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Abstract
In this paper two innovative procedures for the decomposition of the Pietra index are pro-
posed. The first one allows the decomposition by sources, while the second one provides 
the decomposition by subpopulations. As special case of the latter procedure, the “clas-
sical” decomposition in two components (within and between) can be easily obtained. A 
remarkable feature of both the proposed procedures is that they permit the assessment of 
the contribution to the Pietra index at the smallest possible level: each source for the first 
one and each subpopulation for the second one. To highlight the usefulness of these proce-
dures, two applications are provided regarding Italian professional football (soccer) teams.

Keywords  Pietra index · Income inequality · Decomposition by sources · 
Decomposition by subpopulations

1  Introduction

Introduced by Pietra (1915) as one of the first inequality measures, the Pietra index 
has more than a century of history, albeit that a quite similar measure was proposed 
a few years before (see Bresciani Turroni 1907; Hasan and Malik 2019). In the lit-
erature, the Pietra index has been “rediscovered” many times with different names: it 
coincides with the index proposed by Ricci (1916), with the Hoover index (Hoover 
1936), and with the Schutz coefficient (Schutz 1951), and some papers refer to it as 
the Robin Hood index (see for example Koolman and van Doorslaer 2004; Wilkin-
son and Symon 2000; Kennedy et al. 1996).

Historically, the popularity of this index decreased as the Pigou–Dalton trans-
fer principle became popular. It is well known that the Pietra index satisfies only 
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the weak version of that transfer principle, given that it is not sensible to transfers 
between units with values on the same side of the mean (see for example Castagnoli 
and Muliere 1990; Frosini 2012).

Nevertheless, the Pietra index continues to be used in many different fields, as an 
indicator of heterogeneity, given that it can be regarded as a measure of the distance 
between the situation at stake and the egalitarian one, where all the units have the 
same amount. The Pietra index appears in many papers in the fields of public health 
(Wilkinson and Symon 2000; Theodorakis et al. 2006; Mobaraki et al. 2013; Kool-
man and van Doorslaer 2004; Zafari and Ekin 2019; Mantzavinis et  al. 2002; De 
Maio 2007; Johnston and Wilkinson 2001) and medicine (see among others Grav-
elle and Sutton 1998; Kennedy et al. 1996; Beck et al. 2013). It has been also used 
in some sociological analyses (Shi et al. 2003; Kennedy et al. 1998; Rogerson and 
Plane 2013; Shumway and Otterstrom 2001; Ray and Singer 1973; Alker and Rus-
sett 1964; Khanal 2011). Finally and unsurprisingly, the Pietra index has been con-
sidered in many economic studies (see among others Hasan and Malik 2019; Khos-
ravi Tanak et al. 2015; Moothathua 1989; Davydov and Zitikis 2005; Sarabia and 
Jorda 2014; Koolman and van Doorslaer 2004; Sarabia 2008; Eliazar and Sokolov 
2010; Hustopecky and Vlachy 1978; Habib 2012; Huang and Leung 2009; Frosini 
2012).

Another reason for the broad notoriety and longevity of the Pietra index is likely 
its very intuitive interpretation: it represents the portion of the total amount to be 
redistributed from the owners with more than the mean to the others to obtain the 
egalitarian situation. Moreover, the Pietra index has been shown to have an imme-
diate and fundamental interpretation within renewal processes and continuous-time 
random walks, infinite-server queueing and shot-noise processes, and even in the 
field of financial derivatives (Eliazar and Sokolov 2010). In the more general context 
of infinite populations, dealing with random variables, the Pietra index can be used 
as heterogeneity index in more cases than can the relative standard deviation (RSD), 
since it can be calculated also whether the variance is not finite. In the literature, 
many aspects related to inequality (and heterogeneity) analysis have been investi-
gated, mainly because of the important applicative implications. Among the others, 
decompositions play an important role. The two more general kinds of decomposi-
tion are by subpopulations (or by subgroups) and by sources (or by factors). The first 
one is performed when the population is divided into, say k, exhaustive and disjoint 
subpopulations. The question to be answered is how the subpopulations contribute 
to the value of the index, with the ideal answer being an evaluation of the contribu-
tion of each single subpopulation. Unfortunately, many decomposition procedures 
in the literature do not achieve this goal, given that they stop at a “higher” level of 
detail: usually, inspired by the well-known classical variance decomposition, they 
identify a within component (related to the inequality into the subpopulations) and a 
between component (depending on the inequality across the subpopulations). More-
over, many of them also require a third residual part (sometimes called the Trans-
variation component) that rescales the sum into the interval [0, 1], for example as in 
Dagum (1997).

The second type of decomposition arises when the investigated variable is the 
sum of other (say c) variables, called sources. In this framework, the research 
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question is how to assess the contribution of each source. For two recent decom-
positions of the Pietra index and further references on the topic, see Habib (2012) 
and Frosini (2012).

Regarding the procedures for decomposing inequality indexes, a number of 
previous studies followed the approach proposed by Shorrocks (1982, 1984). In 
those two papers, some constricting hypotheses about the decomposition proce-
dure are assumed, by forcing an analogy with the variance decomposition. The 
result is a very restricted class of decomposable inequality measures that does 
not contain many widely used ones such as the Gini coefficient and the Bonfer-
roni index, to name but two. To overcome this issue, the methods proposed herein 
follow a different approach. The aim of this paper is to introduce two innovative 
procedures for decomposing the Pietra index, starting directly from its definition. 
The first is by sources, and the second is by subpopulations. As mentioned above, 
the relevant advantages of these two decompositions are that the first allows to 
assess the contribution of each source, while the second allows to evaluate the 
contribution of each subpopulation. For these reasons, these two procedures are 
very innovative and far more informative than many others proposed previously 
for the Pietra index. By using a different aggregation, the decomposition by sub-
populations leads easily to the classical one into within and between components. 
The proposed methods are completed with two applications related to Italian pro-
fessional football (soccer) teams. The decomposition by sources is applied to a 
dataset from the balance sheets of the teams in the top Italian league (Serie A), 
while the decomposition by subpopulations is illustrated by analyzing the values 
of all the players of the teams, grouped in all three professional leagues (Serie 
A, B, and C). The purpose of these applications is to visualize (albeit nonexaus-
tively) and interpret the most popular sport in Italy.

