and Pitch I ns , given its sensitivity
to a small number of outliers within a single repetition,
as suggested by several studies in the literature. The most
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remarkable performance in terms of repeatability was achieved
with the yCoP, which was statistically equal to the RMSE
of the MoCap. These results confirm the one obtained with
healthy subjects [23] and therefore suggest the reliability of
the yCoP estimation to be exploited to monitor subjects’
activities in rehabilitation exercises and in the design of
biofeedback strategies. The variability of the vGRF estimated
by the insoles was statistically higher than the force platform
measurements, which was probably due to the limited area of
the plantar surface covered with sensors. Results are in line
with those observed with healthy subjects [23]. Concerning the
repeatability of the Pitch I ns angle measurement, the higher
variability showed by the BI may be a consequence of the
relative motion of the onboard electronics with respect to
the shoe dorsum, which may have been additionally compro-
mised by the not-perfect fitting of the shoe size for all the
participants. Indeed, the device is limited to a single size of
the pressure-sensitive insoles prototype (42 EU), which addi-
tionally caused the limited size of the enrolled convenience
subjects sample and contributed to the lack of women (together
with the double incidence of PD in men [39])

With the aim of making the BI a complete wearable device
for home-based rehabilitation, we exploited the shoe-mounted
IMU [23], an open-source algorithm [24], and the gait segmen-
tation of the pressure-sensitive insoles to additionally evaluate
spatial parameters of gait that are key to evaluate the gait of
PD subjects [40]. Results reported in terms of stride-length
and stride-velocity estimation error are comparable with the
other state-of-the-art devices [16], [41] This opens up the
possibility of utilizing the BI for spatial parameter estima-
tionsduring balance activities and rehabilitation exercise with
specifically design biofeedback strategies. The capability to
estimate the Pitch angle and spatial parameters (in addition to
temporal parameters) make the BI a device suitable for use
in home-based rehabilitation or to quantify gait performance
also with highly compromised gait, with crawling feet, or in
presence of specific gait impairments (like freezing of gait
events or others). In addition, the combination of the BI
with exergames’ platforms could be easily implemented and
improve subjective acceptability and engagement [42], [43],
[44]. These scenarios can involve monitoring, assessing, and
training individualized programs for PD subjects. Addition-
ally, the BI sensors’ accuracy allows for the analysis other
impairments, like freezing of gait events. To this end, it is
worth noting that seven of the nine participants enrolled in
the study were affected by the freezing of gait; even though
the experiments described in this study did not consider any
specific analysis about this critical gait impairment of PD.

V. CONCLUSION

In this study, we assessed the capability of the
pressure-sensitive insoles module of the BI to monitor subjects
walking and during BWS exercises with the disordered gait of
PD subjects. The obtained results suggest the suitability of the
prototype to estimate spatiotemporal parameters of PD gait and
to analyse biomechanical variables in a sample of subjects with
a large variability of motor impairments or deficits, e.g. post-
stroke subjects. Furthermore, we presented a methodology to

investigate systems performance in real-time monitoring and
assessing pathological patterns during walking and balance
exercises. Future experiments will assess the capability of the
biofeedback module of the prototype in improving the gait of
PD and will aim to evaluate the system usability.
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