This paper is organized as follows. In Sect. 2, the Pietra index is defined and 
some of its features are presented. In Sect.  3, a new equivalent formula for the 
Pietra index is given, one that is useful for the remainder of the paper. In Sects. 
4 and 5, the two proposed decomposition procedures are detailed. Section  6 is 
devoted to the two applications to Italian football teams with real datasets, and 
the paper concludes in Sect. 7 with some final remarks. Appendix A provides an 
example in which the two proposed decompositions for the Pietra index are com-
puted. For the datasets used in the applications and the R code to replicate the 
analyses, see the provided supplementary material.

2 � The Pietra index

Let Y be a non-negative statistical variable on a population of size N. 
Let y1 < y2 < ⋯ < yr denote the distinct values assumed by Y with fre-
quencies n1⋅, n2⋅,… , nr⋅ . Obviously, it holds that 

∑r

h=1
nh⋅ = N. Let 

M(Y) =
T(Y)

N
=
∑r

h=1
yh ⋅

nh.

N
 be the arithmetic mean of Y in the whole population, 

and let T(Y) denote the sum of the values of Y. Let
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be the mean absolute deviation (MAD) of Y from M(Y). The index proposed by Pie-
tra (1915) for the variable Y is given by

It is worth to remark that in that paper: 

(a)	 the Lorenz curve L(p), proposed by Lorenz (1905) and defined as the piecewise 
linear curve, starting from the origin and interpolating the r points Lh

 is formalized for the continuous case;
(b)	 it is shown that 

 where p̃ is the quantile corresponding to the mean of Y, meaning that 
y(p̃) = M(Y) . Expression (1) can be seen as representing the maximum distance 
between the Lorenz curve of the variable at stake and the Lorenz curve of the 
egalitarian situation, therefore the Pietra index can be considered as “the Lor-
enzian counterpart of the Kolmogorov–Smirnov statistic, which quantifies the 
distance between two probability laws as the L∞ distance between their cumu-
lative distribution functions” (Eliazar and Sokolov 2010).

The interested reader may care to know that De Capitani (2013a, 2013b) provided 
an English translation of the paper by Pietra (1915).

The Pietra index P has the following properties. 

1.	 The minimum of P occurs in the case of perfect equality, namely r = 1, y1 = M(Y) , 
and n1⋅ = N . In a such case: 

2.	 The maximum of P occurs if r = 2 , y1 = 0 , y2 = T(Y) , n1⋅ = N − 1 , and n2⋅ = 1 , 
resulting in 

SM(Y) =

r∑
h=1

|yh −M(Y)| ⋅ nh⋅
N

PY =
SM(Y)

2M(Y)
=

∑r

h=1
�yh −M(Y)�nh⋅

2
∑r

h=1
yhnh⋅

.

Lh =

(
nh⋅

N
;

h∑
i=1

yini⋅

T(Y)

)
, h = 1,… r

(1)
P = max

p∈[0,1]

[
p − L(p)

]

=p̃ − L(p̃),

P = 0.

P =
N − 1

N
.
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3.	 P decreases in case of positive translations: if c > 0 and W = Y + c , then 

4.	 P is invariant to positive scale transformations: if c > 0 and W = c ⋅ Y  , then 

5.	 As mentioned in Sect. 1, P satisfies the weak principle of transfers but not the 
strong principle of transfers. This means that it is sensible to transfer between 
two units only if the corresponding values are one lower and the other higher than 
the mean. If the two values are both lower (or higher) than the mean, the Pietra 
index does not change. For more details on this point, see Castagnoli and Muliere 
(1990), and Frosini (2012).

6.	 P satisfies the population replication principle, since both SM(Y) and M(Y) are 
invariant to population replication.

The interpretation of the Pietra index is very interesting and immediate: it is the 
share of the total amount T(Y) that should be properly redistributed from the units 
possessing more than the mean M(Y) toward the units possessing less than or equal 
to M(Y), in order to achieve the situation of the perfect equality, where all the units 
have the same amount (absence of inequality). In fact, it holds that:

3 � An alternative useful expression for the Pietra index

At each yh, h ∈ {1, 2,… , r} the whole population can split into two non-overlap-
ping groups:

–	 a lower group corresponding to 
{
Y ≤ yh

}
 , including the first Ph⋅ =

∑h

t=1
nt⋅ units 

with total amount Qh⋅(Y) =
∑h

t=1
ytnt⋅;

–	 an upper group corresponding to 
{
Y > yh

}
 that contains the remaining N − Ph⋅ 

units, with amount T(Y) − Qh⋅(Y).

Let

and let

PW < PY .

PW = PY .

P ⋅ T(Y) =
∑

{yh≤M(Y)}

[M(Y) − yh]nh⋅ =
∑

{yh>M(Y)}

[yh −M(Y)]nh⋅

h̄ = max{h ∶ yh ≤ M(Y)},
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be the arithmetic mean of the lower group corresponding to 
{
Y ≤ yh̄

}
 . Now, it fol-

lows that

where

is the relative variation of the lower mean M̄h̄⋅(Y) with respect to the mean M(Y), 
and ph̄⋅ =

Ph̄⋅

N
 is the cumulative relative frequency of the lower group with 

{
Y ≤ yh̄

}
 . 

It is worth remarking that the quantity Vh̄(Y) is the Bonferroni pointwise measure 
of inequality at h̄ : for details see Zenga (2013), and Zenga and Valli (2016). It is 
also important to note that the formula (2) shows the Pietra index as the product of 
two factors: the first one, namely Vh̄(Y) , is the economic distance between the lower 
mean M̄h̄⋅(Y) and the total mean M(Y); the second one, namely ph̄⋅ , is the relative 
weight associated to the units with amount less than or equal to the total mean M(Y).

The Sect. 4 will show why this expression for the Pietra index is very suitable for the 
proposed decompositions by sources and by subpopulations.

4 � Decomposition by sources

Let the variable Y be the sum of c variables X1,X2,… ,Xc that represent the sources. 
Using the same notation as that in the previous sections, let

M̄h̄⋅(Y) =
Qh̄⋅(Y)

Ph̄⋅

,

(2)

P =
1

T(Y)
⋅

h̄∑
h=1

[M(Y) − yh] ⋅ nh⋅

=
M(Y)Ph̄⋅ − Qh̄⋅(Y)

NM(Y)

=
M(Y)Ph̄⋅ − M̄h̄⋅(Y)Ph̄⋅

NM(Y)

=
M(Y) − M̄h̄⋅(Y)

NM(Y)
⋅ Ph̄⋅

=Vh̄(Y)ph̄⋅,

Vh̄(Y) =
M(Y) − M̄h̄⋅(Y)

M(Y)

Qh̄⋅(Xj), j = 1, 2,… , c
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be the sum of the values assumed by the source Xj on the Ph̄⋅ units belonging to the 
lower group {Y ≤ yh̄} , let

be the arithmetic mean of Xj in the lower group, and let M(Xj) =
T(Xj)

N
 be the mean of 

Xj in the whole population. As Y =
∑c

j=1
Xj , it follows that

therefore the Pietra index is given by

where Wh̄⋅(Xj)ph̄⋅ is the contribution of the source Xj to P , and indeed it is the rela-
tive difference M(Xj)−M̄h̄⋅(Xj)

M(Y)
 times the relative frequency Ph̄⋅

N
 of the lower group 

{Y ≤ yh̄} . The relative contribution of the source Xj to the value of the Pietra index is 
given by the ratio

with obviously 
∑c

j=1
𝜔h̄⋅(Xj) = 1 . By comparing these contributions and the shares

it is possible to understand whether a given source Xj has an exacerbating or a 
mitigating impact on inequality (or heterogeneity) in the distribution of Y. In more 
detail, the quantity 𝜔h̄⋅(Xj) − 𝛾(Xj) being positive means that the source Xj plays an 
“increasing” role in terms of inequality (or heterogeneity), whereas it being negative 
means that the source Xj “decreases” the inequality (or heterogeneity).

M̄h̄⋅(Xj) =
Qh̄⋅(Xj)

Ph̄⋅

j = 1, 2,… , c

(3)M(Y) =

c∑
j=1

M(Xj) and M̄h̄⋅(Y) =

c∑
j=1

M̄h̄⋅(Xj),

P =
M(Y) − M̄h̄⋅(Y)

M(Y)
⋅

Ph̄⋅

N

=

c∑
j=1

M(Xj) − M̄h̄⋅(Xj)

M(Y)
⋅ ph̄⋅

=

c∑
j=1

Wh̄⋅(Xj)ph̄⋅,

(4)𝜔h̄⋅(Xj) =
Wh̄⋅(Xj)ph̄⋅

P
=

M(Xj) − M̄h̄⋅(Xj)

M(Y) − M̄h̄⋅(Y)

(5)�(Xj) =
M(Xj)

M(Y)
=

T(Xj)

T(Y)
j = 1, 2,… , c
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In real situations, the sources can also have negative values. When a variable 
assumes negative values, the use of any inequality index requires great atten-
tion; for example, see De Battisti et  al. (2019) and Manero (2017) for further 
details about the Gini index. However, in the proposed decomposition of the 
Pietra index, the sources can assume also negative values, and in such a case 
attention is required only for the interpretation of the quantities 𝜔h̄⋅(Xj) and �(Xj) 
defined in (4) and (5), respectively. Finally, it is also worth remarking that the 
relative contribution of Xj to the Pietra index is equal to those of the Gini, Bon-
ferroni, and Zenga-2007 pointwise inequality measures at the cumulative rela-
tive frequency p = ph̄⋅ . For more details on this point, see Zenga (2013), Zenga 
and Valli (2017), and Pasquazzi and Zenga (2018).

5 � Decomposition by subpopulations

The procedure for decomposing the Pietra index by subpopulations is based on 
the bivariate distribution of the N units split into k disjoint subpopulations (with 
k ≥ 2 ). Such a distribution is reported in Table 1, where nhl denotes the frequency 
of the value yh (with h = 1, 2,… , r ) in subpopulation l (with l = 1, 2,… , k ), and

is the size of the subpopulation l. Obviously:

For the distribution {(yh, nhl), h = 1, 2,⋯ , r} of subpopulation l, the analogs of 
the quantities Ph⋅ and Qh⋅ are

n
⋅l =

r∑
h=1

nhl

r∑
h=1

k∑
l=1

nhl =

k∑
l=1

r∑
h=1

nhl =

r∑
h=1

nh⋅ =

k∑
l=1

n
⋅l = N.

Phl =

h∑
t=1

ntl

Table 1   Bivariate distribution of 
the variable Y, according to the 
k subpopulations

Y Subpopulations Total

1 2 ⋯ k

y
1

n
11

n
12

⋯ n
1k n

1.

y
2

n
21

n
22

⋯ n
2k n

2.

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

yr nr1 nr2 ⋯ nrk nr.

Total n
.1

n
.2

⋯ n
.k N
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which is the cumulative frequency of yh in subpopulation l, and

which is the sum of the values of the lower group {Y ≤ yh} in subpopulation l. 
Moreover,

where Tl(Y) is the sum of the n
⋅l values of Y in subpopulation l and Ml(Y) is the cor-

responding arithmetic mean. The lower mean M̄hl(Y) of the variable Y evaluated at h 
in subpopulation l can be defined as

In this definition of M̄hl(Y) the lower mean of Phl = 0 is prolonged by continuity, in 
analogy to the continuous case. Finally, the two ratios

can be defined: they are the relative frequencies of subpopulation l in the whole pop-
ulation and in the lower group {Y ≤ yh} , respectively.

Among the mean M(Y) and the means of the k subpopulations Mg(Y) , it holds that

and similarly, among the lower mean M̄h⋅(Y) and the k lower means M̄hl⋅(Y) , it holds 
that

By using (7) in expression (2) of the Pietra index, and by recalling that for any 
h ∈ {1, 2,… r} it holds that 

∑k

l=1
p(l�h) = 1 , it follows that

Qhl(Y) =

h∑
t=1

ytntl

Ml(Y) =
Qrl(Y)

n
⋅l

=
Tl(Y)

n
⋅l

,

M̄hl(Y) =

{
min{yh ∶ nhl > 0} if Phl = 0,
Qhl(Y)

Phl

if Phl > 0.

n
⋅l

N
=

∑r

h=1
nhl

N
and p(l�h) = Phl

Ph⋅

(6)M(Y) =

k∑
g=1

Mg(Y) ⋅
n
⋅g

N
,

(7)M̄h⋅(Y) =

k∑
l=1

M̄hl(Y) ⋅ p(l|h).
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where

can be interpreted as the contribution of subpopulation l to the Pietra index, for 
l ∈ {1, 2,… k} . Using this decomposition procedure, it is thus possible to assess the 
contribution to the total value of P related to each single subpopulation, provided by 
(8). This result is important because, as already noted, other decomposition methods 
proposed in the literature cannot reach this goal.

For comparison, it is interesting to evaluate the relative contribution of subpopu-
lation l to the Pietra index, given by

As seen, this contribution depends on the ratio of two economic distances between 
the total mean of Y and a lower mean (in the numerator related to subpopulation l, 
in the denominator related to the whole population), and on the relative frequency 
p(l|h̄) of subpopulation l in the lower group {Y ≤ yh̄}.

Now, from (6) and the fact that

it follows that

P =
M(Y) − M̄h̄⋅(Y)

M(Y)
⋅ ph̄⋅

=

k∑
l=1

[
M(Y)p(l|h̄) − M̄h̄l(Y)p(l|h̄)

]

M(Y)
⋅ ph̄⋅

=

k∑
l=1

M(Y) − M̄h̄l(Y)

M(Y)
⋅ p(l|h̄) ⋅ ph̄⋅

=

k∑
l=1

Vh̄l⋅(Y) ⋅ ph̄⋅,

(8)Vh̄l⋅(Y) ⋅ ph̄⋅ =
M(Y) − M̄h̄l(Y)

M(Y)
⋅ p(l|h̄) ⋅ ph̄⋅

Vh̄l⋅(Y) ⋅ ph̄⋅

P
=

M(Y) − M̄h̄l(Y)

M(Y) − M̄h̄⋅(Y)
⋅ p(l|h̄).

k∑
g=1

n
⋅g

N
= 1,
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where

is the contribution to Vh̄l⋅ related to the comparison between the lower mean M̄h̄l(Y) 
of subpopulation l and the mean Mg(Y) of subpopulation g.

In other words, (9) shows how the Pietra index can be split into a k × k matrix, 
according to the partition induced by the k subpopulations.

The decomposition in (9) allows to further decompose the contribution of 
each subpopulation to the Pietra index into two quantities: the first one based on 
the comparison of means in the same subpopulation (which can be considered as 
within part), the second ones based on the comparison of means related to different 
subpopulations (which can be considered as between part). In effect

with the within part of the contribution (due to subpopulation l) to the Pietra index 
given by

and the between part of the contribution (due to subpopulation l) to the Pietra index 
equal to

At this point, it is clear the meaning of the two ratios

(9)

P =

k∑
l=1

Vh̄l⋅(Y) ⋅ ph̄⋅,

=

k∑
l=1

M(Y) − M̄h̄l(Y)

M(Y)
⋅ p(l|h̄) ⋅ ph̄⋅

=

k∑
l=1

k∑
g=1

[
Mg(Y) − M̄h̄l(Y)

M(Y)

]
⋅

n
⋅g

N
⋅ p(l|h̄) ⋅ ph̄⋅

=

k∑
l=1

k∑
g=1

Vh̄lg(Y) ⋅ ph̄⋅,

(10)Vh̄lg(Y) ⋅ ph̄⋅ =
Mg(Y) − M̄h̄l(Y)

M(Y)
⋅

n
⋅g

N
⋅ p(l|h̄) ⋅ ph̄⋅

Vh̄l⋅(Y) ⋅ ph̄⋅ = Vh̄ll(Y) ⋅ ph̄⋅ +

k∑
{g∶g≠l}

Vh̄lg(Y) ⋅ ph̄⋅,

Vh̄ll(Y) ⋅ ph̄⋅ =

[
Ml(Y) − M̄h̄l(Y)

M(Y)

]
⋅

n
⋅l

N
⋅ p(l|h̄) ⋅ ph̄⋅

k∑
{g∶g≠l}

Vh̄lg(Y) ⋅ ph̄⋅ =

k∑
{g∶g≠l}

[
Mg(Y) − M̄h̄l(Y)

M(Y)

]
⋅

n
⋅g

N
⋅ p(l|h̄) ⋅ ph̄⋅.
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which describe the weights of the within and between parts in the contribution of 
subpopulation l to the Pietra index.

5.1 � “Classical” decomposition into within and between components

From the decomposition represented in (9) it is also possible to reach the well-
known decomposition into the within and between components. This is obtained by 
splitting the value of the Pietra index into two parts: the former ( PW ) based on mean 
comparisons of the same subpopulation, and the latter ( PB ) depending on compari-
son among means of different subpopulations:

5.2 � Comparison with other decompositions by subpopulations

As mentioned in Sect. 1, the literature contains two quite recent decompositions of 
the Pietra index by subpopulations. The first one, proposed by Frosini (2012), splits 
the Pietra index P into the sum of two terms, namely

In this decomposition:

–	 PF
W

 is the within component, defined as 

 where Pl is the Pietra index of Y in subpopulation l, 

Vh̄ll(Y) ⋅ ph̄⋅

Vh̄l⋅(Y) ⋅ ph̄⋅
and

∑k

{g∶g≠l}
Vh̄lg(Y) ⋅ ph̄⋅

Vh̄l⋅(Y) ⋅ ph̄⋅
,

P =

k∑
l=1

k∑
g=1

[
Mg(Y) − M̄h̄l(Y)

M(Y)

]
⋅

n
⋅g

N
⋅ p(l|h̄) ⋅ ph̄⋅

=

k∑
l=1

Ml(Y) − M̄h̄l(Y)

M(Y)
⋅

n
⋅l

N
⋅ p(l|h̄) ⋅ ph̄⋅

+

k∑
l=1

k∑
{g∶g≠l}

Mg(Y) − M̄h̄l(Y)

M(Y)
⋅

n
⋅g

N
⋅ p(l|h̄) ⋅ ph̄⋅

=

k∑
l=1

Vh̄ll(Y) ⋅ ph̄⋅ +

k∑
l=1

k∑
{g∶g≠l}

Vh̄lg(Y) ⋅ ph̄⋅

=PW + PB.

P = PF
W
+ PF

B
.

(11)PF
W
=

k∑
l=1

Tl(Y)

T(Y)
Pl,
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–	 PF
B
 is the between component, and it is the sum of the two quantities PBt and PBm : 

	 (i)	 PBt is the mixture effect and is equal to 

	 (ii)	 PBm is the mean effect, given by 

 where 

Moreover, in Frosini (2012), the contribution Dl to the Pietra index P due to sub-
population l, can be computed as follows:

The procedure proposed by Frosini (2012) can be useful, even if the between com-
ponent PF

B
 requires caution in the interpretation, given that it is the sum of two quan-

tities related to different effects and its meaning is therefore neither very intuitive 
nor immediate. The possibility to assess the contribution due to each subpopulation 
is surely a worthy characteristic of this procedure.

The second of the aforementioned decompositions was proposed by Habib 
(2012). Starting from the definitions of

Pl =

∑r

h=1
�yh −Ml(Y)� ⋅ nhl
2Ml(Y)n⋅l

l = 1,… , k;

PBt =
1

T(Y)

[ ∑
Ml(Y)>M(Y)

∑
M(Y)<yh≤Ml(Y)

[yh −Ml(Y)]nhl+

−
∑

Ml(Y)<M(Y)

∑
Ml(Y)<yh≤M(Y)

[yh −Ml(Y)]nhl

]
,

PBm =
1

2T(Y)

k�
l=1

Pl
Bm

=
1

2T(Y)

k�
l=1

⎡⎢⎢⎣

r�
h=h̄+1

nhl −

⎛⎜⎜⎝

h̄�
h=1

nhl − Kl

⎞⎟⎟⎠

⎤⎥⎥⎦
[Ml(Y) −M(Y)],

Kl =

{
nh0l if ∃ h0 ∈ {1,… , r} such that yh0 = M(Y)

0 otherwise.

Dl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Tl(Y)

T(Y)
Pl −

1

T(Y)

�
Ml(Y)<yh≤M(Y)

[yh −Ml(Y)]nhl −
Pl
Bm

2T(Y)
if Ml(Y) < M(Y)

Tl(Y)

T(Y)
Pl if Ml(Y) = M(Y)

Tl(Y)

T(Y)
Pl +

1

T(Y)

�
M(Y)<yh≤Ml(Y)

[yh −Ml(Y)]nhl +
Pl
Bm

2T(Y)
if Ml(Y) > M(Y).
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–	 the overall variation 

–	 the within variation 

–	 the between variation 

the following decomposition of the Pietra index P is obtained

where:

–	 P̃W is the within component, defined as 

–	 P̃B is the between component 

–	 P̃E is the (error) remaining term 

In this decomposition, it is easy to see that the within component P̃W defined in (12) 
coincides with the corresponding PF

W
 defined in (11), given that by definition it holds 

that

As in the previous procedure, the interpretation of the between component P̃B is not 
very immediate, and the presence of the quantity P̃E , required to rescale the sum 
of P̃W and P̃B into the interval [0, 1], does not facilitate that task. To simplify the 
decomposition, Habib (2012) proposes removing the third term P̃E by dividing it 
into two parts to be summed to P̃W and P̃B , arguing that “the separation of the error 

dhl =

{
[yh −M(Y)]nhl if yh > M(Y)

0 otherwise;

whl =

{
[yh −Ml(Y)]nhl if yh > Ml(Y)

0 otherwise;

zl =

{
Ml(Y) −M(Y) if Ml(Y) > M(Y)

0 otherwise,

P = P̃W + P̃B + P̃E,

(12)P̃W =

k∑
l=1

n
⋅l

N
⋅

Ml(Y)

M(Y)
⋅ Pl;

P̃B =

∑k

l=1
zl∑k

l=1
Ml(Y)

⋅

∑k

l=1
Ml(Y)

k ⋅M(Y)
⋅

k�
l=1

n
⋅l

N
⋅

zl ⋅ k∑k

l=1
zl

;

P̃E =
1

NM(Y)

k�
l=1

r�
h=1

dhl −

k�
l=1

n
⋅l

N

�∑r

h=1
whl

n
⋅lM(Y)

+
zl

M(Y)

�
.

Tl(Y)

T(Y)
=

n
⋅l

N
⋅

Ml(Y)

M(Y)
.
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term to within-groups and between-groups errors could be based on a proportionate 
of each error to the total error” (Habib 2012). In other words, he proposes splitting 
P̃E into the sum of P̃EW

 and P̃EB
 , to obtain the so-called perfect decomposition

where

However, dividing P̃E into the sum of P̃EW
 and P̃EB

 with no objective rule for deter-
mining how the splitting must be performed seems very arbitrary, and it makes the 
interpretations of PH

W
 and PB

W
 less intuitive and more problematic.

6 � Applications to two actual sport datasets

In this section, two applications of the proposed decomposition procedures are pre-
sented, both regarding professional football teams in Italy. The first one deals with 
their balance-sheet data, while the second one deals with the market values of all 
their players.

6.1 � Decomposition by sources

Serie A is the most important football league in Italy, with N = 20 professional 
teams. As in other European countries, the correctness of the balance sheets of the 
football teams has become increasingly important in recent years, leading to bur-
geoning studies on this topic; for example, see PwC (2018) and KPMG (2019). 
Within this framework, the following analysis is provided. For each Serie A team, 
the following five balance-sheet variables are considered:

–	 Y = Total assets;
–	 X1 = Cash;
–	 X2 = Total accounts receivable;
–	 X3 = Inventories, short-term investments and other current assets;
–	 X4 = Net property (tangible and intangible assets), investments and advances, 

other assets.

All the variables are in millions of Euros and refer to fiscal year 2018. The data are 
from https://​www.​anali​siazi​endale.​it and are repeated in the provided supplementary 
material. The Total assets is the investigated variable, while Xj , (with j = 1, 2, 3, 4 ) 
are the four sources, given that Y =

∑4

j=1
Xj. Table 2 provides some descriptive sta-

tistics about all the variables, and Fig. 1 shows their boxplots.
Clearly, Net property, investments and advances, other assets (X4) is the most rel-

evant source: its mean and mean absolute deviation (MAD) are the highest and the 
most comparable to those of Total assets (Y).

P = PH
W
+ PH

B
,

PH
W
= P̃W + P̃EW

and PH
B
= P̃B + P̃EB

.

https://www.analisiaziendale.it
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The value of the Pietra index of Y is 0.3584, denoting a medium level of hetero-
geneity. The four contributions obtained by the proposed decomposition by sources 
are stored in Table 3.

As expected, the highest contribution is due to the source Net property, investments 
and advances, other assets (X4) , which represents the most part of P (73.88%). Total 
accounts receivable (X2) follows with 18.42%, then Cash (X1) with 6.36%. The source 

Table 2   Descriptive statistics of the variables considered for the decomposition by sources

Y X
1

X
2

X
3

X
4

Min 6.281 0.037 1.752 0.010 2.452
Max 772.669 110.694 125.934 21.483 619.283
Median 160.730 3.000 51.054 2.044 95.309
Mean 233.701 11.992 56.237 3.995 161.477
Mean abs. dev. (MAD) 167.517 14.186 35.587 3.5420 128.439
Pietra Index P 0.3584 0.5915 0.3164 0.4433 0.3977

X 1
X 2

X 3
X 4

Y

0 200 400 600 800

Distributions of Y (Total Assets) and its sources 

Euro (Millions)

Fig. 1   Boxplots of the variables considered for the decomposition by sources

Table 3   The contributions of the sources to the Pietra index P

Source Wh̄⋅(Xj)ph̄⋅ 𝜔h̄⋅(Xj) �(Xj) 𝜔h̄⋅(Xj) − 𝛾(Xj)

Cash (X
1
) 0.0228 0.0636 0.0513 0.0123

Total accounts receivable (X
2
) 0.0660 0.1842 0.2406 -0.0564

Inventories, short-term invest. 
and other current assets

(X
3
) 0.0048 0.0134 0.0171 -0.0036

Net property, invest. and 
advances, other assets

(X
4
) 0.2648 0.7388 0.6910 0.0478
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Inventories, short-term investments and other current assets (X3) is the last one, with a 
negligible contribution of 1.34%.

The comparison of the differences reported in the last column of Table 3 shows that 
the sources Cash and Net property, investments and advances, other assets exacerbate 
the heterogeneity of Total assets, while the other two play a mitigating role. As a final 
remark, it can be argued that the heterogeneity in the distribution of Y is due mainly to 
the source Net property, investments and advances, other assets, given that this variable 
includes intangible assets, to which a percentage of the values of the team players is 
allocated: as analyzed in the following application, these values differ considerably also 
among teams in the same league.

6.2 � Decomposition by subpopulations

This second application concerns not just Serie A teams but all Italian profes-
sional football teams in the three existing leagues, namely Serie A, B, and C, with 
n
⋅1 = 20 , n

⋅2 = 19 , and n
⋅3 = 59 teams, respectively. In fact, Serie C is divided 

territorially into three more subgroups, but in this application they are consid-
ered all together. For each team, the variable Y = “Value (in millions of Euro) 
of the team players in November 2018”, which is the sum of the market values 
of all the team players, is investigated. The data are available online at https://​
www.​trans​ferma​rkt.​it. The three leagues are the three subpopulations, and the 
purpose of this analysis is to investigate how the heterogeneity of Y is split across 
the three leagues and to assess the heterogeneity levels between the leagues and 
within each one. Table  4 provides some statistical indicators for the variable Y 
regarding the three subpopulations and the whole population. The calculations 
give h̄ = max{h ∶ yh ≤ M(Y)} = 80 , and therefore ph̄⋅ =

80

98
= 0.8163 . The lower 

means M̄h̄l and the relative frequencies p(l|h̄) needed for the calculations are also 
given in Table 4. The complete dataset can be found in the provided supplemen-
tary material.

Table 4   Descriptive statistics 
of the variable Y for the three 
subpopulations and for the 
whole population

Subpopulations

Serie A Serie B Serie C Total

l = 1 l = 2 l = 3

Size n
⋅l 20 19 59 98

Min 38.05 8.38 0.675 0.675
Max 797.8 37.38 8.9 797.8
Mean Ml(Y) 234.986 17.556 4.017 53.778
Median 146.765 15.85 3.8 5.155
Mean abs. dev. (MAD) 171.023 5.442 1.039 74.483
Pietra index P 0.3639 0.1550 0.1293 0.6925
M̄h̄l

40.825 17.556 4.017 -

p(l|h̄) 0.025 0.2375 0.7375 1

https://www.transfermarkt.it
https://www.transfermarkt.it
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An overview of the data shows that these three subpopulations are almost non-
overlapping, given that all the values of teams in Serie A are higher than those of 
all the teams in the other two subpopulations and only one team in Serie C has a 
value higher than that of the poorest team in Serie B. The three subpopulations 
are therefore very different, as shown by the orders of magnitude of all the loca-
tion indexes and by the variability indicator, the mean absolute deviation (MAD). 
It is also interesting to note that the values of Y for all the teams in Serie B and C 
are lower than the total mean M(Y) = 53.778.

Direct computation shows that for the whole population of the 98 professional 
football teams, the mean absolute deviation is SM(Y) = 74.483 , therefore the Pietra 
index is given by

The proposed procedure allows to decompose the Pietra index as

The values Vh̄lg(Y) ⋅ ph̄⋅ are the entries of the 3 × 3 decomposition-by-subpopulations 
matrix, reported in Table 5. Interestingly, note that in this application, the two values

since

This can be proved by replacing data in Table 4 by their definitions, given by

To interpret the obtained values, the quantity

P =
74.483

2 ⋅ 53.778
= 0.6925.

P =

3∑
l=1

3∑
g=1

Vh̄lg(Y) ⋅ ph̄⋅.

Vh̄22(Y) ⋅ ph̄⋅ = Vh̄33(Y) ⋅ ph̄⋅ = 0,

Vh̄22(Y) = Vh̄33(Y) = 0.

Vh̄22(Y) =M2(Y) − M̄80,2 = 17.556 − 17.556 = 0,

Vh̄33(Y) =M3(Y) − M̄80,3 = 4.017 − 4.017 = 0.

Table 5   The 3 × 3 decomposition by subpopulations matrix, and the contributions of each subpopulation 
split in within and between parts

Serie A Serie B Serie C
l = 1 l = 2 l = 3

Serie A g = 1 0.0150 0.1599 0.5277
Serie B g = 2 −0.0017 0 0.0294
Serie C g = 3 −0.0084 −0.0294 0
V
80l⋅(Y) ⋅ p80⋅ 0.0049 (0.71%) 0.1305 (18.84%) 0.5571 (80.45%) 0.6925 (100%)

Within part 0.0150 0 0 0.0150 (2.2%)
Between part −0.0101 0.1305 0.5571 0.6775 (97.8%)



91

1 3

Decompositions by sources and by subpopulations of the Pietra…

shows that the average value of the teams in Serie A is much greater than the lower 
mean of the teams in Serie C, and therefore it allows to assess a relevant “economic 
distance” between the two subpopulations Serie A and C.

A minor distance is registered between Serie A and Serie B, since

and a very low one is registered between Serie B and Serie C given that

The value

and the other negative ones ( Vh̄13(Y) ⋅ ph̄⋅ = −0.0084 ; Vh̄23(Y) ⋅ ph̄⋅ = −0.0294 ) show 
that the average value of the teams in Serie B is less than the lower mean of the 
teams in Serie A, and the average value of the teams in Serie C is less than both the 
lower means of the other two leagues.

The aggregated values in the last rows of Table 5 show that the subpopulation 
with the largest contribution to the Pietra index is Serie C (with 80.45% ), and the 
one with the smallest contribution is Serie A (with 0.71% ). A reasonable cause 
for this can be identified also in the very high weight of Serie C in the whole 
population (since p(3|h̄) = 73.75% ). Table 5 also provides the within and between 
parts of the contribution of each subpopulation. In this application, given that 
the quantities Vh̄22(Y) and Vh̄33(Y) are zero, Serie B and C do not contribute to the 
within component of the Pietra index, and the heterogeneity due to those is car-
ried into the between component. The within part of Serie A coincides with the 
within component of P.

As special case, also the decomposition of the Pietra index into the within and 
between components can be obtained. The former is the sum of the entries in the 
main diagonal of Table 5, while the latter is the sum of all the remaining ones:

From these, it is interesting to evaluate the two ratios

Vh̄31(Y) ⋅ ph̄⋅ =
M1(Y) − M̄h̄3(Y)

M(Y)
⋅

n
⋅1

N
⋅ p(3|h̄) ⋅ ph̄⋅ = 0.5277

Vh̄21(Y) ⋅ ph̄⋅ =
M1(Y) − M̄h̄2(Y)

M(Y)
⋅

n
⋅1

N
⋅ p(2|h̄) ⋅ ph̄⋅ = 0.1599,

Vh̄32(Y) ⋅ ph̄⋅ =
M2(Y) − M̄h̄3(Y)

M(Y)
⋅

n
⋅2

N
⋅ p(3|h̄) ⋅ ph̄⋅ = 0.0294.

Vh̄12(Y) ⋅ ph̄⋅ =
M2(Y) − M̄h̄1(Y)

M(Y)
⋅

n
⋅2

N
⋅ p(1|h̄) ⋅ ph̄⋅ = −0.0017

PW = 0.0150 and PB = 0.6775.

PW

P
=

0.0150

0.6925
= 0.022 and

PB

P
=

0.6775

0.6925
= 0.978,
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which show that in this application the between component of the Pietra index is far 
more relevant than the within one. The between component represents the 97.8% of 
the total, while the within one represents only 2.2%. This result also shows that the 
disparity across the three leagues counts for much more than that into the leagues.

Now, the other two decomposition procedures reported in the previous sec-
tions, are applied and the results compared with those already obtained. Applying 
the decomposition proposed by Frosini (2012) to the examined dataset gives the 
following values:

with

The computation of the two ratios

allows to argue that in this decomposition, the two components (within and between) 
are quite balanced, since they represent 49.1% and 50.9% of the total, respectively. 
This result is obtained even if the subpopulations are almost non-overlapping and 
have very different means, as already remarked.

Table 6 summarizes the contributions of each subpopulation according to the proce-
dure proposed by Frosini (2012).

Unlike with the previous decomposition, here the subpopulation with the lowest 
contribution to the Pietra index is Serie B (9.43%). This conclusion is motivated neither 
by the order of magnitude of the values of Y in that league nor by the relative weight of 
that league in the whole population, which is very close to that of Serie A.

Computating the decomposition proposed by Habib (2012) gives the following 
values:

where the within component P̃W coincides with PF
W

 , as already remarked. The pres-
ence of the third term P̃E makes the interpretation of the results not very intuitive. 
Then, following the same approach used in the application in Habib (2012), P̃E can 
be divided equally into the two errors P̃EW

 and P̃EB
 , giving

PF
W
= 0.3401 and PF

B
= 0.3524,

PBt = −0.2664 and PBm = 0.6188.

PF
W

P
=

0.3401

0.6925
= 0.491 and

PF
B

P
=

0.3524

0.6925
= 0.509

P̃W = 0.3401, P̃B = 0.6876 and P̃E = −0.3352,

Table 6   The contributions of the three subpopulations in the decomposition proposed by Frosini (2012)

Serie A Serie B Serie C
l = 1 l = 2 l = 3

Dl 0.3487 (50.35%) 0.0653 (9.43%) 0.2785 (40.22%) 0.6925 (100%)
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The relative weights of these two components are therefore

These values show that it is the between component that is most relevant, given that 
it represents 75.1% of the total, while the within component represents the remain-
ing 24.9%. It is worth recalling that the lack of a rule governing how to split P̃E into 
PEW

 and PEB
 is a non-negligible point of weakness of this procedure.

7 � Conclusions and final remarks

In this paper, two innovative procedures for decomposing the Pietra index are intro-
duced based on an alternative expression for this “evergreen” measure. The decompo-
sition by sources allows to obtain the contribution related to each source. The decom-
position by subpopulations allows to assess how each subpopulation contributes to the 
value of the index, also by assessing the within and between parts in each contribution. 
By using a different aggregation, it is also easy to obtain the classical decomposition 
of the Pietra index into the within and between components. Because of their very fine 
decomposition levels, these two procedures are very innovative and provide research-
ers with more information than do many others available in the literature for the Pietra 
index. The two presented applications add interesting details about Italian professional 
football teams: the first one shows how the heterogeneity of the Total assets in Serie A 
teams can be split among its sources, while the second one highlights how much of the 
disparity in team values is due to each of the three considered leagues.

Appendix: Computation and decompositions of the Pietra index

This appendix exemplifies calculating the Pietra index and the proposed decomposi-
tions. To show the flexibility of the proposed procedures, these example data are delib-
erately very different from those used in the applications described in the main paper. 
Consider the dataset in Table 7: there are N = 20 units from k = 3 different subpopula-
tions, and the value of the variable Y is given by the sum of c = 3 sources ( X1 , X2 , and 
X3 ). The last three columns describe to which subpopulation each unit belongs.

First, consider the distribution of the variable Y as given in Table 8. Using the same 
notation as that in the main paper, we have r = 6 and N = 20 . Straightforward calcula-
tions give.

From straightforward calculations, it derives that

meaning that the Pietra index is:

PH
W
= 0.1725 and PH

B
= 0.5200.

PH
W

P
=

0.1725

0.6925
= 0.249 and

PH
B

P
=

0.52

0.6925
= 0.751.

M(Y) =
T(Y)

N
=

600

20
= 30, and SM(Y) =

380

20
= 19,
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The set 
{
yh ∶ yh ≤ M(Y)

}
 has cardinality 3:

and h̄ = max
{
h ∶ yh ≤ M(Y)

}
= 3 . Thus,

and

P =
19

2 ⋅ 30
= 0.3166.

{
yh ∶ yh ≤ M(Y)

}
=
{
y1, y2, y3

}
= {10, 15, 22},

Ph̄⋅ = P3⋅ =

3∑
h=1

nh⋅ = 3 + 6 + 5 = 14,

Table 7   Original data matrix i Sources Y Subpopulations

X
1

X
2

X
3

1 2 3

1 6 4 0 10 0 1 0
2 6 3 1 10 0 0 1
3 8 1 1 10 0 0 1
4 8 7 0 15 0 1 0
5 2 13 0 15 0 0 1
6 4 8 3 15 1 0 0
7 4 10 1 15 1 0 0
8 8 6 1 15 1 0 0
9 9 6 0 15 0 0 1
10 13 8 1 22 0 0 1
11 11 10 1 22 1 0 0
12 15 5 2 22 1 0 0
13 12 10 0 22 1 0 0
14 13 7 2 22 1 0 0
15 20 0 16 36 0 1 0
16 16 0 20 36 1 0 0
17 14 0 22 36 1 0 0
18 40 10 16 66 0 1 0
19 8 22 36 66 0 0 1
20 59 30 41 130 1 0 0
Total 276 160 164 600 10 4 6

Table 8   Frequency distribution 
of the variable Y 

yh 10 15 22 36 66 130 Total

nh⋅ 3 6 5 3 2 1 20
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are the cumulative frequency and the cumulative sum of values corresponding to h̄ , 
respectively. In the row identified by h = 3 , Table 9 reports the cumulative relative 
frequency

the corresponding value of the Lorenz curve

and the difference

thereby confirming the property reported in Sect. 2, that P = p̃ − L(p̃) , where p̃ is 
such that y(p̃) = M(Y) . In Fig. 2 the Lorenz curve of the variable Y is shown and the 
segment of extremes (p3⋅, L(p3⋅)) , whose length is the value of the Pietra index, is 
highlighted.

Decomposition by sources

The proposed decomposition of the Pietra index is now applied to the distribution of Y, 
by considering the c = 3 sources. For them, it follows from Table 7 that

and

Then:

Qh̄⋅(Y) = Q3⋅(Y) =

3∑
h=1

yhnh⋅ = 30 + 90 + 110 = 230

ph̄⋅ = p3⋅ =
14

20
= 0.70,

L
(
p3⋅

)
=

230

600
= 0.3833,

p3⋅ − L
(
p3⋅

)
= 0.3166,

T(X1) = 276, T(X2) = 160, T(X3) = 164,

Q3⋅(X1) = 119, Q3⋅(X2) = 98, Q3⋅(X3) = 13.

Table 9   Calculations and 
coordinates of the Lorenz curve

h yh nh⋅ yhnh⋅ Ph⋅ Qh⋅ ph⋅ L(ph⋅) ph⋅ − L(ph⋅)

1 10 3 30 3 30 0.15 0.05 0.10
2 15 6 90 9 120 0.45 0.20 0.25
3 22 5 110 14 230 0.70 0.3833 0.3166
4 36 3 108 17 338 0.85 0.563 0.2865
5 66 2 132 19 470 0.95 0.783 0.166
6 130 1 130 20 600 1 1 0
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The calculations for the decomposition by sources are reported in Table 10. The fifth 
column contains the contributions of the sources (0.1236, 0.0233, and 0.1697) to the 
Pietra index, and the sixth one contains 𝜔h̄⋅(Xj).

Comparing the values in the last column, shows that the first two sources ( X1 and 
X2 ) exacerbate the inequality (since the differences �3⋅(Xj) − �(Xj) are negative), while 
X3 has a mitigating impact because the difference �3⋅(X3) − �(X3) is positive.

Decomposition by subpopulations

The proposed decomposition of the Pietra index by subpopulation is now applied to the 
considered distribution. The data regarding the subpopulations of Table 7 are summa-
rized in Table 11.

The means of Y in the three subpopulations are

M(X1) =
276

20
= 13.8, M(X2) =

160

20
= 8, M(X3) =

164

20
= 8.2,

M̄3⋅(X1) =
119

14
= 8.5, M̄3⋅(X2) =

98

14
= 7, M̄3⋅(X3) =

13

14
= 0.9285.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2
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4
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p

L(
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Fig. 2   The Lorenz curve for the variable Y, and the geometrical representation of the Pietra index P

Table 10   Calculations for the decomposition by sources

j M(Xj) − M̄
3⋅(Xj)

W
3⋅
(Xj) p

3⋅
W

3⋅
(Xj)p3⋅ �

3⋅
(Xj) �(Xj) �

3⋅
(Xj) − �(Xj)

1 5.30 0.1766 0.70 0.1236 0.390 0.460 −0.070

2 1 0.0333 0.70 0.0233 0.074 0.267 −0.193

3 7.2715 0.2424 0.70 0.1697 0.536 0.273 0.263
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and the lower means M̄h̄l(Y) at h̄ = 3 are

The values of p(l|h̄) are given by

and the relative frequencies of the subpopulations are:

As seen before, ph̄⋅ = p3⋅ = 0.7 . The 3 × 3 decomposition-by-subpopulations matrix 
with entries given by the quantities V3lg(Y) ⋅ p3⋅ is given in Table 12.

From that, the within and between components of the Pietra index are obtained as

which represent 37.52% and 62.48% of P , respectively.

M1(Y) = 33.5, M2(Y) = 31.75, M3(Y) = 23,

M̄31(Y) =
133

7
= 19, M̄32(Y) =

25

2
= 12.5, M̄33(Y) =

72

5
= 14.4.

p(1|3) = 7

14
= 0.5, p(2|3) = 2

14
= 0.1429, p(3|3) = 5

14
= 0.3571,

n
⋅1

N
=

10

20
= 0.5,

n
⋅2

N
=

4

20
= 0.2,

n
⋅3

N
=

6

20
= 0.3.

PW = 0.1188 and PB = 0.1978,

Table 11   Bivariate distribution 
of the variable Y, according to 
the k = 3 subpopulations

Y Subpopulations Total

1 2 3

10 0 1 2 3
15 3 1 2 6
22 4 0 1 5
36 2 1 0 3
66 0 1 1 2
130 1 0 0 1
Total 10 4 6 20

Table 12   The 3 × 3 decomposition-by-subpopulations matrix, and the contributions of each subpopula-
tion split in within and between  parts

l = 1 l = 2 l = 3

g = 1 0.0845 0.0350 0.0796
g = 2 0.0298 0.0128 0.0289
g = 3 0.0140 0.0105 0.0215
V
3l⋅(Y) ⋅ p3⋅ 0.1283 (40.52%) 0.0583 (18.41%) 0.1300 (41.07%) 0.3166 (100%)

Within  part 0.0845 0.0128 0.0215 0.1188 (37.52%)
Between part 0.0438 0.0455 0.1085 0.1978 (62.48%)
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